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ABSTRACT
In this paper, a two-stage robust optimisation is presented for an uncapacitated hub location prob-
lem in which demand is uncertain and the level of conservatism is controlled by an uncertainty
budget. In the first stage, locations for establishing hub facilities were determined, and allocation
decisions were made in the second stage. An accelerated Benders decomposition algorithm was
used to solve the problem. Computational experiments showed better results in terms of number of
iterations and computation time for Benders decompositionwith Pareto-optimal cuts in comparison
with the classical Benders decomposition algorithm. According to numerical analysis, it was con-
cluded that increasing the uncertainty budget also increased total costs for more established hubs.
To determine the uncertainty budget in an appropriate manner, a new expected aggregate func-
tion was introduced. The numerical studies demonstrated the usefulness of the proposed method
in defining the appropriate uncertainty budget in the presence of uncertainty.
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1. Introduction

Carrying out hub location consists of finding the best
locations for establishing hubs and determining flow
pathways. Network transportation costs are decreased by
using hub facilities instead of direct connections, because
that allows the utilisation of economies of scale. Trans-
portation and telecommunication are important appli-
cations for hub location problems such as public and
air transportation and delivery cargo systems. Since the
work of O’Kelly (1986), hub location problems have
become a popular area of research, and have gotten a lot
of attention in recent decades. The first studies focused on
basic hub locations, which are a type of discrete facility
location problem. The set of assumptions that are con-
sidered for simplification in network design decisions are
fully interconnected hub facilities, no direct connections,
full transmitted flows, etc (Campbell and O’Kelly 2012;
Contreras 2015).

Flow transportation via direct paths between origin-
destination nodes raises costs, because vehicles that carry
flows between origin-destination nodes may be empty
on the return path, and this entails extra costs for the
network. A hub as a connection point makes it possi-
ble to collect scattered flows and send them together,
or vice versa. Determining the optimal locations of
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hubs in the network is a strategic decision and helps
managers to reduce the costs of distribution networks.
Therefore, this decision significantly affects the per-
formance of the system. In addition, many companies
and retailers locate their warehouses near hub facilities
to improve flow transportation time and reduce trans-
portation costs (for example, the Laura Ashley textile
design company located their warehouses near FedEx
hubs to improve responsiveness to customers). Hub facil-
ities can also operate as assembly or production cen-
tres that can produce different types of commodities.
In other words, different parts of commodities are sent
to hub facilities, and then these parts are assembled
and transshipped to their destinations. Therefore, proper
selection of hub facilities and production planning can
reduce transportation and production costs. The loca-
tions of hub facilities and warehouses are strategic deci-
sions and affect production planning (Ghodratnama,
Arbabi, and Azaron 2019). Therefore, hub location prob-
lems can be used in a wide range of real applications
and studies, such as production research. The model
presented in this paper can be used for sending com-
modities that are in hub facilities. In other words, com-
modities are produced in factories and sent to hubs for
transshipment.
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Optimisation of hub location problems, considering
parameters such as demand, hub establishment costs,
transportation costs, discount factors, and so on, using
deterministic values that may in fact be uncertain in
nature, may impose extra costs in the future. This is
due to incorrect decisions made when considering deter-
ministic values of parameters, which may affect estab-
lishment of hub facilities. There are some approaches
to dealing with uncertainty, such as stochastic program-
ming and robust optimisation. In stochastic program-
ming, unlike robust optimisation, the probability distri-
bution of uncertain parameters is known and an optimal
solution is obtained by considering probability distri-
bution or multiple scenarios. Stochastic programming
is applied in different ways, such as two-stage, multi-
stage and chance constrained approaches. In two-stage
stochastic programming models, two types of decision
variables, including the first and second stage decision
variables, are considered. Robust optimisation is another
way to deal with uncertainty, in which uncertain param-
eters are defined by interval uncertainty or discrete sce-
narios. Two-stage robust optimisation is a combina-
tion of stochastic programming and robust optimisa-
tion approaches, in that first-stage decision variables are
determined by focusing on worst-case second-stage sce-
narios (Ben-Tal et al. 2004). Static robust optimisation
(Rstatic) and adjustable robust optimisation (Radjustable)
are two types of robust discrete optimisation (see : Bert-
simas, Brown, and Caramanis (2011)). In Rstatic, all deci-
sions are made before revealing uncertainty, while in the
Radjustable proposed by Ben-Tal et al. (2004), some deci-
sions are made after revealing uncertainty. So the solu-
tion obtained by Radjustable may be less conservative in
comparison with Rstatic (Radjustable ≤ Rstatic).

The main contributions of this paper are as follows:
(1) Using two-stage robust optimisation for an unca-

pacitated multiple allocation hub location problem with
uncertain demand. While recent work (on the robust
optimisation approach and hub location problems) has
focused on robust optimisation in which all decisions
are made in one stage, in this study, decisions are
made in two stages. Locations of hub facilities are
decided in the first-stage without revealing uncertain
demand, and flow pathway decisions are made in the
second stage in the presence of uncertainty (wait-and-
see decisions). (2) An accelerated Benders decompo-
sition algorithm (Pareto-optimal cut) is used to solve
the mathematical model more efficiently in compari-
son with the classical Benders decomposition algorithm.
(3) A size reduction scheme is used to solve large-
scale instances. This method finds near-optimal solu-
tions in a very short time and with higher qual-
ity. (4) Also, a new expected aggregate function was

introduced to determine appropriate uncertainty budgets
for decision-makers.

The remainder of the paper is organised as follows:
Section 2 pays attention to the literature review of the
hub location problems and robust optimisation, Section 3
introduces the mathematical model of deterministic
uncapacitated multiple allocation hub location problem
and the proposed two-stage robust model with uncer-
tain demand, Section 4 introduces classical and accel-
erated Benders decomposition algorithm. In Section 5
computational experiments are done for analysing the
performance of Benders decomposition algorithm for the
two-stage robust model, Section 6 pays attention to the
managerial implications and finally Section 7 concludes
the paper and suggests future studies.

2. Literature review

This section provides a comprehensive review covering
the following three classes of studies for hub location
problems: hub location research; production planning
research on the concept of hub location problems; and
robust optimisation approaches.

2.1. Hub location research works

The idea of hub location problems was initially intro-
duced by Goldman (1969). O’Kelly (1986) later intro-
duced a hub location problem for an air transporta-
tion network. O’Kelly (1987) proposed a mathematical
model for a one-stop hub location problem. Then Camp-
bell (1994) proposed a model in which the number of
hubs is determined based on hub establishment and
transportation costs. Farahani et al. (2013) studied solu-
tion methods and applications of hub location problems.

Ghaffarinasab and Kara (2019) proposed two mod-
els for hub location problems, uncapacitated single allo-
cation hub location problems and uncapacitated sin-
gle allocation p-hub median problems. They used the
Benders decomposition algorithm to solve large-scale
instances of these problems. Özgün Kibiroğlu, Serarslan,
and Topcu (2019) presented hub location problems with
the penalty cost in the objective function for hub facil-
ity congestion. Particle swarm optimisation (PSO) was
used to solve the model in a shorter computation time.
They showed that the proposed algorithm could find a
good solution in less computation time in comparison
with commercial solvers. Ghaffarinasab (2020) proposed
a multiple allocation p-hub centre problem with unlim-
ited capacity for hub facilities. Also, this author used the
Benders decomposition algorithm for solving the pro-
posed model in large-scale instances in an appropriate
computation time. Shen, Liang, and Max Shen (2020)
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considered a backup path for avoidance of risk of ran-
dom disruptions in addition to a primary path in a
reliable hub location problem. The objective function
of their model is designed to minimise the associated
costs and penalty costs for unserved demand. da Costa
Fontes and Goncalves (2019) proposed a new hub and
spoke network considering the sub-hub structure. Trans-
shipment of flows between origin-destination nodes for
certain types of demand are allowed in their model, con-
sidering a sub-hub concept. They also used a variable
neighbourhood decomposition search algorithm to solve
large-size instances. Wandelt et al. (2020) proposed a
contraction technique in six different hub location prob-
lems to reduce the complexity of themodels and speed up
the genetic, variable neighbourhood search and Benders
decomposition algorithms. In contraction technique, the
origin-destination flows of some nodes are merged into
one existing node, the model is optimised, and the loca-
tions of hub facilities are determined. Then, the com-
plete hub location model without contraction is solved,
in which the hubs obtained in the previous step are fixed
in a complete model. They solved the proposed model
in instances with up to 5000 nodes using the contrac-
tion technique. Alumur et al. (2020) provided some new
perspectives for hub location problems that can be con-
sidered for future work. They highlighted key gaps in the
hub location problem literature and suggested opportu-
nities for better models.

2.2. Production planning in hub location problem

Ghodratnama, Tavakkoli-Moghaddam, and Azaron
(2012) proposed a hub covering problemwith two objec-
tive functions. They also used a fuzzy approach to deal
with uncertainty and solved their proposed bi-objective
models using the Torabi and Hasini (TH) and Selim
and Ozkarahan (SO) methods. They located hub facili-
ties as factories and warehouses in a hub network. Gho-
dratnama, Tavakkoli-Moghaddam, and Azaron (2015)
presented a fuzzy-robust multi-objective p-hub cover-
ing problem with scenario-based uncertainty. They also
considered production facilities in their proposed math-
ematical model. They used the TH method to solve
their multi-objective model. Ghodratnama, Arbabi, and
Azaron (2018) proposed hub network design with pro-
duction planning and congestion investigation. They
located a central warehouse in hub facilities, and fac-
tories could be located near warehouses. Also, an Lp-
metric method was used to solve their multi-objective
model. Ghodratnama, Arbabi, and Azaron (2019) intro-
duced a hub location–allocation problem considering a
model that included production planning, supply chains,
and queuing theory. They considered hub facilities as

industrial townships. Also, manufacturing plants and
warehouse congestion were considered in their proposed
model.

2.3. Robust optimisation research works

Contreras, Cordeau, and Laporte (2011) presented a hub
location problem with unlimited capacity for hubs and
used two-stage stochastic programming to deal with
uncertain demand and transportation costs. They used
the Benders decomposition algorithm augmented with
a sample average approximation method to obtain an
optimal solution considering the appropriate number of
scenarios. They showed that by considering uncertain
demand and dependent transportation costs, a two-stage
model is equivalent to a single-stage stochastic model
or its associated deterministic expected value problem
(EVP). In other words, neither uncertain demand nor
dependent transportation costs affected the second-stage
decision variables (allocation decisions). But they showed
that when considering independent transportation costs,
the corresponding stochastic problem is not equivalent
to its EVP. However, in classical hub location problems
considering capacity constraints on hub facilities or other
assumptions, different scenarios of demand can affect
location and allocation decisions, so the model can be
considered as a two-stage stochastic model and is not
equivalent to the EVP.

Alumur, Nickel, and Saldanha da Gama (2012) pro-
posed single allocation and multiple allocation hub loca-
tion problems with uncertain demand and hub estab-
lishment costs. They presented three formulations to
deal with uncertainty. In the first model, hub establish-
ment costs were uncertain, and the objective was min-
imising worst-case regret for all scenarios. The second
model was formulated as two-stage stochastic program-
ming with uncertain demand, but Contreras, Cordeau,
and Laporte (2011) showed that the problem was equiv-
alent to a model with expected values for demand.
The third problem was modeled as robust-stochastic
with uncertainty in both demand and hub establish-
ment costs. Shahabi and Unnikrishnan (2014) presented
robust optimisation for single and multiple allocation
hub location problems with uncertain demand. The val-
ues for uncertain parameters belong to ellipsoidal inter-
val uncertainty. They proposed amixed integer nonlinear
model and transformed it into a conic quadratic prob-
lem with a relaxation strategy. They showed that more
hubs are established by the robust model compared with
the deterministic model. According to the complexity of
the model, their proposed robust model was solved in
instances with up to a maximum of 25 nodes using a
general commercial solver. Ghaffari-Nasab, Ghazanfari,
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and Teimoury (2015) presented a robust optimisation
model for capacitated single and multiple allocation hub
location problems with uncertain demand. Uncertain
demand was considered in the capacity constraints, and
they used an uncertainty budget to control conservatism.
However, they used nominal values for demand in the
objective function without considering uncertainty. In
other words, demand parameters appeared in the objec-
tive function and hub capacity constraints, but they just
considered uncertainty in the capacity constraints.

Habibzadeh Boukani, Farhang Moghaddam, and
Pishvaee (2016) presented the same single and multiple
allocation hub location problems, but the authors consid-
ered hub establishment costs and capacity as two sources
of uncertainty. They used robust optimisation to deal
with uncertainty, and defined several discrete scenarios
and obtained the objective value for each scenario tomin-
imise worst-case value. Merakli and Yaman (2016) pro-
posed a robust model for an uncapacitated p-hubmedian
problem with uncertain demand. Uncertain demand was
modeled in two different ways: the hose and hybrid
models. In the hose model, the only information about
demand was the upper limit on the total flow adjacent
to each origin-destination node, while the hybrid model
included both lower and upper limits on each node. They
used the Benders decomposition algorithm for large-
scale instances and analysed the effect of uncertainty
on the model. Previously mentioned papers used robust
optimisation to deal with uncertainty, but these authors
considered each uncertain parameter separately in their
proposed models. Therefore, Zetina et al. (2017) pro-
posed a model for an uncapacitated hub location prob-
lem and used robust optimisation to deal with uncertain
demand and transportation costs. In this case, they pro-
posed three models: a hub location problem with uncer-
tain demand, a problem with uncertain transportation
costs; and a problem with a combination of the two. The
authors used the branch and cut algorithm for a case of
uncertain demand and transportation costs. They anal-
ysed and examined the effect of uncertainty budgets on
objective values and hub configurations, and also com-
pared a robust solution with a deterministic solution.
However, in comparison with our analyses, they did not
analyse and suggest proper values for uncertainty budget.

Merakli and Yaman (2017) presented a multiple allo-
cation hub location problem with capacity constraints
and hose demand uncertainty. The authors used two
kinds of Benders decomposition algorithms. For the Ben-
ders 2 algorithm, the sub-problem was decomposed into
separate problems for each commodity. In each itera-
tion, the optimality cuts for each commodity were added
to the master problem. They showed that the Benders
2 decomposition algorithm with a multi-cut approach

outperformed the other approaches and can solve Aus-
tralian Post (AP) instances with up to 50 nodes. Talbi
and Todosijević (2017) proposed a robust optimisation
model for an uncapacitated multiple allocation hub loca-
tion problem. They presented a new way to analyse
robustness of solutions in the presence of uncertainty
and used a variable neighbourhood search algorithm.
However, a new robustness measure proposed in our
paper, expected aggregate function, allowed for consid-
eration of decision-makers’ needs. de Sá, Morabito, and
de Camargo (2018) proposed a model for a robust mul-
tiple allocation incomplete hub location problem with
uncertain demand and hub establishment costs. Fur-
thermore, the Benders decomposition algorithm and
hybrid heuristic approacheswere used to solve large-scale
instances.

Due to the complexity of robust hub location prob-
lems, solving large-scale instances is challenging. To
address this, Ghaffarinasab (2018) used an efficient tabu
search algorithm-based matheuristic algorithm to solve
large-scale instances up to 200 nodes. This author pro-
posed a p-hub median problem and used robust opti-
misation to deal with uncertain demand. Three differ-
ent models were proposed: hose, hybrid, and budget
of uncertainty. The validity of the proposed matheuris-
tic algorithm was evaluated for existing studies that
used the Benders decomposition algorithm (Merakli and
Yaman 2016). de Sá, Morabito, and de Camargo (2018)
applied a Benders decomposition algorithm for an
incomplete hub location problem with a service time
requirement. They used a robust optimisation approach
to deal with uncertain travel times and assumed that
travel times belonged to a polyhedral uncertainty set.
Up to 2018, robust hub location problem studies did not
consider inter-hub flow discount factors as a source of
uncertainty. Therefore, Rahmati and Bashiri (2018) pro-
posed robust optimisation for a hub location problem
with uncertain demand, hub establishment costs, and
inter-hub flow discount factor. However, these uncer-
tain parameters were considered separately in the model,
and they could be considered simultaneously. Lozkins,
Krasilnikov, and Bure (2019) presented robust optimisa-
tion for an uncapacitatedmultiple allocation hub location
problem with a set of demand scenarios. Because of the
complexity of the model (an increase in the number of
scenarios), the authors used classical and improved Ben-
ders decomposition algorithms to solve the proposed
model more efficiently. Ghaffarinasab, Zare Andaryan,
and Ebadi Torkayesh (2020) proposed robust optimisa-
tion for single allocation p-hub median problem. They
used two polyhedral uncertainty sets, a hose set and a
hybrid set, and used amatheuristic algorithm to solve the
problem. A tabu search algorithm and a mathematical
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Table 1. Review of hub location problems based on robust optimisation.

Uncertain approach Uncertain parameter

Author(s) SR AR w c f α cap t Solution approach

Alumur, Nickel, and Saldanha da Gama (2012) � � � Commercial solver
Shahabi and Unnikrishnan (2014) � � Commercial solver
Ghaffari-Nasab, Ghazanfari, and Teimoury (2015) � � Commercial solver
Habibzadeh Boukani, Farhang Moghaddam, and Pishvaee (2016) � � � Commercial solver
Merakli and Yaman (2016) � � Commercial solver
Zetina et al. (2017) � � � Branch and cut
Merakli and Yaman (2017) � � Benders decomposition
Talbi and Todosijević (2017) � � VNS
de Sá, Morabito, and de Camargo (2018) � � � Benders decomposition
de Sá, Morabito, and de Camargo (2018) � � Benders decomposition
Ghaffarinasab (2018) � � Tabu search
Rahmati and Bashiri (2018) � � � � Commercial solver
Lozkins, Krasilnikov, and Bure (2019) � � Benders decomposition
Li, Fang, and Wu (2020) � � � Commercial solver
Ghaffarinasab, Zare Andaryan, and Ebadi Torkayesh (2020) � � Tabu search
This research � � Benders decomposition

Notes: w = Demand, c = Transportation cost, f = Hub establishment cost, α = Discount factor, cap = Capacity of hubs, t = Time, SR = Static Robust, AR
= Adjustable Robust.

model were used in their matheuristic algorithm. Li,
Fang, and Wu (2020) used robust optimisation for a hub
location problem and considered flows and fixed estab-
lishment costs as uncertain parameters in their proposed
model. In their paper, in contrast to Shahabi and Unnikr-
ishnan (2014), fixed hub establishment costs were con-
sidered to be uncertain and could be affected by total
flows. It should be noted that various parameters, such
as demand, transportation costs, and so on, are consid-
ered in these papers as sources of uncertainty. Compared
to our proposed model, none of these papers analysed
the conservatismof obtaining appropriate values for bud-
get of uncertainty, and they also did not consider deal-
ing with two-stage robust optimisation with uncertain
demand in hub location problems.

In addition to hub location problems, robust optimi-
sation is also used in other problems such as prob-
lems dealing with facility locations, supply chains, loca-
tion transportation, and so on. Basciftci, Ahmed, and
Shen (2020) presented a two-stage decision-dependent
distributionally robust facility location problem in which
moments of stochastic demand were interpreted as func-
tions of facility-location decisions. These authors com-
pared their model with a decision-dependent deter-
ministic model, as well as stochastic programming and
distributionally robust models without the decision-
dependent assumption. Saif and Delage (2020) studied
a capacitated facility location problem with distribu-
tionally robust optimisation. They used two algorithms
based on column generation to solve a two-stage model.
Ivanov et al. (2016) proposed a new method for robust-
ness analysis of schedules that are formulated in con-
tinuous time in the state-space domain. Ivanov, Dolgui,
and Sokolov (2016) presented robust analysis of schedule
coordination in the presence of disruptions in capacities

and supply with the help of attainable sets. Zeng and
Zhao (2013) used adjustable robust optimisation to deal
with uncertainty in a location transportation problem.
They developed a decomposition algorithm to generate
new columns and rows in each iteration and decrease
the number of iterations and computational time. Bert-
simas et al. (2013) and Lorca et al. (2016) proposed a
two-stage model and a multi-stage robust model for a
unit commitment problem. Bruni et al. (2017) presented
an adjustable robust optimisation model for a resource-
constrained project scheduling problem with uncertain
activity duration, and used the Benders decomposition
algorithm to solve the problem.

Table 1 provides a review of studies related to the
robust hub location problem. The information in Table 1
is as follows: Column 1, author names; Columns 2 (static)
and 3 (adjustable), the robust optimisation approach
used in the study; Columns 4–9, the uncertain param-
eters that were considered in the model. Finally, Col-
umn 10 shows the solution approach used for solving
the problems. The information in Table 1 allows the
conclusion that adjustable robust optimisation was not
used in hub location problems. In other words, most
papers used robust optimisation with one-stage deci-
sions. So in this paper, a two-stage robust optimisation
approachwas used for dealingwith uncertain demand for
uncapacitated hub location problems in which decisions
were divided into two stages. In the first stage, decision
variables were established without revealing uncertain
parameters, while in the second stage, decision variables
were set in the presence of uncertainty. Furthermore,
an accelerated Benders decomposition algorithm with
stronger cuts (Pareto-optimal cuts) and a size reduc-
tion scheme were used for solving the proposed prob-
lem in large-size instances. Also, to obtain appropriate
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uncertainty budget, a new expected aggregate function
was introduced.

3. Mathematical model

In this section, a deterministic model of uncapacitated
multiple allocation hub location problem proposed by
Hamacher et al. (2004) and a two-stage robust hub loca-
tion problem with uncertain demand are introduced. In
this problem, multiple allocation is allowed for com-
modities flow. According to the transportation cost, sev-
eral different routes can be selected from each origin-
destination nodes for sending commodities. In other
words, flows from origin to destination nodes can be
routed through different hub facilities. It is assumed that
all nodes are hub candidates and the number of hub facil-
ities that will be established is unknown. Hence, the set
of hub facilities are determined according to the trans-
portation and hub establishment costs. However in size
reduction scheme, presented in this study, the number of
hub candidates are decreased. Also, it is assumed that hub
facilities have an unlimited capacity for incoming and
outgoing flows.

3.1. Deterministic model of hub location problem

In this model, demand and transportation costs between
each origin-destination nodes are known and determin-
istic. N and H are the sets of nodes and hubs (H ⊂ N),
wij is the demand originated at node i ∈ N and destined
to node j ∈ N, fk is the hub establishment cost, dij is
distances between node i ∈ N and node j ∈ N, χ is the
collection cost per unit, α is the inter hub flow discount
factor and δ is the transfer cost. cijkl determines the trans-
portation cost from origin node (i ∈ N) to destination
node (j ∈ N) through the hubs k ∈ H and l ∈ H, respec-
tively and is calculated by cijkl = χdik + αdkl + δdlj. Two
decision variables are used in this model, zk is a binary
variable and is equal to 1 when a hub is established in
node k ∈ H, otherwise gets zero value. xijkl is the fraction
of flows originated at node i ∈ N and destined to node
j ∈ N by using hubs k ∈ H and l ∈ H. The mathematical
model of deterministic uncapacitated multiple allocation
hub location problem is as follows:

min
∑

k∈H
fkzk +

∑

i∈N

∑

k∈H

∑

l∈H

∑

j∈N
wijcijklxijkl (1)

Subject to :
∑

k∈H

∑

l∈H
xijkl = 1 ∀ i ∈ N, j ∈ N (2)

∑

l∈H
xijkl +

∑

l∈H,l �=k
xijlk ≤ zk ∀ i ∈ N,

j ∈ N, k ∈ H (3)

zk ∈ {0, 1} ∀ k ∈ H (4)

xijkl ≥ 0 ∀ i ∈ N, j ∈ N, k ∈ H,

l ∈ H (5)

Expression (1) is the objective function and minimises
both hub establishment and transportation costs. Con-
straints (2) guarantee that all demand from origin i ∈
N to destination j ∈ N must be served. Constraints (3)
ensure that there is no direct link betweennonhubnodes.
On the other hand, demand have to be transported from
one or two hubs. Constraints (4) and (5) determine the
domains of decision variables.

3.2. The proposed two-stage robust hub location
problem (TRHLP)

Adjustable robust or two-stage robust optimisation was
introduced by Ben-Tal et al. (2004). In mentioned opti-
misation approach, decision variables are divided into
two groups. The decision variables in the first group
known as the first stage decision variables are determined
when uncertain parameters have not been realised yet.
The second stage decision variables are determined after
revealing the uncertainties. The objective function of the
two-stage robust optimisation isminimising a function of
the first stage decision variables and a function of second
stage decision variables in worst-case. There are some
kinds of uncertainty sets such as box, ellipsoidal, poly-
hedral and combinations of these three types. Box uncer-
tainty set was proposed by Soyster (1973). In this type of
uncertainty, all of the uncertain parameters are equal to
the worst case scenario. Therefore, considering this type
of uncertainty leads to an excessive conservatism. Ellip-
soidal uncertainty set, proposed by Ben-Tal, El Ghaoui,
and Nemirovski (2009), have less conservatism in com-
parison with the previous one. Because only some of the
uncertain parameters are equal to their corresponding
worst case scenario. Also, the model by considering this
type of uncertainty is nonlinear, because of using 2-norm
for defining the uncertainties. Bertsimas and Sim (2003)
proposed a mathematical model in which level of con-
servatism is controlled with an uncertainty budget and
the model remains linear. When uncertainty budget gets
a high value, the level of conservative increases and when
it is equal to zero, the proposed model is equivalent to
a deterministic form. Therefore in this paper, the same
parameter is used in the proposed model which gives
the possibility of analysing the model performance with
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different level of conservatism. In fact decision makers
in companies may have different behaviour and con-
servatism level, so the model can be used for various
situations of real applications.

In this paper, it is assumed that demand (wij) is uncer-
tain and the deterministic value of demand is unknown
in the planning time. So an interval value is consid-
ered to determine the value of demand parameter. The
uncertainty set W associated with the demand for each
origin-destination nodes is considered to be a polyhe-
dral set and the uncertain parameter wij, is built around
a nominal value w̄ij and belongs to the interval [w̄ij −
ŵij, w̄ij + ŵij], ŵij is deviation value of demand. w̄ij +
μijŵij, |μij| ≤ 1, ∀ i, j ∈ N is an equivalent formulation
for each demand with uncertainty. It is assumed that
� is an uncertainty budget that controls the level of
conservatism with

∑
i∈N

∑
j∈N μij ≤ � constraint. The

deviation value for demand is ŵij ∼ U[0,�× w̄ij]. � is
a parameter that determines the maximum amount of
deviation of demand from a nominal value which can
take a positive value. Two-stage robust formulation for
the uncapacitated hub location problem with uncertain
demand is presented as follows:

min
z

∑

k∈H
fkzk +max

w∈W
min

x∈ϒ(z,w)

∑

i∈N
∑

k∈H

∑

l∈H

∑

j∈N
wijcijklxijkl (6)

Subject to :

zk ∈ {0, 1} ∀ k ∈ H (7)

where ϒ(z,w) = {x : (2), (3), (5)}. In Equation (6), zk
is the first stage decision variable and xijkl is the sec-
ond stage decision variable. The objective function in (6)
minimises the cost of the worst-case scenario. The max
operator represents the demand scenario inW that gen-
erates the largest recourse cost, given the hub locations
z. The min operator identifies the least costly solution,
and the set ϒ(z,w) represents possible recourse opera-
tions. This problem is NP-hard and the objective func-
tion have a max-min term and the model is non-linear,
therefore there is a challenge and solving this model is
complex.

Because of the objective function structure with a
min (max–min) term, the proposed model can be solved
only by using a decomposition approach like a Benders
decomposition algorithm. In another word, this problem
can not be solved by a commercial solver without any
pre-processing. Hence, the proposed model can not be
solved directly without implementing such algorithms.
A decomposition approach is needed to ensure the pos-
sibility of solving the problem by a commercial solver.

Therefore, Benders decomposition algorithm might be
useful to solve the proposed model. In the next section,
the Benders decomposition algorithm is described
more.

4. Benders decomposition algorithm

Benders decomposition algorithmwas proposed by Ben-
ders (1962). In Benders decomposition algorithm, model
is divided in two separate problems includingmaster and
sub problems.Master problem is anMIP or IPmodel and
binary or integer decision variables exist in the master
problem. Subproblem is anLPmodel and consists of con-
tinuous decision variables. The sub problem of two-stage
robust hub location problem is presented here:

max
w∈W

min
x∈ϒ(z,w)

∑

i∈N

∑

k∈H

∑

l∈H

∑

j∈N
wijcijklxijkl (8)

Subject to :
∑

k∈H

∑

l∈H
xijkl = 1 ∀ i ∈ N, j ∈ N (9)

∑

l∈H
xijkl +

∑

l∈H,l �=k
xijlk ≤ z̄k ∀ i ∈ N,

j ∈ N, k ∈ H (10)

xijkl ≥ 0 ∀ i ∈ N, j ∈ N,

k ∈ H, l ∈ H (11)

Equation (8) is still hard to solve because of max min
term. In constraints (10) z̄k is the obtained value from
the master problem that is fixed in the sub problem. To
consider the max-min term in the model, a dual form
of the sub problem is considered. αij is dual variable
corresponding to constraints (9). uijk is dual variable cor-
responding to decomposed constraints (10). Dual form
of this problem is presented as follows:

max
w∈W

:
∑

i∈N

∑

j∈N
αij −

∑

i∈N

∑

j∈N

∑

k∈H
z̄kuijk (12)

Subject to:

αij − uijk − uijl ≤ wijcijkl ∀ i ∈ N, j ∈ N,

k ∈ H, l ∈ H, k �= l (13)

αij − uijk ≤ wij × (χdik + δdkj) ∀ i ∈ N,

j ∈ N, k ∈ H (14)

uijk ≥ 0 ∀i ∈ N, j ∈ N, k ∈ H (15)

In constraints (13) and (14), exactly two and one hubs are
considered for transfer flows between origin-destination
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nodes, respectively. Uncertain parameter still don’t con-
sidered at this model. So constraints (13) and (14) should
be changed. It should be noted that the worst-case value
of uncertain parameter in primal problem is equal to the
best-case of uncertain parameter in dual of sub prob-
lem (Jeyakumar and Li 2010). Robust counterpart of this
model with considering uncertain demand is as follows:

max :
∑

i∈N

∑

j∈N
αij −

∑

i∈N

∑

j∈N

∑

k∈H
z̄kuijk (16)

Subject to:

αij − uijk − uijl ≤ w̄ijcijkl + ŵijcijklμij

∀ i ∈ N, j ∈ N, (k �= l) ∈ H (17)

αij − uijk ≤ (w̄ij + ŵijμij)(χdik + δdkj)

∀ i ∈ N, j ∈ N, k ∈ H (18)
∑

i∈N

∑

j∈N
μij ≤ � (19)

0 ≤ μij ≤ 1 ∀ i ∈ N, j ∈ N (20)

uijk ≥ 0 ∀ i ∈ N, j ∈ N, k ∈ H (21)

First decision variable (zk) is appeared in the master
problem. Master problem of two-stage robust uncapac-
itated hub location problem can be stated as follows:

min :
∑

k∈H
fkzk + η (22)

Subject to:

η ≥
∑

i∈N

∑

j∈N
ᾱij −

∑

i∈N

∑

j∈N

∑

k∈H
zkūijk (23)

∑

k∈H
zk ≥ 1 (24)

zk ∈ {0, 1} ∀ k ∈ H (25)

Constraint (23) is the optimality cut which is generated
in each iteration. Constraint (24) guarantees that at least
one hub should be established. A pseudo code of the
Benders algorithm for the proposed model is illustrated
in Algorithm 1. With an initial value of z̄k, the dual
sub problem is solved and the value of dual coefficients
are obtained, if dual sub problem have unbound value
an unbound modified problem should be solved and a
feasibility cut is added in themaster problem, else an opti-
mality cut is generated based on the obtained variables
of the dual sub problem and added in the master prob-
lem. These steps are continued until the algorithm to be
converged.

max :
∑

i∈N

∑

j∈N
αij −

∑

i∈N

∑

j∈N

∑

k∈H
z̄kuijk (26)

Subject to:
∑

i∈N

∑

j∈N
αij −

∑

i∈N

∑

j∈N

∑

k∈H
z̄kuijk = 1 (27)

αij − uijk − uijl ≤ 0 ∀ i ∈ N, j ∈ N,

(k �= l) ∈ H (28)

αij − uijk ≤ 0 ∀ i ∈ N, j ∈ N, k ∈ H
(29)

∑

i∈N

∑

j∈N
μij ≤ 0 (30)

0 ≤ μij ≤ 1 ∀ i ∈ N, j ∈ N (31)

uijk ≥ 0 ∀ i ∈ N, j ∈ N, k ∈ H (32)

Expressions (26)–(32) are unbound modified problem
for obtain dual variables for generate feasibility cut. In
unbound modified problem for generating feasibility cut
for the master problem, all constraints are transferred
to the origin of coordinates. Therefore, all parameters
in which no variable is multiplied take zero value in
the unbound modified model. It should be noted that,
constraints (30) and (31) are redundant in the unbound
modified problem and can be ignored, because the μij
takes zero value. To speed up the algorithm, acceler-
ated Benders decomposition algorithm is used to achieve
optimal solution in less iterations comparing with the
classical Benders decomposition algorithm.

4.1. Pareto-optimal cuts

Magnanti and Wong (1981) proposed a method for clas-
sical Benders decomposition algorithm with faster con-
vergence rate. This procedure seeks to find stronger cuts
from the dual sub problem when there are alternative
solutions. In other words this method selects stronger cut
among generated cuts based on achieved alternative solu-
tions by using an auxiliary mathematical model. A cut is
called a Pareto-optimal cut if it dominate other available
cuts. A cut generated using a solution (αa, ua) achieved
from the dual sub problem is stronger than (αb, ub) if and
only if:

∑

i∈N

∑

j∈N
αa
ij −

∑

i∈N

∑

j∈N

∑

k∈H
zkuaijk

≥
∑

i∈N

∑

j∈N
αb
ij −

∑

i∈N

∑

j∈N

∑

k∈H
zkubijk

In addition of dual sub problem, one more model should
be solved in each iteration to obtain the best stronger cut
from all multiple solutions. In other words in each itera-
tion, two different sub problems are solved associated to
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Algorithm 1: Benders decomposition algorithm
Data: LB=−∞, UB=+∞

1 while UB – LB > ε do
2 Step 1 : Solve dual sub problem with an initial value for z̄k
3 UB← ∑

i∈N
∑
j∈N

ᾱij −
∑
i∈N

∑
j∈N

∑
k∈H

z̄kūijk +
∑
k∈H

fkz̄k

4 if Dual of sub problem is unbounded then
5 Step 2 : Solve unbound modified problem
6 Step 3 : Add below feasibility cut in master problem
7

∑
i∈N

∑
j∈N

ᾱt
ij −

∑
i∈N

∑
j∈N

∑
k∈H

zkūtijk ≤ 0

8 else
9 Step 4 : Add below optimality cut in master problem
10 η ≥ ∑

i∈N
∑
j∈N

ᾱt
ij −

∑
i∈N

∑
j∈N

∑
k∈H

zkūtijk (R)

11 end
12 ᾱij← αij
13 ūijk← uijk
14 Step 5 : Solve the master problem with ᾱij, ūijk
15 LB← ∑

k∈H
fkz̄k + η̄

16 z̄k← zk
17 end

the current solution (z̄k) and the core point (zok). To obtain
a Pareto-optimal cut, following model should be solved:

max :
∑

i∈N

∑

j∈N
αij −

∑

i∈N

∑

j∈N

∑

k∈H
zokuijk (33)

Subject to:
∑

i∈N

∑

j∈N
αij −

∑

i∈N

∑

j∈N

∑

k∈H
ziterk uijk = Z̄dsp

(34)

(16)–(20)

zok is a core point and have a value between [0, 1] for
binary variables and should be tuned. Constraint (34)
guarantees that the value of the dual sub problem should
not be changed. Due to the constraint (34), this addi-
tional problem (Pareto model) is much harder prob-
lem to solve in comparison with the dual sub prob-
lem. Hence Papadakos (2008) showd that with using
a method, it is not necessary to consider dual sub
problem objective function in the Pareto-optimal cut
model and constraint (34) can be removed from the
Pareto model. He proved that with considering differ-
ent core points in each iteration, the constraint (34)
can be ignored from the model. It is assumed that zokt
and z̄kt are core point and the master problem optimal

solution in iteration t, respectively. Also λ is a parame-
ter which can take a value between zero and one. The
value of λ, empirically is considering equal to 0.5 (λ =
0.5). According to the zokt+1 = (1− λ)zokt + λz̄kt rela-
tions (and any convex combination), the value of the core
points can be updated in each iteration. In other words
in each iteration, core point value is updated accord-
ing to the previous core point value and master prob-
lem solution. This new core point value is considered
for Pareto-optimal cut model in the current iteration.
So, for accelerating Benders decomposition algorithm
with a stronger cut in each iteration, the dual sub prob-
lem corresponding to the (33), (16)–(20) constraints,
without constraint (34) is solved. A pseudo-code of the
Pareto-optimal cut Benders algorithm is presented in
Algorithm 2.

5. Computational experiment

In this section, several computational experiments
are done in order to analyse the performance of
two-stage robust model as well as applied Benders
decomposition algorithm. The well known sets of
instances such as Australian Post (AP), Civil Aviation
Board (CAB) and Turkish Network (TR) datasets are
used in this paper for analysis. It should be noted
that, hub establishment fixed cost is calculated based
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Algorithm 2: Benders decomposition algorithm with Pareto-optimal cut
Data: LB=−∞, UB=+∞

1 while UB – LB > ε do
2 Step 1 : Solve dual sub problem with an initial value for z̄k
3 UB← ∑

i∈N
∑
j∈N

ᾱij −
∑
i∈N

∑
j∈N

∑
k∈H

z̄kūijk +
∑
k∈H

fkz̄k

4 Step 2 : Solve Pareto-optimal cut problem:
5 if Dual of sub problem is unbounded then
6 Step 3 : Solve unbound modified problem
7 Step 4 : Add below feasibility cut in master problem
8

∑
i∈N

∑
j∈N

ᾱt
ij −

∑
i∈N

∑
j∈N

∑
k∈H

zkūtijk ≤ 0

9 else
10 Step 5 : Add below optimality cut in master problem
11 η ≥ ∑

i∈N
∑
j∈N

ᾱt
ij −

∑
i∈N

∑
j∈N

∑
k∈H

zkūtijk (R)

12 end
13 ᾱij← αij
14 ūijk← uijk
15 Step 6 : Solve the master problem with ᾱij, ūijk
16 LB← ∑

k∈H
fkz̄k + η̄

17 z̄k← zk
18 zokt+1← (1− λ)zokt + λz̄kt
19 end

on the equations proposed by Correia, Nickel, and
Saldanha da Gama (2018). These equations are as
follows:

ok =
∑

j∈N
wkj, ∀ k ∈ H (35)

fk = c× log(ok), ∀ k ∈ H (36)

Equations (35) and (36) are used for calculating each
hub establishment cost according to the flows entered to
each hub. c is a cost factor and is determined as an input
parameter. Large value for parameter c leads to estab-
lishment of few hubs. The values of χ and δ are equal
to 1 and it is assumed that α ∈ {0.2, 0.5, 0.8}. Because
of economy of scale and also for saving money, α has
smaller value in comparison with other coefficients (χ ,
δ) using in transferring demand. Uncertainty budget (�),
denotes the number of parameters that have a deviation
from their nominal values. Without loss of generality, it
is assumed that �% represent the percent of uncertain
parameters that have deviation and belongs to the �% ∈
{0.1, 0.2, . . . , 1} set and the total number of demand
parameters are equal to |N| × (|N| − 1). For example,
for a 10-node instance with 90 parameters (10× 9),
�% = 0.1 means that 10 percent of demand parameter
(9 parameter) have deviation from their nominal values.

In the rest of the paper and experiments, for simplic-
ity, uncertainty budget represent as�%. Two-stage robust
hub location problem was solved by GAMS software and
run in an Intel Core i7 with 3.7GHz CPU and 32GB of
RAM.

5.1. Analysis on the initial core point

An analysis was done to obtain the optimum initial core
points value for different values of uncertainty budgets.
To find a better value for the initial core point, an exper-
iment was designed and the number of iterations and
CPU time (seconds) of the Pareto-optimal cut Benders
decomposition algorithm were obtained for each initial
core point and uncertainty budgets (�%). The results for
the AP 20-node instance are shown in Table 2. The num-
bers placed outside and inside the parentheses show the
number of iterations andCPU time, respectively. The best
initial core point with the smallest number of iterations
and lowestCPU time (seconds)was selected for each level
of uncertainty budget to be used for further analyses. As
an example, when the uncertainty budget was equal to
0.1, the value of 0.25 for the initial core point had the low-
est number of iteration (16) and CPU time (74 seconds)
in comparison with the other initial core point values.
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Table 2. Number of iterations and CPU time with different initial core points and � for AP 20-node instance.

Uncertainty budget (�%)

Core point 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05 34 (157) 39 (180) 60 (278) 71 (328) 73 (338) 74 (342) 70 (324) 68 (315) 60 (278) 50 (231)
0.1 29 (134) 34 (157) 59 (273) 68 (315) 74 (342) 69 (319) 65 (301) 62 (287) 57 (264) 51 (236)
0.15 23 (106) 20 (93) 33 (153) 48 (217) 55 (254) 52 (241) 44 (204) 43 (199) 38 (176) 35 (162)
0.2 18 (83) 15 (74) 22 (102) 37 (171) 41 (190) 28 (130) 25 (116) 24 (111) 18 (83) 17 (79)
0.25 16 (74) 17 (69) 16 (74) 33 (153) 34 (157) 30 (139) 23 (106) 21 (97) 15 (69) 11 (51)
0.3 17 (79) 17 (79) 19 (88) 27 (125) 31 (143) 29 (134) 23 (106) 18 (83) 13 (60) 9 (42)
0.35 22 (102) 17 (82) 20 (97) 22 (102) 26 (120) 23 (106) 21 (88) 15 (69) 10 (46) 8 (37)
0.4 22 (100) 18 (76) 20 (93) 22 (104) 27 (127) 22 (102) 19 (93) 15 (72) 10 (49) 8 (39)
0.45 22 (103) 25 (83) 21 (97) 22 (105) 27 (125) 23 (106) 20 (93) 15 (71) 24 (48) 8 (40)
0.5 31 (143) 21 (116) 24 (111) 33 (153) 45 (208) 40 (185) 20 (130) 23 (106) 24 (111) 14 (65)
0.55 32 (148) 27 (125) 32 (149) 42 (194) 46 (213) 35 (162) 28 (138) 25 (115) 24 (111) 18 (83)
0.6 32 (146) 27 (123) 32 (148) 41 (190) 46 (217) 35 (164) 30 (137) 25 (119) 23 (111) 18 (85)
0.65 32 (149) 27 (125) 33 (153) 41 (190) 46 (214) 34 (157) 30 (136) 25 (117) 23 (106) 18 (84)
0.7 32 (147) 27 (124) 32 (148) 41 (192) 46 (218) 35 (162) 30 (146) 25 (119) 23 (106) 18 (88)
0.75 32 (148) 27 (127) 34 (157) 42 (194) 46 (217) 34 (157) 30 (142) 25 (120) 24 (111) 18 (87)
0.8 32 (150) 27 (126) 33 (153) 42 (196) 46 (213) 35 (162) 30 (139) 25 (116) 24 (115) 18 (86)
0.85 32 (139) 27 (123) 33 (154) 42 (195) 46 (214) 34 (157) 30 (138) 25 (116) 24 (110) 18 (89)
0.9 32 (147) 27 (124) 32 (148) 42 (194) 46 (216) 35 (162) 30 (137) 25 (117) 24 (113) 18 (83)
0.95 32 (148) 27 (125) 32 (143) 42 (198) 46 (217) 35 (164) 30 (142) 25 (118) 24 (109) 18 (87)

Note: Numbers in and out of parentheses are number of iterations and CPU time.

Also, the best initial core point value was 0.25 for uncer-
tainty budgets of 0.2 and 0.9. This analysis is not rational
for obtaining the best value for the initial core point for
large-scale instances. Therefore, the values obtained from
Table 2 were used for other large-scale instances (AP 50-
node and TR 81-node instances). The value of the initial
core point for the CAB 25-node instance was also cho-
sen according to Table 2. In short, the AP dataset, TR
dataset, and part of the CAB dataset (with 25 nodes) were
investigated in this study.

5.2. Performance evaluation of the Pareto-optimal
cut Benders decomposition to solve the TRHLP
model

Performance of the Pareto-optimal cut Benders decom-
position algorithm was compared with the classical Ben-
ders decomposition algorithm under different values
of uncertainty budgets (�% ∈ {0.1, 0.2, . . . , 1}) and dis-
count factors (α ∈ {0.2, 0.5, 0.8}). A time limit of 5 hours
(18,000 seconds) is considered for CPU time (computa-
tion time). Table 3 shows that it is possible to conclude
that the Benders decomposition algorithm with Pareto-
optimal cut performs better than the classical Benders
algorithm, considering number of iterations and CPU
time (seconds) to convergence. As an example, when
α and �% are equal to 0.5, the Benders decomposition
algorithm with Pareto-optimal cut converges to an opti-
mal solution in 142 iterations and 5,454.38 seconds, while
the classical algorithm required 901 iterations and did not
converge to the optimal value in a predefined computa-
tion time (5 hours) with an 8.57% gap. The CPU time

(seconds) of Pareto-optimal cut algorithm in average is
half of the classical Benders decomposition algorithm.

Figure 1(a) shows the convergence trend for the clas-
sical Benders decomposition algorithm in a case of an
uncertainty budget of 0.9 for the AP 20-node instance.
The value of the lower bound in each iteration must be
greater than the value in the previous iterations. But this
requirement does not apply to the upper bound. In other
words, the upper bound can take a different value in each
iteration that can be greater or smaller than the upper
bounds in previous iterations. Figure 1(b) demonstrates
the convergence trend for the Pareto-optimal cut Ben-
ders decomposition algorithm in a case of an uncertainty
budget equal to 0.9 for the AP 20-node instance. Com-
parison of Figure 1(a-b) confirms the rapid convergence
of the Pareto-optimal cut Benders decomposition to solve
the proposedmodel, comparedwith the classical Benders
decomposition model.

5.3. Sensitivity analysis on themodel parameters

The impacts of model parameters such as uncertainty
budget (�%), maximum deviation value (�), and inter-
hub flow discount factor (α) on the hub network config-
uration and its objective function (costs) were analysed.

Demand by customers can change during the year,
with high or low fluctuations. For both high and low
demand uncertainty during the year, the current loca-
tions of hub facilities are very important. Decisions about
establishing hub facilities are strategic decisions, so the
number and locations of hubs are very important for
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Table 3. Comparison of the Pareto-optimal cut Benders decomposition algorithm with classical one for AP 50-node instance.

Classical Pareto

α �% LB UB % Gap # Iteration CPU time (s) LB UB % Gap # Iteration CPU time (s)

0.2 0.1 77,939.01 81,548.64 4.43 1,154 18,000 78,386.10 78,386.10 0 140 9943.85
0.2 82,871.20 88,534.01 6.40 902 18,000 84,325.87 84,325.87 0 210 10,842.81
0.3 85,432.37 91,787.19 6.92 649 18,000 88,269.83 88,269.83 0 194 10,388.69
0.4 88,292.94 94,801.17 6.87 646 18,000 91,354.89 91,354.89 0 297 16,635.38
0.5 90,558.03 98,710.37 8.26 645 18,000 93,721.03 93,721.03 0 282 16,502.75
0.6 92,513.77 99,432.40 6.96 666 18,000 95,615.17 95,615.17 0 217 13,592.20
0.7 93,980.97 102,610.06 8.41 657 18,000 97,215.76 97,215.76 0 190 12,327.36
0.8 95,357.20 102,587.52 7.05 644 18,000 98,491.07 98,491.07 0 138 9374.95
0.9 96,451.06 105,143.93 8.27 650 18,000 99,442.71 99,442.71 0 94 6990.08
1 97,207.02 104,008.15 6.54 672 18,000 100,011.91 100,011.91 0 66 2313.88

0.5 0.1 94,262.60 94,262.60 0 696 7,676.30 94,262.60 94,262.60 0 117 4907.80
0.2 102,365.34 102,365.34 0 943 9,393.27 102,365.34 102,365.34 0 110 4537.91
0.3 106,828.03 110,395.54 3.23 921 18,000 108,034.90 108,034.90 0 108 4356.97
0.4 111,169.98 117,029.39 5.01 1,004 18,000 112,396.49 112,396.49 0 121 4830.53
0.5 114,438.56 125,170.63 8.57 901 18,000 115,921.20 115,921.20 0 142 5454.38
0.6 117,420.13 121,554.73 3.40 985 18,000 118,810.25 118,810.25 0 133 5051.10
0.7 119,784.43 126,043.37 4.97 953 18,000 121,223.39 121,223.39 0 157 5862.68
0.8 121,833.41 124,817.18 2.39 999 18,000 123,183.40 123,183.40 0 160 5722.88
0.9 123,334.31 126,578.63 2.56 887 18,000 124,756.85 124,756.85 0 156 5470.46
1 124,544.98 130,956.92 4.90 980 18,000 125,821.31 125,821.31 0 135 4415.37

0.8 0.1 104,524.39 104,524.39 0 723 8518.27 104,524.39 104,524.39 0 114 5650.67
0.2 114,382.19 114,382.19 0 750 8738.94 114,382.19 114,382.19 0 146 6053.82
0.3 121,008.00 121,008.00 0 800 9468.76 121,008.00 121,008.00 0 156 6073.68
0.4 126,134.90 126,134.90 0 804 9971.89 126,134.90 126,134.90 0 166 6497.57
0.5 130,294.10 130,294.10 0 756 8293.17 130,294.10 130,294.10 0 176 6962.41
0.6 133,728.35 133,728.35 0 784 9293.17 133,728.35 133,728.35 0 176 7001.22
0.7 136,633.57 136,633.57 0 811 9987.25 136,633.57 136,633.57 0 184 7774.22
0.8 139,051.80 139,051.80 0 858 9545.49 139,051.80 139,051.80 0 186 7502.77
0.9 140,976.72 140,976.72 0 956 12,162.18 140,976.72 140,976.72 0 180 7358.77
1 142,279.06 142,279.06 0 897 9,930.68 142,279.06 142,279.06 0 190 5989.30

Average 3.5 823.1 14,565.98 0 161.37 7546.21

Note: LB = Lower bound, UB = Upper bound.

Figure 1. Convergence of (a) classical and (b) Pareto-optimal cut Benders decomposition algorithm for AP 20-node instance.

future incidents and can significantly affect transporta-
tion costs. Therefore, an analysis is needed to evaluate the
effect of uncertainty on location and allocation decisions.
Larger values of uncertainty budgets or maximum devi-
ation value (�) may guarantee solution for high fluctua-
tions in demand. Also, discount factor (α) tariff between
hubs may change over time, and an analysis should be
done for different values of discount factor. Moreover,

parameters were investigated to establish which could
illustrate the usefulness of the study’s model, so that
decision-makers for production hub facilities can use
the proposed model for their decision-making accord-
ing to the results of the sensitivity analysis carried out.
The results for analysis of different values of uncer-
tainty budgets and α with � = 1 and � = 2 for the
AP 20-node instance, are reported in Tables 4 and 5,
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Table 4. Impact of uncertainty budget and α with � = 1 for AP
20-node instance.

α �% Cost % Gap # Iterations
CPU

time (s)
Hub

configuration

0.2 0.1 75,466.02 0 16 74.58 2,8,15,18
0.2 81,367.25 0 15 67.53 2,8,15,18
0.3 85,634.26 0 16 67.53 2,8,15,18
0.4 88,936.20 0 22 91.58 2,8,15,18
0.5 91,527.80 0 26 106.81 2,5,8,11,15,18
0.6 93,162.38 0 22 97.92 2,5,8,11,15,18
0.7 94,533.37 0 19 85.40 2,5,8,11,15,18
0.8 95,659.90 0 15 71.53 2,5,8,11,15,18
0.9 96,533.34 0 10 45.39 2,5,8,11,15,18
1 97,035.53 0 8 16.90 2,5,8,11,15,18

0.5 0.1 82,672.30 0 11 47.24 2,9,18
0.2 90,374.38 0 11 45.63 2,9,18
0.3 95,715.18 0 12 49.95 2,9,18
0.4 99,871.69 0 11 46.74 2,9,18
0.5 103,338.82 0 19 74.64 2,9,18
0.6 106,101.93 0 18 70.59 2,9,12,18
0.7 108,179.99 0 17 76.74 2,9,12,18
0.8 109,822.48 0 14 59.79 2,9,12,18
0.9 111,140.80 0 17 72.96 2,9,12,18
1 112,022.44 0 14 40.00 2,9,12,18

0.8 0.1 85,878.82 0 11 42.45 8,18
0.2 94,994.82 0 12 22.95 8,18
0.3 101,126.60 0 17 24.27 8,18
0.4 105,643.30 0 18 24.59 2,9,18
0.5 109,245.40 0 14 17.47 2,9,18
0.6 112,326.39 0 17 24.55 2,9,18
0.7 114,856.79 0 18 27.48 2,9,18
0.8 116,918.78 0 18 26.30 2,9,18
0.9 118,437.75 0 17 21.03 7,14,18
1 119,379.74 0 16 17.00 7,14,18

respectively. In the case of high values for uncertainty
budget, the objective function (costs) will increase with
more established hubs. In spite of uncertainty budget
behaviour, fewer hubs will be established by increas-
ing discount factor (α). Also, � has a direct effect on
costs and the number of established hubs. In other
words, increasing �, increases the number of estab-
lished hub facilities and the objective function value.
Also, Tables 6 and 7 show the results for the AP 50-node
and CAB 25-node instances, respectively. The percent of
the gap for these tables was reported as zero, because
of the optimal values obtained within a predetermined
time limit.

5.4. Size reduction scheme

A method was proposed to solve an adjustable robust
model in less computational time and with good solution
quality. It is reasonable to say that, as usual, not all nodes
were selected as hub facilities. Nodes with lower estab-
lishment costs and/or higher input and output flows can
be selected as hub facilities. Computational time can be
decreased by reducing the number of candidate points for
establishing hubs.

Table 5. Impact of uncertainty budget and α with � = 2 for AP
20-node instance.

α �% Cost % Gap # Iterations
CPU

time (s)
Hub

configuration

0.2 0.1 86,124.31 0 20 37.24 2,8,15,18
0.2 97,604.13 0 53 98.52 2,5,8,11,15,18
0.3 104,029.84 0 43 79.39 2,5,8,11,18,20
0.4 108,951.15 0 39 69.78 2,5,8,11,18,20
0.5 112,971.81 0 36 63.41 2,5,8,11,18,20
0.6 116,241.99 0 40 75.88 2,5,8,11,18,20
0.7 119,019.42 0 38 70.18 2,5,8,11,18,20
0.8 121,325.50 0 40 89.44 2,5,8,11,15,17,18
0.9 122,985.86 0 31 67.67 2,5,8,11,15,17,18
1 123,973.63 0 13 28.55 2,5,8,11,15,17,18

0.5 0.1 96,910.16 0 14 30.22 2,9,18
0.2 112,314.31 0 24 49.07 2,9,18
0.3 122,076.32 0 28 59.82 2,9,12,18
0.4 129,551.00 0 39 88.80 2,9,12,18
0.5 135,221.43 0 38 78.16 2,5,8,16,18,20
0.6 139,532.19 0 29 58.08 2,5,8,16,18,20
0.7 143,283.35 0 25 51.23 2,5,8,16,18,20
0.8 146,431.61 0 31 65.39 2,5,8,16,18,20
0.9 149,106.54 0 26 57.08 2,5,8,16,18,20
1 150,833.50 0 22 38.00 2,5,8,12,14,18

0.8 0.1 102,630.64 0 14 23.35 7,18
0.2 119,910.56 0 16 28.22 2,9,18
0.3 131,086.39 0 17 29.42 2,9,18
0.4 139,365.59 0 16 28.49 2,9,12,18
0.5 146,100.41 0 16 26.65 2,9,12,18
0.6 151,672.79 0 15 26.52 2,9,12,18
0.7 156,152.37 0 17 28.31 2,9,12,18
0.8 159,779.39 0 16 25.76 2,9,12,18
0.9 162,654.51 0 15 24.32 2,9,12,18
1 164,583.10 0 12 18.00 2,9,12,18

The problem in large instances can be solved by some
pre-processing. Some nodes that were selected as hub
facilities in a deterministic model with worst-case values
could also be selected as hubs for other uncertainty bud-
gets. In other words, the hub facilities that were obtained
from a deterministic model with worst-case values could
generate a restricted set of candidate points for estab-
lishing hubs for other uncertainty budgets. To do so, the
deterministic model was solved with worst-case values
of uncertain parameters, and optimal locations of hubs
were obtained. Then, the obtained nodes were consid-
ered as candidate hub nodes to solve the two-stage robust
model. To ensure that all appropriate candidate hubswere
considered, some other potential points were also added
to the restricted list. Nodes were sorted from smallest to
largest based on their establishment costs, and the top tier
(10% of all nodes) was added to the restricted list. More-
over, nodes with larger total receiving and sending flow
values (10% of all nodes) were added to the restricted list.
Then the proposed model was solved by considering the
restricted list only as candidate hubs. The results shown
in Tables 8 and 9 confirm that, not only was the proposed
approach to restricting candidate nodes for hub establish-
ment efficient regarding computational time, but it also
had acceptable quality. The average gapwas 0.08%, which
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Table 6. Impact of uncertainty budget and α with� = 1 for AP 50-node instance.

α �% Cost % Gap # Iterations CPU time (s) Hub configuration

0.2 0.1 78,386.10 0 140 9,943.85 4,9,12,15,27,29,33,35,43
0.2 84,325.87 0 210 10,842.81 4,7,9,12,15,27,29,33,35,43
0.3 88,269.83 0 194 10,388.69 4,7,9,12,15,26,29,33,35,43
0.4 91,354.89 0 297 16,635.38 4,7,9,12, 15,26,29,33,35,43
0.5 93,721.03 0 282 16,502.75 3,5,7,9,12,15,26,29,33,35,38,43
0.6 95,615.17 0 217 13,592.20 3,5,7,9,12,15,26,29,33,35,38,43
0.7 97,215.76 0 190 12,327.36 3,5,7,9,12,15,26,29,33,35,38,43
0.8 98,491.07 0 138 9,374.95 3,5,7,9,13,15,21,27,29,33,35,43,48
0.9 99,442.71 0 94 6,990.07 3,5,7,9,13,15,21,27,29,33,35,43,48
1 100,011.91 0 66 2,313.88 3,5,7,9,13,15,21,27,29,33,35,43,48

0.5 0.1 94,262.60 0 117 4,907.80 4,9,12,15,28,33,35
0.2 102,365.34 0 110 4,537.91 4,9,12,15,28,33,35
0.3 108,034.90 0 108 4,356.97 4,9,12,15,26,29,33,35
0.4 112,396.49 0 121 4,830.53 4,9,12,15,26,29,33,35
0.5 115,921.20 0 142 5,454.38 4,9,12,15,26,29,33,35
0.6 118,810.25 0 133 5,051.10 4,9,12,15,26,29,33,35
0.7 121,223.39 0 157 5,862.68 4,9,12,15,26,29,33,35
0.8 123,183.40 0 160 5,722.88 4,9,12,15,18,29,33,35,37
0.9 124,756.85 0 156 5,470.46 4,9,12,15,18,29,33,35,37,42
1 125,821.31 0 135 4,415.37 4,9,12,15,27,29,33,35,37,42

0.8 0.1 104,524.39 0 114 5,650.67 3,15,28,32,35
0.2 114,382.19 0 146 6,053.82 3,15,28,32,35
0.3 121,008.00 0 156 6,073.68 3,9,15,32,35,39
0.4 126,134.90 0 166 6,497.57 3,9,15,32, 35,39
0.5 130,294.10 0 176 6,962.41 3,9,15,32,35,39
0.6 133,728.35 0 176 7,001.22 3,9,15,32,35,39
0.7 136,633.57 0 184 7,774.22 3,9,15,32,35,39
0.8 139,051.80 0 186 7,502.77 3,9,15,32,35,39
0.9 140,976.72 0 180 7,358.77 3,9,15,32,35,39
1 142,279.06 0 190 5,989.30 3,9,15,32,35,39

Table 7. Impact of uncertainty budget andαwith� = 1 for CAB
25-node instance.

α �% Cost % Gap # Iterations
CPU

time (s)
Hub

configuration

0.2 0.1 8,075,873,225 0 21 192.74 3,4,6,12,17
0.2 8,684,194,322 0 19 172.49 4,6,12,17,20
0.3 9,102,185,109 0 19 181.27 4,6,12,17,20
0.4 9,430,098,195 0 17 175.16 4,6,12,17,20
0.5 9,667,278,324 0 21 216.55 6,12,17,20,25
0.6 9,838,958,249 0 17 193.51 6,12,17,20,25
0.7 9,975,272,746 0 18 195.09 6,12,17,20,25
0.8 10,087,132,408 0 19 203.82 6,12,17,20,25
0.9 10,157,488,585 0 16 186.61 6,12,17,20,25
1 10,273,704,079 0 11 46.00 6,12,17,20,25

0.5 0.1 10,926,837,994 0 7 62.47 3,4,17,25
0.2 11,891,101,383 0 13 115.08 3,6,17,23,25
0.3 12,461,833,181 0 11 101.06 3,6,17,23,25
0.4 12,875,826,511 0 10 97.751 3,6,17,23,25
0.5 13,178,648,180 0 11 111.31 3,6,17,23,25
0.6 13,411,808,238 0 12 130.49 3,6,17,23,25
0.7 13,585,689,892 0 10 110.986 3,6,17,23,25
0.8 13,714,962,325 0 13 133.733 3,6,17,23,25
0.9 13,831,526,420 0 8 78.79 3,6,17,23,25
1 13,841,423,996 0 10 39.00 3,6,17,23,25

0.8 0.1 13,134,665,282 0 9 82.70 6,7,25
0.2 14,333,311,160 0 11 106.00 6,17,25
0.3 15,106,926,083 0 11 106.41 6,17,25
0.4 15,657,195,449 0 13 123.72 6,17,25
0.5 16,038,971,003 0 13 127.42 6,17,23,25
0.6 17,051,701,929 0 8 82.11 6,17,23,25
0.7 16,520,782,393 0 14 143.14 3,14,17,23,25
0.8 16,668,894,357 0 13 136.38 3,14,17,23,25
0.9 16,761,763,186 0 13 130.85 3,14,17,23,25
1 16,809,385,472 0 11 42.00 3,14,17,23,25

shows that good-quality solutions were obtained by using
a preprocessing procedure.

Table 9 shows the results for the TR 81-node instance
in the full-size and size-reduction modes. CPU time of
five hours (18,000 seconds) was considered in all cases.
The results show the superiority of the size-reduction
scheme to obtain a good solution in a shorter time, com-
pared with the full-size mode. In other words, the size-
reduction scheme improved the achieved solution by an
average of 2.86% in comparison with the full-size mode
in a shorter time (one-third the computational time).

5.5. Efficiency evaluation of the proposedmodel

The effect of incorrect decisions in terms of costs
was analysed. Some organisations engage in risk-averse
behaviour, so they make decisions considering worst-
case scenario. However, this may lead to inefficient deci-
sions. It is clear that considering uncertainty will impose
costs on the organisation compared with the determinis-
ticmodel, but it should be considered to achieve a reliable
decision. So the trade-off between wrong decisions in
both scenarios is analysed and interpreted.

Figure 2 shows the additional costs imposed as a
result of wrong decisions. Thesemight be decisions based
on deterministic values when uncertain parameters are
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Table 8. The impact of size reduction scheme for AP 50-node instances.

Full size Size reduction

α �% # Iterations CPU time (s) Cost % Gap # Iterations CPU time (s) Cost % Gap

0.2 0.1 140 9943.85 78,386.10 0 27 485.31 78,386.10 0
0.2 210 10,842.81 84,325.87 0 27 584.66 84,325.87 0
0.3 194 10,388.69 88,269.83 0 22 595.36 88,283.07 0.01
0.4 297 16,635.38 91,354.89 0 35 1019.25 91,355.31 0.00
0.5 282 16,502.75 93,721.03 0 34 985.47 93,739.03 0.01
0.6 217 13,592.20 95,615.17 0 31 1141.51 95,654.82 0.04
0.7 190 12,327.36 97,215.76 0 28 960.81 97,242.33 0.02
0.8 138 9374.95 98,491.07 0 28 946.81 98,491.07 0
0.9 94 6990.08 99,442.71 0 24 718.41 99,442.71 0
1 66 2313.88 100,011.91 0 19 853.89 100,011.91 0

0.5 0.1 117 4907.80 94,262.60 0 20 327.95 94,614.11 0.37
0.2 110 4537.91 102,365.34 0 17 267.83 102,519.70 0.15
0.3 108 4356.97 108,034.90 0 18 769.46 108,116.98 0.07
0.4 121 4830.53 112,396.49 0 20 781.46 112,486.71 0.08
0.5 142 5454.38 115,921.20 0 22 408.86 116,033.79 0.09
0.6 133 5051.10 118,810.25 0 20 522.60 118,895.21 0.07
0.7 157 5862.68 121,223.39 0 24 641.45 121,243.33 0.01
0.8 160 5722.88 123,183.40 0 26 429.24 123,183.40 0
0.9 156 5470.46 124,756.85 0 21 474.46 124,756.85 0
1 135 4415.37 125,821.31 0 18 535.25 125,821.31 0

0.8 0.1 114 5650.67 104,524.39 0 11 90.36 104,716.68 0.18
0.2 146 6053.82 114,382.19 0 13 164.28 114,514.50 0.11
0.3 156 6073.68 121,008.00 0 14 145.74 121,190.80 0.15
0.4 166 6497.57 126,134.90 0 13 147.72 12,6357.91 0.17
0.5 176 6962.41 130,294.10 0 11 173.43 130,553.98 0.19
0.6 176 7001.22 133,728.35 0 14 131.22 133,929.96 0.15
0.7 184 7774.22 136,633.57 0 12 137.58 136,775.04 0.10
0.8 186 7502.77 139,051.80 0 12 148.80 139,221.21 0.12
0.9 180 7358.77 140,976.72 0 12 166.54 141,164.20 0.13
1 190 5989.30 142,279.06 0 9 101.61 142,477.33 0.13

Average 161.37 7546.21 0 20.07 495.24 0.08

involved, and vice versa. To calculate imposed costs, the
model was solved with a specified uncertainty budget
�% ∈ {0.05, 0.1, . . . , 1}. Then the optimal solutions (zk,
xijkl) obtained were placed in a new robust model to be
optimised. Robust deviation (RD) is a measure that cal-
culates the cost difference between the new robust model
(with wrong decisions) and the deterministic model. In
the next stage, decision variables obtained by optimisa-
tion of the deterministic model (zk, xijkl) were placed
in the new deterministic model with a predefined μij
(obtained from optimisation of the robustmodel). Deter-
ministic deviation (DD) calculates the cost difference
between the new deterministic model (with wrong deci-
sions) and the robust model. In cases with lower values
for uncertainty budget, there were negligible financial
losses. Based on results reported for selected datasets,
it can be concluded that in much more uncertain envi-
ronments, (�% > 0.4) making decisions using the robust
model was more beneficial compared to the determinis-
tic model. The objective function value is summarised as
OFV for each model. For example, OFV(HLP) denotes
the objective function value of the HLP model. RD and
DD is defined as follows:

RD = OFV(Robust decision|Future is deterministic)

−OFV(HLP) (37)

DD = OFV(Deterministic decision|Future is uncertain)

−OFV(TRHLP) (38)

In both scenarios, it was observed that costs would
be imposed on the network, so an aggregated expected
imposed cost could be calculated using Equation (39). p
was the probability of uncertainty occurrence.

EAF = RD× (1− p)+DD× (p) (39)

Three different probabilities were considered for incor-
rect decisions. EAF1, EAF2 and EAF3 were expected
aggregate functions with probabilities of 0.8, 0.5 and 0.2,
respectively. Figure 3 shows that for �% ≥ 0.4, it was
more reasonable to decide using the uncertain model.
The necessity of using the robust model increased as
probability (p) increased. The opposite behaviour could
be observed when the uncertainty budget were between
0.15 and 0.4.

5.6. Comparison between static, adjustable robust
and stochastic programming

Marandi and den Hertog (2018) showed that in a model
with constraint-wise uncertainty, the objective function
values of static robust and adjustable robust optimisation
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Full size Size reduction

α �% # Iterations CPU time (s) LB (M) UB (M) % Gap # Iterations CPU time (s) Cost (M) % Imp Hub configuration

0.2 0.1 15 18,000 48,977.31 51,531.57 4.96 22 5416.05 50,314.42 2.36 1,6,7,16,21,28,34,35,42
0.2 13 18,000 53,784.11 56,612.59 5.00 38 10,478.99 54,255.64 4.16 6,7,16,21,25,27,33,34,35,38,42,55
0.3 14 18,000 55,251.06 58,708.02 5.89 24 5036.96 56,684.24 3.45 6,7,16,21,25,27,33,34,35,38,42,55
0.4 11 18,000 57,665.69 59,478.73 3.05 22 6656.31 58,464.60 1.71 6,7,16,21,25,27,33,34,35,38,42,55
0.5 10 18,000 57,923.47 63,795.70 9.20 20 5554.28 59,790.98 6.28 6,7,16,21,25,27,33,34,35,38,42,55
0.6 12 18,000 59,329.56 62,245.13 4.68 16 3553.15 60,805.56 2.31 6,7,16,21,25,27,33,34,35,38,42,55
0.7 19 18,000 60,982.45 66,221.82 7.91 16 4741.45 61,568.93 7.03 6,7,16,21,25,27,33,34,35,38,42,55
0.8 9 18,000 60,157.63 65,601.10 8.30 16 6432.83 62,131.81 5.29 6,7,16,21,25,27,33,34,35,38,42,55
0.9 12 18,000 61,340.40 65,956.15 7.00 16 2598.36 62,503.68 5.23 6,7,16,21,25,27,33,34,35,38,42,55
1 20 7907 62,686.98 62,686.98 0.00 15 2276.24 62,686.98 0.00 6,7,16,21,25,27,33,34,35,38,42,55

0.5 0.1 17 18,000 68,466.35 71,470.79 4.20 25 5956.75 69,120.69 3.29 1,6,7,16,21,34,35,42,60
0.2 16 18,000 74,054.90 76,591.98 3.31 24 5944.08 74,941.79 2.15 1,6,7,16,21,34,35,42,60
0.3 15 18,000 76,781.27 80,781.27 4.95 24 6754.38 78,675.41 2.61 1,6,7,16,21,34,35,42,60
0.4 12 18,000 79,683.86 84,406.90 5.60 19 7330.83 81,202.88 3.80 1,6,7,16,21,25,34,35,42,60
0.5 16 18,000 82,215.26 86,890.28 5.38 20 5836.47 83,080.64 4.38 1,6,7,16,21,25,34,35,42,60
0.6 17 18,000 83,614.53 86,110.18 2.90 24 9636.38 84,504.11 1.87 1,6,7,16,21,25,34,35,42,60
0.7 10 18,000 83,624.83 90,286.49 7.38 19 9095.08 85,561.12 5.23 1,6,7,16,21,25,34,35,42,60
0.8 12 18,000 84,984.73 87,965.52 3.39 21 7625.76 86,310.53 1.88 1,6,7,16,21,25,34,35,42,60
0.9 16 18,000 85,614.48 89,251.88 4.08 21 6167.41 86,810.46 2.74 1,6,7,16,21,25,34,35,42,60
1 32 18,000 86,865.20 87,440.86 0.66 19 1434.58 87,059.02 0.44 1,6,7,16,21,25,34,35,42,60

0.8 0.1 11 18,000 82,995.06 86,065.19 3.57 40 11,213.44 84,641.80 1.65 1,6,16,21,34,35,60
0.2 13 18,000 90,573.68 92,382.93 1.96 41 9986.36 91,961.40 0.46 1,6,7,16,21,34,35,60
0.3 13 18,000 95,017.69 97,199.21 2.24 25 11,410.75 96,383.98 0.84 1,6,7,16,21,34,35,60
0.4 9 18,000 98,299.22 101,447.36 3.10 27 8215.18 99,443.11 1.98 1,6,7,16,21,34,35,60
0.5 17 18,000 100,854.67 105,603.29 4.50 25 12,162.45 101,707.67 3.69 1,6,7,16,21,34,35,60
0.6 36 18,000 102,226.92 104,799.32 2.45 25 8531.20 103,401.66 1.33 1,6,7,16,21,34,35,60
0.7 13 18,000 103,359.93 107,659.68 3.99 27 10,345.57 104,649.42 2.80 1,6,7,16,21,34,35,60
0.8 15 18,000 104,476.74 107,110.01 2.46 23 9911.50 105,538.07 1.47 1,6,7,16,21,34,35,60
0.9 6 18,000 101,238.04 112,051.86 9.65 22 8047.88 106,128.18 5.29 1,6,7,16,21,34,35,60
1 48 17,129 106,422.94 106,422.94 0.00 23 1384.99 106,422.94 0.00 1,6,7,16,21,34,35,60

Average 15.97 17,651.98 4.39 23.3 6915.31 2.86
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Figure 2. Additional cost for wrong decisions, CAB 25-node instance.

Figure 3. Comparison between expected aggregate functions, CAB 25-node instance.

are the same. For constraint-wise uncertainty, two condi-
tions should hold: (1) Any uncertain parameter should
appear in only one constraint; and (2) the uncertainty
set should be such that there is no correlation between
the uncertain parameters of different constraints. Also,
Bertsimas, Goyal, and Lu (2015) showed that for spe-
cific non-constraint-wise uncertainty, the same results
held for static and adjustable robust optimisation. These
authors examined different positions of uncertainty in
the objective function and constraints, and showed that
in these cases, static and adjustable robust optimisation
had the same values. The uncertain parameter in our
research was in the objective function, and could also
be transferred into the constraint. Therefore, according
to the constraint-wise uncertainty of the parameter, it
was expected that the static and adjustable robust models
would have the same objective values.

In the following, robust optimisation and stochas-
tic programming are compared with each other. The

probability distribution of the uncertain parameters was
known in stochastic programming, and was considered
in the model with several discrete scenarios (S ∈
{s1, s2, . . . , sn}) or chance constraints, while in classical
robust optimisation, there is no information about the
probability distribution of the parameters or uncertain
parameters considered in the model with uncertainty
sets.

For this paper, it was assumed that the probability
distribution of uncertain demand followed a uniformdis-
tribution, and scenarios were generated in which ws

ij ∼
U[w̄ij − ŵij, w̄ij + ŵij] represented demand parameters
(origin-destination nodes) for each scenario s, and as
before, w̄ij and ŵij were average (deterministic) and devi-
ation values of demand, respectively. Figure 4(a,b) show
the network structure of the robust and stochastic mod-
els, respectively, for the AP 10-node instance. In these
figures, the uncertainty budget value was considered to
be equal to 1.0, and several scenarios were generated for



18 R. RAHMATI ET AL.

Figure 4. Network structure of (a) robust and (b) stochastic models, α = 0.5, AP 10-node instance.

Table 10. Optimal hub configuration for CAB 25-node instance.

� α Stochastic Robust

0.5 0.2 7, 14, 18 2, 8, 15, 16, 18
0.5 8, 18 7, 14, 18
0.8 8, 18 8, 18

1 0.2 7, 14, 18 2, 5, 8, 15, 16, 18
0.5 8, 18 2, 8, 14, 16, 18
0.8 8, 18 7, 14, 18

the stochastic model. It should be noted that (Contreras,
Cordeau, and Laporte 2011) showed that classical hub
location problems with stochastic demand are equivalent
to considering expected values of parameters in the deter-
ministic model. In other words, different scenarios had
no effect on second-stage (allocation) decisions. Accord-
ing to Figure 4, the number of established hubs is equal to
2 and 1 for the robust and stochastic models, respectively.

Table 10 shows the optimal location of hubs in the
stochastic and robust conditions with different values of
� and discount factors (α). It is clear that the robust
model was solved according to the worst-case values of
uncertain demand (�% = 1), and that in the stochastic
model, different scenarios were generated with a uniform
distribution. As shown in Table 10, the optimal hubs in
the stochastic and robust models were similar when � =
0.5 and α = 0.8, while established hubs were different for
other values of� andα. Furthermore, the results confirm
that increasing discount factors leads to decreases in the
number of established hubs, but � has a direct effect on
the number of established hubs.

To evaluate the solutions of the robust and stochas-
tic models, a simulation-based analysis was designed for
different realisations of demand parameters using the AP
20-node instance. In this case, the robust and stochastic
models were solved separately and their corresponding
location decisions were extracted. Then the extracted
location decisions of bothmodels (robust and stochastic)
are separately placed in the deterministic model. Then,

according to each value for the uncertainty budget (�% ∈
{0.1, 0.2, . . . , 1}), different realisations of demand were
considered. For example, when �% was equal to 0.1,
10% of the demand parameters were randomly chosen,
and their associated deviation values were added to their
nominal values. It should be noted that this process
was repeated several times, and every time, the objec-
tive function value of the deterministic model for each
case (with the fixed location decisions extracted from the
stochastic and robust models) was obtained. Finally, the
average of all objective values in several experiments were
compared. The solution performance of the robust and
stochastic models for the AP 20-node instance, consider-
ing different values of uncertainty budgets, are analysed
and illustrated in Figure 5. The results confirmbetter per-
formance of the robust model solution in comparison
with the stochastic model when the uncertainty budget
is greater than 0.2.

6. Managerial implications

Direct shipments of commodities that flow between
origin-destination nodes increase total transportation
costs. In other words, vehicles that transport commodi-
ties may not be completely full, or may be totally empty
on the way back. Appropriate hub location can reduce
transportation costs by using intermediate centres (hub
facilities). In this case, flows are gathered in hub facil-
ities and distributed to destinations, and economies
of scale occur. It is obvious that hub location prob-
lems can be considered in a variety of applications,
including airport and aviation industries (Karimi and
Setak 2018; Masaeli, Alumur, and Bookbinder 2018;
Madani, ShahandehNookabadi, andHejazi 2018), supply
chainmanagement, and logistics (Wang andCheng 2010;
Ishfaq and Sox 2010) and transportation systems (Lin
and Lee 2010; Gelareh and Pisinger 2011). Hub loca-
tion problems have been used abundantly in the design
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Figure 5. Solution performance of robust and stochastic models, AP 20-node instance.

of transportation and distribution systems, including
postal delivery, air freight and passenger travel, truck-
ing, express package delivery, and rapid transit systems.
Uncertainty is part of reality in the real world, and exists
in some parameters. For example, consumer behaviour
affects the volume and supply of demand. While in some
cases there is a lower degree of uncertainty (such as
demand cancellation by customers), a higher degree of
uncertainty may also occur. For example, the COVID-19
pandemic can be considered one ofmajor sources of such
uncertainty.

In air passenger travel, the COVID-19 pandemic led
many countries to restrict and control the entry of
passengers from other infected countries. For this rea-
son, airline companies lost many passengers and their
flights were cancelled or carried fewer passengers to
their destinations through airport hubs. In this case,
airline companies raised the price of their services to
compensate for the costs that led to decreases in cus-
tomer satisfaction. The Laura Ashley textile design com-
pany is an example of hub location in express pack-
age delivery. They located their warehouses near FedEx
hubs to improve responsiveness to customers. Dur-
ing the COVID-19 pandemic, people have preferred to
order their needs online instead of in face-to-face shop-
ping, and the demand for such companies has greatly
increased. It is clear that uncertainty has been imposed
on these enterprises because of the pandemic. There-
fore, it is necessary for decisions to be optimal for all
scenarios in such cases. In other words, according to
robust optimisation and decision-making based on the

worst-case values of parameters guarantees the opti-
mality and feasibility of all scenarios. Hence, decision-
makers and managers need to make good decisions that
take uncertainty into account. In hub location prob-
lems, decisions about locations of hub facilities are strate-
gic decisions and have significant effects on total costs.
Robust optimisation approach and it associated analyses,
which were presented in this paper, are useful for help-
ing decision-makers tackle uncertainty when choosing
appropriate levels of conservatism. In robust optimisa-
tion with a polyhedral uncertainty set, decision-makers
can control the level of conservatism or risks with an
uncertainty budget. A higher value for an uncertainty
budget raises costs and increases the level of conservatism
in advance, but protects the system from future uncer-
tainty. Some organisations display risk-averse behaviour,
so make decisions considering worst case scenarios.
However, this may lead to inefficient decisions. It is clear
that considering uncertainty will impose costs on the
organisation compared with the deterministicmodel, but
it should be considered to achieve reliable decisions. In
other words, deciding first with deterministic param-
eters may be very low-cost, but in the future, when
uncertainty occurs, costs will rise sharply. In this case,
companies may increase their product prices to com-
pensate for transportation costs, which may lead to loss
of customers, or at the very least, reductions in cus-
tomer satisfaction. Therefore, managers should consider
uncertainty in their decisions. Hence, this study car-
ried out analyses of the trade-off between determinis-
tic and uncertain conditions in obtaining appropriate
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values for uncertainty budgets for managerial decision-
making. This approach can be used in different produc-
tion and distribution companies when they deal with
uncertainty.

7. Conclusion

In this paper, a two-stage robust optimisation approach
was considered to deal with uncertain demand in an
uncapacitated multiple allocation hub location problem.
An accelerated Benders decomposition algorithm with
stronger optimality cut (Pareto-optimal cut) was applied
to solve the proposed model more efficiently. Also, a
size-reduction scheme that reduced the number of can-
didate nodes for hub establishment was proposed to be
used in the Benders decomposition algorithm. To deter-
mine the uncertainty budget in the right way, a new
expected aggregate function was introduced. Compu-
tational experiments showed that the Benders decom-
position algorithm with Pareto-optimal cuts required
fewer iterations and less computation time compared
with the classical Benders decomposition algorithm for
all values of uncertainty budgets. The main findings
of this research were as follows: (1) It was shown that
using the proposed size-reduction scheme can speed
up the algorithm. (2) It was concluded that, depend-
ing on the uncertainty budget, it might be more rea-
sonable to use the deterministic or robust model. (3)
The behaviour of imposed costs was evaluated using the
proposed expected aggregate function. (4) The accel-
erated Benders decomposition algorithm with Pareto-
optimal cut converged rapidly in comparison with the
classical algorithm. (5) The values of uncertainty bud-
get and deviation values have a direct effect on the
objective function values (costs) and number of hub
facilities. (6) The values of inter hub flow discount fac-
tors have a direct and opposite effect on the objective
function values (costs) and number of hub facilities,
respectively.

Future research could include modeling of the prob-
lem with the possibility of inclusion of more profitable
demand in the hub location problems. Also, a multi-
period model would allow transfer of flows between
origin-destination nodes in any period. In this case, con-
sistency of times or responsibility could be considered to
benefit customers. For faster convergence in the Benders
decomposition algorithm, a heuristic procedure could be
applied to the algorithm.
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