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Abstract—The contribution of Polarimetric SAR Interferome-
try (PolInSAR) observables to crop-type classification is investi-
gated in this letter. The focus is set on characteristic parameters of
the Coherence Region (CoRe), i.e. the representation in the polar
plot of the PolInSAR data. For this purpose, time series of dual-
pol HH-VV single-pass TanDEM-X bistatic data acquired over
an agricultural area in Spain are exploited. In the experiment,
up to 13 different crop types are evaluated. Crop classification
is performed by means of the well-known Random Forest
algorithm. The retrieved accuracy metrics highlight the potential
of the evaluated PolInSAR descriptors for this application. Some
PolInSAR features have proven to be enough representative
of the scene, such as the Trace Coherence, which yields a
classification accuracy of 75% and 87% at pixel and field level,
respectively, on its own. Using all the PolInSAR parameters
jointly as input features, classification reaches around 90% and
94% accuracy at pixel and field level, respectively. However,
there are some PolInSAR feature subsets, e.g. the coherence
measured at the Pauli channels or the foci of the ellipse which
represents the CoRe, which yield accuracy levels very close to
these maxima. These results demonstrate the suitability of the
PolInSAR parameters for crop-type classification. Results are
further improved when both polarimetric and PolInSAR features
are combined, reaching 94% and 96% accuracy at pixel and field
level, respectively.

Index terms— Agriculture, classification, crop-type, PolIn-
SAR, TanDEM-X, Trace Coherence.

I. INTRODUCTION

CROP-TYPE classification maps are today valuable prod-
ucts for both agricultural managers and paying agencies,

which exploit them for a broad range of applications, from pre-
diction of harvest yield to estimation of disaster compensation
or the design of biodiversity preservation strategies, among
others. In this context, timely and precise crop monitoring, as
offered by the Synthetic Aperture Radar (SAR) systems, is
crucial to reduce the cost of physical field inspections and to
advance towards operational level applications [1].

Time series of dual polarimetric HH-VV SAR data acquired
by the single-pass bistatic TanDEM-X [2] system during the
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Science Phase in 2015 were gathered using large spatial
baselines and in absence of temporal decorrelation. These are
key characteristics for crop monitoring by means of space-
borne Polarimetric SAR Interferometry (PolInSAR) [3]. The
potential of such a data set has been demonstrated in the past
for the quantitative estimation of crop parameters, with focus
on the vegetation height [4].

Regarding crop classification, previous experiments exploit-
ing X-band SAR data, either from the TerraSAR-X satellite
alone or with the TanDEM-X system, have obtained successful
results employing different polarimetric SAR (PolSAR) de-
scriptors [5], [6], and also by means of interferometric SAR
(InSAR) products [7], [8]. However, the information provided
by the combination of both polarimetric and interferometric
observables for this purpose remains unexplored.

In this work, we propose to investigate the added value of
PolInSAR descriptors for crop-type classification. In particu-
lar, parameters derived from the Coherence Region (CoRe) [9],
as the representation in the complex plane of the PolInSAR
data, are employed as input features for classification. In
addition, the operator known as Trace Coherence (TrCoh) [10],
which has proven a valuable parameter for crop height estima-
tion [11], is tested. By exploiting the geometrical representa-
tion of the CoRe, which is an ellipse for dual-pol data, as those
provided by the TanDEM-X system, additional observables
which provide further insights into the physical scene can be
retrieved. The crop classification accuracy achieved with these
PolInSAR parameters, together with the coherence observed
at the lexicographic and Pauli basis, is analysed and assessed.

II. POLARIMETRIC SAR INTERFEROMETRY

PolInSAR [3] systems combine information provided by
sets of images acquired at multiple polarisations. Considering
dual-pol HH-VV TanDEM-X bistatic data [2], each acquisition
can be expressed as a scattering vector k⃗n = [Sn

HH, S
n
VV]

T ,
n = 1, 2, where Sn

PP represents the complex scattering ampli-
tude at the n-th end of the spatial baseline.

The basic PolInSAR observable used to describe all scat-
terers present in the observed target (i.e. image pixel) is the
covariance [C] matrix (in the lexicographic basis):

[C] =

[
⟨k⃗1 · k⃗∗T1 ⟩ ⟨k⃗1 · k⃗∗T2 ⟩

⟨k⃗2 · k⃗∗T1 ⟩ ⟨k⃗2 · k⃗∗T2 ⟩

]
=

[
[C11] [Ω12]

[Ω12]
∗T [C22]

]
, (1)

where superscript ∗T denotes conjugate transpose, and ⟨·⟩
spatial averaging. [C11] and [C22] are 2 × 2 matrices contain-
ing polarimetric information, while [Ω12] is a 2 × 2 matrix
containing both polarimetric and interferometric information.
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The projection of the scattering vector k⃗n on unitary
complex vectors ω⃗, which specify the selected polarimetric
combination, yields Sn(ω⃗) = ω⃗∗T · k⃗n [3]. The interferometric
combination of the scalars Sn(ω⃗) results in the PolInSAR
coherence:

γ(ω⃗) =
ω⃗∗T [Ω12]ω⃗√

(ω⃗∗T [C11]ω⃗)(ω⃗∗T [C22]ω⃗)
. (2)

The CoRe [9] is the geometrical representation in the com-
plex plane of all possible PolInSAR coherences varying with
the projection vector:

{
γ(ω⃗), ω⃗ ∈ C2, ∥ω⃗∥ = 1

}
. A common

technique to derive mathematical properties from the CoRe
consists in employing a simplified PolInSAR matrix [A] [12,
eq. (6.33)], defined as

[A] =
√

[Ca]−1[Ω12]
√
[Ca]−1, with [Ca] =

[C11] + [C22]

2
.

(3)
In the case of dual-pol data, [A] is a 2 × 2 matrix. The field of
values of any 2 × 2 matrix is an ellipse [13]. From [A] (3), it
is possible to derive the characteristic parameters of the CoRe
by means of a Schur decomposition (see [12, eq. (6.31)])

[A] =

[
a11 a12
a21 a22

]
⇒ [A] = [U2]

∗T
[
λ1 δ
0 λ2

]
[U2], (4)

where

2a =

√
|λ1 − λ2|2 + |δ|2,

2b = |δ| ,

gm =
1

2
(λ1 + λ2) .

(5)

In (5), 2a and 2b are the major and minor axis, gm is the
ellipse centre (i.e. mean coherence), and λ1 and λ2 are the
foci of the ellipse.

Another parameter of interest of the CoRe is the operator
TrCoh [10], defined as:

γtr =
Trace([Ω12])√

Trace([C11])Trace([C22])
. (6)

As an approximation of the centre of mass of the CoRe, the
TrCoh provides a significant representation of the observed
target which is not associated with any specific scattering
mechanism. These properties make it suitable for crop pa-
rameter estimation by means of PolInSAR [11].

In contrast to the TrCoh, the coherence extrema γ (ω⃗min) and
γ (ω⃗max) are associated with the scattering mechanisms which
maximise the phase centre separation. Physically, these are
the coherences furthest and closest to the topographic phase.
Hence, they are commonly employed for its estimation by
using a line fit [3], [12].

A representation of the border of the CoRe, together with
its characteristic parameters, is shown in Fig. 1. The CoRes
of the four selected crop types corroborate that the PolInSAR
signature of each pixel is different according to the specific
crop structural (e.g. height, density) and dielectric (e.g. water
content) properties.
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Fig. 1. Unit circle on the complex plane representing the characteristic
parameters of the CoRe of 4 pixels corresponding to different crop types.
Colours represent the border of the CoRe (i.e. ellipse): alfalfa (blue), sugar
beet (orange), maize (green) and wheat (red). Data correspond to an acquisi-
tion obtained on 18 July 2015 with the TanDEM-X bistatic system.

III. TEST SITE AND DATA SET

An agricultural area in Sevilla, SW of Spain (37.1 N,
6.15 W), is selected for crop-type classification. As shown
in Fig. 2, we can divide the test site into two large areas: a
rice area located in the NW (in light blue), and an area known
as the BXII Sector, where different crop types are cultivated.
A total of 13 crop classes are considered in the experiment.

In this work, we have exploited 9 dual-pol HH-VV
TanDEM-X [2] bistatic acquisitions taken from 4 June to
31 August 2015. The available time series corresponds to an
incidence angle of 22.7◦and is characterised by large spatial
baselines, i.e. vertical wavenumber κZ = 2.48 rad/m, and small
heights of ambiguity, i.e. 2.53 m. The observation interval
ranges 3 months and covers different crop phenological stages,
including seeding, growing, harvesting and post harvest.

The starting point of the SAR data processing are the stan-
dard Coregistered Single-Look Slant-range Complex (CoSSC)
TanDEM-X products. The spatial resolution of the images is
6.6 m in azimuth and 3.1 m in range, whereas the pixel size
is 2.4 m in both coordinates. First, range spectral filtering is
applied to compensate for the geometrical decorrelation. Next,
multi-looking is carried out employing a 21 × 21 boxcar filter.
After the multi-looking, the spatial resolution is around 50 m
in both directions. Prior to the interferogram formation, flat
Earth and topographic phase contributions are removed, thus
yielding differential interferograms. In the end, the products
are geocoded.

IV. CROP CLASSIFICATION METHOD

Crop-type mapping is carried out by means of the Random
Forest (RF) [14] classifier implemented in Python. The number
of decision tree estimators is set to 1000, and the rest of
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Fig. 2. Study area located in Sevilla, Spain. The coherence amplitude of
the HH channel acquired on 26 June 2015 with the TanDEM-X system is
presented. The different crop classes available are specified.

hyper-parameters are set to their default values. The number
of features considered by each decision tree when dividing a
node is the square root of the total number of features.

The large 21 × 21 kernel size of the boxcar filtering,
suitable for PolInSAR data, yields correlated neighbouring
pixels. Hence, in first place, for each crop type, 50% of
the fields are selected for training and the remaining 50%
for testing. Next, similarly to the method described in [8],
a balanced training strategy is achieved by randomly selecting
the same number of pixels per class. This is constrained to
the class with the least number, for which all pixels of the
training set are considered. In third place, the evaluation step
is carried out including all pixels of the initial testing set. At
last, the described training and testing steps are repeated 10
times and the resulting accuracy metrics are averaged. This
avoids possible peculiarities of the initial (random) training-
testing fields split and it also ensures stable results.

Fig. 3 represents the temporal evolution of the PolInSAR
observables corresponding to characteristic parameters of the
CoRe, as defined in Section II. For the sake of simplicity,
4 (out of 13) crop types with different characteristics are se-
lected, i.e. alfalfa, sugar beet, maize and wheat. The time series
of the rest of available crops is included in the supplementary
material. The first three parameters (row 1) are related to the
coherence extrema and the phase difference between these two.
The remaining parameters (rows 2 and 3) correspond to the
TrCoh and those related purely to the geometrical shape of
the CoRe, i.e. an ellipse for dual-pol data. The time series of
all the crop types are included in the supplementary material.

Attending to the evolution of these parameters, the most

representative features (i.e. with greatest dynamic range) are
selected and grouped for crop classification. This includes: the
TrCoh alone, the ellipse axes, the ellipse foci, the coherence
extrema, and all the above together. In addition to these pa-
rameters, the coherence observed at the polarisation channels
in the lexicographic basis, i.e γHH and γVV, and in the Pauli
basis, i.e γP1 and γP2, where P1 = HH + VV, P2 = HH − VV,
constitute a second set of input features. Then, in another test,
all the described PolInSAR parameters are employed jointly
for crop classification.

Finally, to further assess the added value of these PolInSAR
descriptors for crop-type mapping, the analysis is completed
by considering purely polarimetric features. This includes the
backscattering power at the linear and Pauli channels, as well
as the corresponding polarimetric correlation (as defined in [8,
eq. (2)]) and phase, i.e. ρHHVV, ϕHHVV, ρP1P2, ϕP1P2.

The classification results are evaluated in two ways: at
pixel level and at field level. In the first case, each pixel
is assigned a crop class. In the second case, each field is
classified according to the mode (most frequent value) of
all the classes assigned to the pixels composing the field. In
addition, the importance of the individual features employed
in the classification experiments was retrieved. The most
representative cases are shown as figures in the supplementary
material, but they are commented in the Results section.

V. RESULTS

A. Results with PolInSAR Observables

A straightforward evaluation of the suitability of the PolIn-
SAR features for crop classification based on the Overall
Accuracy (OA) is presented in Table I. Coh Min and Coh
Max refer to the coherences with minimum and maximum
phase, F1 and F2 to the ellipse’s foci. Set 1 includes all the
previous features: TrCoh, axes and foci of the ellipse, and the
coherence extrema.

TABLE I
CLASSIFICATION SCORES OBTAINED WITH POLINSAR OBSERVABLES.

Features OA (%)
Pixel level Field level

Major axis + Minor axis 64.19 82.89
TrCoh 74.58 87.44
F1 + F2 85.51 92.82
Coh Min Pha + Coh Max Pha 80.54 91.13
Set 1 88.57 93.97
Coh HH + Coh VV 80.26 88.47
Coh P1 + Coh P2 88.67 93.63
All PolInSAR features 89.05 94.00

At first glance, Table I shows that the OA obtained at pixel
level is, in most cases, above 80%. Only when parameters
related strictly to the geometrical shape of the CoRe, not
its position, like the ellipse axes employed alone, the OA
is worse, i.e. 64.19%. With the rest of CoRe parameters
(originally complex numbers), OA levels around 75% and
beyond are retrieved. This is achieved even when exploiting
the TrCoh alone, with an OA = 74.58%. Indeed, this result
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Fig. 3. Time series of PolInSAR observables, i.e. characteristic parameters of the CoRe, for 4 selected crop types: alfalfa, sugar beet, maize and wheat.
Average values of all the available pixels for each crop type (including training and testing samples) are considered, and error bars denote ± standard deviation.

demonstrates the strong physical meaning of this parameter,
as most representative of the natural observed scene.

Observations derived from the results evaluated at pixel
level are corroborated at field level, where the final OA im-
proves. Table I reveals a high accuracy in all the experiments.
The lowest OA is around 83% for the case in which the ellipse
axes are used for classification. However, for the remaining
feature sets evaluated, OA levels are either above 90% or very
close to it: 87.44% when considering the TrCoh alone for
classification, and 88.47% employing γHH + γVV.

In both assessments, at pixel and at field level, a common
behaviour is that, as expected, the highest classifications scores
are reached when combining different PolInSAR features.
Thus, accuracies around 89-94% at pixel and field level,
respectively, are obtained when including the TrCoh, the
ellipse axes and foci and the coherence extrema together for
classification (Set 1 in Table I), and also when considering
all these features. In particular, when evaluating the Set 1 of
features, the RF algorithm shows that the parameter with the
highest importance in the classification is the TrCoh (i.e. with
an importance of 0.04). This justifies the high classification
accuracy obtained when using this feature alone. Nevertheless,
when including all the parameters, the highest importance for
the classification lies on γP2 and λ2 with a 0.03, followed
closely by the γtr with a 0.02. In all cases, features with the
highest importance correspond to those at the beginning of
the growth cycle, either at June 4 or 15, while features with
the least (or null) importance correspond to the minor axis
retrieved close to the end of the campaign.

In addition, it is worth noting that feature subsets including
only λ1+λ2, and only γP1+γP2, reach OA values very close to

the maxima, i.e. around 86-93% at pixel and field level in the
first case, and almost 89-94% in the second case, respectively.

B. Comparison with PolSAR Observables

The assessment of the contribution of the PolInSAR descrip-
tors with respect to purely PolSAR ones is completed with the
classification results presented in Table II. HH, VV, P1 and
P2 refer to the backscattering coefficients of the corresponding
polarization channels in linear and Pauli basis; Corr HHVV,
Pha HHVV and Corr P1P2, Pha P1P2 denote polarimetric
correlation and phase between HH and VV, and between P1
and P2, respectively.

Notably, classifying employing the backscatter coefficients
alone already provides high accurate results, with an OA at
pixel and field level of 86.95-90.33% and 92.55-94.72% at the
linear and Pauli channels, respectively. This accuracy improves
when including the polarimetric correlation and the interfero-
metric coherence magnitudes. However, as expected, the OA
does not improve when considering the polarimetric phase.
This is corroborated when inspecting the importance results,
which reveal the lack of useful information for classification
purposes of this parameter, i.e. importance levels of 0.01.

The best classification results are obtained when employing
the backscatter and polarimetric correlation magnitudes with
some PolInSAR observables. For instance, Table II shows that
at the Pauli channels, OA levels around 94-96% at pixel and
field level are reached when adding either the foci of the
ellipse, the TrCoh or the coherence extrema. Such accuracy
scores are only reached when including several PolInSAR
observables (see Table I), as with the Set 1 (i.e. 88.57-
93.97%), the coherence at the Pauli channels (i.e. 88.67-



ROMERO-PUIG ET AL.: EVALUATION OF POLINSAR OBSERVABLES FOR CROP-TYPE MAPPING USING BISTATIC TANDEM-X DATA 5

TABLE II
CLASSIFICATION SCORES OBTAINED WITH OTHER SAR OBSERVABLES.

Features
OA (%)

Pixel
level

Field
level

HH + VV 86.95 90.33
HH + VV + Coh HHVV 92.45 94.38
HH + VV + Coh HHVV + Pha HHVV 92.44 94.40
P1 + P2 92.55 94.72
P1 + P2 + Corr P1P2 93.11 95.22
P1 + P2 + Corr P1P2 + Pha P1P2 92.44 94.40
HH + VV + Corr HHVV + Coh HH + Coh VV 93.54 95.10
P1 + P2 + Corr P1P2 + Coh P1 + Coh P2 94.30 95.54
HH + VV + Corr HHVV + F1 + F2 93.71 95.38
P1 + P2 + Corr P1P2 + F1 + F2 94.30 96.04
HH + VV + Corr HHVV + TrCoh 93.51 95.04
HH + VV + Corr HHVV + Coh Min + Coh Max 93.89 95.46
P1 + P2 + Corr P1P2 + TrCoh 94.20 95.93
P1 + P2 + Corr P1P2 + Coh Min + Coh Max 94.30 96.06
PolSAR + PolInSAR 94.11 95.90

93.63%), and all the PolInSAR features together (i.e. 89.05-
94%). However, as the last test in Table II demonstrates, this
maximum accuracy is not surpassed when adding jointly the
set of PolInSAR and PolSAR features: OA = 94.11-95.90%.
The importance of the different features indicates that the
most determining descriptor for crop-type classification is the
backscattering coefficient at P2, i.e. 0.03 at June 4. Most
probably, it helps discriminating crops at different growth
stages (early or late), thanks to its sensitivity to the double-
bounce scattering mechanism.

To conclude the analysis of the suitability of the PolInSAR
parameters for crop classification, the confusion matrices
considering the set of PolInSAR and PolSAR parameters have
been evaluated and added to the supplementary material. The
most consistently well classified crop is rice. The flooded
ground provides this crop a very characteristic PolInSAR
signature. When the ground is flooded, the SAR backscatter is
very low, and when the plants start to grow, there is a dominant
double-bounce ground contribution. Only when the rice is fully
grown can be confused with other crops, e.g. wheat, since they
then present a similar canopy structure. The next crop which is
consistently well classified is cotton. The soft and fluffy fiber
that grows in a boll provides it a unique canopy structure.
On the other hand, crops such as beans, pea and chickpea,
with shorter height and a more similar canopy structure can
be confused to some extent.

VI. CONCLUSIONS

This letter evaluates the contribution of characteristic PolIn-
SAR parameters, as described by the CoRe, for crop-type
mapping by exploiting single-pass bistatic TanDEM-X data.
The assessment is performed by means of a RF classifier. Even
though the satellite observation period is constrained to three
months (not the entire growth cycle), high classification scores
of 89-94% are obtained at pixel and field level with the joint
use of the most representative PolInSAR descriptors.

Results presented here corroborate the findings of previous
studies exploiting X-band SAR data for crop classification,

employing either purely PolSAR observables [5], [6], or
in conjunction with interferometric descriptors [7], [8]. The
accuracy achieved with the evaluated PolInSAR features, i.e.
around 89-94% at pixel and field level, respectively, is of the
order of that reached with polarimetric descriptors alone, e.g.
OA of 93-95% with the backscattering power at the Pauli
channels, but is does not exceed it. On the other hand, the
TrCoh on its own has proven a key PolInSAR descriptor of the
physical scene. With an OA of 75-87% at pixel and field level,
it outperforms classification levels obtained at the linear and
Pauli channels alone [8], i.e. OA = 70-86%, 68-88% with γHH
and γVV; and 72-88%, 68-85% with γP1 and γP2, respectively.

Overall, the PolInSAR parameters evaluated, and in partic-
ular the TrCoh, have proven suitable for crop classification.
In addition, the accuracies reached slightly improve when
classifying together with PolSAR parameters.
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I. Time Series of PolInSAR Observables 

 

 

Fig. 1. Time series of PolInSAR observables, i.e. characteristic parameters of the CoRe, for 4 selected crop types: cotton, tomato, 
sunflower, beans. Average values of all available pixels for each crop type (including training and testing samples) are considered, and 

error bars denote ± standard deviation. 

 



 

Fig. 2. Time series of PolInSAR observables, i.e. characteristic parameters of the CoRe, for 5 selected crop types: quinoa, chickpea, onion, 
pea, rice. Average values of all available pixels for each crop type (including training and testing samples) are considered, and error bars 

denote ± standard deviation. 

 

II. Classification Importance of Input Features 

 

 

Fig. 3. Classification importance of the different input features provided by the RF algorithm. The feature set evaluated corresponds to Set 
1, which includes: the TrCoh, the ellipse axes and foci and the coherence extrema. 

 



 

Fig. 4. Classification importance of the different input features provided by the RF algorithm. The feature set evaluated corresponds to all 
the PolInSAR features evaluated, including: the TrCoh, the ellipse axes and foci, the coherence extrema and the coherences at the linear 

and Pauli channels. 

 

 

Fig. 5. Classification importance of the different input features provided by the RF algorithm. The feature set evaluated corresponds to all 
the PolSAR and PolInSAR features evaluated (see Section V. B). 

 

 

 

 

 

 

 

 

 



III. Confusion Matrices 

 

 

Fig. 6. Confusion matrix for the set of PolInSAR features (i.e. all those included in Table I) at pixel level. 

 

 

Fig. 7. Confusion matrix for the entire set PolInSAR and PolSAR features (i.e. those included in Table II except for the phase of the 
polarimetric correlation at the linear and Pauli channels, since they do not contribute with useful information to the classification) at pixel 

level. 

 

 


