
TOWARDS EXPLAINABLE DEEP MODELS FOR IMAGES, TEXTS, AND GRAPHS

A Dissertation

by

HAO YUAN

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Shuiwang Ji
Committee Members, Xia Hu

Bobak Mortazavi
Byung-Jun Yoon

Head of Department, Scott Schaefer

August 2021

Major Subject: Computer Science

Copyright 2021 Hao Yuan

ABSTRACT

Deep neural networks have been widely studied and applied to different applications in recent

years due to their great performance. Even though deep models are shown to be powerful and

promising, most of them are developed as black boxes. However, without meaningful explanations

of how and why predictions are made, we do not fully understand their inner working mechanisms.

Hence, such models cannot be fully trusted, which prevents their use in critical applications per-

taining to fairness, privacy, and safety. This raises the need of explaining deep learning models

and investigating several questions; some of those are, what input factors are important to the pre-

dictions? how the decisions are made through deep networks? and what is the meaning of hidden

neurons? In this dissertation, we investigate different explanation techniques for different types of

deep models. In particular, we explore both instance-level and model-level explanations for image

models, text models, and graph models.

Understanding deep image models is the most straightforward choice for explaining deep mod-

els since images are naturally well presented and can be easily visualized. Hence, we start by

proposing a novel discrete masking method for explaining deep image classifiers. Our method fol-

lows the generative adversarial network formalism that the deep model to be explained is regarded

as the discriminator while we train a generator to explain it. The generator is trained to capture dis-

criminative image regions that should convey the same or similar semantic meaning as the original

image from the model’s perspective. It produces a probability map from which a discrete mask

can be sampled. Then the discriminator is used to measure the quality of the sampled mask and

provide feedback for updating the generator. Due to the sampling operations, the generator cannot

be trained directly by back-propagation. We propose to update it using the policy gradient. Fur-

thermore, we propose to incorporate gradients as auxiliary information to reduce the search space

and facilitate training. We conduct both quantitative and qualitative experiments on the ILSVRC

dataset to demonstrate the effectiveness of our proposed method. Experimental results indicate

that our method can provide reasonable explanations for both correct and incorrect predictions and

ii

outperform existing approaches. In addition, our method can pass the model randomization test,

indicating that it is reasoning the attribution of network predictions.

Unlike image models, text models are more difficult to explain since texts are represented as

discrete variables and cannot be directly visualized. In addition, most explanation methods only

focus on the input space of the models and ignore the hidden space. Hence, we propose to explain

deep models for text analysis by exploring the meaning of hidden space. Specifically, we propose

an approach to investigate the meaning of hidden neurons of the convolutional neural network

models for sentence classification tasks. We first employ the saliency map technique to identify

important spatial locations in the hidden layers. Then we use optimization techniques to approx-

imate the detected information of these hidden locations from input sentences. Furthermore, we

develop regularization terms and explore words in vocabulary to explain such detected informa-

tion. Experimental results demonstrate that our approach can identify meaningful and reasonable

explanations for hidden spatial locations. Additionally, we show that our approach can describe

the decision procedure of deep text models.

These facts further motivate us to study the explanation techniques for graph neural networks

(GNNs). Unlike images and texts, graph data are usually represented as continuous feature ma-

trices and discrete adjacency matrices. The structural information in the adjacency matrices is

important, which should be considered when providing explanations. Thus, methods for images

and texts cannot be directly applied. Hence, we investigate both instance-level and model-level ex-

planations of GNNs to provide a comprehensive understanding. First, existing methods invariably

focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs,

which are more intuitive and human-intelligible. To provide instance-level explanations for GNNs,

we propose a novel method, known as SubgraphX, to explain GNNs by identifying important sub-

graphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by

efficiently exploring different subgraphs with the Monte Carlo tree search. To make the tree search

more effective, we propose to use Shapley values as a measure of subgraph importance, which can

also capture the interactions among different subgraphs. To expedite computations, we propose

iii

efficient approximation schemes to compute Shapley values for graph data. Our work represents

the first attempt to explain GNNs via identifying subgraphs explicitly. Experimental results show

that our SubgraphX achieves significantly improved explanations, while keeping computations at

a reasonable level. Second, while most existing explanation methods only provide instance-level

explanations, none of them can provide high-level understanding. We propose a novel approach,

known as XGNN, to explain GNNs at the model-level. Our approach can provide high-level in-

sights and a generic understanding of how GNNs work. In particular, we propose to explain GNNs

by training a graph generator so that the generated graph patterns maximize a certain prediction

of the model. We formulate the graph generation as a reinforcement learning task, where for each

step, the graph generator predicts how to add an edge into the current graph. The graph generator

is trained via a policy gradient method based on information from the trained GNNs. In addition,

we incorporate several graph rules to encourage the generated graphs to be valid. Experimental

results on both synthetic and real-world datasets show that our proposed methods help understand

and verify the trained GNNs.

iv

DEDICATION

This dissertation is dedicated to my family who encouraged me to pursue my dreams and finish

my dissertation.

v

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Shuiwang

Ji, whose expertise was invaluable in formulating the research questions and methodology. His

invaluable advice, continuous support, and patience have encouraged me in all the time of my

Ph.D. study. He is an incredible advisor, an enthusiastic researcher. It is an honor for me to work

with him and the experience with him is my lifelong asset. Besides my advisor, I would like to

thank the rest of my dissertation committee, Dr. Xia Hu, Dr. Byung-Jun Yoon, and Dr. Bobak

Mortazavi, for their brilliant comments and invaluable suggestions.

I also would like to acknowledge all members of the Data Integration, Visualization, and Explo-

ration (DIVE) Laboratory at Texas A&M University for their constructive discussions and valuable

collaborations.

Last but not least, I would like to thank my family for all their love, encouragement, and advice.

I could not have completed this dissertation without their support.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Shuiwang Ji, Dr. Xia

Hu, and Dr. Bobak Mortazavi of the Department of Computer Science & Engineering, and Dr.

Byung-Jun Yoon of the Department of Electrical & Computer Engineering.

The experimental studies in Chapter 2 were conducted in part by Dr. Lei Cai. The data analysis

in Chapter 3 was conducted in part by Yongjun Chen. The experimental studies in Chapter 4 were

conducted in part by Haiyang Yu.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

My dissertation research work is supported in part by Defense Advanced Research Projects

Agency and National Science Foundation grants.

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . v

ACKNOWLEDGMENTS . vi

CONTRIBUTORS AND FUNDING SOURCES . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xv

1. INTRODUCTION. 1

1.1 Explaining Deep Models for Images, Texts, and Graphs. 2
1.2 Dissertation Outline . 3
1.3 Contributions . 5

2. EXPLAINING DEEP IMAGE CLASSIFIERS BY GENERATING DISCRETE MASKS . 7

2.1 Introduction. 7
2.2 Related work . 9
2.3 Methods. 10

2.3.1 Overview of the Proposed Approach . 11
2.3.2 A Reinforcement Learning Formulation . 13
2.3.3 Reward Function . 14
2.3.4 Policy Learning with Auxiliary Information . 16

2.4 Experimental Studies . 19
2.4.1 Dataset and Experimental Setup . 20
2.4.2 Qualitative Evaluations . 22
2.4.3 Model Randomization Test . 23
2.4.4 Weakly Supervised Object Localization. 26
2.4.5 Saliency Metric Evaluation . 28
2.4.6 The Remove and Retrain Evaluation . 29
2.4.7 Ablation Study . 31

3. EXPLAINING DEEP TEXT CLASSIFIERS VIA OPTIMIZATION AND REGULAR-
IZATION METHODS . 32

viii

3.1 Introduction. 32
3.2 Background and Related Work . 33
3.3 Methods. 34

3.3.1 Visual Explanations of Hidden Units . 34
3.3.2 Saliency Maps for Hidden Units . 36
3.3.3 Input Generation via Optimization . 37
3.3.4 Regularization . 38
3.3.5 Visualization of Optimized Inputs . 39

3.4 Experimental Studies . 40
3.4.1 Datasets . 40
3.4.2 Experimental Setup. 41
3.4.3 Visual Explanation Results. 42
3.4.4 Evaluation of Explainability . 47

4. EXPLAINING DEEP GRAPH CLASSIFIER VIA SUBGRAPH EXPLORATIONS 49

4.1 Introduction. 49
4.2 Related Work . 50

4.2.1 Graph Neural Networks . 50
4.2.2 Explainability in Graph Neural Networks . 51

4.3 The Proposed SubgraphX. 57
4.3.1 From Node and Edge to Subgraph Explanations . 58
4.3.2 Explaining GNNs with Subgraphs. 58
4.3.3 Subgraph Exploration via MCTS . 60
4.3.4 A Game-Theoretical Scoring Function . 61
4.3.5 Graph Inspired Efficient Computations . 62
4.3.6 SubgraphX for Generic Graph Tasks . 63

4.4 Evaluating Explanation Techniques . 65
4.4.1 Fidelity . 65
4.4.2 Sparsity . 67
4.4.3 Stability . 67
4.4.4 Accuracy . 68
4.4.5 Discussions . 68

4.5 Experimental Studies . 69
4.5.1 Datasets and Experimental Settings . 69
4.5.2 Explanations for Graph Classification Models . 72
4.5.3 Explanations for Node Classification Models . 77
4.5.4 Quantitative Studies . 78
4.5.5 Efficiency Studies . 80

4.6 The Study of Pruning Actions . 80

5. EXPLAINING DEEP GRAPH CLASSIFIER VIA GRAPH GENERATION 82

5.1 Introduction. 82
5.2 Related Work . 84

5.2.1 Graph Neural Networks . 84

ix

5.2.2 Model-level Explanations . 85
5.2.3 Graph Model Explanations. 85

5.3 XGNN: Explainable Graph Neural Networks . 86
5.3.1 Model-Level GNN Explanations . 86
5.3.2 Explaining GNNs via Graph Generation . 88
5.3.3 Graph Generator . 90
5.3.4 Training the Graph Generator . 92

5.4 Experimental Studies . 94
5.4.1 Dataset and Experimental Setup . 94
5.4.2 Experimental Results on Synthetic Data . 96
5.4.3 Experimental Results on Real-World Data . 98

6. CONCLUSIONS AND FUTURE WORK . 101

REFERENCES . 104

x

LIST OF FIGURES

FIGURE Page

2.1 Illustrations of the pipeline of our proposed approach. Given an image X , we
employ a trainable generator to produce a probability mask P and sample a mask
M . Then we perform element-wise product between X and M to obtain a new
image X̂ . Finally, we feed X̂ to the discriminator to evaluate the quality of P and M . 11

2.2 Illustrations of how to reduce the search space with auxiliary information. With
a 2 × 2 input X , there are 16 possible paths for the generator to explore, shown
as solid lines. With the guidance from auxiliary information (blue dotted lines),
the generator is encouraged to search within four states (shown in blue) which
share the same labels as the auxiliary information and tends to ignore the masks
in red color. Note that question marks mean unknown or unconfident labels. For
simplicity, some paths and masks in red are omitted. 16

2.3 An example of incorporating the mask and auxiliary information. Darker colors
mean 1 while lighter colors denote 0. We employ the gradients to build our aux-
iliary information Lg(X) that the obtained gradients are normalized to [0, 1] and
thresholded. Then we combine Lg(X) and M by element-wise product to obtain
the final labels. 18

2.4 Explanation results for the VGG-16 network using different techniques. Different
rows show the results for different input images. All saliency maps are normalized
to range [0, 1] and visualized using JET colormap. The darker red refers to the
higher probability, the green color means the medium probability, and the darker
blue means the lower probability. Note that the first six rows are examples with
correct predictions while the predictions of the last three rows are wrong. 21

2.5 The explanation results for model randomization test. In each row, from left to
right, we show the raw image, the original explanation, the explanation for VGG-
16 with the final layer randomized, the explanation for VGG-16 with the final
two layers randomized, the explanation for VGG-16 with the final three layers
randomized, and the explanation for VGG-16 with the final four layers randomized. 24

2.6 The bounding boxes generated by our proposed method for six examples. The red
rectangles show the bounding boxes generated by our method and the green ones
are annotated ground truth. 27

xi

2.7 The explanation results for the ablation study. In each row, from left to right, we
show the raw image, the results of the model with both Ra and Rc reward terms,
the results of the model with Ra term but without Rc term, and the results of the
model without both terms. 30

3.1 Illustration of the overall pipeline of our approach. Part 1 shows the general struc-
ture of the CNN model that we try to investigate. After training, we first build
saliency maps for different hidden spatial locations, where saliency scores reflect
contributions to the final decision. As the example shown in Part 2, the CNN
model classifies the test sentence to class c (shown in green). For the conv1 layer,
the saliency score is computed for each spatial location, and three spatial locations
are selected (highlighted in yellow). Next, for each selected location, optimization
technique is employed to determine what is detected from the test sentence. As
shown in Part 3, for the spatial location k, a randomly initialized input X0 is fed
to the network and we iteratively update X0 towards the objective function shown
in Equation 3.6. Finally, based on the receptive field of location k (shown in blue
with red bounding box), we obtain an overall representation for this receptive field.
We search the vocabulary and select word representations with high similarity to
the overall representation. Then, the t-SNE is employed to visualize these repre-
sentations, as shown in Part 4. 35

3.2 The visualization explanation result for the first example for the MR dataset. The
middle part of the figure shows the contribution of different spatial locations in
hidden layers, where red color means highest contribution to the final decision; blue
color refers to the second highest contribution; and green means the third highest
contribution. The bounding boxes in different colors correspond to the receptive
field of different spatial location. The top part shows the t-SNE visualization of the
explanation obtained by our approach. The explanations of target spatial locations
are marked as “targetword” and connected to the corresponding spatial locations
by dash lines. 43

3.3 The visualization explanation result for the second example for the MR dataset.
Only the final result is presented due to space constraints.. 44

3.4 The visualization explanation result of the first example for the AG’s News dataset. . 45

3.5 The visualization explanation result of the second example for the AG’s News dataset. 46

xii

4.1 An illustration of our proposed SubgraphX. The bottom shows one selected path
from the root to leaves in the search tree, which corresponds to one iteration of
MCTS. For each node, its subgraph is evaluated by computing the Shapley value
via Monte-Carlo sampling. In this example, we show the computation of Shap-
ley value for the middle node (shown in red dashed box) where three coalitions
are sampled to compute the marginal contributions. Note that nodes that are not
selected are ignored for simplicity. 59

4.2 Explanation results on the BA-2Motifs dataset with a GCN graph classifier. The
first row shows explanations for a correct prediction and the second row reports the
results for an incorrect prediction.. 72

4.3 Explanation results on the MUTAG dataset with a GIN graph classifier. We show
the explanations for two correct predictions. Here Carbon, Oxygen, and Nitrogen
are shown in yellow, red, and blue, respectively. 73

4.4 Explanation results on the Graph-SST2 dataset with a GAT graph classifier. The in-
put sentences are shown on the top of explanations. Note that some “unimportant”
words are ignored for simplicity. The first row shows explanations for a correct
prediction and the second row reports the results for an incorrect prediction. 73

4.5 Explanation results of the BBBP and MUTAG datasets. Here Carbon, Oxygen,
Nitrogen, and Chlorine are shown in yellow, red, and blue, green respectively. 75

4.6 Explanation results of Grpah-SST2 dataset. 76

4.7 Explanation results on the BA-Shape dataset. The target node is shown in a larger
size. Different colors denote node labels. 77

4.8 Explanation results of BA-Shape dataset. The target node is shown in a larger size. . 78

4.9 The quantitative studies for different explanation methods. Note that since the
Sparsity scores cannot be fully controlled, we compare different methods with Fi-
delity scores under similar similar levels of Sparsity. 79

5.1 Illustrations of our proposed XGNN for graph explanations via graph generation.
The GNNs represent a trained graph classification model that we try to explain.
All graph examples in the graph set are classified to the third class. The left part
shows that we can manually conclude the key graph patterns for the third class but
it is challenging. The right part shows that we propose to train a graph generator to
generate graphs that can maximize the class score and be valid according to graph
rules. 87

xiii

5.2 An Illustration of our graph generator for processing a single step. Different colors
denote different types of node. Given a graph with 4 nodes and a candidate set
with 3 nodes, we first combine them together to obtain the feature matrix and the
adjacency matrix. Then we employ several GCN layers to aggregate and learn
node features. Next, the first MLPs predict a probability distribution from which
we sample the starting node. Finally, the second MLPs predict the ending node
conditioned on the starting node. Note that the black crosses indicates masking out
nodes. 92

5.3 Experimental results for the synthetic dataset Is_Acyclic. Each row shows our
explanations for a certain class that the first row corresponds to the class cyclic
while the second row explains the class acyclic. In each row, from left to right,
we report the generated graphs with increasing maximum node number limits. In
addition, we feed each generated graph to the pre-trained GCNs and report the
predicted probability for the corresponding class. 97

5.4 Experimental results for the MUTAG dataset. The first row reports the explana-
tions for the class non-mutagenic while the second row shows results for the class
mutagenic. Note that different node colors denote different types of atoms and the
legend is shown at the bottom of the figure. All graphs are generated with the initial
graph as a single Carbon atom. 98

5.5 Experimental results for the MUTAG dataset. We fix the maximum node number
limit as 5 and explore different initial graphs. Note that all graphs are generated for
explaining the mutagenic class. For each generated graph, we show its predicted
probability and corresponding initial graph at the bottom. 99

xiv

LIST OF TABLES

TABLE Page

2.1 Quantitative comparisions between different approaches using weakly supervised
object localization. 26

2.2 Quantitative comparisions between different approaches via saliency metric. 28

2.3 The results of the ROAR Evaluation. 29

3.1 The summary statistics of the MR dataset and the AG’s News dataset. In the table,
c represents the number of classes, Ntrain denotes the number of training examples
in the dataset, Ntest is the number of test examples, and |V | denotes the size of
vocabulary. 40

3.2 The CNN models we used for the MR dataset and AG’s News dataset. Different
columns refer to the network settings for different dataset. Length: the length of
input sentence; Conv num: the number of 1D convolutional layers in the model;
Conv channel: the number of channels for convolutional layers; Activation: activa-
tion function in convolutional layers; Embedding: dimension of word embedding;
Pre-train: the type of pre-trained word embedding employed. 41

3.3 Comparison of prediction accuracy between the CNN models we build and the
baseline CNNs. 42

3.4 The matching rates for the MR dataset and AG’s News dataset. 47

4.1 Statistics and properties of five datasets. 70

4.2 Efficiency studies of different methods. 79

4.3 The studies of different pruning strategies. 80

5.1 Statistics and properties of datasets. Note that the edge number and node number
are averaged numbers. 95

xv

1. INTRODUCTION

Deep neural networks have been widely applied in many popular areas including computer

vision [1, 2, 3, 4], natural language processing [5, 6, 7], and graph data analysis [8, 9]. With

the development of convolutional neural networks [10, 4], recurrent neural networks [11], deep

attention models [6], and graph neural networks [12], deep models have achieved the state-of-the-

art performance in several areas. However, most existing approaches only focus on improving the

performance of models and treat deep models as black-boxes. Without reasoning the prediction

procedures, we cannot understand deep models, thus making them less trustable. For example,

for critical applications such as medical decisions, it is necessary to not only make predictions but

also explain how and why the predictions are made. In addition, in several regulations and policies

of algorithms, it is required that the data subject has the right to obtain an explanation of the

decision reached [13]. These facts raise the need of developing explanation techniques to explain

deep neural networks. In this dissertation, we aim at exploring such techniques for different deep

models.

Recently, several techniques are proposed to explain deep learning models. Since the study

of explanation is still in the early stage, these methods mainly focus on different classification

models. In terms of what types of explanations are provided, these methods can be categorized

into two lines: model-level [14, 15, 16, 17] and instance-level [18, 19, 20, 21, 22, 23, 24]. The

model-level methods provide high-level insights and a generic understanding of how models work.

The provided explanations are input-independent and explain the general behaviors of the mod-

els. Popular model-level approaches include input optimization [25], dataset searching [14], and

input generation [15, 17]. Instead of focusing on high-level explanations, instance-level methods

explain the prediction for each input example. These methods generate input-dependent explana-

tions and investigate what features in the input space contribute more to the predictions. Common

techniques in this category include gradient-based methods [18, 19], visualizations of intermediate

feature maps [20, 21], decomposition-based methods [26, 27, 28], surrogate methods [29, 30], and

1

perturbation-based methods [22, 23, 24]. These two categories explain deep models from differ-

ent perspectives and both are reasoning the relationships between the input space and the output

space. In contrast, recent studies [31, 32, 33] explore the meaning of the representations in the

hidden space.

1.1 Explaining Deep Models for Images, Texts, and Graphs

With the advance of deep learning, deep models are developed for different applications. While

deep models are widely applied to different domains, most deep models are focusing on images,

text, and graphs. Hence, in this dissertation, we investigate the explainability of deep models for

images, texts, and graphs. A straightforward way is to develop general methods that suitable for

different data types. However, it is not feasible because these data are naturally different, and their

special properties should be considered to provide intuitive and human-intelligible explanations.

First, images are the most natural data representations since they can be easily visualized and

intuitively understood. Image data consist of image pixels and contain important locality informa-

tion. Each pixel is associated with its location information and the pixels with the same numerical

values but different locations may have different semantic meanings. In addition, individual pixels

are meaningless without considering the neighborhood and the background. For example, a black

pixel may belong to the car body, the darkness of the sky, and animal furs. Hence, it is important

to consider the relationships among different pixels and encourage continuous explanations when

explaining deep image models.

Second, text models are more challenging to understand since texts cannot be visualized and

less intuitive. Text data contain word tokens and each word is represented by an embedding vector.

Each word in text data has its own semantic meaning, which may be important for the predictions.

In addition, text data also contain locality information. Different from images, texts are discrete so

image explanation methods may not be suitable for texts. For example, optimization technique [25]

can explain image classifiers by providing high-level and abstract images. Such abstract images can

be visualized and intuitively understood. However, text data can not be abstracted and explained

in the same way.

2

Last, graph data are special while they widely exist in different real-world applications, such as

social networks, chemistry, and biology. Different from images and texts, graph data contain lim-

ited locality information that the numbers of node neighbors are not fixed and there is no location

information. Graph data are usually represented by node feature matrices and adjacency matrices.

The adjacency matrices are discrete and contain important topology and structural information.

Hence, methods from image and text domains cannot be directly applied. For example, opti-

mization technique [25] cannot be applied to optimize the adjacency matrices. In addition, graph

structures, such as network motifs, are highly related to their functionalities so that the structures

should be explicitly considered when providing explanations for graph models.

1.2 Dissertation Outline

In this dissertation, we study the explanation techniques to explain different deep models for

images, texts, and graphs. We aim at providing explanations from different views that are human-

intelligible and faithful to the models. Our methods focus on both the input space and hidden

space, providing both model-level and instance-level explanations.

In Chapter 2, we start our exploration by explaining deep image classifiers since image models

are more straightforward to explain compared with text and graph models. Specifically, we develop

a perturbation-based method that learns a generator to generate masks to capture important image

regions in the input space. Different from existing studies [24, 34] which generate soft masks for

explanations, our proposed method provides discrete masks to avoid the “introduced evidence”

problem. We first develop a generator that treats the original image as the input and outputs a

probability map to indicate the importance of different pixels. Then to obtain the discrete mask, we

perform sampling from the probability map. Next, the discrete mask is combined with the original

image to obtain a new image retaining important input information. The new image is fed into

the image classier to evaluate the quality of the discrete mask and provide guidance for generator

training. We employ the policy gradient to enable the back-propagation for the sampling step.

Experimental studies show that our method can generate high-quality explanations than existing

studies. It is also shown that our generator is reasoning the attribution of network predictions

3

instead of guessing the foreground and background of input images. Furthermore, the Remove

And Retrain evaluation results demonstrate the correctness of our method.

In Chapter 3, we continue our exploration by studying the explainability of deep text models,

which is a less explored but challenging topic. Since texts are represented as discrete input tokens,

they cannot be directly visualized. Instead of migrating the techniques for image models to the text

models, we specifically design a method for text models. Different from most existing works that

focus on the input space, we study the meaning of neurons in the hidden layers to build a bridge

between the input space and the output space so that our method can explain the whole decision

procedure. First, we select the top important spatial locations in the hidden layers by employing the

gradient-based saliency map technique. Next, we study what information from the input sentence

is detected by each important spatial location by optimizing a randomly initialized input to mimic

the original behaviors in these spatial locations. In addition, we develop regularization terms to

encourage the optimized input to have similar embeddings for each spatial location. Finally, an

overall embedding is obtained to search in the vocabulary and find words to assign meaning to

each spatial location. Experimental results show that our method can explain the whole decision

procedure layer by layer, starting from the input to the predictions.

In Chapter 4, we further explore the explanation techniques of the deep models for graph data.

Compared with image and text domains, the explanation of graph neural networks has not been

well noticed. While different instance-level methods are proposed to explain GNNs from different

views, they are invariably based on studying important nodes, node features, or edges. However,

we argue that subgraph-level explanations are more natural and intuitive to understand. Hence, we

propose a novel method, known as SubgraphX, to provide instance-level explanations by identify-

ing important subgraph structures. Specifically, we employ the Monte Carlo Tree Search (MCTS)

algorithm as the search algorithm to efficiently explore different subgraphs. Then, since the in-

formation aggregations in GNNs can be regarded as the interactions among different structures,

we propose to employ Shapley values to measure the importance of different subgraphs. To ad-

dress the computational limitations of Shapley values, we propose an efficient scheme to efficiently

4

approximate Shapley values by considering the interactions only within the local neighborhood.

Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of our

proposed SubgraphX while the computational cost remains reasonable and acceptable.

In Chapter 5, we continue exploring the explainability of deep graph models. Existing meth-

ods only focus on providing instance-level explanations and cannot provide high-level insights.

Hence, we propose to investigate the model-level explanations for graph models. Our proposed

method, XGNN, explains graph models by finding the graph patterns to maximize a certain net-

work behavior, such as a certain class prediction. Input optimization is popular for the model-level

explanations of image models but it cannot be applied to graphs. We first propose to explore sub-

graph structures by graph generation. Then we formulate the graph generation as a reinforcement

learning problem that for each step, the generator predicts how to add an edge into the current

graph. The generator is trained via the policy gradient to maximize the network behavior when

feeding the generated graphs into the graph models. Meanwhile, we incorporate several graph

rules to encourage the generated graphs to be valid and human-intelligible. Experimental results

on both synthetic data and real-world data show that our proposed method can help understand,

verify, and improve graph classification models.

1.3 Contributions

The main contributions of this dissertation can be summarized as below:

• We propose a learning-based method to explain deep image models by generating discrete

masks. The mask generation is formulated as a reinforcement learning problem and we train

a mask generator to capture important input regions. We also incorporate auxiliary informa-

tion to reduce the search space. With our discrete masks, the “introduced evidence” problem

caused by soft masks can be addressed and the performance is significantly improved.

• We propose an optimization-based method to study the meaning of hidden neurons in deep

text classifiers. It first selects important hidden locations using saliency map techniques

and then obtains optimized input to mimic the neuron activations for these locations. Sev-

5

eral regularization terms are incorporated to encourage the explanations to be more human-

intelligible. By searching from neighboring words in the vocabulary, our method can explain

the semantic meaning of the information detected by hidden layers, thereby explaining the

whole decision procedures from input to final predictions.

• We propose a novel method (SubgraphX) to explain deep graph models at the instance-

level. Our SubgraphX explores and identifies important subgraphs for the predictions. By

incorporating the Monte Carlo tree search algorithm, our method can efficiently examine

different subgraphs. To fairly measure their importance, we employ Shapley values and

propose an efficient way to approximate Shapley values. The explanations provided by our

subgraphs are more intuitive and faithful to the model. The performance is significantly and

consistently better than previous GNN explanation methods.

• We propose a novel method (XGNN) to provide model-level explanations for graph neural

networks. XGNN can provide high-level explanations for graph models by generating graph

patterns that maximize a target prediction. The graph generation is formulated as a reinforce-

ment learning problem and the generator is trained to learn how to add an edge to the existing

graph. Meanwhile, we incorporate several graph rules to yield valid and human-intelligible

explanations. The general and high-level explanations provided by our XGNN can help us

better understand deep graph models.

6

2. EXPLAINING DEEP IMAGE CLASSIFIERS BY GENERATING DISCRETE MASKS∗

In this chapter, we start our exploration by explaining deep image classifiers. To explain the

image classifier, we need to study what input image regions are more important. Intuitively, the

important input image regions should convey similar semantic meaning as the original images and

lead to the same predictions. We proposed to train a generator to predict probability maps and

sample discrete masks to capture such discriminative image regions to explain the predictions.

2.1 Introduction

Deep neural networks have shown great performance in several computer vision tasks, such

as image classification [35, 36], image segmentation [37, 38, 39], and image generation [40, 41].

Despite their promising results, they are lacking explanations for their predictions, which prevents

them from being applied to critical applications. Hence, it is necessary to study the explanation

techniques for these models. Recently, several approaches have been proposed to explain deep

image models, and they mainly focus on classification models. These methods belong to two

main categories: namely feature visualization and saliency maps [31]. First, feature visualization

methods explain a model by identifying input patterns that lead to a certain behavior of a neuron or

a group of neurons. Such input patterns can be obtained by dataset searching, input optimization,

or input generation [14, 15, 16, 17]. The second one, saliency maps, also known as attributions,

explain what input pixels or words contribute to the final predictions. Such explanations can be

obtained using gradient-based approaches [18, 19], visualizations of intermediate feature maps [20,

21], perturbation-based methods [22, 42, 23], and feature inversion [43, 44]. In addition, these two

categories can be combined to investigate the meaning of hidden units. The attribution techniques

first select important hidden units, and then feature visualization methods are employed to study

the meaning for these hidden neurons [33, 31].

∗Reprinted with permission from “Interpreting Image Classifiers by Generating Discrete Masks” by Hao Yuan, Lei
Cai, Xia Hu, Jie Wang, and Shuiwang Ji, IEEE Transactions on Pattern Analysis and Machine Intelligence, Copyright
2020 by IEEE.

7

In this chapter, we focus on image classification models and explain them using saliency maps.

For a given image, its saliency map shares the same dimensions as the image where each pixel of

the saliency map indicates the importance of the corresponding pixel in the original image. In this

work, we propose to explain deep models by learning discriminative areas and generating saliency

maps. Inspired by the generative adversarial networks (GANs) [40, 45], we treat the deep model to

be explained as the discriminator and employ a trainable generator to explain it. Given an image,

the generator is trained to determine discriminative areas and generate a probability map. Then

we sample a discrete mask from the probability map and combine it with the original image to

obtain a new image. Next, the new image is fed into the discriminator to evaluate the quality of

mask by comparing the new predictions and the original predictions. Intuitively, discriminative

areas of the original image should lead to the same or similar prediction as the original predictions.

Hence, the generator can be updated using feedbacks from the discriminator. However, since the

discrete mask is sampled from the probability map and only contains discrete values, we cannot

directly train the generator using back-propagation. We propose to formulate such a problem as

a reinforcement learning problem and train the generator using policy gradient. Furthermore, due

to the immense search space, we propose to incorporate auxiliary information to reduce the search

space and facilitate training. Note that recent work [24] proposes to train a generator to produce soft

masks and apply the soft masks to the original images. However, it suffers from the “introduced

evidence” problem that soft masks introduce new noise and semantic meaning to images, which

affects the quality of explanations. Differently, our method obtains discrete masks by sampling

and the ”introduced evidence” problem can be largely avoided.

We conduct experiments on ILSVRC dataset to demonstrate the effectiveness of our proposed

approach. The visual explanation results show that our method produces high quality explanations

which can reasonably explain the model’s predictions. Next, quantitative analysis is performed by

applying generated saliency maps to weakly supervised object localization task. The localization

results indicate that our method outperforms several existing state-of-the-art explanation methods.

In addition, our method can pass model randomization test [42] which shows that our method

8

can captures model behavior and our explanations are depending on model parameters. Finally,

evaluations on saliency metric [24] also demonstrates the effectiveness of our proposed approach.

2.2 Related work

Recent survey work [46, 42] has shown that several techniques try to explain deep models using

saliency maps. Existing saliency methods can be categorized into two lines. We briefly introduce

these methods in this section.

The first line of work obtains saliency maps using the model parameters or features. Gradients

are widely employed to indicate the contributions of different input factors. The most straightfor-

ward way is to directly compute the derivative of the class score with respect to the input image

using the first-order Taylor expansion [18, 47], which can be obtained using back-propagation.

Such gradients indicate how much the class score will change if there is a change in each input

position, which can be considered as local sensitivity. The Integrated Gradients method [48] pro-

poses to measure global sensitivity by combining different scaled versions of input, which can

address the gradient saturation problem. Similarly, recent work [49] can also solve gradient satura-

tion while reducing visual diffusion. It combines the input and gradients by element-wise product

to produce saliency maps. In addition, to alleviate noise and visual diffusion in feature maps,

SmoothGrad [19] proposes to remove noise from saliency maps by adding different noise to the

input and averaging over all saliency maps.

Meanwhile, the hidden feature maps can be employed to produce saliency maps since the

spatial information is retained through convolution layers. The CAM technique [21] proposes to

combine the feature maps produced by the final convolution layer. However, it can be only applied

to CNNs with global average pooling layer right before the final output layer, and the weights

between these two layers are used to combine different feature maps. Then Grad-CAM [20] is pro-

posed to address this limitation by combining different hidden feature maps with gradients. Both

of them require additional upsampling operations to recover the spatial size so that the obtained

saliency maps may not be accurate. In addition, feature inversion methods [50, 44] employ opti-

mization to map the hidden representations back to the input space and study what information in

9

the input is preserved in hidden representations and what is discarded.

The second line of work is based on input perturbation, which monitors the change of predic-

tion probability for a certain class while occluding different image regions [22, 23, 24]. They treat

the networks as the black box and only focus on the input and the output. Even though these meth-

ods are not directly studying model parameters or features, they explain the model from another

perspective: “output variations w.r.t. input perturbations”. Recent work [24] proposes to train a

generator to produce soft masks and apply the soft masks to the original images. Then the newly

obtained images are expected to lead to target predictions. However, soft masks contain contin-

uous values and may cause the “introduced evidence” problem [24]. Any non-zero and non-one

value will set the original pixel to a new value, which may introduce new noise and meaning to

the input thus affecting the saliency maps. In addition, existing work [51] shows that compared

with soft masks, discrete masks tend to capture target objects more precisely in attention models.

Hence, our method proposes to obtain discrete masks by sampling and the “introduced evidence”

problem can be largely avoided. In addition, the design of several functions in the prior work [24]

is heuristic and requires knowledge about the dataset, then it may not well for biological or medical

images. Furthermore, the model in [24] is trained with ground-truth and randomly sampled fake

labels, which significantly increase the complexity. As it is not feasible to cover all fake labels, the

model can provide good explanations of correct predictions but not for wrong predictions, which

is shown in our experiments. Similarly, recent work [34] proposes to sample k important features

from inputs and maximize the mutual information between original predictions and predictions of

selected features. The Gumbel-Softmax [52] is employed to approximate discrete feature masks

and enable the error backpropagation. However, the feature masks are not strictly discrete. Hence

this method may still cause the “introduced evidence” problem. In addition, it only samples the

top k important features from the input, which may not form a continuous image region.

2.3 Methods

In this section, we propose a novel approach to explain deep learning models by learning dis-

criminative regions and generating explanations. We first present an overview of the proposed

10

Sample
Discriminator

Policy Gradient and Auxiliary Information

Classification

Prediction

Generator Mask

Figure 2.1: Illustrations of the pipeline of our proposed approach. Given an image X , we employ
a trainable generator to produce a probability mask P and sample a mask M . Then we perform
element-wise product between X and M to obtain a new image X̂ . Finally, we feed X̂ to the
discriminator to evaluate the quality of P and M .

approach and describe the general pipeline in section 2.3.1. Then the reinforcement learning for-

mulation of our method is discussed in section 2.3.2. Next, we introduce the reward functions for

policy training in section 2.3.3. Finally, we propose to incorporate auxiliary information to reduce

search space and train the policy in section 2.3.4.

2.3.1 Overview of the Proposed Approach

Traditional GANs consist of two different networks; a generator and a discriminator. These

two networks are trained iteratively that the generator learns to capture the data distribution to

generate realistic samples while the discriminator is trained to distinguish samples generated from

the generator. Inspired by such a mechanism, we propose a novel approach to explain deep neural

models in a GAN manner. Specifically, we focus on deep models for image classification. Given

a pre-trained model and an input image, our method explains the model by explaining what image

regions of the input image are the most discriminative in the model’s view. Intuitively, the expla-

nations should capture discriminative image regions for the model’s predictions, such that when

feeding the explanations of an image to the pre-trained model, it should make the same or similar

prediction as the prediction of the original image. We propose a GAN-style architecture for expla-

nations in which there is a generator for generating explanations and a discriminator for evaluating

the explanations.

11

The general pipeline of our proposed method is shown in Figure 2.1. Formally, the pre-

trained image classification model serves as the discriminator, denoted as D. The generator is

a θ-parameterized generative network, denoted as Gθ. Given an input image X ∈ Rh×w, the gen-

erator Gθ produces a score map P , where each element pi,j is a continous variable and pi,j ∈ [0, 1].

The value of pi,j indicates the probability that the corresponding pixel xi,j in X belongs to impor-

tant image regions. Such a score map P can be also considered as the saliency map [18] or the

attribution map [48]. Then a mask M is sampled from P that each pixel mi,j is a discrete variable

whose value can be 0 or 1. The value of mi,j reflects if the corresponding pixel xi,j is selected.

Mathematically, it can be written as

mi,j ∼ Bernoulli(Gθ(X)i,j). (2.1)

Next, the original image X and the mask M are incorporated together via element-wise prod-

uct, and output a new image, denoted as X̂ . Only important image regions of X are retained in X̂

while the other pixels are set to 0. Then X̂ is fed to the discriminator to output a prediction vector,

denoted as ŷ that

ŷ = (y0, · · · , yi, · · · , yn) = D(X ·M), (2.2)

where · refers to element-wise multiplication and the yi is the ith element in ŷ which indicates the

probability that X̂ belongs to class i. Note that the discriminator can be any pre-trained image

classification model, such as VGG [53], GoogLeNet [54], and ResNet [55]. Hence, our proposed

approach can be applied to explain any image classification model. In this work, we choose the

VGG network as an example.

In addition, different from traditional GANs, the training of our model is non-adversarial in that

only the generator is trained while the discriminator is frozen to provide guidance for improving the

generator. Once the generator is well-trained, for any given image, the generated probability map

can be used to explain which image regions are important for the model D to make classification

predictions. However, there are several challenges to train the generator under such settings. First,

12

there are sampling operations in our method; then the generator cannot be directly trained through

back-propagation. Second, the discriminative image regions should be continuous and only cover

related small areas. Without any constraint, the generated probability map may contain many arti-

facts, and then the sampled pixels in the mask may not be continuous. In this work, we formulate

the problem as a reinforcement learning task, train the generator via policy gradient [56, 57], de-

sign reward function to measure the quality of sampled masks, and propose to incorporate auxiliary

information to reduce the search space and facilitate the training of generator.

2.3.2 A Reinforcement Learning Formulation

As mentioned above, the quality of explanations is discriminated by the pre-trained model D.

When feeding the newly generated image X̂ to D, we can obtain the prediction ŷ. Then we can

calculate the cross-entropy loss that

LCE(ŷ, y) = −
n∑
i=1

1{y = i} log ŷi, (2.3)

where y is a scalar representing the prediction of the original X , n is the number of class, and

1{·} denotes the indicator function. Intuitively, training the generator by minimizing this loss can

encourage the generator to produce high-quality probability maps where discriminative image re-

gions regarding prediction y yield high probabilities. However, since the mask M is sampled from

the probability map P and only contains discrete variables, gradients cannot be back-propagated

from the discriminator to the generator. Then the loss LCE(ŷ, y) cannot be directly used to update

the generator. Hence we propose to train the generator in a reinforcement learning manner via pol-

icy gradient. The problem can be formulated as a mask generation problem using reinforcement

learning.

Formally, we train a generative model Gθ to produce a matrix M based on the input image X .

For any element in the matrix M , we have mi,j ∈ {0, 1}, 1 ≤ i ≤ h, 1 ≤ j ≤ w, where h and

w refer to the height and width of X . We assume that the mask is generated row by row (i = 1

to i = h), and from left to right in each row (j = 1 to j = w). Then the state si,j at step (i, j) is

13

the matrix generated until the previous step. The policy is the generator network Gθ that produces

the probability map P . Then the action at step (i, j) is to determine the value of mi,j , which can

be 0 or 1, based on the policy. In addition, the feedback from the discriminator is employed as the

reward. Since the discriminator can only evaluate the whole mask, there is only a final reward for

the whole matrix M and no intermediate rewards. Based on [58, 57], the objective of training the

generator is maximizing the expected final reward, starting from the start state s0 with an empty

matrix:

J(θ) = EM∼Gθ(X|s0)[Rf (X,M)], (2.4)

where Rf (X,M) is the final reward for the whole mask. Then we can update the parameters θ by

policy gradient that

θ = θ + α∇J(θ), (2.5)

where α denotes the learning rate and we can have

∇J≈Rf (X,M)∇Gθ(X|s0) (2.6)

=Rf (X,M)Gθ(X|s0) log∇Gθ(X|s0).

2.3.3 Reward Function

The reward Rf (X,M) in Equation 2.4 is critical since it provides guidance for updating the

generator. Hence, it should correctly reflect the quality of the generated mask M . As the mask is

sampled from the probability map P and we employ P to explain the pre-trained discriminator D,

the reward function Rf (X,M) can also indicate the quality of explanations. In this section, we

carefully design the reward function.

First, given an input image X with its prediction y, the mask M should cover discriminative

image regions for class y. Then the newly obtained image X̂ should receive the same prediction as

the original prediction y. Hence, the feedback of the discriminator, which is cross entropy loss in

14

Equation 2.3, can evaluate the quality of the mask M . We use it as the discriminator reward that

Rd(X,M) = −LCE(D(X,M), y). (2.7)

Second, the maskM should only cover the most discriminative regions, and ignore background

pixels. Hence, we develop an area size reward that the total area size of selected pixels (mi,j = 1)

should be relatively small, compared with the area size of the original image X . Mathematically,

it can be written as

Ra(X,M) = −
∑w

i=1

∑h
j=1mi,j

h× w
. (2.8)

In addition, the selected pixels (mi,j = 1) in mask M should distribute continuously, which

also means fewer artifacts exist in the generated probability map P . Hence, we propose another

reward term Rc(X,M) to evaluate the distribution of the selected pixels in M . Formally, it can be

written as

Rc(X,M) = −
∑w

i=1

∑h
j=1(|mi,j −mi−1,j|+ |mi,j −mi,j−1|)

h× w
. (2.9)

Overall, by updating the generator to maximize the discriminator reward Rd(X,M), we en-

courage the network to capture the discriminative regions in an image. Then the area reward

Ra(X,M) encourages our policy to select relatively fewer pixels and only focus on the most dis-

criminative regions. With the continuous Rc(X,M), the selected pixels tend to form continuous

regions. We combine these three rewards to serve as the reward function in Equation 2.4, and it

can be written as

Rf (X,M) = Rd(X,M) + λ1Ra(X,M) + λ2Rc(X,M), (2.10)

where λ1 and λ2 are hyper-parameters for the area reward and the continuous reward.

15

Policy (Generator)

0 0

0 0

Search Space

0 0

0 1

1 1

0 0

1 1

1 0

1 1

0 1

1 1

1 1

1 1

? ?

Auxiliary Information

Figure 2.2: Illustrations of how to reduce the search space with auxiliary information. With a
2× 2 input X , there are 16 possible paths for the generator to explore, shown as solid lines. With
the guidance from auxiliary information (blue dotted lines), the generator is encouraged to search
within four states (shown in blue) which share the same labels as the auxiliary information and
tends to ignore the masks in red color. Note that question marks mean unknown or unconfident
labels. For simplicity, some paths and masks in red are omitted.

2.3.4 Policy Learning with Auxiliary Information

As mentioned above, the generator serves as the policy in our reinforcement learning setting.

We first introduce the general structure of our generator network. Given an image X , the generator

produces a probability matrix P which shares the same spatial dimensions as the input X . Re-

cently, an encoder-decoder network “U-Net” is proposed for pixel-wise prediction problems and

has shown great success in many tasks [37, 38, 39]. Hence, we design our generator as an encoder-

decoder network following the general “U-Net” structure, which is shown in Figure 2.1. The

encoder consists of several downsampling blocks that each downsampling block employs convo-

lutional layers [10] to extract high-level features from the input image and reduce the spatial size.

On the other hand, there are several upsampling blocks in the decoder of our generator to recover

the spatial size from high-level features. Each upsampling block contains one transposed convolu-

16

tional layer [59] and several following convolutional layers. Such a structure can efficiently capture

the global relationships between different pixels, and each position of the output depends on all

neighbor pixels within its corresponding receptive field. In addition, the spatial information, such

as the sizes and locations of different objects and background, can highly impact the explanations.

However, since there are multiple downsampling and upsampling operations, such spatial infor-

mation cannot be perfectly conveyed from the encoder to the decoder. Existing studies [37, 60]

have demonstrated that adding skip connections between the encoder and the decoder is beneficial.

We employ such an idea and build skip connections between the encoder and the decoder to share

spatial information.

Given an image X , the generator produces a probability map P from which we sample a mask

M . With the reward Rf (X,M) mentioned above, we can update the generator Gθ. According

to [56, 57], the loss function for policy training can be mathematically written as

LG = −Rf (X,M)LCE(Gθ(X),M). (2.11)

However, in reinforcement learning, the generator needs to explore the whole search space, which

contains a tremendous amount of masks. For example, when the size of images is 224 × 224,

which is a common size used for training ILSVRC dataset [61], each pixel can be selected or not

so that the number of possible masks reaches 2224×224. Therefore, it is not possible to explore

the whole search space and it is challenging to train the policy directly using the loss function in

Equation 2.11.

In this work, we propose to employ auxiliary information to reduce the search space and facil-

itate policy training. The auxiliary information is defined as the guidance information obtained by

other methods, and they may not be accurate. As illustrated in Figure 2.2, with an input with size

2 × 2, there are 22×2 = 16 paths leading to 16 possible masks to be explored. With the auxiliary

information that positions (0, 0) and (0, 1) are equal to 1 and the remaining positions are unknown,

we can guide the generator to search within the masks which share the same labels as the auxiliary

17

Generator

Discriminator

0.4 0.7

0.9 0.8

0.4 0.1

0.8 0.5

0.5 0.6

0.2 0.1

0.9 0.4

0.1 0.1

Probability

0.2 0.9

0.7 0.9

0.4 0.7

0.6 0.3

0.1 0.8

0.2 0.1

0.2 0.4

0.2 0.9

Gradient

Sample

Mask

Figure 2.3: An example of incorporating the mask and auxiliary information. Darker colors mean
1 while lighter colors denote 0. We employ the gradients to build our auxiliary information Lg(X)
that the obtained gradients are normalized to [0, 1] and thresholded. Then we combine Lg(X) and
M by element-wise product to obtain the final labels.

information. Then the generator is encouraged to eliminate 12 possible paths (shown in red) and

search within the other 4 masks (shown in blue). Hence, the search space tends to be significantly

reduced. Specifically, we employ the gradients to build the auxiliary information in this task, de-

noted as Lg(X). Even though the gradients can only roughly indicate the importance of different

pixels towards the classification, we can observe that the positions with relatively high absolute

gradients can capture the discriminative pixels in most cases [18, 22]. Therefore, we calculate the

normalized gradients and only use positions with relatively high values as the auxiliary informa-

tion. Formally, given an input image X , the absolute values of gradients can be approximated

by

Gr(X) =

∣∣∣∣∂Sy∂X

∣∣∣∣ , (2.12)

where y denotes the original prediction of X , Sy means the class score of y, and |·| denotes the

calculation of absolute values. Then we normalize Gr(X) and obtain the auxiliary information

Lg(X) through a threshold β that

Lg(i, j) =

1 if(Gr(xi,j)−Grmin)/(Grmax −Grmin) ≥ β

0 if(Gr(xi,j)−Grmin)/(Grmax −Grmin) < β
, (2.13)

18

where Grmin indicates the minimum value in Gr(X) and Grmax denotes the maximum value. We

present an example of incorporating the auxiliary information and the sampled mask in Figure 2.3.

Given an input X , we can obtain a probability map P through the generator and then sample

a mask M from P . Meanwhile, we can obtain Gr(X) by computing the gradients of the class

score of its original predicted class with respect to input X and then use a threshold to obtain the

auxiliary information Lg(X). The positions with deeper colors have values equal to 1 while the

light colors mean 0. Then the maskM and the auxiliary information Lg(X) are combined together

by element-wise product to produce the final labels Lf (X). In addition, since the reward function

Rd(X,M) can only indicate how discriminative the selected pixels are and cannot measure the

quality of unselected pixels, we only use the loss obtained from the masked areas to update the

policy. Hence, the new loss function can be written as

LGnew = −Rf (X,M)× (M · LCE(Gθ(X),M · Lg(X))), (2.14)

where · denotes element-wise product. Note that even though we employ the gradients to help

update the policy, it is different from directly using gradients as labels. In our proposed method,

we only employ gradients to build auxiliary information to reduce search space and the generator is

still updated by policy gradient. In addition, the proposed framework can be easily generalized that

the discriminator can be any pre-trained model to be explained, the generator can be any pixel-wise

prediction model, and the technique to obtain auxiliary information can also be replaced.

2.4 Experimental Studies

In this section, we conduct both qualitative and quantitative evaluations to demonstrate the

effectiveness of our proposed method. We first introduce the dataset and our experimental settings

in Section 2.4.1 for reproducibility. Then we compare our method with several existing state-

of-the-art approaches and report visual explanation results in Section 2.4.2. Next, we evaluate

our proposed method through model randomization test in Section 2.4.3. Finally, we present the

quantitative analysis based on weakly supervised object localization in Section 2.4.4 and saliency

19

metric in Section 2.4.5.

2.4.1 Dataset and Experimental Setup

We perform the experiments on the ILSVRC dataset [61], which contains 1000 categories

and 1.2 million images for training, and 50,000 images for validation . We follow the VGG net-

work [53] to preprocess images that each image is first resized to 224× 224× 3, and then normal-

ized using the mean vector (123.68, 116.779, 103.939). In this work, the model we employed as

our discriminator and try to explain is VGG-16. Specifically, we utilize the pre-trained VGG-16

model from Tensorflow Slim Library [62]. The reported top-1 accuracy for ILSVRC validation set

is 71.5%, and top-5 accuracy reaches 89.8%. Our discriminator loads such pre-trained model and

freeze all parameters during the training of the generator.

Our generator consists of an encoder network and a decoder network. There are three down-

sampling blocks in our encoder network, and each downsampling block contains three convolu-

tional layers [10]. The stride sizes for the first two convolutional layers are equal to 1 while the

final convolutional layer has stride equal to 2 to perform downsampling. The numbers of output

channels are doubled for each block, starting from 64. Correspondingly, the decoder network con-

sists of three upsampling blocks that each upsampling block contains one transposed convolutional

layer [59] and three convolutional layers. The stride size is set to 2 for the transposed convolu-

tional layer and 1 for each convolutional layer. The number of output channels is halved for the

last convolutional layer of the first two blocks, and set to 1 for the final layer in the final block.

All other layers retain the same number of output channels as their input. In addition, there is a

bottom block connecting the encoder and the decoder, which have two convolutional layers. The

stride is set to 1 for both of them, and the first layer doubles the output channels while the second

one halves the output channels. In addition, skip connections are performed by simple copying and

concatenation. For all layers in our generator, the kernel sizes are set to (3, 3). For all layers except

the last layer, batch normalization [63] is applied, and rectified linear unit (ReLU) is employed as

activation functions. For the last layer, the sigmoid function is employed as the activation function

to generate probabilities between 0 and 1. Note that zero paddings are set to “SAME” for all layers.

20

(a) Input Image (b) Our Method (c) Gradient (d) Mask (e) Integrated (f) SmoothGrad (g) Grad-CAM (h) GuidedBP (i) Soft (j) Ebp (k) Shap (k) Real-time

Figure 2.4: Explanation results for the VGG-16 network using different techniques. Different rows
show the results for different input images. All saliency maps are normalized to range [0, 1] and
visualized using JET colormap. The darker red refers to the higher probability, the green color
means the medium probability, and the darker blue means the lower probability. Note that the
first six rows are examples with correct predictions while the predictions of the last three rows are
wrong.

We implement our method using TensorFlow [64] and conduct our experiments on four Pascal

1080 Ti GPUs. The learning rate for generator is 1×10−3 and the batch size is set to 80. The hyper-

parameters in Equation 2.10 are set to λ1 = 3.5 and λ2 = 3.0. The threshold in Equation 2.13 is

β = 0.2. In addition, we apply the Adam optimizer [65] with momentum parameters β1 = 0.9 and

β2 = 0.999.

21

2.4.2 Qualitative Evaluations

We conduct experiments to compare the saliency maps generated by different methods quali-

tatively. These state-of-the-art approaches are Gradient [18], Mask [23], Integrated [48], Smooth-

Grad [19], Grad-CAM [20], GuidedBP [43], EBP [26], Real-time Saliency [24], and Shapley-

value-based method [30]. In addition, to justify the use of reinforcement learning, we train the

same generator network with the same loss function but using soft masks, denoted as Soft. We

directly apply the probability map P to the original input X and feed X ·P to the pretrained model

D, which is similar to the existing work [24] and can be trained via standard stochastic gradient

descent. For the Shapley-value-based method, we choose to compare with the Shapley Gradient-

Explainer, which combines ideas from Integrated Gradients, SHAP, and SmoothGrad into a single

expected value equation. All approaches are visually evaluated using the same VGG-16 model.

For each image, we obtain saliency maps from different methods and visualize them using the JET

colormap. We report the explanation results of nine different images in Figure 2.4 where each row

corresponds to one image. In each row, the leftmost image is the raw image, the second one is the

explanation result of our method, and following columns represent results obtained using different

approaches in the following order: Gradient, Mask, Intergrated, SmoothGrad, Grad-CAM, Guid-

edBP, Soft, EBP, Shapley-value-based method, and Real-time Saliency. In each explanation result,

the darker red color indicates the higher probability, lighter blue means the lower probability, and

green color refers to the medium probability.

In Figure 2.4, the top six rows show the explanations for correctly classified images while the

last three rows report the explanations for three misclassified images. The first three rows show the

results of three relatively simple examples since these images contain clear backgrounds while the

main objects have high-contrast colors compared with their backgrounds. For these three images,

our method, SmoothGrad, GuidedBP, Soft, EBP, Shap, and Real-time can provide good explana-

tions to explain the model’s predictions. Our method can capture necessary details such as the

spider legs and the scorpion tail. The next three rows show three difficult examples in which the

main objects are mixed with watermarks. We believe our method provide the most reasonable

22

explanations which ignore the watermarks while SmoothGrad, GuidedBP and Soft methods fail to

do so. From the model’s perspective, watermarks can exist in different images so that they should

not relate to the predictions. For the seventh row, the model predicts it as “cliff” while its true label

is “rock python”. Our method, CAM, and Soft can provide reasonable explanations for this wrong

prediction that the model focuses more on the rock and reasonably misclassifies it to “cliff”. In ad-

dition, the prediction of the eighth row is “park bench” while the ground truth is “indigo bunting”.

Our method and Shap provide good explanations that the model captures the wood whose shape is

similar to “park bench”. Such explanations indicate that the VGG-16 model may not well capture

small objects with low-contrast colors. Next, the last row shows an example whose prediction is

“dung beetle” but the label is “bullfrog”. Our method explains such a prediction that even though

the VGG-16 model captures the objects successfully but misclassifies them to dung beetles. Even

though the Real-time saliency method can provide good explanations for correctly classified ex-

amples, it cannot provide reasonable explanations for wrong predictions. Overall, we believe our

method can successfully explain the predictions of VGG-16 for both correct and incorrect predic-

tions. By comparing different methods, our method tends to provide more reasonable explanations

for the predictions. In addition, by comparing our method and Soft, we can show that with rein-

forcement learning, the explanations are more precise and tend to exclude irrelevant details, such

as watermarks.

2.4.3 Model Randomization Test

To demonstrate that our proposed method can capture model behavior instead of generically

identifying the foreground of the input images, we evaluate our method using model randomiza-

tion test [42]. Recent work [42] shows that several widely employed explanation methods are

independent to the model parameters, such as GuidedBP [43] and Guided GradCAM [20]. The

model randomization test compares the explanations for a trained model, such as the pretrained

VGG-16, with the explanations for a randomly initialized model, such as the pretrained VGG-16

with randomly initialized layers. If the explanation method is reasoning the model at hand instead

of guessing, the generated explanations should be substantially different for these two cases.

23

Ours

Raw Image VGG-16 Last 1 layer Last 2 layers Last 3 layers Last 4 layers

GuidedBP

Intergrated

Gradient

EBP

Figure 2.5: The explanation results for model randomization test. In each row, from left to right,
we show the raw image, the original explanation, the explanation for VGG-16 with the final layer
randomized, the explanation for VGG-16 with the final two layers randomized, the explanation
for VGG-16 with the final three layers randomized, and the explanation for VGG-16 with the final
four layers randomized.

We compare our proposed method with other baselines via model randomization test in a cas-

cading randomization manner. We first randomize the weights of the final layer in VGG-16 and

then provide explanations for this model. Then we evaluate the model with randomized last two

layers, the model with randomized last three layers, and the model with randomized last four lay-

ers. The results are reported in Figure 2.5, where we compare our method with GuidedBP [43],

Intergrated [48], Gradient [18], and EBP [26]. Each row shows the explanations for the same im-

age generated by different methods. In each row, from left to right, we report the raw input, the

24

original explanation for VGG-16, the explanation for VGG-16 with the final layer randomized,

the explanation for VGG-16 with the final two layers randomized, the explanation for VGG-16

with the final three layers randomized, and the explanation for VGG-16 with the final four lay-

ers randomized. It is observed that our method provides substantially different explanations for

randomized models compared to the original explanation, which means our proposed method can

pass the model randomization test. It shows that our method is reasoning the model behavior in-

stead of generically identifying the foreground of the input images. Interestingly, our generated

explanations for all randomized models are heatmaps with all zeros. It is reasonable for the follow-

ing two reasons. First, intuitively, due to the randomized parameters, the models make decisions

randomly and the decisions are not related to the input images. Hence, none of the image regions

is important to or should contribute to the predictions. Our generated explanations are consistent

with such intuition. Second, when training our generator, no matter how the mask is selected, the

discriminator reward cannot be maximized while the area reward encourages the area of masks to

be as small as possible and finally becomes zero. In addition, we can observe that the Gradient

method can also pass the model randomization test. However, the GuidedBP tends to provide al-

most the same explanations regardless of model randomization, which means it cannot pass the

model randomization test. We also observe that the Integrated Gradient method generates highly

similar saliency maps for all models. The observations for Gradient, GuidedBP, and Integrated

Gradient are consistent with the existing work [42]. For the method EBP [26], the explanations

are computed from the feature maps after the last pooling layer, which is between the third-to-last

layer and the fourth-to-last layer. It is interesting to observe that if the parameters after the final

pooling layer are randomized (the third column to the fifth column in Figure 2.5), the generated

explanations of EBP remain the same. Meanwhile, if the parameters before the final pooling layer

are randomized (the last column in Figure 2.5), we can observe significant changes in the saliency

maps.

25

Table 2.1: Quantitative comparisions between different approaches using weakly supervised object
localization.

Method Error Rate Method Error Rate
Gradient [18] 41.7% GuidedBP [43] 42.0%
CAM [21] 48.1% Mask [23] 43.2%
Occlusion [22] 48.6% Grad-CAM [20] 47.5%
LRP [66] 57.8% Real-time [24] 39.2%
Soft 47.0% Ours 37.9%

2.4.4 Weakly Supervised Object Localization

One popular way to quantitatively measure explanation saliency maps is to apply generated

maps to weakly supervised object localization tasks [44, 26, 23]. Even though it cannot precisely

measure the explanation quality, the motivation of such evaluation is that reasonable explanations

should capture some regions of target objects and hence have overlap with ground truth bounding

boxes. We conduct such experiments on ILSVRC validation set which contains 50000 images with

humanly annotated bounding boxes. Following the existing work [44, 26, 23] and ILSVRC2014

setting [61], we exclude 1762 images since their bounding box annotations are poor. Note that

since the ground truth bounding boxes are annotated for the ground truth label, the targets of ex-

planations are not the original predictions but the ground truth labels. Hence, for such evaluations,

our proposed method is trained with ground truth labels instead of predictions. That is, the y in

Equation (2.3, 2.7, 2.12) is set as the ground truth label to train the generator.

Given an image X , we can obtain the probability map P . To generate bounding box from

P , we first normalize P to be in the range of [0, 1] and then determine which pixels are selected

by value thresholding [23] that pixels with values greater or equal to threshold α are selected.

Next, the tightest rectangle covering all selected pixels is generated as the final bounding box.

Finally, we check if the generated bounding box successfully match the annotated bounding box

using intersection over union (IOU) metric. If the IOU score smaller than 0.5, then the generated

bounding box is treated as a localization error. Note that if there are multiple annotated bounding

26

Figure 2.6: The bounding boxes generated by our proposed method for six examples. The red
rectangles show the bounding boxes generated by our method and the green ones are annotated
ground truth.

boxes in an image, we first find a larger but tightest rectangle covering all annotated bounding

boxes and then compute the IOU score based on the larger rectangle and the generated bounding

box.

We perform such evaluation for the whole ILSVRC2014 validation set, excluding the poorly

annotated images mentioned above. The average localization errors of different approaches are

reported in Table 2.1. We compare our method with the several state-of-the-art explanation meth-

ods quantitatively. The error rates of these comparing methods are taken from [23]. Our proposed

approach achieves the best performance among these eight methods. Note that for our method,

the best error rate is achieved when α = 0.79. In addition, we compare our method with Soft and

Real-time [24]. Clearly, our proposed method outperforms these two methods, which indicates

27

Table 2.2: Quantitative comparisions between different approaches via saliency metric.

Method Score Method Score
Gradient [18] 0.7999 Mask [22] 0.9059
Integrated [48] 0.7987 Soft 0.8292
Ours 0.7716

discrete masks can better capture target objects. Such observations are consistent with the existing

work [51]. In addition, we also report the predicted bounding boxes for six examples in Figure 2.6.

The bounding boxes predicted by our method are represented as red rectangles while the manually

annotated bounding boxes are shown in green. Our generated bounding boxes can precisely match

the annotated ones. Note that for the first and the second images, there are multiple objects and

annotated boxes while our predicted bounding boxes can cover all of them. It shows that our pro-

posed method can capture image regions for multiple objects at the same time. Even though such

an evaluation cannot directly measure the explanation quality, it reflects that the saliency maps

generated by our approach can better highlight the target objects.

2.4.5 Saliency Metric Evaluation

We also evaluate our proposed method by the recently proposed saliency metric [24]. It re-

quires the preserved image regions to yield the same prediction as the original image while the

area of the preserved image regions is relatively small. Formally, given an input image X and its

original prediction y, we obtain the tightest rectangular box as mentioned in Section 2.4.4. Then

we crop the input X based on the rectangular box and resize it to the same size as X , denoted as

Xc. Next, we feed Xc to the classifier D and monitor the predicted probability for class y. Then

the saliency score is computed as

s(a, p) = log(ã)− log(p̃), (2.15)

with ã = max(a, 0.05) and p̃ = max(p, 0.01). Here a means the area of the rectangular as

a fraction of the total image size and p is the predicted probability for class y given Xc as the

28

Table 2.3: The results of the ROAR Evaluation.

Train Diff Test Diff
r = 30 r = 50 r = 30 r = 50

Grad-CAM [20] -0.018% -0.108% -15.36% -26.98%
Integrated [48] -0.098% -0.198% -0.52% -2.76%
SHAP [30] -0.138% -0.198% -11.24% -12.80%
Ours -0.226% -0.378% -18.52% -23.40%

input. Note that we threshold both a and p to avoid extremely small crops and extremely wrong

predictions. We compare our proposed method with Gradient [18], Integrated [48], Mask [22],

and Soft. The results are reported in Table 2.2. Our proposed method is shown to achieve a better

saliency score than comparing methods. It indicates that the important image regions captured by

our method are more discriminative for the model to recognize the original objects. In addition, our

method can outperform the Soft, which shows the advantage of employing reinforcement learning

for discrete masks.

2.4.6 The Remove and Retrain Evaluation

We further evaluate our proposed method using the recently proposed Remove And Retrain

(ROAR) method [67]. It first removes important image pixels for all training and validation images,

based on the generated saliency maps, and then retrain the image classification model. Intuitively,

if pixels carrying discriminative information are removed, it is more challenging to learn the re-

lations between input images and labels, and hence leads to a significant performance drop. By

monitoring how the test accuracy changes, we can understand whether a saliency method captures

the discriminative features.

Specifically, we compare our method with SHAP [30], Grad-CAM [20], and Integrated [48] on

a 50-classes subset of ILSVRC dataset. We obtain 99.80% training accuracy and 62.92% testing

accuracy on this subset with VGG-16. Then we obtain saliency maps for all training and validation

images. For each image, based on its saliency map, we select the top r% of pixels and replace these

values with the channel means. Note that r is a pre-defined degradation rate. Finally, we randomly

29

Raw Image Case 1 Case 2 Case 3

Figure 2.7: The explanation results for the ablation study. In each row, from left to right, we show
the raw image, the results of the model with both Ra and Rc reward terms, the results of the model
with Ra term but without Rc term, and the results of the model without both terms.

initialize the VGG-16, and re-train it for 50 epochs with modified training data and evaluate it with

modified validation data. Note that the learning rate is set to 0.01 and reduced to 0.001 after 30

epochs. The results are reported in Table 2.3. Clearly, for all methods, even when 50% pixels

are replaced, the model can still achieve good training performance. The training accuracy only

slightly drops compared with the VGG-16 trained with the original subset. It is consistent with the

observations in the existing study [67]. However, for our method, Grad-CAM, and SHAP, we can

observe significant testing performance degradation. It indicates that the replaced pixels contain

important and discriminative information for the model to well capture the data distribution. Note

that important pixels identified by our method yield the most test performance degradation when

r = 30, which further demonstrates the correctness of our method. We believe our method and

Grad-CAM outperform the SHAP method in ROAR test since both our method and Grad-CAM

capture large continuous image regions while the SHAP method captures several relatively small

30

discrete regions. Note that the Integrated perform poorly in ROAR test as its saliency maps only

contain important discrete pixels.

2.4.7 Ablation Study

In this section, we study the the effectiveness of the area reward Ra in Equation 2.8 and the

smoothness reward Rc in Equation 2.9. We consider and compare three different cases; those are,

case 1 which is with both Ra and Rc, case 2 which is with Ra but without Rc, case 3 which is with-

out both Ra and Rc. The results are reported in Figure 2.7. We can clearly observe that with both

Ra andRc terms, the model generates the best explanations which only focus on the discriminative

areas. Once the Rc term is removed, the generated explanations become non-smooth. In addition,

without both Ra and Rc terms, the results are of low quality and tend to cover the whole image.

Hence, such results demonstrate that the Ra and Rc terms are useful and necessary.

31

3. EXPLAINING DEEP TEXT CLASSIFIERS VIA OPTIMIZATION AND

REGULARIZATION METHODS∗

The effectiveness of our image classifier explanations motivates us to investigate more chal-

lenging models. In this chapter, we study the explanation techniques for text models. We propose

a novel and intuitive method to investigate the meaning of hidden neurons and explain the whole

prediction procedure.

3.1 Introduction

In recent years, deep neural networks have shown great success in many NLP tasks, such as

sentence classification [5, 7], natural language generation [57, 68], machine translation [6, 69] and

visual question answering [70]. Most existing approaches treat deep neural networks as black-

boxes and only focus on the performance. Without understanding the working mechanisms of

neural networks, deep models cannot be fully trusted, since we do not know how and why decisions

are made. However, due to the complex structures of deep neural networks, it is challenging to

explain deep models and their behaviors, especially for NLP tasks that deal with discrete data.

Most existing approaches for explaining NLP models only investigate the relationships between

input sentences and output decisions to explore which input words are more important to make

decisions [56, 32]. However, the inner workings of networks should also be studied to answer

important questions regarding hidden layers, such as which hidden units are more important for a

decision and why they are important. To the best of our knowledge, there are no related studies

focusing on the explanations of hidden neurons of NLP models.

In this chapter, we propose an approach to explain and understand deep NLP models. Specif-

ically, we focus on convolutional neural networks (CNN) [1] for sentence classification tasks.

Our approach employs gradient-based approaches [18] and optimization techniques [14] to se-

∗Reprinted with permission from “Interpreting Deep Models for Text Analysis via Optimization and Regular-
ization Methods” by Hao Yuan, Yongjun Chen, Xia Hu, and Shuiwang Ji, Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33(01), 5717-5724, Copyright 2019 by AAAI.

32

lect spatial locations with high contribution to the decision from hidden layers and study what is

detected by these locations. We propose to approximately explain the meaning of detected infor-

mation using the nearest neighbors of the optimized representation based on the special property of

word representations, which imply that words with semantically similar meanings are embedded to

nearby points [71]. Experimental results demonstrate that our approach can obtain reasonable and

meaningful explanations for hidden units. It is shown that our approach can explain the decision

process in NLP models.

3.2 Background and Related Work

Most of the existing explanation approaches are proposed to investigate deep models in com-

puter vision rather than the NLP area. The saliency map techniques study which input pixels are

more important to the final decision [18, 46, 44]. The importance of different pixels can be ap-

proximated by the gradient of output score with respect to the inputs [22, 43, 72]. The similar idea

was applied to NLP models to study which input words contribute more to the prediction [32].

However, such techniques only provide word-level explanation while different words are highly

correlated to convey a meaning.

In addition, several approaches focus on feature visualization, which investigates what pattern

the hidden neurons of a model try to detect [25, 14, 73, 50, 16]. Optimization techniques are

commonly used for such purposes. The key idea is to iteratively update a randomly initialized

input to investigate a specific behavior in hidden layers, such as maximizing the activation values

of neurons or maximizing the score of a class. The optimized input can then be visualized as

abstracted images to reflect the meaning. However, such a technique cannot be directly applied to

NLP models since word representations are discrete and the meaning cannot be abstracted. Thus

the optimized input is difficult to explain. By combining the above two techniques, [31] investigate

the meaning of hidden layers to explain models for image classification tasks. However, as we

mentioned above, the optimized input is a sequence of abstract vector representations and cannot

be visualized as abstracted texts. We propose an approach to approximately explain the high-level

meaning of the optimized input by selecting the neighbors of these vector representations from the

33

embedding space.

3.3 Methods

As discussed above, it is not enough to only build saliency maps on input sentences to visualize

word-level explanation, since different words may combine together to convey a meaning. In

addition, without investigating the hidden layers, we still do not understand how the hidden neurons

work, and neural networks remain a black box. To better understand deep NLP models, we propose

an approach to focus on the contribution and meaning of hidden neurons, thereby allowing us to

visually explain the decision process.

3.3.1 Visual Explanations of Hidden Units

In this section, we investigate the explanations of CNN models for sentence classification tasks

in NLP. The general structure of CNN models we study is shown in Figure 3.1. Given an input

sentence, it first passes through an embedding layer and several convolutional layers. Then it is fed

into a max-pooling layer and a fully-connected layer with softmax function to make predictions.

Intuitively, we wish to investigate the hidden units of a deep NLP model so that we can answer

three questions; those are, which hidden spatial locations are more important to decisions? what is

detected by these spatial locations from input sentences? and what is the meaning of the detected

information? However, there are two main challenges for answering these questions; those are,

how to explore what is detected by hidden units? and how to explain the detected information?

Existing approaches in computer vision cannot be directly applied since word representations are

discrete from each other and cannot be abstracted as images.

We first combine the idea of saliency map and optimization to answer the question of what is

detected by hidden units. Based on the property of word representations, we propose to approxi-

mately explain the meaning of detected information using the nearest neighbors of the optimized

representation. Then we develop regularization terms to help explanations. Generally speaking, the

explanation procedure consists of three main steps. First, we employ gradient-based approaches to

estimate the contributions of different spatial locations in a hidden layer. Based on the magnitude

34

Part 1. Training Part 2. Saliency Map Part 3. Optimization Part 4. Visualization

C

Conv4
Conv3
Conv2

Classifier

Optimize

Training data Test data Randomly initialized 𝑋"

: Target

n=5

T-SNE

Conv1

Prediction

: Neighbors

kk

Figure 3.1: Illustration of the overall pipeline of our approach. Part 1 shows the general structure
of the CNN model that we try to investigate. After training, we first build saliency maps for
different hidden spatial locations, where saliency scores reflect contributions to the final decision.
As the example shown in Part 2, the CNN model classifies the test sentence to class c (shown
in green). For the conv1 layer, the saliency score is computed for each spatial location, and three
spatial locations are selected (highlighted in yellow). Next, for each selected location, optimization
technique is employed to determine what is detected from the test sentence. As shown in Part 3,
for the spatial location k, a randomly initialized input X0 is fed to the network and we iteratively
update X0 towards the objective function shown in Equation 3.6. Finally, based on the receptive
field of location k (shown in blue with red bounding box), we obtain an overall representation for
this receptive field. We search the vocabulary and select word representations with high similarity
to the overall representation. Then, the t-SNE is employed to visualize these representations, as
shown in Part 4.

of contributions, the spatial locations are sorted, and those with high contribution are selected to be

explained in the following steps. Second, to obtain what is detected by different spatial locations

in hidden layers, we iteratively update a randomly initialized input via optimization. Finally, the

optimized input is a sequence of numerical vectors but such abstract values are hard to explain.

Based on the property of word representations that words with semantically similar meanings are

embedded to nearby points, we design regularization terms to encourage different vectors in the

optimized input to be similar to each other. Then we explore the nearest neighbors [74] in term of

cosine similarity to approximately represent the meaning of the target spatial location. The general

logic flow of our approach is illustrated in Figure 3.1.

35

3.3.2 Saliency Maps for Hidden Units

Since there are a large number of neurons in hidden layers, it is not possible to explain each

neuron. Hence we employ saliency map techniques to select spatial locations with high contribu-

tions for further explanations. The saliency map acts like a heatmap, where saliency scores are

estimated by the first order derivatives and reflects the contribution of different neurons. While

most of existing approaches build saliency maps to explore the contribution of individual words in

input sentences, we study the importance of different hidden spatial locations instead.

Formally, for an input sentence X , the model predicts that it belongs to class c and produces a

class score Sc. Let aij represents the activation vector of the spatial location i of layer j, and its

dimension is equal to the number of channels. Also let Aj denotes the activations of layer j, which

is a matrix, where each column corresponds to one spatial location. The relationship between

the score Sc and Aj is highly non-linear due to the non-linear functions in deep neural networks.

Inspired by the strategy in recent work [32, 18], we compute the first-order Taylor expansion as a

linear function to approximate the relationship as

Sc ≈ Tr(w(Aj)
TAj) + b, (3.1)

where Tr(·) denotes the trace of a matrix and w(Aj) is the gradient of class score Sc with respect

to the layer j. Such gradient can be obtained by using the first order derivative of Sc with respect

to the layer Aj as

w(Aj) =
∂Sc
∂Aj

. (3.2)

For the spatial location i in the layer j, the gradient of Sc with respect to this spatial location is

the ith column of w(Aj), denoted as w(Aj)i. Then the saliency score of this location Scorec(X)i,j

is calculated using linear approximation:

Scorec(X)i,j = w(Aj)i · aij, (3.3)

36

where · refers to the dot product of vectors.

It is noteworthy that we do not directly use gradients as saliency scores. The reason is that

gradients only reflect the sensitivity of the class score when there is a small change in the corre-

sponding spatial location. The employed linear approximation incorporates the activation values

to measure how much one spatial location contributes to the final class score. In addition, after

training, the weights and parameters in the model are fixed so that the gradient of Sc with re-

spect to a specific spatial location is fixed and does not depend on the input. By using the linear

approximation, the saliency score becomes input-dependent.

3.3.3 Input Generation via Optimization

By employing the saliency map technique, we can select spatial locations with high influence

on the final decision. However, it is still not clear why they are important. In order to explore this

direction, we propose to use optimization techniques to understand what is detected from the input

sentence by these spatial locations. The key idea of optimization techniques for explanation is to

iteratively update a randomly initialized input towards an objective function. Such optimization

procedure is similar to the training of deep neural networks. The main difference is that in such

optimization techniques, the parameters of the networks are fixed but the input is optimized. When

maximizing the activation value of a certain neuron, the optimized input reflects the pattern that

this neuron tries to detect [22, 14]. The activation value of each neuron shows the strength of the

pattern detected from inputs. For the neuron k in the spatial location i of hidden layer j, we can

obtain an optimized input X ijk and the activation value aijk. When considering spatial locations

as a whole, what is detected can be approximated using a weighted sum of X ijk and aijk as

X ij =
n∑
k=1

aijkX ijk, (3.4)

where n is the number of neurons in the spatial location i of layer j, which is equal to the number

of channels.

Such approximations are not efficient since the number of channels can be large, and we need

37

to obtain an optimized input for each neuron. Furthermore, it is challenging to add regularization

since the optimized input is generated for each neuron separately. Hence, we propose to incorporate

the activation vector of a spatial location and optimize the input for the whole spatial location.

Formally, for a spatial location i of layer j, let aij represents its activation vector given the input

sentence X . We randomly initialize another input X0 and feed it to the network. For the same

spatial location, we obtain another activation vector a′ij . Then we iteratively update the input X0

towards the following objective function:

max aij · a′ij, (3.5)

where · refers to the dot product of vectors.

3.3.4 Regularization

In Equation 3.5, there is no regularization term for optimization. However, without any reg-

ularization, the updating procedure will not converge since the input X0 can be updated without

any constraint, and the target aij · a′ij keeps increasing. Hence, we add L2 regularization to the

objective function. In addition, in order to explain the optimized input, we propose to add another

regularization term, known as the similarity regularization, to make the optimized inputs readily

explainable.

Formally, let X̂0 denotes the receptive field of the spatial location we try to investigate, and l and

r are the leftmost and rightmost corresponding indices in X̂0. Then we have X̂0 = [x0l, · · · , x0i, · · · , x0r],

where x0i denotes the ith column of X0. By adding the regularization terms, the objective function

becomes

max aij · a′ij − λ1
∥∥∥X̂0

∥∥∥2
2
+ λ2Sim(X̂0), (3.6)

where · denotes the dot product of vectors, Sim(·) is the similarity term, and λ1, λ2 are regulariza-

tion parameters.

L2 Term: By adding the L2 regularization, the optimization procedure converges much faster.

Furthermore, the L2 term encourages features with high contributions to the target aij · a′ij to

38

increase more than others. This is beneficial, since features of high importance can better represent

the meaning of hidden spatial locations.

Similarity Term: Intuitively, we try to assign each spatial location an estimated meaning to

represent what is detected from the input sentence. After optimization, we obtain multiple vector

representations. However, such representations may be very different from each other. In this

case, it is challenging to find an overall representation for them. Based on the property of word

representation that words with semantically similar meanings localize closer in the embedding

space [71, 32], we propose the similarity regularization for optimization, which encourages differ-

ent vector representations in optimized X0 to be similar to each other. In this way, these vector

representations are encouraged to have similar semantically meanings when mapping back to the

word space. Formally, the similarity term is defined as

Sim(X̂0) =
1

N

∑
∀i,j

x0i
‖x0i‖2

· x0j
‖x0j‖2

, (3.7)

where · refers to dot product of vectors, N = r − l + 1 and i, j ∈ [l, r].

3.3.5 Visualization of Optimized Inputs

By combining saliency maps and optimization, we know which spatial locations in hidden

layers contribute most to the final decision. We also obtain an optimized input for each selected

hidden spatial location to represent what is detected by this location. However, the optimized

input consists of several numerical vectors and is still hard to explain. It is challenging because

words representations are discrete so that the optimized representations cannot be mapped to words

directly. We propose to find representative words whose vector representations have high cosine

similarity with the optimized input as an estimation of the meaning.

Given an optimized input X0, based on the spatial location we can obtain its receptive field

with respect to X0, denoted as X̂0 = [x0l, · · · , x0i, · · · , x0r]. Since we employ the similarity

regularization term, different representations x0i are encouraged to be similar. Additionally, in the

case of word embedding, similar representations lead to similar semantic meanings. Hence, it is

39

Dataset c Ntrain Ntest |V |
MR 2 9596 1066 18160
AG’s News 4 120000 7600 84252

Table 3.1: The summary statistics of the MR dataset and the AG’s News dataset. In the table, c
represents the number of classes, Ntrain denotes the number of training examples in the dataset,
Ntest is the number of test examples, and |V | denotes the size of vocabulary.

reasonable to take an average of these representations as an overall approximation as

xoverall =
1

N

r∑
i=l

x0i. (3.8)

It is impossible to find the exact meaning for xoverall. Instead, we study the neighbors of xoverall

in the embedding space. We believe the neighbors share similar high-level semantic meaning with

xoverall. Specifically, we compare xoverall with different word representations in the vocabulary us-

ing cosine similarity and obtain the top words and their corresponding representations. By studying

the semantic meaning of these neighbors, we can understand the high-level meaning of the detected

information by this spatial location. Finally, these representations can be visualized in the 2D space

via dimension reduction techniques, such as t-SNE [75] and principal component analysis [76].

3.4 Experimental Studies

To demonstrate the effectiveness of our approach, we evaluate our methods both quantitatively

and qualitatively. We first introduce two datasets we are using and the setup of the experiments in

detail. Next, we report the explanation results for several sentence examples. Finally, we present

the quantitative evaluations of our methods.

3.4.1 Datasets

We conduct experiments to show the effectiveness of our approach based on two NLP datasets;

namely the MR dataset and AG’s News dataset. We report the summary statistics of these two

datasets in Table 3.1.

40

MR AG’s News
Length 56 195
Conv num 3 4
Kernel size 5 5
Conv channel 128, 64, 32 512,256,128,64
Activation Relu Relu
Embedding 300 300
Pre-train Word2vec Word2vec
Learning rate 2e-4 5e-4
Batch size 128 64

Table 3.2: The CNN models we used for the MR dataset and AG’s News dataset. Different columns
refer to the network settings for different dataset. Length: the length of input sentence; Conv num:
the number of 1D convolutional layers in the model; Conv channel: the number of channels for
convolutional layers; Activation: activation function in convolutional layers; Embedding: dimen-
sion of word embedding; Pre-train: the type of pre-trained word embedding employed.

MR Dataset: The MR dataset∗ contains movie review data for sentiment analysis. Each sample

in the dataset is a one-sentence movie review and labeled with “positive” or “negative”.

AG’s News Dataset: The AG’s News dataset† is constructed from AG’s corpus of news articles.

The dataset contains the largest 4 classes of news in the original AG’s corpus, where only the

title and description are used [7]. The label of each news example depends on the topic of the

news, which can be “World”, “Sports”, “Business” or “Sci/Tech”. Each class has 30,000 training

examples and 1,900 testing examples.

3.4.2 Experimental Setup

In this section, we introduce the CNN model that we investigate in this work. We then discuss

the explanation setup in detail. Finally, we discuss the preprocessing procedure for text inputs.

CNN Model: We build CNN models for both datasets, and the overall structures are shown in

Part 1 of Figure 3.1. The input sentence is padded to the same length and fed into the embedding

layer, where the word2vec word embedding is employed [71]. Then several 1D convolutional

layers [10] and a max-pooling layer are applied. Finally, a fully-connected layer with the softmax

∗https://www.cs.cornell.edu/people/pabo/movie-review-data/
†http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

41

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

Dataset MR AG’s News
Our CNN model 79.96% 92.05%
Baseline CNN model 81.50% 91.45%

Table 3.3: Comparison of prediction accuracy between the CNN models we build and the baseline
CNNs.

function produces the predictive decision. Detailed descriptions of models are given in Table 3.2.

Explanations: After training, the parameters and vocabulary in CNN models are saved for

explanations. These trained parameters in CNN models are reused and fixed during the explanation

procedure. Given a test sentence, the saliency map technique returns the top m spatial locations

for a hidden layer. We set m equal to 3 in our experiments and focus on the first hidden layer.

The input in optimization is randomly initialized using the Xavier initialization method [77]. For

the MR dataset, the regularization parameters are set as λ1 = 0.004 and λ2 = 0.02. For the AG’s

News dataset, we set λ1 = 0.002 and λ2 = 0.01. We implement our approach using TensorFlow

and conduct our experiments on one Tesla K80 GPU. The learning rate in optimization procedure

is set to 2× e−4 and we apply the Adam optimizer [65] with momentum parameters β1 = 0.9 and

β2 = 0.999.

Preprocessing: The way to preprocess the text data is similar to the existing NLP applica-

tion [5]. It is noteworthy that we do not convert words to lower case since the meaning of a word

is case-sensitive.

3.4.3 Visual Explanation Results

We first report the prediction accuracy of the CNN models that we try to explain. The results are

shown in Table 3.3. The CNN models we build can achieve competitive or even better performance

compared with the baseline CNNs [5, 7]. The reason why we conduct such comparison is that we

wish to show the CNNs we investigate are models with reasonable performance. Next, we present

the visual explanation results to demonstrate the effectiveness of our approach.

MR Dataset: For the MR dataset, we show the visualization results for two testing examples;

those are, “As a good old fashioned adventure for kids spirit stallion of the cimarron is a winner";

42

As a good old fashioned adventure for kids spirit stallion of the cimarron is a winner

…… Conv3

…… Conv2

…… Conv1

Figure 3.2: The visualization explanation result for the first example for the MR dataset. The mid-
dle part of the figure shows the contribution of different spatial locations in hidden layers, where
red color means highest contribution to the final decision; blue color refers to the second highest
contribution; and green means the third highest contribution. The bounding boxes in different col-
ors correspond to the receptive field of different spatial location. The top part shows the t-SNE
visualization of the explanation obtained by our approach. The explanations of target spatial lo-
cations are marked as “targetword” and connected to the corresponding spatial locations by dash
lines.

and “Plays like one of those conversations that comic book guy on the simpsons has". Clearly, the

first example is a positive review while the second one is a negative one. Both of them are correctly

classified by the CNN models.

The visual explanation result of the first example is shown in Figure 3.2. As demonstrated,

43

targetword0

comparison jonah

ricochets

irrelevant

chosen

brainless

chen

sadly

unwatchable

targetword1

flounders

ship

shifting

voices

targetword2

wishing

painted

shakes

miserable

terribly

awkward

anyway

devoid

distressingly

Figure 3.3: The visualization explanation result for the second example for the MR dataset. Only
the final result is presented due to space constraints.

three spatial locations (grids in red, blue and green) of the first convolutional layer are selected

based on their saliency scores. The bounding boxes reflect the receptive fields of these spatial

locations with respect to the input.

The receptive fields contain words like “good”, “fashioned”, “adventure”, and “spirit”, which

are commonly used in positive movie reviews. In addition, the top part of Figure 3.2 shows the

visual explanation for selected hidden spatial locations. Most of the neighbors identified by our

approaches are positive adjectives, such as “unflinching”, “ok”, “smartly”, and “gritty”. We use

these neighbors to represent the meanings of hidden spatial locations so that the locations should

be explained as positive meaning. This is consistent with their receptive fields and the final positive

prediction. Such explanation helps us understand how the decision is made; that is, the information

44

targetword0

Uthman

Elarton

Sobering

GLOOM

LEVEL

Toulouse

sharedcontent

Fahrenhorst

Olympics

Evidently

targetword1
Toni

whiner
Daye

hushed

verstatile

Felling

targetword2

Newcastle

harbours

extant

Sizemore

TOURNAMENT

TITLE

excelled

Youngstown

Figure 3.4: The visualization explanation result of the first example for the AG’s News dataset.

detected by these spatial locations is positive and these spatial locations have high contribution to

the final decision so that the final prediction is positive.

In addition, we show the visualization result of the second MR example in Figure 3.3. Clearly,

many words with negative meanings are selected to explain the meaning of hidden spatial locations,

such as “terribly”, “awkward”, “devoid”, “unwatchable” and “brainless”. Hence, these spatial

locations can be explained as negative meaning, and it is consistent with the prediction. We also

observe that most of neighbors are adjectives or adverbs.

AG’s News Dataset: Similarly, we show the explanation results for two examples from the

AG’s News dataset. Both of them are correctly classified by CNN models.

The first example with label “sports” is “Looking at his ridiculously developed upper body, with

huge biceps and hardly an ounce of fat, it’s easy to see why Ty Law, arguably the best cornerback

in football, chooses physical play over finesse. That’s not to imply that he’s lacking a finesse”. As

45

targetword0

Delf

responsibly

Bofra
SETS

Illegally

protorosaur

Scientistcom

SPAZIO
Autonomous

Takeoff

targetword1

tinkerers

Portend

datacentre

Scripting

Battens

targetword2

Solar

coinciding

Arrogance

Universe

DBs
Hayashi

Panacea

infrared

Figure 3.5: The visualization explanation result of the second example for the AG’s News dataset.

shown in Figure 3.4, several nouns are selected to explain the hidden locations. Most of them are

highly related to the topic “sports”, for example, “Toni”, “Elarton” and “Fahrenhorst” are names

of famous players; “Toulouse ” and “Newcastle” are names of famous sports teams. One may

argue that such names can be used in many areas and are not limited in topic “sports”. We claim

that our explanation results are based on the model and datasets where there are only four classes:

“World”, “Sports”, “Business” and “Sci/Tech”. When only considering these four types of news,

these names are highly related to “sports”. Hence, we believe the selected words are reasonable

and consistent with the prediction.

The second example is “Jet Propulsion Lab – Scientists have discovered irregular lumps

beneath the icy surface of Jupiter’s largest moon, Ganymede”. Obviously, it belongs to topic

“Sci/Tech”. The explanation result is shown in Figure 3.5. Similarly, the word selected by our ap-

proaches are highly related to “Sci/Tech” topic, such as “Solar”, “protorosaur”, “datacenter” and

“Scientistcom”.

46

Dataset MR AG’s News
Matching rate 0.934 0.843

Table 3.4: The matching rates for the MR dataset and AG’s News dataset.

In addition, it is interesting that for the MR dataset, the explanation results are mostly adjectives

and adverbs while the results of AG’s News data contains more nouns. This is reasonable since

in movie review, the positive or negative meaning is mostly expressed by adjectives and adverbs

while the topic of a news is highly related to nouns. Such observation also demonstrates that

our approach provides reasonable explanation based on the model and dataset. In conclusion, the

words selected by our approach to explain the hidden locations are meaningful and reasonable.

They explain the information detected from the input sentence. In addition, such explanations help

explain how the decision is made and why the decision is made.

3.4.4 Evaluation of Explainability

Intuitively, if the explanations of hidden spatial locations are meaningful and reasonable, the

hidden layers should convey similar high-level meaning compared with the original input sentence.

In this section, we explore if the explanations generated by our approach are reasonable. We first

introduce how we quantitatively evaluate the explanations. Given an input sentence X , the model

classifies it to class c. We obtain the explanations of k locations with the highest contribution to

the decision. For each location we use the m nearest neighbors to represent its meaning. In this

way, for each input, we have a sentence with km words to explain the hidden layer, denoted as X ′

. If we feed X ′ to the same network, we obtain another classification result c′. If c is equal to c′,

we call it a matching, and it means the explanations of hidden locations shares similar high-level

meaning with the input. Here, we focus on the first hidden layer and set k = 3 and m = 5, .

We conduct such evaluation for the two datasets and the results are reported in Table 3.4. It

is obvious that for both datasets, our method provides reasonable explanations for most examples.

In addition, our approach has better performance on the MR dataset. We believe the reason is that

the length of input examples in the AG’s News is much greater than that of MR data. Then it is

47

more challenging to use the explanations of three locations to represent the meaning of whole input

sentences.

48

4. EXPLAINING DEEP GRAPH CLASSIFIER VIA SUBGRAPH EXPLORATIONS∗

We continue our explorations by explaining graph neural networks. Graph data are special

since they only have limited locality information but the topology information is important. In this

chapter, we propose a novel method, known as SubgraphX, to study instance-level explanations of

graph neural networks.

4.1 Introduction

Graph neural networks have drawn significant attention recently due to their promising perfor-

mance on various graph tasks, including graph classification, node classification, link prediction,

and graph generation. Different techniques have been proposed to improve the performance of

deep graph models, such as graph convolution [12, 82, 105, 106], graph attention [9, 107], and

graph pooling [8, 86, 80]. However, these models are still treated as black boxes, and their pre-

dictions lack explanations. Without understanding and reasoning the relationships behind the pre-

dictions, these models cannot be understood and fully trusted, which prevents their applications in

critical areas. This raises the need of investigating the explainability of deep graph models.

Recently, extensive efforts have been made to study explanation techniques for deep models on

images and text [18, 19, 108, 109, 44]. These methods can explain both general network behaviors

and input-specific predictions via different strategies. However, the explainability of GNNs is

still less explored. Unlike images and texts, graphs are not grid-like data and contain important

structural information. Thus, methods for images and texts cannot be applied directly. While

several recent studies have developed GNN explanation methods, such as GNNExplainer [110],

PGExplainer [111], and PGM-Explainer [112], they invariably focus on explainability at node,

edge, or node feature levels. We argue that subgraph-level explanations are more intuitive and

useful, since subgraphs can be simple building blocks of complex graphs and are highly related to

∗Part of the data reported in this chapter is reprinted with permission from “On Explainability of Graph Neural
Networks via Subgraph Explorations” by Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji, Proceedings
of the 38th International Conference on Machine Learning, accepted, pending publication, Copyright 2021 by PMLR.

49

the functionalities of graphs [93, 91].

In this work, we propose the SubgraphX, a novel GNN explanation method that can identify

important subgraphs to explain GNN predictions. Specifically, we propose to employ the Monte

Carlo tree search algorithm [113] to efficiently explore different subgraphs for a given input graph.

Since the information aggregation procedures in GNNs can be interpreted as interactions among

different graph structures, we propose to employ Shapley values [114] to measure the importance

of subgraphs by capturing such interactions. Furthermore, we propose efficient approximation

schemes to Shapley values by considering interactions only within the information aggregation

range. Altogether, our work represents the first attempt to explain GNNs via identifying subgraphs

explicitly. We conduct both qualitative and quantitative experiments to evaluate the effectiveness

and efficiency of our SubgraphX. Experimental results show that our proposed SubgraphX can

provide better explanations for a variety of GNN models. In addition, our method has a reasonable

computational cost given its superior performance.

4.2 Related Work

4.2.1 Graph Neural Networks

Graph neural networks have demonstrated their effectiveness on different graph tasks. Sev-

eral approaches are proposed to learn representations for nodes and graphs, such as GCNs [12],

GATs [9], and GINs [79], etc. These methods generally follow an information aggregation scheme

that the features of a target node are obtained by aggregating and combining the features from

its neighboring nodes. Here we use GCNs as an example to illustrate such information aggrega-

tion procedures. Formally, a graph G with m nodes can be represented by an adjacency matrix

A ∈ {0, 1}m×m and a feature matrix X ∈ Rm×d assuming that each node is associated with a d-

dimensional feature vector. Then the aggregation operation in GCNs can be mathematically written

as Xi+1 = σ(D−
1
2 ÂD−

1
2XiWi), where Xi denotes the output feature matrix of i−th GCN layer

and X0 is set to X0 = X . The node features are transformed from Xi ∈ Rm×ci to Xi+1 ∈ Rm×ci+1 .

Note that Â = A + I is employed to add self-loops and D is a diagonal node degree matrix to

50

perform normalization on Â. In addition, Wi ∈ Rci×ci+1 is a learnable weight matrix to perform

linear transformations on features and σ(·) is the non-linear activation function.

4.2.2 Explainability in Graph Neural Networks

Even though explaining GNNs is crucial to understand and trust deep graph models, the ex-

plainability of GNNs is still less studied, compared with the image and text domains. Recently,

several methods are proposed specifically to explain deep graph models. These methods mainly

focus on explaining GNNs by identifying important nodes, edges, node features. However, none

of them can provide input-dependent subgraph-level explanations, which is important for under-

standing graph models. In this section, we briefly discuss several existing methods for explaining

GNNs at instance-level.

• SA [89] directly employs the squared values of gradients as the importance scores of dif-

ferent input features. It can be directly computed by back-propagation, which is the same

as network training but the target is input features instead of model parameters. Note that

the input features can be graph nodes, edges, or node features. It assumes that higher ab-

solute gradient values indicate the corresponding input features are more important. While

it is simple and efficient, it has several limitations. First, SA can only reflect the sensitiv-

ity between input and output, which cannot accurately show the importance. In addition, it

also suffers from saturation problems [49]. In the saturation regions of the model, where the

model output changes minimally with respect to any input change, the gradients can hardly

reflect the contributions of inputs.

• Guided BP [89] shares a similar idea with SA but modifies the procedure of backs propa-

gating gradients. Since negative gradients are challenging to explain, Guided BP only back

propagates positive gradients while clipping negative gradients to zeros. Then only positive

gradients are used to measure the importance of different input features. Note that Guided

BP shares the same limitations as SA.

• CAM [115] maps the node features in the final layer to the input space to identify impor-

51

tant nodes. It requires the GNN model to employ a global average pooling (GAP) layer

and a fully-connected (FC) layer as the final classifier. Specifically, CAM takes the final

node embeddings and combines different feature maps by weighted summations to obtain

importance scores for input nodes. Note that the weights are obtained from the final fully-

connected (FC) layer connected with the target prediction. This approach is also very simple

and efficient but still has several major limitations. First, CAM has special requirements for

the GNN structure, which limits its application and generalization. Second, it assumes that

the final node embeddings can reflect the input importance, which is heuristic and may not

be true. Furthermore, it can only explain graph classification models and cannot be applied

to node classification tasks.

• Grad-CAM [115] extends the CAM to general graph classification models by removing the

constraint of the GAP layer. Similarly, it also maps the final node embeddings to the input

space to measure node importance. However, instead of using the weights between the GAP

output and FC output, it employs gradients as the weights to combine different feature maps.

Specifically, it first computes the gradients of the target prediction with respect to the final

node embeddings. Then it averages such gradients to obtain the weight for each feature map.

Compared with the CAM, Grad-CAM does not require the GNN model to employ a GAP

layer before the final FC layer. However, it is also based on heuristic assumptions and cannot

explain node classification models.

• GNNExplainer [110] learns soft masks for edges and node features to explain the predic-

tions via mask optimization. The soft masks are randomly initialized and treated as trainable

variables. Then GNNExplainer combines the masks with the original graph via element-wise

multiplications. Next, the masks are optimized by maximizing the mutual information be-

tween the predictions of the original graph and the predictions of the newly obtained graph.

Even though different regularization terms, such as element-wise entropy, are employed to

encourage optimized masks to be discrete, the obtained masks are still soft masks so that it

52

cannot avoid the “introduced evidence” problem. In addition, the masks are optimized for

each input graph individually and hence the explanations may lack a global view.

• PGExplainer [111] learns approximated discrete masks for edges to explain the predictions.

It trains a parameterized mask predictor to predict edge masks. Given an input graph, it first

obtains the embeddings for each edge by concatenating node embeddings. Then the predictor

uses the edge embeddings to predict the probability of each edge being selected, which can

be treated as the importance score. Next, the approximated discrete masks are sampled

via the reparameterization trick. Finally, the mask predictor is trained by maximizing the

mutual information between the original predictions and new predictions. Note that even

though the reparameterization trick is employed, the obtained masks are not strictly discrete

but can largely alleviate the “introduced evidence” problem. In addition, since all edges in

the dataset share the same predictor, the explanations can provide a global understanding of

the trained GNNs.

• GraphMask [116] is a post-hoc method for explaining the edge importance in each GNN

layer. Similar to the PGExplainer, it trains a classifier to predict whether an edge can be

dropped without affecting the original predictions. However, GraphMask obtains an edge

mask for each GNN layer while PGExplainer only focuses the input space. In addition, to

avoiding changing graph structures, the dropped edges are replaced by learnable baseline

connections, which are vectors with the same dimensions as node embeddings. Note that

binary Concrete distribution [117] and reparameterization trick is employed to approximate

discrete masks. In addition, the classifier is trained using the whole dataset by minimizing

a divergence term, which measures the difference between network predictions. Similar to

PGExplainer, it can largely alleviate the “introduced evidence” problem and provide a global

understanding of the trained GNNs.

• ZORRO [118] employ discrete masks to identify important input nodes and node features.

Given an input graph, a greedy algorithm is used to select nodes or node features step by step.

53

For each step, ZORRO selects one node or one node feature with the highest fidelity score.

Note that the objective function, fidelity score, measure how the new predictions match the

original predictions of the model by fixing the selected nodes/features and replacing the

others with random noise values. Since there is no training procedure involved, the non-

differentiable limitation of discrete masks is avoided. In addition, by using hard masks,

ZORRO is not suffered from the “introduced evidence” problem. However, the greedy mask

selection algorithm may lead to local optimal explanations. In addition, the explanations

may lack a global understanding since masks are generated for each graph individually.

• Causal Screening [119] studies the causal attribution of different edges in the input graph. It

identifies an edge mask for the explanatory subgraph. The key idea of causal attribution is to

study the change of predictions when adding an edge into the current explanatory subgraph,

known as the causal effect. For each step, it studies the causal effects of different edges

and selects one edge to add to the subgraph. Specifically, it employs the individual causal

effect (ICE) to select edges, which measures mutual information (between the predictions of

original graphs and the explanatory subgraphs) difference after adding different edges to the

subgraph. Similar to ZORRO, Causal Screening is a greedy algorithm generating discrete

masks without any training procedure. Hence, it is not suffered from the “introduced evi-

dence” problem but may lack a global understanding and stuck in local optimal explanations.

• GraphLime [120] extends the LIME algorithm [121] to deep graph models and studies the

importance of different node features for node classification tasks. Given a target node in

the input graph, GraphLime considers its N -hop neighboring nodes and their predictions

as its local dataset where a reasonable choice of N is the number of layers in the trained

GNNs. Then a nonlinear surrogate model, Hilbert-Schmidt Independence Criterion (HSIC)

Lasso [122], is employed to fit the local dataset. Note that HSIC Lasso is a kernel-based fea-

ture selection algorithm. Finally, based on the weights of different features in HSIC Lasso,

it can select important features to explain the HSIC Lasso predictions. Those selected fea-

54

tures are regarded as the explanations of the original GNN prediction. However, GraphLime

can only provide explanations for node features but ignore graph structures, such as nodes

and edges, which are more important for graph data. In addition, GraphLime is proposed to

explain node classification predictions but cannot be directly applied to graph classification

models.

• RelEx [123] also studies the explainability of node classification models by combining the

ideas of surrogate methods and perturbation-based methods. Given a target node and its

computational graph (N -hop neighbors), it first obtains a local dataset by randomly sam-

pling connected subgraphs from the computational graph and feeding these subgraphs to

the trained GNNs to obtain their predictions. Specifically, starting from the target node, it

randomly selects neighboring nodes in a BFS manner. Next, it employs a GCN model as

the surrogate model to fit the local datasets. Note that different from LIME and GraphLime,

the surrogate model in RelEx is not interpretable. After training, it further applies the afore-

mentioned perturbation-based methods, such as generating soft masks or Gumbel-Softmax

masks, to explain the predictions. Compared with GraphLime, it can provide explanations

regarding important nodes. However, it contains multiple steps of approximations, such as

using the surrogate model to approximate local relationships and using masks to approxi-

mate the edge importance, thus making the explanations less convincing and trustable. Fur-

thermore, as perturbation-based methods can be directly employed to explain original deep

graph models, then it is not necessary to build another non-interpretable deep model as the

surrogate model to explain. It is also unknown how it can be applied for graph classification

tasks.

• PGM-Explainer [112] builds a probabilistic graphical model to provide instance-level ex-

planations for GNNs. The local dataset is obtained by random node feature perturbation.

Specifically, given an input graph, each time PGM-Explainer randomly perturbs the node

features of several random nodes within the computational graph. Then for any node in the

55

computational graph, PGM-Explainer records a random variable indicating whether its fea-

tures are perturbed and its influence on the GNN predictions. By repeating such procedures

multiple times, a local dataset is obtained. Note that the local dataset of PGM-Explainer

contains node variables instead of different neighboring graph samples. Then it selects top

dependent variables to reduce the size of the local dataset via the Grow-Shrink (GS) algo-

rithm [124]. Finally, an interpretable Bayesian network is employed to fit the local dataset

and to explain the predictions of the original GNN model. PGM-Explainer can provide

explanations regarding graph nodes but ignore graph edges, which contain important graph

topology information. In addition, different from GraphLime and RelEx, the PGM-Explainer

can be used to explain both node classification and graph classification tasks.

• LRP [125, 89] extends the original LRP algorithm [66] to deep graph models. It decomposes

the output prediction score to different node importance scores. The score decomposition

rule is developed based on the hidden features and weights. For a target neuron, its score is

represented as a linear approximation of neuron scores from the previous layer. Intuitively,

the neuron with a higher contribution of the target neuron activation receives a larger fraction

of the target neuron score. Specifically, the study [89] applies the ε-stabilized rule from the

original LRP, while existing work [125] employs the z+-rule to perform decomposition. To

satisfy the conservative property, the adjacency matrix is treated as a part of GNN model in

the post-hoc explanation phase so that it can be ignored during score distribution; otherwise,

the adjacent matrix will also receive decomposed scores, thus making the conservative prop-

erty invalid. Since LRP is directly developed based on the model parameters, its explanation

results are more trustable. However, it can only study the importance of different nodes and

cannot be applied to graph structures, such as subgraphs and graph walks, which is more

important for understanding GNNs. In addition, such a algorithm requires a comprehensive

understanding of the model structures, which limits its applications for non-expert users,

such as interdisciplinary researchers.

56

• Excitation BP [115] shares a similar idea as the LRP algorithm but is developed based on

the law of total probability. It defines that the probability of a neuron in the current layer

is equal to the total probabilities it outputs to all connected neurons in the next layer. Then

the score decomposition rule can be regarded as decomposing the target probability into

several conditional probability terms. Note that the computation of Excitation BP is highly

similar to the z+-rule in LRP. Hence, it shares the same advantages and limitations as the

LRP algorithm.

• GNN-LRP [126] studies the importance of different graph walks. It is more coherent to the

deep graph neural networks since graph walks correspond to message flows when perform-

ing neighborhood information aggregation. The score decomposition rule is the high-order

Taylor decomposition of model predictions. It is shown that the Taylor decomposition (at

root zero) only contains T -order terms where T is the number of layers in the trained GNNs.

Then each term corresponds to a T -step graph walk and can be regarded as its importance

score. Since it is not possible to directly compute the high-order derivatives given by Taylor

expansion, GNN-LRP also follows a back propagation procedure to approximate the T -order

terms. Note that the back propagation computation in GNN-LRP is similar to the LRP al-

gorithm. However, instead of distributing scores to nodes or edges, GNN-LRP distributes

scores to different graph walks. It records the paths of the distribution processes from layer

to layer. Those paths are considered as different walks and the scores are obtained from their

corresponding nodes. While GNN-LRP has a solid theoretical background, the approxima-

tions in its computations may not be accurate. In addition, the computational complexity

is high since each walk is considered separately. Furthermore, it is also challenging for

non-experts to use, especially for interdisciplinary domains.

4.3 The Proposed SubgraphX

While most current methods for GNN explanations are invariably based on identifying impor-

tant nodes or edges, we argue that identifying important subgraphs is more natural and may lead to

57

better explainability. In this work, we propose a novel approach, known as SubgraphX, to explain

GNNs by exploring and identifying important subgraphs.

4.3.1 From Node and Edge to Subgraph Explanations

Unlike images and texts, graph data contain important structural information, which is highly

related to the properties of graphs. For example, network motifs, which can be considered as graph

substructures, are simple building blocks of complex networks and may determine the function-

alities of graphs in many domains, such as biochemistry, ecology, neurobiology, and engineer-

ing [93, 91, 94, 127]. Hence, investigating graph substructures is a crucial step towards the reverse

engineering and understanding of the underlying mechanisms of GNNs. In addition, subgraphs are

more intuitive and human-intelligible [128].

While different methods are proposed to explain GNNs, none of them can directly provide

subgraph-level explanations for individual input examples. The XGNN can obtain graph patterns

to explain GNNs but its explanations are not input-dependent and less precise. The other methods,

such as GNNExplainer and PGExplainer, may obtain subgraph-level explanations by combining

nodes or edges to form subgraphs in a post-processing manner. However, the important nodes or

edges in their explanations are not guaranteed to be connected. Meanwhile, since GNNs are very

complex, node/edge importance cannot be directly converted to subgraph importance. Further-

more, these methods ignore the interactions among different nodes and edges, which may contain

important information. Hence, in this work, we propose a novel method, known as SubgraphX,

to directly study the subgraphs to provide explanations. The explanations of our SubgraphX are

connected subgraphs, which are more human-intelligible. In addition, by incorporating Shapley

values, our method can capture the interactions among different graph structures when providing

explanations.

4.3.2 Explaining GNNs with Subgraphs

We first present a formal problem formulation. Let f(·) denote the trained GNNs to be ex-

plained. Without loss of generality, we introduce our proposed SubgraphX by considering f(·) as

58

1
2

34

Root
5

6 1
2

34

5

2

34

5
2

34

Leaves

2

4

Coalition 1 1

1
2

34

5

0.75

1 0.25

GNNs

0.50

Coalition 2 6

2
34

5
6

0.57

6 0.27

GNNs

0.30

Coalition 3 1

1
2

34

5
6

0.85

16 0.30

GNNs

0.55

6

Shapley value

0.50

0.45

0.30 0.55

UpdateUpdateUpdateUpdate

Figure 4.1: An illustration of our proposed SubgraphX. The bottom shows one selected path from
the root to leaves in the search tree, which corresponds to one iteration of MCTS. For each node, its
subgraph is evaluated by computing the Shapley value via Monte-Carlo sampling. In this example,
we show the computation of Shapley value for the middle node (shown in red dashed box) where
three coalitions are sampled to compute the marginal contributions. Note that nodes that are not
selected are ignored for simplicity.

a graph classification model. Given an input graph G, its predicted class is represented as y. The

goal of our explanation task is to find the most important subgraph for the prediction y. Since

disconnected nodes are hard to understand, we only consider connected subgraphs to enable the

explanations to be more human-intelligible. Then the set of connected subgraphs of G is denoted

as {G1, · · · ,Gi, · · · ,Gn} where n is the number of different connected subgraphs in G. The expla-

nation of prediction y for input graph G can then be defined as

G∗ = argmax
|Gi|≤Nmin

Score(f(·),G,Gi), (4.1)

where Score(·, ·, ·) is a scoring function for evaluating the importance of a subgraph given the

trained GNNs and the input graph. We use Nmin as an upper bound on the size of subgraphs

so that the obtained explanations are succinct enough. A straightforward way to obtain G∗ is to

enumerate all possible Gi and select the most important one as the explanation. However, such

59

a brute-force method is intractable when the graph is complex and large-scale. Hence, in this

work, we propose to incorporate search algorithms to explore subgraphs efficiently. Specifically,

we propose to employ Monte Carlo Tree Search (MCTS) [113, 129] as the search algorithm. In

addition, since the information aggregation procedures in GNNs can be understood as interactions

between different graph structures, we propose to employ the Shapley value [114] as the scoring

function to measure the importance of different subgraphs by considering such interactions. We

illustrate our proposed SubgraphX in Figure 4.1. After searching, the subgraph with the highest

score is considered as the explanation of the prediction y for input graph G. Note that our proposed

SubgraphX can be easily extended to use other search algorithms and scoring functions.

4.3.3 Subgraph Exploration via MCTS

In our proposed SubgraphX, we employ the MCTS as the search algorithm to guide our sub-

graph explorations. We build a search tree in which the root is associated with the input graph and

each of other nodes corresponds to a connected subgraph. Each edge in our search tree denotes

that the graph associated with a child node can be obtained by performing node-pruning from the

graph associated with its parent node. Formally, we define a node in this search tree as Ni, and

N0 denotes the root node. The edges in the search tree represent the pruning actions a. Note that

each node may have many pruning actions, and these actions can be defined based on the dataset

at hand or domain knowledge. Then the MCTS algorithm records the statistics of visiting counts

and rewards to guide the exploration and reduce the search space. Specifically, for the node and

pruning action pair (Ni, aj), we assume that the subgraph Gj is obtained by action aj from Gi.

Then the MCTS algorithm records four variables for (Ni, aj), which are defined as:

• C(Ni, aj) denotes the number of counts for selecting action aj for node Ni.

• W (Ni, aj) is the total reward for all (Ni, aj) visits.

• Q(Ni, aj) = W (Ni, aj)/C(Ni, aj) and denotes the averaged reward for multiple visits.

• R(Ni, aj) is the immediate reward for selecting aj on Ni, which is used to measure the

importance of subgraph Gj . We propose to use R(Ni, aj) = Score(f(·),G,Gj).

60

In each iteration, the MCTS selects a path starting from the rootN0 to a leaf nodeN`. Note that

the leaf nodes can be defined based on the numbers of nodes in subgraphs such that |N`| ≤ Nmin.

Formally, the action selection criteria of node Ni are defined as

a∗ = argmax
aj

Q(Ni, aj) + U(Ni, aj), (4.2)

U(Ni, aj) = λR(Ni, aj)
√∑

k C(Ni, ak)
1 + C(Ni, aj)

, (4.3)

where λ is a hyperparameter to control the trade-off between exploration and exploitation. In ad-

dition,
∑

k C(Ni, ak) denotes the total visiting counts for all possible actions of nodeNi. Then the

subgraph in the leaf nodeN` is evaluated and the importance score is denoted as Score(f(·),G,G`).

Finally, all node and action pairs selected in this path are updated as

C(Ni, aj) = C(Ni, aj) + 1, (4.4)

W (Ni, aj) = W (Ni, aj) + Score(f(·),G,G`). (4.5)

After searching for several iterations, we select the subgraph with the highest score from the leaves

as the explanation. Note that in early iterations, the MCTS tends to select child nodes with low

visit counts in order to explore different possible pruning actions. In later iterations, the MCTS

tends to select child nodes that yield higher rewards, i.e., more important subgraphs.

4.3.4 A Game-Theoretical Scoring Function

In our proposed SubgraphX, both the MCTS rewards and the explanation selection are highly

depending on the scoring function Score(·, ·, ·). It is crucial to properly measure the importance of

different subgraphs. One possible solution is to directly feed the subgraphs to the trained GNNs

f(·) and use the predicted scores as the importance scores. However, it cannot capture the inter-

actions between different graph structures, thus affecting the explanation results. Hence, in this

work, we propose to adopt the Shapley values [114, 30, 130] as the scoring function. The Shapley

value is a solution concept from the cooperative game theory for fairly assigning a total game gain

61

to different game players. To apply it to graph model explanation tasks, we use the GNN prediction

as the game gain and different graph structures as players.

Formally, given the input graph G with m nodes and the trained GNN f(·), we study the Shap-

ley value for a target subgraph Gi with k nodes. Let V = {v1, · · · , vi, · · · , vm} denote all nodes

in G and we assume that the nodes in Gi are {v1, · · · , vk} while the other nodes {vk+1, · · · , vm}

belong to G \ Gi. Then the set of players is defined as P = {Gi, vk+1, · · · , vm}, where we consider

the whole subgraph Gi as one player. Finally, the Shapley value of the player Gi can be computed

as

φ(Gi) =
∑

S⊆P\{Gi}

|S|! (|P | − |S| − 1)!

|P |!
m(S,Gi), (4.6)

m(S,Gi) = f (S ∪ {Gi})− f(S), (4.7)

where S is the possible coalition set of players. Note that m(S,Gi) represents the marginalized

contribution of player Gi given the coalition set S. It can be computed by the difference of predic-

tions between incorporating Gi with and without the coalition set S. The obtained Shapley value

φ(Gi) considers all different coalitions to capture the interactions among different players. It is

the only solution that satisfies four desirable axioms, including efficiency, symmetry, linearity, and

dummy axiom [30], which can guarantee the correctness and fairness of the explanations. How-

ever, computing Shapley values using Eqs. (4.6) and (4.7) is time-consuming as it enumerates all

possible coalitions, especially for large-scale and complex graphs. Hence, in this work, we propose

to incorporate the GNN architecture information f(·) to efficiently approximate Shapley values.

4.3.5 Graph Inspired Efficient Computations

In graph neural networks, the new features of a target node are obtained by aggregating infor-

mation from a limited neighboring region. Assuming there are L layers of GNN in the graph model

f(·), then only the neighboring nodes within L-hops are used for information aggregation. Note

that the information aggregation schema can be considered as interactions between different graph

62

structures. Hence, the subgraph Gi mostly interacts with the neighbors within L-hops. Based on

such observations, we propose to compute the Shapley value of Gi by only considering its L-hop

neighboring nodes. Specifically, assuming there are r (r ≤ m−k) nodes within L-hop neighboring

of subgraph Gi, we denote these nodes as {vk+1, · · · , vr}. Then the new set of players we need to

consider is represented as P ′ = {Gi, vk+1, · · · , vr}. By incorporating P ′, the Shapley value of Gi

can be defined as

φ(Gi) =
∑

S⊆P ′\{Gi}

|S|! (|P ′| − |S| − 1)!

|P ′|!
m(S,Gi). (4.8)

However, since graph data are complex that different nodes have variable numbers of neighbors,

then P ′ may still contain a large number of players, thus affecting the efficiency of computation.

Hence, in our SubgraphX, we further incorporate the Monte-Carlo sampling [131] to compute

φ(Gi). Specifically, for sampling step i, we sample a coalition set Si from the player set P ′ \ {Gi}

and compute its marginalized contribution m(Si,Gi). Then the averaged contribution score for

multiple sampling steps is regarded as the approximation of φ(Gi). Formally, it can be mathemati-

cally written as

φ(Gi) =
1

T

T∑
t=1

(f (Si ∪ {Gi})− f(Si)), (4.9)

where T is the total sampling steps. In addition, to compute the marginalized contribution, we

follow a zero-padding strategy. Specifically, to compute f (Si ∪ {Gi}), we consider the nodes

V \ (Si ∪ {Gi}) which are not belonging to the coalition or the subgraph and set their node features

to all zeros. Then we feed the new graph to the GNNs f(·) and use the predicted probability as

f (Si ∪ {Gi}). Similarly, we can compute f(Si) by setting nodes V \ Si with zero features and

feeding to the GNNs. It is noteworthy that we only perturb the node features instead of remov-

ing the nodes from the input graph because graphs are very sensitive to structural changes [132].

Finally, we conclude the computation steps of our proposed SubgraphX in Algorithm 1 and 2.

4.3.6 SubgraphX for Generic Graph Tasks

We have described our proposed SubgraphX using graph classification models as an example.

It is noteworthy that our SubgraphX can be easily generalized to explain graph models on other

63

Algorithm 1 The algorithm of our proposed SubgraphX.

Input: GNN model f(·), input graph G, MCTS iteration number M , the leaf threshold node
number Nmin, h(Ni) denotes the associated subgraph of tree node Ni.
Initialization: for each (Ni, aj) pair , initialize its C, W , Q, and R variables as 0. The root of
search tree is N0 associated with graph G. The leaf set is set to S` = {}.
for i = 1 to M do

curNode = N0, curPath = [N0]
while h(curNode) has more node than Nmin do

for all possible pruning actions of h(curNode) do
Obtain child node Nj and its subgraph Gj .
Compute R(curNode, aj) = Score(f(·),G,Gj)) with Algorithm 2.

end for
Select the child Nnext following Eq.(4.2, 4.3).
curNode = Nnext, curPath = curPath+Nnext.

end while
S` = S` ∪ {curNode}
Update nodes in curPath following Eq.(4.4, 4.5).

end for
Select subgraph with the highest score from S`.

tasks, such as node classification and link prediction. For node classification models, the explana-

tion target is the prediction of a single node vi given the input graph G. Assuming there are L layers

in the GNN models, the prediction of vi only relies on its L-hop computation graph, denoted as

Gc. Then instead of searching from the input graph G, our SubgraphX sets Gc as the corresponding

graph of the search tree root N0. In addition, when computing the marginalized contributions, the

zero-padding strategy should exclude the target node vi. Meanwhile, for link prediction tasks, the

explanation target is the prediction of a single link (vi, vj). Then the root of the search tree cor-

responds to the L-hop computation graph of node vi and vj . Similarly, the zero-padding strategy

ignores the vi and vj when perturbing node features. Note that our SubgraphX treats the GNNs as

black boxes during the explanation stage and only needs to access the inputs and outputs. Hence,

our proposed SubgraphX can be applied to a general family of GNN models, including but not

limited to GCNs [12], GATs [9], GINs [79], and Line-Graph NNs [133].

64

Algorithm 2 The algorithm of subgraph Shapley value.

Input: GNN model f(·) with L layers, input graph G with nodes V = {v1, . . . , vm}, subgraph
Gi with k nodes {v1, . . . , vk}, Monte-Carlo sampling steps T .
Initialization: Obtain the L-hop neighboring nodes of Gi, denoted as {vk+1, · · · , vr}. Then the
set of players is P ′ = {Gi, vk+1, · · · , vr}.
for i = 1 to T do

Sampling a coalition set Si from P ′ \ {Gi}.
Set nodes from V \ (Si ∪ {Gi}) with zero features and feed to the GNNs f(·) to obtain

f(Si ∪ {Gi}).
Set nodes from V \ Si with zero features and feed to the GNNs f(·) to obtain f(Si).
Then m(Si,Gi) = f(Si ∪ {Gi})− f(Si).

end for
Return: Score(f(·),G,Gi) = 1

T

∑T
t=1m(Si,Gi).

4.4 Evaluating Explanation Techniques

Even though visualization results can provide an insightful understanding regarding whether

the explanations are reasonable to humans, such evaluations are not fully trustable due to the lack

of ground truths. In addition, to compare different explanation methods, humans need to study

the results for each input example, which is time-consuming. Furthermore, human evaluations are

highly dependent on their subjective understanding, which is not fair enough. Hence, evaluation

metrics are crucial for studying explanation methods. Good metrics should evaluate the results

from the model’s perspective, such as whether the explanations are faithful to the model [134, 135].

In this section, we introduce several recently proposed evaluation metrics for explanation tasks.

4.4.1 Fidelity

First, the explanations should be faithful to the model. They should identify input features

that are important for the model, not our humans. To evaluate this, the Fidelity+ [115] metric is

recently proposed. Intuitively, if important input features (nodes/edges/node features) identified by

explanation techniques are discriminative to the model, the predictions should change significantly

when these features are removed. Hence, Fidelity+ is defined as the difference of accuracy (or

predicted probability) between the original predictions and the new predictions after masking out

65

important input features [115, 136].

Formally, let Gi denote the i-th input graph and f(·) denote the GNN classifier to be explained.

The prediction result of this graph is represented as ŷi = argmax f(Gi). Then its explana-

tions can be considered as a hard importance map mi where each element is 0 or 1 to indicate

if the corresponding feature is important. Note that for methods like ZORRO [118] and Causal

Screening [119], the generated explanations are discrete masks, which can be directly used as the

importance map. In addition, for methods like GNNExplainer [110] and GraphLime [120], the

importance scores are continuous values, then the importance map mi can be obtained by nor-

malization and thresholding. Finally, the Fidelity+ score of prediction accuracy can be computed

as

Fidelity+acc =
1

N

N∑
i=1

(1(ŷi = yi)− 1(ŷ1−mii = yi)), (4.10)

where yi is the original prediction of graph i andN is the number of graphs. Here 1−mi means the

complementary mask that removes the important input features and ŷ1−mii is the prediction when

feeding the new graph into trained GNN f(·). The indicator function 1(ŷi = yi) returns 1 if ŷi

and yi are equal and returns 0 otherwise. Note that the Fidelity+acc metric studies the change of

prediction accuracy. By focusing on the predicted probability, the Fidelity+ of probability can be

defined as

Fidelity+prob =
1

N

N∑
i=1

(f(Gi)yi − f(G
1−mi
i)yi), (4.11)

where G1−mii represents the new graph obtained by keeping features of Gi based on the comple-

mentary mask 1−mi. Note that Fidelity+prob monitors the change of predicted probability, which

is more sensitive than Fidelity+acc. For both metrics, higher values indicate better explanations

results and more discriminative features are identified.

The Fidelity+ metric studies the prediction change by removing important nodes/edges/node

features. In contrast, the metric Fidelity- studies prediction change by keeping important input

features and removing unimportant features. Intuitively, important features should contain dis-

criminative information so that they should lead to similar predictions as the original predictions

66

even unimportant features are removed. Formally, the metric Fidelity- can be computed as

Fidelity−acc = 1

N

N∑
i=1

(1(ŷi = yi)− 1(ŷmii = yi)), (4.12)

Fidelity−prob = 1

N

N∑
i=1

(f(Gi)yi − f(G
mi
i)yi), (4.13)

where Gmi is the new graph when keeping important features of Gi based on explanationmi and ŷmii

is the new prediction. Note that for both Fidelity−acc and Fidelity−prob, lower values indicate

less importance information are removed so that the explanations results are better.

4.4.2 Sparsity

Second, good explanations should be sparse, which means they should capture the most im-

portant input features and ignore the irrelevant ones. The metric Sparsity measures such a prop-

erty. Specifically, it measures the fraction of features selected as important by explanation meth-

ods [115]. Formally, give the graph Gi and its hard importance map mi, the Sparsity metric can be

computed as

Sparsity =
1

N

N∑
i=1

(1− |mi|
|Mi|

), (4.14)

where |mi| denotes the number of important input features (nodes/edges/node features) identified

in mi and |Mi| means the total number of features in Gi. Note that higher values indicate the

explanations are more sparse and tend to only capture the most important input information.

4.4.3 Stability

In addition, good explanations should be stable. Intuitively, when small changes are applied

to the input without affecting the predictions, the explanations should remain similar. The recent

proposed Stability metric measures whether an explanation method is stable [137]. Given an input

graph Gi, its explanations mi is regarded as the ground truth. Then the input graph Gi is perturbed

by small changes, such as attaching new nodes/edges, to obtain a new graph Ĝi. Note that Gi and

Ĝi are required to have the same predictions. Then the explanations of Ĝi is obtained, denoted

67

as m̂i. By comparing the difference between mi and m̂i, we can compute the Stability score.

Note that lower values indicate the explanation technique is more stable and more robust to noisy

information. In addition, since graph representations are sensitive, selecting a proper amount of

perturbations may be challenging.

4.4.4 Accuracy

Furthermore, the Accuracy metric is proposed for synthesis datasets [137, 110]. In synthesis

datasets, even though it is unknown whether the GNNs make predictions in our expected way, the

rules of building these datasets, such as graph motifs, can be used as reasonable approximations

of the ground truths. Then for any input graph, we can compare its explanations with such ground

truths. For example, when studying important edges, we can study the matching rate for important

edges in explanations compared with those in the ground truths. The common metrics for such

comparisons include general accuracy, F1 score, ROC-AUC score. Note that higher values indicate

the explanations are closer to ground truths and can be considered as better results. In addition, the

Accuracy metric cannot be applied to real-world datasets due to the lack of ground truths.

4.4.5 Discussions

It is noteworthy that different metrics should be combined to evaluate explanation results. For

example, Sparsity and Fidelity+/Fidelity- are highly correlated. When the explanation results are

soft values, the Sparsity is determined by a threshold value. Intuitively, larger threshold values

tend to identify fewer features as important and hence increase the Sparsity score and decrease the

Fidelity+ score. Hence, to fairly compare different explanation methods, we suggest comparing

their Fidelity+ scores with the same level of Sparsity scores. One possible way is to select a fixed

percentage of input features as important, and then compare their Fidelity+ or Fidelity- scores.

In addition, there are several other metrics to evaluate explanation results, such as Contrastiv-

ity [115] and Consistency [137]. The Contrastivity score is based on a strong assumption that the

explanations for different classes should be significantly different, which ignores the common pat-

terns among different classes. Meanwhile, the Consistency metric assumes that high-performing

68

model architectures should have consistent explanations. However, different models may capture

different relationships even though they achieve competitive performance, especially for large-

scale and complex datasets. Hence, we believe such metrics may not be fair enough to evaluate

explanation results and they are not listed as recommended metrics.

4.5 Experimental Studies

4.5.1 Datasets and Experimental Settings

We conduct extensive experiments on different datasets and GNN models to demonstrate the

effectiveness of our proposed method. We evaluate our SubgraphX with five datasets for both

graph classification and node classification tasks, including synthetic data, biological data, and

text data. We summarize these datasets as below:

• MUTAG [138] and BBBP [139] are molecular datasets for graph classification tasks. In

these datasets, each graph represents a molecule while nodes are atoms and edges are bonds.

The labels are determined by the chemical functionalities of molecules.

• Graph-SST2 [128] is sentiment graph dataset for graph classification. It converts text sen-

tences to graphs with Biaffine parser [140] that nodes denote words and edges represent the

relationships between words. Note that node embeddings are initialized as the pre-trained

BERT word embeddings [141]. Each graph is labeled by its sentiment, which can be positive

or negative.

• BA-2Motifs is a synthetic graph classification dataset. Each graph contains a based graph

generated by BarabÃąsi-Albert (BA) model, which is connected with a house-like motif

or a five-node cycle motif. The graphs are labeled based on the type of motifs. All node

embeddings are initialized as vectors containing all 1s.

• BA-Shape is a synthetic node classification dataset. Each graph contains a base BA graph

and house-like five-node motifs. The node labels are determined by the memberships and

locations of nodes. All node embeddings are initialized as vectors containing all 1s.

69

Table 4.1: Statistics and properties of five datasets.

Dataset

MUTAG BBBP GRAPH-SST2 BA-2MOTIFS BA-SHAPE

of Edges (avg) 19.79 25.95 9.20 25.48 2055
of Nodes (avg) 17.93 24.06 10.19 25.0 700
of Graphs 188 2039 70042 1000 1
of Classes 2 2 2 2 4

We report the statistics and properties of the datasets in Table 4.1. We explore three variants of

GNNs on these datasets, including GCNs, GATs, and GINs. All GNN models used in our exper-

imental studies are trained to obtain reasonable performance. Then we compare our SubgraphX

with several baselines, including MCTS_GNN, GNNExplainer [110], PGExplainer [111]. Here

MCTS_GNN denotes the method using MCTS to explore subgraphs but directly employing the

GNN predictions of these subgraphs as the scoring function. Specifically, we report the architec-

tures and performance of these GNNs as below:

• MUTAG (GCNs): This GNN model consists of 3 GCN layers. The input feature dimension

is 7 and the output dimensions of different GCN layers are set to 128, 128, 128, respectively.

We employ max-pooling as the readout function and ReLU as the activation function. The

model is trained for 2000 epochs with a learning rate of 0.005 and the testing accuracy is

0.92. We study the explanations for the whole dataset.

• MUTAG (GINs): This GNN model consists of 3 GIN layers. For each GIN layer, the MLP

for feature transformations is a two-layer MLP. The input feature dimension is 7 and the

output dimensions of different GIN layers are set to 128, 128, 128 respectively. We employ

max-pooling as the readout function and ReLU as the activation function. The model is

trained for 2000 epochs with a learning rate of 0.005 and the testing accuracy is 1.00. We

study the explanations for the whole dataset.

• BBBP (GCNs): This GNN model consists of 3 GCN layers. The input feature dimension is

70

9 and the output dimensions of different GCN layers are set to 128, 128, 128, respectively.

We employ max-pooling as the readout function and ReLU as the activation function. The

model is trained for 800 epochs with a learning rate of 0.005 and the testing accuracy is

0.863. We randomly split this dataset into the training set (80%), validation set (10%), and

testing set (10%). We study the explanations for the testing set.

• Graph-SST2 (GATs): This GNN model consists of 3 GAT layers. The input feature di-

mension is 768 and all GAT layers have 10 heads with 10-dimensional features. We employ

max-pooling as the readout function and ReLU as the activation. In addition, we set the

dropout rate to 0.6 to avoid overfitting. The model is trained for 800 epochs with a learning

rate of 0.005 and the testing accuracy is 0.881. We follow the training, validation, and testing

splitting of the original SST2 dataset. We study the explanations for the testing set.

• BA-2Motifs (GCNs): This GNN model consists of 3 GCN layers. The input feature di-

mension is 10 and the output dimensions of different GCN layers are set to 20, 20, 20,

respectively. For each GCN layer, we employ L2 normalization to normalize node features.

We employ average pooling as the readout function and ReLU as the activation function.

The model is trained for 800 epochs with a learning rate of 0.005 and the testing accuracy

is 0.99. We randomly split this dataset into the training set (80%), validation set (10%), and

testing set (10%). We study the explanations for the testing set.

• BA-Shape (GCNs): This GNN model consists of 3 GCN layers. The input feature dimen-

sion is 10 and the output dimensions of different GCN layers are set to 20, 20, 20, respec-

tively. For each GCN layer, we employ L2 normalization to normalize node features. In

addition, we use ReLU as the activation function. The model is trained for 800 epochs with

a learning rate of 0.005 and the testing accuracy is 0.957. We randomly split this dataset into

the training set (80%), validation set (10%), and testing set (10%). We study the explanations

for the testing set.

We conduct our experiments using one Nvidia V100 GPU on an Intel Xeon Gold 6248 CPU. Our

71

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Figure 4.2: Explanation results on the BA-2Motifs dataset with a GCN graph classifier. The first
row shows explanations for a correct prediction and the second row reports the results for an
incorrect prediction.

implementations are based on Python 3.7.6, PyTorch 1.6.0, and Torch-geometric 1.6.3. For our

proposed SubgraphX and other algorithms with MCTS, the MCTS iteration numberM is set to 20.

To explore a suitable trade-off between exploration and exploitation, we set the hyperparameter λ

in Eq.(4.3) to 5 for Graph-SST2 (GATs) and BBBP (GCNs) models, and 10 for other models. Since

all GNN models contain 3 network layers, we consider 3-hop computational graphs to compute

Shapley values for our SubgraphX. For the Monte-Carlo sampling in our SubgraphX, we set the

Monte-Carlo sampling steps T to 100 for all datasets. For MCTS†, we set Monte-Carlo sampling

steps to 1000 to obtain good approximations since it samples from all nodes in a graph.

4.5.2 Explanations for Graph Classification Models

We first visually compare our SubgraphX with the other baselines using graph classification

models. The results are reported in Figure 4.2, 4.3, and 4.4 where important substructures are

shown in the bold.

The explanation results of the BA-2Motifs dataset are visualized in Figure 4.2. We use the

GCNs as the graph classifier and report explanations for both correct and incorrect predictions.

Since it is a synthetic dataset, we may consider the motifs as reasonable approximations of ex-

72

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Figure 4.3: Explanation results on the MUTAG dataset with a GIN graph classifier. We show the
explanations for two correct predictions. Here Carbon, Oxygen, and Nitrogen are shown in yellow,
red, and blue, respectively.

SubgraphX

diggs

lathan

,

their

charm

have

makes

rapport

screen new

.seem

and

the

story

old

diggs

lathan

,

their

charm

have

makes

rapport

screen new

.seem

and

the

story

old

diggs

lathan

,

their

charm

have

makes

rapport

screen new

.seem

and

the

story

old

diggs

lathan

,

their

charm

have

makes

rapport

screen new

.seem

and

the

story

old

“lathan and diggs have considerable personal charm, and their screen rapport makes the old story new.”

“maybe it is asking too much, but if a movie is truly going to inspire me, I want a little more than this.”

asking

going

but

if

want

little

movie inspire

thanmore

,

much

to

me

asking

going

but

if

want

little

movie inspire

thanmore

,

much

to

me

asking

going

but

if

want

little

movie inspire

thanmore

,

much

to

me

asking

going

but

if truly

want

little

movie inspire

thanmore

,

much

to

me

is

truly truly truly

is is is

MCTS_GNN PGExplainer GNNExplainer

Figure 4.4: Explanation results on the Graph-SST2 dataset with a GAT graph classifier. The input
sentences are shown on the top of explanations. Note that some “unimportant” words are ignored
for simplicity. The first row shows explanations for a correct prediction and the second row reports
the results for an incorrect prediction.

planation ground truth. In the first row, the model prediction is correct and our SubgraphX can

precisely identify the house-like motif as the most important subgraph. In the second row, our

SubgraphX explains the incorrect prediction that the GNN model cannot capture the five-node

cycle motif as the important structure, and hence the prediction is wrong. For both cases, our

SubgraphX can provide better visual explanations. In addition, our explanations are connected

73

subgraphs while PGExplainer and GNNExplainer identify discrete edges.

We also show the explanation results of the MUTAG dataset in Figure 4.3. Note that GINs are

employed as the graph classification model to be explained. Since the MUTAG dataset is a real-

world dataset and there is no ground truth for explanations, we evaluate the explanation results

based on chemical domain knowledge. The graphs in MUTAG are labeled based on the mutagenic

effects on a bacterium. It is known that carbon rings and NO2 groups tend to be mutagenic [138].

In both examples, the predictions are “mutagenic” and our SubgraphX successfully and precisely

identifies the carbon rings as important subgraphs. Meanwhile, the MCTS_GNN can capture the

key subgraphs but include several additional edges. The results of the PGExplainer and GNNEx-

plainer still contain several discrete edges.

For the dataset Graph-SST2, we employ GATs as the graph model and report the results in

Figure 4.4. In the first row, the prediction is correct and the label is positive. Both our SubgraphX

and the MCTS_GNN can find word phrases with positive semantic meaning, such as “makes old

story new”, which can reasonably explain the prediction. The explanations provided by PGEx-

plainer and GNNExplainer are, however, less semantically related. In the second row, the input is

negative but the prediction is positive. All methods except PGExplainer can explain the decision

that the GNN model regards positive phrases “truly going to inspire” as important, thus yielding

a positive but incorrect prediction. It is noteworthy that our method tends to include fewer neural

words, such as “the”, “me”, and “screen”, etc. Overall, our SubgraphX can explain both correct

and incorrect predictions for different graph data and GNN models. Our explanations are more

human-intelligible than comparing methods. More results for graph classification models are re-

ported in Figure 4.5 and 4.6. In Figure 4.5, we show the explanations of real-world datasets BBBP

and MUTAG. Obviously, our proposed method can provide more human-intelligible subgraphs

as explanations while PGExplainer and GNNExplainer focus on discrete edges. In addition, we

also report the results of sentiment dataset Graph-SST2 in Figure 4.6. The results show that our

SubgraphX can provide reasonable explanations to explain the predictions. For example, in the

second row, the input sentence is “none of this violates the letter of behan‘s book, but missing is its

74

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Dataset BBBP
Model: GCNs

Label: penetration
Correct prediction

Dataset BBBP
Model: GCNs

Label: penetration
Correct prediction

Dataset BBBP
Model: GCNs

Label: penetration
Incorrect prediction

Dataset BBBP
Model: GCNs

Label: penetration
Incorrect prediction

Dataset BBBP
Model: GCNs

Label: penetration
Incorrect prediction

Dataset MUTAG
Model: GCNs

Label: mutagenic
Correct prediction

Dataset MUTAG
Model: GCNs

Label: mutagenic
Incorrect prediction

Dataset MUTAG
Model: GCNs

Label: mutagenic
Correct prediction

Dataset MUTAG
Model: GINs

Label: mutagenic
Correct prediction

Figure 4.5: Explanation results of the BBBP and MUTAG datasets. Here Carbon, Oxygen, Nitro-
gen, and Chlorine are shown in yellow, red, and blue, green respectively.

75

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Label: positive, correct prediction, input:“reinforces the talents of screen writer charlie kaufman, creator of adaptation and being john malkovich.”

Label: negative, correct prediction, input:“none of this violates the letter of behan`s book, but missing is its spirit, its ribald, full-throated humor.”

Label: positive, incorrect prediction, input:“smart science fiction for grown-ups, with only a few false steps along the way.”

Label: positive, incorrect prediction, input:“a whole lot foul, freaky and funny.”

Figure 4.6: Explanation results of Grpah-SST2 dataset.

spirit, its ribald, full-throated humor”, whose label is negative and the prediction is correct. From

the human’s view, “missing” should be the keyword for the semantic meaning. Our SubgraphX

shows that the “missing is its spirit” phrase is important, which successfully captures the keyword.

The other methods capture the words and phrases such as “violates”, “none of this”, which are less

76

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Figure 4.7: Explanation results on the BA-Shape dataset. The target node is shown in a larger size.
Different colors denote node labels.

related to the negative meaning.

4.5.3 Explanations for Node Classification Models

We also compare different methods on the node classification tasks. We use the BA-Shape

dataset and train a GCN model to perform node classification. The visualization results are re-

ported in Figure 4.7 where the important substructures are shown in bold. We can verify if the

explanations are consistent with the rules (the motifs) to label different nodes. For both examples,

the target nodes are correctly classified. Obviously, our SubgraphX is precisely targeting the mo-

tifs as the explanations, which is reasonable and promising. For other methods, their explanations

only cover partial motifs and include other structures. More visualization results of explanations

for node classification models are reported in Figure 4.8 where we show the explanations of node

classification dataset BA-Shape. Obviously, our SubgprahX focuses on the whole motifs for cor-

rect predictions and captures partial motifs for incorrect predictions. This is reasonable since if

the model can capture the whole motif, then it is expected to correctly predict the target node;

otherwise, the information of partial motifs is not enough to make correct predictions.

77

SubgraphX MCTS_GNN PGExplainer GNNExplainer

Dataset: BA-Shape
Model: GCNs

Target: large blue node
Correct prediction

Dataset: BA-Shape
Model: GCNs

Target: large green node
Correct prediction

Dataset: BA-Shape
Model: GCNs

Target: large red node
Incorrect prediction

Dataset: BA-Shape
Model: GCNs

Target: large green node
Correct prediction

Dataset: BA-Shape
Model: GCNs

Target: large red node
Incorrect prediction

Figure 4.8: Explanation results of BA-Shape dataset. The target node is shown in a larger size.

4.5.4 Quantitative Studies

While visualizations are important to evaluate different explanation methods, human evalua-

tions may not be accurate due to the lack of ground truths. Hence, we further conduct quantitative

studies to compare these methods. Specifically, we employ the metrics Fidelity+acc and Sparsity

discussed in Section 4.4 to evaluate explanation results. For simplicity, we use Fidelity to represent

the Fidelity+acc. The Fidelity metric measures whether the explanations are faithfully important

to the model’s predictions. It removes the important structures from the input graphs and computes

the difference between predictions. In addition, the Sparsity metric measures the fraction of struc-

tures that are identified as important by explanation methods. Note that high Sparsity scores mean

78

Figure 4.9: The quantitative studies for different explanation methods. Note that since the Sparsity
scores cannot be fully controlled, we compare different methods with Fidelity scores under similar
similar levels of Sparsity.

Table 4.2: Efficiency studies of different methods.

Method MCTS∗ MCTS† SubgraphX GNNExplainer PGExplainer

TIME >10 hours 865.4± 1.6s 77.8± 3.8s 16.2± 0.2s 0.02s (Training 362s)
FIDELITY N/A 0.53 0.55 0.19 0.18

smaller structures are identified as important, which can affect the Fidelity scores since smaller

structures (high Sparsity) tend to be less important (low Fidelity). Hence, for fair comparisons, we

compare different methods using Fidelity under similar levels of Sparsity. The results are reported

in Figure 4.9 where we plot the curves of Fidelity scores with respect to the Sparsity scores. Ob-

viously, for five out of six experiments, our proposed method outperforms the comparing methods

significantly and consistently under different sparsity levels. For the BA-Shape (GCN) experiment,

our SubgraphX obtains slightly lower but still competitive Fidelity scores compared with the PG-

Explainer. Overall, such results indicate that the explanations of our method are more faithful and

important to the GNN models.

79

Table 4.3: The studies of different pruning strategies.

Method Time Fidelity

LOW2HIGH 107.24s 0.66149
HIGH2LOW 21.52s 0.61046

4.5.5 Efficiency Studies

Finally, we study the efficiency of our proposed method. For 50 graphs with an average of 24.96

nodes from the BBBP dataset, we show the averaging time cost to obtain explanations for each

graph. We repeat the experiments 3 times and report the results Table 4.2. Here MCTS∗ denotes

the baseline that follows Eq. (4.8) to compute Shapley values. Compared with our SubgraphX,

the difference is the usage of Monte Carlo sampling. In addition, MCTS† indicates the baseline

computing Shapley values with Monte Carlo sampling but without our proposed approximation

schemes. Specifically, MCTS† samples coalition sets from the player set P instead of the reduced

set P ′. First, the time cost of MCTS∗ is extremely high since it needs to enumerate all possible

coalition sets. Next, compared with MCTS†, our SubgraphX is 11 times faster while the obtained

explanations have similar Fidelity scores. It demonstrates our approximation schemes are both

effective and efficient. Even though our method is slower than GNNExplainer and PGExplainer,

the Fidelity scores of our explanations are 300% higher than theirs. Furthermore, the PGExplainer

requires to train its model using the whole dataset, which introduces the additional and significant

time cost. Considering our explanations are with higher-quality and more human-intelligible, we

believe such time complexity is reasonable and acceptable.

4.6 The Study of Pruning Actions

Finally, we discuss the pruning actions in our MCTS. For the graph associated with each non-

leaf tree search node, we perform node pruning to obtain its children subgraphs. Specifically,

when a node is removed, all edges connected with it are also removed. In addition, if multiple

disconnected subgraphs are obtained after removing a node, only the largest subgraph is kept.

80

Instead of exploring all possible node pruning actions, we explore two strategies: Low2high and

High2low. First, Low2high arranges the nodes based on their node degrees from low to high and

only considers the pruning actions corresponding to the first k low degree nodes. Meanwhile,

High2low arranges the nodes in order from high degree to low degree and only considers the first k

high degree nodes for pruning. Intuitively, High2low is more efficient but may ignore the optimal

solutions. In this work, we employ the High2low strategy for BA-Shape(GCNs), and Low2high

strategy for other models, and set the k to 12 for all the datasets.

We conduct experiments to analyze these two pruning strategies for our SubgraphX algorithm

and show the average time cost and Fidelity score in Table 4.3. Specifically, we randomly select

50 graphs from the BBBP datasets with an average node number of 24.96, which is the same in

Section 4.5.5. In addition, we set Monte-Carlo sampling steps T to 100, and select the subgraphs

with the highest Shapley values and contain less than 15 nodes to calculate the Fidelity. Obviously,

High2low is 5 times faster than Low2high but the Fidelity scores of its explanations are inferior.

81

5. EXPLAINING DEEP GRAPH CLASSIFIER VIA GRAPH GENERATION∗

Finally, we further explore the explainability of deep graph classifiers. Different from our

proposed SubgraphX, in this chapter, we propose a novel method, known as XGNN, to provide

model-level explanations for deep graph models.

5.1 Introduction

Graph Neural Networks (GNNs) have shown their effectiveness and obtained the state-of-

the-art performance on different graph tasks, such as node classification [78, 9], graph classifi-

cation [79, 80], and link prediction [81]. In addition, extensive efforts have been made towards

different graph operations, such as graph convolution [12, 82, 83], graph pooling [8, 84], and

graph attention [9, 85, 86]. Since graph data widely exist in different real-world applications, such

as social networks, chemistry, and biology, GNNs are becoming increasingly important and useful.

Despite their great performance, GNNs share the same drawback as other deep learning models;

that is, they are usually treated as black-boxes and lack human-intelligible explanations. Without

understanding and verifying the inner working mechanisms, GNNs cannot be fully trusted, which

prevents their use in critical applications pertaining to fairness, privacy, and safety [87, 88]. For

example, we can train a GNN model to predict the effects of drugs where we treat each drug as

a molecular graph. Without exploring the working mechanisms, we do not know what chemical

groups in a molecular graph lead to the predictions. Then we cannot verify whether the rules of

the GNN model are consistent with real-world chemical rules, and hence we cannot fully trust the

GNN model. This raises the need of developing explanation techniques for GNNs.

Recently, several explanation techniques have been proposed to explain deep learning models

on image and text data. Depending on what kind of explanations are provided, existing techniques

can be categorized into instance-level [18, 19, 20, 21, 22, 23, 24] or model-level [14, 15, 16] meth-

∗Reprinted with permission from “XGNN: Towards Model-Level Explanations of Graph Neural Networks” by
Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji, Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, vol. 1, pp. 430-438, Copyright 2020 by ACM.

82

ods. instance-level explanations explain the prediction for a given input example, by determining

important features in the input or the decision procedure for this input through the model. Common

techniques in this category include gradient-based methods [18, 19], visualizations of intermedi-

ate feature maps [20, 21], and occlusion-based methods [22, 23, 24]. Instead of providing input-

dependent explanations, model-level explanations aim to explain the general behavior of the model

by investigating what input patterns can lead to a certain prediction, without respect to any specific

input example. Input optimization [14, 15, 16, 25] is the most popular model-level explanation

method. These two categories of explanation methods aim at explaining deep models in different

views. Since the ultimate goal of explanations is to verify and understand deep models, we need

to manually check the explanation results and conclude if the deep models work in our expected

way. For instance-level methods, we may need to explore the explanations for a large number of

examples before we can trust the models. However, it is time-consuming and requires extensive

expert efforts. For model-level methods, the explanations are more general and high-level, and

hence need less human supervision. However, the explanations of model-level methods are less

precise compared with instance-level explanations. Overall, both model-level and instance-level

methods are important for explaining and understanding deep models.

Explaining deep learning models on graph data become increasingly important but is still less

explored. To the best of our knowledge, there is no existing study on explaining GNNs at the

model-level. The existing study [88, 89] only provides instance-level explanations for graph mod-

els. As a radical departure from existing work, we propose a novel explanation technique, known

as XGNN, for explaining deep graph models at the model-level. We propose to investigate what

graph patterns can maximize a certain prediction. Specifically, we propose to train a graph genera-

tor such that the generated graph patterns can be used to explain deep graph models. We formulate

it as a reinforcement learning problem that at each step, the graph generator predicts how to add an

edge to a given graph and form a new graph. Then the generator is trained based on the feedback

from the trained graph models using policy gradient [58]. We also incorporate several graph rules

to encourage the generated graphs to be valid. Note that the graph generation part in our XGNN

83

framework can be generalized to any suitable graph generation method, determined by the dataset

at hand and the GNNs to be explained. Finally, we trained GNN models on both real-world and

synthetic datasets which can yield good performance. Then we employ our proposed XGNN to

explain these trained models. Experimental results show that our proposed XGNN can find the de-

sired graph patterns and explains these models. With our generated graph patterns, we can verify,

understand, and even improve the trained GNN models.

5.2 Related Work

5.2.1 Graph Neural Networks

Graphs are wildly employed to represent data in different real-world domains and graph neural

networks have shown promising performance on these data. Different from image and text data, a

graph is represented by a feature matrix and an adjacency matrix. Formally, a graphGwith n nodes

is represented by its feature matrix X ∈ Rn×d and its adjacency matrix A ∈ {0, 1}n×n. Note that

we assume each node has a d-dimension vector to represent its features. Graph neural networks

learn node features based on these matrices. Even though there are several variants of GNNs,

such as graph convolution networks (GCNs) [12], graph attention networks (GATs) [9], and graph

isomorphism networks (GINs) [79], they share a similar feature learning strategy. For each node,

GNNs update its node features by aggregating the features from its neighbors and combining them

with its own features. We take GCNs as an example to illustrate the neighborhood information

aggregation scheme. The operation of GCNs is defined as

Xi+1 = f(D−
1
2 ÂD−

1
2XiWi), (5.1)

where Xi ∈ Rn×di and Xi+1 ∈ Rn×di+1 are the input and output feature matrices of the ith graph

convolution layer. In addition, Â = A + I is used to add self-loops to the adjacency matrix, D

denotes the diagonal node degree matrix to normalize Â. The matrix Wi ∈ Rdi×di+1 is a trainable

matrix for layer i and is used to perform linear feature transformation and f(·) denotes a non-linear

activation function. By stacking j graph convolution layers, the j-hop neighborhood information

84

can be aggregated. Due to its superior performance, we incorporate the graph convolution in

Equation (5.1) as our graph neural network operator.

5.2.2 Model-level Explanations

Next, we briefly discuss popular model-level explanation techniques for deep learning models

on image data, known as input optimization methods [14, 15, 16, 25]. These methods generally

generate optimized input that can maximize a certain behavior of deep models. They randomly

initialize the input and iteratively update the input towards an objective, such as maximizing a

class score. Then such optimized input can be regarded as the explanations for the target behavior.

Such a procedure is known as optimization and is similar to training deep neural networks. The

main difference is that in such input optimization techniques, all network parameters are fixed

while the input is treated as trainable variables. While such methods can provide meaningful

model-level explanations for deep models on images, they cannot be directly applied to explain

GNNs due to three challenges. First, the structural information of a graph is represented by a

discrete adjacency matrix, which cannot be directly optimized via back-propagation. Second, for

images, the optimized input is an abstract image and the visualization shows high-level patterns and

meanings. In the case of graphs, the abstract graph is not meaningful and hard to visualize. Third,

the obtained graphs may not be valid for chemical or biological rules since non-differentiable graph

rules cannot be directly incorporated into optimization. For example, the node degree of an atom

should not exceed its maximum chemical valency.

5.2.3 Graph Model Explanations

To the best of our knowledge, there are only a few existing studies focusing on the explainabil-

ity of deep graph models [88, 89]. The recent GNN explanation tool GNN Explainer [88] proposes

to explain deep graph models at the instance-level by learning soft masks. For a given example, it

applies soft masks to graph edges and node features and updates the masks such that the prediction

remains the same as the original one.

Then some graph edges and node features are selected by thresholding the masks, and they are

85

treated as important edges and features for making the prediction for the given example. The other

work [89] also focuses on the instance-level explanations of deep graph models. It applies several

well-known image explanation methods to graph models, such as sensitivity analysis (SA) [90],

guided backpropagation (GBP) [43], and layer-wise relevance propagation (LRP) [66]. The SA

and GBP methods are based on the gradients while the LRP method computes the saliency maps

by decomposing the output prediction into a combination of its inputs. In addition, both of these

studies generate input-dependent explanations for individual examples. To verify and understand

a deep model, humans need to check explanations for all examples, which is time-consuming or

even not feasible.

While input-dependent explanations are important for understanding deep models, model-level

explanations should not be ignored. However, none of the existing work investigates the model-

level explanations of deep graph models. In this work, we argue that model-level explanations

can provide higher-level insights and a more general understanding in how a deep learning model

works. Therefore, we aim at providing model-level explanations for GNNs. We propose a novel

method, known as XGNN, to explain GNNs by graph generation such that the generated graphs

can maximize a certain behavior.

5.3 XGNN: Explainable Graph Neural Networks

5.3.1 Model-Level GNN Explanations

Intuitively, given a trained GNN model, the model-level explanations for it should explain what

graph patterns or sub-graph patterns lead to a certain prediction. For example, one possible type

of patterns is known as network motifs that represent simple building blocks of complex networks

(graphs), which widely exist in graphs from biochemistry, neurobiology, ecology, and engineer-

ing [91, 92, 93, 94]. Different motif sets can be found in graphs with different functions [91, 92],

which means different motifs may directly relate to the functions of graphs. However, it is still

unknown whether GNNs make predictions based on such motifs or other graph information. By

identifying the relationships between graph patterns and the predictions of GNNs, we can better

86

Graph set

Human
observation

GNNs

Prediction

Maximize

Graph
rules

Valid

Graph generator

Step 0 Step 1 Step 2 Step 3

Rewards

Generated
graph

Figure 5.1: Illustrations of our proposed XGNN for graph explanations via graph generation. The
GNNs represent a trained graph classification model that we try to explain. All graph examples in
the graph set are classified to the third class. The left part shows that we can manually conclude the
key graph patterns for the third class but it is challenging. The right part shows that we propose to
train a graph generator to generate graphs that can maximize the class score and be valid according
to graph rules.

understand the models and verify whether a model works as expected. Therefore, we propose our

XGNN, which explains GNNs using such graph patterns. Specifically, in this chapter, we inves-

tigate the model-level explanations of GNNs for graph classification tasks and the graph patterns

are obtained by graph generations.

Formally, let f(·) denote a trained GNN classification model, and y ∈ {c1, · · · , c`} denote the

classification prediction. Given f(·) and a chosen class ci, i ∈ {1, · · · , `}, our goal is to investigate

what input graph patterns maximize the predicted probability for this class. The obtained patterns

can be treated as model-level explanations with respect to ci. Formally, the task can be defined as

G∗ = argmax
G

P (f(G) = ci), (5.2)

where G∗ is the optimized input graph we need. A popular way to obtain such optimized input for

explaining image and text models is known as input optimization [14, 15, 16, 25]. However, as

87

discussed in Section 5.2.2, such optimization method cannot be applied to explain graph models

because of the special representations of graph data. Instead, we propose to obtain the optimized

graph G∗ via graph generation. The general illustration of our proposed method is shown in Fig-

ure 5.1. Given a pre-trained graph classification model, we explain it by providing explanations

for its third class. We may manually conclude the graph patterns from the graph dataset. By eval-

uating all graph examples in the dataset, we can obtain the graphs that are predicted to be the third

class. Then we can manually check what are the common graph patterns among these graphs. For

example, the left part of Figure 5.1 shows that a set of four graphs are classified into the third class.

Based on human observations, we know that the important graph pattern leading to the prediction

is the triangle pattern consisting of a red node, a yellow node, and a blue node. However, such

manual analysis is time-consuming and not applicable for large-scale and complex graph datasets.

As shown in the right part, we propose to train a graph generator to generate graph patterns that

can maximize the prediction score of the third class. In addition, we incorporate graph rules, such

as the chemical valency check, to encourage valid and human-intelligible explanations. Finally, we

can analyze the generated graphs to obtain model-level explanations for the third class. Compared

with directly manual analysis on the original dataset, our proposed method generates small-scale

and less complex graphs, which can significantly reduce the cost for further manual analysis.

5.3.2 Explaining GNNs via Graph Generation

Recent advances in graph generation lead to many successful graph generation models, such as

GraphGAN [95], ORGAN [96], Junction Tree VAE [97], DGMG [98], and Graph Convolutional

Policy Network (GCPN) [99]. Inspired by these methods, we propose to train a graph generator

which generates G∗ step by step. For each step, the graph generator generates a new graph based

on the current graph. Formally, we define the partially generated graph at step t as Gt, which

contains nt nodes. It is represented as a feature matrix Xt ∈ Rnt×d and an adjacency matrix

At ∈ {0, 1}nt×nt , assuming each node has a d-dimensional feature vector. Then we define a θ-

parameterized graph generator as gθ(·), which takes Gt as input, and outputs a new graph Gt+1

88

that

Xt+1, At+1 = gθ(Xt, At). (5.3)

Then the generator is trained with the guidance from the pre-trained GNNs f(·). Since gener-

ating the new graph Gt+1 from Gt is non-differentiable, we formulate the generation procedure as

a reinforcement learning problem. Specifically, assuming there are k types of nodes in the dataset,

we define a candidate set C = {s1, s2, · · · , sk} denoting these possible node types. For example,

in a chemical molecular dataset, the candidate set may include Carbon, Nitrogen, Oxygen, Fluo-

rine, etc. In a social network dataset where nodes are not labeled, the candidate set only contains a

single node type. Then at each step t, based on the partially generated graph Gt, the generator g(·)

generates Gt+1 by predicting how to add an edge to the current graph Gt. Note that the generator

may add an edge between two nodes in the current graph Gt or add a node from the candidate set

C to the current graphGt and connect it with an existing node inGt. Formally, we formulate it as a

reinforcement learning problem, which consists of four elements: state, action, policy, and reward.

State: The state of the reinforcement learning environment at step t is the partially generated

graph Gt. The initial graph at the first step can be either a random node from the candidate set C

or manually designed based on prior domain knowledge. For example, for the dataset describing

organic molecules, we can set the initial graph as a single node labeled with carbon atom since any

organic compound contains carbon generally [100].

Action: The action at step t, denoted as at, is to generate the new graph Gt+1 based on the

current graph Gt. Specifically, given the current state Gt, the action at is to add an edge to Gt

by determining the starting node and the ending node of the edge. Note that the starting node

at,start can be any node from the current graph Gt while the ending node at,end is selected from the

union of the current graph Gt and the candidate set C excluding the selected starting node at,start,

denoted as (Gt

⋃
C) \ at,start. Note that with the predefined maximum action step and maximum

node number, we can control the termination of graph generation.

Policy: We employ graph neural networks to serve as the policy. The policy determines the

action at based on the state Gt. Specifically, the policy is the graph generator gθ(·), which takes Gt

89

and C as the input and outputs the probabilities of possible actions. With the reward function, the

generator gθ(·) can be trained via policy gradient [58].

Reward: The reward for step t, denoted as Rt, is employed to evaluate the action at step t,

which consists of two parts. The first part is the guidance from the trained GNNs f(·), which

encourages the generated graph to maximize the class score of class ci. By feeding the generated

graphs to f(·), we can obtain the predicted probabilities for class ci and use them as the feedback

to update gθ(·). The second part encourages the generated graphs to be valid in terms of certain

graph rules. For example, for social network datasets, it is may not allowed to add multiple edges

between two nodes. In addition, for chemical molecular datasets, the degree of an atom cannot

exceed its chemical valency. Note that for each step, we include both intermediate rewards and

overall rewards to evaluate the action.

While we formulate the graph generation as a reinforcement learning problem, it is noteworthy

that our proposed XGNN is a novel and general framework for explaining GNNs at the model-level.

The graph generation part in this framework can be generalized to any suitable graph generation

method, determined by the dataset at hand and the GNNs to be explained.

5.3.3 Graph Generator

For step t, the graph generator gθ(·) incorporates the partially generated graph Gt and the can-

didate set C to predict the probabilities of different actions, denoted as pt,start and pt,end. Assume

there are nt nodes in Gt and k nodes in C, then both pt,start and pt,end are with nt + k dimension-

ality. Then the action at = (at,start, at,end) is sampled from the probabilities pt = (pt,start, pt,end).

Next, we can obtain the new graph Gt+1 based on the action at. Specifically, in our generator, we

first employ several graph convolutional layers to aggregate neighborhood information and learn

node features. Mathematically, it can be written as

X̂ = GCNs(Gt, C), (5.4)

90

where X̂ denotes the learnt node features. Note that the graph Gt and the candidate set C are

combined as the input of GCNs. We merge all nodes in C to Gt without adding any edge and then

obtain the new node feature matrix and adjacency matrix. Then Multilayer Perceptrons (MLPs)

are used to predict the probabilities of the starting node, pt,start and the action at,start is sampled

from this probabilty distribution. Mathematically, it can be written as

pt,start = Softmax(MLPs(X̂)), (5.5)

at,start ∼ pt,start ·mt,start, (5.6)

where · means element-wise product and mt,start is to mask out all candidate nodes since the

starting node can be only selected from the current graph Gt. Let x̂start denote the features of

the node selected by the start action at,start. Then conditioned on the selected node, we employ

the second MLPs to compute the probability distribution of the ending node pt,end from which we

sample the ending node action at,end. Note that since the starting node and the ending node cannot

be the same, we apply a mask mt,end to mask out the node selected by at,start. Mathematically, it

can be written as

pt,end = Softmax(MLPs([X̂, x̂start])), (5.7)

at,end ∼ pt,end ·mt,end, (5.8)

where [·, ·] denotes broadcasting and concatenation. In addition, mt,end is the mask consisting of

all 1s except the position indicating at,start. Note that the same graph generator gθ(·) is shared by

different time steps, and our generator is capable to incorporate graphs with variable sizes.

We illustrate our graph generator in Figure 5.2 where we show the graph generation procedure

for one step. The current graph Gt consists of 4 nodes and the candidate set has 3 available nodes.

They are combined together to serve as the input of the graph generator. The embeddings of

candidate nodes are concatenated to the feature matrix of Gt while the adjacency matrix of Gt is

expanded accordingly. Then multiple graph convolutional layers are employed to learn features

91

Node Features

1

Current Graph

2

34

Candidates

Combine GCNs MLPs MLPs 1

New Graph

2

34
5

Starting Node
Ending Node

Figure 5.2: An Illustration of our graph generator for processing a single step. Different colors
denote different types of node. Given a graph with 4 nodes and a candidate set with 3 nodes, we
first combine them together to obtain the feature matrix and the adjacency matrix. Then we employ
several GCN layers to aggregate and learn node features. Next, the first MLPs predict a probability
distribution from which we sample the starting node. Finally, the second MLPs predict the ending
node conditioned on the starting node. Note that the black crosses indicates masking out nodes.

for all nodes. With the first MLPs, we obtain the probabilities of selecting different nodes as the

starting node, and from which we sample the node 1 as the starting node. Then based on the

features of node 1 and all node features, the second MLPs predict the ending node. We sample

from the probabilities and select the node 7 as the ending node, which corresponds to the red node

in the candidate set. Finally, a new graph is obtained by including a red node and connecting it

with node 1.

5.3.4 Training the Graph Generator

The graph generator is trained to generate specific graphs that can maximize the class score of

class ci and be valid to graph rules. Since such guidance is not differentiable, we employ policy

gradient [58] to train the generator. According to [56, 57], the loss function for the action at at step

t can be mathematically written as

Lg = −Rt(LCE(pt,start, at,start) + LCE(pt,end, at,end)), (5.9)

92

where LCE(·, ·) denotes the cross entropy loss and Rt means the reward function for step t. In-

tuitively, the reward Rt indicates whether at has a large chance to generate graph with high class

score of class ci and being valid. Hence, the reward Rt consists of two parts. The first part Rt,f is

the feedback from the trained model f(·) and the second part Rt,r is from the graph rules. Specifi-

cally, for step t, the reward Rt,f contains both an intermediate reward and a final graph reward for

graph Gt+1 that

Rt,f = Rt,f (Gt+1) + λ1

∑m
i=1Rt,f (Rollout(Gt+1))

m
, (5.10)

where λ1 is a hyper-parameter, and the first term is the intermediate reward which can be obtained

by feeding Gt+1 to the trained GNNs f(·) and checking the predicted probability for class ci.

Mathematically, it can be computed as

Rt,f (Gt+1) = p(f(Gt+1) = ci)− 1/`, (5.11)

where ` denotes the number of possible classes for f(·). In addition, the second term in Equation

(5.10) is the final graph reward for Gt+1 which can be obtained by performing Rollout [57] m

times on the intermediate graph Gt+1. Each time, a final graph is generated based on Gt+1 until

termination and then evaluated by f(·) using Equation (5.11). Then the evaluations for m final

graphs are averaged to serve as the final graph reward. Overall, Rt,f is positive when the obtained

graph tends to yield high score for class ci, and vice versa.

In addition, the reward Rt,r is obtained from graphs rules and is employed to encourage the

generated graphs to be valid and human-intelligible. The first rule we employ is that only one edge

is allowed to be added between any two nodes. Second, the generated graph cannot contain more

nodes than the predefined maximum node number. In addition, we incorporate dataset-specific

rules to guide the graph generation. For example, in a chemical dataset, each node represents an

atom so that its degree cannot exceed the valency of the corresponding atom. When any of these

rules is violated, a negative reward will be applied for Rt,r. Finally, by combining the Rt,f and

93

Algorithm 3 THE ALGORITHM OF OUR PROPOSED XGNN.

1: Given the trained GNNs for graph classification, denoted as f(·), we try to explain it and set
the target class as ci.

2: Let C define the candidate node set and g(·) mean our graph generator. We predefine the
maximum generation step as Smax and the number of Rollout as m.

3: Define the initial graph as G1.
4: for step t in Smax do
5: Merge the current graph Gt and the candidate set C.
6: Obtain the action at from the generator g(·) that at = (at,start, at,end) with Equation (5.4-

5.8).
7: Obtain the new graph Gt+1 based on at.
8: Evaluate Gt+1 with Equation (5.10-5.12) and obtain Rt.
9: Update the generator g(·) with Equation (5.9).

10: if Rt < 0 then roll back and set Gt+1 = Gt.
11: end if
12: end for

Rt,r, we can obtain the reward for step t that

Rt = Rt,f (Gt+1) + λ1

∑m
i=1Rt,f (Rollout(Gt+1))

m
+ λ2Rt,r, (5.12)

where λ1 and λ2 are hyper-parameters. We illustrate the training procedure in Algorithm 3. Note

that we roll back the graphGt+1 toGt when the action at is evaluated as not promising thatRt < 0.

5.4 Experimental Studies

5.4.1 Dataset and Experimental Setup

We evaluate our proposed XGNN on both synthetic and real-world datasets. We report the

summary statistics of these datasets in Table 5.1. Since there is no existing work investigating

model-level explanations of GNNs, we have no baseline to compare with. Note that existing

studies [88, 89] only focus on explaining GNNs at instance-level while ignoring the model-level

explanations. Comparing with them is not expected since these instance-level and model-level are

two totally different explanation directions.

94

Table 5.1: Statistics and properties of datasets. Note that the edge number and node number are
averaged numbers.

Dataset Classes # of Edges # of Nodes Accuracy
Is_Acyclic 2 30.04 28.46 0.978
MUTAG 2 19.79 17.93 0.963

Synthetic dataset: Since our XGNN generates model-level explanations for Deep GNNs, we build

a synthetic dataset, known as Is_Acyclic, where the ground truth explanations are available. The

graphs are labeled based on if there is any cycle existing in the graph. The graphs are obtained

using Networkx software package [101]. The first class refers to cyclic graphs, including grid-like

graphs, cycle graphs, wheel graphs, and circular ladder graphs. The second class denotes acyclic

graphs, containing star-like graphs, binary tree graphs, path graphs and full rary tree graphs [102].

Note that all nodes in this dataset are unlabeled and we focus on investigating the ability of GNNs

to capture graph structures.

Real-world dataset: We conduct experiments on the real-world dataset MUTAG. The MUTAG

dataset contains graphs representing chemical compounds where nodes represent different atoms

and edges represent chemical bonds. The graphs are labeled into two different classes according

to their mutagenic effect on a bacterium [103]. Each node is labeled based on its type of atom

and there are seven possible atom types: Carbon, Nitrogen, Oxygen, Fluorine, Iodine, Chlorine,

Bromine. Note that the edge labels are ignored for simplicity. For this dataset, we investigate the

ability of GNNs to capture both graph structures and node labels.

Graph classification models: We train graph classification models using these datasets and then

try to explain these models. These models share a similar pipeline that first learns node features

using multiple layers of GCNs, then obtain graph level embeddings by averaging all node fea-

tures, and finally employs fully-connected layers to perform graph classification. For the synthetic

dataset Is_Acyclic, we use the node degrees as the initial features for all nodes. Then we apply two

layers of GCNs with output dimensions equal to 8, 16 respectively and perform global averaging

to obtain the graph representations. Finally, we employ one fully-connected layer as the classi-

95

fier. Meanwhile, for the real-world dataset MUTAG, since all nodes are labeled, we employ the

corresponding one-hot representations as the initial node features. Then we employ three layers

of GCNs with output dimensions equal to 32, 48, 64 respectively and average all node features.

The final classifier contains two fully-connected layers in which the hidden dimension is set to 32.

Note that for all GCN layers, we apply the GCN version shown in Equation (5.1). In addition,

we employ Sigmoid as the non-linear function in GCNs for dataset Is_Acyclic while we use Relu

for dataset MUTAG. These models are implemented using Pytorch [104] and trained using Adam

optimizer [65]. The training accuracies of these models are reported in Table 5.1, which show that

the models we try to explain are models with reasonable performance.

Graph generators: For both datasets, our graph generators share the same structure. Our

generator first employs a fully-connected layer to map node features to the dimension of 8. Then

three layers of GCNs are employed with output dimensions equal to 16, 24, 32 respectively. The

first MLPs consist of two fully-connected layers with the hidden dimension equal to 16 and a

ReLU6 non-linear function. The second MLPs also have two fully-connected layers that the hidden

dimension is set to 24 and ReLU6 is applied. The initial features for input graphs are the same as

mentioned above. For dataset Is_Acyclic, we set λ1 = 1, λ2 = 1, and Rt,r = −1 if the generated

graph violates any graph rule. For dataset MUTAG, we set λ1 = 1, λ2 = 2, and the total reward

Rt = −1 if the generated graph violates any graph rule. In addition, we perform rollout m = 10

times each step to obtain final graph rewards. The models are implemented using Pytorch [104]

and trained using Adam optimizer [65] with β1 = 0.9 and β2 = 0.999. The learning rate for graph

generator training is set to 0.01.

5.4.2 Experimental Results on Synthetic Data

We first conduct experiments on the synthetic dataset Is_Acyclic where the ground truth is

available. As shown in Table 5.1, the trained GNN classifier can reach a promising performance.

Since the dataset is manually and synthetically built based on if the graph contains any circle,

we can check if the trained GNN classifier makes predictions in such a way. We explain the

96

p=0.7544 p=0.9993 p=0.9992 p=0.9999p=0.9998

p=0.9634p=0.9760p=0.9965p=0.9985p=0.9999

Max node: 3 Max node: 4 Max node: 5 Max node: 6 Max node: 7

Figure 5.3: Experimental results for the synthetic dataset Is_Acyclic. Each row shows our ex-
planations for a certain class that the first row corresponds to the class cyclic while the second
row explains the class acyclic. In each row, from left to right, we report the generated graphs
with increasing maximum node number limits. In addition, we feed each generated graph to the
pre-trained GCNs and report the predicted probability for the corresponding class.

model with our proposed XGNN and report the generated explanations in Figure 5.3. We show

the explanations for the class “cyclic” in the first row and the results for the class “acyclic” in

the second row. In addition, we also report different generated explanations by setting different

maximum graph node limits.

First, by comparing the graphs generated for different classes, we can easily conclude the dif-

ference that the explanations for the class “cyclic” always contain circles while the results for the

class “acyclic” have no circle at all. Second, to verify whether our explanations can maximize the

class probability for a certain class, as shown in Equation (5.2), we feed each generated graph to

the trained GNN classifier and report the predicted probability for the corresponding class. The

results show that our generated graph patterns can consistently yield high predicted probabilities.

Note that even though the graph obtained for the class “cyclic” with maximum node number equal

to 3 only leads to p = 0.7544, it is still the highest probability for all possible graphs with 3

nodes. Finally, based on these results, we can understand what patterns can maximize the pre-

dicted probabilities for different classes. In our results, we know the trained GNN classifier very

likely distinguishes different classes by detecting circular structures, which is consistent with our

97

p=1.0000 p=0.9999 p=1.0000 p=0.9999p=1.0000

p=1.0000p=0.9999p=1.0000p=1.0000p=0.9999

Max node: 3 Max node: 4 Max node: 5 Max node: 6 Max node: 7

 Iodine Carbon Bromine Fluorine Oxygen Nitrogen Chlorine

Figure 5.4: Experimental results for the MUTAG dataset. The first row reports the explanations
for the class non-mutagenic while the second row shows results for the class mutagenic. Note that
different node colors denote different types of atoms and the legend is shown at the bottom of the
figure. All graphs are generated with the initial graph as a single Carbon atom.

expectations. Hence, such explanations help understand and trust the model, and increase the trust-

worthiness of this model to be used as a circular graph detector. In addition, it is noteworthy that

our generated graphs are easier to analyze compared with the graphs in the datasets. Our generated

graphs have significantly fewer numbers of nodes and simpler structures, and yield higher pre-

dicted probabilities while the graphs from the dataset have an average of 28 nodes and 30 edges,

as shown in Table 5.1.

5.4.3 Experimental Results on Real-World Data

We also evaluate our proposed XGNN using real-world data. For dataset MUTAG, there is

no ground truth for the explanations. Since all nodes are labeled as different types of atoms, we

investigate whether the trained GNN classifier can capture both graph structures and node labels.

We explain the trained GNN with our proposed method and report selected results in Figure 5.4 and

Figure 5.5. Note that the generated graphs may not represent real chemical compounds because,

for simplicity, we only incorporate a simple chemical rule that the degree of an atom cannot exceed

its maximum chemical valency. In addition, since nodes are labeled, we can set the initial graphs

as different types of atoms.

98

p=1.0000p=0.9999p=1.0000p=1.0000p=1.0000

 IodineCarbon BromineFluorineOxygenNitrogen Chlorine

p=1.0000 p=1.0000

Figure 5.5: Experimental results for the MUTAG dataset. We fix the maximum node number limit
as 5 and explore different initial graphs. Note that all graphs are generated for explaining the
mutagenic class. For each generated graph, we show its predicted probability and corresponding
initial graph at the bottom.

We first set the initial graph as a single carbon atom and report the results in Figure 5.4, since

generally, any organic compound contains carbon [100]. The first row reports explanations for the

class “non-mutagenic” while the second row shows the results for the class “mutagenic”. We report

the generated graphs with different node limits and the GNN predicted probabilities. For the class

“mutagenic”, we can observe that carbon circles and NO2 are some common patterns, and this is

consistent with the chemical fact that carbon rings and NO2 chemical groups are mutagenic [103].

Such observations indicate that the trained GNN classifier may capture these key graph patterns

to make predictions. In addition, for the class “non-mutagenic”, we observe the atom Chlorine is

widely existing in the generated graphs and the combination of Chlorine, Bromine, and Fluorine

always leads to “non-mutagenic” predictions. By analyzing such explanations, we can better un-

derstand the trained GNN model.

We also explore different initial graphs and report the results in Figure 5.5. We fix the maximum

node limit as 5 and generate explanations for the class “mutagenic”. First, no matter how we set

the initial graph, our proposed method can always find graph patterns maximizing the predicted

probability of class “mutagenic”. For the first 5 graphs, which means the initial graph is set to a

single node of Carbon, Nitrogen, Oxygen, Iodine, or Fluorine, some generated graphs still have

common patterns like carbon circle and NO2 chemical groups. Our observations further confirm

that these key patterns are captured by the trained GNNs. In addition, we notice that the generator

can still produce graphs with Chlorine which are predicted as “mutagenic”, which is contrary

to our conclusion above. If all graphs with Chlorine should be identified as “non-mutagenic”,

99

such explanations show the limitations of trained GNNs. Then these generated explanations can

provide guidance for improving the trained GNNs, for example, we may place more emphasis

on the graphs Chlorine when training the GNNs. Furthermore, the generated explanations may

also be used to retrain and improve the GNN models to correctly capture our desired patterns.

Overall, the experimental results show that our proposed explanation method XGNN can help

verify, understand, and even help improve the trained GNN models.

100

6. CONCLUSIONS AND FUTURE WORK

In Chapter 2, we propose a learning-based method to generate discrete masks to explain deep

image classifiers. In particular, we propose to explain deep models by learning the discriminative

image regions in a GAN manner that we treat the pre-trained model as the discriminator and try

to explain it using a trainable generator. The generator learns to capture important regions and

produces a probability map. Then a discrete mask is sampled from this probability map and fed to

the discriminator to measure its quality. We propose to train the generator using the policy gradient

because of the sampling operations. Furthermore, to reduce the search space, we propose to incor-

porate auxiliary information. We conduct both quantitative and qualitative experiments to demon-

strate the effectiveness of our proposed method. The visual results show that our method obtains

better explanations than several state-of-the-art approaches. In addition, our proposed method can

pass the model randomization test, showing that our method is reasoning the predictions instead

of guessing. The quantitative analysis via weakly supervised localization task and saliency metric

demonstrates the effectiveness of our proposed method. We also perform the ROAR evaluation for

our method and further show that our method can correctly identify important and discriminative

image regions for the predictions of models. Finally, the ablation study demonstrates that both the

area reward and smoothness reward are important to generate good explanations.

In Chapter 3, we propose to study the meaning of the neurons in the hidden layers, thereby

explaining the whole prediction procedures layer by layer. While investigating hidden units in

neural networks are of great importance to understand their working mechanisms, it is challenging

to understand the meaning of hidden units in NLP models, since word representations are discrete

and cannot be abstracted. Our proposed method first employs gradient-based approaches to esti-

mate the contributions of different spatial locations in a hidden layer and then uses optimization to

answer the question of what is detected by these hidden locations. Then we propose to approxi-

mately explain the meaning of detected information using the nearest neighbors of the optimized

representation based on the special property of word representations that words with semantically

101

similar meanings are embedded to nearby points. Experimental results show that our approaches

can identify reasonable explanations for hidden locations, which shares similar high-level meaning

with the input sentence. It is also shown that our method helps explain how the decision and why

the decision is made.

In Chapter 4, we propose a novel instance-level explanation method, known as SubgraphX, to

study graph neural networks. While considerable efforts have been devoted to study the explain-

ability of GNNs, none of the existing methods can explain GNN predictions with subgraphs. We

argue that subgraphs are building blocks of complex graphs and are more human-intelligible. To

this end, we propose the SubgraphX to explain GNNs by identifying important subgraphs explic-

itly. We employ the Monte Carlo tree search algorithm to efficiently explore different subgraphs.

For each subgraph, we propose to employ Shapley values to measure its importance by considering

the interactions among different graph structures. To expedite computations, we propose efficient

approximation schemes to compute Shapley values by considering interactions only within the in-

formation aggregation range. Experimental results show our SubgraphX obtain higher-quality and

more human-intelligible explanations while keeping time complexity acceptable.

In Chapter 5, we propose the XGNN to provide model-level explanations for graph neural net-

works. The core idea of our general XGNN framework is to find graph patterns that can maximize

a certain prediction via graph generation. Specifically, we formulate it as a reinforcement learning

problem and generate graph patterns iteratively. We train a graph generator and for each step, it

predicts how to add an edge into the current graph. In addition, we incorporate several graph rules

to encourage the generated graphs to be valid and human-intelligible. We conduct thorough exper-

iments on both synthetic and real-world datasets to demonstrate the effectiveness of our proposed

XGNN. The results show that the generated graphs help discover what patterns will maximize a

certain prediction of the trained GNNs. The generated explanations help verify and better under-

stand if the trained GNNs make predictions in our expected way. Furthermore, our results also

show that the generated explanations can provide directions to improve the trained models.

In terms of future work, we discuss several possible directions for future work. First, in our

102

proposed SubgraphX, we employ the search algorithm for exploring subgraphs and compute the

Shapley value for each subgraph individually. Hence, it is important to further improve the effi-

ciency, and possible solutions include designing proper greedy algorithms to reduce the time cost

for searching and computing the Shapley values for multiple subgraphs simultaneously based on

the addictive property of Shapley values. Second, while we investigate the explainability of deep

models for different domains, the target models are relatively simple. The explainability of more

complex models, such as Transformer [6], BERT [141], and Recommendation Systems [142],

has not been explored yet. Explaining such complex models is an important but more challeng-

ing task since these complex models are widely used in real-world applications. Last but not the

least, explaining critical applications of deep models is also important. One example is the deep

learning model for medical images. Since medical decisions are critical, it is not enough to only

make predictions based on medical images. It is also necessary to provide explanations of why the

predictions are made. Otherwise, the doctors or patients cannot trust the models at all. Since med-

ical images are different from natural images, existing models cannot be directly applied. Hence,

specific techniques are needed to explain the deep models trained with medical data.

103

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in neural information processing systems, pp. 1097–

1105, 2012.

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Seman-

tic image segmentation with deep convolutional nets, atrous convolution, and fully con-

nected crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4,

pp. 834–848, 2018.

[3] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.

[4] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action

recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1,

pp. 221–231, 2013.

[5] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint

arXiv:1408.5882, 2014.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing

Systems, pp. 5998–6008, 2017.

[7] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classifi-

cation,” in Advances in neural information processing systems, pp. 649–657, 2015.

[8] H. Yuan and S. Ji, “Structpool: Structured graph pooling via conditional random fields,” in

International Conference on Learning Representations, 2020.

[9] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. LiÃš, and Y. Bengio, “Graph atten-

tion networks,” in International Conference on Learning Representations, 2018.

104

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-

works,” in Proceedings of the International Conference on Learning Representations, 2017.

[13] B. Goodman and S. Flaxman, “European union regulations on algorithmic decision-making

and a âĂIJright to explanationâĂİ,” AI magazine, vol. 38, no. 3, pp. 50–57, 2017.

[14] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer features of a

deep network,” University of Montreal, vol. 1341, no. 3, p. 1, 2009.

[15] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play generative

networks: Conditional iterative generation of images in latent space,” in 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pp. 3510–3520, IEEE, 2017.

[16] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High con-

fidence predictions for unrecognizable images,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 427–436, 2015.

[17] H. Yuan, J. Tang, X. Hu, and S. Ji, “XGNN: Towards model-level explanations of graph neu-

ral networks,” KDD ’20, (New York, NY, USA), p. 430âĂŞ438, Association for Computing

Machinery, 2020.

[18] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visu-

alising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034,

2013.

[19] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smoothgrad: removing

noise by adding noise,” arXiv preprint arXiv:1706.03825, 2017.

105

[20] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:

Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE In-

ternational Conference on Computer Vision (ICCV), pp. 618–626, IEEE, 2017.

[21] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for

discriminative localization,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 2921–2929, 2016.

[22] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in

European conference on computer vision, pp. 818–833, Springer, 2014.

[23] R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes by meaningful pertur-

bation,” in 2017 IEEE international conference on computer vision (ICCV), pp. 3449–3457,

IEEE, 2017.

[24] P. Dabkowski and Y. Gal, “Real time image saliency for black box classifiers,” in Advances

in Neural Information Processing Systems, pp. 6967–6976, 2017.

[25] C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization,” Distill, 2017.

https://distill.pub/2017/feature-visualization.

[26] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-down neural at-

tention by excitation backprop,” International Journal of Computer Vision, vol. 126, no. 10,

pp. 1084–1102, 2018.

[27] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. Müller, and W. Samek, “On pixel-wise

explanations for non-linear classifier decisions by layer-wise relevance propagation,” PLoS

ONE, vol. 10, 2015.

[28] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K. Müller, “Explaining nonlin-

ear classification decisions with deep taylor decomposition,” Pattern Recognit., vol. 65,

pp. 211–222, 2017.

106

[29] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should i trust you?": Explaining the predic-

tions of any classifier,” Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2016.

[30] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in

Advances in neural information processing systems, pp. 4765–4774, 2017.

[31] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvintsev,

“The building blocks of interpretability,” Distill, 2018. https://distill.pub/2018/building-

blocks.

[32] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding neural models in

nlp,” arXiv preprint arXiv:1506.01066, 2015.

[33] H. Yuan, Y. Chen, X. Hu, and S. Ji, “Interpreting deep models for text analysis via optimiza-

tion and regularization methods,” in Thirty-Third AAAI Conference on Artificial Intelligence,

pp. 5717–5724, 2019.

[34] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan, “Learning to explain: An information-

theoretic perspective on model interpretation,” in International Conference on Machine

Learning, vol. 80 of Proceedings of Machine Learning Research, pp. 882–891, PMLR,

2018.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” CoRR, vol. abs/1409.1556, 2015.

[36] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,”

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–

2269, 2017.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical im-

age segmentation,” in International Conference on Medical image computing and computer-

assisted intervention, pp. 234–241, Springer, 2015.

107

[38] A. Fakhry, T. Zeng, and S. Ji, “Residual deconvolutional networks for brain electron mi-

croscopy image segmentation,” IEEE transactions on medical imaging, vol. 36, no. 2,

pp. 447–456, 2017.

[39] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-

decoder architecture for image segmentation,” IEEE Transactions on Pattern Analysis &

Machine Intelligence, no. 12, pp. 2481–2495, 2017.

[40] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing

systems, pp. 2672–2680, 2014.

[41] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR,

vol. abs/1312.6114, 2014.

[42] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, “Sanity checks

for saliency maps,” in Advances in Neural Information Processing Systems, pp. 9525–9536,

2018.

[43] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity:

The all convolutional net,” International Conference on Learning Representations, 2015.

[44] M. Du, N. Liu, Q. Song, and X. Hu, “Towards explanation of dnn-based prediction with

guided feature inversion,” in Proceedings of the 24th ACM SIGKDD International Confer-

ence on Knowledge Discovery & Data Mining, pp. 1358–1367, 2018.

[45] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[46] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communica-

tions of the ACM, vol. 63, no. 1, pp. 68–77, 2019.

[47] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. MÃžller,

“How to explain individual classification decisions,” Journal of Machine Learning Re-

search, vol. 11, no. Jun, pp. 1803–1831, 2010.

108

[48] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in Inter-

national Conference on Machine Learning, pp. 3319–3328, 2017.

[49] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through propa-

gating activation differences,” in International Conference on Machine Learning, pp. 3145–

3153, 2017.

[50] A. Mahendran and A. Vedaldi, “Understanding deep image representations by inverting

them,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 5188–5196, 2015.

[51] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,

“Show, attend and tell: Neural image caption generation with visual attention,” in Interna-

tional conference on machine learning, pp. 2048–2057, 2015.

[52] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” in

International Conference on Learning Representations, 2016.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” in International Conference on Learning Representations, 2015.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[56] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,” in Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 107–117,

2016.

109

[57] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: sequence generative adversarial nets

with policy gradient,” in AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence,

vol. 31, pp. 2852–2858, Association for the Advancement of Artificial Intelligence, 2017.

[58] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for

reinforcement learning with function approximation,” in Advances in neural information

processing systems, pp. 1057–1063, 2000.

[59] H. Gao, H. Yuan, Z. Wang, and S. Ji, “Pixel transposed convolutional networks,” IEEE

transactions on pattern analysis and machine intelligence, vol. 42, no. 5, pp. 1218–1227,

2019.

[60] H. Yuan, L. Cai, Z. Wang, X. Hu, S. Zhang, and S. Ji, “Computational modeling of cellu-

lar structures using conditional deep generative networks,” Bioinformatics, vol. 35, no. 12,

pp. 2141–2149, 2019.

[61] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual

Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3,

pp. 211–252, 2015.

[62] N. Silberman and S. Guadarrama, “Tensorflowslim image classification model library,”

2017.

[63] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by re-

ducing internal covariate shift,” in Proceedings of the 32nd International Conference on

International Conference on Machine Learning-Volume 37, pp. 448–456, JMLR. org, 2015.

[64] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irv-

ing, M. Isard, et al., “Tensorflow: a system for large-scale machine learning,” in Proceedings

of the 12th USENIX conference on Operating Systems Design and Implementation, pp. 265–

283, USENIX Association, 2016.

110

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of

the 3rd International Conference on Learning Representations, 2014.

[66] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. Müller, and W. Samek, “On pixel-wise

explanations for non-linear classifier decisions by layer-wise relevance propagation,” PLoS

ONE, vol. 10, no. 7, p. e0130140, 2015.

[67] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark for interpretability

methods in deep neural networks,” in Advances in Neural Information Processing Systems,

pp. 9734–9745, 2019.

[68] K. Lin, D. Li, X. He, Z. Zhang, and M.-T. Sun, “Adversarial ranking for language genera-

tion,” in Advances in Neural Information Processing Systems, pp. 3155–3165, 2017.

[69] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A convolutional encoder model for

neural machine translation,” arXiv preprint arXiv:1611.02344, 2016.

[70] Z. Wang and S. Ji, “Learning convolutional text representations for visual question answer-

ing,” in Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 594–

602, SIAM, 2018.

[71] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations

in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[72] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neural networks,”

Google Research Blog. Retrieved June, vol. 20, no. 14, p. 5, 2015.

[73] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune, “Plug & play genera-

tive networks: Conditional iterative generation of images in latent space,” arXiv preprint

arXiv:1612.00005, 2016.

[74] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,”

The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

111

[75] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning

research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[76] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and

intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[77] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pp. 249–256, 2010.

[78] H. Gao and S. Ji, “Graph U-Net,” in International conference on machine learning,

pp. 2083–2092, 2019.

[79] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?,” in

International Conference on Learning Representations, 2019.

[80] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning architec-

ture for graph classification,” in Thirty-Second AAAI Conference on Artificial Intelligence,

pp. 4438–4445, 2018.

[81] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” in Advances in

Neural Information Processing Systems, pp. 5165–5175, 2018.

[82] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing

for quantum chemistry,” in Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pp. 1263–1272, JMLR. org, 2017.

[83] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

in Advances in neural information processing systems, pp. 1024–1034, 2017.

[84] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in International Conference on

Machine Learning, pp. 3734–3743, 2019.

[85] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based graph neural net-

work for semi-supervised learning,” arXiv preprint arXiv:1803.03735, 2018.

112

[86] H. Gao and S. Ji, “Graph representation learning via hard and channel-wise attention net-

works,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 741–749, 2019.

[87] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,”

arXiv preprint arXiv:1702.08608, 2017.

[88] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating

explanations for graph neural networks,” in Advances in Neural Information Processing

Systems, pp. 9244–9255, 2019.

[89] F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional net-

works,” in International Conference on Machine Learning (ICML) Workshops, 2019 Work-

shop on Learning and Reasoning with Graph-Structured Representations, 2019.

[90] M. Gevrey, I. Dimopoulos, and S. Lek, “Review and comparison of methods to study

the contribution of variables in artificial neural network models,” Ecological modelling,

vol. 160, no. 3, pp. 249–264, 2003.

[91] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network

motifs: simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824–

827, 2002.

[92] U. Alon, An introduction to systems biology: design principles of biological circuits. Chap-

man and Hall/CRC, 2006.

[93] U. Alon, “Network motifs: theory and experimental approaches,” Nature Reviews Genetics,

vol. 8, no. 6, p. 450, 2007.

[94] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the transcriptional

regulation network of escherichia coli,” Nature genetics, vol. 31, no. 1, p. 64, 2002.

[95] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo, “Graph-

GAN: Graph representation learning with generative adversarial nets,” in Thirty-Second

AAAI Conference on Artificial Intelligence, pp. 2508–2515, 2018.

113

[96] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and A. Aspuru-Guzik,

“Objective-reinforced generative adversarial networks (ORGAN) for sequence generation

models,” arXiv preprint arXiv:1705.10843, 2017.

[97] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational autoencoder for molecular

graph generation,” in Proceedings of the 35th International Conference on Machine Learn-

ing, pp. 2323–2332, 2018.

[98] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep generative models

of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[99] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolutional policy network for

goal-directed molecular graph generation,” in Advances in Neural Information Processing

Systems, pp. 6410–6421, 2018.

[100] S. L. Seager and M. R. Slabaugh, Chemistry for today: General, organic, and biochemistry.

Cengage learning, 2013.

[101] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function

using networkx,” tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United

States), 2008.

[102] J. A. Storer, An introduction to data structures and algorithms. Springer Science & Business

Media, 2012.

[103] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch,

“Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.

correlation with molecular orbital energies and hydrophobicity,” Journal of medicinal chem-

istry, vol. 34, no. 2, pp. 786–797, 1991.

[104] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in Proceedings of the Inter-

national Conference on Learning Representations, 2017.

114

[105] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional networks,” in Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 1416–1424, 2018.

[106] Z. Wang, M. Liu, Y. Luo, Z. Xu, Y. Xie, L. Wang, L. Cai, and S. Ji, “Advanced graph

and sequence neural networks for molecular property prediction and drug discovery,” arXiv

preprint arXiv:2012.01981, 2020.

[107] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph attention

network,” in The World Wide Web Conference, pp. 2022–2032, 2019.

[108] H. Yuan, L. Cai, X. Hu, J. Wang, and S. Ji, “Interpreting image classifiers by generating

discrete masks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[109] F. Yang, S. K. Pentyala, S. Mohseni, M. Du, H. Yuan, R. Linder, E. D. Ragan, S. Ji, and

X. Hu, “Xfake: explainable fake news detector with visualizations,” in The World Wide Web

Conference, pp. 3600–3604, 2019.

[110] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating

explanations for graph neural networks,” in Advances in neural information processing sys-

tems, pp. 9244–9255, 2019.

[111] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, “Parameterized ex-

plainer for graph neural network,” in Advances in neural information processing systems,

2020.

[112] M. N. Vu and M. T. Thai, “Pgm-explainer: Probabilistic graphical model explanations for

graph neural networks,” in Advances in neural information processing systems, 2020.

[113] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human knowledge,”

nature, vol. 550, no. 7676, pp. 354–359, 2017.

[114] H. W. Kuhn and A. W. Tucker, Contributions to the Theory of Games, vol. 2. Princeton

University Press, 1953.

115

[115] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability meth-

ods for graph convolutional neural networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 10772–10781, 2019.

[116] M. S. Schlichtkrull, N. De Cao, and I. Titov, “Interpreting graph neural networks for nlp

with differentiable edge masking,” arXiv preprint arXiv:2010.00577, 2020.

[117] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks through l_0

regularization,” arXiv preprint arXiv:1712.01312, 2017.

[118] Anonymous, “Hard masking for explaining graph neural networks,” in Submitted to Inter-

national Conference on Learning Representations, 2021. under review.

[119] Anonymous, “Causal screening to interpret graph neural networks,” in Submitted to Inter-

national Conference on Learning Representations, 2021. under review.

[120] Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang, “Graphlime: Local inter-

pretable model explanations for graph neural networks,” arXiv preprint arXiv:2001.06216,

2020.

[121] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the predic-

tions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference

on knowledge discovery and data mining, pp. 1135–1144, 2016.

[122] M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama, “High-dimensional fea-

ture selection by feature-wise kernelized lasso,” Neural computation, vol. 26, no. 1, pp. 185–

207, 2014.

[123] Y. Zhang, D. Defazio, and A. Ramesh, “Relex: A model-agnostic relational model ex-

plainer,” arXiv preprint arXiv:2006.00305, 2020.

[124] D. Margaritis and S. Thrun, “Bayesian network induction via local neighborhoods,” Ad-

vances in neural information processing systems, vol. 12, pp. 505–511, 1999.

116

[125] R. Schwarzenberg, M. Hübner, D. Harbecke, C. Alt, and L. Hennig, “Layerwise relevance

visualization in convolutional text graph classifiers,” arXiv preprint arXiv:1909.10911,

2019.

[126] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. SchÃijtt, K.-R. MÃijller, and G. Mon-

tavon, “Higher-order explanations of graph neural networks via relevant walks,” 2020.

[127] U. Alon, An introduction to systems biology: design principles of biological circuits. CRC

press, 2019.

[128] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural networks: A taxonomic

survey,” arXiv preprint arXiv:2012.15445, 2020.

[129] W. Jin, R. Barzilay, and T. Jaakkola, “Multi-objective molecule generation using inter-

pretable substructures,” in International Conference on Machine Learning, pp. 4849–4859,

PMLR, 2020.

[130] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan, “L-shapley and c-shapley: Efficient

model interpretation for structured data,” arXiv preprint arXiv:1808.02610, 2018.

[131] E. Štrumbelj and I. Kononenko, “Explaining prediction models and individual predictions

with feature contributions,” Knowledge and information systems, vol. 41, no. 3, pp. 647–

665, 2014.

[132] M. S. Schlichtkrull, N. D. Cao, and I. Titov, “Interpreting graph neural networks for {nlp}

with differentiable edge masking,” in International Conference on Learning Representa-

tions, 2021.

[133] Z. Chen, X. Li, and J. Bruna, “Supervised community detection with line graph neural

networks,” arXiv preprint arXiv:1705.08415, 2017.

[134] A. Jacovi and Y. Goldberg, “Towards faithfully interpretable nlp systems: How should we

define and evaluate faithfulness?,” arXiv preprint arXiv:2004.03685, 2020.

117

[135] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” arXiv preprint

arXiv:1908.04626, 2019.

[136] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark for interpretability

methods in deep neural networks,” in Advances in Neural Information Processing Systems,

pp. 9737–9748, 2019.

[137] B. Sanchez-Lengeling, J. Wei, B. Lee, E. Reif, P. Wang, W. W. Qian, K. McCloskey, L. Col-

well, and A. Wiltschko, “Evaluating attribution for graph neural networks,” Advances in

Neural Information Processing Systems, vol. 33, 2020.

[138] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch,

“Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.

correlation with molecular orbital energies and hydrophobicity,” Journal of medicinal chem-

istry, vol. 34, no. 2, pp. 786–797, 1991.

[139] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and

V. Pande, “Moleculenet: a benchmark for molecular machine learning,” Chemical science,

vol. 9, no. 2, pp. 513–530, 2018.

[140] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu, M. Peters, M. Schmitz, and

L. Zettlemoyer, “Allennlp: A deep semantic natural language processing platform,” arXiv

preprint arXiv:1803.07640, 2018.

[141] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[142] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in The adaptive

web, pp. 325–341, Springer, 2007.

118

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Explaining Deep Models for Images, Texts, and Graphs
	Dissertation Outline
	Contributions

	Explaining Deep Image Classifiers by Generating Discrete Masks
	Introduction
	Related work
	Methods
	Overview of the Proposed Approach
	A Reinforcement Learning Formulation
	Reward Function
	 Policy Learning with Auxiliary Information

	Experimental Studies
	Dataset and Experimental Setup
	Qualitative Evaluations
	Model Randomization Test
	Weakly Supervised Object Localization
	Saliency Metric Evaluation
	The Remove and Retrain Evaluation
	Ablation Study

	Explaining Deep Text Classifiers via Optimization and Regularization Methods
	Introduction
	Background and Related Work
	Methods
	Visual Explanations of Hidden Units
	Saliency Maps for Hidden Units
	Input Generation via Optimization
	Regularization
	Visualization of Optimized Inputs

	Experimental Studies
	Datasets
	Experimental Setup
	Visual Explanation Results
	Evaluation of Explainability

	Explaining Deep Graph Classifier via Subgraph Explorations
	Introduction
	Related Work
	Graph Neural Networks
	Explainability in Graph Neural Networks

	The Proposed SubgraphX
	From Node and Edge to Subgraph Explanations
	Explaining GNNs with Subgraphs
	Subgraph Exploration via MCTS
	A Game-Theoretical Scoring Function
	Graph Inspired Efficient Computations
	SubgraphX for Generic Graph Tasks

	Evaluating Explanation Techniques
	Fidelity
	Sparsity
	Stability
	Accuracy
	Discussions

	Experimental Studies
	Datasets and Experimental Settings
	Explanations for Graph Classification Models
	Explanations for Node Classification Models
	Quantitative Studies
	Efficiency Studies

	The Study of Pruning Actions

	Explaining Deep Graph Classifier via Graph Generation
	Introduction
	Related Work
	Graph Neural Networks
	Model-level Explanations
	Graph Model Explanations

	XGNN: Explainable Graph Neural Networks
	Model-Level GNN Explanations
	Explaining GNNs via Graph Generation
	Graph Generator
	Training the Graph Generator

	Experimental Studies
	Dataset and Experimental Setup
	Experimental Results on Synthetic Data
	Experimental Results on Real-World Data

	Conclusions and Future Work
	REFERENCES

