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Extreme value theory mainly handles data related to rare events, that are originated 
as a consequence of huge changes, such as earthquakes or large changes in asset 
pricing. Various fields have such applications where they use extreme value theory, 
for instance, meteorology, health, internet auctions, sports, risk management in 
finance, and insurance. 

This dissertation contains five chapters that involve the use of the extreme value 
theory. Chapter 2 provides a novel methodology for improving the extreme value 
index estimation based on covariates in the case of heavy-tailed distributions. An 
application of the earthquakes and the related financial losses is used to show the 
improvement obtained when applying the proposed methodology. Chapters 3 and 
4 introduce further generalizations for the proposed methodology in Chapter 2, by 
considering less assumptions, all cases for the extreme value index, and extending 
to the scale parameter and the estimation of the extreme quantile. In Chapter 3, An 
application of rainfall in France is used to demonstrate the use of the generalized 
methodology introduced in these two chapters. Chapter 5 combines the use of the 
extreme value theory with machine learning techniques. In Chapter 5, the machine 
learning technique is used to obtain an estimator of the Value-at-Risk (VaR) based on 
related covariates. An insurance application is used to show the effectiveness of the 
combined methodology of extreme value theory with machine learning.  
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Chapter 1

Introduction

Extreme value theory mainly handles data related to rare events, that are originated as

a consequence of huge changes, such as earthquakes or large changes in asset pricing.

Various fields have such applications where they use extreme value theory, for instance,

meteorology (see de Haan (1990), Coles and Walshaw (1994) and Buishand et al. (2008)),

health (Einmahl et al. (2019) and Thomas et al. (2016)), internet auctions (de Haan et al.

(2009)), sports (Einmahl and Magnus (2008)), risk management in finance and insurance

(Embrechts et al. (2013), Klüppelberg and Mikosch (1997) and Donnelly and Embrechts

(2010)).

Extreme value theory is developed in parallel with the central limit theory, where ex-

treme value theory is based on the limit behaviour of the sample maximum (or minimum)

rather than the limit behaviour of the partial sums. Historically extreme value theory

started in the 20th century, when Fisher and Tippett (1928) initiated the theory by for-

mulating the limiting distribution of the sample maximum (or minimum). Through time

extreme value theory becomes more specified in terms of the required conditions and char-

acteristics of the limit distribution (see Von Mises (1936), Gnedenko (1943) and de Haan

(1971)). Extreme value theory is introduced in the univariate and multivariate setting,

see de Haan and Ferreira (2006) and Beirlant et al. (2004) for a comprehensive study of

1
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extreme value theory in both settings.

In this introduction we discuss some core ideas of extreme value theory in the uni-

variate and multivariate setting, with focus on the notions needed in the thesis. We then

preview the outline of the thesis and explain the main ideas in each chapter.

1.1 Univariate extreme value theory

Let X1, . . . , Xn be a random sample with distribution function F. Univariate extreme value

theory encounters the case where there exists a sequence of positive numbers an > 0 and

a sequence of real numbers bn, such that as n→∞

max
1≤i≤n

Xi − bn

an

d−→ Z,

where Z has a non-degenerate distribution G. Equivalently, It considers that F belongs

to the max-domain of attraction of an extreme value distribution, if as n→∞

P

( max
1≤i≤n

Xi − bn

an
≤ x

)
= F n(anx+ bn)→ G(x),

for every continuity point x of G, where G is a non-degenerate distribution and denoted

as the extreme value distribution. Fisher and Tippett (1928) and Gnedenko (1943) first

describe the extreme value distribution, that there exist γ ∈ R, a > 0 and b ∈ R such that

G(x) = Gγ(ax+ b), where

Gγ(x) =

 exp(−(1 + γx)−1/γ), 1 + γx > 0,

exp(−e−x), γ = 0.

The parameter γ is known as the extreme value index, it describes the heaviness of the

tail of the distribution. We distinguish between three types the tail of the distribution

based on the sign of γ.

2
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� If γ > 0, then the right endpoint of the distribution F is ∞ and that refers to

a heavy tail distribution. Moments of order greater than 1/γ do not exist. The

sequences an and bn can be chosen such that G has a Fréchet(1/γ) distribution.

Examples of distributions in such domain of attraction are Pareto, Student and

Cauchy distributions.

� If γ = 0, the right endpoint of the distribution F can be finite or infinite. The

distribution has a light right tail and moments of any order exist. The sequences

an and bn can be chosen such that G has a Gumbel distribution. Examples of

distributions in this domain of attraction are Exponential and Normal distributions.

� If γ < 0, the distribution has a finite endpoint. The sequences an and bn can be cho-

sen such that G has a reverse Weibull(−1/γ) distribution. The uniform distribution

is one of the distributions that belongs to such domain of attraction.

There are several estimators proposed for γ. For positive γ, the Hill (1975) estimator is the

most used in the literatures. For γ ≤ 0, there are other options, such as, the maximum

likelihood estimator (Smith, 1987), the moment estimator (Dekkers et al., 1989), and

the probability weighted moment estimator (Hosking and Wallis, 1987). Based on the

estimator of the extreme value index, other important and widely used inferences can be

obtained such as that for an extreme quantile: given a very small probability p, an extreme

quantile is defined as xp = inf{x : 1− F (x) ≤ p}. For γ ∈ R, the first order condition

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
, (1.1)

where U(.) = F−1(1− 1/.) is the tail quantile of the distribution function F, and a(t) > 0.

The extreme quantile is derived based on (1.1), where for a small probability p = p(n)

such that lim
n→∞

p(n) = 0,

x̂p = Xn−k:n + â
(n
k

) ( k
np

)γ̂ − 1

γ̂
,

3
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where Xn−k:n is the kth order statistics of {X1}ni=1, k ∈ {1, . . . , n−1}, and â
(
n
k

)
is a proper

estimator for a
(
n
k

)
.

1.2 Multivariate extreme value theory

Now we discuss the extension to the multiple dimension case. Multivariate extreme value

theory determines the limit distribution of the componentwise maxima of a random vector.

Let (X1, Y1,2, . . . , Y1,d), . . . , (Xn, Yn,2 . . . , Yn,d) be a random sample from a d−variate dis-

tribution function F. Suppose there exist positive sequences an,1, . . . , an,d and sequences of

real numbers bn,1, . . . , bn,d, then F belongs to the max-domain of attraction, if as n→∞

F n(an,1x1 + bn,1, an,2y2 + bn,2 . . . , an,dyd + bn,d)→ G(x),

for every continuity point (x1, y2, . . . , yd) of G, which is known as the multivariate extreme

value distribution.

Let F1, . . . , Fd be the marginals of F. The multivariate max domain of attraction implies

d univariate max-domain of attraction and the existence of the limit

lim
t↓0

t−1P(1−F1(X1) ≤ tx1 or 1−Fd(Y1,2) ≤ ty2 . . . or 1−Fd(Y1,d) ≤ tyd) =: l(x, y2, . . . , yd)

for all (x, y2, . . . , yd) ∈ [0,∞)d. The function l is denoted as the tail dependence function,

which describes the tail dependence structure. For a general review of the tail dependence,

see Chapter 6 in de Haan and Ferreira (2006) and Huang (1992).

The d-variate distribution function F can be represented in terms of its marginal

distribution functions and dependence structure, for instance, its copula C, then F (x) =

C(F1(x), F2(y) . . . , Fd(y)). The tail dependence function can then be

l(x, y2, . . . , yd) = lim
t↓0

t−1(1− C(1− tx, 1− ty2, . . . , 1− tyd)),

4
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Variable of Interest X1 X2 . . Xn

Covariate Y1 Y2 . . Yn Yn+1 . . Yn+m

Table 1.1: Semi-supervised model

that shows the relation between the dependence structure and the tail dependence func-

tion. Unlike the univariate extreme value theory there is no unique way to define the

extreme quantile for the multivariate distribution.

1.3 Outline of the thesis

The thesis bundles four chapters, where we propose novel methods to improve estimation

of extreme inferences using related covariate(s). The thesis is motivated by the fact of

the rarity of the extreme data, which significantly affects the quality of the parameters

estimation.

In Chapter 2, 3 and 4 we use the semi-supervised model (SSM), which is represented

as follows. The variable of interest (or target variable) is available for only n observations,

known as labeled data. For the labeled data, we also observe the covariate(s) (or related

variables). In addition, there are extra m observations for the covariate denoted as unla-

beled data. Table 1.1 provides an illustration for the SSM in the bivariate case, i.e. one

covariate. It can be extended to the multivariate case by adding more covariates

Chapter 2. Improved estimation of the extreme value index using related

variables. A new improved estimator for the positive extreme value index (γ > 0) is in-

troduced. In Chapter 2, we first consider the SSM in the bivariate case, where the variable

of interest has a heavy tailed distribution with extreme value index γ1, and the related

variable similarly has a heavy tailed distribution with extreme value index γ2. We assume

5
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that there exists tail dependence between the two variables, defined as

R(x, y) = lim
t↓0

1

t
P (1− F1 (X1) ≤ tx, 1− F2 (Y1) ≤ ty) ,

where R(x, y) = x + y − l(x, y). We propose new adaptation for the extreme value index

of the variable of interest as

γ̂1,2 = γ̂1 +
γ̂1

γ̂2+

(
R̂(1, 1)− k

k+
R̂(1, k+

k
n

n+m
)

1 + k
k+
− 2 n

n+m

)
(γ̂2+ − γ̂2), (1.2)

where γ̂1, γ̂2 and γ̂2+ are estimated using the Hill estimator, the tail copula R is estimated

empirically (see Drees and Huang (1998)), k ∈ {1, . . . , n−1} and k+ ∈ {k+1, . . . , n+m−1}.

We prove the asymptotic distribution of our adapted estimator, where the asymptotic vari-

ance is reduced substantially and the asymptotic bias can be kept at the same level as

that of the Hill estimator. We observe that the main two key factors which contribute

to improving the performance of our adapted estimator, especially in terms of the vari-

ance reduction, are: the availability of more observations of the related variable and the

existence of high tail dependence between the variable of interest and related variable.

Our results are extended to the multivariate data setting with proof for the asymptotic

distribution of the adapted estimator. An extensive simulation study is conducted which

confirms the improved performance of our adapted estimator. We finally present an ap-

plication on the earthquake financial losses, where we show the use of the our adapted

estimator and estimate the extreme quantile based on the adapted estimator.

Chapter 3 Extreme value statistics in semi-supervised models. We use the

SSM to obtain the semi-supervised estimator (SSE) for the extreme value index when

γ > −1
2
. We assume that only the distribution of the variable of interest belongs to the

max-domain of attraction with an extreme value index (γ > −1
2
). We choose a number g

that mimics the extreme value index for the covariate, then transform the labelled data

of the covariate empirically based on the labelled and unlabelled data and g. Assuming

that there is tail dependence between the variable of interest and the related covariate,

6
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denoted as R(x, y), the SSE of the extreme value index

γ̂g = γ̂ − 1 + γ̂

1 + g
R̂g(ĝ − g),

where γ̂ and ĝ are the pseudo maximum likelihood estimators (pseudo-MLEs) (Smith,

1987) for γ and g,

R̂g = R̂(1, 1) +
g − γ̂

γ̂ + g + 1

(
(2γ̂ + 1)

∫ 1

0

R̂(s, 1)

s1−γ̂ ds− (2g + 1)

∫ 1

0

R̂(1, t)

t1−g
dt

)
,

and R̂ is estimated empirically (see Drees and Huang (1998)).

Chapter 3 provides a general results for the tail quantile process of the variable of interest

and the non-standard tail quantile process of the related covariate. Based on the tail

quantile results, we proved the asymptotic distribution for the SSE of the extreme value

index, where the asymptotic bias is kept the same as that of the pseudo-MLE. We then

observe the performance of the SSE in terms of the asymptotic variance reduction, which

depends on the known g and the unknown γ and R. Through a detailed simulation study

we show the amount of variance reduction when using the SSE compared to the pseudo-

MLE for the extreme value index. The asymptotic results are introduced and proved for

the multivariate setting. An application to railfall in France is used to demonstrate the

use of the SSE.

Chapter 4 Extreme quantile estimation in semi-supervised models. In this

chapter we extend the use of the SSM to estimate the extreme quantile. Improving the

estimation of the extreme quantile is very crucial in many applications as it affects the

decision reliability. For γ > −1
2
, Let x∗ be the right endpoint of F1, x

∗ = sup{x : F1(x) <

1}, and define the excess distribution function

F1t(x) = P(X ≤ x+ t|X > t) =
F1(t+ x)− F1(t)

1− F1(t)
, x > 0.

The distribution function F1 belongs to the max-domain of attraction (F1 ∈ D(Gγ)) if

lim
t→x∗

F1t(xσ(t)) = Hγ(x), (1.3)

7
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where σ(t) is a positive scale function and Hγ(x) is the generalized Pareto distribution.

Under the SSM in Chapter 3, we start by obtaining SSE for the scale parameter of the

variable of interest σ
(
U1(n

k
)
)
. Based on the transformation of the labelled data of the

related covariate, as in Chapter 3, the number
(
n
k

)g
mimics the scale of the covariate. The

SSE for the scale is

σ̂g = σ̂

(
1− Ŝg

1 + (1 + g)2

(
σ̃g

(n
k
)g
− 1

))
,

where σ̂, σ̃g are the pseudo-MLE for σ and
(
n
k

)g
, and Ŝg is a function of γ, g, and R. Then

the SSE for the extreme quantile is obtained, using the SSE for the extreme value index

and the scale, as

x̂pg = Û1

(n
k

)
+ σ̂g

( k
np

)γ̂g − 1

γ̂g
.

The asymptotic distribution for the SSE of the scale and the extreme quantile are proved

using the tail quantile processes which introduced in Chapter 3. The asymptotic distri-

butions have the same bias as the asymptotic distributions based on the pseudo-MLE, we

observe the asymptotic variance to measure the performance of the SSEs. We present an

extensive simulation study where we show the obtained variance reduction using the SSE

for the scale and the extreme quantile. Additionally we show that using the SSE for the

extreme value index in the extreme quantile is sometimes not enough to obtain variance

reduction, and the use of the SSE for the scale is important in such cases. The results

for the multivariate setting are provided for both the SSE for the scale and the extreme

quantile.

Chapter 5 Insurance risk and machine learning: Estimating conditional

Value-at-Risk using random forest. We extend the peak over threshold approach

(POT) to include a large number of covariates in the parameters when modelling heavy

tailed response variable. In this chapter, we consider a d-dimensional covariate Y and a

response variable X that has a distribution function F, such that (X, Y ) ∈ Rd+1 is depen-

dent random vector. We assume that F belongs to the max-domain of attraction with a

8
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positive extreme value index if

lim
t→∞

P(X > tx|X > t, Y = y) = x−1/γ(y),

where

γ(y) = lim
t→∞

E

(
log

(
X

t

) ∣∣∣∣∣X > t, Y = y

)
,

is a continuous function Rd → R+. We define the conditional V aRα of X given a set of

covariates Y = y, as V aRα(y) := V aRα(X|Y = y), which satisfies P(X ≥ V aRα(y)|Y =

y) = 1− α. For a high threshold u,

P(X ≥ V aRα(y)|Y = y)

P(X ≥ u|Y = y)
≈
(
V aRα(y)

u

)−1/γ(y)

.

Define

g(y) = P(X ≥ u|Y = y) = E(IX>u|Y = y), (1.4)

where I[.] is an indicator function that equals to 1 when X > u and 0 otherwise and

γ(y) ≈ E

(
log

(
X

u

) ∣∣∣∣∣X > u, Y = y

)
, (1.5)

then

V aRα(y)
∧

= u

(
ĝ(y)

1− α

)γ̂(y)

,

where ĝ(y) and γ̂(y) are proper estimators for g(y) and γ(y). Based on (1.4) and (1.5), we

estimate g(y) and γ(y) using the random forest classification and regression models.

We asses the performance of the proposed methodology using an extensive simulation

study, where the rooted mean squared error turns to be low for the estimators of γ(y)

and g(y), and consequently V aRα(y). We show the strong ability of the random forest

models to detect the top important variables that affect model estimation. Finally we

apply our methodology on a claim loss dataset from anonymized insurance company which

contains a large number of covariates. The methodology performance is evaluated using

two backtests, where we observe that using the top important covariates based on the

random forest models substantially affects the backtesting results.

9
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Chapter 2

Improved estimation of the extreme

value index using related variables

[Based on joint work with John H.J. Einmahl, Improved estimation of the

extreme value index using related variables, Extremes 2019, 22, 553-569.]

Abstract. Heavy tailed phenomena are naturally analyzed by extreme value

statistics. A crucial step in such an analysis is the estimation of the extreme

value index, which describes the tail heaviness of the underlying probability

distribution. We consider the situation where we have next to the n observa-

tions of interest another n + m observations of one or more related variables,

like, e.g., financial losses due to earthquakes and the related amounts of energy

released, for a longer period than that of the losses. Based on such a data set,

we present an adapted version of the Hill estimator. For this adaptation the tail

dependence between the variable of interest and the related variable(s) plays

an important role. We establish the asymptotic normality of this estimator

and find that it shows greatly improved behavior relative to the Hill estimator,

in particular the asymptotic variance is substantially reduced, whereas in the

natural setting the asymptotic bias remains unchanged. A simulation study

11
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confirms the substantially improved performance of our adapted estimator. We

also present an application to the aforementioned earthquake losses.

Key words. Asymptotic normality, Heavy tail, Hill estimator, Tail dependence, Variance

reduction

2.1 Introduction

Consider univariate extreme value theory for heavy tails, that is, the case where the

extreme value index γ is positive. This index describes the tail heaviness of the underlying

probability distribution, the larger γ, the heavier the tail. See de Haan and Ferreira (2006)

or Beirlant et al. (2004) for a comprehensive introduction to univariate and multivariate

extreme value theory and Gomes and Guillou (2015) for a more recent review of the

univariate case. Given a random sample, we often estimate γ with the well-known Hill

(1975) estimator. Such an estimate of γ is the crucial ingredient for estimating important

tail functionals of the distribution, like very high quantiles, very small tail probabilities,

but also the expected shortfall or an excess-of-loss reinsurance premium.

In this paper we first consider the semi-supervised model (SSM) in the bivariate case.

For the data structure of the SSM in the bivariate case, see Section 1.3 and Table 1.1.

We assume that the variable of interest has extreme value index γ1 > 0 and the related

variable is a heavy-tailed, with extreme value index γ2 > 0, that should help to improve

the estimation of γ1. The m observations of the related variable are independent of the

pairs and mutually independent. Such a situation occurs in, e.g., an insurance setting

when we have recorded both variables for a certain period of time (2008-2017, say), but

in addition have data for the second variable only, for an earlier period (1980-2007, say).

We can think of financial losses as the variable of interest and some physical quantity (like

wind speed, air pressure, earthquake magnitude, water height) as the related variable (see

Section 2.5). The independence assumption between the n pairs and m earlier observations

12
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is then naturally fulfilled. Specifically, the situation with hurricane losses as variable of

interest and (transformed) air pressures as related variable was brought to our attention by

a reinsurance company. A related situation where our setup can occur is when in a certain

period the related variable is measured more frequently than the variable of interest. Also

in a cross-sectional context our setup can be relevant. E.g., in a medical setting it often

happens that for a group of n patients a specific variable is measured together with one (or

more) other variable(s), whereas for a (larger) group of m patients, due to cost constraints,

the specific variable is not measured, only the related variable(s), see Chakrabortty and

Cai (2018). We will also, as suggested in the medical setting, consider the situation where

there is more than one related variable, the multivariate case, but in this introductory

section we will focus on the bivariate case.

We can estimate γ1 with the Hill estimator γ̂1 and γ2 with the Hill estimators γ̂2,

based on the n data, and γ̂2+, based on all n + m data. The latter estimator is better

than γ̂2, “hence” their difference can be used to update and improve γ̂1. For this updating

the strength of the tail dependence between both variables is important and should be

estimated. A detailed derivation of our adapted Hill estimator is presented in the next

section. We will show that our estimator improves greatly on the Hill estimator, in partic-

ular the asymptotic variance is substantially reduced, whereas in the natural setting the

asymptotic bias remains unchanged. To the best of our knowledge this approach is novel

and there are no results of this type in the literature.

The remainder of this paper is organized as follows. In Section 2.2, for the clearness of

the exposition, the bivariate case is treated as indicated above and the asymptotic normal-

ity of the adapted estimator is established and in Section 2.3 the corresponding results for

the multivariate case are presented. In Section 2.4, the finite sample performance of our es-

timator is studied through a simulation study, which confirms the improved performance

of the adapted Hill estimator. In Section 2.5, we present an application to earthquake

damage amounts with the “amount of energy released” as related variable. The proofs of

the results in Section 2.3 are deferred to Section 2.6. Since Section 2.3 generalizes Section

13
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2.2, the proofs of Section 2.2 can be obtained by specializing those of Section 2.3, and are

hence omitted.

2.2 Main Results: the bivariate case

Let F be a bivariate distribution function with marginals F1 and F2. Assume that F

is in the bivariate max-domain of attraction (i.e., F ∈ D(G)) with both extreme value

indices γ1 and γ2 positive, see Chapter 6 in de Haan and Ferreira (2006). Let Uj(·) =

F−1
j (1 − 1/·) be the tail quantile corresponding to Fj, j = 1, 2. Then F ∈ D(G) with

positive extreme value indices implies that Uj is regularly varying with index γj, j = 1, 2,

i.e., limt→∞ Uj(tx)/Uj(t) = xγj , x > 0. Let (X1, Y1) have distribution function F . Then

F ∈ D(G) also implies the existence of the tail copula R defined by

R(x, y) = lim
t↓0

1

t
P (1− F1 (X1) ≤ tx, 1− F2 (Y1) ≤ ty) , (2.1)

(x, y) ∈ [0,∞]2 \ {(∞,∞)}. Let (X1, Y1), . . . , (Xn, Yn) be a bivariate random sample from

F , and let Yn+1, . . . , Yn+m be a univariate random sample from F2, independent from the

n pairs. Denote the order statistics of the Xi, i = 1, . . . , n, with X1,n ≤ . . . ≤ Xn,n and

use similar notation for the order statistics of the Yi, i = 1, . . . , n, and also for the order

statistics of all the Yi, i = 1, . . . , n + m. For k ∈ {1, . . . , n − 1} define the Hill (1975)

estimator of γ1 by

γ̂1 =
1

k

k−1∑
i=0

logXn−i,n − logXn−k,n. (2.2)

Define, using the same k, similarly the Hill estimator γ̂2 based on the Yi, i = 1, . . . , n:

γ̂2 =
1

k

k−1∑
i=0

log Yn−i,n − log Yn−k,n. (2.3)

Also, let γ̂2+ be the Hill estimator of all Yi, i = 1, . . . , n+m, with k replaced by

k+ ∈ {k + 1, . . . , n+m}:

γ̂2+ =
1

k+

k+−1∑
i=0

log Yn+m−i,n+m − log Yn+m−k+,n+m. (2.4)

14
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Throughout for the asymptotical theory we will assume that m = m(n) and that

k →∞, k
n
→ 0,

√
k

k+

→ ν ∈ (0, 1),
n

n+m

k+

k
→ β ∈ (0, 1], as n→∞. (2.5)

Observe that we now also have k+ → ∞, m → ∞, and k+/(n + m) → 0; actually

n/(n+m)→ βν2 ∈ (0, 1).

First we consider the joint asymptotic normality of the three Hill estimators γ̂1 =

γ̂1(k), γ̂2 = γ̂2(k), and γ̂2+ = γ̂2+(k+). For this, we need the usual second order conditions,

on F1 and F2: there exist positive or negative functions Aj, j = 1, 2, with limt→∞Aj(t) = 0,

such that for x > 0

lim
t→∞

Uj(tx)

Uj(t)
− xγj

Aj(t)
= xγj

xρj − 1

ρj
, for some ρj ≤ 0, j = 1, 2. (2.6)

Proposition 2.2.1 If F ∈ D(G), conditions (2.5) and (2.6) hold, and
√
kAj(

n
k
)→ λj ∈

R, j = 1, 2, as n→∞, then(√
k(γ̂1 − γ1),

√
k(γ̂2 − γ2),

√
k+(γ̂2+ − γ2)

)
d−→ N

((
λ1

1− ρ1

,
λ2

1− ρ2

,
λ2β

−ρ2

ν(1− ρ2)

)
, Σ̆

)
,

(2.7)

with, see (2.1),

Σ̆ =



γ2
1 R(1, 1)γ1γ2 νR(1, β)γ1γ2

R(1, 1)γ1γ2 γ2
2 νβγ2

2

νR(1, β)γ1γ2 νβγ2
2 γ2

2


.

Corollary 2.2.1 Under the conditions of Proposition 2.2.1, as n→∞,(√
k(γ̂1 − γ1),

√
k(γ̂2+ − γ̂2)

)
d−→

N

( λ1

1− ρ1

,
λ2(β−ρ2 − 1)

1− ρ2

)
,

 γ2
1

(
ν2R(1, β)−R(1, 1)

)
γ1γ2(

ν2R(1, β)−R(1, 1)
)
γ1γ2

(
1 + ν2 − 2ν2β

)
γ2

2

 .

15
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Corollary 2.2.1 is the basis for deriving our adapted Hill estimator. For this derivation

only, take λ1 = λ2 = 0. The tail copula R is estimated as usual, cf. Drees and Huang

(1998), by

R̂(x, y) =
1

k

n∑
i=1

1[Xi≥Xn−[kx]+1,n,Yi≥Yn−[ky]+1,n], x, y ≥ 0. (2.8)

Now consider (γ̂1, γ̂2+ − γ̂2) and its approximate bivariate normal distribution according

to Corollary 2.2.1, with estimated covariance matrix:

N

(γ1, 0),
1

k

 γ̂2
1 ( k

k+
R̂(1, k+

k
n

n+m
)− R̂(1, 1))γ̂1γ̂2+

( k
k+
R̂(1, k+

k
n

n+m
)− R̂(1, 1))γ̂1γ̂2+

(
1 + k

k+
− 2 n

n+m

)
γ̂2

2+

 .

(2.9)

Maximizing this approximate likelihood of the single observation (γ̂1, γ̂2+−γ̂2) with respect

to γ1, we obtain our adapted estimator for γ1:

γ̂1,2 = γ̂1 +
γ̂1

γ̂2+

(
R̂(1, 1)− k

k+
R̂(1, k+

k
n

n+m
)

1 + k
k+
− 2 n

n+m

)
(γ̂2+ − γ̂2). (2.10)

The main result of this section, the asymptotic normality of this estimator, shows that it

improves substantially on the Hill estimator.

Theorem 2.2.1 Under the conditions of Proposition 2.2.1, as n→∞,

√
k(γ̂1,2 − γ1)

d−→

N

(
λ1

1− ρ1

+
γ1

γ2

· R(1, 1)− ν2R(1, β)

1 + ν2 − 2ν2β
· λ2(β−ρ2 − 1)

1− ρ2

, γ2
1

[
1− (R(1, 1)− ν2R(1, β))

2

1 + ν2 − 2ν2β

])
.

Remark 1 Note that in case ρ1 6= ρ2, we have, since |Aj| is regularly varying at ∞ with

index ρj, j = 1, 2, that λ1 = 0 or λ2 = 0. Hence in this case the expression for the

asymptotic bias is simplified. In case λ2 = 0 (which is implied by ρ1 > ρ2) or β = 1

or ρ2 = 0, the Hill estimator and the adapted estimator have the same asymptotic bias

λ1/(1− ρ1).

We highlight the natural choice β = 1 in the following corollary.
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Corollary 2.2.2 Under the conditions of Proposition 2.2.1 with β = 1, as n→∞,

√
k(γ̂1,2 − γ1)

d−→ N

(
λ1

1− ρ1

, γ2
1

[
1− (1− ν2)R2(1, 1)

])
.

Remark 2 Since the asymptotic biases of both estimators are the same now, we can

in the comparison focus on the asymptotic variances. Clearly the asymptotic variance

of the adapted Hill estimator never exceeds the γ2
1 of the classical Hill estimator. The

(relative) variance reduction is equal to (1 − ν2)R2(1, 1), which is positive in case of tail

dependence, i.e., R(1, 1) > 0. When, e.g., m = n and k+ = 2k, this becomes 1
2
R2(1, 1).

Then, depending on the value of R(1, 1) ∈ [0, 1], the variance reduction can be as large as

50%. In case of tail independence (R(1, 1) = 0), the estimators have the same asymptotic

variances. In such a case a “better” related variable should be looked for.

Remark 3 It is well-known that choosing a good k is a difficult problem in extreme value

theory. We will not address this problem here, but compare for many values of k our

adapted estimator and the Hill estimator, see Remark 2, Remark 4, and the simulation

section. On the other hand, there are many methods for choosing the k of the Hill esti-

mator, see, e.g., Caeiro and Gomes (2015). If one of these methods for the Hill estimator

itself is used, we can choose the same k for our adapted estimator and obtain the discussed

improvements.

2.3 Main results: the multivariate case

Now we consider a d-variate distribution function F , with marginals F1, . . . , Fd and corre-

sponding tail quantile functions Uj, j = 1, . . . d; write F− for the distribution function of

the last d − 1 components of a random vector with distribution function F . We assume

that F is in the multivariate max-domain of attraction, that is F ∈ D(G), with all ex-

treme value indices γ1, . . . , γd positive. Let Rij be the tail copula of the i-th and the j-th

component, 1 ≤ i, j ≤ d, i 6= j, see (2.1).
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Let (X1, Y1,2, . . . , Y1,d), . . . , (Xn, Yn,2, . . . , Yn,d), be a d-variate random sample from F

and let

(Yn+1,2, . . . , Yn+1,d), . . . , (Yn+m,2, . . . , Yn+m,d) be a (d− 1)-variate random sample from F−,

independent of the d-variate random sample of size n. Let γ̂1, γ̂j, and γ̂j+ be the Hill esti-

mators based on X1, . . . , Xn, Y1,j, . . . , Yn,j, and Y1,j, . . . , Yn+m,j, j = 2, . . . , d, respectively,

cf. (2.2), (2.3), and (2.4); here again we replace k with k+ for γ̂j+, j = 2, . . . , d. First we

consider the joint asymptotic normality of all the 2d− 1 Hill estimators.

Proposition 2.3.1 If F ∈ D(G), condition (2.5) holds, condition (2.6) holds for j =

1, . . . , d, and
√
kAj(

n
k
)→ λj ∈ R, j = 1, . . . , d, as n→∞, then(√

k(γ̂1 − γ1),
√
k(γ̂2 − γ2),

√
k+(γ̂2+ − γ2), . . . ,

√
k(γ̂d − γd),

√
k+(γ̂d+ − γd)

)
d−→ N(µ̆d, Σ̆d),

(2.11)

where

µ̆d =

(
λ1

1− ρ1

,
λ2

1− ρ2

,
λ2β

−ρ2

ν(1− ρ2)
, . . . ,

λd
1− ρd

,
λdβ

−ρd

ν(1− ρd)

)
,

Σ̆d =



γ2
1 R12(1, 1)γ1γ2 νR12(1, β)γ1γ2 . . . R1d(1, 1)γ1γd νR1d(1, β)γ1γd

R12(1, 1)γ1γ2 γ2
2 νβγ2

2 . . . R2d(1, 1)γ2γd νR2d(1, β)γ2γd

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

R1d(1, 1)γ1γd R2d(1, 1)γ2γd νR2d(1, β)γ2γd . . . γ2
d νβγ2

d

νR1d(1, β)γ1γd νR2d(1, β)γ2γd R2d(1, 1)γ2γd . . . νβγ2
d γ2

d



.

Corollary 2.3.1 Under the conditions of Proposition 3.3.1, as n→∞,(√
k(γ̂1 − γ1),

√
k(γ̂2+ − γ̂2), . . . ,

√
k(γ̂d+ − γ̂d)

)
d−→ N

(
µd,Σd

)
, (2.12)

where µd =
(

λ1
1−ρ1 ,

λ2(β−ρ2−1)
1−ρ2 , . . . , λd(β−ρd−1)

1−ρd

)
, Σd = ΓΓT ◦ H (“ ◦” denotes the Hadamard

18



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 29PDF page: 29PDF page: 29PDF page: 29

or entrywise product), with

H =



1 h12 . . . h1d

h12 h . . . h2d

. . .

. . .

. . .

. . .

. .

h1d h2d . . . h



, Γ =



γ1

γ2

.

.

.

γd


,

h = 1+ν2−2ν2β, h1i = ν2R1i(1, β)−R1i(1, 1), and hij = (1+ν2)Rij(1, 1)−ν2
(
Rij(1, β)+

Rij(β, 1)
)
, i = 2, . . . , d, j = i+ 1, . . . , d.

Very similar to the the bivariate case we approximate, for λj = 0, j = 1, . . . , d, the

d-variate normal limiting distribution of (γ̂1, γ̂2+ − γ̂2, . . . , γ̂d+ − γ̂d), with mean vector

(γ1, 0, . . . , 0), and estimate the approximated 1
k
Σd, where for the estimation of Rij, R̂ij is

defined similarly as R̂ in (2.8). The thus obtained approximated and estimated version of

1
k
Σd is denoted by 1

k
Σ̂d. In this normal distribution the only unknown parameter is the

first component of the mean: γ1, cf. (2.9). Maximizing this approximate likelihood of the

single observation (γ̂1, γ̂2+ − γ̂2, . . . , γ̂d+ − γ̂d) with respect to γ1, we obtain our adapted

estimator for γ1:

γ̂1,d = γ̂1 +
d∑
j=2

Σ̂−1
1j

Σ̂−1
11

(γ̂j+ − γ̂j),

where A−1
ij denotes the entry in the ith row and jth column of the inverse of the matrix A.

Using, in the obvious notation, Σ̂d = Γ̂Γ̂T ◦ Ĥ (see above), we can rewrite our adapted

estimator as

γ̂1,d = γ̂1 +
d∑
j=2

γ̂1

γ̂j+

Ĥ−1
1j

Ĥ−1
11

(γ̂j+ − γ̂j). (2.13)

Theorem 2.3.1 Assume H is invertible. Then under the conditions of Proposition 3.3.1,
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as n→∞,

√
k(γ̂1,d − γ1)

d−→ N

(
λ1

1− ρ1

+
d∑
j=2

γ1

γj

H−1
1j

H−1
11

λj(β
−ρj − 1)

1− ρj
, σ2

)
, (2.14)

where

σ2 = γ2
1

(
1− 1

(H−1
11 )2

[
2H−1

11

d∑
j=2

[R1j(1, 1)− ν2R1j(1, β)]H−1
1j − [1 + ν2 − 2ν2β]

d∑
j=2

(H−1
1j )2

− 2
d∑
i=2

d∑
j>i

[(1 + ν2)Rij(1, 1)− ν2
(
Rij(1, β) +Rij(β, 1)

)]
H−1

1i H
−1
1j

])
.

Corollary 2.3.2 Under the conditions of Theorem 2.3.1 with β = 1, as n→∞,

√
k(γ̂1,d − γ1)

d−→ N

(
λ1

1− ρ1

, σ2

)
,

where the asymptotic variance now simplifies to

σ2 = γ2
1

(
1− 1− ν2

(H−1
11 )2

[
2H−1

11

d∑
j=2

R1j(1, 1)H−1
1j −

d∑
j=2

(H−1
1j )2 − 2

d∑
i=2

d∑
j>i

Rij(1, 1)H−1
1i H

−1
1j

])
,

where β = 1 also yields simplified entries for the matrix H.

Remark 4 We have seen that in the bivariate case for β = 1 and ν2 = 1
2

the reduction in

asymptotic variance is equal to 1
2
R2(1, 1). For, e.g., R(1, 1) = 0.8, this becomes 0.320. Now

consider the trivariate case with the same values for β and ν2 and with (also) R12(1, 1) =

R13(1, 1) = 0.8, but R23(1, 1) = 0.4. Then the reduction in asymptotic variance, see the

next section, becomes much larger: 0.457. In other words, adding a third variable that has

the same (as the second variable) tail copula value at (1,1) with the variable of interest

and does not have a high tail dependence with the second variable reduces the asymptotic

variance much more than when using only one related variable.
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2.4 Simulation study

In this section we will perform a simulation study in order to compare the finite sample

behavior of the adapted estimator and the Hill estimator. We will consider 6 bivariate

distributions and 8 trivariate distributions and 3 different pairs (n,m). Every setting is

replicated 10,000 times.

To be precise, we consider the Cauchy distribution restricted to the first quadrant/octant

in dimensions d = 2 and d = 3. This Cauchy density is proportional to

(1 + xS−1xT )−(1+d)/2,

where the 2 × 2 or 3 × 3 scale matrix S has 1 as diagonal elements and s as off-diagonal

elements, but when d = 3 we take S23 = S32 = r. For s we take the values 0, 0.5, and 0.8,

respectively. When d = 3 we take r = s, but for s = 0.5 and s = 0.8 we also take r = 0

and r = 0.3, respectively. Approximated R(1, 1)-values are given in Table 2.1. In the case

r < s, two values are given; the lower one is R23(1, 1).

d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

0.59 0.67 0.76 0.59 0.68 0.69 0.77 0.81

0.59 0.63

Table 2.1: R(1, 1)-values for the Cauchy distribution

We will also consider the bi- and trivariate logistic distribution function with standard

Fréchet marginals:

F (x1, . . . , xd) = exp

{
−
(
x
−1/θ
1 + . . .+ x

−1/θ
d

)θ}
, x1 > 0, . . . , xd > 0; d = 2 or d = 3.

For θ we take the values 0.1, 0.3, and 0.5, respectively. The corresponding R(1, 1)-values

are 0.93, 0.77, and 0.59. All γ-values in the simulations are equal to 1.

21



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

We use the following values for n, m, and k:

• n = 1000, m = 500, and k = 100,

• n = 1000, m = 1000, and k = 100,

• n = 500, m = 1000, and k = 50.

Then we choose k+ according to
k

k+

=
n

n+m
. (2.15)

In case d = 2, using (2.15), our adapted estimator in (2.10) specializes to

γ̂1,2 = γ̂1 +
γ̂1

γ̂2+

R̂(1, 1)(γ̂2+ − γ̂2),

and the asymptotic variance in Theorem 2.2.1 becomes γ2
1

(
1 − (1 − ν2)R2(1, 1)

)
. When

d = 3, using (2.15), our adapted estimator in (2.13) can be rewritten as

γ̂1,3 = γ̂1+
γ̂1

γ̂2+

R̂12(1, 1)− R̂13(1, 1)R̂23(1, 1)

1− R̂2
23(1, 1)

(γ̂2+−γ̂2)+
γ̂1

γ̂3+

R̂13(1, 1)− R̂12(1, 1)R̂23(1, 1)

1− R̂2
23(1, 1)

(γ̂3+−γ̂3),

and the asymptotic variance in Theorem 2.3.1 specializes to

σ2 = γ2
1

(
1− (1− ν2)

(
R2

12(1, 1) +R2
13(1, 1)− 2R12(1, 1)R13(1, 1)R23(1, 1)

1−R2
23(1, 1)

))
.

Tables 2.2 and 2.3 show the (empirical percentages of) variance reduction as discussed

below Theorems 2.2.1 and 3.3.1, and above, based on the 10,000 estimates. We see that the

variance reduction ranges from about 10% to more than 50%, that is, our adapted estima-

tor yields much better results than the Hill estimator. A stronger tail dependence between

the variable of interest and the related variable(s) yields a larger variance reduction. In

case d = 3, due to the exchangeability of the components of the logistic distribution, a

stronger tail dependence between the variable of interest and the related variables, yields

also a stronger tail dependence between the two related variables and hence increasing the

dimension from 2 to 3 does not help that much, but in case of the Cauchy distribution with

r < s we see a large improvement when adding the third variable. Comparing the num-

bers in the table with the (not presented) theoretical asymptotic reductions shows that the
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d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

n = 1000,m = 500 10.5% 12.4% 17.3% 12.4% 17.9% 18.9% 21.2% 26.5%

n = 1000,m = 1000 15.5% 20.1% 28.9% 21.0% 27.3% 30.5% 31.8% 40.3%

n = 500,m = 1000 20.6% 27.7% 38.3% 27.6% 36.4% 38.9% 41.3% 51.4%

Table 2.2: Empirical variance reduction for the Cauchy distribution

d = 2 d = 3

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.1 θ = 0.3 θ = 0.5

n = 1000,m = 500 26.8% 17.4% 8.8% 28.8% 20.7% 13.4%

n = 1000,m = 1000 41.1% 27.3% 14.4% 42.0% 31.4% 20.6%

n = 500,m = 1000 54.5% 37.4% 21.4% 58.9% 43.1% 27.8%

Table 2.3: Empirical variance reduction for the logistic distribution

empirical numbers are about the same but slightly smaller, partly due to the variability

of the tail copula estimators, which does not show up in the asymptotic variance.

Although the asymptotic biases are the same (see Corollaries 2.2.2 and 2.3.2), we

also present, in order to show the full behavior of the estimator, similar tables for the

reduction in mean squared error (MSE). We see in Tables 2.4 and 2.5 that considering the

MSE instead of the variance yields approximately the same reduction percentages. This

shows that indeed our adapted estimator substantially outperforms the Hill estimator.

For every simulation setting we have only taken one value of k. It is of interest to

investigate the sensitivity to the choice of k of the variance reduction in Tables 2.2 and

2.3. For the two tables below we doubled the value of k compared to the initial settings

in Tables 2.2 and 2.3. For the choice of k+ the formula in (2.15) is still used, i.e., k+ is

also doubled. Tables 2.6, 2.7 and 2.8 show that this large change in k leads to about the
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d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

n = 1000,m = 500 10.6% 12.5% 17.3% 12.5% 18.1% 19.0% 21.3% 26.6%

n = 1000,m = 1000 15.7% 20.2% 28.9% 21.1% 27.6% 30.6% 31.9% 40.3%

n = 500,m = 1000 20.6% 27.8% 38.3% 27.8% 36.4% 38.9% 41.3% 51.3%

Table 2.4: Empirical MSE reduction for the Cauchy distribution

d = 2 d = 3

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.1 θ = 0.3 θ = 0.5

n = 1000,m = 500 26.3% 17.5% 9.1% 28.4% 20.6% 13.4%

n = 1000,m = 1000 40.7% 27.0% 14.7% 41.3% 31.0% 20.6%

n = 500,m = 1000 55.1% 38.0% 22.6% 59.4% 43.9% 28.7%

Table 2.5: Empirical MSE reduction for the logistic distribution

same percentages of variance reduction, in other words, when comparing the adapted Hill

estimator and the Hill estimator the choice of k is not so important.

s = 0 s = 0.5 s = 0.8

n = 1000,m = 500, k = 200 10.1% 12.4% 17.6%

n = 1000,m = 1000, k = 200 15.2% 20.2% 26.0%

n = 500,m = 1000, k = 100 19.9% 27.3% 36.1%

Table 2.6: Empirical variance reduction for the 2d− Cauchy distribution
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s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

n = 1000,m = 500, k = 200 13.5% 17.3% 18.4% 21.4% 25.0%

n = 1000,m = 1000, k = 200 19.4% 25.7% 28.1% 33.5% 38.4%

n = 500,m = 1000, k = 100 27.6% 35.4% 36.0% 44.1% 52.7%

Table 2.7: Empirical variance reduction for the 3d− Cauchy distribution

d = 2 d = 3

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.1 θ = 0.3 θ = 0.5

n = 1000,m = 500, k = 200 27.2% 19.4% 10.1% 28.5% 21.0% 14.6%

n = 1000,m = 1000, k = 200 39.6% 27.5% 14.5% 44.6% 30.8% 20.3%

n = 500,m = 1000, k = 100 55.3% 38.0% 21.8% 57.1% 43.6% 26.0%

Table 2.8: Empirical variance reduction for the logistic distribution

2.5 Application

We consider financial losses (in US$) due to earthquakes as variable of interest with the

corresponding energy released as related variable. The aim of this application is to assess

the tail heaviness of the loss distribution and also to estimate a very high quantile of the

losses. We make use of the adapted Hill estimator, since the losses are influenced by the

amounts of energy and hence these variables are expected to be tail dependent.

The earthquakes concern 29 countries1. The data are provided by the National Oceanic

and Atmospheric Administration (NOAA). Ignoring tsunami losses, we consider the finan-

cial losses of categories at least “moderate” for the time period from 1993 through 2017.

1Algeria, Burma, Chile, China, Ecuador, El Salvador, Germany, Greece, Haiti, Iceland, India, Indone-

sia, Iran, Italy, Japan, Mexico, Morocco, Nepal, New Zealand, Nicaragua, Pakistan, Philippines, Russia,

Taiwan, Tajikistan, Tanzania, Thailand, Turkey, United States.
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We used linear regression analysis per country for imputation of missing loss values, with

“number of deaths due to the earthquake” and “severity of the financial loss” (a categorical

variable) as independent variables. We also corrected the financial losses for inflation. The

highest loss in the data set is US$ 36×109. We obtained the related Richter scale mag-

nitude M of the earthquakes for the much longer period 1940 through 2017. (Note that

also for the earlier period 1940-1992 the financial loss categories are available and again

we used only magnitudes with losses at least “moderate”, as for the period 1993-2017.)

The energy E released by earthquakes (in megajoules) is given by E = 2× 101.5(M−1); Lay

and Wallace (1995).

We have n = 330 and m = 512. Figure 2.1 shows the log-log plot of the top 60 obser-

vations of the data with logarithm of the data rank in a descending order. We can observe

a linear pattern in Figure 2.1, which indicates an empirical power law for the data. Figure

2.2 shows a plot of the adapted Hill estimator against k, with k+ based on (2.15).

Figure 2.1: Log-Log plot of the financial losses

We take the average value of the estimates over the region k = 40, . . . , 60. This

yields the average Hill estimate γ̂1 = 1.504 and our final average estimate of γ1, which is

somewhat lower than the Hill estimate:

γ̂1,2 = 1.465.
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Figure 2.2: Adapted Hill estimator of the financial losses of the earthquakes

Both estimates indicate that the loss distribution has a very heavy right tail.

We also estimate the high quantile F−1
1 (1− p) of the loss distribution for p = 1

n
= 1

330
.

This high quantile is estimated as usual (see, e.g., page 138 of de Haan and Ferreira (2006))

with

Xn−k,n

(
k

np

)γ̂
,

where γ̂ is the Hill estimator or the adapted Hill estimator (and k = 40, . . . , 60). This

yields for the average high quantile estimate US$ 130×109 when we use the Hill estimates

and US$ 113×109 when we use our estimates of γ1, which is a reduction of 17 billion

dollars. This shows that, from an insurer’s perspective, improved (that is, less variable)

estimation of the extreme value index can lead to huge changes in high quantiles, here the

25 year return level. The lower estimate we obtain indicates less risk for (re)insurers.

Acknowledgement We thank an associate editor and three referees for many insightful

comments, which helped to improve this paper.
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2.6 Proofs

Proof of Proposition 3.3.1: Let C be a copula corresponding to the distribution func-

tion of (−X1,−Y1,2, . . . ,−Y1,d) and let C− be the distribution function of the last d − 1

components of a random vector with distribution function C. Let (V1,1, V1,2, . . . , V1,d), . . . ,

(Vn,1, Vn,2, . . . , Vn,d) be a random sample of size n from C and let (Vn+1,2, . . . , Vn+1,d), . . . ,

(Vn+m,2, . . . , Vn+m,d) be a random sample of size m from C−, independent of the ran-

dom sample from C. Clearly all the Vi,j have a uniform-(0,1) distribution. Write Xi =

F−1
1 (1 − Vi,1), i = 1, . . . , n, and Yl,j = F−1

j (1 − Vl,j), l = 1, . . . , n + m, j = 2, . . . , d. Then

(X1, Y1,2, . . . , Y1,d), . . . , (Xn, Yn,2, . . . , Yn,d), and (Yn+1,2, . . . , Yn+1,d), . . . , (Yn+m,2, . . . , Yn+m,d)

have the distributions as specified in the beginning of Section 2.4.

Consider the univariate empirical distribution functions Γn,j(s) = 1
n

∑n
i=1 1[0,s](Vi,j),

0 ≤ s ≤ 1, j = 1, 2, . . . , d, and Γn+m,j(t) = 1
n+m

∑n+m
l=1 1[0,t](Vl,j), 0 ≤ t ≤ 1, j = 2, . . . , d,

and the corresponding uniform tail empirical processes

wn,j(s) =
n√
k

[
Γn,j

(
k

n
s

)
− k

n
s

]
, 0 ≤ s ≤ 1,

wn+m,j(t) =
n+m√
k+

[
Γn+m,j

(
k+

n+m
t

)
− k+

n+m
t

]
, 0 ≤ t ≤ 1.

Now define the Gaussian vector of processes (W1, . . . ,W2d−1), where Wj, j = 1, . . . , 2d−1,

is a standard Wiener process on [0, 1], and the covariances are as follows:

Cov(Wi(s),Wj(t)) = Rij(s, t), 0 ≤ s, t ≤ 1, 1 ≤ i < j ≤ d,

Cov(Wi(s),Wj(t)) = νRi,j−d+1(s, βt), 0 ≤ s, t ≤ 1, 1 ≤ i ≤ d, d+ 1 ≤ j ≤ 2d− 1, j 6= i+ d− 1,

Cov(Wi(s),Wi+d−1(t)) = ν(s ∧ βt), 0 ≤ s, t ≤ 1, 2 ≤ i ≤ d.

Cov(Wi(s),Wj(t)) = Ri−d+1,j−d+1(s, t), 0 ≤ s, t ≤ 1, d+ 1 ≤ i < j ≤ 2d− 1. (2.16)

Let I denote the identity function on [0, 1]. Then we have on (D[0, 1])2d−1, for 0 ≤ δ <

1
2
, as n→∞,(wn,1

Iδ
, . . . ,

wn,d
Iδ

,
wn+m,2

Iδ
, . . . ,

wn+m,d

Iδ

)
d−→
(
W1

Iδ
, . . . ,

Wd

Iδ
,
Wd+1

Iδ
, . . . ,

W2d−1

Iδ

)
. (2.17)
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For the proof of this statement, note that the convergence and tightness of every component

is well-known, see Corollary 4.2.1 in Csörgő et al. (1986) or Theorem 3 in Einmahl (1992).

This also yields the tightness of the entire vector on the left-hand side. It remains to prove

the convergence of the finite-dimensional distributions (without the Iδ), which follows from

the (general) multivariate central limit theorem. It suffices to compute the limits of the

covariances: we perform this computation for the second formula in (2.16); the other three

formulas there are essentially special cases of that one. We have

Cov(wn,i(s), wn+m,j−d+1(t)) = Cov

(
1√
k

n∑
l=1

1[0, k
n
s](Vl,i),

1√
k+

n+m∑
l=1

1
[0,

k+
n+m

t]
(Vl,j−d+1)

)

= Cov

(
1√
k

n∑
l=1

1[0, k
n
s](Vl,i),

1√
k+

n∑
l=1

1
[0,

k+
n+m

t]
(Vl,j−d+1)

)
=

n√
kk+

Cov(1[0, k
n
s](V1,i), 1[0,

k+
n+m

t]
(V1,j−d+1))

=
n√
kk+

[
P
(
V1,i ≤

k

n
s, V1,j−d+1 ≤

k+

n+m
t

)
− kk+

n(n+m)
st

]

=

√
k

k+

[
n

k
P
(
V1,i ≤

k

n
s, V1,j−d+1 ≤

k

n

n

k

k+

n+m
t

)
− k+

n+m
st

]
→ νRi,j−d+1(s, βt) = Cov(Wi(s),Wj(t)).

Hence (2.17) is established.

According to de Haan and Ferreira (2006), Chapter 5 and Theorem 2.3.9, we have, as

n→∞,

√
k(γ̂j − γj) = −γj

(
wn,j(1)−

∫ 1

0

wn,j(u)

u
du

)
+

λj
1− ρj

+ op(1), j = 1, . . . , d.

Using that |Aj| is regularly varying at ∞ with index ρj, we get similarly

√
k+(γ̂j+−γj) = −γj

(
wn+m,j(1)−

∫ 1

0

wn+m,j(u)

u
du

)
+

λjβ
−ρj

ν(1− ρj)
+ op(1), j = 2, . . . , d.
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Combining all these with (2.17) we obtain(√
k(γ̂1 − γ1), . . . ,

√
k(γ̂d − γd),

√
k+(γ̂2+ − γ2), . . . ,

√
k+(γ̂d+ − γd)

)
d−→

−γ1

W1(1)−
1∫

0

W1(u)

u
du

+
λ1

1− ρ1

, . . . ,−γd

Wd(1)−
1∫

0

Wd(u)

u
du

+
λd

1− ρd
,

−γ2

Wd+1(1)−
1∫

0

Wd+1(u)

u
du

+
λ2β

−ρ2

ν(1− ρ2)
, . . . ,−γd

W2d−1(1)−
1∫

0

W2d−1(u)

u
du

+
λdβ

−ρd

ν(1− ρd)

 .

It is immediate and well-known that this yields the mean vector and the variances as in

the proposition. (Note that the components of the left-hand side there are listed in a

different order.) It remains to derive the covariances. Again we only consider the case

where 1 ≤ i ≤ d, d + 1 ≤ j ≤ 2d − 1, j 6= i + d − 1. The other cases are easier and

essentially special cases of this one. We have

Cov

(
− γi

(
Wi(1)−

1∫
0

Wi(u)

u
du

)
+

λi
1− ρi

,−γj−d+1

(
Wj(1)−

1∫
0

Wj(v)

v
dv

)
(2.18)

+
λj−d+1β

−ρj−d+1

ν(1− ρj−d+1)

)
= γiγj−d+1

[
E(Wi(1)Wj(1)) +

1∫
0

1∫
0

E
(
Wi(u)Wj(v)

)
uv

dudv

−
1∫

0

E
(
Wi(u)Wj(1)

)
u

du−
1∫

0

E
(
Wi(1)Wj(v)

)
v

dv
]

= νγiγj−d+1

[
Ri,j−d+1(1, β)

+

1∫
0

1∫
0

Ri,j−d+1(u, βv)

uv
dudv −

1∫
0

Ri,j−d+1(u, β)

u
du−

1∫
0

Ri,j−d+1(1, βv)

v
dv
]
. (2.19)

Observe that by two changes of variables and the homogeneity of order 1 of Ri,j−d+1:

1∫
0

1∫
0

Ri,j−d+1(u, βv)

uv
dudv =

1∫
0

v∫
0

Ri,j−d+1(u, βv)

uv
dudv +

1∫
0

u∫
0

Ri,j−d+1(u, βv)

uv
dvdu

=

1∫
0

1∫
0

Ri,j−d+1(vu, βv)

uv
dudv +

1∫
0

1∫
0

Ri,j−d+1(u, βvu)

uv
dvdu

=

1∫
0

Ri,j−d+1(u, β)

u
du+

1∫
0

Ri,j−d+1(1, βv)

v
dv.
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Hence the covariance is equal to νγiγj−d+1Ri,j−d+1(1, β). �

Proof of Theorem 2.3.1: From the uniform consistency of the tail copula estimators and

the continuity of the tail copulas we have Ĥ−1
1j

P−→ H−1
1j , j = 1, . . . , d. This in combination

with (2.13) and Corollary 2.3.1 yields

√
k(γ̂1,d − γ1) =

√
k(γ̂1 − γ1) +

d∑
j=2

γ1

γj

H−1
1j

H−1
11

√
k(γ̂j+ − γ̂j) + op(1). (2.20)

Now Corollary 2.3.1 and the continuous mapping theorem yield (2.14). �

Remark 5 In the bivariate case in Section 2.3, the determinant of the matrix H is always

positive and hence the additional invertibility assumption on H is not needed there.
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Chapter 3

Extreme value statistics in

semi-supervised models

[Based on joint work with John H.J. Einmahl and Chen Zhou]

Abstract. We consider extreme value analysis in a semi-supervised setting,

where we observe, next to the n data on the target variable, n + m data

on one or more covariates. This is called the semi-supervised model with n

labeled and m unlabeled data. By exploiting the tail dependence between

the target variable and the covariates, we derive an estimator for the extreme

value index of the target variable in this setting and establish its asymptotic

behavior. Our estimator substantially improves the univariate estimator, based

on only the n target variable data, in terms of asymptotic variance whereas the

asymptotic bias remains unchanged. We present a simulation study in which

the asymptotic results are confirmed and also an extreme quantile estimator is

derived and its improved performance is shown. Finally the estimation method

is applied to rainfall data in France.

Key words. Asymptotic normality, extreme value index, semi-supervised inference, tail
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dependence, variance reduction.

3.1 Introduction

The semi-supervised model, initially introduced in machine learning, deals with unbal-

anced datasets, when the labeled data are harder (more expensive or more time consum-

ing) to obtain than the unlabeled data. For an example data structure in the bivariate

case, see Table 1.1. Consider a dataset with one variable of interest, sometimes referred

to as the target variable or outcome variable, and one or more covariates. The difficulty

for collecting labeled data stems from collecting the target variable, whereas unlabeled

data containing only the covariates, i.e. with the target variable missing, can be easily

collected. Semi-supervised learning focuses on uncovering the (non-linear) relation be-

tween the target variable and the covariates. Estimations and predictions based on such

relations and using the additional unlabeled data often show substantially improved per-

formance. For example, for classification analysis see Vapnik (2013) and Zhu and Goldberg

(2009); for regression analysis see Wasserman and Lafferty (2008), Azriel et al. (2016) and

Chakrabortty and Cai (2018).

Semi-supervised inference aims at estimating parameters or quantities regarding the

target variable under the semi-supervised model. Zhang et al. (2019) investigates the

general semi-supervised framework and shows how to use the unlabeled data to improve

the estimation of the mean of the target variable; for inference on heavy tailed distributions

in this framework, see Ahmed and Einmahl (2019).

Extreme value statistics deals with estimation of parameters or quantities related to the

tail of a distribution, only making semi-parametric assumptions on this tail. Consequently,

most of extreme value methods start with a relatively large number of observations n, but

select only k � n extreme observations from the full sample for statistical inference.

Two techniques are often used in selecting the extreme observations: the peaks-over-
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threshold (POT) approach which selects the highest k observations, and the block maxima

(BM) approach which splits the full sample into k blocks and selects the maxima of each

block. Since only k observations are used in estimation, typically consistent estimators

have a speed of convergence of 1/
√
k. In practice, to obtain accurate estimators for

tail parameters/quantities, one needs a sample with a relatively large sample size n to

guarantee a sufficient number of extreme observations. In contrast, the semi-supervised

model is greatly suitable for statistics of extremes in case data on the target variable are

hard to obtain.

The main goal of this paper is to derive in this semi-supervised setting a new, im-

proved pseudo-maximum likelihood estimator (MLE) for a general extreme value index

γ and to establish its asymptotic behavior. This extreme value index describes the tail

heaviness of a probability distribution. If γ > 0 the distribution is heavy tailed and has

an infinite right endpoint, if γ = 0 the distribution is light tailed and may have an infinite

or finite endpoint, and if γ < 0 the endpoint is finite, see, e.g., Beirlant et al. (2004) or

de Haan and Ferreira (2006) for a thorough treatment of extreme value theory and the

corresponding statistical inference. For ease of explanation of our novel estimator, let us

assume that there is only one covariate. We estimate γ for the variable of interest initially

(that is ignoring the covariate) using the pseudo-MLE γ̂, see Smith (1987) and Drees et al.

(2004). Then, we choose a number g and for the covariate we transform the labeled data

empirically (using all the labeled and unlabeled data) such that they obtain an artificial

extreme value index g. Using the transformed covariates of the labeled data, we estimate

the known g by the pseudo-MLE ĝ, say, and use the difference ĝ − g to adapt and sub-

stantially improve the initial estimator γ̂ for the extreme value index γ of the variable

of interest. For this adaptation the tail dependence between the target variable and the

covariate is crucial. Precise estimation of γ is important for describing the tail heavi-

ness, but it is even more important when estimating extreme quantiles or very small tail

probabilities. We further demonstrate the improved performance of an extreme quantile

estimator under the semi-supervised model by a simulation study.
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Compared to Ahmed and Einmahl (2019), this study has at least three improvements.

Firstly, we provide a general result in the context of the relevant tail quantile process (see

Lemma 3.6.5). Based on the tail quantile process result, one may improve most estimators

based on the POT approach in extreme value statistics under the semi-supervised model.

Secondly, we impose no assumptions on the tail of the covariates. When analyzing the tail

of the target variable, it is crucial to assume regularity in its tail such as the max-domain

of attraction condition in extreme value analysis. However, requiring such conditions for

the covariates can be restrictive in applications. Thirdly and most important, our main

result is valid for a broader class of distributions for the target variable: we deal with a

general extreme value index γ ∈ R whereas Ahmed and Einmahl (2019) only handles the

case γ > 0. Extending the range of the extreme value index is particularly important for

applications where the sign of γ is not known beforehand. For example, when analyzing

extreme weather, various studies find that the extreme value index is around zero for

different meteorologic variables: for hourly surge level on the English east coast (Coles

and Tawn (1991)), for hourly maximum wind speed in Sheffield, UK (Coles and Walshaw

(1994)), for wave height and still water level on the Dutch coast (de Haan and de Ronde

(1998)) and for daily rainfall in North Holland, The Netherlands (Buishand et al. (2008)).

This paper is organized as follows. In Section 3.2, for clearness of the exposition, we first

introduce our adapted estimator for the extreme value index in the semi-supervised model

with one covariate and we establish its asymptotic normality. In Section 3.3 we consider

the general multivariate semi-supervised setting and present and establish asymptotic

normality of the adapted estimator. Section 3.4 is devoted to a simulation study for

the setting with one covariate. The improved performance, in terms of variance, of the

adapted estimator compared with the initial estimator is shown. An application to rainfall

in France can be found in Section 3.5 and the detailed proofs are deferred to Section 3.6.
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3.2 Main results: one covariate

Let F be a bivariate distribution function with marginals F1 and F2. We assume that

F1 is in the max-domain of attraction of an extreme-value distribution Gγ, where γ is

the extreme value index, our parameter of interest. Let the pairs (X1, Y1), . . . , (Xn, Yn)

be a random sample from F , and let (Yn+1, . . . , Yn+m) be a random sample from F2,

independent from the n pairs. This is the semi-supervised model. Assume that the tail

copula R of (X1, Y1) exists:

R(x, y) = lim
t↓0

1

t
P (1− F1(X1) ≤ tx, 1− F2(Y1) ≤ ty) , (x, y) ∈ [0,∞]2 \ {(∞,∞)}. (3.1)

Denote the order statistics of Xi, i = 1, . . . , n, with X1:n ≤ . . . ≤ Xn:n, and similarly

for the Yi, i = 1, . . . , n. We estimate γ > −1
2

with the often used pseudo-MLE γ̂ based on

Xn−k:n, . . . , Xn:n, for k ∈ {1, . . . , n− 1}; see Section 3.4 in de Haan and Ferreira (2006).

Define for i = 1, . . . , n,

Ỹi =


(1−(Fn+m(Yi)− 1

2(n+m)))
−g
−1

g
, g 6= 0,

− log
(

1−
(
Fn+m(Yi)− 1

2(n+m)

))
, g = 0,

(3.2)

where Fn+m is the empirical distribution function based on Yl, l = 1, . . . , n+m, and g > −1
2

is a number we may choose that mimics an extreme value index. Let the order statistics

of Ỹi, i = 1, . . . , n, be denoted by Ỹ1:n ≤ . . . ≤ Ỹn:n, and let ĝ be the pseudo-MLE of g

based on Ỹn−k:n, . . . , Ỹn:n, using the same k as before. Of course, since we choose and

hence know g, there is no direct need to estimate it. We will show below, however, that

the dependence of the difference ĝ − g and γ̂, helps to improve the estimator of γ in the

semi-supervised setting.

For the asymptotic theory, we assume that m = m(n) and

k →∞, k
n
→ 0,

√
n

n+m
→ ν ∈ (0, 1), as n→∞. (3.3)

We begin with establishing the joint asymptotic normality of γ̂ and ĝ, a crucial result for

deriving and showing asymptotic normality of our semi-supervised estimator (SSE) of γ.
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For that purpose we need the usual second order condition on the marginal distribution

F1. Let U1 = F−1
1 (1− 1/·) be the tail quantile corresponding to F1. We assume that there

exist a positive scale function a, a positive or negative function A, with lim
t→∞

A(t) = 0, and

ρ ≤ 0, such that for x > 0,

lim
t→∞

U1(tx)−U1(t)
a(t)

− xγ−1
γ

A(t)
= Ψ(x), γ ∈ R, (3.4)

where

Ψ(x) =


xγ+ρ−1
γ+ρ

, ρ < 0,

1
γ
xγ log x, γ 6= ρ = 0,

1
2

log2 x, γ = ρ = 0,

see de Haan and Ferreira (2006), p. 46.

Proposition 3.2.1 Assume γ > −1
2

and choose g > −1
2
.Assume that F2 is continuous,

(3.1), (3.3) and (3.4) hold, and
√
kA(n

k
) → λ ∈ R, as n → ∞, then with probability

tending to 1, there exist unique maximizers of the likelihood functions based on {Xi}ni=1

and {Ỹi}ni=1, denoted as (γ̂, ĝ), such that(√
k (γ̂ − γ) ,

√
k (ĝ − g)

)
d−→ N

([
λ(1 + γ)

(1− ρ)(1 + γ − ρ)
, 0

]
,Σ

)
where

Σ =

 (1 + γ)2 (1− ν2)(1 + γ)(1 + g)Rg

(1− ν2)(1 + γ)(1 + g)Rg (1− ν2)(1 + g)2

 ,
with

Rg = R(1, 1) +
g − γ

γ + g + 1

(
(2γ + 1)

∫ 1

0

R(s, 1)

s1−γ ds− (2g + 1)

∫ 1

0

R(1, t)

t1−g
dt

)
. (3.5)

Based on Proposition 3.2.1, we derive the SSE of γ. For this derivation only, take

λ = 0. Then the approximate bivariate normal distribution of (γ̂, ĝ − g), has mean [γ, 0]

and estimated covariance matrix

1

k
Σ̂ =

1

k

 (1 + γ̂)2 (1− n
n+m

)(1 + γ̂)(1 + g)R̂g

(1− n
n+m

)(1 + γ̂)(1 + g)R̂g (1− n
n+m

)(1 + g)2

 ,
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where R̂g is the estimator of Rg, obtained by replacing γ with γ̂ and the tail copula R

with its natural estimator

R̂(x, y) =
1

k

n∑
i=1

1[Xi≥Xn−[kx]+1:n,Yi≥Yn−[ky]+1:n], x, y ≥ 0, (3.6)

see, e.g., Drees and Huang (1998). Maximizing the thus obtained approximate likelihood

function of the single “data point” (γ̂, ĝ − g) with respect to the unknown γ we obtain as

SSE for γ:

γ̂g = γ̂ − 1 + γ̂

1 + g
R̂g(ĝ − g). (3.7)

Now we present the main result of this section, the asymptotic normality of the SSE.

Theorem 3.2.1 Under the conditions of Proposition 3.2.1, as n→∞,

√
k(γ̂g − γ)

d−→ N

(
λ(1 + γ)

(1− ρ)(1 + γ − ρ)
, (1 + γ)2

[
1− (1− ν2)R2

g

])
. (3.8)

Remark 3.2.1 Note that the asymptotic bias of the SSE γ̂g is the same as that of the

pseudo-MLE γ̂ (in Proposition 3.2.1). Therefore, when comparing both estimators we

can and will focus on the (relative) reduction of the asymptotic variance which is equal to

(1−ν2)R2
g. The value of the crucial Rg ∈ [−1, 1] depends on the known g and the unknown

γ and R. Note that Rg can indeed be positive, zero, or negative and Rg can exceed R(1, 1)

even when R is symmetric in its arguments. Nevertheless it is appealing to consider g = γ,

reducing Rg to R(1, 1). Since γ is unknown, this would lead to the choice g = γ̂. However

the simulation results show that this random g is often not the best option in terms of the

reduction of variance compared to a deterministic g not too far away from γ. Also observe

that when g is close to γ and R is symmetric, then Rg−R(1, 1) is of order (g−γ)2, that is,

the variance reduction does not change much with the choice of g and is close to R(1, 1).

We will see in Section 4 through simulations that the variance reduction is substantial in

“standard” semi-supervised settings.
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3.3 Main results: multiple covariates

In this section we consider the more general situation with d− 1 covariates where d > 2.

Consider a d-variate distribution F , with marginals F1, . . . , Fd. We assume again that

(only) F1 is in the max-domain of attraction of an extreme-value distributionGγ. Let F− be

the distribution function of the last d−1 components of a random vector with distribution

function F. Let (X1, Y1,2, . . . , Y1,d) , . . . , (Xn, Yn,2, . . . , Yn,d) be a random sample of size n

from F and let (Yn+1,2, . . . , Yn+1,d) , . . . , (Yn+m,2, . . . , Yn+m,d) be a random sample of size m

from F−, independent of the d-variate random sample of size n. This is the multivariate

semi-supervised setting.

Then, for fixed j = 2, . . . , d, we use all data for the covariates {Yi,j}n+m
i=1 to obtain{

Ỹi,j

}n
i=1

as in (3.2), where we may choose a number g > −1
2
, that mimics an extreme

value index, as before. For k ∈ {1, . . . , n − 1}, let, similarly as in the previous section, γ̂

and ĝj, j = 2, . . . , d, be the pseudo-MLEs of γ and (d−1 times) of g, respectively. Assume

the existence of the tail copula Rij of the ith and the jth component,

Rij(x, y) = lim
t↓0

1

t
P (1− Fi(Y1,i) ≤ tx, 1− Fj(Y1,j) ≤ ty) , (3.9)

where (x, y) ∈ [0,∞]2 \ {(∞,∞)}, 1 ≤ i, j ≤ d. Here Y1,1 is understood as X1. Again, we

first consider the joint asymptotic normality of γ̂, and ĝj, j = 2, . . . , d.

Proposition 3.3.1 Assume γ > −1
2

and choose g > −1
2
. Assume that Fj, j = 2, . . . , d,

is continuous, (3.3), (3.4), and (3.9) hold, and as n → ∞,
√
kA(n

k
) → λ ∈ R, then with

probability tending to 1, there exist unique maximizers of the likelihood functions based on

{Xi}ni=1, {Ỹi,2}ni=1, . . ., {Ỹi,d}ni=1, denoted as (γ̂, ĝ2, . . . , ĝd), such that

(√
k(γ̂ − γ),

√
k(ĝ2 − g), . . . ,

√
k(ĝd − g)

)
d−→ N

([
λ(γ + 1)

(1− ρ)(1 + γ − ρ)
, 0, . . . , 0

]
,Σd

)
,
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with Σd = ΓΓT ◦H (”◦” is the Hadamard or entrywise product), where

Γ =



1 + γ

1 + g

.

.

.

1 + g


, H =



1 h12 . . . h1d

h12 1− ν2 . . . h2d

. . . .

. . . .

. . . .

h1d h2d . . . 1− ν2


,

h1i = (1−ν2)
[
R1i(1, 1) + g−γ

γ+g+1

[
(2γ + 1)

∫ 1

0
R1i(s,1)
s1−γ

ds− (2g + 1)
∫ 1

0
R1i(1,t)
t1−g

dt
]]
, and hij =

(1− ν2)Rij(1, 1), i = 2, . . . , d, j = i+ 1, . . . , d.

Very similar to the bivariate case, let λ = 0 and derive the SSE of γ by using the ap-

proximate multivariate normal distribution of (γ̂, ĝ2−g, . . . , ĝd−g), with mean [γ, 0, . . . , 0],

and variance 1
k
Σ̂d = 1

k
Γ̂Γ̂T ◦ Ĥ, where for the estimation of Rij, R̂ij is defined like in (3.6).

By maximizing the approximate likelihood function of (γ̂, (ĝ2−g), . . . , (ĝd−g)) with respect

to γ, we obtain the SSE in this multivariate setting:

γ̂g = γ̂ +
1 + γ̂

1 + g

d∑
j=2

Ĥ−1
1j

Ĥ−1
11

(ĝj − g), (3.10)

where Ĥ−1
ij is the entry in the ith row and jth column of the inverse of the matrix Ĥ. The

following theorem shows the asymptotic behavior of the improved estimator γ̂g.

Theorem 3.3.1 Assume that H is invertible. Then under the conditions of Proposition

3.3.1, as n→∞,
√
k(γ̂g − γ)

d−→ N

(
λ(1 + γ)

(1− ρ)(1 + γ − ρ)
, σ2

)
, (3.11)

where

σ2 = (1 + γ)2

(
1 +

1

(H−1
11 )2

[
2

d∑
i=1

d∑
j=i+1

H−1
1i H

−1
1j hij + (1− ν2)

d∑
j=2

(H−1
1j )2

])
.
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3.4 Simulation study

In this section we perform for the one-covariate setting a simulation study. First we

investigate the finite sample performance of our novel SSE of γ and then we compare in

detail the variances of the SSE with those of the pseudo-MLE based on Xn−k:n, . . . , Xn:n

only. In addition, we estimate an extreme quantile by substituting the SSE γ̂g and a

similar SSE σ̂g of the scale a, in the generic formula of the extreme quantile estimator.

Again, we compare the variances of this SSE and the classical estimator based on the

pseudo-MLEs of γ and a.

We begin with simulating data from the bivariate Cauchy distribution restricted to the

first quadrant. This Cauchy density is proportional to

(1 + xS−1xT )−3/2

where S is a 2× 2 scale matrix with 1 on the diagonal and s off-diagonal. For s we take

two values: 0 and 0.8. These data are denoted by (X̌i, Yi). To obtain our data (Xi, Yi),

where the Xi have extreme value index γ, we transform the X̌i, as follows

Xi =


(1−Fs(X̌i))−γ−1

γ
, γ 6= 0,

− log(1− Fs(X̌i)), γ = 0,

where Fs is the distribution function of X̌i. Simulations are performed for values of γ that

are negative, positive or 0.

First, we generate 500 samples of sizes n = 500,m = 1000, for s = 0.8, and estimate γ

using the SSE and the pseudo-MLE for k = 1, . . . , 499. We depict the root mean squared

error (RMSE) based on these 500 samples as a function of k. We consider γ = −0.25, 0,

and, 0.25, and take g = 0. The RMSE of the SSE (indicated by AMLE in Figure 3.1) is

indeed substantially lower than that of the pseudo-MLE for the different values of γ.

Next, we focus on the (relative) variance reduction of the SSE in comparison to the

pseudo-MLE. We use the following values of n and m (and k):
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Figure 3.1: RMSE using the pseudo-MLE and the SSE-MLE. From left to right: γ =

−0.25, 0, 0.25.

• n = 1000, m = 500 (less unlabeled than labeled data) and k = 250,

• n = 1000, m = 1000 (equal number of unlabeled and labeled data) and k = 250,

• n = 500, m = 1000 (more unlabeled than labeled data) and k = 125.

Table 3.1 shows the empirical percentages of variance reduction for different values of

γ and g. The results are based on 10, 000 replications. We observe that the variance

reduction ranges from 10% to more than 30%, hence indeed the SSE has a substantially

smaller variance than the pseudo-MLE. By comparing the three panels, we observe that

the variance reduction increases substantially with the ratio of the number of unlabeled
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data m and the number of labeled data n, which is in line with the asymptotic theory.

Observe that the actual choice of g does not have a large influence as long as it is somewhat

close to γ, a choice that is in practice often feasible.

Table 3.1: Variance reduction for different extreme value indices

(i) (n,m) = (1000, 500)

g γ

−0.3 −0.2 −0.1 0

−0.25 13.8% 14.0% 13.4% 12.0%

−0.125 12.6% 14.2% 14.8% 14.1%

0 10.4% 13.0% 14.6% 15.4%

g γ

0 0.1 0.2 0.3

0 15.4% 15.6% 15.4% 14.8%

0.125 15.3% 15.9% 16.1% 15.8%

0.25 14.7% 15.5% 16.1% 16.4%

(ii) (n,m) = (1000, 1000)

−0.3 −0.2 −0.1 0

−0.25 20.2% 21.1% 20.5% 18.8%

−0.125 18.9% 21.5% 22.4% 22.0%

0 16.3% 19.9% 22.3% 23.6%

0 0.1 0.2 0.3

0 23.6% 23.5% 23.1% 22.2%

0.125 23.4% 24.1% 24.3% 25.0%

0.25 22.4% 23.7% 24.6% 24.6%

(iii) (n,m) = (500, 1000)

−0.3 −0.2 −0.1 0

−0.25 22.4% 25.8% 25.7% 24.5%

−0.125 21.6% 26.2% 28.0% 28.0%

0 18.6% 24.6% 28.1% 30.8%

0 0.1 0.2 0.3

0 30.8% 30.2% 29.9% 29.4%

0.125 31.0% 30.4% 31.0% 30.8%

0.25 30.0% 30.1% 31.4% 31.5%

Next we investigate in more detail the sensitivity of the variance reduction to the choice

of g using a wider range of values of g, including cases where γ and g have opposite sign

and the case where g = γ̂. In these simulations, we take s = 0 for the bivariate Cauchy

distribution. The results, based on 10, 000 replications, for the aforementioned values of

n,m and k are presented in Figure 3.2. Generally, there is always variance reduction, but

for |g − γ| relatively large the reduction is lower than when g is closer to γ. Additionally
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the choice of g = γ̂ often does not result in a better reduction than using fixed g. Observe

that for the present range of γ (−0.3 to 0.3) the choice g = 0 yields an almost maximal

variance reduction.

Figure 3.2: Variance reduction for various combinations of γ and g

(i) (n,m) = (1000, 500), k = 250

(ii) (n,m) = (1000, 1000), k = 250

(iii) (n,m) = (500, 1000), k = 125
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Finally we study in more detail the effect of the size of m, the number of unlabeled

data, on the variance reduction; again we take s = 0. We consider the case where n = 500

and let m vary; we choose g = 0. The results are based on 500 replications. Table 3.2

shows that the variance reduction approximately doubles when m ranges from 500 to

10, 000.

Table 3.2: Variance reduction for different numbers of unlabeled data m

m γ

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

500 6.0% 8.3% 9.6% 11.4% 11.7% 11.9% 11.8%

1000 8.7% 12.3% 14.4% 15.6% 12.9% 13.0% 15.5%

5000 11.2% 16.4% 19.5% 22.5% 21.8% 22.0% 21.7%

10000 11.9% 17.5% 20.8% 24.6% 23.0% 23.2% 22.9%

The last part of this section is devoted to extending the semi-supervised estimation

approach to scale estimation and in particular to extreme quantile estimation. Here we

confine ourselves to the choice g = 0. The scale a = a(n/k) can be estimated with σ̂,

based on Xn−k:n, . . . , Xn:n; see Section 3.4 in de Haan and Ferreira (2006) for definitions

and results. Somewhat similar to the derivation of the SSE γ̂g, the SSE of the scale can

be derived as:

σ̂0 = σ̂
(

1− Ŝ0(σ̃0 − 1)
)
,

where σ̃0 is the pseudo-MLE of the scale parameter (which is equal to 1) based on

Ỹn−k:n, . . . , Ỹn:n, and

Ŝ0 =
1

2

(
(3γ̂0 − 1)

∫ 1

0

R̂(1, t)

t
dt+ γ̂0

∫ 1

0

R̂(1, t)

t
log tdt

−(2γ̂0 + 1)2

∫ 1

0

R̂(s, 1)

s1−γ̂0
ds+ 2(γ̂0 + 2)R̂(1, 1)

)
.

For very small p ∈ (0, 1), an extreme quantile is defined to be xp = F−1
1 (1 − p). It is
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usually estimated by

x̂p = Xn−k:n + σ̂
( k
np

)γ̂ − 1

γ̂
, (3.12)

see Section 4.3 in de Haan and Ferreira (2006). Using our SSEs of γ and a, we define the

SSE of xp as

x̂p0 = Xn−k:n + σ̂0

( k
np

)γ̂0 − 1

γ̂0

. (3.13)

Note that the estimators σ̂0 and x̂p0 are obtained for g = 0. In Chapter 4, the two estimators

are introduced for all values of g, in both bivariate and multivariate settings. We further

derive the asymptotic normality of each estimator under general g ∈ R.

For n and m as in Table 1, we again simulate 10, 000 times from the bivariate Cauchy

distribution with s = 0. For γ ranging from −0.3 to 0.3, we aim to estimate the ex-

treme quantile xp for p = 1
n
. Table 3.3 shows the reduction in the variance of γ̂0, σ̂0,

and x̂p,0, respectively, when compared with the pseudo-MLE estimators based on only

Xn−k:n, . . . Xn:n. Remarkably, the variance reduction when estimating the extreme quan-

tile xp ranges from 15% to more than 30%. It is much higher than the reductions when

estimating γ or a and in almost all cases it even exceeds the sum of both reductions. To

conclude this simulation section we briefly compare the here obtained sizeable variance

reductions with the reductions (1− ν2)R2
g obtained from the asymptotic theory. It turns

out that for the present sample sizes, when estimating γ, the asymptotic theory yields

even higher reductions than the ones here obtained, partly due to the variability in the

necessary estimation of the tail copulas, which is not reflected in the asymptotic variance.

Based on limited comparisons it seems that for positive γ, asymptotic theory and sim-

ulations match somewhat better than in case γ is negative. Interestingly, we can show

that for γ ≥ 0 the asymptotic variance reduction of the extreme quantile estimator x̂p,0

is the same as that of γ̂0, cf. Theorem 4.3.1 in de Haan and Ferreira (2006). Now Table

3.3 indicates that for the important extreme quantile estimation, the variance reductions

obtained in practice can be even higher than those inferred from the asymptotic theory.
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Table 3.3: Variance reduction

γ −0.3 −0.2 −0.1 0 0.1 0.2 0.3

γ̂0 vs. γ̂ n > m 6.6% 7.6% 9.3% 8.9% 9.9% 9.8% 9.5%

n = m 9.4% 12.0% 13.6% 13.1% 14.5% 13.1% 13.9%

n < m 8.7% 12.9% 14.5% 16.4% 16.5% 16.8% 16.6%

σ̂0 vs. σ̂ n > m 4.5% 4.7% 5.4% 4.8% 5.5% 5.4% 5.3%

n = m 6.1% 7.0% 7.5% 6.7% 7.8% 7.7% 7.6%

n < m 6.1% 8.1% 8.4% 8.1% 8.9% 8.9% 8.7%

x̂p,0 vs. x̂p n > m 15.7% 15.8% 17.5% 16.0% 16.3% 15.6% 14.9%

n = m 22.6% 25.3% 25.2% 23.5% 23.4% 22.3% 21.2%

n < m 27.6% 30.6% 32.5% 31.2% 31.6% 31.0% 30.5%

3.5 Application

In this section, we demonstrate an application using the SSE for analyzing forecasted

precipitation data.

The national French weather service, Météo France, produces daily forecasted precip-

itation (in mm) at very high resolution (0.1◦ × 0.1◦) covering the mainland of France,

between 2012 and 2017. To improve the forecasting model, meteorologists want to check

if the forecasted precipitation shares the same distribution as the observed precipitation

at the same location, particularly in the right tail. Consequently, the goal of this study

is to estimate quantities such as the extreme value index and extreme quantiles of the

forecasted precipitation distribution. We focus on forecasting grid points that are close to

an actual weather station.

Besides the forecasted precipitation, Météo France records at 123 weather stations the

actual daily precipitation, between 1980 and 2017. We pair each weather station with

a forecasting grid point that is closest to the station, and regard the two as the same
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location. When focusing on the fall seasons (91 days per year), at the 123 locations, we

have 38 years actual precipitation data (3458 observations) with the last 6 years paired with

forecasting data (546 observations). For the last 6 years, the paired data are dependent

since the forecasting data are made to forecast the precipitation at the same location

on the same day. Part of this dataset has been employed in a study comparing the

spatial dependence structure of extreme forecasted precipitation and extreme observed

precipitation in southern France; see Oesting and Naveau (2020).1

Since it is challenging to conduct extreme value analysis, such as extreme quantile

estimation, for the forecasted precipitation based on only 546 observations, we make use

of the available information in the actual precipitation to improve the estimation accuracy,

exploiting the semi-supervised setting. To validate that our proposed methodology can be

applied to the dataset, we perform two pre-tests on the actual precipitation data (3458

observations) at each station. Firstly, we test whether the actual precipitation at each

station possesses the same distribution across time, using the test statistic T2 proposed in

Einmahl et al. (2016) (with k = 200). Secondly, we test whether the extreme precipitation

at each station can be regarded as independent over time, based on testing whether the

extremal index is significantly different from 1, using the sliding block estimator proposed

in Berghaus and Bücher (2018) (with b = 80). We exclude all stations for which any of

the two tests rejects the null at the 5% significance level. Eventually, for 91 stations both

null hypotheses are not rejected, and we apply our proposed method to these 91 stations.

We use the SSE γ̂g with g = 0 to estimate the extreme value index, and compare it

with the pseudo-MLE γ̂. For both estimators, we take k = 136. In particular, we estimate

the variance reduction factor (1−ν2)R2
g to evaluate the improvement when using the SSE.

In addition, we estimate the “once per 10 year” extreme rainfall, i.e. the quantile at the

probability level 1− 1/910, by (3.12) and (3.13), to compare the impact of using the SSE

on practically relevant quantities.

1We thank Marco Oesting and Philippe Naveau for providing this dataset.
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Table 3.4 shows the results for three selected stations. We select the three stations

from very distant areas: one from the south, one from the northwest, and one from the

southwest.2 For the station from the south, Nı̂mes, the estimated extreme value index is

positive indicating a heavy-tailed distribution. The reduction in variance is estimated at

16%. The difference of the two estimates of the extreme value index leads to a substantial

difference in the quantile estimates: the quantile estimated using the SSE exceeds the

usual quantile estimate with roughly 50%. In contrast, for the station in the northwest,

Boulogne sur Mer, the estimated extreme value index is about zero. The difference between

the two point estimates is small, with the SSE having 17.5% variance reduction. The two

quantile estimates are about the same. Finally, for the station in the southwest, Ciboure,

both estimators lead to negative estimates, although not significantly different from zero.

The variance reduction is at a pronounced level: 23.3%. The quantile estimate using the

SSE is somewhat lower than the usual one.

Table 3.4: Estimation results for three stations

γ̂ (MLE) Quantile γ̂0 (SSE) Quantile SSE Reduction Station LAT LON

0.358 114.85 0.517 167.82 16.0% Nı̂mes 43.86 4.41

−0.002 38.29 −0.018 37.07 17.5% Boulogne s.M. 50.73 1.60

−0.056 59.32 −0.088 56.36 23.3% Ciboure 43.39 −1.69

To further analyze the variance reduction factor, we plot the histogram of the estimated

variance reduction factors across all 91 locations in Figure 3.3. The variance reduction

using the SSE compared to the pseudo-MLE ranges from 9% to 25%, and is on average

16.3%. This confirms the improved performance of the SSE for the forecasted precipitation

data.

2The last two columns show the latitude and longitude of each station.
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Figure 3.3: Histogram of the variance reduction factor across 91 stations

3.6 Proofs

We first present proofs for the one-covariate (bivariate) case and then extend the proofs

to the multivariate case. The asymptotic normality for
√
k(γ̂ − γ), the first component

of the pair in Proposition 3.2.1, is established in Drees et al. (2004). However, we cannot

directly use that proof, since we have to keep track of the joint behavior of γ̂ and ĝ.

Nevertheless, we mimic that proof for both γ̂ and ĝ, with observing that ĝ is based on

dependent observations. In this respect the proof has to be adapted substantially. We

begin with various lemmas which are needed for the main proofs.

Let C be a copula corresponding to the distribution function of (−X1,−Y1). Let

(V1,1, V1,2), . . . , (Vn,1, Vn,2) be a random sample of size n from C and Vn+1,2, . . . , Vn+m,2 be a

random sample of size m from the uniform-(0, 1) distribution, independent of the random

sample from C. Clearly all the Vi,j, i = 1, . . . , n, j = 1, 2, have also a uniform-(0, 1) distri-

bution. Write Xi = F−1
1 (1 − Vi,1), i = 1, . . . , n, and Yl = F−1

2 (1 − Vl,2), l = 1, . . . , n + m.

Then (Xi, Yi), i = 1, . . . , n, and Yn+1, . . . , Yn+m have the distributions as specified in the
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beginning of Section 3.2.

Consider the following uniform empirical distribution functions:

Γn,j(s) =
1

n

n∑
i=1

1[0,s](Vi,j), 0 ≤ s ≤ 1, j = 1, 2,

Γn+m(t) =
1

n+m

n+m∑
l=1

1[0,t](Vl,2), 0 ≤ t ≤ 1.

The corresponding uniform tail empirical processes are

wn,j(s) =
√
k

[
n

k
Γn,j

(
k

n
s

)
− s
]
, 0 ≤ s ≤ 1, j = 1, 2,

wn+m(t) =

√
(n+m)k

n

[
n

k
Γn+m

(
k

n
t

)
− t
]
, 0 ≤ t ≤ 1.

Define the Gaussian vector of processes (W1,W2,W3), where Wj, j = 1, 2, 3, is a standard

Wiener process on [0, T ], T > 0, with covariances:

Cov(W1(s),W2(t)) = R(s, t), 0 ≤ s, t ≤ T,

Cov(W1(s),W3(t)) = νR(s, t), 0 ≤ s, t ≤ T, (3.14)

Cov(W2(s),W3(t)) = ν(s ∧ t), 0 ≤ s, t ≤ T.

Let I denote the identity function. Then we have on (D[0, T ])3, for all 0 ≤ δ < 1
2
, as

n→∞, (wn,1
Iδ

,
wn,2
Iδ

,
wn+m

Iδ

)
d−→
(
W1

Iδ
,
W2

Iδ
,
W3

Iδ

)
. (3.15)

The proof of (3.15) is given in Ahmed and Einmahl (2019); note that in there T = 1, but

the proof for arbitrary T > 0 follows similarly. Now using a Skorohod construction we

obtain from (3.15) that

sup
0<s≤T

|wn,j(s)−Wj(s)|
sδ

a.s.−−→ 0, j = 1, 2, and sup
0<s≤T

|wn+m(s)−W3(s)|
sδ

a.s.−−→ 0. (3.16)

The processes in (3.16) are different from those in (3.15) but we keep the same notation,

since the new vector (wn,1, wn,2, wn+m) has the same distribution as the old vector and also
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the new vector (W1,W2,W3) has the same distribution as the old vector. In the sequel the

Xi and Yi are transformations as above of the uniform-(0,1) random variables on which

the wn,j are based. We continue with the processes satisfying (3.16).

For convenience we introduce the following notation. Let fn, hn be positive functions

on [ln, un]. Then we write, as n→∞,

fn
P� hn|unln ,

if both fn(s) = OP(hn(s)) and hn(s) = OP(fn(s)) hold uniformly for s ∈ [ln, un]. This

notation is useful for the following lemma, which can found in Shorack and Wellner (2009),

p. 419.

Lemma 3.6.1 Let Γ−1
n,j, j = 1, 2, be the empirical quantile functions corresponding to

Γn,j, j = 1, 2, respectively. Then, as n→∞,

Γn,j
P� I|1

Γ−1
n,j(1/(2n))

and Γ−1
n,j

P� I|11/(2n), j = 1, 2.

The following lemma states the weighted convergence of the tail quantile processes corre-

sponding to Γ−1
n,j, j = 1, 2, to the processes −W1 and −W2 in (3.16).

Lemma 3.6.2 Let Γ−1
n,j, be the empirical quantile functions corresponding to wn,j, j = 1, 2,

in (3.16) and let Wj be as in (3.16), j = 1, 2. Then for any δ < 1
2
, as n→∞,

sup
1
2k
≤s≤1

|
√
k(n

k
Γ−1
n,j(

k
n
s)− s) +Wj(s)|
sδ

P−→ 0. (3.17)

Proof of Lemma 3.6.2: Write vn,j(s) =
√
k(n

k
Γ−1
n,j(

k
n
s) − s), j = 1, 2. Theorem 2.3 in

Einmahl (1992) yields, as n→∞,

sup
1
2k
≤s≤1

|vn,j(s)−Wn,j(s)|
sδ

P−→ 0, (3.18)
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where Wn,j is an appropriate sequence of standard Wiener processes. Let W be a standard

Wiener process and let ε > 0. It is well-known that there exist an η > 0, such that

P
(

sup
0<s≤η

|W (s)|
sδ

≥ ε

2

)
≤ ε

2
. (3.19)

Combining (3.18) and (3.19) yields, for large n,

P

(
sup

1
2k
≤s≤η

|vn,j(s)|
sδ

≥ ε

)
≤ ε. (3.20)

Combining (3.19), (3.20), (3.16), and Lemma 1 in Vervaat (1972), yields (3.17). �

The next lemma is very similar to Lemma 3.1 in Drees et al. (2004), but the lemma

therein cannot be used here because we need specifically the approximation with the

present W1 in order to obtain the joint behavior of γ̂ and ĝ.

Lemma 3.6.3 Let ε > 0. Assume that (3.3) and (3.4) hold and
√
kA(n

k
) = O(1), as

n→∞. Then for suitably chosen functions a and A in (3.4), as n→∞,

sup
1
2k
≤s≤1

sγ+1/2+ε

∣∣∣∣√k(Xn−[ks]:n − U1(n
k
)

a(n
k
)

− s−γ − 1

γ

)
− s−γ−1W1(s)−

√
kA
(n
k

)
Ψ(s−1)

∣∣∣∣ P−→ 0.

Proof of Lemma 3.6.3: From (3.4) we obtain inequality (2.3.17) in de Haan and Ferreira

(2006): for any θ, δ > 0 to be specified later, there exists t0 = t0(θ, δ) such that for all

t, tx ≥ t0, ∣∣∣∣∣
U1(tx)−U1(t)

a(t)
− xγ−1

γ

A(t)
−Ψ(x)

∣∣∣∣∣ ≤ θxγ+ρ max(xδ, x−δ).

We replace tx by 1/Γ−1
n,1( k

n
s) and t by n

k
. Then we have, writing š = n

k
Γ−1
n,1

(
k
n
s
)
, with

probability tending to 1, as n→∞,∣∣∣∣Xn−[ks]:n − U1(n
k
)

a(n
k
)

− š−γ − 1

γ
− A

(n
k

)
Ψ
(
š−1
)∣∣∣∣ ≤ ∣∣∣A(nk)∣∣∣ θš−γ−ρ ·max(š−δ, šδ).

(3.21)

Define f(s) = s−γ−1
γ

. Then by a Taylor expansion for some Θ̌n(s) between š and s we

have

f (š)− f(s) = f ′(s) (š− s) +
f ′′(Θ̌n(s))

2
(š− s)2 .
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Lemma 3.6.1 implies Θ̌n
P� I|11

2k

and thus f ′′
(
Θ̌n

) P� I−γ−2|11
2k

. Next, by Lemma 3.6.2 and

the fact that for all δ1 <
1
2
, sup0≤s≤1 |W1(s)|/sδ1 = OP(1), we have that, as n→∞,

sup
1
2k
≤s≤1

(š− s)2 /s2δ1 = OP

(
1

k

)
.

This and again Lemma 3.6.2 with δ = δ1 yield, as n→∞, uniformly for all 1
2k
≤ s ≤ 1,

f (š)− f(s) = −s−γ−1 1√
k

(
−W1(s) + sδ1oP(1)

)
+ s−γ−2+2δ1OP

(
1

k

)
.

Choose δ1 such that 1−ε
2
< δ1 <

1
2
. Then δ1 >

1
2
− ε and 2δ1 + ε > 1. Hence, as n→∞,

sup
1
2k
≤s≤1

s−
3
2

+ε+2δ1 ≤ max
(

1, (2k)
3
2
−ε−2δ1

)
= o(
√
k).

Therefore, as n→∞, uniformly for all 1
2k
≤ s ≤ 1,

f(š) = f(s) +
1√
k
s−γ−1

(
W1(s) + sδ1oP(1) + s−1+2δ1OP

(
1√
k

))
(3.22)

= f(s) +
1√
k
s−γ−1

(
W1(s) + s1/2−ε

(
sδ1−1/2+εoP(1) + s−3/2+ε+2δ1OP

(
1√
k

)))
=
s−γ − 1

γ
+

1√
k
s−γ−1

(
W1(s) + s1/2−εoP(1)

)
.

From the mean value theorem, for some Θn(s) between š and s

Ψ
(
š−1
)

= Ψ(s−1)−Ψ′(1/Θn(s))(Θn(s))−2 (š− s) .

As above, Θn
P� I|11

2k

, which implies that as n→∞, uniformly for 1
2k
≤ s ≤ 1,∣∣Ψ′(1/Θn(s))(Θn(s))−2

∣∣ = s−γ−ρ−1(1 + | log s|)OP(1).

Hence, using Lemma 3.6.2 with δ = δ1 (as above), we have uniformly for 1
2k
≤ s ≤ 1,

A
(n
k

) (
Ψ(š−1)−Ψ(s−1)

)
=

1√
k
A
(n
k

)
s−γ−ρ−1+δ1(1 + | log s|)OP(1).

With δ1 chosen as above, we have that as n→∞, uniformly for 1
2k
≤ s ≤ 1,

A
(n
k

)
Ψ(š−1) = A

(n
k

)
Ψ(s−1) +

1√
k
s−γ−ε−

1
2 oP(1). (3.23)
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Next consider the right-hand side of (3.21), where we take δ < 1/2. Using Lemma

3.6.1, it can be bounded, uniformly for 1
2k
≤ s ≤ 1, by

θ
∣∣∣A(n

k

)∣∣∣ s−γ−ρ−δOP(1) = θ
√
k
∣∣∣A(n

k

)∣∣∣ 1√
k
s−γ−δOP(1)

= θ
1√
k
s−γ−ε−1/2sε+1/2−δOP(1) = θ

1√
k
s−γ−ε−1/2OP(1). (3.24)

Now, plugging (3.22), (3.23), and (3.24) into inequality (3.21) and noting that θ > 0

can be chosen arbitrarily small, we obtain the statement in the lemma. �

Define

Zn(s) =
√
k

(
Xn−[ks]:n −Xn−k:n

a(n
k
)

− s−γ − 1

γ

)
.

Then for functions a and A as in Lemma 3.6.3, for any ε > 0, uniformly for 1
2k
≤ s ≤ 1,

Zn(s) = s−γ−1W1(s)−W1(1) +
√
kA
(n
k

)
Ψ(s−1) + oP(1)s−γ−1/2−ε.

Hence for γ > −1
2
,

sup
1
2k
≤s≤1

sγ+1/2+ε|Zn(s)| = OP(1). (3.25)

Proposition 3.6.1 Under the conditions of Lemma 3.6.3, for γ > −1
2

and and γ 6= 0,

with probability tending to 1, there exists a unique maximizer of the likelihood function

based on {Xi}ni=1 denoted as γ̂, such that as n→∞,

√
k(γ̂ − γ)− (γ + 1)2

γ

∫ 1

0

(sγ − (2γ + 1)s2γ)Zn(s)ds = oP(1),

and, for γ = 0,
√
kγ̂ +

∫ 1

0

(2 + log s)Zn(s)ds = oP(1).

Proof of Proposition 3.6.1: The existence of γ̂ follows from Theorem 4.1 in Zhou

(2009). Then, using Lemma 3.6.3 and (3.25) above in conjunction with Lemma 3.2 in

Drees et al. (2004). the result is obtained following the same steps as in the proof of

Proposition 3.1 in Drees et al. (2004). �
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To study the asymptotic behavior of ĝ we need the following result. Define

w̃n(s) =
n√
k

(
Γn+m

(
Γ−1
n,2

(
k

n
s

))
− k

n
s

)
and W̃ (s) = νW3(s)−W2(s).

Lemma 3.6.4 Assume that F2 is continuous and k satisfies (3.3), then for any 0 ≤ δ < 1
2
,

as n→∞,

sup
1
2k
≤s≤1

|w̃n(s)− W̃ (s)|
sδ

P−→ 0.

Proof of Lemma 3.6.4: We have

w̃n(s) =

√
n

n+m
wn+m

(
n

k
Γ−1
n,2

(
k

n
s

))
+

n√
k

(
Γ−1
n,2

(
k

n
s

)
− k

n
s

)
.

Define ŝ = n
k
Γ−1
n,2( k

n
s). From Lemma 3.6.2 with j = 2, (3.3) and (3.19), we see that it

suffices to show that, as n→∞,

sup
1
2k
≤s≤1

|wn+m(ŝ)−W3(s)|
sδ

P−→ 0. (3.26)

Let s0 ∈ (0, 1). We first handle the region s ≥ s0. Obviously we have 1/sδ ≤ 1/sδ0. By

Lemma 3.6.2, as n→∞,

sup
1
2k
≤s≤1

|ŝ− s| P−→ 0. (3.27)

Using this, (3.16), and the uniform continuity of W3 we obtain, as n→∞,

sup
s0≤s≤1

|wn+m(ŝ)−W3(s)|
sδ

P−→ 0.

It remains to show that for ε > 0 there exists s0 ∈ (0, 1) such that for large n

P

(
sup

1
2k
≤s≤s0

|wn+m(ŝ)−W3(s)|
sδ

≥ 3ε

)
≤ 3ε.

Using again (3.19), for this it suffices to show that

P

(
sup

1
2k
≤s≤s0

|wn+m(ŝ)|
sδ

≥ 2ε

)
≤ 2ε.
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Using Lemma 3.6.1, the proof is complete if we show that for all ε > 0, κ > 0 there exists

s0 ∈ (0, 1) such that for large n

P

(
sup

1
2k
≤s≤s0

|wn+m(ŝ)|
ŝδ

≥ 2κ

)
≤ ε.

We have

P

(
sup

1
2k
≤s≤s0

|wn+m(ŝ)|
ŝδ

≥ 2κ

)
≤ P

(
sup

0<t≤2s0

∣∣∣∣wn+m(t)

tδ

∣∣∣∣ ≥ κ

)
+ P(ŝ > 2s0).

From (3.16) and (3.19), we have that for small enough s0 ∈ (0, 1) the first term on the

right is bounded by ε/2 for large n, and using (3.27) we obtain that the second term on

the right also does not exceed ε/2 for large n. �

In the following we prove a result for the tail quantile process based on {Ỹi}ni=1 instead

of {Xi}ni=1. The proof of the next lemma uses Lemma 3.6.4, which is very similar to but

easier than that of Lemma 3.6.3, and hence will be omitted.

Lemma 3.6.5 Let ε > 0. Assume that F2 is continuous and that (3.3) holds, then, as

n→∞,

sup
1
2k
≤s≤1

sg+1/2+ε

∣∣∣∣∣∣√k

(
Ỹn−[ks]:n −

(n
k

)g−1

g

)
(
n
k

)g − s−g − 1

g

+ s−g−1W̃ (s)

∣∣∣∣∣∣ P−→ 0.

Define

Hn(s) :=
√
k

(
Ỹn−[ks]:n − Ỹn−k:n

(n
k
)g

− s−g − 1

g

)
.

Then for any ε > 0, uniformly for s ∈ [ 1
2k
, 1],

Hn(s) = W̃ (1)− s−g−1W̃ (s) + oP(1)s−g−1/2−ε.

Hence for g > −1
2
,

sup
1
2k
≤s≤1

sg+1/2+ε|Hn(s)| = OP(1). (3.28)

Next we show a version of Lemma 3.2 in Drees et al. (2004) based on {Ỹi}ni=1.

58



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 69PDF page: 69PDF page: 69PDF page: 69

Lemma 3.6.6 Assume that F2 is continuous and k satisfies (3.3). Let gn be a sequence

of random variables such that

gn = g +OP(k−1/2). (3.29)

Then, if −1/2 < g < 0 or g > 0, as n→∞,

P

(
1 + gn

Ỹn−[ks]:n − Ỹn−k:n

(n
k
)g

≥ Cns
−g, for all s ∈

[
1

2k
, 1

])
→ 1, (3.30)

for some random variables Cn > 0 such that 1/Cn = OP(1).

If g = 0, as n→∞,

P
(

1 + gn

(
Ỹn−[ks]:n − Ỹn−k:n

)
≥ 1

2
, for all s ∈

[
1

2k
, 1

])
→ 1, (3.31)

and

sup
s∈[0,1]

Ỹn−[ks]:n − Ỹn−k:n = OP(log k). (3.32)

Proof of Lemma 3.6.5: Consider first −1/2 < g < 0 or g > 0. Applying Lemma 3.6.1

to Γn+m and Γ−1
n,2 yields, as n→∞,

Γn+m

(
Γ−1
n,2

(
k

n
I

))
P� k

n
I|11

2k
.

Define Gn(s) = Γn+m(Γ−1
n,2( k

n
s)) + 1

2(n+m)
, s ∈ (0, 1]. Hence, as n→∞,

Gn
P� k

n
I|11

2k
. (3.33)

Observe that for g 6= 0

sg

(
1 + gn

Ỹn−[ks]:n − Ỹn−k:n

(n
k
)g

)
= sg

(
1 +

gn
g

[(Gn(s))−g − (Gn(1))−g]

(n
k
)g

)

=
gn
g

(
Gn(s)

(ks)/n

)−g
+ sg

[(
1−

(
Gn(1)

k/n

)−g)
−
(
gn
g
− 1

)(
Gn(1)

k/n

)−g]
=: T1(s) + sg[T2 − T3].
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From (3.33) and gn/g
P→ 1, we have that 1/ infs∈[1/(2k),1] T1(s) = OP(1), as n→∞. Lemma

3.6.4 for s = 1 yields that T2 = OP(1/
√
k) and hence, since g > −1/2, sups∈[1/(2k),1] s

g ·T2
P→

0. By the assumption on gn and again (3.33) we obtain similarly sups∈[1/(2k),1] s
g · T3

P→ 0.

This yields (3.30).

In case g = 0, for 1/(2k) ≤ s ≤ 1,

Ỹn−[ks]:n − Ỹn−k:n = − logGn(s) + logGn(1) ≤ 2 logAn − log s, (3.34)

with

An = max

(
sup

s∈[ 1
2k
,1]

Gn(s)
k
n
s
, sup
s∈[ 1

2k
,1]

k
n
s

Gn(s)

)
.

If gn ≥ 0, then 1 + gn

(
Ỹn−[ks]:n − Ỹn−k:n

)
≥ 1. If gn < 0, then for 1/(2k) ≤ s ≤ 1,

1 + gn

(
Ỹn−[ks]:n − Ỹn−k:n

)
≥ 1 + gn(2 logAn + log 2 + log k).

Since, as n → ∞, An = OP(1) and gn = OP(k−1/2), we obtain (3.31). Finally, the sup in

(3.32) is attained at s = 1/(2k). Hence, (3.34) yields (3.32). �

Finally, the following proposition provides the asymptotic behavior of the pseudo-MLE

based on {Ỹi}ni=1.

Proposition 3.6.2 Assume that F2 is continuous and k satisfies (3.3). For g > −1
2

and

g 6= 0, with probability tending to 1, there exists a unique maximizer of the likelihood

function based on {Ỹi}ni=1, denoted as ĝ, such that, as n→∞,

√
k(ĝ − g)− (g + 1)2

g

∫ 1

0

(sg − (2g + 1)s2g)Hn(s)ds = oP(1).

and, for g = 0,
√
kĝ +

∫ 1

0

(2 + log s)Hn(s)ds = oP(1).

Proof of Proposition 3.6.2: The existence of ĝ follows the same steps as in the proof

of Theorem 4.1 in Zhou (2009). Notice that although {Ỹi}ni=1 are not i.i.d. observations,
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Lemma 3.6.5 guarantees that statistics based on the tail quantile process of {Ỹi}ni=1, e.g.

the Hill estimator for g > 0, possess similar asymptotic behavior as in the i.i.d. case, with

the only difference that the random limit is driven by a proper functional of W̃ instead.

Such asymptotic expansions are sufficient to ensure that the steps in the proof of Theorem

4.1 in Zhou (2009) can be realized. �

Then, by using Lemma 3.6.5, (3.28), and Lemma 3.6.6 and following the proof of

Proposition 3.1 in Drees et al. (2004), we get the analogous result as in Proposition 3.6.1.

Proof of Proposition 3.2.1: Combining (3.16), Propositions 3.6.1 and 3.6.2 we

obtain, as n→∞, (√
k(γ̂ − γ),

√
k(ĝ − g)

)
d−→
(

Ω, Ω̃
)
,

where

Ω =
(γ + 1)2

γ

∫ 1

0

(sγ − (2γ + 1)s2γ)(s−γ−1W1(s)−W1(1))ds+
λ(γ + 1)

(1− ρ)(1 + γ − ρ)

and

Ω̃ =
(g + 1)2

g

∫ 1

0

(tg − (2g + 1)t2g)(W̃ (1)− t−g−1W̃ (t))dt.

Since the Wiener processes involved have mean zero, we obtain immediately the mean of

the limiting pair. Also the individual variances of the limiting pair follow readily, see Drees

et al. (2004). It remains to determine the covariance. Note that Cov(W1(s),−W̃ (t)) =

(1− ν2)R(s, t). We have that

Cov(Ω, Ω̃) = (1− ν2)
(γ + 1)2(g + 1)2

γg

·
∫ 1

0

∫ 1

0

(sγ − (2γ + 1)s2γ)(tg − (2g + 1)t2g)(
R(s, t)

sγ+1tg+1
− R(s, 1)

sγ+1
− R(1, t)

tg+1
+R(1, 1))dsdt

= (1− ν2)
(γ + 1)2(g + 1)2

γg

∫ 1

0

∫ 1

0

(
1

st
− (2g + 1)

st1−g
− (2γ + 1)

s1−γt
+

(2γ + 1)(2g + 1)

s1−γt1−g

)
R(s, t)

−
(
tg

s
− (2g + 1)t2g

s
− (2γ + 1)tg

s1−γ +
(2γ + 1)(2g + 1)t2g

s1−γ

)
R(s, 1)

−
(
sγ

t
− (2g + 1)sγ

t1−g
− (2γ + 1)s2γ

t
+

(2γ + 1)(2g + 1)s2γ

t1−g

)
R(1, t)

+
(
sγtg − (2g + 1)sγt2g − (2γ + 1)s2γtg + (2γ + 1)(2g + 1)s2γt2g

)
R(1, 1)dsdt.
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Using a change of variables and the first order homogeneity of R, we obtain:∫ 1

0

∫ 1

0

R(s, t)

st
dsdt =

∫ 1

0

∫ t

0

R(s, t)

st
dsdt+

∫ 1

0

∫ s

0

R(s, t)

st
dtds

=

∫ 1

0

∫ 1

0

R(ts, t)

st
dsdt+

∫ 1

0

∫ 1

0

R(s, ts)

st
dtds =

∫ 1

0

R(s, 1)

s
ds+

∫ 1

0

R(1, t)

t
dt,

∫ 1

0

∫ 1

0

R(s, t)

s1−γt
dsdt =

∫ 1

0

∫ t

0

R(s, t)

s1−γt
dsdt+

∫ 1

0

∫ s

0

R(s, t)

s1−γt
dtds

=

∫ 1

0

∫ 1

0

R(ts, t)

(st)1−γ dsdt+

∫ 1

0

∫ 1

0

R(s, ts)

s1−γt
dtds =

1

1 + γ

[∫ 1

0

R(s, 1)

s1−γ ds+

∫ 1

0

R(1, t)

t
dt

]
,

and similarly ∫ 1

0

∫ 1

0

R(s, t)

st1−g
dsdt =

1

1 + g

[∫ 1

0

R(s, 1)

s
ds+

∫ 1

0

R(1, t)

t1−g
dt

]
.

Also, ∫ 1

0

∫ 1

0

R(s, t)

s1−γt1−g
dsdt =

∫ 1

0

∫ t

0

R(s, t)

s1−γt1−g
dsdt+

∫ 1

0

∫ s

0

R(s, t)

s1−γt1−g
dtds

=

∫ 1

0

∫ 1

0

R(ts, t)

s1−γt1−γ−g
dsdt+

∫ 1

0

∫ 1

0

R(s, ts)

s1−γ−gt1−g
dtds

=
1

γ + g + 1

[∫ 1

0

R(s, 1)

s1−γ ds+

∫ 1

0

R(1, t)

t1−g
dt

]
.

Substituting the expressions for these four integrals involving R(s, t) in the formula for

Cov(Ω, Ω̃) above, we obtain that this covariance is equal to (1− ν2)(γ + 1)(g + 1)Rg. �

Proof of Theorem 3.2.1: From the uniform consistency of R̂ on [0, 1]2, it can be

shown that R̂g
P→ Rg. Using the latter convergence in combination with Proposition 3.2.1

we obtain that, as n→∞,
√
k(γ̂g − γ) =

√
k(γ̂ − γ)− 1 + γ

1 + g
Rg

√
k(ĝ − g) + oP(1). (3.35)

Now Proposition 3.2.1 in conjunction with the continuous mapping theorem yields (3.8).

�

The proof of Proposition 3.3.1 can be given along the same lines as that of Proposition

3.2.1 and will be omitted. Note that the lemmas and propositions needed for the proof of
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Proposition 3.2.1 are of univariate nature and that hence immediately very similar lemmas

can be stated (and proved) in the more-covariates case. Once these results are given, only

a straightforward covariance calculation remains; cf. Ahmed and Einmahl (2019) for the

joint weak convergence of all the tail empirical processes involved.

Proof of Theorem 3.3.1: From the uniform consistency of the tail copula estimators

we obtain Ĥ−1
1j

P−→ H−1
1j , j = 1, . . . , d, which in combination with Proposition 3.3.1 yields

that, as n→∞,

√
k(γ̂g − γ) =

√
k(γ̂ − γ) +

1 + γ

1 + g

d∑
j=2

H−1
1j

H−1
11

√
k(ĝj − g) + oP(1).

Now Proposition 3.3.1 and the continuous mapping theorem yield (3.11). �

63



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 74PDF page: 74PDF page: 74PDF page: 74

64



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

Chapter 4

Extreme quantile estimation in

semi-supervised models

4.1 Introduction

Extreme value theory is widely used in analysing various applications in finance, meteorol-

ogy and environmental studies with rare events. Most applications regarding rare events

involve estimation of high quantiles with low tail probabilities and other tail related mea-

sures. For instance, estimating risk measures (e.g. Value-at-Risk), finding the ultimate

record in a specific athletic event (Einmahl and Magnus, 2008), and estimating the limit

of human life span (Aarssen and de Haan (1994) and Einmahl et al. (2019)).

Following the peaks over threshold (POT) method, assume that X has a distribution

function F1. Let x∗ be the right endpoint of F1, x
∗ = sup{x : F1(x) < 1}, and define the

excess distribution function

F1t(x) = P(X ≤ x+ t|X > t) =
F1(t+ x)− F1(t)

1− F1(t)
, x > 0.

The distribution function F1 belongs to the max-domain of attraction (F1 ∈ D(Gγ)) if

lim
t→x∗

F1t(xσ(t)) = Hγ(x), (4.1)
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where σ(t) is a positive function and

Hγ(x) =

 1− (1 + γx)−1/γ, γ 6= 0,

1− exp(−x), γ = 0,

for x > 0 if γ ≥ 0 and 0 < x < −1/γ if γ < 0. Hγ is the well-known generalized Pareto

distribution (GPD) with γ as the shape parameter, often referred to as the extreme value

index (see Balkema and de Haan (1974)).

Let X1, . . . , Xn be a random sample from distribution function F1, where F1 ∈ D(Gγ).

Smith (1987) introduced a pseudo-maximum likelihood estimator (pseudo-MLE) for the

extreme value index γ and the scale function σ(t), denoted as γ̂ and σ̂ respectively. These

estimators are obtained by maximizing the likelihood function based on {Xi}ni=1, see equa-

tion (4) in Drees et al. (2004). The consistency of the pseudo-MLEs is obtained under the

first order condition (see Zhou (2009)), that is

lim
t→∞

U1(tx)− U1(t)

a(t)
=
xγ − 1

γ
, (4.2)

where U1 = F−1
1 (1 − 1/.) is the tail quantile of the distribution function F1, a(t) is a

positive function and a(t) = σ(U1(t)). Note that (4.2) is an equivalent representation of

the max-domain of attraction condition in (4.1). The asymptotic normality of the pseudo-

MLEs is proved by Drees et al. (2004) (for γ > −1/2) under the second order condition

in (3.4). For a small probability p = p(n), such that lim
n→∞

p(n) = 0, the extreme quantile

xp is defined as xp := sup{x|F (x) < 1 − p}, or equivalently, xp = U1(1/p). Based on the

first order condition in (4.2), the extreme quantile estimator (see Dekkers et al. (1989) and

de Haan and Rootzén (1993))

x̂p = Û1

(n
k

)
+ â

(n
k

) ( k
np

)γ̂ − 1

γ̂
, (4.3)

where Û1(n
k
) = Xn−k:n, Xn−k:n is the k − th order statistic of {Xi}ni=1 and â

(
n
k

)
= σ̂.

The pseudo-MLEs depend on the top k observations of the variable of interest {Xi}ni=1,

which is a small fraction of the available data. The fact that extreme data are hard to get
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can clearly affect the accuracy of these parameters estimation and more importantly the

extreme quantile estimator as a consequence. In Chapter 3, we use the semi-supervised

model (SSM) as a suitable option to handle the difficulties related to the availability of

extreme data. A semi-supervised estimator (SSE) for the extreme value index is obtained,

which shows an improved performance over the pseudo-MLE of the extreme value index.

Although it is essential to improve the estimation of the extreme value index, especially

since it describes the tail heaviness of the distribution, it is even more crucial to improve

the extreme quantile estimation, as it affects the reliability and accuracy of decision making

in different applications.

Our main goal in this chapter is to obtain an improved estimator for the extreme

quantile. We employ the SSM to first obtain the SSE for the scale σ(U1(n
k
)), k = {1, . . . , n−

1}, and prove its asymptotic properties. Then we use both SSEs of the extreme value

index and the scale to get a new adapted extreme quantile estimator, and establish its

asymptotic behaviour. We demonstrate by simulation the substantial improvement gained

in the performance of our adapted extreme quantile estimator compared to the extreme

quantile estimator in (4.3), which is based on the pseudo-MLEs for the extreme value

index and the scale. In addition, we show the prominent effect of the SSE of the scale on

the improvement of the extreme quantile estimator.

This chapter is organized as follows. Section 4.2 previews the main results where we

show the asymptotic normality related to the SSE of the scale and the adapted extreme

quantile estimator based on one covariate. Section 4.3 introduces the asymptotic results of

SSE of the scale and the adapted extreme quantile estimator based on multiple covariates.

Using a simulation study, Section 4.4 demonstrates the superior performance of the SSE

of the scale and the adapted extreme quantile estimator compared to the pseudo-MLE

of the scale and the extreme quantile estimator in (4.3), in terms of variance reduction.

Section 4.5 provides proofs of the presented results.
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4.2 Main results: one covariate

4.2.1 Scale parameter

We use the SSM in the bivariate setting from Section 3.2. For γ > −1
2
, we first estimate γ

and σ
(
U1

(
n
k

))
as γ̂ and σ̂, using the pseudo-MLE, based on Xn−k:n, . . . , Xn:n, which are

the top k+1 order statistics of {Xi}ni=1, for some k ∈ {1, . . . , n−1}. Based on the random

sample Y1, . . . , Yn+m, from the distribution function F2, we generate Ỹi, i = 1, . . . , n, with g

as in (3.2). Denote the order statistics of {Ỹi}ni=1, as Ỹ1:n ≤ . . . ≤ Ỹn:n. Using (3.2) g > −1
2

and
(
n
k

)g
are numbers that mimic the the extreme value index and the scale, which are

estimated as ĝ and σ̃g using the pseudo-MLE based on Ỹn−k:n, . . . , Ỹn:n using the same k

as above.

Proposition 4.2.1 For γ > −1
2
, choose g > −1

2
, assume F2 is continuous and the second

order condition (3.4) holds. Assume that k satisfies (3.3), (3.1) holds, and as n → ∞,
√
kA
(
n
k

)
→ λ ∈ R, then with probability tending to 1, there exist unique maximizers of

the likelihood functions based on {Xi}ni=1 and {Ỹi}ni=1, denoted as (σ̂, σ̃g), such that(
√
k

(
σ̂

a
(
n
k

) − 1

)
,
√
k

(
σ̃g(
n
k

)g − 1

))
d−→ N

([
−λρ

(1− ρ)(1 + γ − ρ)
, 0

]
, Z

)
,

where

Z =

 1 + (1 + γ)2 (1− ν2)Sg

(1− ν2)Sg (1− ν2)(1 + (1 + g)2)

 ,
with

Sg = (γ + 2)(g + 2)R(1, 1)− g(γ + 1)

γ

∫ 1

0

R(s, 1)

s
ds− γ(g + 1)

g

∫ 1

0

R(1, t)

t
dt

+
(γ + 1)(g + 1)(2γ + 1)

γg

(γ + 1

g + 1
− (g + 1)(γ + 1) +

(γ + 1)(g + 1)(2g + 1)

γ + g + 1
− 1
)

∫ 1

0

R(s, 1)

s1−γ ds+
(γ + 1)(g + 1)(2g + 1)

γg

(g + 1

γ + 1
− (g + 1)(γ + 1)

+
(γ + 1)(g + 1)(2γ + 1)

γ + g + 1
− 1
)∫ 1

0

R(1, t)

t1−g
dt.
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The SSE of the scale parameter is derived based on Proposition 4.2.1. By Slutsky’s

theorem, and for convenience of the derivations, we use the approximation of the bivariate

distribution for
(
σ̂−a(n

k
)

σ̂
,
σ̃g−(n

k
)g

(n
k

)g

)
. Assuming λ = 0, then it is approximated by a normal

distribution with mean [0, 0] and estimated covariance

1

k
Ẑ =

1

k

 1 + (1 + γ̂)2 (1− n
n+m

)Ŝg

(1− n
n+m

)Ŝg (1− n
n+m

)(1 + (1 + g)2)

 ,
where Ŝg is obtained by substituting γ with γ̂ and the tail copula is estimated as in (3.6).

By maximizing the bivariate likelihood function of
(
σ̂−a(n

k
)

σ̂
,
σ̃g−(n

k
)g

(n
k

)g

)
with respect to a(n

k
),

the SSE for the scale

σ̂g = σ̂

(
1− Ŝg

1 + (1 + g)2

(
σ̃g

(n
k
)g
− 1

))
.

The following theorem shows the main result about the asymptotic distribution for a SSE

of the scale.

Theorem 4.2.1 For γ > −1
2
, choose g > −1

2
, assume F2 is continuous, (3.1), and (3.4)

hold, k satisfies (3.3), and
√
kA
(
n
k

)
→ λ ∈ R, as n→∞. Then as n→∞,

√
k

(
σ̂g

a
(
n
k

) − 1

)
d−→ N

(
−λρ

(1− ρ)(1 + γ − ρ)
, 1 + (1 + γ)2 − (1− ν2)

S2
g

1 + (1 + g)2

)
. (4.4)

Remark 4.2.1 Theorem 4.2.1 shows that the asymptotic bias of the SSE is the same as

that of the pseudo-MLE, while the asymptotic variance is reduced by (1− ν2)
S2
g

1+(1+g)2
.

4.2.2 Adapted extreme quantile

We consider an adapted version of the extreme quantile estimator in (4.3), by plugging in

the SSEs for the extreme value index and the scale instead of the MLEs, to get

x̂pg = Û1

(n
k

)
+ σ̂g

( k
np

)γ̂g − 1

γ̂g
. (4.5)
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Theorem 4.2.2 Assume γ > −1
2

and choose g > −1
2
. Let F2 be a continuous distribution

function, (3.1), (3.3) and (3.4) hold, and
√
kA(n

k
)→ λ ∈ R, as n→∞. Then as n→∞,

√
k

(
γ̂g − γ,

σ̂g

a
(
n
k

) − 1,
Xn−k:n − U1

(
n
k

)
a
(
n
k

) )
(4.6)

d−→ N

([
λ(γ + 1)

(1− ρ)(1 + γ − ρ)
,

−ρλ
(1− ρ)(1 + γ − ρ)

, 0

]
, Kγ̂g ,σ̂g ,Xn−k:n

)
,

Kγ̂g ,σ̂g ,Xn−k:n =


(1 + γ)2

[
1− (1− ν2)R2

g

]
−(1 + γ)[1 + (1− ν2)Q] (1− ν2)M1

−(1 + γ)[1 + (1− ν2)Q] 1 + (1 + γ)2 − (1− ν2)
S2
g

1+(1+g)2
γ + (1− ν2)M2

(1− ν2)M1 γ + (1− ν2)M2 1

 ,
where Q = RgSg

1+(1+g)2
+ 1+γ

1+g
RgQĝ,σ̂ +

SgQγ̂,σ̃g
1+(1+g)2

, Rg is as in (3.5),

Qĝ,σ̂ =
(1 + g)2

γg

[((γ + 1)2 + g − (γ + 1)2(g + 1)

(g + 1)(γ + 1)

)
R(1, 1) +

γ2

γ + 1

∫ 1

0

R(1, t)

t
dt+

(
2γ + 1

− (2g + 1)(γ + 1)(2γ + 1)

γ + g + 1
+
g(γ + 1)(2γ + 1)

g + 1

)∫ 1

0

R(s, 1)

s1−γ ds+
(2g + 1

g + 1
− (2g + 1)(γ + 1)(2γ + 1)

γ + g + 1

+ (2g + 1)(γ + 1)− 2g + 1

γ + 1

)∫ 1

0

R(1, t)

t1−g
dt
]
,

Qγ̂,σ̃g =
(1 + γ)(1 + g)

γg

[((g + 1)2 + γ − (g + 1)2(γ + 1)

(g + 1)(γ + 1)

)
R(1, 1) +

g2

g + 1

∫ 1

0

R(s, 1)

s
ds

+
(2γ + 1

γ + 1
− (2γ + 1)(g + 1)(2g + 1)

γ + g + 1
+ (2γ + 1)(g + 1)− 2γ + 1

g + 1

)∫ 1

0

R(s, 1)

s1−γ ds+
(

2g + 1

− (2γ + 1)(g + 1)(2g + 1)

γ + g + 1
+
γ(g + 1)(2g + 1)

γ + 1

)∫ 1

0

R(1, t)

t1−g
dt
]
,

M1 =
(1 + γ)(1 + g)

g
Rg

[
(2g + 1)

∫ 1

0

R(1, s)

s1−g ds−
∫ 1

0

R(1, s)

s
ds− g

g + 1
R(1, 1)

]
,

and

M2 = − 1 + g

g(1 + (1 + g)2)
Sg

[
(2g + 1)(g + 1)

∫ 1

0

R(1, s)

s1−g ds−
∫ 1

0

R(1, s)

s
ds− g(g + 2)

g + 1
R(1, 1)

]
.
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Based on Theorem 4.2.2, we present the main result in this section about the asymptotic

normality of the adapted extreme quantile estimator.

Theorem 4.2.3 For γ > −1
2

and choose g > −1
2
. Assume that F2 is continuous, (3.1),

(3.3), and (3.4) hold, the second-order parameter ρ is negative or zero with γ negative,

and
√
kA(n

k
) → λ ∈ R, as n → ∞. The probability level p satisfies np = o(k) and

log(np) = o(
√
k), as n→∞. Then as n→∞,

√
k

x̂pg − xp
a
(
n
k

)
qγ

(
k
np

) d−→ N(λbxpg , σxpg ) (4.7)

where, qγ (t) :=
∫ t

1
sγ−1 log(s)ds, for t > 1,

bx̂pg =


(γ+1)

(1−ρ)(γ−ρ+1),
γ ≥ 0 6= ρ,

ρ(1+3γ+2γ2)
(1−ρ)(γ−ρ+1)(γ+ρ),

γ < 0 6= ρ,

0, γ < 0 = ρ,

and σx̂pg = (1 + γ)2
[
1− (1− ν2)R2

g

]
, for γ ≥ 0, otherwise σx̂pg = 1 + 4γ + 5γ2 + 2γ3 −

(1− ν2)
[
(γ + 1)2R2

g + γ2 S2
g

1+(1+g)2
− 2(γ + γ2)Q− 2γ2M1 + 2γ3M2

]
.

Remark 4.2.2 Note that the asymptotic bias is the same as that of the standard extreme

quantile estimator based on the MLEs, while the asymptotic variance is different. The

amount of change for the asymptotic variance of the adapted estimator than the standard

estimator is (1 − ν2)R2
g if γ ≥ 0 and (1 − ν2)

[
(γ + 1)2R2

g + γ2 S2
g

1+(1+g)2
− 2(γ + γ2)Q −

2γ2M1 + 2γ3M2

]
if γ < 0. In the simulation section, we show how this change is in fact a

reduction in the asymptotic variance of the standard extreme quantile estimator.

4.3 Main results: multiple covariates

4.3.1 Scale parameter

Based on the SSM in the multivariate setting in Section 3.3, we extend the SSE of the

scale to depend on a (d− 1)−dimensional covariate. Let γ̂, σ̂, ĝj, and σ̃gj , j = 2, . . . , d, be
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the pseudo-MLEs for γ, σ(U1

(
n
k

)
), and (d− 1) times of g and

(
n
k

)g
.

Proposition 4.3.1 Assume γ > −1
2

and choose g > −1
2
. Let Fj, j = 2, . . . , d, be a

continuous distribution function, (3.3), (3.4), and (3.9) hold, and as n→∞,
√
kA(n

k
)→

λ ∈ R, then with probability tending to 1, there exist a unique maximizers of the likelihood

functions based on {Xi}ni=1, {Ỹi,2}ni=1, . . . , {Ỹi,d}ni=1, denoted as (σ̂, σ̃g2 , . . . , σ̃gd), such that(
√
k

(
σ̂

a
(
n
k

) − 1

)
,
√
k

(
σ̃g2(
n
k

)g − 1

)
, . . . ,

√
k

(
σ̃gd(
n
k

)g − 1

))
d−→ N

([
−λρ

(1− ρ)(1 + γ − ρ)
, 0, . . . , 0

]
, Zd

)
,

Zd =



1 + (1 + γ)2 z12 . . . z1d

z12 (1− ν2)(1 + (1 + g)2) . . . z2d

. . . .

. . . .

. . . .

z1d z2d . . . (1− ν2)(1 + (1 + g)2)


,

z1j = (1− ν2)[(γ + 2)(g + 2))R1j(1, 1)− g(γ + 1)

γ

∫ 1

0

R1j(s, 1)

s
ds− γ(g + 1)

g

∫ 1

0

R1j(1, t)

t
dt

+
(γ + 1)(g + 1)(2γ + 1)

γg

(
γ + 1

g + 1
− (g + 1)(γ + 1) +

(γ + 1)(g + 1)(2g + 1)

γ + g + 1
− 1

)
∫ 1

0

R1j(s, 1)

s1−γ ds+
(γ + 1)(g + 1)(2g + 1)

γg

(
g + 1

γ + 1
− (g + 1)(γ + 1) +

(γ + 1)(g + 1)(2γ + 1)

γ + g + 1
− 1

)

·
∫ 1

0

R1j(1, t)

t1−g
dt] = (1− ν2)Sgj , j = 2, . . . , d,

and

zij = (1− ν2)

[
(g + 2)2Rij(1, 1)− (g + 1)

(∫ 1

0

Rij(s, 1)

s
ds+

∫ 1

0

Rij(1, t)

t
dt

)]
,

i = 2, . . . , d, j = i+ 1, . . . , d.
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Similar to the bivariate case, let λ = 0, the approximate multivariate distribution of(
σ̂−a(n

k
)

σ̂
,
σ̃g2−(n

k
)g

(n
k

)g
, . . . ,

σ̃gd−(n
k

)g

(n
k

)g

)
is normal with mean [0, 0, . . . , 0] and variance 1

k
Ẑd, where

Rij is estimated as in (3.6). By maximizing the approximate multivariate distribution

with respect to a
(
n
k

)
, the SSE based on multiple covariates

σ̂g = σ̂

(
1 +

d∑
j=2

Ẑ−1
1j

Ẑ−1
11

(
σ̃gj(
n
k

)g − 1

))
, (4.8)

where Ẑ−1
ij is the entry in the ith row and jth column of the inverse of the matrix Ẑd.

Theorem 4.3.1 Assume Zd is invertible. Then under the conditions of Proposition 4.3.1,

as n→∞,
√
k

(
σ̂g

a
(
n
k

) − 1

)
d−→ N

(
−λρ

(1− ρ)(1 + γ − ρ)
, Vσ̂g

)
, (4.9)

where

Vσ̂g = 1 + (1 + γ)2 +
1

(Z−1
11 )2

(
(1− ν2)(1 + (1 + g)2)

d∑
j=2

(Z−1
1j )2 + 2

d∑
i=2

d∑
j=i+1

Z−1
1i Z

−1
1j zij

)

+
2

Z−1
11

d∑
j=2

Z−1
1j z1j.

4.3.2 Adapted extreme quantile

The adapted extreme quantile estimator is obtained by plugging the multivariate SSE of

the extreme value index and scale in (4.5). In the following we show the asymptotic results

related to the adapted extreme quantile estimator.

Theorem 4.3.2 Assume γ > −1
2

and choose g > −1
2
. Let Fj, j = 2, . . . , d, be a continu-

ous distribution function, (3.1), (3.3), and (3.4) hold, and
√
kA(n

k
)→ λ ∈ R, as n→∞.
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Then as n→∞,

√
k

(
γ̂g − γ,

σ̂g

a
(
n
k

) − 1,
Xn−k:n − U1

(
n
k

)
a
(
n
k

) )
(4.10)

d−→ N

([
λ(γ + 1)

(1− ρ)(1 + γ − ρ)
,

−ρλ
(1− ρ)(1 + γ − ρ)

, 0

]
, Kγ̂g ,σ̂g ,Xn−k:n

)
,

Kγ̂g ,σ̂g ,Xn−k:n =


Vγ̂g −(1 + γ)[1 + (1− ν2)Q] (1− ν2)M1

−(1 + γ)[1 + (1− ν2)Q] Vσ̂g γ + (1− ν2)M2

(1− ν2)M1 γ + (1− ν2)M2 1

 ,

where Vγ̂g = (1 + γ)2

(
1 + 1

(H−1
11 )2

[
2

d∑
i=1

d∑
j=i+1

H−1
1i H

−1
1j hij + (1− ν2)

d∑
j=2

(H−1
1j )2

])
, H−1

ij is

the entry in the ith row and jth column of the inverse of matrix H, which is defined in

Proposition 3.3.1,

Q =
1

H−1
11 Z

−1
11

( d∑
i=2

H−1
1i Z

−1
1i −

(1 + g)2

g

d∑
i=2

d∑
j=2
i6=j

H−1
1i Z

−1
1j Qĝi,σ̃gi

)
− 1 + γ

1 + g

d∑
i=2

H−1
1i

H−1
11

Qĝi,σ̂

−
d∑
i=2

Z−1
1i

Z−1
11

Qγ̂,σ̃gi
,

Qĝi,σ̃gi
=

(g + 1)2 − (g + 1)3 + g

(g + 1)2
Rij(1, 1) +

g2

g + 1

1∫
0

Rij(s, 1)

s
ds, i, j = 2, . . . , d, i 6= j,

Qĝi,σ̂ =
(1 + g)2

γg

[((γ + 1)2 + g − (γ + 1)2(g + 1)

(g + 1)(γ + 1)

)
Ri1(1, 1) +

γ2

γ + 1

∫ 1

0

Ri1(1, t)

t
dt

+
(

2γ + 1− (2g + 1)(γ + 1)(2γ + 1)

γ + g + 1
+
g(γ + 1)(2γ + 1)

g + 1

)∫ 1

0

Ri1(s, 1)

s1−γ ds+
(2g + 1

g + 1

− (2g + 1)(γ + 1)(2γ + 1)

γ + g + 1
+ (2g + 1)(γ + 1)− 2g + 1

γ + 1

)∫ 1

0

Ri1(1, t)

t1−g
dt
]
, i = 2, . . . , d,
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Qγ̂,σ̃gi
=

(1 + γ)(1 + g)

γg

[((g + 1)2 + γ − (g + 1)2(γ + 1)

(g + 1)(γ + 1)

)
R1i(1, 1)

+
g2

g + 1

∫ 1

0

R1i(s, 1)

s
ds+

(2γ + 1

γ + 1
− (2γ + 1)(g + 1)(2g + 1)

γ + g + 1
+ (2γ + 1)(g + 1)− 2γ + 1

g + 1

)
∫ 1

0

R1i(s, 1)

s1−γ ds+
(

2g + 1− (2γ + 1)(g + 1)(2g + 1)

γ + g + 1
+
γ(g + 1)(2g + 1)

γ + 1

)∫ 1

0

R1i(1, t)

t1−g
dt
]
,

i = 2, . . . , d,

M1 =
(1 + γ)(1 + g)

gH−1
11

d∑
i=2

H−1
1i L1i,

L1i =
[ ∫ 1

0

R1i(1, s)

s
ds− (2g + 1)

∫ 1

0

R1i(1, s)

s1−g ds+
g

g + 1
R1i(1, 1)

]
,

M2 =
(1 + g)

gZ−1
11

d∑
i=2

Z−1
1i L2i,

L2i =
[
(2g + 1)(g + 1)

∫ 1

0

R1i(1, s)

s1−g ds−
∫ 1

0

R1i(1, s)

s
ds− g(g + 2)

g + 1
R1i(1, 1)

]
, i = 2, . . . , d.

Theorem 4.3.3 For γ > −1
2

and choose g > −1
2
. Assume that F2 is continuous, (3.1),

(3.3), and (3.4) hold, the second-order parameter ρ is negative or zero with γ negative,
√
kA(n

k
) → λ ∈ R, as n → ∞. The probability level p satisfies np = o(k) and log(np) =

o(
√
k), as n→∞. Then as n→∞,

√
k

x̂pg − xp
a
(
n
k

)
qγ

(
k
np

) d−→ N(λbxpg , σxpg ) (4.11)

where qγ and bxpg as in theorem 4.2.3 and

σx̂pg = (1 + γ)2

(
1 + 1

(H−1
11 )2

[
2

d∑
i=1

d∑
j=i+1

H−1
1i H

−1
1j hij + (1− ν2)

d∑
j=2

(H−1
1j )2

])
, for γ ≥ 0,
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otherwise

σx̂pg = 1 + 4γ + 5γ2 + 2γ3 +
((1 + γ)2

(H−1
11 )2

[
2

d∑
i=1

d∑
j=i+1

H−1
1i H

−1
1j hij + (1− ν2)

d∑
j=2

(H−1
1j )2

])
+

γ2

(Z−1
11 )2

[
(1− ν2)(1 + (1 + g)2)

d∑
j=2

(Z−1
1j )2 + 2

d∑
i=2

d∑
j=i+1

Z−1
1i Z

−1
1j zij

]
+

2γ2

Z−1
11

d∑
j=2

Z−1
1j z1j + (1− ν2)

(
2(γ + γ2)Q+ 2γ2M1 − 2γ3M2

)
.

4.4 Simulation

This section is divided into three parts. First, we investigate the behaviour of the SSE for

the scale based on one and two covariates in finite samples simulations. We focus on the

performance of the SSE of the scale compared to the pseudo-MLE in terms of variance

reduction, using different values of g and m. Second, we study the effect of using SSEs for

the extreme value index and the scale in the variance reduction of the extreme quantile

estimator using different values of g. Third, we particularly check the effect of using the

SSE for the scale on the variance reduction when estimating the extreme quantile.

We simulate (X̃i, Yi) from the Cauchy distribution restricted to the first quadrant in

dimensions d = 2 and d = 3. The Cauchy density is proportional to

(1 + xS−1xT )−(1+d)/2.

Here for d = 2, S is a 2 × 2 matrix with 1 on the main diagonal and s off diagonal, and

for d = 3, S is 3 × 3 matrix with 1 in the main diagonal, S13 = S31 = S12 = S21 = s and

S23 = S32 = r. When d = 2, we consider s = 0 and 0.5. For d = 3, we take r = s = 0 and

0.5, and (r, s) = (0, 0.5) and (0.5, 0). Then we transform the marginals of X̃i to Xi such

that Xi has an extreme value index γ,

Xi =


(1−Fs(X̃i))−γ−1

γ
, γ 6= 0,

− log
(

1− Fs(X̃i)
)
, γ = 0,
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where Fs is the distribution function of X̃i. The obtained {(Xi, Yi)}ni=1 and {Yi}n+m
i=n+1 are

the simulated data to be analysed.

First, we focus on the relative variance reduction of the SSE of the scale for the target

variable X compared to the pseudo-MLE. We consider γ = −0.3, 0, 0.3, with different

values for g, n = 500,m = 1000, and k = 125. Note that all the following results are based

on 10, 000 replications.

Table 4.1 shows that the reduction ranges from 4% to 25%, for the SSE of the scale with

one and two covariates. It is obvious that in case of using two covariates, the reduction

substationally increases. Additionally, the increase of the tail dependence between the

target variables and the covariate(s) positively affects the variance reduction. By contrast

the increase of the tail dependence between the covariates leads to less variance reduction

(see Table 2.1 for the approximated values of the tail dependence corresponding to the

values of r and s).

Based on samples drawn from the Cauchy distribution with s = 0 or s = r = 0, in

case of the SSE for the scale based on one and two covariates, we study the effect of having

varying sizes of unlabelled data on the relative variance reduction. For different values of

γ, Figure 4.1 shows a strictly increasing trend of the variance reduction with the increase

of the unlabelled data size. The case where there is less or equal size of the unlabelled data

than the labelled data, m ≤ n, does not show a big difference in the variance reduction

when using SSE based on one covariate or two covariates. The difference between having

one or two covariates clearly increases with the increase of the unlabelled data over the

labelled data (m > n).

We then show the variance reduction of the SSE of the scale for a wider range of g and

γ. Figure 4.2 shows the variance reduction for each γ based on different values of g. The

results are obtained using the same sample size setting as mentioned above. According

to Figure 4.2, the variance reduction increases by the decrease of absolute difference of γ

and g. The case where g = 0 has a relatively good performance for different values of γ.

Second, we use the SSEs of the extreme value index and the scale in the extreme
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γ g d = 2 d = 3

s = 0 s = 0.5 s = r = 0 s = r = 0.5
s = 0

r = 0.5

s = 0.5

r = 0

−0.3

−0.25 4.58% 9.25% 9.21% 16.08% 9.48% 19.58%

−0.125 4.92% 9.9% 9.65% 16.5% 9.89% 19.40%

0 4.36% 11.17% 9.42% 16.06% 9.69% 18.26%

0

−0.125 7.48% 12.52% 11.61% 18.42% 10.26% 21.26%

0 8.38% 13.61% 12.59% 19.57% 11.16% 21.96%

0.125 8.97% 14.25% 13.16% 20.12% 11.7% 22%

0.3

0 7.83% 14.77% 12% 19.5% 11.4% 23.56%

0.125 8.41% 15.99% 12.9% 21.04% 12.46% 24.84%

0.25 8.79% 16.72% 13.4% 21.96% 13.1% 25.43%

Table 4.1: Variance reduction for the scale parameter for n = 500,m = 1000, and k = 125

quantile estimator, instead of the pseudo-MLEs, to study how that improves its perfor-

mance using different values of g. For n = 500,m = 1000, and k = 125, we estimate the

extreme quantile xp with p = 0.002. Table 4.2 shows the results when using SSEs based on

one covariate. The extreme quantile variance reduction ranges from 17% to 33%. Table

4.3 shows the case of the SSEs based on two covariates, where the variance reduction

reaches 43%. There is only one case where we have the variance of the adapted extreme

quantile estimator is larger than the variance of the standard quantile estimator based on

the pseudo-MLEs. This happens when considering g far from the true positive γ. Based

on these results, it is recommended to consider g ≥ −0.125.

Third, we study the effect of using the SSEs for the extreme value index and the scale,

compared to only using the SSE for the extreme value index, on improving the variance

of the extreme quantile estimator. We estimate the extreme quantile with p = 0.002, and

0.001, with g = 0. Figure 4.3 shows the remarkable effect in the variance reduction when
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Table 4.2: Variance reduction for the extreme quantile based on one covariate

g γ

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.25 24.07% 25.12% 23.6% 22.52% 20.57% 19.1% 16.56%

−0.125 27.92% 30.07% 29.26% 28.03% 26.74% 25.54% 22.98%

0 27.57% 31.34% 31.89% 31.28% 30.78% 30.02% 27.81%

0.125 23.99% 29.85% 31.95% 32.44% 32.6% 32.42% 30.75%

0.25 20.57% 27.74% 30.95% 32.34% 33.09% 33.46% 32.42%

Table 4.3: Variance reduction for the extreme quantile based on two covariates

g γ

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.25 34.03% 33.91% 27.93% 21.35% 10.89% 0.68% −6.04%

−0.125 35.83% 39.9% 38.86% 35.46% 33.62% 29.95% 28.02%

0 32.3% 40% 40.87% 38.99% 39.86% 38.69% 38.65%

0.125 25.42% 37.78% 40.33% 39.68% 41.42% 41.38% 42.21%

0.25 16.14% 33.94% 38.52% 39.17% 41.36% 41.98% 43.31%
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(i) γ = −0.3 (ii) γ = 0

(iii) γ = 0.3

Figure 4.1: Relative variance reduction for n = 500, k = 125 and g = 0. The vertical line

represents n = m

using the SSE for the scale, which is doubled in most of the cases. The two cases where

there is negative reduction correspond to having 12% and 15.74% as a variance reduction

for the SSE of the extreme value index. These reductions are not reflected as a reduction
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(i) One covariate (ii) Two covariates

Figure 4.2: Relative variance reduction for n = 500, k = 125

(i) One covariate, n = 500,m = 1000, k = 125 (ii) Two covariates, n = 500,m = 1000, k = 125

(iii) One covariate, n = m = 1000, k = 250 (iv) Two covariates, n = 1000, k = 250

Figure 4.3: Relative variance reduction for the extreme quantile

in the variance of the extreme quantile estimator before using the SSE of the scale.
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4.5 Proofs

In this section we first show the asymptotic normality for
√
k

(
σ̂

a(nk )
− 1

)
and
√
k

(
σ̃g

(nk )
g − 1

)
,

using the tail quantile processes in Lemma 3.6.3 and Lemma 3.6.5. Second, we incorpo-

rate both results to obtain the asymptotic distribution for the SSE of the scale. Third,

we derive the joint asymptotic distribution for the SSEs of the extreme value index and

the scale and Xn−k:n. Finally we use the joint asymptotic results to obtain the asymptotic

distribution for the adapted extreme quantile estimator. We present the proofs for the

results related to the SSE with one covariate, then we extend to the SSE with multiple

covariates.

Let C be a copula corresponding to the distribution function of (−X1,−Y1). Write

Xi = F−1
1 (1 − Vi,1), i = 1, . . . , n, and Yl = F−1

2 (1 − Vl,2), l = 1, . . . , n + m, where

(V1,1, V1,2), . . . , (Vn,1, Vn,2) is a random sample of size n from C and Vn+1,2, . . . , Vn+m,2

is a random sample of size m from the uniform-(0, 1) distribution, independent of the

random sample from C. Consider the uniform empirical distribution functions: Γn,j(s) =

1
n

n∑
i=1

1[0,s](Vi,j), 0 ≤ s ≤ 1, j = 1, 2, Γn+m(t) = 1
n+m

n+m∑
l=1

1[0,t](Vl,2), 0 ≤ t ≤ 1, and the

corresponding uniform tail empirical processes are wn,j(s) =
√
k
[
n
k
Γn,j

(
k
n
s
)
− s
]
, 0 ≤ s ≤

1, j = 1, 2, and wn+m(t) =
√

(n+m)k
n

[
n
k
Γn+m

(
k
n
t
)
− t
]
, 0 ≤ t ≤ 1. Define the Gaussian

vector of processes (W1,W2,W3), where Wj, j = 1, 2, 3, is a standard Wiener process on

[0, T ], T > 0, with covariances as in (3.14). Under proper Skorokhod construction, we get

(3.16), that is

sup
0<s≤T

|wn,j(s)−Wj(s)|
sδ

a.s.−−→ 0, j = 1, 2, and sup
0<s≤T

|wn+m(s)−W3(s)|
sδ

a.s.−−→ 0,

as n→∞, see Section 3.6 for the proof and definitions related to (3.16).

Define

Zn(s) =
√
k

(
Xn−[ks]:n −Xn−k:n

a
(
n
k

) − s−γ − 1

γ

)
.
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For a suitably chosen functions a and A, based on Lemma 3.6.3, for any ε > 0 uniformly

for 1
2k
≤ s ≤ 1, as n→∞,

Zn(s) = s−γ−1W1(s)−W1(1) +
√
kA
(n
k

)
Ψ(s−1) + oP(1)s−γ−1/2−ε.

Hence for γ > −1
2
, and ε > 0, sup

1
2k
≤s≤1

sγ+1/2+ε|Zn(s)| = OP(1).

Proposition 4.5.1 Assume the second order condition (3.4) holds, k satisfies (3.3), and
√
kA
(
n
k

)
= O(1), as n → ∞. For γ > −1/2, and γ 6= 0, with probability tending to 1,

there exist a unique maximizer of the likelihood functions based on {Xi}ni=1 denoted as σ̂,

such that as n→∞,

√
k

(
σ̂

a
(
n
k

) − 1

)
− γ + 1

γ

∫ 1

0

((γ + 1)(2γ + 1)s2γ − sγ)Zn(s)ds = oP(1).

For γ = 0, as n→∞,

√
k

(
σ̂

a
(
n
k

) − 1

)
−
∫ 1

0

(3 + log s)Zn(s)ds = oP(1).

Proof of Proposition 4.5.1: The existence of σ̂ follows from Theorem 4.1 in Zhou (2009).

Using Lemma 3.6.3, (3.25) and Lemma 3.2 from Drees et al. (2004), then following the

same steps of Proposition 3.1 proof in Drees et al. (2004) the proposition is proved. �

From Proposition 3.6.1 and Proposition 4.5.1, it follows that for γ > −1
2

and γ 6= 0,

√
k(γ̂ − γ)− (γ + 1)2

γ

√
kA
(n
k

)∫ 1

0

(sγ − (2γ + 1)s2γ)Ψ(s−1)ds

P−→ (γ + 1)2

γ

∫ 1

0

(sγ − (2γ + 1)s2γ)(s−γ−1W1(s)−W1(1))ds,

and

√
k

(
σ̂

a
(
n
k

) − 1

)
− γ + 1

γ

√
kA
(n
k

)∫ 1

0

((γ + 1)(2γ + 1)s2γ − sγ)Ψ(s−1)ds

P−→ γ + 1

γ

∫ 1

0

((γ + 1)(2γ + 1)s2γ − sγ)(s−γ−1W1(s)−W1(1))ds,

as n→∞. The convergence follows jointly with the same limiting process W1.
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Corollary 4.5.1 Under the conditions of Proposition 4.5.1, and
√
kA
(
n
k

)
→ λ, as n →

∞, as n→∞,

√
k

(
γ̂ − γ, σ̂

a
(
n
k

) − 1

)

d−→ N

[ λ(γ + 1)

(1− ρ)(1 + γ − ρ)
,

−ρλ
(1− ρ)(1 + γ − ρ)

]
,

 (1 + γ)2 −(1 + γ)

−(1 + γ) (1 + (1 + γ)2)

 .

Define w̃n(s) = n√
k

(
Γn+m

(
Γ−1
n,2

(
k
n
s
))
− k

n
s
)

and W̃ (s) = νW3(s)−W2(s), where W2

and W3 are defined as in (3.16). Define

Hn(s) =
√
k

(
Ỹn−[ks]:n − Ỹn−k:n(

n
k

)g − s−g − 1

g

)
,

then for any ε > 0 uniformly for 1
2k
≤ s ≤ 1, based on Lemma 3.6.5, as n→∞,

Hn(s) = W̃ (1)− s−g−1W̃ (s) + oP(1)s−g−1/2−ε,

and for g > −1
2
, sup

1
2k
≤s≤1

sg+1/2+ε|Hn(s)| = OP(1).

Proposition 4.5.2 Assume that F2 is continuous and k satisfies (3.3). For g > −1/2

and g 6= 0, with probability tending to 1, there exists a unique maximizer of the likelihood

function based on {Ỹi}ni=1, denoted as σ̃g, such that, as n→∞,

√
k

(
σ̃g(
n
k

)g − 1

)
− g + 1

g

∫ 1

0

((g + 1)(2g + 1)s2g − sg)Hn(s)ds = oP(1),

For g = 0,
√
k (σ̃g − 1)−

∫ 1

0

(3 + log s)Hn(s)ds = oP(1).

Proof of Proposition 4.5.2: The existence of σ̃g follows the same steps as the proof of

Theorem 4.1 in Zhou (2009), similar to the proof of Proposition 3.6.2. Then the proposition
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is proved following the proof of Proposition 3.1 from Drees et al. (2004) using Lemma 3.6.5,

(3.28) and Lemma 3.6.6. �

From Proposition 3.6.2 and Proposition 4.5.2, for g > −1
2

and g 6= 0, as n→∞,

√
k(ĝ − g)

P−→ (g + 1)2

g

∫ 1

0

(
sg − (2g + 1)s2g

) (
W̃ (1)− s−g−1W̃ (s)

)
ds,

and

√
k

(
σ̃g(
n
k

)g − 1

)
P−→ g + 1

g

∫ 1

0

((g + 1)(2g + 1)s2g − sg)
(
W̃ (1)− s−g−1W̃ (s)

)
ds.

The joint convergence follows by (3.16) with the same limiting process W̃ .

Corollary 4.5.2 Under the same conditions of Proposition 4.5.2, as n→∞,

√
k

(
ĝ − g, σ̃g(

n
k

)g − 1

)
d−→ N

[0, 0] , (1− ν2)

 (1 + g)2 −(1 + g)

−(1 + g) (1 + (1 + g)2)

 .

Proof of Proposition 4.2.1: Combining (3.16), Proposition 4.5.1, and Proposition 4.5.2.

We have that as n→∞,

(
√
k

(
σ̂

a
(
n
k

) − 1

)
,
√
k

(
σ̃g(
n
k

)g − 1

))
d−→ (Σγ, Σ̃g),

where Σγ = γ+1
γ

∫ 1

0
((γ + 1)(2γ + 1)s2γ − sγ)(s−γ−1W1(s) − W1(1))ds − λρ

(1−ρ)(1+γ−ρ)
and

Σ̃g = g+1
g

∫ 1

0
((g + 1)(2g + 1)s2g − sg)(W̃ (1)− s−g−1W̃ (s))ds.

Based on the Wiener processes which are involved in the limiting distributions, we can ob-

tain immediately the means and variances of the limiting pair as in the previous corollaries.
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It remains to determine the covariance,

Cov(Σγ, Σ̃g) = (1− ν2)
(γ + 1)(g + 1)

γg

∫ 1

0

∫ 1

0

((γ + 1)(2γ + 1)s2γ − sγ)((g + 1)(2g + 1)t2g − tg)(
R(s, t)

sγ+1tg+1
− R(s, 1)

sγ+1
− R(1, t)

tg+1
+R(1, 1)

)
dsdt

= (1− ν2)
(γ + 1)(g + 1)

γg

∫ 1

0

∫ 1

0

((γ + 1)(2γ + 1)(g + 1)(2g + 1)

s1−γt1−g
− (γ + 1)(2γ + 1)

s1−γt

− (g + 1)(2g + 1)

t1−gs
+

1

st

)
R(s, t)−

((γ + 1)(g + 1)(2g + 1)

t1−g
− (γ + 1)

t
− (g + 1)(2g + 1)

(γ + 1)t1−g

+
1

(γ + 1)t

)
R(1, t)−

((g + 1)(γ + 1)(2γ + 1)

s1−γ − (g + 1)

s
− (γ + 1)(2γ + 1)

(g + 1)s1−γ +
1

(g + 1)s

)
R(s, 1)dsdt

+ (1− ν2)
(γ + 1)(g + 1)

γg

(
(γ + 1)(g + 1)− (γ + 1)

(g + 1)
− (g + 1)

(γ + 1)
+

1

(γ + 1)(g + 1)

)
R(1, 1)

= (1− ν2)
[
(γg + 2γ + 2g + 4)R(1, 1)− g(γ + 1)

γ

∫ 1

0

R(s, 1)

s
ds− γ(g + 1)

g

∫ 1

0

R(1, t)

t
dt

+
(γ + 1)(g + 1)

γg

((2γ + 1)(γ + 1)

g + 1
− (g + 1)(γ + 1)(2γ + 1) +

(γ + 1)(g + 1)(2γ + 1)(2g + 1)

γ + g + 1

− (2γ + 1)
)∫ 1

0

R(s, 1)

s1−γ ds+
(γ + 1)(g + 1)

γg

((2g + 1)(g + 1)

γ + 1
− (g + 1)(γ + 1)(2g + 1)

+
(γ + 1)(g + 1)(2γ + 1)(2g + 1)

γ + g + 1
− (2g + 1)

)∫ 1

0

R(1, t)

t1−g
dt
]

= (1− ν2)Sg. �

Proof of Theorem 4.2.1: It can be shown that Ŝg
P−→ Sg, from the uniform consistency

of R̂ on [0, 1]2. Using the bivariate convergence in Proposition 4.2.1 and that σ̂

a(nk )
P−→ 1,

as n→∞. We obtain, as n→∞,

√
k

(
σ̂g

a
(
n
k

) − 1

)
=
√
k

(
σ̂

a
(
n
k

) − 1

)
− Sg

1 + (1 + g)2

√
k

(
σ̃g

(n
k
)g
− 1

)
+ oP(1). (4.12)

Using Proposition 4.2.1 and the continuous mapping theorem imply (4.4). �

Proof of Theorem 4.2.2: From (4.12), as n→∞,

√
k

(
σ̂g

a
(
n
k

) − 1

)
P−→ Σγ −

Sg
1 + (1 + g)2

Σ̃g, (4.13)
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where Σγ and Σ̃g are defined as in the proof of Proposition 4.2.1. From (3.35), as n→∞,
√
k (γ̂g − γ)

P−→ Ω− 1 + γ

1 + g
RgΩ̃, (4.14)

see the proof of Proposition 3.2.1 for the definition of Ω and Ω̃, and Rg is defined as in

(3.5). By Lemma 3.6.3, take s = 1, then as n→∞,
√
k

(
Xn−k:n − U1

(
n
k

)
a(n

k
)

)
P−→ W1(1). (4.15)

Combining (3.16), (4.13), (4.14), and (4.15), we have that, as n→∞
√
k

(
γ̂g − γ,

σ̂g

a
(
n
k

) − 1,
Xn−k:n − U1

(
n
k

)
a
(
n
k

) )
d−→
(

Ω− 1 + γ

1 + g
RgΩ̃,Σγ −

Sg
1 + (1 + g)2

Σ̃g,W1(1)

)
.

We obtain the means and variances of the first two limiting terms from Theorem 3.2.1 and

Theorem 4.2.1. Here W1(1) is independent of Ω, and Cov(Σγ,W1(1)) = γ, notice that the

latter covariance is incorrect in de Haan and Ferreira (2006), page 139, as it is assumed

to be zero.

It remains to calculate covariances between (Ω, Σ̃g), (Ω̃,Σγ), (Ω̃,W1(1)), and (Σ̃g,W1(1))

as the rest are already calculated in Corollary 4.5.1 and Corollary 4.5.2.

Cov(Ω, Σ̃g) = (1− ν2)
(1 + γ)2(1 + g)

γg

[((g + 1)2 + γ − (g + 1)2(γ + 1)

(g + 1)(γ + 1)

)
R(1, 1)

+
g2

g + 1

∫ 1

0

R(s, 1)

s
ds+

(2γ + 1

γ + 1
− (2γ + 1)(g + 1)(2g + 1)

γ + g + 1
+ (2γ + 1)(g + 1)− 2γ + 1

g + 1

)
∫ 1

0

R(s, 1)

s1−γ ds+
(

(2g + 1)− (2γ + 1)(g + 1)(2g + 1)

γ + g + 1
+
γ(g + 1)(2g + 1)

γ + 1

)∫ 1

0

R(1, t)

t1−g
dt
]

= (1− ν2)(1 + γ)Qγ̂,σ̃g .

Similarly,

Cov(Ω̃,Σγ) = (1− ν2)
(1 + γ)(1 + g)2

γg

[((γ + 1)2 + g − (γ + 1)2(g + 1)

(g + 1)(γ + 1)

)
R(1, 1)

+
γ2

γ + 1

∫ 1

0

R(1, t)

t
dt+

(
(2γ + 1)− (2g + 1)(γ + 1)(2γ + 1)

γ + g + 1
+
g(γ + 1)(2γ + 1)

g + 1

)
∫ 1

0

R(s, 1)

s1−γ ds+
(2g + 1

g + 1
− (2g + 1)(γ + 1)(2γ + 1)

γ + g + 1
+ (2g + 1)(γ + 1)− 2g + 1

γ + 1

)∫ 1

0

R(1, t)

t1−g
dt
]

= (1− ν2)(1 + γ)Qĝ,σ̂,
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Hence the covariances between the limiting terms are:

Cov(Ω− 1 + γ

1 + g
RgΩ̃,Σγ −

Sg
1 + (1 + g)2

Σ̃g) = −(1 + γ)[1 + (1− ν2)(
RgSg

1 + (1 + g)2
+

1 + γ

1 + g
RgQĝ,σ̂

+
SgQγ̂,σ̃g

1 + (1 + g)2
)] = −(1 + γ)[1 + (1− ν2)Q],

Cov(−1 + γ

1 + g
RgΩ̃,W1(1)) = (1− ν2)

(1 + γ)(1 + g)

g
Rg

[
(2g + 1)

∫ 1

0

R(1, s)

s1−g ds−
∫ 1

0

R(1, s)

s
ds

− g

g + 1
R(1, 1)

]
= (1− ν2)M1,

Cov(Σγ −
Sg

1 + (1 + g)2
Σ̃g,W1(1)) = γ − (1− ν2)

(1 + g)

g(1 + (1 + g)2)
Sg

[
(2g + 1)(g + 1)

∫ 1

0

R(1, s)

s1−g ds

−
∫ 1

0

R(1, s)

s
ds− (g + 2)R(1, 1)

]
= γ + (1− ν2)M2. �

Proof of Theorem 4.2.3: Using Theorem 4.2.2 in combination with proof of Theorem

4.3.1 in de Haan and Ferreira (2006) yield, as n→∞,
√
k

x̂pg − xp
a
(
n
k

)
qγ

(
k
np

) d−→ Ω− 1 + γ

1 + g
RgΩ̃−γ−

(
Σγ −

Sg
1 + (1 + g)2

Σ̃g

)
+ (γ−)2W1(1)−λ γ−

γ− + ρ
,

where γ− := min(0, γ). The distribution of the limiting random variable is easily seen to

be that in (4.7). �

Proof of Proposition 4.3.1 Following similar steps as in the proof of Proposition 4.2.1,

Proposition 4.5.2 can be generalized to more covariates. It remains to calculate the covari-

ance terms using the joint weak convergence of all the tail empirical processes (see Ahmed

and Einmahl (2019)). �

Proof of Theorem 4.3.1: From the uniform consistency of the tail copula estimators, it

follows that Ẑ−1
1j

P−→ Ẑ−1
1j , j = 1, . . . , d, in combination with Proposition 4.3.1, as n→∞,

√
k

(
σ̂g

a
(
n
k

) − 1

)
=
√
k

(
σ̂

a
(
n
k

) − 1

)
+

d∑
j=2

Z−1
1j

Z−1
11

√
k

(
σ̃gj(
n
k

)g − 1

)
+ oP(1).
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Now Proposition 4.3.1 and the continuous mapping theorem yield (4.9). �

Proof of Theorem 4.3.2: Using the asymptotic results for the SSE for the extreme value

index and the scale in the multivariate setting, the proof follows similar steps as the proof

of Theorem 4.2.2. �

Proof of Theorem 4.3.3: Using Theorem 4.3.2 in combination with the proof of Theorem

4.3.1 in de Haan and Ferreira (2006) yield, as n→∞

√
k

x̂pg − xp
a
(
n
k

)
qγ

(
k
np

) d−→ Ω−1 + γ

1 + g

d∑
j=2

H−1
1j

H−1
11

Ω̃j−γ−

(
Σγ −

d∑
j=2

Ẑ−1
1j

Ẑ−1
11

Σ̃gj

)
+(γ−)2W1(1)−λ γ−

γ− + ρ
.

The distribution of the limiting random variable is easily seen to be that in (4.11). �
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Chapter 5

Insurance risk and machine learning:

Estimating conditional Value-at-Risk

using random forest

[Based on joint work with Chen Zhou]

5.1 Introduction

Insurance companies are obliged to calculate solvency capital requirement (SCR), to en-

sure that they hold sufficient capital to protect policy holders. Under Solvency II, the

Value-at-Risk (V aR) of the insurance claims is used to calculate the SCR. As a widely

used risk measure, V aR describes the maximum loss within a certain confidence level α

which is essentially the quantile of the distribution of the total claims. There are a broad

class of parametric and non-parametric estimators for V aR (e.g. Azzalini (1981), Harrell

and Davis (1982) and Philippe (2001)). In our context we handle data with heavy tailed

distribution and apply extreme value statistics to estimate V aR for the insurance claims.

Extreme value statistics consider fitting a model on the tail distribution of data. There
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are two main approaches to sample data of extreme events, namely, the Block Maxima

(BM) and Peak Over Threshold (POT). The BM approach divides the data into several

blocks and considers the maxima of each block. The POT approach selects a certain

threshold and considers exceedances over the threshold. In the following, we use the POT

approach as it obtains extremes more efficiently.

The existing extreme value statistics often assume that observations are independent

and identically distributed (i.i.d.), while in practice this assumption is violated. Embrechts

et al. (2003) address data violating the stationarity assumption: they emphasize on the

non-stationary pattern which accounts for the structural changes in the observed data such

as evolution over time. Other sources of non-stationary pattern can be the survival bias,

changes in the economy cycle, business volume, management interactions and regulations.

Davison and Smith (1990) consider estimating the parameters in the POT approach

based on covariates, to adjust for different variation such as seasonality, using a paramet-

ric linear regression model. Coles (2001) discusses the applicability of the extreme value

models in case of non-stationary processes that have systematic changes through time by

introducing different method to deal with variation caused by time. Coles (2001) considers

time as a covariate and estimates the parameters in the POT approach dynamically using

parametric models, which can then be used in estimating V aR. Chavez-Demoulin et al.

(2016) extend the idea by Coles (2001) by considering another covariate, the business line,

in addition to time for modelling operational risk losses. Chavez-Demoulin et al. (2016)

introduce a semi-parametric model using penalized likelihood method for dynamic param-

eters estimation based on these two covariates. Then they evaluate risk measures such as

V aR using the estimated model.

In this chapter we extend the POT approach to incorporate a large number of co-

variates in the parameters, when modelling heavy tailed response variable. In particular,

we characterize the extreme value index and the probability of exceedences as conditional

expectations given a set of covariates, then we use the random forest algorithm to estimate

them. In addition, we obtain the conditional V aR given the covariates using the condi-
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tional estimates of the extreme value index and probability of exceedences. We focus on

dealing with categorical covariates which is different from the continuous covariates. The

categorical covariates provide less number of possible splits. By contrast the continuous

covariates can be more informative when using the random forest algorithm. Our method-

ology is demonstrated using a loss dataset from an anonymized insurance company which

contains a large number of categorical covariates. The performance of V aR is examined

via backtesting procedures.

Random forest algorithm is a machine learning scheme proposed by Breiman (2001).

It consists of ensembles of trees, where each tree in the ensemble grows based on suitable

tuning parameters. Eventually these trees are aggregated to produce estimates for ran-

dom forest classification or regression model. In many empirical studies, random forest

classification and regression models are emerged as a serious competitor to other machine

learning techniques (see Svetnik et al. (2003), Dı́az-Uriarte and De Andres (2006), and

Genuer et al. (2008)). Random forest algorithm can handle a large number of covariates

with measuring the predictive power for each covariate. It is flexible when dealing with

both linear and non-linear relationships.

Random forest algorithm has been applied in analysing different insurance applica-

tions. Lin et al. (2017) use machine learning techniques on life insurance data to obtain

classification model for predicting users recommendation of insurance products. They

find that random forest algorithm shows a superior performance, especially when dealing

with unbalanced classes. Alshamsi (2014) uses random forest and other machine learning

techniques to predict the customers choices for different services based on car insurance

data, where random forest algorithm outperforms the other used techniques. Staudt and

Wagner (2021) examine predication models for the claim severity in collision car insurance

data. The random forest is used to model the claim severity and log-normal transforma-

tion of the severity. They show that the log-normal transformation is preferable to apply

with the right skewed claims in the specific used application.

Our study is related to other stream of literature that combines tail estimation with
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machine learning. Fissler et al. (2021) introduce a deep neural network regression model

for estimating actuarial claim size, where the threshold for the large claims is given in

terms of a quantile of the conditional claim size distribution. Farkas et al. (2020) in-

troduce the generalized Pareto regression trees, that combines the extreme value theory

with the regression trees algorithm to estimate a conditional generalized Pareto distribu-

tion based on covariates. Velthoen et al. (2021) estimate a conditional generalized Pareto

distribution and the intermediate threshold based on covariates using gradient boosting

procedure. The conditional parameters estimated by gradient boosting are then used to

estimate conditional extreme quantiles.

In this chapter, we combine the extreme value statistics with the random forest al-

gorithm by providing a coherent framework to relate the extreme value index and the

probability of exceedence with covariates. The use of random forest classification and re-

gression models for estimating these quantities turns to be a natural choice. Moreover, we

focus on insurance relevant quantities by further estimating the conditional V aRα. Our

approach differs from existing studies such as Velthoen et al. (2021) and Staudt and Wag-

ner (2021). Velthoen et al. (2021) consider a fixed probability of exceedence, but allowing

for varying thresholds based on the covariates. By contrast we choose to consider a fixed

threshold but allowing for varying probability of exceedence based on covariates. The

two studies are different but have analogous choices. Staudt and Wagner (2021) directly

estimate the claim severity based on covariates using random forest model. By contrast

we consider the conditional distribution based on covariates, estimate the conditional pa-

rameters using random forest models, and obtain the conditional extreme quantile such

as the conditional V aRα.

The structure of the chapter is as follows. Section 5.2 previews the classical extreme

value theory focusing on the estimation of V aR. Section 5.3 introduces our proposed

model setup, derives the conditional parameters, discusses the random forest algorithms

to estimate the conditional parameters and the backtesting methods to evaluate the perfor-
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mance of the conditional V aR. Section 5.4 is devoted to a simulation study which assesses

the performance of our proposed methodology. In Section 5.5, we apply our methodology

to a real insurance dataset consisting of claim loss.

5.2 Classical Extreme Value Theory

Consider a random variable Y following a distribution function F , which belongs to the

max-domain of attraction of an extreme value distribution Hγ. That is, there exists a

sequence of constants an > 0 and bn ∈ R, such that

lim
n→∞

F n (any + bn) = Hγ(y),

where

Hγ(y) =

 exp(−(1 + γy)−1/γ) if 1 + γy > 0 and γ 6= 0,

exp(−e−y) if γ = 0.

Here γ is the extreme value index, which describes the heaviness of the tail of the distri-

bution.

We focus on the case with a positive extreme value index (γ > 0), then F is called a

heavy tailed distribution. Theorem 1.2.1 in de Haan and Ferreira (2006), shows that F

belongs to the max-domain of attraction with γ > 0 if and only if

lim
t→∞

P(Y > ty|Y > t) = y−1/γ. (5.1)

We intend to estimate V aRα of Y which is defined as: V aRα = inf{y|F (y) ≥ α}, for a

confidence level 0 < α < 1. If F is a continuous distribution, then P(Y > V aRα) = 1− α.

Motivated by (5.1) with a properly chosen high threshold u, an estimator of the V aRα

can be given as

V aRα

∧
= u

(
ĝ

1− α

)γ̂
, (5.2)
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where ĝ = P(Y > u)
∧

is a proper estimate for the exceedence probability (e.g. the empirical

counter parts) and γ̂ is the estimated extreme value index (see Weissman (1978)).

To obtain an estimate for γ, we use the Hill estimator. The intuition of the Hill

estimator is as follows: From Remark 1.2.3 in de Haan and Ferreira (2006), the domain of

attraction condition in (5.1) is equivalent to

lim
t→∞

E

(
log

(
Y

t

) ∣∣∣∣∣Y > t

)
= γ. (5.3)

Based on (5.3), Hill (1975) introduces the Hill estimator of the extreme value index

γ̂H =
1

k

k−1∑
i=0

log Yn−i:n − log Yn−k:n, (5.4)

where Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n are the order statistics of {Yi}ni=1, and k is an intermediate

sequence such that k →∞, and k
n
→ 0 as n→∞.

5.3 Proposed Methodology

We extend the classical approach to a conditional model. Consider a d-dimensional co-

variate X, such that (Y,X) ∈ Rd+1 is dependent random vector. For γ > 0, assume

that

lim
t→∞

P(Y > ty|Y > t,X = x) = y−1/γ(x).

γ(x) is a continuous function on Rd → R+. The function γ(x) can be considered as a

conditional extreme value index. Similar to (5.3), we can derive that

γ(x) = lim
t→∞

E

(
log

(
Y

t

) ∣∣∣∣∣Y > t,X = x

)
. (5.5)

Define the conditional V aRα of Y given a set of covariates X = x, as V aRα(x) :=

V aRα(Y |X = x), which satisfies P(Y ≥ V aRα(x)|X = x) = 1 − α. For a high threshold
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u,

P(Y ≥ V aRα(x)|X = x)

P(Y ≥ u|X = x)
≈
(
V aRα(x)

u

)−1/γ(x)

.

Define

g(x) = P(Y ≥ u|X = x) = E(IY >u|X = x),

where I[.] is an indicator function that equals to 1 when Y > u and 0 otherwise. Then we

get

1− α
g(x)

≈
(
V aRα(x)

u

)−1/γ(x)

.

Thus an estimator of V aRα(x) can be

V aRα(x)
∧

= u

(
ĝ(x)

1− α

)γ̂(x)

, (5.6)

where γ̂(x) and ĝ(x) are proper estimators of γ(x) and g(x).

Since g(x) is the conditional expectation of the indicator function IY >u given the co-

variates X = x, we can estimate it using a classification model. In addition, the limit in

(5.5) implies that

γ(x) ≈ E

(
log

(
Y

u

) ∣∣∣∣∣Y > u,X = x

)
= E

(
Z
∣∣X = x

)
,

where Z = log
(
Y
t

∣∣∣Y > t
)
. Therefore γ(x) is approximately the conditional expectation

of Z given the covariates X = x and it can be estimated using a regression model. We

use non-parametric ensemble random forest algorithm to estimate the classification and

regression models.

5.3.1 Estimation of γ(x)

Suppose our observations {Yi, Xi}ni=1, where Xi = (Xi1, . . . , Xid) are d-dimensional co-

variates. Define {i|Yi > u} = {i1, . . . , im} which are the indices corresponding to high

losses above the threshold u. For each 1 ≤ l ≤ m, we consider Zl = log
(
Yil
u

)
and the

corresponding covariates Xil in a regression model to obtain estimate for γ(x).
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Random forest regression consists of combination of regression trees. Each regression

tree is based on a bootstrapped sample drawn with replacement from the original sample

upto the same sample size. On average, that leads to use only 63% genuine observations in

the original sample. The rest are denoted as out-of-bag sample and used to get unbiased

estimation of the model error. For each categorical variable, we use the one-hot-encoding

method which transform each category into dummy variable then we drop one of the

dummy variables to avoid the dummy variable trap that may lead to multicollinearity. In

the following, Xij refers to the dummy variables and the number of dummies produced

from the all categorical covariates is D.

The regression tree starts with the root node C0, which contains all bootstrapped ob-

servations for this tree, then it splits into two child nodes Cl and Cr as follows: Randomly

select [
√
D] dummies from all D dummy variables, denoted as X.j, j ∈ U ⊂ {1, . . . , D}.

The algorithm tests all possible splits among all dummies X.j, j ∈ U. The set of splits is

defined as S where each split s depends on the value of one covariate. The splitting rule

for categorical variables is based on the elements belonging to a particular class. Each

dummy variable can be used only once for splitting. The best split s∗ is the one that

maximizes the decrease of the least squared error

s∗ = arg max
s∈S

I(C0)− I(X.j),

where I(C0) = 1
|C0|

∑
i∈C0

(Zi − Z̄(C0))2 is the mean squared error in the root node C0 with

Z̄(C0) is the average of observations in C0, I(X.j) = πlI(Cl) + πrI(Cr), πl and πr are the

fractions of observations in each child node Cl and Cr respectively, and I(Cl) and I(Cr)

are the mean squared error in the nodes Cl and Cr defined in an analogous way. The next

step is to split the nodes Cl and Cr, which are regarded as parent nodes, following the same

procedure as above. The splitting process is repeated till a minimum node size is reached.

The final node where there is no more splits allowed, is denoted as the terminal node. For

a given covariate X = x, following the regression tree structure leads to a terminal node.

Then, the predicted value of the response variable from this regression tree becomes the
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average of observations in the terminal node.

Based on different bootstrapping samples, we grow B regression trees. For tree b, given

a covariate X = x, the predicted value following regression tree b is denoted as Tr(x; Θb),

where b = 1, . . . , B, and Θb describes the structure of the regression tree in terms of

splits and nodes. By aggregating the results of the B regression trees, the random forest

estimator for the conditional extreme value index becomes

γ̂(x) =
1

B

B∑
b=1

Tr(x; Θb). (5.7)

See Figure 5.1 for the random forest scheme.

5.3.2 Estimation of g(x)

We estimate g(x) in two steps. First we use the random forest algorithm to build a

classification model, then we calibrate the results of the classification model to obtain the

conditional probability estimates.

Random Forest for Classification

We estimate g(x) by conditional expectation E(Vi|X = x) using random forest classifica-

tion model, where

Vi =

 1 if Yi > u,

0 if Yi ≤ u,
,

i = 1, . . . , n and X is a d-dimensional covariates, Xi = (Xi1, . . . , Xid). Random forest

classification model has the same structure as the random forest regression model as in

Figure 5.1. In the classification tree the splitting at each node is in a similar way as the

regression tree but with different splitting criteria. Classification tree starts by splitting

the root node C0 which contains all observations, where the best split s∗ is the one that

maximize the Gini gain

s∗ = arg max
s∈S

IG(C0)− IG(X.j), j ∈ U,

99



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

Figure 5.1: Random forest scheme

where IG(C0) = 1− π2
m,0− π2

m,1 is the Gini impurity for C0 and πm,0 and πm,1 are fraction

of observations belongs to each class, IG(X.j) = πlIG(Cl) + πrIG(Cr), πl and πr are the

fraction of observations at each child node Cl and Cr respectively, and IG(Cl) and IG(Cr)

are the Gini impurity of Cl and Cr. Note that the maximum Gini impurity is 0.5. Starting

from the root node, we run the splitting process in a similar way till reaching terminal

node where a minimum size of a node is reached. For tree b, Θb describes the structure of

the tree. Given a covariate X = x, the classification score is denoted as Tc(x; Θb) which
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represents the average of votes for each class in the terminal node.

Based on different bootstrapping samples, we grow B classification trees. The classi-

fication score is the average of scores from the B classification trees in the random forest

as follow

f̂(x) =
1

B

B∑
b=1

Tc(x; Θb).

Note that this average cannot be interpreted as a classification probability. We further

calibrate the probability of P(V = 0|X = x) based on the classification score f(x).

Probability Calibration and Evaluation

Following Niculescu-Mizil and Caruana (2005), we use calibration to produce robust prob-

ability estimates that match the expected distribution of probabilities for each class. We

use a parametric calibration method, which is known as sigmoid method. That is, we

assume that

P (V = 0|X = x) =
1

1 + exp(β0f(x) + β1)

where β0 and β1 are the parameters. We estimate them by minimizing the negative log

likelihood as follows

(β̂0, β̂1) = min
(β0,β1)

−
n∑
i=1

Vi log(pi) + (1− Vi) log(1− pi),

where pi = 1

1+exp(β0f̂(Xi)+β1)
, and Vi is the observed class. After estimating β0 and β1 the

calibrated probability is estimated as

1

1 + exp(β̂0f̂(Xi) + β̂0)
.

The calibrated probabilities are evaluated using Brier score (Brier et al., 1950). Brier

score is computed as the mean squared error of the calibrated probability and the observed

class label. It measures the accuracy of predicted probabilities; see Ovadia et al. (2019)

and Savage (1971). The Brier score ranges between 0 and 1, where a lower values of the

score indicates a better prediction.
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5.3.3 Variable Importance

We evaluate the importance of each covariate based on the relative importance method,

as in Hastie et al. (2009) Section 10.13.1. The relative importance helps to understand

which covariates are more crucial in the prediction of the dependent variable.

Recall the construction of the regression (or classification) tree as in Section 5.3.1 (or

5.3.2). The splits are chosen to minimize the residual sum of squares (or to increase the

gini gain). More informative splits are those resulting in large decrease in the residual

sum of squares. The relative importance of a given covariate is obtain by considering all

the splits related to this covariate, and summing up the decrease in the residual sum of

squares due to those splits.

5.3.4 Backtesting

In this section we discuss the evaluation methods to asses the quality of our proposed

conditional of V aRα. For that purpose we use two backtesting methods.

Proportion of Failures Test (PoF)

The PoF test is one of the widely used standard tests for V aRα and known as the uncon-

ditional test. It tests if the probability of exceedances p based on the estimated V aRα is

significantly different from 1 − α (H0 : p = 1 − α). The PoF test is conducted using the

likelihood-ratio (LR) statistic (Kupiec, 1995)

LR = −2 ln

(
(1− p̂)n−rp̂r

αn−r(1− α)r

)
,

where p̂ = r
n

and r is the number of exceedances and n is the total number of observa-

tions used for the backtesting. Under the null hypothesis, the LR statistic asymptotically

follows χ2 distribution with one degree of freedom.
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Comparative Test

We use the comparative test by Nolde and Ziegel (2017) to compares two methods: the

conditional V aRα given a set of covariates (V aRα(x)) as in (5.6) and the unconditional

V aRα as in (5.2). The comparative test depends on using a score function which is strictly

consistent to V aRα.

For the backtesting one can use the following null hypothesis:

H−0 : The conditional V aRα predicts at least as well as the unconditional V aRα

We use the following test statistic

T =
∆S̄

σ̂n/
√
n
,

where ∆S̄ = 1
n

n∑
i=1

(S(V aRα(xi), Yi)−S(V aRα, Yi)), and S(r, Yi) = (1−α− 1{Yi>r})G(r) +

1{Yi>r}G(Yi), i = 1, . . . , n, here n is the number of observations used for the backtesting.

We consider a zero and first degree homogeneous scoring functions, i.e, G(r) = log(r) and

G(r) = r respectively. σ̂n is the standard deviation of ∆S̄. Under H−0 , the test statistic T

has expected value less than or equal to zero. Under certain mixing assumptions detailed

in Giacomini and White (2006), T is asymptotically normally distributed with variance 1.

The backtest is passed if at a fixed confidence level η, H−0 is not rejected when 1−Φ(T ) ≥ η.

In case of comparative backtesting, a more conservative approach is adopted using the

null hypothesis:

H+
0 : The conditional V aRα predicts at most as well as the unconditional V aRα.

This null hypothesis can also be tested using T , which has expected value greater than or

equal to zero under H+
0 . At a fixed confidence level η, H+

0 is rejected when Φ(T ) ≤ η.

The decision is taken in comparative backtesting based on the three regions procedure

proposed by Fissler et al. (2015). We consider that the conditional V aRα fails the com-

parative backtesting if H−0 is rejected at level η, then the conditional V aRα is in the red
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region. The conditional V aRα passes the comparative backtesting if H+
0 is rejected, and

it falls in the green region. The conditional V aRα needs further investigation if neither

H−0 or H+
0 can be rejected, and the conditional V aRα is in the yellow region.

5.4 Simulation

We conduct a simulation study to evaluate the performance of our proposed methodology.

We generate a random sample of size n = 10000, 20000 and 30000, for 5-covariates Xi =

(Xi1, . . . , Xi5), 1 ≤ i ≤ n, such that Xij are independent across j = 1, . . . , 5, and each from

a multinomial distribution. That is

� {Xi1}ni=1 ∼ multinom([0.7, 0.2, 0.1], n), {Xi2}ni=1 ∼ multinom([0.3, 0.5, 0.1, 0.1], n),

� {Xi3}ni=1 ∼ multinom([0.4, 0.3, 0.2, 0.01, 0.09], n), {Xi4}ni=1 ∼ multinom([0.7, 0.2, 0.06, 0.04], n),

� {Xi5}ni=1 ∼ multinom([0.8, 0.1, 0.1], n).

We construct γ(x) and g(x) based on the generated covariates, here we consider

Case I: γ1(xi) = 0.15+0.7I(xi3 = 1)+0.93I(xi2 = 2), g1(xi) = 0.1+0.05I(xi2 = 1)+0.1I(xi1 = 2),

Case II: γ2(xi) = 0.1+0.6I(xi3 = 1)+0.8I(xi2 = 2), g2(xi) = 0.1+0.11I(xi2 = 1)+0.08I(xi1 = 2).

For each i, we generate a Bernoulli random variable pi with probability g(xi). Then we

simulate Yi as

Yi =

 uỸi , pi = 1,

(Fi−Fiu
0.1+u0.1

u0.1
)−10 , pi = 0,

where Ỹi ∼ PD(γ(xi)), Fi ∼ Uniform(0, 1), and u is a prespecified threshold.

Our main goal is to check the ability of our methodology to precisely estimate the

conditional V aRα of Y. We start with checking the estimation of the conditional extreme
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value index γ(x) and conditional probability of exceedence g(x). We use all the generated

covariates as potential covariates for the random forest algorithm to check the ability of

the algorithm in selecting the important covariates.

First we examine the estimation of γ(x) using random forest regression model. To

obtain estimates for γ(x), we only consider observations above threshold u, to get Zl

as defined in Section 5.3.1 then we regress it on the set of all covariates. Based on

the g functions, the number of exceedences for n = 10000, 20000, 30000 are on average

1350, 2700, 4050 for case I and 1490, 2980, 4470 for case II. To evaluate the performance of

the proposed estimator, we calculate the rooted mean squared error as

RMSE =

√√√√ n∑
i=1

(
γ̂(xi)
γ(xi)
− 1
)2

n
.

For the random forest regression model, we need to decide the stopping criteria which

is the minimum size of node. Note that the maximum depth is reached when all leaves

contain less than the minimum node size. Therefore we test the performance of the random

forest regression for estimating γ(x) for a range of values of the minimum node size. The

remaining main parameters for the random forest are chosen as follows: the number of

trees is 100 and the minimum sample size required to be at a leaf node is 1. The random

forest algorithm for the regression and classification are implemented in Python using

scikit-learn package. Figure 5.2 and Figure 5.3 show that the RMSE decreases by the

increase of minimum size of the node, except the case n = 10000. Based on Figure 5.2 and

Figure 5.3, we choose the optimal minimum size of node as 320 where the RMSE ranges

between 0.056 to 0.076.

Second, we consider the conditional probability of exceedence g(x). Similarly we inspect

the optimal minimum size of node by considering a range of values for the minimum

node size. We take a higher range than in the regression case as we are dealing with all

observations not only the exceedences. Then we calculate the corresponding RMSE of g(x)

to each minimum node size based on 100 times simulation. Figures 5.4-5.5 show a different

behaviour to the regression figures. Based on Figures 5.4-5.5, it is not recommended to
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Figure 5.2: RMSE of γ1(x) for different values of minimum node size in random forest

regression model based on 100 simulation samples.

set very high minimum size of the node. We decide that for g1(x) and g2(x) the optimal

minimum node size are 1400 and 1100 respectively where the RMSE ranges between 0.077

to 0.011 and 0.094 to 0.12.

Another important point is to check the sensitivity of using different threshold in

the random forest regression and classification model. To study the models sensitivity, we

choose different thresholds that produce different percentage of exceedences and calculate

the RMSE for γ(x) and g(x) for each threshold. Take n = 20000, the thresholds are selected

such that the percent of exceedences are [8%, 10%, 12%, 14%, 16%, 18%, 20%], where the

case of having 14% exceedences is the closest to the threshold u which is used in generating

the data.

For the early chosen optimal minimum node size of the regression and classification
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Figure 5.3: RMSE of γ2(x) for different values of minimum node size in random forest

regression model based on 100 simulation samples.

models, Figures 5.6-5.7 show that the regression model is less sensitive to the change

of the threshold. The RMSE for γ(x) increases with the increase on the exceedence

percentage. Hence if we include more observation that does not belong to the tail of the

distribution, that will affect the estimation of the extreme value index. However, having

less observations does not deteriorate the performance. By contrast, the classification

model seems to be more sensitive towards the change of the threshold. This can be

explained by the fact that we are dealing with unbalanced classes. The change in the

percent of the majority and the minority classes may require different tuning for the

parameters.

Finally we estimates the conditional V aRα, for α = 0.90, 0.95 and 0.99. Using minimum

node size for the regression and classification models as 320 and 1100 respectively. The
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Figure 5.4: RMSE of g1(x) for different values of minimum node size in random forest

classification model

following results are based on 500 times simulations and using the threshold u. Table 5.1

shows that the RMSE for the V aR0.90 decreases by the increase of the data size, but it

increases in the more extreme quantile specially V aR0.99 which is mainly affected by the

estimation of γ(x).

One important advantage for the random forest models is their ability to rank the

importance of different input covariates in the fitting process. Here we test the accuracy of

this feature by calculating the importance in different simulations, then check the percent

of getting the covariates in γ(x) and g(x) as the top ranked covariates. Table 5.2 shows

a very high ability for the regression model to detect the covariates importance correctly.

Table 5.3 shows good results for the top ranked covariates, although we observe that the
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Figure 5.5: RMSE of g2(x) for different values of minimum node size in random forest

classification model

Figure 5.6: RMSE of g1(x) for different percentage of observations above the threshold
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Figure 5.7: RMSE of g2(x) for different percentage of observations above the threshold

second covariate appears more as third important but it still shows in the top three ranked

covariates.

5.5 Application

In this section we apply our proposed methodology to loss claims data from an anonymized

insurance company. The dataset consists of 71297 claims due to Hail in the time period

between 1/2007 and 12/2016. Table 5.4 presents the summary statistics for the claims

grouped by the year of occurrence. Note that the average kurtosis is around 885 and it

ranges from 205 to 2706 which generally indicates to a heavy tailed distribution. Figure

5.8 shows the histogram of the data, which illustrates the long tail of the distribution.

There are two main covariates related to each claim, which are the type of insurance

and the segment. The two covariates contain four different categories. The type of in-

surance includes engineering (construction projects, mostly building and infrastructure),

greenhouse (a special type of property, namely glasshouses and other buildings related to

horticulture), motor(mainly passenger cars, delivery vans and trucks), and property (build-
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n 10000 20000 30000

γ̂1(x) 0.0574 0.0741 0.0766

ĝ1(x) 0.1028 0.0880 0.0831

V aR0.90

∧
(x) 0.1147 0.0971 0.0923

V aR0.95

∧
(x) 0.1310 0.1164 0.1204

V aR0.99

∧
(x) 0.2179 0.2380 0.2876

γ̂2(x) 0.0663 0.0755 0.0768

ĝ2(x) 0.099 0.0906 0.0837

V aR0.90

∧
(x) 0.0837 0.0775 0.0728

V aR0.95

∧
(x) 0.0964 0.0933 0.0943

V aR0.99

∧
(x) 0.172 0.1847 0.2126

Table 5.1: RMSE for the conditional estimators

γ1(x) γ2(x)

n Rank I(X.2 = 2) I(X.3 = 1) I(X.2 = 2) I(X.3 = 1)

10000
First 99.8% 0.2% 99.8% 0.2%

Second 0.2% 99.8% 0.2% 99.8%

20000
First 100% 0% 100% 0%

Second 0% 100% 0% 100%

30000
First 100% 0% 100% 0%

Second 0% 100% 0% 100%

Table 5.2: Importance ranking for the covariates used in the true γ(x)
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g1(x) g2(x)

n Rank I(X.1 = 2) I(X.2 = 1) I(X.1 = 2) I(X.2 = 1)

10000

First 99.8% 0.4% 0% 100%

Second 0.2% 23.6% 55.6% 0%

Third 0% 76% 44.4% 0%

20000

First 100% 0% 0% 100%

Second 0% 17.6% 62.2% 0%

Third 0% 82.4% 37.8% 0%

30000

First 100% 0% 0% 100%

Second 0% 19.8% 76.4% 0%

Third 0% 80.2% 23.6% 0%

Table 5.3: Importance ranking for the covariates used in the true g(x)

Year Mean Std Skewness Kurtosis

2007 4176.70 14236.68 17.22 403.29

2008 3175.52 8091.11 23.99 776.21

2009 4289.81 13814.71 11.93 205.06

2010 4490.87 22891.20 18.28 395.39

2011 2555.05 6518.95 27.36 1130.40

2012 3093.77 10627.10 27.12 969.87

2013 3215.10 7719.03 14.34 274.35

2014 4733.62 24335.14 18.26 429.85

2015 3792.38 29622.65 42.85 2705.67

2016 11175.00 151442.32 31.95 1157.30

Table 5.4: Summary statistics for claims by year the claim occurred
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Figure 5.8: Histogram of claims distribution

ings and their contents), while the segment includes agricultural (risks related to farmers),

commercial (risks belong to companies), horticultural (risks related to glasshouses), and

residential (risks related to clients not being companies (e.g. houses)). The rest of the

covariates are date and postal code. Regarding the date, we use the months to generate

a new categorical covariate that represents the raining months (the covariate takes the

value 1 in months between May to October and 0 otherwise). Finally we use the postal

code to generate other categorical covariate to account for the location effect. Figure 5.9

shows the association between the main four covariates calculated by Cramer’s V measure

(Cramér, 1946). We observe that there is no strong dependence between them which may

affect the models used for estimation of the conditional parameters. After applying the
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one hot encoding and dropping one dummy from each categorical variable, we end up

using 94 dummies in the random forest models.

Figure 5.9: Cramer’s V matrix between the main covariates

In the following we discuss estimation of the conditional V aRα. First we address the

threshold selection issue and how we divide the data into training and testing samples to

apply the random forest algorithm. Second, we use the random forest regression model

to estimate the γ(x) and investigate whether the exceedences indeed follow approximately

Pareto distribution using the Q-Q plot. Third, we estimate g(x) using random forest clas-

sification model and use Brier score to evaluate the model performance. Lastly, we use

the random forest models produced from the training sample to estimate the conditional

V aRα for the testing sample and use backtesting to evaluate the performance of the esti-

mation.

One critical issue of the analysis is the selection of appropriate high threshold. For

that purpose we start by using the Hill plot, where the Hill estimator in (5.4) is plotted

for different values of k using all data. Figure 5.10 indicates that the Hill estimator is

not stable for a wide range of k, which may indicate the presence of a mixed distribution
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of the data. To assess the sensitivity and check for robustness, we use three thresholds

where we assume the tail starts from the last 30%, 20% and 10% of the data. The three

thresholds correspond to three levels of k at 7129, 14260, and 21390 respectively. To apply

Figure 5.10: Extreme value index based on the Hill estimators for different values of k.

the random forest algorithm, We divide the data into training sample which includes data

in the time period from 2007 till 2013, the rest belongs to the testing sample.

We begin by estimating γ(x) using random forest regression model. We use the training

sample to regress log
(
Y
u
|Y > u

)
on the covariates, with the minimum node size selected

at 320, similar to the simulation. We use the Q-Q plot to check if log
(
Y
u
|Y > u

)
/γ(x)

has a standard exponential distribution. Figure 5.11 shows a good fit for the exceedences

using different thresholds. Between the three selected thresholds, the threshold 20% shows

the best fit compared to the rest. In the following we show only the results based on 20%

threshold. The results for the other thresholds do not show a remarkable difference, they

are available upon request.
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(i) Threshold 30% (ii) Threshold 20%

(iii) Threshold 10%

Figure 5.11: Q-Q plot to check whether the large claim losses are approximately Pareto

distributed. Note that the data are correctly fitted when it gets closer to the red 45-degree

line.

We apply the random forest classification model to estimate the conditional probability

P(Y > u|X = x) in the training sample, and use the Brier score to evaluate the model

performance in the training and testing samples. The Brier score ranges between 0 and

1, when the score gets close to 0 that indicates to good performance for the model. Using

minimum node size of 1100 as in the simulation, the Brier score for the training and testing

samples are 0.1390 and 0.1675. Next, Figure 5.12 shows the variable importance for the

top 15 covariates that affect the estimation of the conditional extreme value index and the
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conditional probability model. In the analysis, we left out the dummies indicating building

and their contents in the type of insurance and risk related to houses in the segment. Figure

5.12 shows that the main source of large losses are the damaged vehicles, other buildings

related to horticulture and the damaged glasshouses. However, the losses from damaged

vehicles due to hails occurs more frequently than losses related to glasshouses and other

buildings related to horticulture.

(i) Regression model (ii) Classification model

Figure 5.12: Variable importance for the random forest models

Finally we estimate an out-of-sample conditional V aRα, using confidence levels of

0.99, 0.95, 0.90. Tables 5.5 shows the backtesting results based on 5% confidence level for all

the thresholds. Regarding PoF test, we do not reject the null hypothesises only in the case

of V aR0.99. This is potentially due to the superiority of extreme value analysis in estimating

extreme quantiles. The comparative test focuses on the magnitude of violation using score

function. For 0−homogeneous score function, the conditional V aR always outperforms

compared to the standard V aR. For 1−homogeneous score function the conditional V aR

still outperforms for V aR0.90 and V aR0.95 otherwise it falls in the yellow region but it

never performs worse than the standard V aR.

By contrast, Table 5.6 shows the backtesting results when using only the top important

covariates in each model, defined as variables with a variable importance greater than 5%.
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α PoF test Comparative test

# Violations(%) P-value descision 0- Homo 1 - Homo

0.90 4788 (13.69) 0 Reject Green Green

0.95 2345 (6.71) 0 Reject Green Green

0.99 379 (1.08) 0.3062 Do not Reject Green Yellow

Table 5.5: Tests result V aRα(x)

α PoF test Comparative test

# Violations(%) P-value descision 0- Homo 1 - Homo

0.90 3342 (9.55) 0.0665 Do not Reject Green Green

0.95 1870 (5.35) 0.0521 Do not Reject Green Green

0.99 379 (1.08) 0.3062 Do not Reject Green Green

Table 5.6: Tests result V aRα(x) based on the top important covariates

In Table 5.6 we observe that the PoF test does not reject the null hypothesis for the three

considered V aRα. Table 5.7 shows the results of the PoF test for the standard V aRα, where

the null hypothesis is rejected for all cases of V aRα. Additionally, the average conditional

V aR0.90(x) and V aR0.95(x) are lower compared to the standard V aR without having higher

percentage of violations than expected. These results are more desirable for companies and

banks, our method leads to V aR estimates that would comply with the regulations while

corresponding to a lower capital requirements. Based on the comparative test (Table 5.5

and 5.6) the conditional V aRα outperforms the standard V aRα for both 0−homogeneous

and 1−homogeneous score functions. In particular, we conclude that estimation of V aR

is substantially improved when considering only the top important variables.
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α PoF test

# of Violations (%) P-value decision

0.90 2654 (7.89) 0 Reject

0.95 1444 (4.13) 0 Reject

0.99 607 (1.74) 0 Reject

Table 5.7: Tests result for V aRα

5.6 Conclusion

In this chapter, we use the random forest regression and classification models to estimate

the conditional extreme value index γ(x) and the conditional probability of exceedance

g(x), respectively. We consider a large number of covariates, where random forest models

manage to rank the most important covariates that affect the estimation of the two pa-

rameters. We then use the conditional estimators to obtain the conditional V aRα.

We show that our methodology is able to produce more accurate estimate for the con-

ditional V aRα using a simulation study. With applying our methodology to insurance

data, we estimate the conditional V aRα using a training sample while backtest its per-

formance in an out-of-sample set up. We compare the conditional V aRα to the standard

V aRα. In the application of the insurance data, our proposed methodology outperforms

the standard approach, especially when using the top important covariates selected by the

random forest model.

Our current approach still bears some limitations. One extension can be based on the

fact that using the top important covariates significantly affects the performance. One

may consider to use other machine learning models to calculate the variable importance

while using the random forest for estimation or the other way around.
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Algorithm 1 Random Forest Algorithm
Input: Training set Dn

Output: Random forest classifier T (x,Θb), b = 1, . . . , B.

1: for b = 1, . . . , B do

2: Generate dn bootstrapped sample with replacement to the same sample size from

Dn.

3: Randomly select p =
√
d covariate out of all d covariates.

4: Generate a decision tree and select the best split s∗, from the set of all splits

S = {1, . . . , s} based on the set of randomly selected covariates p, that optimize the

splitting criterion.

5: The splitting rule for categorical variables is based on the elements belonging to

particular category.

6: Splitting is repeated till reaching minimum node size.

7: The terminal node, where the tree stops splitting, has the output T (x,Θb).

8: end for

9: To make a prediction for a new point x :

10: Regression: f̂rf (x) = 1
B

B∑
b=1

T (x; Θb).

11: Classification: the random forest label is Trf (x) = majority vote {T (x; Θb)}B1 , and the

random forest score is f̂rf (x) = 1
B

B∑
b=1

T (x; Θb).
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Berghaus, B. and A. Bücher (2018). Weak convergence of a pseudo maximum likelihood

estimator for the extremal index. The Annals of Statistics 46 (5), 2307–2335.

121



576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed576597-L-bw-Ahmed
Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022Processed on: 12-4-2022 PDF page: 132PDF page: 132PDF page: 132PDF page: 132

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.

Brier, G. W. et al. (1950). Verification of forecasts expressed in terms of probability.

Monthly weather review 78 (1), 1–3.

Buishand, T., L. de Haan, and C. Zhou (2008). On spatial extremes: with application to

a rainfall problem. The Annals of Applied Statistics 2 (2), 624–642.

Caeiro, F. and M. I. Gomes (2015). Threshold selection in extreme value analysis. In

D. Dey and J. Yan (Eds.), Extreme Value Modeling and Risk Analysis: Methods and

Applications, pp. 69–87. Chapman and Hall/CRC.

Chakrabortty, A. and T. Cai (2018). Efficient and adaptive linear regression in semi-

supervised settings. The Annals of Statistics 46 (4), 1541–1572.

Chavez-Demoulin, V., P. Embrechts, and M. Hofert (2016). An extreme value approach

for modeling operational risk losses depending on covariates. Journal of Risk and In-

surance 83 (3), 735–776.

Coles, S. (2001). An introduction to statistical modeling of extreme values, Volume 208.

Springer.

Coles, S. G. and J. A. Tawn (1991). Modelling extreme multivariate events. Journal of

the Royal Statistical Society: Series B (Methodological) 53 (2), 377–392.

Coles, S. G. and D. Walshaw (1994). Directional modelling of extreme wind speeds.

Journal of the Royal Statistical Society: Series C (Applied Statistics) 43 (1), 139–157.

Cramér, H. (1946). Mathematical methods of statistics, 1946. Department of Mathematical

SU .
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