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ABSTRACT 

Emerging sensor-based assessment in combination with machine learning methodologies 

provide the potential to revolutionize current practices of (early) diagnosis of dementia. 

The goal of this research is to detect cognitive impairment in elderly adults using sensor-

based measures. Longitudinal time-series data of sensor signals are analyzed with 

advanced computational models and supervised machine learning algorithms to identify 

individuals with cognitive impairment. This research further designs novel computational 

models using Poisson Processes that can model subtle temporal changes in sensor-based 

measurements, therefore have the potential to provide more reliable descriptors of 

cognitive impairments compared to aggregate time-series measures. Our results indicate 

that the proposed approach can effectively distinguish between dementia and MCI based 

on the sensor features yielded by the Poisson Process. Sensor-based assessment that relies 

on the non-homogeneous Poisson Process is further found to be effective in differentiating 

between adults with dementia and healthy adults, and depicts better performance 

compared to expert-based assessment. Findings from this research have the potential to 

help detect the early onset of cognitive impairment for elderly adults, and demonstrate the 

ability of advanced computational models and machine learning techniques to predict 

one’s cognitive health, thus, contributing toward advancing aging-in-place. 
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1. INTRODUCTION 

Individuals with mild cognitive impairment (MCI), a noticeable decline in cognitive 

abilities that does not interfere with daily functioning, are at increased risk of developing 

Alzheimer's disease (AD) or other dementia [1]. The prevalence of dementia is expected 

to increase dramatically in future years as life expectancy continues to increase. Research 

shows that 75% of patients with dementia remain undetected at an early stage [2], and are 

not diagnosed until they have progressed to a moderate or advanced stage [3]. The 

Alzheimer’s Association reported an estimate of more than 5 million Americans living 

with dementia as of 2020, of which 83% patients are of age 75 or older [4]. The number 

of people in the United States aged 65 and older suffering from AD may reach 13.8 million 

by 2050 [4]. Being the 6th leading cause of mortality in United States, deaths of patients 

with AD have increased by 146% between 2000 and 2018 [4]. In addition to the high 

emotional and mental strain of MCI-related conditions to the patient and his/her family, 

the cost is equally high: caregivers provide an estimated 18.6 billion hours of care to 

patients that is valued at nearly $244 billion [4]. 

These cognitive diseases are of slow progressive nature, which severely impact the mental 

and physical functioning of patients showing symptoms of memory problems, 

forgetfulness, and poor judgement and thinking. A meta-analysis found that 38% patients 

with MCI developed dementia over a period of five years [5]. A practical approach to the 

diagnosis of dementia involves an assessment related to progressive decline in memory, 

decrease in the patient's ability to perform activities of daily living, psychiatric problems, 

personality changes and problem behaviors. Clinical assessment of dementia involves the 

assessment of cognitive domains, including speech, motor memory, sensory recognition, 

and executive functioning. The Mini-Mental State Examination (MMSE), although not a 

diagnostic of dementia, is a test for assessing cognitive function and documenting 

subsequent decline. Yet, degradation of cognitive functioning is not always easy to 

diagnose, especially in elderly adults who live alone. Access to clinical diagnosis is limited 

for many adults due to cost and practical issues (e.g., lack of transportation to the 

healthcare provider).  
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MCI assessment is traditionally performed by collecting surveys reported by the 

individuals and caretakers, or closely monitoring occupant’s activities in a controlled 

environment. These assessments for tracking the progression of diseases are conducted 

once every few months, thus providing measures of an individual’s health status at a low 

temporal resolution. Due to lack of awareness about the disease and ignorance of 

symptoms, these self-reported observations tend to be erroneous and generally biased [6]. 

Hence, the longitudinal continuous monitoring of an individual’s behavior has the 

potential to detect cognitive impairment at an early stage. Today, longitudinal continuous 

data can be collected with modern advancements in smart home technologies with high 

temporal specificity by leveraging smart devices, such as motion capture devices, audio, 

video, and wearable sensors [7, 8, 9, 10]. This enables monitoring the behavior and 

longitudinal health of individuals, thereby, providing insightful information on the onset, 

progression, and aggravation of cognitive diseases. 

Emerging ambulatory measurement in combination with machine learning methodologies 

provide the potential to revolutionize current practices of (early) diagnosis of dementia in 

a smart home by relying on sensor-based measurements of the activities of daily living 

[11], [12], [13]. Prior work has demonstrated the ability of machine learning techniques 

in predicting participant’s cognitive health that can help understand an individual’s 

everyday health using automated task assessment [14]. This involved assessing the activity 

quality and tracking the activities performed by individuals in smart homes to correlate 

sensor features with automated scores obtained from direct performance observations. 

The sensors used in smart homes are categorized as obtrusive and non-obtrusive/ 

unobtrusive sensors based on their prominence. Obtrusive sensors are noticeable in an 

intrusive manner and include cameras, microphones, and wearable sensors providing wide 

range of rich physiological and audiovisual data. These highly sophisticated sensors are 

useful in modeling activities of daily living, however, can cause individual discomfort and 

privacy issues. These obtrusive sensors have a lower adoption rate for elderly adults, since 

it might be difficult for them to have the wearable sensors. Thus, as a potential solution to 

this challenge, we are utilizing the unobtrusive sensors in our research. These unobtrusive 
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sensors, such as binary sensors, wireless motion sensors and passive infrared sensors, are 

not burdensome and have the potential to be widely used in smart home environments and 

allow the collection of rich temporal information about individuals’ health states. 
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2. PRIOR WORK 

Clinical activity assessment of dementia and MCI is traditionally performed by monitoring 

an individual’s activities through survey data from the caregiver and the patient [15], [16]. 

These self-reported observations are time-consuming [18] and can be subjective and 

biased [19]. Pavel et al. found that changes in mobility patterns directly relate to the 

decline in cognitive ability [20]. Mobility was measured by assessing the instantaneous 

walking speed and response time to a telephone ring. Other work has instructed elderly 

adults a set of predefined activities, for which the quality and correctness was assessed 

through expert observation [21]. 

Clinical review criteria for diagnosis of MCI involve cognitive testing of changes in 

memory, language, visuospatial function, and attention/executive function [36] [37] [38]. 

Some of the clinical characteristics indicating MCI due to Alzheimer’s disease include 

longitudinal decline in cognitive function, lack of prominent behavioral or language 

disorders, and lack of parkinsonism, vascular risk factors, visual hallucinations and 

extensive cerebrovascular brain imaging disease [39]. The approach for diagnosing and 

managing MCI as adopted in [36] registers history of changes in functional status, 

prescription and medications, neurological symptoms such as speech, vision, hearing, and 

numbness, and psychiatric symptoms including anxiety, depression and behavioral 

changes. This study performed physical and neurological examination, and conducted 

laboratory testing of biomarkers such as blood cell count, electrolytes, thyroid function, 

glucose, and calcium. Widely used cognitive screening tests include the Mini-Cognitive 

Assessment Instrument (Mini-Cog) [40] and the Montreal Cognitive Assessment (MoCA) 

screening tool for detecting MCI [41]. The Mini-Cog test combines the clock drawing test 

with a 3-word recall that can be performed in 3 minutes or less, whereas MoCA is a tool 

developed specifically for MCI detection which usually takes 10 minutes to administer. 

MoCA examines the patient’s orientation, short-term memory, executive function, 

language abilities, abstraction, and attention. 
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As part of another line of work, detection of early-stage dementia has been conducted 

using speech-based protocols that collect and analyze patients’ conversational speech [43] 

[44] [45]. Some methods to assess dementia of Alzheimer type (DAT) in older adults 

include structured interviews aimed at capturing the suffered deficits [42], since the 

capacity for functional communication and the linguistic skills are most significantly 

affected by the DAT. The lexical approach introduced in [42] provides the ability of 

diagnosing patients through spontaneous speech analysis. This approach relies on 

character n-grams that model the linguistic consistency of the speaker. N-grams comprised 

the input of a naive rule-based classifier, which achieved an accuracy of 70% in 

recognizing dementia, and 50% accuracy in classifying between severe, moderate, mild, 

and normal dementia. The study conducted in [43] involved recording an individual’s 

audio data by extracting vocal features related to pause timing, sentence duration, and 

verbal reaction time yielding 20% equal error rate between dementia and MCI detection. 

The speech analysis system presented in [44] supports dementia assessment using speech 

processing techniques. A comprehensive statistical analysis is done on the language-

independent vocal features, thereby, revealing the importance of spoken tasks for 

automatic assessment of early dementia. Further work in this area involves detecting 

dementia using manual pipeline transcriptions and the fully automatic pipeline 

transcriptions to transcribe speech [45]. This approach utilized an automatic speech 

recognition (ASR) system with acoustic and linguistic features extracted from audio and 

automatic transcriptions, and language models for modeling the word sequence 

probability.  

Other works have performed sensor-based assessment through signal processing and 

machine learning methodologies [14] [29]. Urwyler et al. estimated the degree of 

routineness using Poincare plots by performing activity recognition with a CAR classifier 

[12] [22]. This used a rule base ad-hoc classifier proposed in [12] to detect and classify 

activities of daily living (ADL). The Poincare plot is used to represent activities of 

consecutive days. The degree of routineness is estimated by detecting similar activities on 

two consecutive days which are paired and then plotted on a two-dimensional plot. A 
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Markov chain implemented by Shirin et al. is used for detecting unusual sensor patterns 

of dementia patients [25]. Finally, autoencoders have been used by Sharma and Ghose for 

reducing dimensionality of data and representing routines as encodings of fixed length 

[26]. Covinsky et al. measured the degree to which the ADL’s are performed adequately 

by older adults, and found that variations in ADL patterns are indicative of one’s mental 

health status [27] [28]. Despite the promising results, the aforementioned work does not 

consider contextual information (e.g., type of task) when designing or learning the 

corresponding features. In addition, many of the proposed feature learning algorithms, 

such as the autoencoder and Markov chain, require a large number of data in order to yield 

accurate descriptors of the signals of interest. 

AI-based algorithms used for cognitive assessment include the Gestalt Sequence Matching 

algorithm [23] used by Alberdi et al. [24] for computing the similarity between routines. 

This Gestalt Sequence Matching algorithm computes the similarity between two 

sequences using longest common sub-sequences (LCS). An activity recognition algorithm 

[17] was further used to recognize the activities, which are then represented as routine 

sequence in comparison to the sequence of next day. The challenges involved in these 

routine based assessments through recognized activities include lack of annotated activity-

based data, and the requirement of large amounts of training data for every subject.  

Prior work has further performed activity assessment by real-time activity recognition 

using CASAS smart home [31]. This used a support vector machine to analyze the resident 

behavior using the smart home data. The limitation to their work of not performing 

longitudinal study assessment is overcome in this thesis by continuous monitoring of 

individuals using moment-to-moment sensor measures. Other works have performed 

automated assessment of task quality using machine learning algorithms on the basis of 

sensor data collected during the performance of task [14]. The participants completed a 

neuropsychological test which provided a ground truth activity score and an experimenter 

rates the performance of activities performed by individuals in a smart home. This study 

only focused on one complex activity of DOT tasks or the Day Out Tasks. This approach 

used raw sensor data on which an activity recognition algorithm was implemented and 
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feature extraction was performed on the collected annotated sensor data to predict activity 

quality scores. The smart home data was analyzed to classify cognitive health. Results 

from this work provided a foundation toward automating the longitudinal assessment of 

well-being in home environments.  

The limitation to the cognitive assessment study conducted in [14] that it relies on 

participants completing the scripted activities can cause unnatural performance due to 

factors such as unfamiliar environment, awareness of being monitored and the manner of 

scripted activities. It was observed from their study that only limited cognitive assessments 

can be automated using algorithms and smart home sensors. Direct observation scores 

were used for training the machine learning models and derived features required human 

annotation of the sensor data. Since the direct observation score can’t capture natural 

activity performance, the limitation to their work being the coarse granularity of home-

based sensors is overcome in this thesis. Thus, the cognitive assessment study in our 

research allows to provide sensor-based assessment as well as the automated/expert-based 

assessment, and contrasts the performance between the two using advanced computational 

models and supervised learning algorithms. 

More detailed information about the automatic assessment of cognitive impairment can 

be found in previous systematic review studies [46], in which the use of multimodal 

sensing is emphasized for effectively capturing the diversity of behaviors indicative of 

cognitive impairment. There have been studies in the systematic review which do not use 

behavioral or clinical assessment tools to detect dementia [47] [48] [49] [50] [51]. Some 

of the previous work [49] [50] has described the design of system architectures and sensor 

platforms, which have been validated with small-scale study protocols, rather than clinical 

studies. On the contrary, other work included clinical studies using data analysis 

techniques [52], [53] or sensing [54] [55] [56] [57]. These studies indicated the correlation 

between various sensor-based measures and dementia outcomes. 

Poisson Processes (PPs) have been used to model the occurrence of events of interest in 

various applications [29]. Prior work has used PP to model earthquake series and 
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characterize seismic activity [30]. This study utilized a stationary PP and hypothesized 

that the deviation of the data from the model is indicative of seismic events of interest. 

Another study employed a non-homogeneous PP to quantify physiological reactivity 

patterns occurring as part of an interpersonal interaction in a therapeutic setting for 

children with Autism Spectrum Disorders [29]. The authors used a non-homogeneous PP 

to model the occurrence of skin conductance responses in the electrodermal activity signal. 

The rate function of the PP model was further dependent on the observable events that 

occurred during the therapy session. The promising results yielding from prior work have 

led us to exploring the use of homogeneous and non-homogeneous PP models in 

association to sensor-based events for detecting cognitive degradation. 

In contrast to prior work, this thesis proposes a new methodology to accurately model 

sensor-based signals based on a PP framework that assumes an event sequence in these 

signals. We anticipate that this will provide a more efficient modeling of time-series in a 

fine-grained scale through this process, essentially leaning towards the early detection of 

dementia cases. Thus, the application of PP models on sensor-based time-series for the 

task of identifying cognitively impaired adults is novel in this field. 
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3. PROPOSED WORK AND CONTRIBUTIONS 

This research aims to leverage moment-to-moment sensor-based measures collected from 

non-intrusive devices to detect cognitive impairment in elderly adults. The unobtrusive 

measures used in our research study consist of sensor-based measurements, where sensors 

are not installed on the person’s body, instead substituted as environmental sensors. We 

aim to address computational challenges involved with its endeavor for reliably modeling 

fine-grain variations in the longitudinal sensor-based time-series data. For this reason, we 

design and formulate a Poisson’s Process (PP) framework, which models time arrival of 

events. We argue that this is a particularly attractive framework for modeling the 

considered sensor-based time-series, since we assume that a sensor being ON represents 

an arrival or occurrence of a certain event. PP models can model subtle temporal changes, 

therefore have the potential to provide more reliable descriptors of cognitive impairments 

compared to aggregate time-series measures. We further incorporate contextual 

information by separately estimating the arrival rate of the PP based on the start and end 

of a given task through a non-homogeneous PP model. The proposed PP measures are 

used as an input to supervised machine learning algorithms for classifying between 

participants with MCI/dementia and healthy participants, and are compared to expert-

driven assessment of activity scores for the same task.  
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4. RESEARCH OBJECTIVES 

4.1. Research Aims: 

This thesis aims to answer the following research questions: 

1. Can sensor-based measures modeled with Poisson’s Process (PP) and combined 

with machine learning methodologies detect cognitive impairment, specifically 

dementia and MCI? 

We model the time-series sensor data using homogeneous and non-homogeneous 

PP models and implement a supervised machine learning algorithm to classify 

between cognitively impaired (i.e., Dementia, MCI) and healthy adults. In doing 

so, different groups of classes are combined together to perform the binary 

classification experiments. Our results indicate that homogeneous and non-

homogeneous PP models can reliably model fine-grain variations in the 

longitudinal sensor-based time series data. Incorporating contextual information 

related to the start and end of each task through a non-homogeneous PP model 

increases the ability to differentiate between healthy and cognitively impaired 

adults. 

2. Does the order of subtasks within a given task affects the estimation of cognitive 

impairment? 

We investigate the extent to which the order of subtasks within a given task affects 

the ability of the PP models to classify between cognitively impaired and health 

adults. For this reason, we compute the proposed homogeneous and non-

homogeneous PP features for three types of tasks that include uncued, cued and 

interwoven subtasks. Our results indicate that the order of subtasks appears to have 

a small effect on the classification accuracy between healthy and cognitively 

impaired adults with interwoven uncued tasks providing the lowest accuracy. 

3. Can the proposed PP models complement expert-based assessment of activity 

scores for the task of cognitive impairment recognition? 

We compare the sensor-based assessment from homogeneous and non-

homogeneous PP with the expert-based assessment obtained from a human 
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observer/experimenter. Our results indicate that the proposed PP models can 

complement and provide better results than the expert-based assessment for 

detecting cognitive impairment. The combination of sensor and expert-based 

features further yielded an improved performance in certain cases. 
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5. RESEARCH WORK 

5.1. Data Description:  

The data used in this research is collected by the Washington-State University (WSU) 

through the study of “Activities of Daily Living and Memory in Older Adulthood and 

Dementia”. This study included data from CASAS smart home testbed [31], such as 

motion sensors, door sensors, temperature sensors, item sensors for selected items in the 

kitchen, burner sensors, hot and cold water sensors, and apartment’s electricity usage. A 

total of 400 study participants performed a set of activities generating sensor events for 

each activity, recording the date, time, sensor identifier, and a sensor message of each 

sensor event (Figure 5.1).  

 

Figure 5.1: Example of raw data that include the time that each sensor turned on or off. 

A list of 24 activities is provided and divided in: (1) 8 uncued tasks whose subtasks are 

not performed in a predefined sequence; (2) 8 cued tasks whose subtasks are performed in 

a predefined sequence; and (3) 8 interwoven uncued tasks which are performed by 

interchanging subtasks that focus on planning a day out of the house (i.e., also referred to 

as the ‘Day Out Tasks’ or DOT). More details about these can be found in [32-35] and 

some examples of subtasks are shown in Figure 5.2. The subtasks within an activity are 

further denoted by sensor events, start time of an activity, end time of an activity, and an 

activity label index. Participant diagnosis is also provided as shown in Figure 5.3 and 

includes dementia (N = 36), MCI (N = 59), middle age adults between 45-59 years (N = 

37), young-old age adults between 60-74 years (N = 83), old-old age adults older than 75 
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years (N = 44), and younger adults (N = 78). Each individual participated in the user study 

for 3 hours.  

 

      

 

 

Figure 5.2: Examples of subtasks within uncued, cued and interwoven uncued tasks [31]. 
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Figure 5.3: Number of participants per each category. 
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5.2. Proposed Approach and Methodology: 

5.2.1. Sensor-based feature design with homogeneous Poisson Process (HPP) 

A homogeneous PP (HPP) is used to model the time arrival of sensor events, where arrival 

is defined as every time a sensor installed in the home environment is turned on. The 

homogeneous PP assumes a constant arrival rate λ(t) = λ for the entire 3-hour duration of 

the user study. The arrival rate λ is defined for each sensor and is computed as the number 

of times each sensor turns ON, divided by the total 3-hour duration of the experiment. 

Since there are 52 sensors installed in the home environment, a total of 52 features are 

extracted for each participant based on this homogeneous PP model.  

The raw sensor data is preprocessed for missing and noisy values. The duration of tasks 

for which the sensors never turned OFF was replaced by the average ON duration of all 

sensors. Values of missing sensors were replaced with NaN. Thus, same sequence of 

sensors was created for all the participants’ data. If a sensor had missing values in the start 

of the data collection, then these were replaced by the first recorded value for the 

corresponding sensor. Similarly, if missing values were found at the end of the recording, 

these were replaced with the last recorded value of the corresponding sensor.  

Hence, the longitudinal time series data concentrated within the dataset is visualized 

(Figure 5.4), and the final features are obtained after cleaning the noisy data. The HPP rate 

is then computed for each sensor stream, therefore resulting in 52 arrival rates per 

participant, resulting in a 52 × N feature matrix, where N is the number of participants.  
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Figure 5.4: Schematic representation of homogeneous Poisson process (HPP) based on 

the time that each sensor turned on or off. 

These features resulting by the HPP model comprise the input to a machine learning 

algorithm that conducts two sets of binary classification experiments. The first set of 

experiments focuses on classifying between 5 different classes: dementia, MCI, middle 

age, young-old, old-old, and younger adult, resulting in 15 binary classification 

experiments. The second set of experiments focuses on classifying between patients with 

dementia and healthy adults (i.e., middle age, young-old, old-old, and younger adult), as 

well as patients with MCI and healthy adults (i.e., middle age, young-old, old-old, and 

younger adult). A logistic regression classifier is used and a K-fold cross-validation (K = 

5) is carried out for evaluating the machine learning models. Since each participant 

corresponds to only one sample of data, there is no leakage of information from the same 

participant between training and testing. The results obtained from the machine learning 

model with the 52 HPP features are evaluated by computing the imbalanced accuracy, 

balanced accuracy, and F1-scores for each class. 

Imbalanced Accuracy = No. of classified individuals/ No. of samples 

Balanced Accuracy = No. of accurately classified individuals/ No. of samples 
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Further, the sensor-based features extracted from HPP and the score-based features 

obtained from expert assessment are combined, and 15 binary classification tasks are 

combined in a total set of 63 features. This combined feature set is evaluated using a 

logistic regression classifier and a K-fold cross-validation, similarly as above. 

 

5.2.2. Sensor-based feature design with non-homogeneous Poisson Process (NHPP) 

A non-homogenous PP (NHPP) is used to model the time arrival of sensor events with an 

arrival rate 𝜆(𝑡) which varies with time 𝑡. We assume that each of the tasks that 

participants are instructed to conduct during the data collection depicts distinct patterns in 

the way sensors are turned ON, therefore the sequence of sensor ON events will depict 

different arrival rates across tasks (Figure 5.5). For this reason, the overall arrival rate 𝜆(𝑡) 

of the NHPP changes across each task and is defined as follows: 

 

𝜆(𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝜆 ,         for Task 1

𝜆 , for Task 2
𝜆 , for Task 3

…
𝜆 , for Task 24

 

Arrival rates for 24 tasks: 

𝜆(𝑡₁) = Count (Sensor turns ON)/ t₁ 

………. 

𝜆(𝑡₂₄) = Count (Sensor turns ON)/ t₂₄ 

Since we have a total of 52 sensors, the above formulation will yield a total of 52 × 24 = 

1248 arrival rate features per participant. The arrival rate for each sensor and task is 

calculated by computing the mean of sensor arrival occurrences for a sensor being ON per 

each sensor, divided by the duration of sensor data collection for each activity performed 

by a participant. The features derived by the NHPP model are further evaluated through a 
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binary classification experiment that differentiates between: (1) cognitively impaired 

adults, including patients with MCI or dementia; and (2) healthy adults, including middle 

age, young-old, old-old, and younger adults.  

 

 

Figure 5.5: Schematic representation of non-homogeneous Poisson process (NHPP) 

based on the time that each sensor turned on or off. 

 

5.2.3. Reducing data dimensionality using PCA 

Due to the large dimensionality of NHPP features, PCA is implemented to reduce their 

dimensionality to 50 features (Figure 5.6), a number which was found to preserve a large 

portion of the data variability and also provide good performance. Binary classification 

experiments are performed with these features by utilizing a supervised logistic regression 

classifier and a K-fold cross validation (K = 5) to evaluate the machine learning models. 

The results of these sensor-based assessments from 50 features are evaluated by 

computing the imbalanced and balanced accuracies, and F1-scores for each class. 
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Figure 5.6: Feature engineering process with a non-homogeneous PP 
 

5.2.4. Features from expert-based assessment 

Beyond the sensor-based assessments, we further conduct the classification experiments 

on human-based scores obtained by third-party assessments from annotators. Human-

based scores represent ratings of the completeness and correctness of each subtask 

performed by the participants, including the accuracy score for the day out task (DOT) 

and the sequencing score based on whether participants sequenced the subtasks correctly 

in the DOT. These resulted in 11 features extracted from the human score-based 

assessment data, which comprised the input of binary classification tasks for classifying 

between healthy and cognitively impaired adults, as well as between all participant 

categories separately. The results of these score-based assessments are evaluated similarly 

to the previous experiment by computing the imbalanced and balanced accuracies, as well 

as the F1-scores per class.  

Feature Extraction 
52*24 features 

Reduced Features 
50 features 

Non-Homogeneous PP 

Dimensionality Reduction - 
PCA 
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6. RESULTS 

In answering the first research question in regards to the ability of the proposed PP models 

to differentiate between healthy adults and adults with cognitive impairment, we present 

the results of the corresponding binary classification experiments using the HPP and 

NHPP features (Tables 1, 2, 3, 4; Figure 6.1). We observe that the overall feasibility of 

recognizing dementia from healthy adults based on the HPP (Table 3) and NHPP (Table 

4) features is higher than the corresponding accuracy of classifying between MCI and 

healthy adults. This might be due to the fact that MCI is more related to early stages of 

cognitive impairment compared to dementia, therefore the corresponding activity patterns 

of patients with MCI might not be significantly different compared to the ones from 

healthy adults. We further note that the proposed approach performs well in differentiating 

between dementia and MCI for HPP, achieving 73% balanced classification accuracy 

between the two classes (Table 1). This result is significantly higher than the chance 

balanced accuracy (50%) for the same binary classification task, and indicates the 

feasibility of differentiating between these two populations based on the sensor-based 

features. On the contrary, the classifier classifies MCI and old-old with a balanced 

accuracy of 54% which is closer to the 50% chance balanced accuracy, thereby indicating 

a probably less distinction between these two classes with sensor features.  This means 

that the classes MCI and old-old have similar sensor patterns, making it difficult for the 

classifier to distinguish between the two.  

We also observe that the NHPP features provide on average improved performance 

compared to the HPP features (Tables 1, 2), signifying the usefulness of incorporating 

additional contextual information of the tasks’ start and end times in modeling the sensor-

based data. We further see similar results when the classes of healthy adults are combined 

and differentiated from the patients with dementia or MCI (Tables 3, 4; Figure 6.1). Since 

dementia is more severe than MCI, its behavior as registered in the sensor measurements 

will depict larger differences from the healthy group, compared to the differences between 

healthy adults and adults with MCI, thus, giving better results (i.e. higher balanced 

accuracies for individual dementia classifications as compared to individual MCI 
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classifications in both HPP and NHPPs) (Tables 1, 2). The chance accuracy as shown in 

all the tables reflects the percentage of majority classifier of the states. 

 

Table 1. Binary classification results with sensor-based features using homogeneous 
Poisson process (HPP). 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia MCI 0.62 0.79 0.73 0.65 0.83 
 Younger 

Adult 
0.68 0.75 0.75 0.63 0.81 

 Middle Age 0.51 0.77 0.76 0.76 0.76 
 Young-Old 0.69 0.82 0.78 0.70 0.88 
 Old-Old 0.55 0.76 0.76 0.71 0.80 
MCI Younger 

Adult 
0.57 0.70 0.70 0.61 0.76 

 Middle Age 0.61 0.71 0.70 0.76 0.60 
 Young-Old 0.58 0.62 0.59 0.48 0.70 
 Old-Old 0.57 0.55 0.54 0.62 0.44 

 

 
Table 2. Binary classification results with sensor-based features using non-homogeneous 

Poisson process (NHPP). 
Class 1 Class 2 Chance 

Accuracy 
Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia MCI 0.62 0.78 0.76 0.68 0.82 
 Younger 

Adult 
0.68 0.80 0.82 0.69 0.83 

 Middle Age 0.51 0.82 0.82 0.83 0.80 
 Young-Old 0.69 0.87 0.86 0.79 0.91 
 Old-Old 0.55 0.84 0.84 0.81 0.85 
MCI Younger 

Adult 
0.57 0.73 0.71 0.65 0.77 

 Middle Age 0.61 0.62 0.64 0.68 0.53 
 Young-Old 0.58 0.56 0.57 0.48 0.62 
 Old-Old 0.57 0.53 0.52 0.62 0.40 
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Table 3. Binary classification results with sensor-based features using Homogeneous 
Poisson Process (HPP) when combining all healthy adults. 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.87 0.54 0.15 0.93 

MCI Healthy 
Adults 

0.80 0.80 0.51 0.06 0.89 

 
 

Table 4. Binary classification results with sensor-based features using Non-
Homogeneous Poisson Process (NHPP) when combining all healthy adults. 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.90 0.69 0.43 0.94 

MCI Healthy 
Adults 

0.80 0.76 0.60 0.24 0.85 

 

 

 

Figure 6.1: Comparing the binary classification results with sensor-based features using 

Homogeneous Poisson Process (HPP) features when combining all healthy adults. 
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We further attempt to answer the second research question on whether the order of 

subtasks within a given task affects the estimation of cognitive impairment. Our results 

indicate that the order of tasks affects the cognitive impairment recognition in certain 

cases. For example, the classification accuracy between healthy and cognitively impaired 

adults decreases for the interwoven uncued tasks compared to the cued and uncued tasks 

(Tables 5, 6, 7; Figure 6.2). This can be potentially attributed to the unstructured nature of 

the interwoven uncued tasks, which are part of participants’ activities to plan a day out of 

the house (i.e., DOT task). 

 
Table 5. Binary classification results with sensor-based features using non-homogeneous 

Poisson process (NHPP) on uncued tasks 
Class 1 Class 2 Chance 

Accuracy 
Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.90 0.66 0.43 0.95 

MCI Healthy 
Adults 

0.80 0.76 0.57 0.29 0.86 

 
 

Table 6. Binary classification results with sensor-based features using non-homogeneous 
Poisson process (NHPP) on cued tasks 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.88 0.63 0.33 0.93 

MCI Healthy 
Adults 

0.80 0.75 0.55 0.21 0.85 

 

Table 7. Binary classification results with sensor-based features using non-homogeneous 
Poisson process (NHPP) on interwoven uncued tasks 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.87 0.50 0.00 0.93 

MCI Healthy 
Adults 

0.80 0.78 0.53 0.18 0.87 
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Figure 6.2: Comparing the classification results on activities with non-homogeneous PP. 
 

Finally, in answering the third research question on whether the expert-based assessment 

can complement the sensor-based measures, we report the results of the classification 

models whose input is each of the two modalities separately, as well as their combination. 

We observe that in the majority of cases, the classification between dementia and healthy 

adults is better using the sensor-based measures, when compared to human-based scores 

assessment (Tables 1, 8). However, the classification task between adults with dementia 

and middle age adults (Tables 1, 8), as well as between adults with MCI and healthy adults 

(Tables 3, 4), was more successful when human/expert-based scores were used. The 

combination of sensor-based scores and expert scores more accurately classifies dementia 

vs healthy adults as compared to the individual assessments, except dementia vs middle 

age which has still efficient results with human-based assessment (Table 9). Similarly, we 

observe that when the sensor-based assessment using the NHPP features provides 

improved performance compared to the expert-based assessment measures when the 

classes of healthy adults are combined altogether (Tables 3, 4, 10; Figure 6.3).  
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Table 8. Binary classification results with expert-based features using homogeneous PP 
(HPP). 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia MCI 0.62 0.62 0.56 0.32 0.73 
 Younger 

Adult 
0.68 0.80 0.74 0.59 0.86 

 Middle Age 0.51 0.88 0.87 0.88 0.86 
 Young-Old 0.69 0.79 0.68 0.52 0.86 
 Old-Old 0.55 0.66 0.66 0.55 0.73 
MCI Younger 

Adult 
0.57 0.82 0.80 0.76 0.85 

 Middle Age 0.61 0.70 0.66 0.77 0.54 
 Young-Old 0.58 0.64 0.62 0.47 0.72 
 Old-Old 0.57 0.66 0.63 0.74 0.50 

 
 

Table 9. Binary classification results with combined sensor-based using homogeneous 
Poisson process (HPP) and expert-based features. 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia MCI 0.62 0.82 0.79 0.73 0.86 
 Younger 

Adult 
0.68 0.82 0.77 0.69 0.86 

 Middle Age 0.51 0.74 0.75 0.72 0.73 
 Young-Old 0.69 0.84 0.77 0.69 0.89 
 Old-Old 0.55 0.75 0.74 0.70 0.79 
MCI Younger 

Adult 
0.57 0.72 0.71 0.61 0.77 

 Middle Age 0.61 0.70 0.68 0.75 0.59 
 Young-Old 0.58 0.60 0.58 0.47 0.67 
 Old-Old 0.57 0.58 0.56 0.68 0.41 

 
 

Table 10. Binary classification results with combined sensor-based using homogeneous 
Poisson process (HPP) and expert-based features when combining all healthy adults 
Class 1 Class 2 Chance 

Accuracy 
Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.87 0.50 0.00 0.93 

MCI Healthy 
Adults 

0.80 0.81 0.56 0.18 0.89 
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Figure 6.3: Comparing the classification results of sensor assessment vs. expert-based 
assessment 

 

A decision tree classifier is used for feature selection to compute the most informative 

features in the classification experiments of dementia vs. healthy adults (Figure 6.4) and 

MCI vs. healthy adults (Figure 6.5). The classification accuracy of the two decision trees 

using a decision tree classifier for the classification experiments is reported in Table 11. 

The data description of the sensor layout as available in the dataset is provided in Figure 

6.6. It is observed (Figure 6.4) that the sensors M017, M018, and M003 were selected as 

part of the first levels of the tree in a decision tree for classifying between dementia and 

healthy adults. The motion sensors M017 and M018 belonging to the set of kitchen 

sensors, and M003 sensor which belongs to a living room provide the most informative 

feature values. Since various function- and leisure-related activities are conducted in the 

kitchen and in the living room, this finding potentially suggests that sensor-based patterns 

of the activities conducted in these locations of the house (e.g., meal preparation) might 

be indicative of cognitive decline. For classification between MCI and healthy adults as 
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observed in Figure 6.5, the features M012, M039, and M008 are the descriptive features 

among the root and first levels of the decision tree. The motion sensor M012 in the balcony 

imbibed near the door sensor D002, the sensor M039 near the bathroom, and M008 sensor 

in the living room are examined as part of first levels of the tree, and provide information 

regarding the descriptiveness of certain features. This can be justified by the fact that 

sensors near the bathroom might capture personal hygiene activities, which are activities 

of daily living deemed highly relevant to independent aging [12]. 

 
Table 11. Binary classification results with a decision tree classifier 

Class 1 Class 2 Chance 
Accuracy 

Imbalanced 
Accuracy 

Balanced 
Accuracy 

F1-Score 
of Class1 

F1-Score 
of Class 2 

Dementia Healthy 
Adults 

0.87 0.83 0.64 0.31 0.90 

MCI Healthy 
Adults 

0.80 0.80 0.56 0.22 0.88 

 

 

 

 

 

 

 

 



 

28 
 

 

Figure 6.4: Decision Tree for classifying between dementia and healthy adults. 
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Figure 6.5: Decision tree for classifying between MCI and healthy adults. 
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           Figure 6.6: Sensor Layout of the cognitive assessment dataset [31]. 
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7.  DISCUSSION 

The proposed work used a PP for modeling sensor events, which comprises a novel 

approach of sensor-based assessment. We implemented and compared both HPP and 

NHPP models, with the NHPP integrating contextual information for the task of interest.  

To summarize our findings, our research was able to leverage moment-to-moment sensor-

based measures to detect cognitive impairment, thus, answering our research question of 

PP models having the ability to model subtle temporal changes within sensor data. The 

non-homogeneous PP measures provide more accurate detection of cognitive impairment 

compared to homogeneous PP. Our findings further concluded that the order of the task 

can also affect the ability of the models to detect cognitive impairment with the proposed 

algorithm performing worse in unstructured compared to structured tasks. It was observed 

that PP models complement expert-based assessment and provide better classification 

results for the purpose of detecting cognitive impairment. 

Previous works [14] have indicated the ability of using ubiquitous computing technologies 

in smart homes to monitor complex everyday functions for automating assessment of daily 

activities. This work measured the performance of machine learning classifiers such as 

support vector machines (SVMs), neural networks, and the naive Bayes classifier on the 

supervised classification of assessing the quality of a target task. In this work, the authors 

focused on a single complex activity (i.e. DOT) and found the correlation between 

aggregate sensor-based features and task accuracy scores, as provided by human experts, 

to be statistically significant. Similar works [14] that have tried to classify between healthy 

and cognitively impaired individuals have used SVMs and neural networks which provide 

classification accuracies of 80.45 and 79.33, which is slightly better as compared to our 

results since these rely on more advanced machine learning models and are considering 

more features, such as the DOT activity features, sequencing features, interruption, and 

parallelism measures. However, these measurements in the prior works do not consider 

ambulatory measurements or the moment-to-moment sensor-based signals which can be 

indicative of an individual’s cognitive decline patterns. We are overcoming this by using 
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these moment-to-moment based measures in our PPs. Thus, the feasibility of our work in 

real-life application of cognitive impairment recognition at early stages is high and can be 

further explored. 

The limitations to our research include data not being captured from completely 

unconstrained activities of daily living. We are using longitudinal sensor-based time series 

data for continuous measurement across the time duration of the experiment. However, 

our data does not include a longitudinal component to measure the month-to-month 

evolution of cognitive impairment. The rate of the PP within each task is still considered 

constant, and healthy adults include adults from all ages for classification experiments. 

The non-homogeneous PP modeled by combining different activity sets being a limitation 

to our work can be worked upon to improve the classification accuracies of the models. 

Another limitation being the imbalanced set of classes having different number of samples 

can be reduced by selecting only the subset of classes including participants who have 

completed the activities. Since incomplete activities cause a lot of noise in the data, this 

can be handled to improve the model performance. 
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8. CONCLUSION AND FUTURE WORK 

The proposed approach leverages moment-to-moment sensor-based measures to detect 

cognitive impairment. PP models can model subtle temporal changes in homogeneous and 

non-homogeneous PPs. Non-homogeneous PP sensor assessment performs better than 

expert driven assessment to classify between dementia and MCI vs. healthy adults. PP 

provide reliable descriptors of cognitive impairments compared to aggregate time series, 

and reliably models fine-grain variations in time-series data. Sensor-based assessment 

complements expert-based assessment by providing better classification results. Thus, by 

designing and formulating a PP model, this research study shows the potential of 

revolutionizing the way traditional clinical assessment is performed and models subtle 

temporal changes by leveraging moment-to-moment sensor data. This allows to use the 

granularities of data on a sensor-based time series, and reliably model the variations in 

data and patterns observed by integrating machine learning methodologies with PPs. Thus, 

this research has the potential to detect the early onset of cognitive impairment in elderly 

adults. 

As part of the future work, additional sensor modalities of data can further be added to the 

experiments on different activities, such as appliance usage. The PP models can be 

designed with time-dependent arrival rate within each task, this more advanced models 

can be used in which the shape of rate of PP is learned by the data. The data can be modeled 

using further advanced computational models and other machine learning methodologies, 

such as hidden Markov models and support vector machines, and combined with the PPs 

to compare and contrast the various learning algorithms. The incomplete and complete 

activity sets can further be considered to reduce class imbalance and providing more 

descriptive data by only considering the individuals who complete their day-to-day 

activities as instructed. The activity sets of uncued, cued, and interwoven uncued can be 

further modeled for the complete and incomplete activities, and their differences in the 

sequence of activities performed. In order to translate findings from this work in practical 

applications, it is also necessary to explore the feasibility of the proposed PP measures 

between healthy adults of older age and adults with cognitive impairment. 
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