
ABSTRACT
Traffic congestion has become a severe problem, af-

fecting travellers both mentally and economically. To al-
leviate traffic congestion, this paper proposes a method 
using a concept of future time windows to estimate the 
future state of the road network for navigation. Through 
our method, we can estimate the travel time not only 
based on the current traffic state, but the state that ve-
hicles will arrive in the future. To test our method, we 
conduct experiments based on Simulation of Urban MO-
bility (SUMO). The experimental results show that the 
proposed method can significantly reduce the overall 
travel time of all vehicles, compared to the benchmark 
Dijkstra algorithm. We also compared our method to the 
Dynamic User Equilibrium (DUE) provided by SUMO. 
The experimental results show that the performance of 
our method is a little better than the DUE. In practice, 
the proposed method takes less time for computation and 
is insensitive to low driver compliance: with as low as 
40% compliance rate, our method can significantly im-
prove the efficiency of the unsignalised road network. We 
also verify the effectiveness of our method in a signalised 
road network. It also demonstrates that our method can 
assign traffic efficiently.

KEYWORDS
navigation; greedy algorithm; future time windows; 
dynamic traffic assignment; simulation.

1. INTRODUCTION
Despite a lot of research on alleviating traffic 

congestion and significant advances in technologies 
applied to improve transportation, we still waste a 
large amount of time in traffic jams. Traffic con-

gestion affects the efficiency and safety of people’s 
lives. It is also a major cause of environmental pol-
lution. Hence, it is urgent to find an effective meth-
od for congestion mitigation.

Speaking of research on congestion mitigation, 
Dynamic Traffic Assignment (DTA) is a popular 
research field. Many studies proposed their algo-
rithms to efficiently arrange vehicles [1–4], among 
which many follow Wardrop’s principles [5]: User 
Equilibrium (UE) and System Optimal (SO). 

There are two main types of approaches to ad-
dress DTA problems: optimality modelling and 
traffic simulation. Studies using optimality mod-
elling attempt to seek an appropriate algorithm to 
minimise the travel time of every user. Han et al. 
[6] analysed DUE by modelling Bounded Rational 
Dynamic User Equilibrium (BR-DUE) and Variable 
Tolerance Bounded Rational Dynamic User Equi-
librium (VT-BR-DUE) since drivers do not always 
seek the best route or departure time. Hoang et al. 
[7] proposed a linear framework to solve the UE 
problem; however, it is only implemented in a sin-
gle Origin-Destination (OD) network. On the oth-
er hand, the SO principle is about minimising the 
overall travel time of all users. Zhang and Qian  [4] 
presented heuristic algorithms to solve SO-DTA 
problems in general road networks with multiple 
OD demands; they also considered indifferentiable 
total system costs (TC), which is generally consid-
ered differentiable. Lu et al. [8], unlike the tradition-
al SO problem to minimise the TC, aim to minimise 
the emission. To address this issue, they proposed 
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windows, called Systematic Navigation with Future 
Time Windows (SN-FTW). To validate the pro-
posed method, a simulation network using SUMO 
was implemented, in which a logit model was de-
ployed to analyse the compliance rate. Specifically, 
our contributions are listed as follows.

 – We propose a systematic cooperation method 
based on future time windows that can effective-
ly avoid the situation in which many vehicles are 
assigned a route that may lead to traffic conges-
tion.

 – The proposed method is iterative and of low 
computational complexity, therefore, easy to im-
plement. 

 – The proposed method performs well for various 
compliance rates, which is validated by the ex-
periment.

 – Our method can consider both signalised inter-
sections and unsignalised intersections.
The remainder of our paper is structured as fol-

lows: Section 2 introduces the related work and 
section 3 introduces the assumptions, describes the 
method, and how to use future time windows. In 
Section 4, we present various experiments to verify 
the performance of our method. In the last section, 
we conclude and provide future directions for im-
proving the effectiveness of our method.

2. RELATED WORKS
For in-car navigation, the shortest path algorithm 

is the popular method of decades ago, which aims to 
find a route with minimum travel distance or time. 
However, it is no longer suitable for today’s traffic 
environment. 

In this big data era, we can acquire a large 
amount of data collected from vehicles, such as 
speed and position [18, 19]. Therefore, we can anal-
yse the laws of traffic to assign a better route for 
vehicles. For example, Zhang et al. [20] analysed 
spatial-temporal congestion patterns from taxi GPS 
data. In their research, they first used vehicle tra-
jectory data for map matching and acquired other 
information, like speed. On this basis, they used 
clustering methods and correlation analysis to find 
the cause of congestion. If we can know what caus-
es congestion, we can avoid it by traffic assign-
ments. In the study of Kyriakou et al. [21], they not 
only analysed spatiotemporal data but employed a 
traffic prediction model and developed a naviga-
tion system. First, they predicted the traffic state of  
different roads. Next, they employed Dijkstra to 

an agent-based model to distinguish vehicle speeds 
to calculate the emissions. Although these methods 
can acquire an effective routing arrangement for 
vehicles, they are difficult to implement due to the 
computational cost and compliance requirements.

For traffic simulation, a widely adopted meth-
od is the Cell Transmission Model (CTM) [9, 10]. 
Compared to the aforementioned methods, the com-
putational complexity of this method is lower. Yazi-
ci et al. [11] utilised the CTM and SO-DTA formu-
lation as an underlying network model to simulate 
different incident management strategies. Zhu and 
Ukkusuri [12] employed the CTM with a non-hold-
ing back linear programming formulation to solve 
the SO-DTA problem. They also proved that their 
formulation could completely resolve the hold-
ing-back issue, which is a well-known problem for 
SO models [13]. Different from the CTM, the Link 
Transmission Model (LTM) can also solve the DTA 
problem. Long and Szeto [14] applied the LTM to 
address SO-DTA problems with and without First-
In-First-Out (FIFO) constraints. However, its solu-
tion is NP-hard, which is challenging to solve when 
networks are large. Besides, the states of all cells or 
links need to be precisely calculated, which means 
that vehicles have to obey their navigation.

Neither optimality modelling nor CTM is suit-
able for in-car navigation, because of high compu-
tation cost and full compliance, but they still play an 
important role in understanding how to reduce con-
gestion. Many navigation systems, such as Google, 
Baidu, and Gaode, usually use the shortest path al-
gorithm, such as A* and Dijkstra [15, 16]. Some of 
them only consider the current link impedance (link 
travel time). Some may use both historical data and 
user data to predict travel time for navigation, but 
they provide the same information for all vehicles at 
a certain time, which is reactive [17]. These meth-
ods are useful when the road network is small or has 
a small number of vehicles. However, if the demand 
for navigation is simultaneously high, problems will 
emerge because vehicles may enter the same links 
on their assigned routes, which leads to increased 
traffic on those links and therefore dramatically 
changes the traffic condition in the road network.

Therefore, in this study, we aim to develop an 
in-car navigation method with a low computation 
cost that can make vehicles reasonably disperse in a 
road network to mitigate congestion, not requiring 
full compliance. The proposed is a systematic coop-
eration method based on the concept of future time 
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where S denotes the sum of all vehicles’ travel time; 
pi

j is the jth feasible route that is selected by the ith 
vehicle, which just enters the road network; n de-
notes the number of vehicles entering the road net-
work; pi

j!Pi3Pall; Pi denotes all feasible routes that 
the ith vehicle can select; mi denotes the number of 
routes in Pi and Pall is the set of all feasible routes 
between all ODs. Function T can calculate the travel 
time of the ith vehicle that selects the route pi

j.
For every vehicle, they always want to select 

a route that can minimise its travel time, and if it 
can choose the optimal route, the traffic flow would 
distribute reasonably over the network. The optimal 
route of a vehicle can be described as

argminp T p*
i

p
i
j

i
j

= _ i  (2)

where pi
* denotes the optimal route for the ith vehi-

cle. We convert our issue into finding the optimal 
path for each car. To reduce the complexity of our 
issue, we make some assumptions [28]:
1)  If an intersection in the network is unsignalised, 

vehicles adopt the priority rule that a vehicle 
passes through this intersection first when the 
link it uses has higher priority; if an intersection 
is signalised, it must be fixed-time signals and 
we need to know its phases.

2)  First-in first-out (FIFO) [29, 30]: The vehicle 
that enters a road link first leaves it first.

3)  Causality [31, 32]: (I) For a vehicle on a road 
link, its speed and travel time are only related to 
the vehicles that enter the link before it. (II) For 
a vehicle that just enters the network, its optimal 
route is only affected by the vehicles that have 
entered the network. We can formulate this as-
sumption as follows.

, , ,argminp T p p p p* * * *
i

p
i
j

i1 2 1

i
j

f= -_ i  (3)

4)  The route for a vehicle, which obeys our naviga-
tion, is calculated when it enters the network and 
will not change during the trip.

5)  We can obtain the number of vehicles on all links 
of the network from the detectors.

6)  When a vehicle enters the road network, the 
compliance, if it follows the navigation, is deter-
mined; if not, its route choice follows the logit 
model according to the current network state.
The travel time of a vehicle is largely determined 

by the link impedance of its whole trip. However, 
the impedance of all links changes from the moment 
it enters to the moment it leaves. If we only use the 
link impedance when the vehicle enters the network 

find an optimum route for vehicles. It is a satisfy-
ing way to navigate by analysing historical traffic 
patterns, but there is a problem. If we navigate too 
many vehicles by prediction or historical patterns, it 
means we have changed traffic patterns, so the pat-
terns might be wrong for navigation.

To avoid this contradiction, reinforcement learn-
ing may be a good choice. Reinforcement Learn-
ing (RL) has been used successfully in many situ-
ations [22–24]. In recent years, some studies also 
employed it for in-car navigation. For instance, 
Zhou et al. [25] implemented the Bush-Mosteller 
reinforcement learning scheme to seek optimal trav-
el routes. Koh et al. [26] used an improved Deep 
Q-Learning Network (DQN) to construct real-time 
smart vehicle navigation. Because the agent ran-
domly explores the environment when training, the 
RL structure can store many situations that may not 
be encountered in the real world, which means it 
can contain more traffic patterns than the data from 
the real world. However, we need to rely on traffic 
simulation for randomly exploring, which means 
if the road network is too large, it will take a long 
time to simulate when training and it is difficult to 
converge to the optimal. Besides, if we change the 
traffic environment, like closing a road, the trained 
model may become invalid.

To be a more practical navigation system, rerout-
ing is a useful strategy. Pan et al. [17] employed a 
traffic guidance system that can monitor traffic state 
and reroute vehicles when there are signs of con-
gestion. The method of Lin et al. [27] is similar to 
the method of Pan et al. [17], but they used a differ-
ent way to estimate traffic state and they required 
that all vehicles are automated. However, when a 
vehicle has been driving for some time, it may not 
be able to avoid driving through congested roads, 
because of no choice to reroute. 

3. METHODOLOGY

3.1 Modelling for navigation issues
For a good traffic navigation strategy, vehicles 

should disperse in the road network to avoid traffic 
congestion, which means that the travel times of all 
vehicles are as low as possible. Therefore, we can 
formulate the problem as 

, , , , ...,min S T p j m1 2 3i
j

i

n

i
1

= =
=
_ i/  (1)
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2)  Assuming that we already know x̂l
h(k), we take a 

route pk
1, which we assume is (el1,el2,el3,el4) from 

Pk. Because we know ( ),x kl
hk
1

0t  we can obtain the 
travel time tl

hk
1

0  of el1 according to the function 
R. We can calculate the time that the kth vehicle 
enters el2, which is .h h tk k l

hk
0

0
1 1= +  We can also 

obtain hk2
, hk3

, hk4
 in the same way, where hk4

de-
notes the time when the vehicle leaves el4. There-
fore, we can obtain the travel time of the route 
pk

1, which is T(pk
1)=hk4

-hk0
. We can obtain p

k
* by 

calculating T(pk
j) for all pk

j!Pk, which means that 
we can calculate the optimal route p

k
* for the kth 

vehicle according to x̂l
h(k).

3)  Update x̂l
h according to the optimal route of the 

kth vehicle. Assuming that the optimal route 
is (el1,el2,el3,el4) and hk0

, hk1
 hk2

, and hk3
 denote 

the time that the vehicle enters the link, and 
hk4

 denotes the time that the vehicle leaves 
el4. We know that the kth vehicle is on link el1 
during [hk0

,hk1
], so we can easily calculate  

x̂l1
h*(k+1)=x̂l1

h*(k)+1 where h*![hk0
,hk1

]. In the 
same way, we can calculate x̂l2

h*(k+1), x̂l3
h*(k+1), 

and x̂l4
h*(k+1).

4)  There are no vehicles on the road network when 
the first vehicle enters, so x̂l

h(1)=0,(l![1,L],h!R+), 
which means that the vehicle can use a free-flow 
speed for all links.
Therefore, we can obtain x̂l

h of any time and any 
link via the iteration. Besides, if an intersection is 
unsignalised, we have to consider its influences. Be-
cause the unsignalised intersection delay only oc-
curs when there are conflicts, we can estimate it by 
calculating the conflicting flow rate. The modified 
formula can be described as

,t R x vl
h

l
h

l l
h
x i= t^ h  (6)

where vlx
h denotes the conflicting flow rate at time h 

and lx denotes the links that have traffic flows that 
conflict with el. If an intersection is signalised, we 
can calculate tl

h as below.

t x R x1l
h

l
h

l
h

l l
h

l
0 i x{ i= + +t_ _ ^i i h  (7)

where φ(xl
h0|θl) means the penalty which is between 

0 and 1. If too many vehicles on the el at the cur-
rent time h0, vehicles may wait a long time and miss 
the green light, so we set a penalty to let them not 
choose the el as much as possible; τl

h denotes how 
much time vehicles need to wait on the el at the time 
h because of the red traffic light.

to calculate the optimal route, the traffic flow dis-
tribution may become uneven as vehicles gradually 
enter the network, which means that traffic conges-
tion would emerge. Therefore, we need to predict 
the link impedance, which means that we want to 
know what the link impedance of a link at which a 
vehicle will arrive will be when that vehicle enters 
the network. We use el to denote a link in the road 
network, where el!E, l![1,L], while E is the set of 
all links and L denotes the number of links in the 
road network. We denote this variable as tl

h (link 
impedance of the el at time h). The link impedance 
is largely determined by the number of vehicles on 
the link and the properties of this link, such as the 
length and width of this link. We describe tl

h as

t R xl
h

l
h

li= t^ h  (4)

where x̂l
h denotes the estimated number of vehicles 

on the el at time h; and θl denotes the properties of 
the el, which is constant. The function R can cal-
culate the link impedance according to x̂l

h and θl. 
To calculate tl

h more precisely, we need to divide a 
long road into many short links, because vehicles on 
a road may have an uneven distribution; if we dis-
regard this possibility, we may calculate the wrong 
travel time for the traffic assignment. Therefore, el 
is a small section of a road.

According to the assumption of causality, we can 
also conclude that x̂l

h is only related to the vehicles 
that have entered the road network, which means 
that when the kth vehicle enters the road network, 
we can calculate x̂l

h(k) based on the k-1 vehicles that 
have entered the road network. We formulate this 
process as

( ) , , , ,x k M l h p p p* * *
l
h

k1 12 f= -t _ i  (5)

where the function M can calculate x̂l
h for the kth 

vehicle to acquire the optimal route according to the 
arrangement of the k-1 vehicles that have entered 
the road network.

3.2 Algorithm
Although we have formulated our calculation, 

it is difficult to calculate x̂l
h in an analytical way. 

Nevertheless, according to our assumption, we can 
apply the greedy algorithm to calculate x̂l

h. The pro-
cedure can be described as follows:
1)  Suppose there are k-1 vehicles on the road net-

work at the time hk0; the kth vehicle just enters, 
and we need to calculate the optimal route pk

*.



Lin P, Zhou C, Cheng Y. A Systematic Cooperation Method for In-Car Navigation Based on Future Time Windows

Promet – Traffic&Transportation, Vol. 34, 2022, No. 3, 381-396 385

Next, we need to consider that vehicles may not 
obey our navigation. For this issue, we use the fol-
lowing equation to simulate the vehicles that dis-
obey our navigation according to assumption 6:

'

'

exp

exp
P p p

T p

T p
i
j

i
j

i
j

m
i
j

1

1

1
'

'

i= =
-

-

` `
_
`
_

j j
i
j
i/

 (8)

where P denotes the probability that the ith vehi-
cle selects the route pi

j'. The function T' is similar to 
the function T, but T' only uses x̂l

h0 to calculate the 
travel time, which means that it only considers the 
network state when a vehicle enters. Therefore, we 
can acquire the routes that the vehicles select that 
disobey our navigation (these routes may be differ-
ent from our system calculation). We can calculate 
x̂l

h considering the vehicles that obey our navigation 
and those not.

Because the route set Pall is only related to the 
road network structure and OD, we can generate it 
offline to reduce the calculation cost for online nav-
igation. However, if the road network is too large, 
it is also difficult to search on all feasible routes. 
Considering that few drivers want to detour too far, 
to reduce the complexity of calculation, we propose 
a method that is based on Depth-First-Search (DFS) 
with a break condition. The procedure is described 
as follows:
1) Calculate the shortest distance dmin of an OD us-

ing Dijkstra.

We can statically calculate a route for each ve-
hicle, but if the estimate is wrong, we may cause 
congestion because of accumulative errors. There-
fore, we need to adjust our estimate according to the 
current road network state. We can add a procedure 
for adjustment of estimation to our method because 
we can acquire the current network state.
5) Assuming that we have estimated x̂l1

h(k) and ob-
tained the actual value x̂̂l1

hc(k) at the current time 
hc, we can calculate δ= x̂l1

hc(k)-x̂̂l1
hc(k). We can re-

calculate x̂l1
h(k) by δ. For instance, if δ=2, we can 

calculate how much time these two extra vehi-
cles take on the el1 and adjust our time windows 
using a similar method, as shown in step 3.
The previously mentioned method is continuous, 

and inconvenient to realise for a computer. There-
fore, we need to discretise it. We divide time into 
small time windows with the size tw [40].

In Figure 1, we demonstrate how to use future 
time windows to calculate the best route for a ve-
hicle. When Veh2 enters the network, there are two 
feasible routes (dashed line and solid line). Accord-
ing to the future time windows of these links, we 
should choose the solid line. We can observe that 
Veh1 will also drive through e4, but when Veh2 ar-
rives at e4, Veh1 may have left this link at this time, 
which means that it will not influence Veh2. 

e1

e2

e3

e4

Veh2

Veh1

Future time windows of link e1

20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

Future time windows
0 2 4 6 8 10 12 14 16 18 20

tw

xh 1

Future time windows of link e2

17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

Future time windows
0 2 4 6 8 10 12 14 16 18 20

xh 2

Future time windows of link e3

17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

Future time windows
0 2 4 6 8 10 12 14 16 18 20

xh 3

Future time windows of link e4

17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

Future time windows
0 2 4 6 8 10 12 14 16 18 20

xh 4

Veh2 will arrive at this link at this time
Veh1 will arrive at this link at this time

Figure 1 – Mechanism of the future time windows
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N sigmoid N
N a b

m
${ = -^ ah k  (11)

where a and b are used to adjust the input range to 
(-10, 10), so a=20 and b=10. 

In our simulation, the free-flow speed of a vehi-
cle at every link is 13 m/s, and the length of a vehi-
cle is 5 m. We define Nm as the length of a link di-
vided by the length of a vehicle. We use the Poisson 
distribution to model the vehicle’s arrival [36, 37]. 

We built two road networks for experiments, one 
of which does not employ traffic lights and the oth-
er does. Vehicles adopt the priority rule in the road 
network without traffic lights. 

4.2 Experiment 1: Road network without 
traffic lights

Introduction of road network
The road network (Figure 2) is based on a Man-

hattan road network, in which some roads are add-
ed as the entrances (X0, X1, X2, and X3) and exits 
(X4, X5, X6, and X7). 

 

X3

X0

600 m

X1 X2

X5

A0 B0 C0 D0 E0

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 D4 E4

X6 X7

X4

Figure 2 – Road network structure

All the intersections in this road network are 
unsignalised. The length of all roads is 600 m, and 
all roads are two-way four-lane roads. At an in-
tersection, a vehicle can make turning movements 
in all directions except for a U-turn. It is a ma-
ny-to-many network, which means that vehicles 
can drive from any of the entrances to any of the 
exits. The nodes (Ai, Bi, Ci, Di, and Ei) are inter-
sections. We use two nodes to name a road, such 

2) Set the hyperparameter. The driving distance of 
a feasible route cannot exceed γ∙dmin.

3) Run the DFS. Assuming that the links that have 
been searched are el1,el2, the driving distance has 
exceeded γ∙dmin; we then give up all routes that 
include el1,el2.

4) Repeat steps 1–3 for all ODs

4. CASE STUDY
To verify the effectiveness of our method, we use 

SUMO to simulate our traffic navigation method 
[33, 34]. It can provide us with a substantial amount 
of information, such as vehicle speed and the num-
ber of halting vehicles (speed < 0.1m/s). Due to the 
traffic control interface (TraCI), which is a major 
feature of SUMO, we can easily use Python to im-
plement our experiments. The experiments were 
conducted on a 64-bit Windows 10 machine with 
Intel Core i7-3770 (3.4GHz) and 16GB of memory.

4.1 Road impedance function and 
simulation parameters

In this paper, based on the Bureau of Public 
Roads (BPR) function, the road impedance func-
tion to calculate the travel time of a road [35] is ex-
pressed as

t t N
N1i i

m
0 $ a= +

bb a k l  (9)

where ti0 denotes travel time under free flow; N is 
the number of vehicles on a link at a certain time 
and Nm denotes the maximum number of vehicles 
that can exist on a link. According to our experi-
ments, α=0.15 and β=4 are reasonable values. For 
unsignalised intersections, we need to adjust our 
road impedance because of the conflicting flow. 
According to the Highway Capacity Manual 2000 
(HCM 2000), we can calculate the potential capac-
ity via the conflicting flow rate. For simplicity, the 
final impedance function is expressed as 

t t N
N l N

1i i
m

x l
0

x
$ a

n
= +

+ b

e d n o/  (10)

where μ, which falls between 0 and 1, denotes the 
proportion of vehicles from other links that will add 
to N. In this paper, we set μ=0.2, which is a suitable 
value obtained through our experiment. Nlx is the 
number of vehicles on the elx.

For the signalised intersections, we use the sig-
moid function to calculate the penalty. The formula 
is expressed as 
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In Figure 3, labels in the legend denote the λ value 
in the Poisson distribution. tw (unit is in seconds) in 
the x-axis denotes the size of the time window and 
nl means how many links of a road we divide. The 
dashed lines across the figure denote the travel times 
for all vehicles that choose the shortest route (using 
Dijkstra), and different colours indicate different λ.

From Figure 3, we can observe that the travel times 
of vehicles via our navigation are lower than those of 
vehicles that choose the shortest route, and the per-
formance is much better than that of Dijkstra when 
λ=0.333. The red dashed line shows that if vehicles 
always choose the shortest route, traffic congestion 
can easily occur, and our method can save more 
than 300 s. When λ is 0.25 or 0.2, our method is also 
better than Dijkstra, but not substantially better, be-
cause few vehicles run on the network, and almost all 
vehicles can drive in free-flow. The blue and green 
bars indicate that the effects of our hyperparame-
ters are not obvious. The red bars demonstrate that 
the network may be overburdened in this situation, 
which is not easy for navigation, compared to the 
blue and green bars. We can discover that there are  
appropriate hyperparameters that can make our navi-
gation more efficient and save driver time. We choose 
tw=2 and nl=3 for other experiments and then verify 
the performance with different λ.

To demonstrate the effectiveness of our method, 
we also compared it to the DUE from SUMO [38]. 
From Figure 4, we can observe that our method is 
a little better than the DUE, which means that our 
method is also similar to the DUE to some extent.

as A2A1, which means that a vehicle can drive from 
A2 to A1 via A2A1. The priority of the roads (yellow 
line) that straightly connect X3 and X4 is 3 (the larger 
the priority is, the more important this road is), while 
the priority of the blue lines, such as X0 to X5, is 2 
and the priority of other lines is 1. 

The total number of vehicles that will enter this 
road network is 8000 (approximately 2000 vehicles 
from each entrance), and the probability of a vehicle 
driving from an entrance to any exit is equal, which 
means, for example, that there will be approximately 
500 vehicles from X1 to X5.

According to the distance between different en-
trances and exits, we use four different γ to calculate 
all the routes that we need. We set γ=2 for the 2400 
m driving distance (disregarding intersections), such 
as X3 to X5, γ=1.4 for 3600 m, γ=1.2 for 4800 m and 
γ=1 for 6000 m.

Simulation results with different hyperparameters
As we previously mentioned, vehicles will enter 

following a Poisson distribution, and we conduct dif-
ferent simulations, where λ is 0.333, 0.25, and 0.2. 
We do not conduct our simulation for excessively 
large values of λ, such as 0.5, because vehicles that 
enter the network at 1 veh/s or 0.5 veh/s on average 
will cause the road network to become overburdened, 
and traffic congestion will be almost impossible to 
alleviate by our navigation. We test how hyperparam-
eters influence our calculation results. Figure 3 shows 
the average travel times of all OD pairs for different 
hyperparameters.
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From Figures 6a–6c, we can observe that the in-
crease in the number of vehicles slows or stops at 
approximately 1000 steps. In Figure 6c, we observe 
that the maximum load of this network under this 
OD demand, which can rarely cause congestion, 
is approximately 500 vehicles (black circle); sub-
sequently, if we continue to let vehicles enter the 
network at this flow rate (λ=0.333), the network 
will become increasingly congested. In Figure 6c, 
compared to Dijkstra, the average number of vehi-
cles at every time step of our method declined by 
25.2%. In Figures 6a and 6b, when the load is low-
er than 500, it can maintain a stable state. From 
Figure 6f, we can observe that the peak value de-
creases by nearly 600, compared to Dijkstra. As 
shown in Figures 6d and 6e, it is easy to determine 
that there are few halting vehicles on the road net-
work during the whole simulation. In Figure 6e, we 
can also observe some peaks (black ellipses) when 
using Dijkstra, but not with our method or DUE. 
This finding reflects that if we let all vehicles select 
the shortest route according to the current network 
state, congestion easily occurs. Before the peak, 
the number of halting vehicles increases gradu-
ally, which means that traffic congestion does not 
emerge suddenly, and the seeds of problems have 
been planted when the wrong routes are assigned.

To explore more details of the running state of 
the road network, we chose some roads to demon-
strate the number of vehicles on them during the 
simulation.

In Figure 7, we can observe that our method can 
distribute vehicles better. Figure 7f shows that con-
gestion emerges on many roads because A3A2, 
B3B2, C3C2, D3D2, and E3E2 are feasible for en-
trances X0, X1, and X2, and due to the priority of 

Detailed simulation results
Because we aim to achieve the system optimal, 

we may have to sacrifice some vehicles’ benefit; 
therefore, we demonstrate the average travel times 
of different ODs.

From Figure 5a, we can observe that the perfor-
mance of our method is almost the same as Dijks-
tra and DUE, which is consistent with our analysis. 
In Figure 5b, there is an obvious improvement be-
tween X0 and X5, compared to Dijkstra, although 
the average of all ODs does not differ substantial-
ly between the three methods, which shows that 
our method can arrange traffic better even though 
the traffic flow on the road network is minimal. 
Figure 5c shows a large difference between the three 
methods. We can observe that many OD pairs ex-
hibit a large improvement when using our method.

We also notice that for some OD pairs, the 
performance of our method is worse and the dif-
ference of some ODs is greater than 100 s. As we 
previously mentioned, with a large number of ve-
hicles, it is difficult to find a way for all vehicles to 
be assigned a route that can make their travel times 
reach a very low level. For the vehicles that enter 
late, because we have assigned many vehicles that 
entered early, the routes that we assign to them are 
the best in this situation, although it appears that 
they have long travel times. This phenomenon can 
also be observed in the DUE, such as X0 to X5 and 
X1 to X5.

We have already determined that our method 
can reduce many halting vehicles, but we need to 
check if it performs well during the whole simula-
tion. Thus, Figure 6 is shown to verify it.
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which can also be observed in Figure 7e. We refer to 
this phenomenon as a congestion wave that trans-
mits from link to link. However, in Figure 7i, our 
method almost chooses A3A2 for vehicles of which 
A3A2 is feasible, while the interesting thing is that 
we can observe a similar pattern in Figure 7c. Be-
cause A3A2 is a road along the shortest route from 
X0 to X5, compared to a detour such as via B3B2 
and being congested on other roads, our method 
considers waiting on A3A2 a better choice.

the roads, which is higher, (middle horizontal line 
in Figure 2) from X3 and X4, vehicles on roads such 
as A3A2 have to wait when conflicts occur. Some 
vehicles choose a road, such as A3A2, when they 
arrive at this road; then, the vehicles that just enter 
the network will choose another road, such as B3B2, 
and the same occurs for other roads. Therefore, the 
phenomenon shown in Figure 7f (two straight lines) 
easily emerges; when using Dijkstra, congestion 
will emerge on different roads at staggered times, 
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Figure 7 – Spatiotemporal pattern of the number of vehicles on some roads
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cles on the right road at the right time. Figures 8d, 8h 
and 8l show the influence of the highest priority that 
all vehicles from X3 to X4 are assigned the shortest 
route because vehicles from other roads have to wait 
for them to pass.

We also explored the performance of our meth-
od when some vehicles do not obey our navigation, 
which is shown in Figure 9.

From Figure 9, we notice that as more vehicles 
obey, the average travel time gradually decreases. In 
Figures 9a and 9b, the line is almost straight because all 
roads were not crowded during the simulation. When 
more vehicles follow the navigation instructions, the 
total travel time changes slightly. In Figure 9c, we can 
observe that the curve drops quickly at first, and when 
the ratio exceeds 40%, it declines slowly. If some 
vehicles can be assigned effectively (approximately 

In Figure 8, we demonstrate the driving distance of 
vehicles during the simulation using different routes 
to observe the severity of congestion. We choose the 
shortest routes from X0 to X5, X1 to X6, X2 to X7, 
and X3 to X4.

From Figures 8a and 8e, we observe that severe 
traffic congestion (triangles) occurred and lasted a 
long time. This occurrence corresponds to our anal-
ysis whereby we let many vehicles wait on A3A2. In 
Figure 8i, although only a few vehicles used A3A2, 
they still have to wait; and some vehicles waited a 
long time. However, as shown in Figures 8f and 8g, our 
method is much better; it can make vehicles run more 
efficiently. We also know that even though we assign 
fewer vehicles to a road, it may not make the traffic 
better, which means Dijkstra is not an efficient way 
to arrange traffic for navigation. We should let vehi-
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Simulation results
First, we demonstrate the average travel time 

and the average number of halting vehicles among 
all the ODs in Figure 11. In this experiment, we com-
pared the performance of the three methods when 
λ=0.13, 0.16, and 0.18. Because there are eight 
entrances, if λ is bigger, such as 0.3, the road net-
work is easily overburdened. In Figures 11a and 11b, 
the average travel time of our method is the low-

20%), the road network can run more efficiently. If 
40% of vehicles can be assigned by our method, con-
gestion will be greatly reduced.

4.3 Experiment 2: Road network with 
traffic lights

Introduction of road network
The road network (Figure 10) is a real-world net-

work around Zhujiang New Town in Guangzhou, 
Guangdong, China, in which X1 and X3 are en-
trances; Y2 and Y5 are exits; then the others are 
both entrances and exits. All the intersections in this 
road network are signalised and we use Webster’s 
method for traffic signal design [39].

The total number of vehicles that will enter this 
road network is 8000 (approximately 1000 vehicles 
from each entrance), and the probability of a vehicle 
driving from an entrance to any exit is also equal. 

In this experiment, we set γ=3 for all ODs.
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Figure 11 – The comparison of average travel time and average number of halting vehicles in the signalised road network
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algorithm’s performance declines extremely fast 
when vehicles increase because it cannot consider 
a future situation in which a vehicle arrives at a 
road, and the traffic congestion before it may dis-
appear. Because our method is iterative and needs 
less computational time, it can be deployed in 
practice in the real world.

The proposed method can also reduce the com-
putational cost by obtaining a subset of all routes, 
which makes it easy to implement. We demonstrat-
ed the effect of future time windows, i.e., we can 
assign a route for a vehicle more reasonably. To 
accurately estimate future time windows, we use a 
viable approach to calculate how much time a vehi-
cle needs at an intersection, whether signalised or 
unsignalised.

For future work, we will implement our method 
in a larger road network and consider dynamic sig-
nal timing. We also plan to use parallel computing 
to calculate the travel times of different routes in a 
route set for vehicles that simultaneously enter the 
road network when the road network becomes large.
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林培群，周楚昊，程阳

一种基于未来时间窗的系统协同的车载导航方
法

摘要

交通拥堵已经成为一个严重的问题，影响着司
机的心理健康和经济。为了缓解交通拥堵，本文提
出了一种利用未来时间窗的概念来估计路网未来状
态的导航方法。通过该方法，我们不仅可以根据当
前的交通状态，还可以根据车辆未来到达的状态来
估计出行时间。为了验证我们的方法，我们基于
SUMO软件进行了实验。实验结果表明，与基准算
法Dijkstra相比，我们的方法能够显著降低所有车辆
的总体行驶时间。我们还将我们的方法与SUMO提
供的DUE算法进行了比较。结果表明，我们的方法
的性能略优于DUE算法。在实际应用中，该方法计
算时间短，且对低遵从率不敏感，遵从率低至40%
，也能显著提高无信号路网的运行效率。我们也在
一个信号化的道路网络中验证了我们的方法的有效

性。结果表明，该方法依旧能够有效地分配流量。

est, although the DUE is also satisfying, compared 
to Dijkstra. We can also observe that when λ=0.13, 
the average travel time of Dijkstra is about 900 s, 
but when λ=0.16, it is up to 1400 s. The reason is 
not only the number of vehicles becoming larger, 
but this method does not know the change of traf-
fic lights, so it chooses wrong routes. In Figure 11c, 
the DUE is a little better than our method and we 
reckon it is because when there are more vehicles, 
our method has a little deviation of the estimation 
of traffic lights and the dispersing time of vehicle 
queues.

Next, the average travel time of different ODs is 
shown in Figure 12. In Figures 12a and 12b, the perfor-
mance of our method among all ODs is almost the 
best, which reflects that our method can effectively 
arrange the traffic, even in a signalised road net-
work. From Figure 12c, we can observe that in case 
of Y1 to Y2, Y3, Y4, Y5, Y6, Y7, our method does 
not perform well. In Figure 10, we can tell that the 
intersections near these exits are more easily con-
gested than others and it may not be efficient to 
detour too far for vehicles entering from Y1, which 
verifies that there may be a slight deviation of our 
estimation that we mentioned above. We can also 
observe that even from Y1 to Y2, the performance 
of Dijkstra is very bad. Through the simulation, we 
found that due too many vehicles in the road net-
work, Dijkstra could not assign traffic well, so the 
road network was paralysed and the vehicle queue 
reached the last intersection, which caused some ve-
hicles to wait too long.

5. CONCLUSION
In this paper, we proposed an in-car navigation 

method to alleviate congestion and save the total 
travel time, not requiring full compliance. The ex-
periments indicate that compared to Dijkstra, the 
method may take slightly more time for some of 
the OD pairs, but for most of them, it can save a 
considerable amount of time for drivers. Even for 
a 40% compliance rate in an unsignalised road net-
work, the traffic congestion in the road network is 
still greatly alleviated. Compared to the DUE, our 
method can also obtain a better performance and in 
some experiments, we can observe that they have 
similar patterns. 

This paper also points out the deficiencies of Di-
jkstra when it is used for navigation. Dijkstra is a 
satisfactory algorithm when a small number of ve-
hicles operate on the road network. However, the 
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