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ABSTRACT 

Cyber-Physical Defense in Smart Distribution Networks 

Leen Al Homoud, Safin Bayes, and Rinith Reghunath 

Department of Electrical Engineering 

Texas A&M University 

Research Faculty Advisor: Robert S. Balog 

Department of Electrical Engineering 

Texas A&M University 

The existing electric grid is transitioning to a smart grid with increased penetration of 

distributed energy resources (DERs), such as photovoltaic (PV) units, battery storage units, 

electric vehicles (EV), and EV chargers. DERs facilitate the increase in renewable energy 

generation, which leads to a more sustainable, efficient, and reliable grid paradigm. However, 

with the rise of communication exchanges and data flow due to DERs, cybersecurity 

vulnerabilities arise. Much of the literature has focused strictly on mitigating data attacks 

resulting in non-technical losses, false state estimation, and inaccurate load forecasting. 

However, the grid paradigm's cyber-physical security also needs to be taken into account to 

ensure that no grid operations take place that impact the physics of the system. Our project 

achieved that by developing a Machine Learning (ML) algorithm that will detect anomalies in 

the commands issued to the distribution network's assets. The algorithm was trained using data 

from a base case obtained from the simulation of the IEEE 34 distribution network. It was tested 

and improved by adding modifications to the base case. We successfully developed a local 

anomaly detection algorithm for a photovoltaic system and two voltage regulators, achieving F1-
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scores of 0.5141, 0.8173, and 0.8982, respectively. All three algorithms achieved low values of 

false negatives, which is promising as false negatives have a much higher cost since missing one 

anomaly can result in disastrous effects on the entire grid.  
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1. INTRODUCTION 

The current electric grid has been designed for unidirectional power and data flow from 

large synchronous electric generators to consumers [1]. With the increased implementation of 

distributed energy sources (DERs), such as photovoltaic (PV) units, battery storage units, electric 

vehicles (EV), and EV chargers [2], the inevitable need for bidirectional power and data flow has 

risen. As a result, the current electric grid has been transitioning to Smart Grid (SG) to 

accommodate the continuously increasing penetration of DERs, which include renewable energy 

generation in the distribution network of the electric grid [1].  

As with every new rising technology, benefits are accompanied by challenges that need 

to be identified, detected, and mitigated to ensure a trustworthy final product. With the increased 

need for communication flow and data exchange due to the implementation of DERs, new 

cybersecurity vulnerabilities arise. For example, false data attacks are a significant threat that 

cause severe consequences [3]. One instance of false data attacks could be false data injection, 

where the attacker would hijack communication channels and lead to false state estimation and 

non-technical losses [3], such as energy theft, unmetered supplies errors, and conveyance losses 

[4]. One thing of utmost importance needs to be highlighted, which is the fact that cyberattacks 

can hinder grid operations that are governed by the laws of physics relating to the grid power 

flow, and not just information exchanges [6]. For instance, a data attack on the DERs, generators, 

or loads can interrupt power flow on the grid and result in severe physical damage [5]. As a 

result, a cyber-resilient power system that can detect and mitigate cyber-physical attacks is 

needed.  
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Previous literature has focused on developing algorithms to monitor grid behavior and 

detect discrepancies in grid performance due to cyberattacks. To detect non-technical losses, 

many papers have utilized supervised machine learning algorithms such as support vector 

machine (SVM), k-nearest neighbor (k-NN), decision tree (DT), regression-based, and artificial 

neural networks (ANN) [3]. Some papers used unsupervised learning algorithms, such as the 

gradient boosting classifier (GBC) and clustering-based algorithms [3]. Additionally, some 

papers have used deep learning techniques such as convolutional neural network (CNN) and a 

novel detection model called MFEFD [3]. Other authors have taken advantage of phasor 

measurement units (PMUs), which are measurement devices that can provide real-time data 

about the electric grid status [6]. Chamie et. al [6], who has used Micro-PMU measurements, 

focused on creating an anomaly detection algorithm that can detect data attacks in grid-edge 

devices. A pseudo-supervised learning (PSL) algorithm is used, where isolation forests is used as 

an unsupervised learner first, and then, nonlinear regressors is used as a supervised learner. 

Pandey et. al [7] created a detection algorithm that detects and classifies anomalies into three 

events; active power, reactive power, and fault events. Pandey et. al [7] has used statistics, 

clustering, maximum likelihood criterion (MLE), and density-based spatial clustering 

(DBSCAN) for event detection, and physics-based rule and decision tree for event classification. 

Deng et. al [8] concluded that one way to detect false data injection attacks in Smart Grids is to 

protect meter measurements from being manipulated by using PMUs.  

As seen from the extensive literature survey, much of the literature has focused on 

detecting data attacks and mitigating consequences instead of detecting calculated, intelligent, 

and sophisticated cyber-attacks aimed at harming and disrupting the grid's cyber-physical 

security. Little work has been done to detect cyber-attacks while considering the grid's physical 
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nature [3], [6], [8]. As a result, it is imperative to address the cybersecurity concerns holistically 

[6]. That can only be achieved if work is specifically done and focused on the cyber-physical 

consequences of attacks.  

Therefore, we are proposing an algorithm to enhance the cyber-physical resiliency of the 

grid. Our project aims to detect cyber-attacks on a smart distribution network that consists of 

various controllable assets, such as, capacitor banks, DERs, bus voltage regulators etc. We are 

focusing on sustained, intelligent, and coordinated attacks which can cause accelerated harm to 

the network’s assets. Our detection scheme is based on a Machine Learning (ML) algorithm 

which will detect anomalies in the commands issued to the assets’ controller.  
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2. METHODS 

2.1 Modeling 

2.1.1 PV System 

To account for the effect of distributed energy resources (DERs) in the IEEE 34 System, 

a photovoltaic (PV) system was modeled. A PV system converts solar energy to electrical energy 

using one or more solar panels that collect the solar power, an inverter, and other hardware. The 

PV system modeled in OpenDSS comprises the PV array, an inverter, and a Norton Equivalent 

circuit. When a PV array collects solar energy, it transforms that solar energy into an electrical 

current that enters the inverter, entering the Norton Equivalent circuit to convert the current 

source into the required voltage source. 

1. Essentially, the properties needed to define this system can be divided into three major 

groups: 

1.1. Array properties: 

1.1.1. Pmpp: power at the maximum power point. 

1.1.2. PV Correction Factor vs. Temperature curve. 

1.2. Inverter properties: 

1.2.1. kVA: Inverter’s kVA rating. 

1.2.2. kV: Nominal rated voltage, which is the line-to-line voltage. 

1.2.3. Phases: Number of phases of the PV system. 

1.2.4. Bus1: Bus to which the PV system is connected to. 

1.2.5. Conn: Connection of the PV system (can be wye or delta). 

1.2.6. PF: Power factor of the output AC power. 
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1.2.7. %cutin: Percentage of the inverter’s kVA rating. When the inverter is off, the 

power collected from the PV array has to be greater than this value to turn on the 

inverter. 

1.2.8. %cutout: Percentage of the inverter’s kVA rating. When the inverter is turned on, 

the power collected from the PV array has to drop below this value to turn the 

inverter off. 

1.2.9. Inverter efficiency curve.  

1.3. Operating Conditions properties: 

1.3.1. Base irradiance in kW/m2. 

1.3.2. Irradiance curve. 

1.3.3. Base temperature in °C.  

1.3.4. Temperature curve. 

Table 2.1 below shows the values for the parameters for the base case simulation. 

Table 2.1: Simulation Parameters (STC – standard test conditions). 

Parameter Value 

Pmpp 200 kW 

kVA 500 kVA 

kV 24.9 kV 

Phases 3 

Bus1 840 

Conn Delta 

PF 1 

%cutin 0.1 
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%cutout 0.1 

Base Irradiance 1 kW/m2 (STC) 

Base Temperature 25°C (STC) 

 

Regarding the curves defined for the PV system model, each curve is determined 

differently. For the PV correction factor vs. temperature curve, a correction factor of 1 was set 

for the base temperature, which is 25°C. To calculate the correction factor, the following formula 

is needed: 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑃(𝑡)

𝑃𝑆𝑇𝐶
 

(2.1) 

where P(t) is the power at a specific temperature and the base irradiance, and PSTC is the 

power at STC. 

The power at each temperature (0, 75, and 100°C) needed to be calculated to use the 

formula above. Therefore, the correction factor calculations for these temperatures were based on 

a PV module datasheet [9], where the STC rated output Pmpp and the temperature coefficient of 

the PV module were needed. This is because these parameters are required to calculate the power 

at each temperature, using the formula below: 

 
𝑃(𝑡) = 𝑃𝑆𝑇𝐶  ×  (1 − 𝐶 × (𝑇 − 𝑇𝑆𝑇𝐶)) (2.2) 

where P(t) is the power at a specific temperature and the base irradiance, PSTC is the 

power at STC which is 390 W, C is the temperature coefficient which is -0.28%/C, TSTC is 25°C, 

and T is the temperature defined. 

Using formulas 1 and 2, the values for the correction factor vs. temperature curve were 

determined, which are defined in Table 2.2 below. 
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Table 2.2: Values for the Correction Factor vs. Temperature Curve. 

Temperature P(t) Correction Factor 

0°C 417.3 W 1.07 

25°C 390 W 1 

50°C 335.4 W 0.86 

75°C 308.1 W 0.79 

 

The inverter efficiency curve is defined as the inverter efficiency vs. the power in per 

unit. The inverter efficiency values were collected from the California Energy Commission [10]. 

These inverter efficiency values were for the ABB PVI-3.0-OUTD-S-US-A inverter, a 3 kW, 

208 Vac grid support utility-interactive inverter with an arc detector. The values for this curve 

are shown in Table 2.3 below. 

Table 2.3: Values for the Correction Factor vs. Temperature Curve. 

Power (per unit) Inverter Efficiency 

0.1 93.3% 

0.2 95.9% 

0.3 96.4% 

0.5 96.4% 

0.75 96.2% 

1 95.8% 

 

Lastly, the temperature and irradiance profiles were obtained from the Qatar Environment 

and Energy Research Institute (QEERI). Both are yearly profiles based on data collected from 
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2017. The data obtained from QEERI was based on data collection during the day, which meant 

that the irradiance and temperature values at night were not in the dataset. As such, data 

preprocessing was required to fill in for the missing values. This is because OpenDSS takes in 

the profiles with values for every minute of the year. A MATLAB script was developed to fill in 

0 for the missing irradiance values, and for the temperature, the missing values were filled in by 

the last value of temperature that was collected before the missing data points. 

2.1.2 Storage Unit 

We also included a storage element as one of the Distributed Energy Resources (DERs) 

in our distribution network model. The storage element is a battery element that performs energy 

storage in the power grid. When the energy level drops in the grid, the storage element is 

activated and provides the needed power.  

1. The different components of the storage element model in OpenDSS are the following, 

2. Ideal Storage: This component signifies ideal, lossless energy storage.  

3. Charging and Discharging Losses: This component corresponds to the losses that occur 

due to conversion from the storage medium to electrical energy and the converse.  

4. Inverter: This component is a piece of built-in equipment in the model. It dispatches 

reactive power, models the inverter losses, and limits the rate of charge and discharge 

based on its ratings.  

5. State: This component signifies the state in which the storage element functions. There 

are three states for a storage element, which are charging, discharging, and idling 

6. Idling Losses: This component of the storage element represents storage self-depletion 

losses, the losses when the element is in the idle state. 
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 As mentioned by the ‘State’ component of the model, the storage element operates 

between three possible states. It can either be charging, discharging, or idle. Depending on the 

state, the storage element is connected to the grid differently. During the charging state, the 

storage element acts as a constant power load to the grid. During the discharging state, it acts as a 

generator that provides power to the grid. During the idle state, the storage element is modeled as 

being disconnected from the grid.  

We modeled the storage element in our distribution network to be connected to the 

network at bus 840. The other parameters necessary to model the storage element in OpenDSS 

are mentioned in Table 2.4 below, along with the values we chose for our distribution network 

model. We chose our values after running some test runs and observing the network's power 

flow without the storage element. 

Table 2.4: OpenDSS Modelling Parameters for Storage Element. 

Parameter Definition Value 

kWrated 
kW rating of inverter 

active power output. 
1000 kW 

%charge 

Charging rate, given 

by a percentage of 

kWrated. 

100% 

%discharge 

Discharging rate, 

given by a percentage 

of kWrated. 

100% 

kWhrated 
The rated storage 

capacity in kWh. 
50,000 kWh 

%stored 

Amount of stored 

energy present in the 

element. 

100% 
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%reserve 

Amount of kWhrated 

to be reserved for 

normal functioning. 

10% 

 

We modeled a storage controller for our storage element in the network for controlling 

the dispatch of the storage element. The controller monitors a terminal of one of the components 

in our network and measures a quantity, which can be the power or current flowing at that 

terminal. This measured value is then compared to a target value, and the controller dispatches 

the storage element to operate based on the difference between the measured and target values.  

There is a wide range of charging and discharging modes available for us to choose from 

when designing our storage controller. The discharging mode for our storage element is called 

the ‘PeakShave’ mode. We set a target value (in kW), and the controller requests the storage 

element to dispatch to maintain the power in the monitored element at or below the target value. 

The storage element also turns off when it runs out of stored energy or reaches its reserve value. 

The charging mode for our storage element is called the ‘PeakShaveLow’ mode. Similar to the 

discharging mode, we have a target value (in kW), and the controller requests the storage 

element to dispatch to maintain the power in the monitored element at or above the target value.  

The parameters and the values chosen for the storage controller model are given in Table 

2.5. We chose our values after running some test runs and observing the power flow in the 

monitored element without the storage element. 
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Table 2.5: OpenDSS Modelling Parameters for Storage Controller. 

Parameter Definition Value 

Element 

Circuit element 

monitored by the 

controller. 

Line 1 (Bus 800-Bus 

802). 

Terminal 

The terminal of the 

circuit element being 

monitored, can be 1 or 

2. 

1 

modedis 
Mode of action for the 

discharge operation. 
PeakShave 

kWtarget 

The target for 

discharging. The 

storage element is 

dispatched to keep the 

power in the 

monitored terminal at 

or below kWtarget.  

1,600 kW 

modcharge 
Mode of action for the 

charging operation. 
PeakShaveLow 

kWtargetLow 

The target for 

charging. The storage 

element is dispatched 

to keep the power in 

the monitored terminal 

at or above 

kWtargetLow. 

800 kW 

 

The storage controller monitors the power delivered by the substation. Given the 

parameter definitions, the storage controller monitors terminal 1 of the line between Bus 800 and 

Bus 802. When the terminal's power goes beyond 1600 kW, the storage element is activated and 

discharges to keep the power at or below 1600 kW. Similarly, when the terminal's power goes 

below 800 kW, the storage element is activated and charges to keep the power at or above 800 

kW. 
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Figures 1-4 display the effect of the storage element and controller in the distribution 

network. 

Figure 1: Power Flow from Substation in August (without Storage) 

 

Figure 2: Power Flow from Substation in August (with Storage) 
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Figure 3: Power Flow from Substation in May (without Storage) 

 

Figure 4: Power Flow from Substation in May (with Storage) 
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As it can be seen, the power flowing from the substation is maintained at the target values 

we specified in Table 2.5. The storage element is activated by the storage controller and 

dispatched to maintain the power flow at the target values. 

2.1.3 Voltage Regulators 

A voltage regulator is a device which generates a constant voltage of a preset value. 

There are two voltage regulators on the IEEE 34 System at buses 814 and 852. In OpenDSS, 

voltage regulators are modelled using the “Transformer” objects and controlled with the 

“RegControl” objects. The main parameters of the “Transformer” object in OpenDSS are as 

follows: 

1. Phases: Number of phases. 

2. Windings: Number of windings. 

3. Bus: The bus number to which the winding is connected. 

4. Kva: Apparent power rating of the winding. 

 The “RegControl” object is attached to a particular winding of a transformer. It adjusts 

the transformer taps in that winding according to the control settings. The main parameters of the 

“RegControl” object are as follows: 

1. Transformer: The transformer to control. 

2. Winding: The winding of the transformer to control. 

3. Vreg: Voltage regulator setting, in Volts, for the winding being controlled. 

4. Ptratio: The factor converting the winding voltage to the regulator voltage. 

 As the IEEE 34 System is an unbalanced power system, especially with other DERs 

involved, the voltage per phase tends to have different values, ergo, they require independent 

regulation. For this reason, we modelled an individual “Transformer” and “RegControl” pair for 
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each phase of the regulator. Thus, for each regulator, we have three “Transformer” - 

“RegControl” pairs.  

 Based on the IEEE 34 System datasheet [11], Table 2.6 and Table 2.7 show the values 

for “Transformer” and “RegControl” objects for the regulators at buses 814 and 852 respectively. 

Table 2.6: OpenDSS Modelling Parameters for Regulator at Bus 814. 

Transformer Object RegControl Object 

Parameter Value Parameter Value 

Phases  1 Transformer Regulator 1 

Windings  2 Winding 2 

Bus  814 Vreg 122 

Kva 2000  ptratio 120 

Table 2.7: OpenDSS Modelling Parameters for Regulator at Bus 852. 

Transformer Object RegControl Object 

Parameter Value Parameter Value 

Phases  1 Transformer Regulator 2 

Windings  2 Winding 2 

Bus  852 Vreg 124 

Kva 2000  ptratio 120 

 

2.1.4 Capacitors 

The two capacitors in the IEEE 34 System are situated at buses 846 and 848 respectively. 

In OpenDSS capacitors are modelled using the “Capacitor” object. The main parameters for this 

object are as follows: 
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1. Bus: Bus connection for the first terminal of the capacitor. 

2. Phases: Number of phases. 

3. Kvar: Rated apparent power rating of the capacitor.  

 Table 2.8 shows the values of the parameters for the capacitors on the network based on 

the IEEE 34 System datasheet [11]. 

Table 2.8: OpenDSS Modelling Parameters for Both Capacitors. 

Parameter Value 

Capacitor 1 Capacitor 2  

Bus  846 848 

Phases 3 3 

Kvar 300 450 

 

 Capacitors are controlled using the “CapControl” object. It monitors the voltage and 

current at the capacitor’s terminal and sends switching messages to a “Capacitor” object. The 

following are the main parameters of this object: 

1. Capacitor: Name of the capacitor to control. 

2. Type: Control type (Current, Voltage, Time, Power Factor). 

3. ONsetting: Value at which the control arms to switch the capacitor ON. 

4. OFFsetting: Value at which the control arms to switch the capacitor OFF. 

 The IEEE 34 System datasheet has no information about capacitor controls. Therefore, 

we modelled the “CapControl” objects based on our observations. Furthermore, “CapControl” 

objects can only be placed downstream of the capacitor. Since there is no space downstream the 

capacitor at bus 848, we only modelled the controller for the capacitor at bus 846. 
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 Our approach to model the capacitor control is to try different settings for the parameters 

and check which set of parameters yields bus voltages which are within the American National 

Standards Institute (ANSI) limits, i.e, the per unit voltage of the buses must be within the 0.95 

and 1.00. By observing the plot in Figure 5, we set the ONsetting value to 14,800 V and 

OFFsetting to 14700 Volts. After carrying out a trial and error process of acquiring per unit bus 

voltages within the ANSI limits, we found the best ONsetting value at 14,600 V and OFFsetting 

value at 14,300 Volts. This means, the capacitor turns on and injects reactive power when the 

voltage at bus 846 is above 14,600 V and turns off when the voltage at bus 846 falls below 

14,300 V.  

 

Figure 5: Variation of Voltage at Bus 846 throughout an annual simulation without capacitor control 

2.1.5 Load Modeling 

The loads are modelled based on the details provided by the IEEE 34 System datasheet 

[11]. However, there are no load profiles associated with the loads in the datasheet. To run a 

time-series simulation, OpenDSS requires a load profile for each load model to simulate the 

behavior of the load with respect to time.  
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We used a webtool, called REopt Lite, developed by the National Renewable Energy 

Laboratory (NREL) [12], to obtain the load profiles. The tool generates an annual load profile in 

intervals of one hour for a given climate zone and building type. There are 16 climate zones in 

the webtool and we chose the one represented by Phoenix, Arizona. This is because among all 

the representative cities, the weather of Arizona is similar to that of Doha, Qatar. Among the 17 

building types, we picked five - Midrise Apartment, Hospital, Office, and Restaurant. The other 

building types yielded load profiles which have the shape similar to at least one of the 

aforementioned five building types. 

 Figure 6 shows the daily load profiles of the five chosen building types for our system. 

The load profiles are randomly assigned to the load models of the IEEE 34 Bus System in 

OpenDSS. 
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Figure 6: Load Profiles of the Representative Loads on the first 24 hours of the year. 

2.2 Simulation 

2.2.1 Base Case 

The base case represents the model’s behavior during normal operating conditions. We 

require a base case data to serve as the reference dataset for the rest of the research. The base 

case data is obtained using the algorithm described in Figure 7 below. 

Figure 7: Base Case Algorithm 
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 Essentially, we run 100 Monte Carlo iterations of annual simulations where the time step 

in each annual simulation is one minute, corresponding to the time step of the irradiance and 

temperature profile of the PV system, which has the smallest time step resolution in the model. 

Thus, we have 525,600 (365 days * 24 hours * 60 minutes) time instants in one annual 

simulation.  

 At each Monte Carlo iteration, the load profiles are randomized to account for the 

varying load demands. The irradiance profile is also randomized to account for the random 

occurrences of dust and cloud transients. The randomization is done based on the approach 

described in the following sections.  

 Thus, the algorithm in Figure 7 above has two loops - an outer loop and an inner loop. 

The inner loop solves the OpenDSS model and obtains the data at each time instant of the annual 

simulation defined as “n”. The inner loop stops execution when n = N = 525,600. The outer loop 

randomizes the load profiles and the irradiance profiles for each Monte Carlo iteration, “m”. The 

outer loop stops execution when m = M = 100. 

2.2.1.1 Load Randomization 

Load randomization is performed to account for the varying behavior of the load in each 

year. The approach for load randomization is as follows: 

1. Select a probability distribution. 

2. Sample random numbers from the distribution.  

3. Multiply the points in the base profile with the random numbers obtained in step 2.  

 The idea behind the approach is to overestimate or underestimate the points in the base 

curve to obtain a randomized curve. However, we don’t want to create fluctuations by 

overestimating or underestimating the points to a very high extent. The randomized curve must 
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still follow the shape of the base curve. Therefore, we must select a distribution with the 

following characteristics: 

1. Underestimate or overestimate i.e. generate numbers greater than or less than one.  

2. No negative numbers. 

 Based on the above characteristics, we selected the Burr distribution which is 

characterized by three parameters: 

1. alpha (𝛼): Scale parameter. 

2. c: Shape parameter. 

3. k: Second shape parameter. 

 To prevent exaggerating the overestimation and underestimation, we need to multiply the 

points in the base case with numbers close to one. Thus, the distribution must have higher 

probability for numbers closer to one. By adjusting the three parameters, we can make the 

distribution achieve this purpose. The Burr distribution with 𝛼=1, c =10, and k=1 gives us the 

best results.  
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Figure 8: Burr Distribution with 𝛼=1, c =10, and k=1 

 

Figure 9: Base profiles and Randomized Profiles 
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2.2.1.2 Irradiance Randomization 

Similar to the load randomization, the irradiance needed to be randomized to account for 

the varying irradiance. The logic behind irradiance randomization is very similar to that of the 

load randomization. We first define a probability distribution. Then, random numbers are 

sampled from the distribution and multiplied by the irradiance values in the base case dataset to 

obtain the randomized irradiance. Since the irradiance values obtained from QEERI are based on 

real-life collected data, the randomized irradiance should not be too different from the base case 

irradiance. Therefore, the random number sampled from the distribution is close to 1. Also, the 

irradiance randomization was performed for each month separately.  

 Lastly, we needed to figure out if the irradiance values should be overestimated or 

underestimated. This was determined by the irradiance value. It was decided empirically that any 

irradiance value above 900 W/m2 is underestimated, and any values below that can be either 

underestimated or overestimated. Additionally, any irradiance values below 700 W/m2 have to be 

overestimated. To achieve that, different probability distributions were selected. For the values 

above 900 W/m2, a beta probability distribution was selected, which only underestimates. The 

two parameters for the beta distribution are both shape parameters, which are alpha (α) and beta 

(β).  𝛼 was selected to be 10, and β was selected to be 1. To perform either underestimation or 

overestimation, a burr probability distribution was used, as done for the load randomization. The 

three parameters for the burr probability distribution are 𝛼, c, and k, which are the scale and two 

shape parameters, respectively. The best values for 𝛼, c, and k were determined to be 1.8, 6.5, 

and 50, respectively. To make sure that the values below 700 W/m2 were always underestimated, 

an if statement in the MATLAB script for randomization was utilized to ensure that the random 

number generated is above 1, which ensures overestimation. Graphs of the beta and burr 
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distributions are shown in Figures 10-11, respectively. Figure 12 show plots of the base case 

irradiance vs. the randomized irradiance plots for all twelve months. 

 

Figure 10: Beta Distribution (𝛼=10, β=1) 

 

Figure 11: Burr Distribution (𝛼=1.8, c=6.5, k=50) 
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Figure 12: Base Case vs. Randomized Irradiance Plots 
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2.2.1.3 Running the Base Case 

We connected our OpenDSS simulation with MATLAB to issue malicious control 

signals to the various assets of the distribution network and to save our circuit data more 

efficiently. We used the COM interface to enable a connection between OpenDSS and 

MATLAB. With the help of the COM interface, we are able to design our algorithm in another 

program such as MATLAB and then make OpenDSS do something that is not presently executed 

within the software. 

 A few lines of code were written to initialize OpenDSS on MATLAB after which we 

define MATLAB handles to interact with the OpenDSS objects. The circuit is then compiled and 

run, which in turn drives the OpenDSS software to solve the circuit. 

 OpenDSS offers a wide range of circuit data (power, current, voltages etc.) once solving 

the circuit. Depending on our usage of the network considering our project, we decided on 

collecting the following data from our network: 

1. Bus voltages. 

2. Capacitor – States, Reactive power. 

3. PV – Irradiance, Real power. 

4. Regulator 1 and 2 tap positions (all phases). 

5. Storage – Capacity, kWIn (power flowing into the storage element), kWOut (power 

flowing out of the storage element), States. 

6. Sub-bus Power. 

 Running 100 Monte Carlo iterations of annual simulations, we obtain a large amount of 

data which we saved into one folder with many sub-folders each corresponding to a single Monte 

Carlo iteration. Exporting these data directly from OpenDSS to a .CSV file in Excel is more time 
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consuming and the data files will be larger in size. Therefore, we used MATLAB commands to 

store these data in .mat files. 

2.2.2 Test Datasets 

 To create the test datasets, we would need to first issue malicious commands. The 

purpose of issuing malicious commands to the simulation is to observe how the system reacts to 

the malicious set points. This will help us identify the features that could be used in the machine 

learning algorithm and obtain the malicious data set.  

 The malicious set is obtained in two steps. First, we issue arbitrary malicious commands 

to the assets and then identify the system characteristics that deviate from the base case behavior. 

Then, we issue several hundred random commands which are passed through a test based on our 

observations that label a command as anomaly or normal. 

 

 
 

Figure 13: Procedure for Obtaining Malicious Dataset 

2.2.2.1 Regulators 

 We performed various test cases by issuing commands at arbitrary time instants and 

observed changes on the other assets. One example of such a test case is as follows. 

 At instant 95600 (March 7, 9 AM), we issued a tap position of 4 at phase “a” of the 

regulator at bus 814 which we will refer to as Regulator 1. Then, we observed the states of each 

asset for the next 30 instants and compared them with the base case states. Table 2.9 shows the 

observations.  

Issue Command Test
Result (Anomaly 

or Normal)
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Table 2.9: Base Case and Test Case Comparison for Regulator 1 and Regulator 2. 

 
Regulator 1 Tap Positions Regulator 2 Tap Positions 

Instant Base Phase a Test Phase a Base Phase a  Test Phase a 

1 -7 4 3 3 

2 -7 3 3 2 

3 -7 2 3 1 

4 -7 1 3 0 

5 -7 0 3 -1 

6 -7 -1 3 -2 

7 -7 -2 3 -3 

8 -7 -3 3 -2 

9 -7 -4 3 -1 

10 -7 -5 3 0 

11 -7 -6 3 1 

12 -7 -6 3 1 

13 -7 -6 3 1 

14 -7 -6 3 1 

15 -7 -7 3 2 

16 -8 -7 3 2 

17 -8 -7 3 2 

18 -8 -7 3 2 

19 -8 -7 3 2 

20 -8 -7 3 2 

21 -8 -7 3 2 

22 -8 -8 3 2 

23 -8 -8 3 3 

24 -8 -8 3 3 

25 -8 -8 3 3 

26 -8 -8 3 3 

27 -8 -8 3 3 

28 -8 -8 3 3 
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29 -8 -8 3 3 

30 -8 -8 3 3 

 

 From Table 2.9, it can be seen that regulator 1 has switched its tap positions 10 more 

times than it did in the base case, while regulator 2 has changed its tap positions 8 more times 

than it did in the base case. Thus, an anomalous command causes an increase in the switching of 

the tap position. This increased switching of taps can wear out the regulator and decrease its 

lifetime over the long term. 

Table 2.10: Base Case and Test Case Comparison for Capacitor. 

Instant Base Capacitor States Test Capacitor States 

1 1 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

6 0 0 

7 1 1 

8 0 0 

9 0 0 

10 0 0 

11 0 0 

12 0 0 

13 1 0 

14 0 0 

15 0 0 

16 0 1 

17 0 0 

18 0 0 
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19 1 0 

20 0 0 

21 0 0 

22 0 0 

23 0 1 

24 0 0 

25 1 0 

26 0 0 

27 0 0 

28 0 0 

29 0 0 

30 0 1 

 

From Table 2.10 above, the capacitor in the test case switched its state eight times 

compared to nine times in the base case. Thus, the malicious command to the regulator one does 

not result in any anomalous behavior on the capacitor.  

Other observations include the violations of ANSI voltage limits at some of the buses. 

We also saw no change in storage states.  

 To illustrate another example, this time we issued a tap position of -10 at phase “b” of the 

Regulator at bus 854 (Regulator 2) at instant 227062 (May 5, 4 PM). Table 2.11 and Table 2.12 

illustrate the results. 

Table 2.11: Base Case and Test Case Comparison for Regulator 2. 

 
Base Case Test Case 

Instant Phase a Phase b Phase c Phase a Phase b Phase c 

1 3 4 2 10 -9 11 

2 2 3 2 12 -8 12 

3 3 4 2 12 -7 12 
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4 3 4 2 12 -6 12 

5 3 4 2 12 -5 12 

6 3 4 2 12 -4 12 

7 3 4 2 12 -3 12 

8 3 4 2 12 -2 11 

9 3 4 2 11 -1 11 

10 3 4 2 11 0 11 

11 2 4 2 11 1 12 

12 3 4 2 11 2 12 

13 3 4 2 11 3 12 

14 3 4 1 11 4 12 

15 3 4 3 11 5 11 

16 3 4 3 10 6 11 

17 3 4 3 11 7 11 

18 3 4 3 11 8 11 

19 3 4 3 11 9 11 

20 2 3 2 11 10 10 

21 3 3 3 11 11 11 

22 3 3 3 11 11 11 

23 3 3 3 11 11 11 

24 3 3 3 11 11 11 

25 3 3 3 11 11 11 

26 3 3 3 11 11 11 

27 3 3 3 11 11 11 

28 3 3 3 11 11 11 

29 3 3 3 11 11 11 

30 3 3 3 11 11 11 

 



41 

 

 It can be seen that the number of taps switching in the test case is higher than in the base 

case. As determined earlier, issuing a malicious command to the regulator may cause it to wear 

out overtime and decrease its lifetime. 

Table 2.12: Base Case and Test Case Comparison for Regulator 1. 

 
Base Case Test Case 

Instant Phase a Phase b Phase c Phase a Phase b Phase c 

1 -7 4 -8 6 -2 1 

2 -7 4 -8 6 -2 1 

3 -7 4 -8 6 -2 1 

4 -7 4 -8 6 -2 1 

5 -7 4 -8 6 -2 1 

6 -7 4 -8 6 -2 1 

7 -7 4 -8 6 -2 1 

8 -7 4 -8 6 -2 1 

9 -7 4 -8 6 -2 1 

10 -7 4 -8 6 -2 1 

11 -7 4 -8 6 -2 1 

12 -7 4 -8 6 -2 1 

13 -7 4 -8 6 -2 1 

14 -7 4 -8 6 -2 1 

15 -7 4 -8 6 -2 1 

16 -7 4 -8 6 -2 1 

17 -8 3 -8 6 -2 1 

18 -8 3 -8 6 -2 1 

19 -8 3 -8 6 -2 1 

20 -8 3 -9 6 -2 1 

21 -8 3 -9 6 -2 1 

22 -8 3 -9 6 -2 1 
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23 -8 3 -9 6 -2 1 

24 -8 3 -9 6 -2 1 

25 -8 3 -9 6 -2 1 

26 -8 3 -9 6 -2 1 

27 -8 3 -9 6 -2 1 

28 -8 3 -9 6 -2 1 

29 -8 3 -9 6 -2 1 

30 -8 3 -9 6 -2 1 

 

In the previous example, issuing a malicious command to regulator 1 caused anomalous 

behavior in regulator 2, but not the other way around. Some other observations include the 

violation of ANSI limits at some buses. The capacitor states remain unchanged in the test case.  

 From these observations, we identified that the regulator tap positions and ANSI limit 

violations are the strongest indicators of a malicious command. In the next step, we issued 

random commands to the regulator and passed them through a test to label them as anomaly or 

normal. The flowchart in Figure 14 shows the procedure. 

 
 

Figure 14: Procedure for Obtaining Malicious Set for Regulators 

2.2.2.2 Photovoltaic System 

To create the malicious dataset for the PV system, a similar approach to issuing the 

commands for the regulators was followed. The command that was launched to the PV system 

involved changing the percentage of PV production, which is also known as curtailment. To 

perform curtailment, different commands with different percentages of PV production were 

Issue Command

For the next 30 
instants, 

N = # of tap changes in 
test case

M = # of tap changes in 
base case

Anomaly, if N>M

Normal, if N<=M
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issued, which included dropping the percentage of PV production by 0% (turning the PV system 

off), 30%, 50%, and 70% from its original PV production percentage in the base case. Each of 

these commands were issued at multiple instances throughout the year, which are: 

1. January 1st at 12 PM (minute 699 out of the total 525,600 minutes in a year). 

2. July 8th at 5 PM (minute: 271,686). 

3. March 27th at 11 AM (minute: 123,046). 

4. June 20th at 12 PM (minute: 245,493). 

5. July 19th at 10 AM (minute: 287,123). 

6. August 5th at 12 PM (minute: 311,719). 

7. December 21st at 12 PM (minute: 510,481). 

To observe the effect of the commands issued, we observed the following 30-minute time 

interval after the command is issued. We first started by issuing the command to turn off the PV 

system for one time instant (one minute). Across all the days mentioned above, issuing such a 

command did not affect the system negatively, as in the regulator tap positions, capacitor states, 

storage unit state, and bus voltages remained the same. This can be seen in Table 2.13 below, 

where issuing the command for one minute did not affect the regulator tap position switching. As 

such, we had to launch the commands for longer time instants. Therefore, we launched the same 

commands mentioned above for 5, 10, and 20 consecutive time instants. Across all the days 

mentioned above, the only assets that were affected by these commands were the regulators, 

where the regulator tap positions switching increased after launching the malicious commands. 

We also observed that launching the commands for 20 consecutive minutes resulted in the most 

malicious activity in the network. An example of the test of issuing commands can be shown in 

Table 2.13 below for December 21st.  
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Table 2.13: Base Case and Test Case Comparison for PV System on December 21st. 

First 

Instant 
# of 

Instants 

Command 

(Percentage 
of PV 

Production) 

Reg. 1 

Tap 

Changes - 
A (base 

case) 

Reg. 1 

Tap 

Changes 
- A (test 

case) 

Reg. 1 

Tap 

Changes - 
B (base 

case) 

Reg. 1 

Tap 

Changes - 
B (test 

case) 

Reg. 1 

Tap 

Changes - 
C (base 

case) 

Reg. 1 

Tap 

Changes - 
C (test 

case) 

Reg. 2 

Tap 

Changes - 
A (base 

case) 

Reg. 2 

Tap 

Changes - 
A (test 

case) 

Reg. 2 

Tap 

Changes - 
B (base 

case) 

Reg. 2 

Tap 

Changes - 
B (test 

case) 

Reg. 2 

Tap 

Changes - 
C (base 

case) 

Reg. 2 

Tap 

Changes - 
C (test 

case) 

510,481 1 0 0 0 0 0 0 0 0 0 4 6 10 10 

510,481 20 0 0 2 0 2 0 2 6 14 10 16 12 8 

510,481 20 30 0 2 0 2 0 0 6 10 10 12 12 12 

510,481 20 50 0 0 0 0 0 0 6 12 10 14 12 6 

510,481 20 70 0 0 0 0 0 0 6 6 10 10 12 6 

 

Table 2.13 shows the number of times that the regulator tap position switched for phases 

A, B, and in both voltage regulators, where voltage regulator 1 is the voltage regulator located at 

bus 814 and voltage regulator 2 is located at bus 852. As can be seen from Table 2.13 and is a 

pattern consistent across all the days tested, issuing the command for a longer period of time 

results in a more malicious activity, where it can be seen that for all phases of regulator 1 and for 

phases A and B of regulator 2, the number of tap position switching increased after the command 

was launched (also known as the test case).  

 After having performed all these tests, we have concluded that both regulators are the two 

assets affected by issuing malicious commands to the PV system. As such, we started creating 

the malicious dataset for developing the anomaly detector for this asset. The steps followed are 

also quite similar to generating the malicious dataset for the regulators, where a random instant is 

first selected. Afterward, a command with a randomly selected percentage of PV production is 

launched at that random instant. A test is then run to determine if the command that was issued is 

malicious, which involves comparing the number of tap position switching in both regulators 

before and after launching the command. If the number of tap position switching is higher after 

launching the command, then the command is determined to be malicious and is used to create 

the malicious dataset that we will then use for the cross-validation and testing phases. 
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2.2.2.3 Storage Element 

For developing the anomaly detection algorithm, it is important to choose the right 

features so that we are able to identify when a malicious command has been issued. To identify 

these features for the storage element, we ran tests to study the behavior of storage element 

properties. The test was done by comparing the storage element property values before and after 

issuing the malicious command. We also considered how the behavior of other assets changed 

before and after issuing the malicious command to the storage element. 

The malicious command we issued to the storage element was the following,  

Command: At n=2, set the storage element state to be discharging. 

We picked this time instant because the storage element is set to be in the idle state 

during this given time period. Therefore, an anomalous command for the storage element would 

be to switch to discharging state. Upon issuing this command, we obtained the property values 

and listed it on Table 2.14 to compare the values before and after the malicious command was 

issued. 

Table 2.14: Power Discharge in the Storage Element Before/After Applying the Malicious Command. 

Instant Base kWOut Test kWOut Base kWIn Test kWIn 

2 0 0 0 0 

3 0 200 0 0 

4 0 0 0 363.105 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 
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20 0 0 0 0 

21 0 0 0 0 

22 0 0 0 0 

23 0 0 0 0 

24 0 0 0 0 

25 0 0 0 0 

26 0 0 0 0 

27 0 0 0 0 

28 0 0 0 0 

29 0 0 0 0 

30 0 0 0 0 

31 0 0 0 0 

 

The storage element property ‘kWOut’ corresponds to the power flowing out or 

discharging from the storage element. The property ‘kWIn’ corresponds to the power flowing in 

or charging into the storage element. 

Table 2.14 depicts the power flow in the storage element after applying the malicious 

command. 

The only noticeable observation to be made after running the test for the storage element 

with this malicious command was that there was an extra charge-discharge cycle. At instant 3, 

the storage element flows out 200 kW power and at instant 4, 363.105 kW power is flowed into 

the storage element. It could be noted that more power is charged into the storage than 

discharged.  

After issuing the command to the storage element, it was also found that there weren’t 

any noticeable changes in the behavior of other assets in the network. 

In specific,  

- No ANSI violations: It was found that there were no ANSI violations in the dataset after 

the command was issued. Therefore, ANSI limits would not be a good feature to include 

for the storage element algorithm since it won’t help to identify the malicious command. 

- No change in capacitor states: It was found that there were no changes in the capacitor 

states after the command was issued. Therefore, capacitor states would not be a good 
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feature to include for the storage element algorithm since it won’t help to identify the 

malicious command. 

Since there weren't any storage element properties through which we were able to 

identify a malicious command, we decided not to include an anomaly detection algorithm for the 

storage element. 

2.2.2.4 Capacitor 

For developing the anomaly detection algorithm, it is important to choose the right 

features so that we are able to identify when a malicious command has been issued. To identify 

these features for the capacitor, we ran tests to study the behavior of capacitor properties. The 

test was done by comparing the capacitor property values before and after issuing the malicious 

command. We also considered how the behavior of other assets changed before and after issuing 

the malicious command to the capacitor. 

The malicious command we issued to the capacitor was the following, 

Command: At n=2, the capacitor state is set to ON. 

We picked this time instant after studying the capacitor states for our normal dataset. This 

time instant corresponded to a point where the capacitor state should be turned OFF. Therefore, 

an anomalous command for the capacitor at this time, would be to switch to its ON state. Upon 

issuing this command, we obtained the property values and compared it with the values before 

and after the malicious command was issued. 

We found that the malicious test case and the normal case showed little-to-no difference 

in its property values. The number of capacitor states were very similar and would not be a good 

feature to be included in the detection algorithm. We then looked at how the behavior of other 

assets changed upon issuing the command.  
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In specific,  

- No ANSI violations: It was found that there were no ANSI violations in the 

dataset after the command was issued. Therefore, ANSI limits would not be a good feature to 

include for the capacitor algorithm since it won’t help to identify the malicious command. 

- No change in storage states, kWOut and kWIn: It was found that there were no 

changes in the storage states after the command was issued. Therefore, storage states would not 

be a good feature to include for the capacitor algorithm since it won’t help to identify the 

malicious command. 

- Slight change in reactive power: There was a slight change observed in the 

reactive power. The test case showed a difference of 2-3 kVAR in the 30-minute time frame. 

However, this is not a significant enough difference for it to be considered as a feature for the 

algorithm. 

- Slight change in regulator taps: Similarly, there was only a slight change observed 

in the number of regulator taps. The test case displayed a few more extra taps switching for the 

regulator. However, as in the case of reactive power, there wasn't a significant enough difference 

for it to be considered as a feature for the capacitor algorithm. 

Since there weren't any capacitor properties through which we were able to identify a 

malicious command, we decided not to include an anomaly detection algorithm for the capacitor. 

2.3 Machine Learning 

2.3.1 Local Outlier Factor algorithm 

For our anomaly detection algorithm, we are using an unsupervised learning method 

called Local Outlier Factor (LOF) algorithm. The LOF algorithm computes the local density 

deviation of a given point with respect to its neighbors. Each point in the dataset is given an LOF 
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score and if the LOF score is greater than a certain threshold, the point is an anomaly. The LOF 

score is based on density calculations and therefore the samples that have a much lower density 

than their neighboring points are classified as outliers. For example, in Figure 15, points P1 and 

P2 are considered outliers with respect to clusters C1 and C2, respectively, due to them having a 

much lower density than their neighboring points. 

 
Figure 15: Visualization of LOF Algorithm 

The algorithm consists of several steps to classify the points in the dataset, 

1) Compute k-distance of the point (𝑑𝑖𝑠𝑡𝑘(𝐴)) 

The first step of the algorithm is to compute the k-distance of the point. The ‘k’ parameter is 

a parameter we set up to acquire a k-distance. K-distance of a point corresponds to the distance 

between a point, ‘A’ and its k-th nearest neighbor.  

For example, given a test point ‘A’ and ‘k’ value of 4, the k-distance of ‘A’ would be,  

𝑑𝑖𝑠𝑡4(𝐴) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝑖𝑡𝑠 4𝑡ℎ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

Another term to understand when using the LOF algorithm is the concept of ‘k-

neighborhood’. The ‘k-neighborhood’ corresponds to the set of all points that lie in or on the 

circle with a radius of the k-distance. 
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For example, given a test point ‘A’ and a ‘k’ value of 4, the k-neighborhood of A would be, 

𝑁4(𝐴) = {𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑙𝑖𝑒 𝑖𝑛 𝑜𝑟 𝑜𝑛 𝑐𝑖𝑟𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑟𝑎𝑑𝑖𝑢𝑠 4, 𝑐𝑒𝑛𝑡𝑒𝑟 𝐴} 

2) Compute Average Reachability Distance (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐷(𝑋𝑖)) 

For a given test point Xi and Xj, the reachability distance of Xi with respect to Xj is calculated as 

follows, 

 
𝑅𝐷(𝑋𝑖 , 𝑋𝑗) = 𝑚𝑎𝑥 (𝑑𝑖𝑠𝑡𝑘(𝑋𝑗), 𝑑𝑖𝑠𝑡(𝑋𝑖 , 𝑋𝑗)) (2.3) 

If a point lies within the k-neighborhood of Xj, the reachability distance will be the k-

distance of Xj. If a point lies outside the k-neighborhood of Xj, the reachability distance will be 

the Euclidean distance between the points Xi and Xj. 

In this step, we compute the average reachability distances of all neighbors of the test 

point. 

 

 

𝐴𝑣𝑔. 𝑅𝐷(𝑋𝑖) =
𝑠𝑢𝑚 (𝑅𝐷(𝑋𝑖 , 𝑋𝑗))

𝑁
 

(2.4) 

Where, N is the number of points in the k-neighborhood of Xi. 

 

3) Compute Local Reachability Distance (𝐿𝑅𝐷 (𝑋𝑖)) 

This is the inverse of the average reachability distances of all neighbors of the test point. 

 

𝐿𝑅𝐷 (𝑋𝑖) =
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐷(𝑋𝑖 , 𝑋𝑗)
 

(2.5) 
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If the LRD (Xi) value is low, it indicates a high value for the Average RD (Xi). This signifies 

that the test point, Xi is far away from its neighbors. There is less density of points around Xi 

and the closest cluster is far from Xi. 

4) Compute the LOF score (𝐿𝑂𝐹𝑘(𝑋𝑖)) 

The Local Outlier Factor (LOF) score is the ratio of the average LRD of all the k-neighbors 

of the test point, Xi to the LRD of Xi. 

 

𝐿𝑂𝐹𝑘(𝑋𝑖) =
𝐴𝑣𝑔. 𝐿𝑅𝐷

𝐿𝑅𝐷𝑡𝑒𝑠𝑡

 
(2.6) 

Where, Avg. LRD is the average LRD of all the neighboring points and LRDtest is the LRD of 

the test points. 

If the test point is not an outlier,   

- The density of the point and its neighbors are roughly the same.  

- We obtain an LOF score of nearly 1. 

If the test point is an outlier,  

- The LRD of the point will be smaller than the average LRD of its neighboring 

points.  

- We obtain a high LOF value, generally greater than 1. 

Therefore, in general, if the LOF score is greater than 1, the point is considered an 

anomaly. If the LOF score is less than or equal to 1, the point is considered not an anomaly. 

To summarize the steps behind the LOF algorithm, at first, the algorithm calculates the 

reachability distance from all the neighbors (in the k-distance neighborhood of the given point) 

to the given point. Then, we proceed to calculate the local reachability distance of the point. The 

LOF score of the point is calculated using the local reachability of its neighbors and the point 
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itself. If their LOF score is greater than the threshold value set, the point is considered an 

anomaly. These steps are then repeated for every point in the dataset. 

2.3.2 Features 

When running the tests to develop the malicious datasets for the regulators and the PV 

system, we were able to better understand our system, which helped us determine the features for 

each anomaly detector. As such, the features for each asset are as follows: 

1. Regulator 1 (Bus 814) and Regulator 1 (Bus 852): time instant, command issued, and 

regulator tap position in the previous time instant. 

2. Photovoltaic (PV) System: time instant, command issued, PV production in the 

previous time instant, and regulator tap position in the previous time instant. 

2.3.3 Dataset 

Another thing that needed to be determined before training and testing the algorithms 

were the sizes of the training, cross-validation, and testing datasets. The dataset sizes for each of 

the assets were determined as follows: 

1. Training Dataset: around 3.6 million points. 

2. Cross-Validation Dataset: around 1 million points. 

3. Testing Dataset: around 1 million points. 

The training dataset contains the normal operating conditions of our model, which is also 

referred to as the base case data. The cross-validation and testing datasets of normal operating 

points and the malicious points that were obtained from the tests discussed earlier. 
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2.3.4 Detailed Algorithm 

After having discussed the required parameters to develop the anomaly detectors for the 

assets, this section will discuss the flowchart of the algorithm. One important thing to discuss 

before detailing the specifics of the algorithm is determining the k-value. The ‘k’ parameter is a 

parameter we set up to acquire a k-distance [13]. K-distance of a point corresponds to the 

distance between a point, ‘A’ and its k-th nearest neighbor. This is the first computational step of 

the algorithm. Various literature [14]-[15] suggests running the algorithm over a range of k 

instead of a single value of k due to the LOF score varying for different values of k. Therefore, 

there exists the need to define a range; a lower bound and an upper bound for the values of k. 

The lower bound, ‘min. k’ is set so that it is greater than the minimum number of objects a 

cluster has to contain, so that other objects can be local outliers with respect to this cluster. The 

upper bound, ‘max. k’ is set so that it is smaller than the maximum number of nearby objects that 

can possibly be local outliers. It is the maximum number of objects that you want to be 

considered outliers if clustered together. As such, when considering the lower bound, we selected 

a k-value of 1 to ensure that no clusters are missed. For example, if there was a cluster of 3 

datapoints, and we selected the minimum k-value to be 4, that cluster would not be identified by 

the algorithm. When considering the upper boundary for the k-value, the correct value to be 

selected should be equal to the number of Monte Carlo deviations. In the case for our project, we 

should select the upper value to be 7, since we have 7 Monte Carlo deviations in the training 

dataset. This is justified by the fact that clusters are made up of similar values, and since we are 

running the same simulation, with some deviations, it makes sense that clusters would consist of 

around 7 points. However, after studying the datasets, it was noticed that multiple points in the 

duration of one year are similar. Therefore, it is very likely that clusters would consist of points 
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greater than 7. As such, we selected the upper bound k-value to be 15 for the algorithms of the 

three assets in the system. Therefore, the range of k-values was from 1 to 15.  

After determining the range of k-values, we ran the LOF algorithm, which is described in 

Figure 16 below. The LOF algorithm utilized in this paper was obtained from a MATLAB 

toolbox [16]. Our anomaly detector model assumes a developed anomaly detector for each of the 

three assets, where the assets communicate with each other to share their operating status. 

Figure 16: Local Outlier Factor Algorithm Flowchart 

 

Figure 16 describes in detail how our algorithm works. We first load the training and 

cross-validation datasets. We then decompose the “Instant” feature in both datasets by splitting it 

in the months, days, and minutes. Afterward, we compute the k-distance of the n-th point and 
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obtain the k-neighborhood set. The average reachability and local reachability distances are then 

computed. We then use these to compute the LOF score. If the LOF score is less than the 

threshold, the command is not an anomaly, but if the LOF score is greater than the threshold, 

then the command is an anomaly. After all these computations, a small section of the code is 

used to obtain the best k-value that gives the highest F1 score. After determining the optimal k-

value, the code runs the testing phase with that k-value, and the F1 score is calculated. 

2.3.5 Evaluation Metrics 

After developing our anomaly detection algorithm, we needed to evaluate how well the 

algorithm does on detecting the malicious commands. For evaluating our anomaly detection 

algorithm, we utilize the method of F1-Score. We chose this evaluation metric over other 

common methods such as accuracy due to its performance in real-life scenarios.  

In a real-life setting, the number of anomalous samples are typically far lower than the 

number of good samples. For instance, imagine a dataset of 100 samples with 5 anomalous 

samples and the remaining 95 as good samples. If our detection algorithm predicts all the 

samples as being good samples, we will obtain an accuracy of 95% which gives an impression 

that the algorithm is accurate and performs really well. However, the algorithm will have failed 

its primary goal of detecting anomalies in the dataset. On the other hand, if we calculate the F1-

Score for this case, we will obtain zero which tells us correctly that the algorithm has failed in 

detecting anomalies.  

The F1-Score is computed using precision and recall. Precision is the ratio of correctly 

classified anomalous samples to the total number of samples classified as anomalies. It is 

calculated as follows,  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.7) 
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Recall is the ratio of correctly classified anomalous samples to the total number of anomalous 

samples in the dataset.  

 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.8) 

Where, 

- True Positives (TP): This value corresponds to the number of true positives obtained after 

running the algorithm. True positives are the outcomes where the algorithm correctly 

classifies a point as an anomaly.  

- False Positives (FP): This value corresponds to the number of false positives obtained 

after running the algorithm. False positives are the outcomes where the point is not an 

anomaly but the algorithm incorrectly classifies the point as an anomaly. 

- False Negatives (FN): This value corresponds to the number of false negatives obtained 

after running the algorithm. False negatives are the outcomes where the point is an 

anomaly but the algorithm incorrectly classifies the point as not an anomaly. 

The F1-Score is computed using the following equation involving Precision (P) and Recall (R), 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

(2.9) 

The F1-Score gives us a value between zero and one. The algorithm is considered perfect if 

the F1-Score is 1, and it is considered a failure when the F1-Score is 0. 
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3. RESULTS 

3.1 Regulator 1 

As we have mentioned, a Monte Carlo simulation on the base case data was run to build 

the training, cross-validation, and testing datasets for all the anomaly detectors. For the first 

regulator (situated at Bus 814), the size of the training dataset was 7 Monte Carlo deviations, 

where each deviation consists of 525,600 points (corresponding to one-year’s set of data). 

Therefore, the training dataset size was around 3.6 million points. The malicious dataset 

comprised of 376 malicious points, which meant the number of anomalies or actual positives are 

376. The cross-validation dataset comprised of these anomalous points, in addition to 1 Monte 

Carlo deviation (525,600 points making up the actual negatives). As such, the cross validation 

dataset size was 525,976 points. Similarly, the testing dataset comprised of 525,600 normal 

points (actual negatives) and 400 malicious points (actual positives). 

Training and testing for the anomaly detector of Regulator 1 have been finalized. Table 

3.1 shows the cross-validation results obtained for this regulator. The cross-validation analysis 

was done through altering the threshold value for each run.  

Table 3.1: Cross-Validation Results for Regulator 1. 

Run Threshold True 

Positives 

False 

Positives 

False 

Negatives 

True 

Negatives 

Precision Recall F1 Score 

1 1.26 376 29,678 0 495,922 0.0125 1 0.025 

2 1.6 371 1,002 5 524,598 0.27 0.9867 0.424 

3 1.7 369 335 7 525,265 0.5224 0.9814 0.683 

4 1.8 365 147 11 525,453 0.71 0.997 0.822 

5 1.96 357 8 19 525,592 0.97 0.94 0.955 
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The best F1 score is obtained for a threshold of 1.96. However, upon analysis of the 

results, we determined that there should be a higher cost associated with false negatives in the 

electrical grid, where recall must have more importance than precision. Missing an anomaly is 

more critical than flagging a regular point as an anomaly, as that one anomaly can have 

disastrous effects on the entire grid. As such, we determined that there is a trade-off between the 

number of false positives and false negatives. We can see that as the threshold decreases, the 

number of false negatives decrease and the value of recall increases. Moreover, we also see that 

precision decreases as the number of false positives increase. Therefore, we determined that the 

threshold of 1.8 would be an apt choice, as it only had 11 false negatives. This meant that out of 

the total 376 malicious commands, it only missed 11 malicious commands. Moreover, it only 

had 147 false positives, meaning that out of the 525,600 normal points, it only identified 147 

normal points as anomalies. For the cross-validation analysis, we used a k-value of 10 which was 

concluded by our machine learning code to be the optimal k-value for the given dataset. 

 

 

Figure 27: Test Results for Regulator 1 
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 We utilized the optimum k-value of 10 along with our threshold value of 1.8, to begin the 

testing phase for our Regulator 1 anomaly detector. The results of the test are displayed in 

Figure 17. Using this threshold, we were able to obtain only 22 false negatives and 147 false 

positives. The value of precision was 0.72, recall was 0.945, and the F1 score was 0.8173. These 

are acceptable values given the trade-off between false positives and false negatives discussed 

earlier. Therefore, we finalized these values as the parameters for our Regulator 1 anomaly 

detector. 

3.2 Regulator 2 

For the second regulator (situated at Bus 852), we followed a similar approach as to the 

one taken for Regulator 1 to develop the anomaly detector. The size of the training dataset was 7 

Monte Carlo deviations, where each deviation consists of 525,600 points (corresponding to one-

years’ set of data). Therefore, the training dataset size was around 3.6 million points. The 

malicious dataset comprised of 360 malicious points, that meant the number of anomalies or 

actual positives are 360. The cross-validation dataset comprised of these anomalous points, in 

addition to 1 Monte Carlo deviation (525,600 points making up the actual negatives). As such, 

the cross validation dataset size was 525,960 points. Similarly, the testing dataset comprised of 

525,600 normal points (actual negatives) and 359 malicious points (actual positives). 

Training and testing for the anomaly detector of Regulator 1 have been finalized. Table 

3.2 shows the cross-validation results obtained for this regulator. The cross-validation analysis 

was done through altering the threshold value for each run.  

Table 3.2: Cross-Validation Results for Regulator 2. 

Run Threshold True 

Positives 

False 

Positives 

False 

Negatives 

True 

Negatives 

Precision Recall F1 Score 

1 1.3 359 21,935 1 503,665 0.016 0.997 0.032 
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2 1.6 353 1,032 7 524,568 0.25 0.981 0.405 

3 1.7 350 275 10 525,325 0.56 0.972 0.71 

4 1.8 345 63 15 525,537 0.845 0.958 0.89 

5 1.9 342 9 18 525,591 0.974 0.95 0.962 

6 2.0 336 1 24 525,599 0.997 0.933 0.96 

 

Upon analysis of the cross-validation results, we reached a similar conclusion as to the 

previous regulator where there was a trade-off between false positives and false negatives. The 

best F1 score is obtained for a threshold of 1.9. However, due to the high cost of false negatives, 

we determined the optimal threshold to be 1.8, as it only had 15 false negatives. This meant that 

out of the total 360 malicious commands, it only missed 15 malicious commands. Moreover, it 

only had 63 false positives, meaning that out of the 525,600 normal points, it only identified 63 

normal points as anomalies. Once again, our machine learning code concluded the optimal k-

value to be 10, which was therefore used in this analysis.  

 

 

Figure 18: Test Results for Regulator 2 
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We utilized the optimum k-value of 10 along with our threshold value of 1.8, to begin the 

testing phase for our Regulator 2 anomaly detector. The results of the test are displayed in 

Figure 18. Using this threshold, we were able to obtain only 15 false negatives and 63 false 

positives. The precision was 0.8452, recall was 0.9582, and the F1 score was 0.8982. These are 

acceptable values given the trade-off discussed, and therefore, we finalized these values as the 

parameters for our Regulator 2 anomaly detector. 

3.3 Photovoltaic System 

For the photovoltaic system, we followed a similar approach as to the ones done for both 

the regulators to develop the anomaly detector. The size of the training dataset was 7 Monte 

Carlo deviations, where each deviation consists of 525,600 points (corresponding to one-years’ 

set of data). Therefore, the training dataset size was around 3.6 million points. The malicious 

dataset comprised of 100 malicious points, which meant the number of anomalies or actual 

positives are 100. The cross-validation dataset comprised of these anomalous points, in addition 

to 1 Monte Carlo deviation (525,600 points making up the actual negatives). As such, the cross 

validation dataset size was 525,700 points. Similarly, the testing dataset comprised of 525,600 

normal points (actual negatives) and 100 malicious points (actual positives). 

Training and testing for the anomaly detector of the photovoltaic system have been 

finalized, and Figure 19 shows the cross-validation results obtained for the system. The cross-

validation analysis was done through altering the threshold value for each run.  
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Figure 19: Cross-Validation Results for Photovoltaic system 

 

Upon analysis of the cross-validation results, we reached a similar conclusion as to the 

previous regulator where there was a trade-off between false positives and false negatives. We 

determined the optimal threshold to be 2.0, as it only had 16 false negatives. This meant that out 

of the total 100 malicious commands, it only missed 16 malicious commands. Moreover, it only 

had 137 false positives, meaning that out of the 525,600 normal points, it only identified 137 

normal points as anomalies. Using this threshold value, the precision was 0.3801, recall was 

0.84, and the F1 score was 0.5234. Our machine learning code concluded the optimal k-value to 

be 15, which was therefore used in this analysis. 
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Figure 20: Test Results for Photovoltaic System 

 

We utilized the optimum k-value of 15 along with our threshold value of 2.0, to begin the 

testing phase for our PV system. The results of the test are displayed in Figure 20. Using this 

threshold, we were able to obtain only 18 false negatives and 137 false positives. The precision 

was 0.3744, recall was 0.82, and the F1 score was 0.5141. These are acceptable values given the 

trade-off discussed, and therefore, we finalized these values as the parameters for our 

photovoltaic system anomaly detector. 
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4. CONCLUSION 

Considering the increased implementation of distributed energy resources, there exists a 

high need for a change in the existing grid paradigm. Smart grids offer an intelligent, reliable, 

sustainable, economic and secure electric supply for the electric network. However, the grid 

might be subjected to various coordinated attacks, at the cyber or the physical level. 

Implementing a robust security system to defend against malicious activities is integral to the 

success of smart grids. Current anomaly detection techniques are focused on attacks that result in 

real-time consequences to the network. However, an intelligent, well-coordinated attack that 

doesn’t cause immediate changes in network performance can bypass these detection techniques. 

Our project offers a defensive framework against this by detecting the malicious 

commands issued to assets in a smart distribution network. We have developed a machine 

learning based anomaly detector capable of identifying a malicious command issued to the 

asset’s controller. Our approach of detecting anomalies in the commands rather than anomalies 

in the monitored data enhances the system’s cyber-physical resilience by detecting any command 

that does not make sense based on the historical patterns of the received commands and/or the 

current status of the network. This enhances the integrity and improves the acceptance of the 

paradigm at the market, community and socio-political level. 
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