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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

This paper investigates the potential of Deep Learning (DL) for data-driven topology optimization (TO). Unlike the rest of the literature that
mainly applies DL to TO from a mechanical perspective, we developed an original approach to integrate mechanical and geometrical constraints
simultaneously. Our approach takes as input the mechanical constraints (Boundary conditions, loads configuration, volume fraction) alongside the
geometrical ones (total number of elements, minimum overhang, maximum length, minimum thickness) and generates a 2D design complying
with these constraints. Thus, it combines the best of both mechanical (CAE) and geometrical design worlds. Conversely, geometrical design
constraints are complex, not yet formalized, and contradictory between Additive Manufacturing (AM) processes, applications, and materials.
Some are even descriptive, lacking a well-defined mathematical description, or are well-defined but proprietary and inaccessible. Hence, despite
the synergy between AM and TO, integrating AM constraints into the TO formulation is still a hurdle. Furthermore, even when their integration
is possible, TO’s convergence to a solution is compromised. On the other hand, DL has proven robust in capturing geometrical and spatial
correlations. Consequently, our approach solves the previously listed setbacks by aligning DL to serve Design for AM (DfAM); there is no need
to identify an analytical formula for a geometrical constraint but simply a sufficient number of examples describing it, and convergence is no
longer a blockade when the DL model is trained on converged designs. Our approach tailors the design’s geometrical aspects with great flexibility
and creativity. It reconciles design and manufacturing and accelerates the design life cycle of a part. Moreover, it can be easily updated to include
additional constraints and can be implemented in the future into CAD software as a lighter and faster generative design module.
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1. Introduction

Additive manufacturing (AM) revolutionized the way prod-
ucts are designed and manufactured. This technology has
gained significant academic and industrial interest due to its
ability to create complex and customizable geometries. This
characteristic of AM made it synergetic with a specific design
method called topology optimization (TO). Amongst TO meth-
ods, the most prominent use density of matter as optimization
variables and allows an optimal distribution of the material in
a design space subject to boundary conditions, loads configura-
tion, and a volume constraint. Despite the freedom TO and AM
offer, AM requires some geometrical constraints to avoid, for
example, the collapse of the part during manufacturing. Also,
TO is mainly used at the conceptual design level, where it is
challenging to aggregate nonlinearities (material and geometric
such as buckling) and stress-related constraints. Furthermore,

the external shape is not adequately defined with TO, and ge-
ometric AM-related constraints such as overhangs cannot be
easily integrated.
The following steps can summarize design for AM (DfAM), a
movement to democratize design and manufacturing. First, an
engineer defines the specifications of the part being designed.
Second, he/she runs a TO, which proposes a specific geome-
try. Third, he/she re-interprets and re-draws the shape proposed
by TO while implicitly considering AM constraints. Fourth,
he/she tests its performance then validates the shape. Finally,
he/she prints it [19]. While this cycle seems straightforward,
re-interpreting TO’s shape to comply with AM constraints and
maintaining the initial performance intact is not. Altering TO’s
output compromises its initial functionality, and the designer is
stuck in a loop of updating and testing the computer-aided de-
sign (CAD). Additionally, with the contradictory nature of AM
constraints and the lack of standardization[12], integrating them
at the conceptual level of TO can be challenging, and even when2212-8271© 2021 The Authors. Published by Elsevier B.V.
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possible, convergence to a feasible solution is not guaranteed.
Accelerating DfAM’s cycle is current hot research and indus-
trial topic. We can find in the literature three general approaches
to tackle the problem.
In an attempt to identify process-independent AM-based de-
sign rules, the first line of research focused on formalizing
AM guidelines. Adam et al.[2] carried out several experiments
over three types of processes ([2]) and formalized design rules
over gap heights and widths of transitions of non-bonded ele-
ments, lengths of overhangs, positions of islands, etc. Booth et
al. [9] created a one-page visual DfAM worksheet for novice
AM users.
The second approach integrated specific AM constraints at
TO’s level. Allaire et al.[4] adapted TO to account for a min-
imum overhang of 45°, as it is one of the most general AM
design-rule. Zhang et al.[28] considered the build orientation to
reduce the need for support structures. Xu et al.[25] estimated
a formulation for the hanging features and penalized the evolu-
tion of densities in the domain space accordingly. Fernández et
al.[11] focused on eliminating thin features and small cavities
in final optimized structures, etc.
These approaches are limited for several reasons: (1) AM con-
straints lack standardization [12] and are contradictory between
processes, materials, and applications. For example, in a metal
Powder Bed Fusion (PBF) process, support structures have a
double role. They support overhanging features and help dissi-
pate the laser heat to prevent thermal deformation or cracks due
to residual stress. On the contrary, in polymer PBF, the unsin-
tered powder material itself provides support for the overhang-
ing features, and hence support structures are not needed [29].
(2) AM constraints are mostly geometric constraints that are,
at best, approximated analytically, and integrating them into
Finite-element (FE) based TO compromises its convergence
and limits its freedom[28, 19]. (3) These methods are still based
on FE analysis and therefore are iterative and computationally
inefficient.
On the other hand, the third part used Machine Learning and
Deep Learning (DL) to alleviate the computational problem of
FE-TO and left the AM constraints to the shape reinterpretation
phase. Some researchers partially replaced FE by substituting
sensitivity analysis with neural networks (NN)[10], by using
super-resolution NN to enhance the resolution of intermediate
FE-TO’s outputs [24], by substituting TO by a deep NN that
is trained and penalized using a quality function based on FE
computations[14], etc. Others opted to completely eliminate FE
of TO using a PCA followed by a shallow NN [22] or directly
using deep NN [1, 16] and Generative Adversarial Networks
(GAN) frameworks [7, 26, 20, 18]. As previously mentioned,
the latter methods did not integrate any geometrical constraints
but left them to the reinterpretation phase, knowing that signif-
icant modifications might be made into the shape during this
phase, and hence they accelerated only TO and not the whole
DfAM cycle.

In this work, we propose, using DL, to integrate not only
mechanical constraints but also geometric AM-related ones at
the conceptual level. With DL’s capacity to learn spatial corre-
lations, there is no need to identify an analytical formula for a

geometrical constraint but simply a sufficient number of exam-
ples describing it.
This paper proposes a data-driven TO for AM approach (DL-
AM-TO), an improved version of our previous work[5] us-
ing GMCAD[6] (a novel dataset of geometrical and mechan-
ical 2D designs). DL-AM-TO takes as input the mechanical
constraints (Boundary conditions, loads configuration, volume
fraction) alongside the geometrical ones (total number of ele-
ments, minimum overhang, maximum length, minimum width)
and generates a 2D design complying with these constraints. It
is trained within a GAN framework.
DL-AM-TO aligns DL with DfAM. Thus, it comes to bridge
the gap between the mechanical (CAE) and geometrical (CAD)
worlds. Moreover, it alleviates the engineer from getting stuck
in the late design phases since it is intended to generate a shape
complying with mechanical and manufacturing specifications
concurrently.
DL-AM-TO tailors the design’s geometrical aspects with flex-
ibility and creativity. It is a novel approach that democratizes
the design and manufacturing and accelerates the design life
cycle of a part. Furthermore, it can be implemented into CAD
software as a lighter and faster generative design module in the
future.

The major contribution of this paper is the exploration of
DL to integrate at the conceptual level geometric AM-related
constraints along with mechanical ones in an attempt to bridge
mechanics and geometrical design into a single-phase and con-
sequently accelerate the DfAM workflow.

The paper is organised as follows: Sections 2.1 and 2.2 pro-
vide a theoretical background on TO and GANs. Section 3 de-
tails the proposed method, DL-AM-TO’s architecture and train-
ing framework. Section 4 shows and discusses the first results.
Finally, section 5 summarizes this work and discusses future
works.

2. Theoretical Background

2.1. Topology Optimization

Topology Optimization (TO) aims to distribute material in a
design space subject to boundary conditions (BC) and loads (F)
while conforming with a volume fraction constraint and a well-
defined objective function. Several approaches are proposed in
the literature to solve the TO problem, particularly, the level set
[3], and density [8] approaches. Solid Isotropic with Material
Penalization (SIMP) is the top common continuous density ap-
proach implemented in industrial design software. It uses the
penalization of intermediate non-binary values of density ma-
terial to converge to an optimal binary design. SIMP defines a
design as a distribution of discretized square material elements
e. The element-relative-density xi = 1/0 represents the pres-
ence/absence of material at point i of the design domain.
A common objective function in structural TO is global struc-
tural compliance. A TO problem where the objective is to min-
imize the compliance c(x) can be written as the following:
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Fig. 1. Diagram of a Conditional GAN

min(c(x)) = UT KU =
N∑

e=1

xp
e uT

e keue.

s.t. KU = F,
V(x)
V0
≤ f , 0 < x0 ≤ x ≤ 1

(1)

where U and ue are the global and element-wise displacements,
F the forces vector, K and ke are the global and element-wise
stiffness matrices and N = number of elements used to dis-
cretize the design domain. x is the design variables vector i.e.
the density material and x0 the minimum relative density (non-
zero to avoid singularity), p penalization power. V0 and V(x)
are the design domain volume and material volume respectively
and f the volume fraction.

2.2. Generative Adversarial Networks

Generative Adversarial Network (GAN)[13] is a generative
method that aims to learn the data distribution. It consists of
two differential networks: a generator G(z, θG) (the network in
charge of generating new samples following the real data distri-
bution from a latent vector z, with θG as the G’s network param-
eters), and a discriminator D(x, θD) (a sort of a binary classifier
that should distinguish real from generated data, with θD the D’s
network parameters). Each network works against the other in
a minimax framework to improve the same loss function: the
cross-entropy loss L(G,D), hence the adversarial term. GAN’s
training succeeds when the discriminator stops recognizing the
difference between the real pdata and the generated data distri-
bution pG(z) i.e. pG(z) ≈ pdata.
In this work, the generator is conditioned on mechanical and
geometrical constraints. Hence, a more adapted GAN frame-
work is needed: the conditional GAN (cGAN) [15] (Fig.1). It
extends the GAN network, enabling the generation to be ori-
ented by a specific input condition c. In this framework, the ba-
sics of cGAN become: the conditional generator as G((z/c), θg),
the conditional discriminator as D((x/c), θd) and the adversarial
loss function as:

L(G,D) = min
G

max
D

Ex∼pdata(x) [log(D(x/c))]

+Ez∼pz(z)[log(1 − D(G(z/c)))]
(2)

3. Deep Learning Additive Manufacturing driven Topol-
ogy Optimization (DL-AM-TO)

DL-AM-TO is a novel approach where the mechanical and
geometrical constraints are no longer in competition. DL-AM-
TO is a generative model that takes mechanical (Boundary con-
ditions (BC), loads (F), and the volume fraction (V)) and geo-
metrical conditions (the minimum thickness (thmin), the maxi-
mum length (lenmax), the minimum overhang (Θmin), the num-
ber of bars (Nbrbars)) as inputs and generates a 2D struc-
ture following these constraints. It is trained within a five-
discriminator-GAN [13] framework consisting of a generator
(DL-AM-TO) and five discriminators: the traditional adver-
sarial discriminator and four geometric discriminators, a bar
counter, a thmin, lenmax and Θmin predictors (Fig.3). It is impor-
tant to highlight that DL-AM-TO is an extended version of our
previous work [5], where DL-AM-TO considered mechanical
conditions and only the Nbrbars as a geometrical one and was
validated mechanically (compliance in Joules) and geometri-
cally (comparison between the input Nbrbars and generated de-
sign’s Nbrbars).
The four geometric constraints were chosen among the existing
set of constraints as a use case to validate the proposed method-
ology.

3.1. Architecture

DL-AM-TO inherits the residual-convolutional encoder-
decoder architecture[27] presented in our previous work[5]
with one difference; the skip-connections between the out-
puts of encoder layers and the inputs of decoder layers were
eliminated here. The traditional discriminator consists of seven
down-sample convolutional layers followed by a dropout and a
final fully connected layer. The geometric discriminators’ net-
work consists of a stem, an Inception/Reduction Resnet-v1-
block-A, an Inception/Reduction Resnet-v1-block-B, an Incep-
tion Resnet-v1-block-C followed by an average pooling layer,
a dropout layer, and a fully connected layer1. We would like
to point out that the input of the three geometric discriminators
(thmin, lenmax, and Θmin) consists of the 2D design only, and the
bar counter’s input consists of the design alongside the mechan-
ical conditions.

3.2. Training Loss Function

The most challenging aspect of GANs is to find an equilib-
rium between the generator and the discriminator and avoid the
dominance of one over the other. The loss function with other
training parameters play an important role into stabilizing the
training and condemning the phenomenon of oscillating losses.
In this work, the loss function is further challenging; it has to
also account for the geometrical (thmin, lenmax, Θmin, Nbrbars)
and mechanical (BC, F, V) constraints. Thus,
LG =

1
6 (Lr + λadversarialLadv + LNbrbars + Lthmin + Llenmax + LΘmin ),

1 The stem and inception/reduction blocks used defer from the original paper
[21] only by the number of input/output feature maps. However, the stem block
of the lenmax and Θmin predictors consists of additional five residual layers.
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Fig. 2. Performance of geometric discriminators showing predicted vs true values of thmin, lenmax, Θmin, & Nbrbars, from left to right respectively. The worst
performant discriminator is clearly the thmin predictor.

Fig. 3. Training Procedure

with (1) the reconstruction loss Lr =
1
N
∑N

i=1(xi − x̂i)2 s.t. xi

and x̂i are the real and generated 2D design and N is the batch
size, (2) {Lc =

∑N
i=1 |ci − ĉi|, c ∈ {Nbrbars, thmin, lenmax,Θmin}}

s.t. c and ĉ are the input and predicted geometrical values re-
spectively, and (3) the adversarial loss Ladv is the Binary Cross
Entropy (0 ≤ Ladv ≤ 100 in PyTorch). Hence, λadversarial was set
to 0.01, so Ladv becomes of the same order of magnitude of all
other losses varying between 0 and 1.

4. Results
This work’s evaluation focuses on DL-AM-TO’s perfor-

mance regarding the geometrical constraints. Thus, we not only
evaluate the aesthetics of the generated designs (Fig. 4) but also
test DL-AM-TO ’s ability to respond to geometrical changes
(Figures 5, 6, 7).

4.1. Training and Test Dataset

11719 samples of GMCAD are used for training and 4405
samples for test. It consists of 2D designs (in a .png format)
alongside their mechanical and geometrical constraints. GM-
CAD’s features are detailed in [6].

4.2. Geometric Discriminators’ performance

To train the geometric discriminators, we augmented the
training dataset with three rotations of 90°, 180°and 270°.
The predictive performance of the geometrical discriminators
is presented in Fig. 2. In order to evaluate a predictor, an ad-
missible error interval is set (predictions within the green lines

Fig. 4. DL-AM-TO’s performance when trained with and without thmin.

in Fig.2 are considered correct). As we can clearly see, the
thmin predictor shows the highest number of inadmissible pre-
dictions (predictions outside the green intervals). To quantify
this observation, the percentage of erroneous predictions for
every geometrical discriminator is computed. We choose for
the thmin and lenmax the relative prediction error defined as
e% =

|True−Predicted|
True × 100, and for the Θmin and Nbrbars the

difference ∆ = |True − Predicted|. The percentage of predic-
tions that fall within ethmin% > 5% is 46%, elenmax% > 5% is 1%,
∆Θmin > 5°is 3.15% and ∆Nbrbars > 1bar is 0.15%. Conse-
quently, we can conclude that all geometric discriminators are
sufficiently precise except for the thmin one, which needs fur-
ther improvement. In fact, if we tolerate a higher error interval
of 10% for thmin, we would end up with 29.1% of inadmissible
predictions.

4.3. DL-AM-TO’s performance

Figure 4 illustrates the Structural Similarity Index Measure
(SSIM)[23] of the generated designs. The blue distribution cor-
responds to the generator (DL-AM-TO) trained with all geo-
metric discriminators. The average SSIM is 0.33, which demon-
strates, aesthetically speaking, a weak generation. As we have
mentioned previously, the thmin discriminator is not predicting
thmin with high precision, and hence the generator is penalized
with a less informative loss, which explains DL-AM-TO’s be-
havior. Furthermore, thmin is a continuous complex quantity to
be treated by DL, particularly convolutional networks. We can
find several designs with different minimum thicknesses that
look indistinguishable in the dataset. Indeed, thmin is a texture
feature, unlike Θmin, an edge feature, where a slight variation
can drastically modify the geometry, and hence the pixels’ dis-
tribution. Additionally, the thickness information can be com-
pensated with post-processing over the skeletons of the designs;
we can erode/dilate skeletons to generate designs with arbitrary
thicknesses.
In order to alleviate this setback, we re-train our model with-
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Fig. 5. Comparison between the real and generated designs in their full and
skeleton formats on the test set.

Fig. 6. The distribution of the geometrical metrics (elenmax%, ∆Θmin, ∆Nbrbars)
manually measured over 100 designs of the test set.

out the thmin variable. The generator’s loss becomes LG =
1
5 (Lr + λadversarialLadv + LNbrbars + Llenmax + LΘmin ).
As expected, SSIM was improved by 44% as illustrated by the
orange distribution in Fig.4.
Figure 5 shows a sample of real versus generated designs along-
side their skeletons and the geometrical metrics: ∆Nbrbars,
∆Θmin and elenmax% (section 4.2). As a matter of fact, design-
ers are more interested in the design’s geometry, which is best
defined by the skeletons, which explains their use here for com-
parison.
As we can clearly see, DL-AM-TO captures the geometrical
information; ∆Nbrbars = 0, ∆Θmin rarely exceeds 5°, similarly,
elenmax% does not exceed 10%. Aesthetically, the generated de-
signs’ skeletons are similar to the real ones; SSIM is ≈ 0.7.
The overall geometrical performance was evaluated manually
over a sample of 100 designs of the test set; in other terms, we
counted the Nbrbars and measured the lenmax, and Θmin man-
ually. We define a design complying with (i) the Nbrbars con-
straint if ∆Nbrbars ≤ 1, (ii) the lenmax constraint if elenmax% ≤
10%, and (iii) the Θmin constraint if ∆Θmin ≤ 5°. We find that
83% of the designs respect the Nbrbars constraint, 76% com-
ply with the lenmax constraint, and 90% with the Θmin constraint
(Fig.6).
In order to further investigate the geometrical understanding of
DL-AM-TO, we realized an experiment as shown in Fig.7. We
fixed the mechanical constraints and altered one geometrical
variable at a time (lenmax and Θmin). To calibrate the design’s
geometry, we simply need to modify the input value of the de-
sired geometrical condition. As we can see, every time we in-
crease lenmax/Θmin, the design’s shape is modified in order to
comply with this variation while always conforming with me-
chanical constraints (the F and BC). However, we can notice
that some geometrical constraints are correlated; increasing the
Θmin alters the lenmax, and at a certain value, an additional bar

Fig. 7. DL-AM-TO’s response versus increasing lenmax & Θmin. In (a), to com-
ply with lenmax, the skeleton’s layout changes drastically with the increase of
lenmax. The same behavior is noticed with the variation ofΘmin, at a point where
additional bars start appearing (circled in red, 4th design in (b)). The pink arrow
is the build orientation, the red arrow is the normal of the beam.

appears (the 4th design in Fig.7b).
To sum up, DL-AM-TO captures the geometrical and me-
chanical constraints concurrently and responds to geometrical
changes creatively; the obtained results encourage the further
improvement of the model.
4.4. Discussion

DL-AM-TO’s performance is tied with several criteria.
The first impact comes from the input data samples. In this
work, the traditional SIMP was chosen to forward the GM-
CAD dataset creation as detailed in section 3.1 of the article
[6]. SIMP may not be the most performant but is the simplest
and easily implemented TO algorithm (found in ≈ 70% of the
industrial and commercial software). Thus, the designs driving
the training might not be the most optimal ones but are suffi-
cient to validate the methodology proposed. Indeed, any new
data coming from other more optimal TO algorithms can be
used to train our model and improve its performance. Addition-
ally, the mechanical conditions of GMCAD’s designs are pre-
dictions of DL-models, which adds a layer of uncertainty over
the input training data samples, and its impact is to be investi-
gated in future works[6].
Moreover, It is important to highlight that the main objective
here is not to create a new TO algorithm but to compensate for
the difficulties faced in TO to integrate the mechanical and the
geometrical conditions simultaneously at the same level via DL
architectures, particularly generative networks.
In the second position comes the geometrical discriminators’
performance. The better the discriminator predicts the geomet-
rical condition, the more informative the generator’s loss func-
tion is; hence, DL-AM-TO is more reliable. We note that it is
trained within GAN frameworks known for their unstable oscil-
lating losses, which explains its sensitivity to the losses deliv-
ered by its discriminators. This phenomenon is observed with
the thmin variable; integrating the latter to the model deterio-
rated its performance. The thmin discriminator was not as pre-
cise as it should be. As a matter of fact, the image-like designs
in GMCAD are CADS converted to images with computer vi-
sion filtering techniques, which can easily alter the thicknesses
of the design.
Finally, the proposed method’s objective is to generate one
design complying with specific input geometrical conditions.
However, the latter can be turned as objectives, and changing
multiple conditions at a time for multiple times will generate a
set of optimal Pareto front solutions.
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5. Conclusion
In this work, we propose a novel DL-based approach, DL-

AM-TO, to facilitate the integration of geometrical AM-related
constraints into the early design phases of the DfAM cycle.
In general, in product development, mechanical and geomet-
rical design are two separate phases for each requires differ-
ent skills and, most importantly, human expertise. Integrating
manufacturing constraints with conventional FE-TO methods is
cumbersome, especially since many manufacturing constraints
lack an analytical formulation. We address this problem and
bridge the gap between the mechanical and geometrical worlds
via DL generative methods. DL treats the design as an image,
a distribution of density, and not like a sketch or a parametric
CAD, which makes it compatible with the mechanical design
phase (TO), allowing us to integrate the mechanical and geo-
metrical constraints concurrently at the same level.
It is essential to highlight that DL is not here to replace FE
and robust mechanical calculations. On the opposite, it com-
pensates for the difficulties encountered by TO when consider-
ing geometric-manufacturing constraints at the conceptual level
of design, especially since DL has demonstrated its potential in
learning spatial correlations. The DL generative method, DL-
AM-TO, accelerates the designer’s work, for it offers a broader
possibility and versatility of designs within a fraction of sec-
onds.
In the future, further constraints will be incorporated into DL-
AM-TO, including non-linear ones (buckling, thermal distor-
tion, etc.), for the GAN framework along which DL-AM-TO
is trained offers flexibility to consider as many constraints as
needed. DL-AM-TO can be implemented into CAD software
as a lighter and faster generative module.

References

[1] Abueidda, D. W., Koric, S., Sobh, N. A. 2020. Topology optimization of 2D
structures with nonlinearities using deep learning. Computers & Structures,
237, 106283

[2] Adam, G. A., & Zimmer, D. 2014. Design for Additive Manufactur-
ing—Element transitions and aggregated structures. CIRP Journal of Man-
ufacturing Science and Technology, 7(1), 20-28.

[3] Allaire, G., Jouve, F., Toader, A. M. 2002. A level-set method for shape
optimization. Comptes Rendus Mathematique, 334(12), 1125-1130

[4] Allaire, G., Dapogny, C., Estevez, R., Faure, A. and Michailidis, G.,
2017. Structural optimization under overhang constraints imposed by ad-
ditive manufacturing technologies. Journal of Computational Physics, 351,
pp.295-328.

[5] Almasri, W., Bettebghor, D., Ababsa, F., Danglade, F. and Adjed, F., 2021,
July. Deep Learning Architecture for Topological Optimized Mechanical
Design Generation with Complex Shape Criterion. In International Con-
ference on Industrial, Engineering and Other Applications of Applied In-
telligent Systems (pp. 222-234). Springer, Cham.

[6] Almasri W., Bettebghor D., Adjed F., Ababsa F., Danglade F. 2021. GM-
CAD: an original Synthetic Dataset of 2D Designs along their Geometrical
and Mechanical Conditions. In International Conference on Industry 4.0
and Smart Manufacturing, ISM 2021.

[7] Behzadi, M.M. and Ilies, H.T., 2021. GANTL: Towards Practical and Real-
Time Topology Optimization with Conditional GANs and Transfer Learn-
ing. arXiv preprint arXiv:2105.03045.

[8] Bendsøe, M. P. 1989. Optimal shape design as a material distribution prob-
lem. Structural optimization, 1(4), 193-202

[9] Booth, J. W., Alperovich, J., Reid, T. N., & Ramani, K. 2016. The design
for additive manufacturing worksheet. In ASME 2016 International Design

Engineering Technical Conferences and Computers and Information in En-
gineering Conference. American Society of Mechanical Engineers Digital
Collection.

[10] Chandrasekhar, A., Suresh, K. 2020. Length Scale Control in Topology
Optimization using Fourier Enhanced Neural Networks.

[11] Fernández, E., Yang, K. K., Koppen, S., Alarcón, P., Bauduin, S., & Duys-
inx, P. 2020. Imposing minimum and maximum member size, minimum
cavity size, and minimum separation distance between solid members in
topology optimization. Computer Methods in Applied Mechanics and En-
gineering, 368, 113157.

[12] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B.,
Wang, C. C., Shin, Y. C., Zhang, S., & Zavattieri, P. D. 2015. The status,
challenges, and future of additive manufacturing in engineering. Computer-
Aided Design, 69, 65-89.

[13] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Bengio, Y., 2014. Generative adversarial nets. In: Advances in
neural information processing systems (pp. 2672-2680)

[14] Halle, A., Campanile, L.F. and Hasse, A., 2020. An AI-Assisted Design
Method for Topology Optimization Without Pre-Optimized Training Data.
arXiv preprint arXiv:2012.06384.

[15] Mirza, M., Osindero, S. 2014. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784.

[16] Rade, J., Balu, A., Herron, E., Pathak, J., Ranade, R., Sarkar, S., Krishna-
murthy, A. 2020. Physics-consistent deep learning for structural topology
optimization. arXiv preprint arXiv:2012.05359

[17] Ranjan, R., Samant, R., & Anand, S. 2017. Integration of design for man-
ufacturing methods with topology optimization in additive manufacturing.
Journal of Manufacturing Science and Engineering, 139(6).

[18] Rawat, S., Shen, M. H. H., A novel topology optimization approach using
conditional deep learning. arXiv preprint arXiv:1901.04859

[19] Sbrugnera Sotomayor, N.A., Caiazzo, F. and Alfieri, V., 2021. Enhancing
Design for Additive Manufacturing Workflow: Optimization, Design and
Simulation Tools. Applied Sciences, 11(14), p.6628.

[20] Sharpe, C., Seepersad, C. C. 2019. Topology design with conditional gener-
ative adversarial networks. In: International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference
(Vol. 59186, p. V02AT03A062). American Society of Mechanical Engi-
neers

[21] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. 2016. Inception-v4,
inception-resnet and the impact of residual connections on learning. arXiv
preprint arXiv:1602.07261

[22] Ulu, E., Zhang, R., Kara, L. B. 2016. A data-driven investigation and es-
timation of optimal topologies under variable loading configurations. In:
Computer Methods in Biomechanics and Biomedical Engineering: Imag-
ing and Visualization, 4(2), 61-72

[23] Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P., 2004. Image
quality assessment: from error visibility to structural similarity. IEEE trans-
actions on image processing, 13(4), pp.600-612.

[24] Wang, C., Yao, S., Wang, Z., Hu, J. 2020. Deep super-resolution neural
network for structural topology optimization. Engineering Optimization,
1-14

[25] Xu, B., Han, Y., Zhao, L., & Xie, Y. M. 2020. Topological optimization of
continuum structures for additive manufacturing considering thin feature
and support structure constraints. Engineering Optimization, 1-22.

[26] Yu, Y., Hur, T., Jung, J., Jang, I. G. 2019. Deep learning for determining a
near-optimal topological design without any iteration. Structural and Mul-
tidisciplinary Optimization, 59(3), 787-799

[27] Zhang, Z., Liu, Q., Wang, Y., 2018. Road extraction by deep residual u-net.
IEEE Geoscience and Remote Sensing Letters, 15(5), 749-753

[28] Zhang, K., Cheng, G. , & Xu, L. 2019. Topology optimization considering
overhang constraint in additive manufacturing. Computers & Structures,
212, 86-100.

[29] Zhou, M., Liu, Y., & Lin, Z. 2019. Topology optimization of thermal
conductive support structures for laser additive manufacturing. Computer
Methods in Applied Mechanics and Engineering, 353, 24-43.

6


