
ENERGY-EFFICIENT VIDEO TEXT-SPOTTING

A Thesis

by

RAHUL SRIDHAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Zhangyang Wang
Committee Members, Nima Kalantari

Chao Tian
Head of Department, Scott Schaefer

May 2021

Major Subject: Computer Science

Copyright 2021 Rahul Sridhar

ABSTRACT

There is a lot of research done to increase the accuracy and reduce the latency of deep

learning algorithms. But, there is very little research done to reduce the energy consump-

tion of the deep learning models. For applications that require deploying the deep learning

models on the edge devices that have low compute resources, it is important that these

algorithms are energy-efficient. Efficient Video Text Spotting is the field that deals with

developing deep learning models to be deployed on edge devices to detect, localize, and

recognize text appearing in the frames of the videos. Previous methods followed a four-

step pipeline: text detection in every frame, text recognition for the localized text region

in every frame, tracking text streams, and post-processing. The two main problems with

the above approach are high computational cost and low performance. This thesis focuses

on the text spotting model design for an Efficient Video Text Spotting System. In this

thesis, model design experiments are carried out keeping efficiency in mind. Two different

real-time text spotting models were experimented i.e. ABCNet and FOTS. For ABCNet

different backbones, normalization schemes, and feature pyramid variations are experi-

mented with to attain the best accuracy and energy tradeoff. For the FOTS model, the

two-step text spotting and two-stage text spotting model design are experimented. The

influence of various factors such as bounding box to character count ratio, character count,

blur level, bounding box count, bounding box area are experimented. From the exper-

iments, it was observed that the two-step text spotting model design method performed

better for all resolutions. Further, it was observed that the recognition performance im-

proves with a higher bounding box to character count ratio and lower character count. The

energy measurement of the two-step FOTS text spotting model on Raspberry Pi is also

presented.

ii

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Professor Zhangyang Wang, my research

supervisors, for his patient guidance, enthusiastic encouragement and useful critiques of

this work. I would also like to thank Professor Nima Kalantari and Professor Chao Tian

for their advice and being the committee members.

My grateful thanks are also extended to the group of Visual Informatics Group @ Uni-

versity of Texas at Austin lab directed by Professor Zhangyang Wang for their insightful

suggestions.

I would also like to thank all the faculty members of Department of Computer Sci-

ence & Engineering for their help in offering me the resources and advice throughout my

masters program.

Finally, I wish to thank my parents for their support and encouragement throughout

my study.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Zhangyang

Wang [advisor] and Professor Nima Kalantari of the Department of Computer Science &

Engineering and Professor Chao Tian of the Department of Electronics & Communication

Engineering.

The model used for deployment on Raspberry Pi was provided by Yunhe Xue of the

Department of Electrical & Computer Engineering.

Funding Source

There are no outside funding contributions to acknowledge related to the research and

compilation of this document

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 3

2.1 Scene Text Spotting in Images and Videos 3
2.1.1 Scene Text Spotting in Images 3

2.1.1.1 Two-Step Text Spotting Pipeline 3
2.1.1.2 Two-Stage Pipeline 3
2.1.1.3 One-Stage Pipeline 5

2.1.2 Scene Text Spotting in Videos 5
2.2 ABCNet . 7
2.3 FOTS . 8

3. PROPOSED METHODOLOGY . 10

3.1 Overview of the entire system . 10
3.1.1 Text Spotting Model . 10

3.1.1.1 Two-step Crop+Resize based Text Spotting Models . . 10
3.1.1.2 Two-stage Aligned RoIPool based Text Spotting Models 11

3.2 Auto Labeling: Vision-Aided Annotation for Video Text Spotting 12

4. EXPERIMENTS AND DATASETS . 15

4.1 Dataset . 15
4.2 Evaluation Metric . 16

iv

4.3 Energy Measurement Tool . 16
4.4 ABCNet Experiments . 17
4.5 FOT++ Experiments . 26
4.6 Model Deployment Results . 29
4.7 FLOPs Calculation and Speed Test . 29

5. CONCLUSION . 31

REFERENCES . 33

v

LIST OF FIGURES

FIGURE Page

2.1 Quadratic Bezier Curve Construction . 7

2.2 ABCNet Model Architecture . 8

3.1 Two-step FOT++ Model Architecture 11

3.2 Two-stage FOT++ Model Architecture 12

4.1 Proof of Concept Experiments for Energy Measurement tool 17

vi

LIST OF TABLES

TABLE Page

4.1 Effect of Cropping Text Region and Upscaling Images 19

4.2 Experimental Setup for different ABCNet Models 21

4.3 Experimental Results for different ABCNet Models 22

4.4 Effect of Case-Sensitive Labelling . 23

4.5 Effect of Finetuning with Case-sensitive Dataset with Repo Model 23

4.6 Effect of Different Scale of Feature Pyramid Network used for Detection
and Recognition . 24

4.7 Effect of Different Cropped Images used for training 26

4.8 EAST + CRNN (Image) results on Case-Sensitive Sample Dataset Test Set 28

4.9 EAST + BezierAlign + CRNN (Feature Map) results on Case-Sensitive
Sample Dataset Test Set . 28

4.10 CRNN+Attn (Image) results on Case-Sensitive Sample Dataset Test Set . 29

4.11 CRNN+Attn (Feature Map) results on Case-Sensitive Sample Dataset Test
Set . 29

4.12 Performance, Latency, and Energy Measurement of two-step FOT++ model
on Raspberry Pi . 30

4.13 FLOPS calculation of ABCNet for different resolution 30

4.14 Speed Test (in ms) for different components of FOTS and ABCNet 30

vii

1. INTRODUCTION

The text has been a very important method to convey information. Recognizing the

text in natural environments has numerous applications such as robot navigation, building

assistive technology for disabled people, and translation of board signs for tourists. The

task of detecting and recognizing the text appearing in an image or video is called text

spotting. The two main components of the text spotting pipeline are the detector and

recognizer. The task of the detector is to detect the text regions in the image and the task

of the recognizer is to recognize the text in the localized text regions.

Most previous works in video text spotting follow a four-step process which includes

detecting the text regions, recognizing the localized text regions, tracking the same text

region temporally for the same scene frames, post-processing to generate final results.

This method has huge computational complexity make it unreal for resource-constrained

edge devices and lower performance due to recognizing every text region especially those

frames containing heavy artifacts such as high motion blur. Hence a select and recognize

strategy is preferred for video text spotting similar to FREE [1]. Most of the research in

the field of text spotting for images focuses on improving the performance by increasing

the model complexity making it unfit to deploy on resource-constrained edge devices. The

Efficient Video Text Spotting system used in this work consists of a two-stage selector and

the text spotting model. The two-stage selector task is to reject non-text frames temporally

and to perform spatial aware cropping for the frames that contain text. The text spotting

model used is the two-step text spotting model consisting of EAST [2] text detector and the

CRNN [3] recognizer. The recognizer makes predictions on the input image. To deploy

the model on Raspberry Pi quantization and compression are done. This thesis focuses on

the efficient text spotting model design for the system.

1

Two real-time models used are ABCNet [4] and FOT++. For ABCNet different com-

ponents of the model are experimented with an aim to have good energy to accuracy trade-

off. Below are the set of experiments carried out for ABCNet - Effect of Cropping Text

Regions and Upscaling during Inference - Experiment Results for different components

of ABCNet model in terms of normalization scheme, backbone, training resolution - Ef-

fect of Case-Sensitive Labelling - Effect of Finetuning with Case-sensitive Dataset with

Repo model - Effect of Different Scale of Feature Pyramid Network used for Detection

and Recognition - Effect of Different Cropped Images used for training

The FOT++ experiments are carried out for two-step text spotting and two-stage text

spotting methods. The first set of experiments involve using the EAST bounding box

predictions for recognition. The second set of experiments use a ground truth bounding

box instead of an EAST detector. This is done to remove the influence of the detector

to understand the performance of both methods. The results indicate that the two-step

text spotting method performs better than the two-stage text spotting method for all input

resolutions. Experiments are also conducted to understand the effect of parameters such as

bounding box area, bounding box count, blur level, bounding box area to character count

ratio, and character count on the recognition results. Further energy measurement results

of the FOTS text spotting model deployed on the Raspberry Pi. The proof of concept for

the energy measurement tool is also done.

2

2. LITERATURE REVIEW

2.1 Scene Text Spotting in Images and Videos

In this literature review, only deep learning-based methods are discussed.

2.1.1 Scene Text Spotting in Images

The scene text spotting models developed consist of detection and recognition both of

which are trained end-to-end. The deep learning-based scene text spotting models can be

categorized as Two-Step Pipelines, Two-Stage Pipelines, and One-Stage Pipeline [5].

2.1.1.1 Two-Step Text Spotting Pipeline

The two-step text spotting model consists of a detector to predict bounding boxes

which are cropped from the input image and fed to the recognizer. Jaderberg et al. [6]

use a combination of Edgeboxes [7] and weak aggregate channel features for proposal

generation. The generated proposals are filtered, refined, and fed to the recognizer. The

recognizer makes a classification of the proposal into one of the words in a pre-defined

dictionary. Liao et al. [8] uses the TextBoxes [8] inspired by SSD [9] for text detection

and CRNN [3] for text recognition. The detection score used for training the detector

uses information from the recognizer to remove false-positive detection to improve the

detection performance.

2.1.1.2 Two-Stage Pipeline

Liao et al. [10] propose an end-to-end deep learning model with detector and recog-

nizer trained in a semi-supervised manner where the ground truth only contains the text

labels associated with the images. No ground truth bounding box is used for training.

The detection part uses a spatial transformer consisting of first finding the parameters to

apply a spatial transformation, then creating the sampling grid, and finally applying bi-

3

linear interpolation to generate spatially transformed input image region containing text.

This is then fed to the recognizer. FOTS [11], Deep TextSpotter [12], and text spotter by

He et al. [13] have similar architecture. FOTS [11] uses EAST [2] detector. The fixed

height varying width features are extracted from the feature map of the detector using the

detector bounding box predictions. This is then fed to a CTC [14] based recognizer con-

sisting of convolutional, LSTM [15], and FC layers. Deep TextSpotter [12] uses YOLOv2

[16] and Region Proposal Network for the text detection. The YOLOv2 by removing

the fully connected layer is a fully convolutional network with the output dimension of

W/32×H/32× 1024 where W and H are the width and height of the source image. The

region proposal network takes in W/32×H/32×1024 as input tensor and returns outputs

a tensor of dimension W/32 × H/32 × 6k where k is the number of anchor boxes for

every point in the final feature map and 6 is the number of predicted parameter for one

anchor box which include 2-position, dimensions, and the rotation angle of the bounding

box. The predicted bounding boxes are then converted into fixed height tensor and bilinear

sampling is used for mapping from the feature map to the input of the text recognizer. For

text recognition, a fully convolutional network is used which takes W*H*C as input and

returns W/4*A as output where A is the number of alphabets. The model then uses CTC to

predict word labels for the predicted bounding box. He et al. [13] use PVANet [17] as the

text detector and the text recognition branch consists of LSTM [15] and attention [18]. It

uses bilinear sampling to map the arbitrary shaped quadrilateral text detection predictions

region to fixed-size features which are then fed to the recognizer. MaskTextSpotter [19]

is a modification of Mask-RCNN [20]. The Resnet [21] is used for feature extraction and

FPN [22] is used to make the model robust to scale. The region proposal network (RPN)

[23] is then used to propose candidate text regions. The candidate text regions of arbi-

trary shape are then converted to a fixed size using RoIAlign. This is then passed to two

branches. The first branch has the horizontal box classification and box regression similar

4

to the Fast R-CNN. The second is the mask branch which takes fixed size features from

the RoIAlign as input, applies convolutional layers, and outputs word-level segmentation

and character level segmentation masks. A post-processing step is carried out to recognize

the words present in the image along with their word-level and character-level masks. Qin

et. al. [24] textspotter is again a modification of the MaskTextSpotter. The detection mod-

ule is similar to Mask R-CNN [20] to generate the bounding box and mask for each text

region in the image. The recognition module takes one-eight and one-fourth of the input

dimension from the feature extractor as input and fuses the features. This is then fed to

the RoIMasking module which extracts fixed size features but at the same time multiplies

with the segmentation mask predicted by the detection module. This allows the decoder to

focus on the text region to make the final predictions. The decoder consists of LSTM and

attention.

2.1.1.3 One-Stage Pipeline

Xing et al. [25] is the first one-stage text spotting model wherein detection and recog-

nition are done parallelly. The model consists of two branches. The first branch is the

detection branch which predicts the bounding box surrounding each text in the image.

The second branch is the character branch which performs detection and recognition at

the character level. The model is trained end-to-end using the word-level and character-

level bounding boxes and labels.

The two real-time text spotting models used for the model design for the FOT++ text

spotting model are FOTS and ABCNet [4]. Below is an explanation of the two models.

2.1.2 Scene Text Spotting in Videos

Nguyen et al. [26] was the first method to come up with an end-to-end solution for the

video text spotting problem. The entire system consists of character detection per frame,

temporal smoothing, word detection, temporal smoothing, and Linker to get the final pre-

5

dictions. The temporal smoothing is done to remove the false positives and reduce the

word detection search space. A linker is used to combine the same text across frames and

linearly interpolate the text location in frames that might have been missed due to image

artifacts. Merino-Gracia et al. [27] developed an real-time end-to-end video text spotting

method for large text in outdoor environments. The method uses light-weight real-time

text detection and text aggregation modules. A tracking module is proposed to keep track

of the same text region across frames. It uses Tesseract OCR [28] for text recognition.

The recognition is performed parallelly with the text tracking system. From the available

text tracker, the recognizer selects the tracker based on recognition availability for a text

instance, a recognition confidence score for the same text instance if exists, and time since

the last recognition prediction. The same tracker might be used by the recognizer and the

result with the highest confidence is kept. Wang et al. [29] used an end-to-end text spot-

ting model where the detector is similar to Fast R-CNN with feature extractor, RPN, RoI

Pool. The detector predicts 8 coordinate bounding boxes to handle the text of arbitrary

orientation horizontal text. The detected text regions are fed to the recognizer consisting

of the LSTM [15] to obtain the final recognition results. It uses a tracking-by-detection

strategy to combine text regions across frames in order to obtain the tracking trajectory.

The tracking trajectory is used to improve the detection and recognition results. The same

text region missed for certain frames due to artifacts could be added by linearly interpolat-

ing the detections using the trajectory for the text instances across the frames. To improve

the recognition result the text prediction label which appears the most number of times

in the text trajectory across frames is considered as the final prediction result for all the

frames in the text trajectory. FREE [1] proposes a video text spotting framework that can

be trained end-to-end. It follows the strategy of select and recognizes instead of applying a

recognizer module for all the frames. The method consists of two parts, a spatial-temporal

video text detector, and the text recommender. The text detector module uses TextPercep-

6

Figure 2.1: Quadratic Bezier Curve Construction

tron [30] for text detection for every frame. The detection results are improved by using

the temporal information with the help of a spatial-temporal aggregation strategy. The text

recommender consists of three parts. The first is the text tracking branch to group the same

text instance across frames. The second branch is the text quality branch which assigns a

numeric score in [0, 1] where 1 means high-quality frame without artifact and 0 means the

low-quality frames containing motion blur and other artifacts. The third branch is the text

recognition module which is an LSTM based attention decoder. The text tracker groups

the same text instance across frames, the text quality scoring branch assigns a score for

each frame, the text recognition then makes recognition prediction for the text instance

with the highest quality from the group of all the instances of the same text.

2.2 ABCNet

The Adaptive Bezier Curve Network (ABCNet) model uses the concept of Bezier

curves. Bezier curve is generated using control points. Figure 2.1 shows the quadratic

bezier curve generation using three control points. In the figure 1, 2, 3 are the control

7

Figure 2.2: ABCNet Model Architecture

points of the bezier curve. To obtain one point on the bezier curve first two points on the

line segment 12 and 23 at a distance t are obtained. These two points are then used to draw

the blue segment. A point at a distance of t on the blue line segment originating from the

line segment 12 is one point on the bezier curve. This is repeated for all the values of t in

the interval [0,1] to obtain the bezier curve. The ABCNet model converts arbitrary-shaped

scene text detection into eight control point bounding box regression problem. It uses

FCOS [31] based detector which is a single-shot anchor free detector that makes predic-

tions in a per-pixel fashion. Bezier Align is used to extract fixed-size features. It samples

equally spaced points along the row and the column wherein the columns are orthogonal

to the two bezier curves and the points are bilinearly interpolated. The fixed size features

extracted using Bezier Align are fed to the CRNN text recognizer. The text recognizer

consists of three convolution blocks, followed by CRNN and Attention. Figure 2.2 shows

the ABCNet model architecture. FOTS model can be seen as a special case of ABCNet.

2.3 FOTS

The Fast Oriented Text Spotting (FOTS) [11] is an end-to-end real-time oriented text

spotting model. It uses EAST as the text spotter. The EAST detector is similar to U-Net

in that it has a downsampling path followed by the upsampling path where the features

8

are merged. The output feature map is one-fourth of the resolution of the original image.

Lastly, one convolution is applied to the feature map obtained from the upsampling path.

This gives six channels wherein each pixel of each channel represents the probability of

text, top, left, right, and bottom, and the orientation of the bounding box. Finally, NMS

is applied to the positive samples. The bounding box predictions from the EAST [2]

detector is fed to the RoIRotate to obtain features of fixed height and varying width length

to maintain the aspect ratio. The RoIRotate first applies Affine transformation and bilinear

interpolation to obtain fixed height features. This is then fed to the text recognizer. The

recognizer consists of convolution and max pool along the height axis followed by LSTM

and CTC.

9

3. PROPOSED METHODOLOGY

3.1 Overview of the entire system

The entire video text spotting pipeline consists of two main parts i.e. the two-stage

selector and the FOT++ text spotting model. The first stage in the two-stage selector is

designed to reject non-text frames and low-quality text frames. The task of the second

stage to perform spatial aware cropping of the text regions in the text frames. The cropped

text region is then fed to the FOT++ text spotting model to detect and recognize the text

present in the frames. To deploy the model on Raspberry Pi quantization and pruning are

done. My work was focused on the text spotting model design. The remainder of the

thesis will focus on ABCNet [4] and FOT++ model design and various aspects of the text

spotting model design would be discussed.

3.1.1 Text Spotting Model

The text spotting model consists of two main parts. The detector module and the

recognizer module. Both of these modules are connected with an Aligned RoIPool based

component to extract fixed size features from detection predictions and feed them to the

recognizer. The two major methods to design a deep learning text spotting model can be

classified into two-step Crop+Resize text spotting model and two-stage Aligned RoIPool

text spotting model. Since our problem requires real-time predictions subsequent sections

only describe real-time deep learning models.

3.1.1.1 Two-step Crop+Resize based Text Spotting Models

In this class of text spotting models, the detector and the recognizer are trained sep-

arately. During inference, the predicted bounding box from the text detector is used to

extract fixed size features directly from the image using Bezier Align. We call this model

10

Figure 3.1: Two-step FOT++ Model Architecture

to be two-step FOT++ as it is an extension of the FOTS [11] model. The text detector

used is EAST and the text recognizer used is CRNN. The advantage of this method is that

it gives flexibility in changing the input dimension fed to the detector and the recognizer.

Since text detection is an easier problem when compared with recognition as it only needs

to identify and localize text regions, a lower resolution input image is sufficient to achieve

good performance. Text recognition results depend on the content of the text so it is im-

portant to feed high-resolution image to the recognizer. With a two-step text spotter, it is

possible to feed low-resolution images to the detector and original resolution images to

the recognizer. This helps to reduce energy consumption while maintaining performance.

Figure 3.1 shows the model architecture of the two-step FOT++ text spotting model.

3.1.1.2 Two-stage Aligned RoIPool based Text Spotting Models

In this class of text spotting models, the detector and the recognizer are trained in an

end-to-end fashion. During inference, the predicted bounding box from the text detector is

used to extract fixed size features from the detector feature map and fed to the recognizer.

For our experiments, two different text spotting models are used i.e. ABCNet and two-

stage FOT++. The ABCNet model uses FCOS as the text detector and the text recognizer

11

Figure 3.2: Two-stage FOT++ Model Architecture

is CRNN with attention. Bezier Align is used to extract fixed-size feature representation.

During training, the text detector is fed the input image and the predicted bounding box

along with the ground truth bounding box is used for loss calculation. For the recognizer,

the ground truth bounding box is used to extract fixed-size features from the feature map

of the detector and fed to the recognizer. The two-stage FOT++ uses EAST as the text

detector. The text recognizer and the fixed size feature representation extractor used are

the same as the ABCNet. The detector is first trained and the weights are frozen. Then for

training the recognizer the grounding bounding box is used to extract fixed size features

from the feature map of the detector. Figure 3.2 shows the model architecture of the two-

stage FOT++ text spotting model.

3.2 Auto Labeling: Vision-Aided Annotation for Video Text Spotting

This section introduces the Auto Labeling algorithm to label the LPCVC [32] Chal-

lenge dataset. Each frame in a video is annotated by the bounding box location of the text

and the text present in the bounding box. For a video the scene does not change drasti-

cally for adjacent frames, resulting in many frames with similar scenes. It is possible to

automatically annotate one group of frames by manually annotating one of the frames. We

use feature matching and homography to transfer the annotations from one frame to an-

other. Since the UAV can move horizontally or vertically the homography assumption of

12

the frames being on the same planar surface breaks. This could lead to errors in obtained

annotations. Hence, after obtaining the annotations using the auto-labeling algorithm we

manually verify each annotation and make the required corrections. Algorithm 1 shows

the above-described algorithm.

Algorithm 1: Auto-Labeling
1 Is ← V [1]
2 bs ← Annotate(Is)
3 N ← Size(V)
4 for i← 2 to N do
5 It ← V [i]
6 k1, d1 ← SIFT(Is)
7 k2, d2 ← SIFT(It)
8 m← BFMatcher(d1, d2)
9 m′ ← LoweRatioTest(m)

10 ps ← FilterKeyPts(m′, k1)
11 pt ← FilterKeyPts(m′, k2)
12 M ← FindHomography(ps, pt)
13 bt ← PerspectiveTransform(bs,M)
14 Is ← It
15 bs ← bt

The psuedo code shown in Algorithm 1 uses feature matching and Perspective Trans-

formation to find the annotation bt of the destination frame It given the annotation bs of the

source frame Is. First the keypoints k1, k2 and the descriptors d1, d2 for the both the frames

are found using SIFT [33]. Second, the two best matches of every descriptor of source

frame with respect to every descriptor of the destination frame. Third, Lowe’s Ratio test

[33] is applied to get best keypoints ps, pt for which the first and second best match are

good. Fourth, homography matrix M is found using RANSAC [34] technique using the

good features from source and destination frame. Fifth, the annotation for the destination

13

frame bt is obtained by doing Perspective transformation for the source frame annotations

bs using the homography matrix M. Finally, the source frame and annotations are updated

to the current destination frame and annotations.

14

4. EXPERIMENTS AND DATASETS

4.1 Dataset

Five word-level datasets are used for training and evaluating the performance of the text

spotting model utilizing the cubic bezier curve in Bezier Align. Two synthetic datasets are

generated using VGG Synthetic method [35]. The first one (S1) consists mostly of straight

text (94723 images). The second one (S2) mostly consisting of curved text (54327 images).

The three real-world datasets used are 7k ICDAR-MLT (MLT17) [36], TotalText (TT) [37]

and LPCVC challenge dataset. The subset of the ICDAR-MLT 2017 dataset consists of

English words is used which has 7000 images. The training set of the TotalText consisting

of 1255 images. The LPCVC challenge dataset consists of images collected extracted from

five videos. The videos are captured by UAVs flying indoors on the corridors capturing

posters and board signs containing text. The text consists of oriented horizontal text where

the orientation angle is very small. The text is not arbitrarily shaped. The text was anno-

tated using the Semi-Supervised algorithm described in Section 3.2. Frames from four

videos were used for training and one video was reserved for testing. This dataset is called

the LPCVC challenge Dataset (SD). The LPCVC challenge dataset consists of 5755 train

images and 1187 test images. The dataset consists of images of resolution 3840 × 2160,

1920 × 1080, and 1280 × 720. The LPCVC challenge Dataset has case-insensitive text

labels i.e. all the text appearing in the image are stored as lowercase alphabets in the text

label. To add the uppercase and lowercase information to the ground truth another ver-

sion of the LPCVC challenge dataset is developed which consists of Case-Sensitive text

labels. Two more datasets are used for training the Linear ABCNet i.e. ICDAR MLT 2019

(MLT19) [36] consisting of 10000 images and the Synthtext in the Wild dataset (ST) [35]

consisting of 858750 images. S1, S2, TT, MLT17, SD have 16 coordinate bezier anno-

15

tations to denote the bounding box of the text. The MLT19 and ST dataset consists of 8

coordinate bezier annotations to denote the bounding box of the text.

4.2 Evaluation Metric

The evaluation metric used to measure the performance of the algorithm was the Edit

Distance. To calculate the Edit Distance first the ground truth bounding box with the

maximum IoU with the predicted bounding box is paired. The Edit Distance between the

predicted word and the ground truth text for the paired bounding box is then calculated.

The final Edit Distance is then obtained by dividing the total Edit Distance for the entire

test dataset and the number of text instances in the ground truth test set. To get a better

understanding of the different parameters such as blur level, bounding box area, bounding

box count, bounding box area to character count ratio, and character count in a word

on the model predictions the Edit Distance with respect to each of these parameters are

calculated.

4.3 Energy Measurement Tool

To measure energy consumption MakerHawk UM34C USB 3.0 Multimeter Bluetooth

USB Voltmeter Ammeter was used. The USB power meter was connected to the power

source. The USB power meter was also connected to the power supply of the Raspberry

Pi. In this setup, the Raspberry Pi drew power from the power source through the power

meter which was measured by the power meter. The power meter were connected with the

Desktop through Bluetooth and energy measurements of the Raspberry Pi measured by the

power meter were read using [38] and stored locally. On raspberry pi, the timestamp for

model inference was noted. The energy consumption of the deep learning algorithm was

then calculated by measuring the energy consumption within the timestamp during which

model inference was performed. Figure 4.1 shows the experimental results of the proof of

concept experiments carried out to verify the correctness of the energy measurement tool.

16

Figure 4.1: Proof of Concept Experiments for Energy Measurement tool

A dummy randomly initialized model consisting of nine layers of convolutions followed

by a fully connected layer was used. The batch size indicates the number of images fed

as input to the model during inference and was increased by a factor of two. The model

size was varied by changing the number of filters in each layer by a constant factor. From

the below figure it can be seen that as the batch size and the model size increases the en-

ergy consumption increases during inference. This indicates that the energy measurement

works correctly.

4.4 ABCNet Experiments

This section provides results by experimenting with different components of the ABC-

Net model. Two different backbones are experimented i.e. Mobilenetv2 [39] and Resnet.

Two different normalization schemes are experimented i.e. group normalization and batch

normalization. Two different types of Bezier Align are experimented i.e. Cubic and Lin-

ear Bezier Align. The cubic Bezier Align consists of eight control points and the linear

Bezier Align consists of four control points. For all the experiments there are two stages

of training. The first one is pretraining which runs for 260000 iterations and starts at a

learning rate of 0.01 which is reduced by a factor of 10 at 160000 and 220000 iterations.

17

The second stage of the training is called finetuning which runs for 40000 iterations with

early stopping. It has a learning rate of 0.001. The two types of resolution used for train-

ing and testing are Type A and Type B of multi-scale setting. In both types, there are four

parameters i.e. minimum and maximum dimension size for training and testing. In Type

A the minimum size of both the dimensions for training is selected at random from the set

(640, 672, 704, 736, 800, 832, 864, 896). The maximum size of both the dimensions is set

to 1600. The minimum and maximum dimension limits for inference are 1000 and 1824.

In Type B the minimum size of training is selected at random from the set (224, 232, 240,

248, 256, 264, 272, 280, 288). The maximum size of training for both dimensions is set to

be 400. The minimum and maximum dimensions for inference are 250 and 456.

Algorithm 2 shows the algorithm used to generate cropped text regions from the im-

age. The algorithm groups nearby texts which are less than 50 pixels apart and crops the

text region from (xmin-50, ymin-50) to (xmax+50, ymax+50) where xmin, ymin, xmax,

ymax, are obtained from the minimum and maximum coordinate of the text regions. An-

other parameter is upscaling the image. The inference image when not resized the height

and the width is converted to the nearest multiple of 32. Table 4.1 shows the result of crop-

ping text region in the image and upscaling the image during inference. Original means

the input image is used as such for testing. Cropped means the test dataset created by

using Algorithm 2 used to measure the performance of the algorithm. Resized means the

image is resized during inference such that the minimum dimension of the image is greater

than 1000 and the maximum dimension of the image is lesser than 1824. Repo ABCNet

means the official GitHub repository [40] finetuned model was used. After resizing the

image to within the interval both the dimensions of the image are converted such that both

the dimensions are multiples of 32. The results show that by performing inference on the

cropped image the model has better recognition results. From the results, it can be inferred

that cropping the text region in the image increases the Signal-to-noise (SNR) ratio of the

18

image and hence increases the recognition results of the algorithm. This was the motiva-

tion to use a spatially aware cropping mechanism in the two-stage selector for the cropping

text region in the image. Upscaling the input image also improves the recognition results.

Algorithm 2: Algorithm to generate Cropped Text Regions in Image
1 BBoxes← GT BBoxes of Image
2 while BBoxes not empty do
3 xmin, ymin, xmax, ymax← BBoxes[0]
4 xmin, ymin← xmin− 50, ymin− 50
5 xmax, ymax← xmax+ 50, ymax+ 50
6 while ith BBox intersects do
7 Update(xmin, ymin, xmax, ymax)
8 BBoxes.remove(i)

9 Save image[xmin : xmax, ymin : ymax]

Table 4.1: Effect of Cropping Text Region and Upscaling Images

Model Inference Image Inference Res IoU IoP IoG EditDistance
Repo ABCNet Original Not Resized 81.96 92.44 86.79 0.24
Repo ABCNet Original Resized 81.85 91.47 87.48 0.26
Repo ABCNet Cropped Not Resized 81.76 94.31 85.60 0.21
Repo ABCNet Cropped Resized 83.34 94.69 87.48 0.13

Table 4.3 and 4.2 shows the experimental results for different combinations in the

ABCNet model. Column P represents whether pretraining was done or not. It has two val-

ues Y meaning pretraining was done, Y* means GitHub provided a pre-trained model was

used. The third column is the dataset used for pretraining. Column 4 indicates whether

finetuning was done. Column 5 indicates the dataset on which finetuning was done. Col-

umn 6 indicates the normalization scheme used. The two types of normalization schemes

19

tested are batch normalization [41] and group normalization [42]. Column 7 indicates the

backbone used. The two types of backbone used for experimentation are Resnet-50 and

Mobilenet-v2. Column 8 indicates the batch size used for training. The batch size used

was 4. Column 9 indicates the device used for inference. There are two options one is

GPU and the other is CPU. Column 11 indicates the resolution used for training and test-

ing during the pretraining and fine-tuning stage. Column 12, 13, 14 are IoU, IoP, and IoG

which indicate the detection performance of the algorithm. Column 15 indicates the Edit

Distance which measures the recognition performance of the algorithm. Column 16 indi-

cates the Model Size in Megabyte. It is approximately 295MB when Resnet-50 is used as

the backbone and 115 MB when Mobilenet-v2 is used as backbone. Column 17 indicates

the average latency per prediction in seconds. From the table, it can be observed that by

changing the backbone from Resnet to Mobilenet the recognition performance decreases

but the model becomes more efficient as it has a smaller model size and lower latency

for prediction. For the two normalization schemes tried it can be seen that the group nor-

malization better performance with a lower edit distance than the batch normalization but

with batch normalization the CPU latency significantly decreases. Another advantage of

using batch normalization is that it is quantization friendly. The third observation is that

the model has better recognition results when it is finetuned on the sample dataset with

a smaller learning rate after it has been pretrained. The next observation is that the Cu-

bic Bezier curve has better accuracy when compared with Linear Bezier Curve. This is

expected because the cubic bezier curve uses has eight control points whereas the linear

bezier curve has only four control points. But the expected latency trend is that the linear

bezier curve model would have lower latency when compared with the cubic bezier curve.

But the results show that the cubic bezier curve has lower latency than the linear bezier

curve. The reason behind this could be that the original repository is built for cubic bezier

curve and hence is optimized for the same. Only making the necessary changes to convert

20

the cubic bezier curve to the linear bezier curve would not work.

Table 4.2: Experimental Setup for different ABCNet Models

ID P Pretrain Dataset F FD Norm BB BS D Bezier Curve Res(PF)
1 Y* MLT17, S1, S2, TT N N/A GN R50 4 G Cubic A-
2 Y* MLT17, S1, S2, TT Y SD GN R50 4 G Cubic AA
3 Y MLT, S1, S2, TT, SD N N/A GN R50 4 G Cubic A-
4 Y MLT, S1, S2, TT, SD Y SD GN R50 4 G Cubic AA
5 Y SD N N/A GN R50 4 G Cubic A-
6 Y MLT, S1, S2, TT, SD N N/A GN Mv2 4 G Cubic A-

7A Y MLT, S1, S2, TT, SD Y SD GN Mv2 4 G Cubic AA
7B Y MLT, S1, S2, TT, SD Y SD GN Mv2 4 C Cubic AA
8 Y MLT, S1, S2, TT, SD N N/A GN Mv2 4 G Linear A-
9 Y MLT, S1, S2, TT, SD Y SD GN Mv2 4 G Linear AA

10 Y MLT, S1, S2, TT, SD Y SD GN R50 4 G Cubic AB
11 Y MLT, S1, S2, TT, SD Y SD GN Mv2 4 G Cubic AB
12 Y MLT, S1, S2, TT, SD Y SD GN R50 4 C Cubic AB
13 Y MLT, S1, S2, TT, SD Y SD GN Mv2 4 C Cubic AB
14 Y MLT, S1, S2, TT, SD Y SD GN R50 4 C Cubic BB
15 Y MLT, S1, S2, TT, SD Y SD GN R50 4 C Cubic BB
16 Y MLT, S1, S2, TT, SD F N/A GN Mv2 4 C Cubic B-
17 Y MLT, S1, S2, TT, SD N SD GN Mv2 4 C Cubic BB
18 Y MLT, S1, S2, TT, SD Y SD BND Mv2 4 C Cubic AA
19 Y MLT, S1, S2, TT, SD Y SD BN Mv2 4 C Cubic AA

Table 4.4 shows the effect of case-sensitive labels. Both the models are trained with

Type A resolution. The models are first pretrained and then finetuned. During pretraining

and finetuning the sample dataset images remain the same for both cases. The results in

the first row indicate the result when all the ground-truth text are in lowercase. The second

row indicates the results when the ground-truth text is case-sensitive. It can be seen from

Table 4.4 that the model performs better when case-sensitive labels are used.

Table 4.5 shows the effect of finetuning the original repository pretrained and finetuned

model with the case sensitive sample dataset. The repository pretrained model is trained

21

Table 4.3: Experimental Results for different ABCNet Models

ID IoU IoP IoG Edit Distance Model Size (MB) Latency (s)
1 72.24 94.20 74.58 0.42 295
2 77.58 83.24 89.32 0.81 295
3 77.31 81.62 89.62 0.70 295
4 77.68 82.51 90.74 0.54 295 0.117
5 76.40 82.74 88.51 1.37 295
6 68.00 78.00 83.00 1.98 115

7A 75.75 79.12 92.34 0.64 115 0.096
7B 76.28 80.51 91.08 0.66 115 2.836
8 66.77 90.98 70.63 1.48 115
9 74.78 78.48 92.05 1.44 115 0.102

10 66.03 74.35 83.91 3.33 295 0.107
11 64.5 72.33 85.26 4.28 115 0.094
12 65.28 73.63 84.03 3.37 295 1.040
13 64.53 72.33 85.27 4.28 115 0.863
14 67.30 73.80 86.92 3.41 295 1.000
15 68.36 74.79 86.39 2.76 295 0.838
16 61.48 68.19 86.53 4.28 115 0.704
17 65.72 71.96 86.49 3.39 115 0.964
18 74.11 79.70 86.93 0.87 115 1.313
19 74.03 80.30 86.09 1.03 115 1.330

on S1, S2, MLT2017, TT. The repository model is finetuned on the TT dataset. The

first two rows indicate the results of not finetuning and finetuning the pretrained original

repository model. The finetuning using a case-sensitive sample dataset is done for 5k

iterations. The results show that the pre-trained model has poor performance regardless

of whether it is later finetuned on the case-sensitive sample dataset. The last two rows

show the results of not finetuning and finetuning using a case-sensitive sample dataset on

the original repository finetuned model. From the results, it can be seen that the finetuned

model when further finetuned on the case-sensitive sample dataset has better recognition

22

Table 4.4: Effect of Case-Sensitive Labelling

Sample Dataset Label IoU IoP IoG EditDistance
Case-Insensitive Lower 79.04 88.35 86.61 2.31

Case-Sensitive 78.87 86.86 88.52 2.15

results when compared with the finetuned model used as such for testing. This result is as

expected.

Table 4.5: Effect of Finetuning with Case-sensitive Dataset with Repo Model

Model Backbone Pretrain Finetune1 Finetune2 IoU IoP IoG EditDistance
Cubic ABCNet R50 Syn1,Syn2,MLT2017, TotalText 65.97 99.30 66.37 5.17
Cubic ABCNet R50 Syn1,Syn2,MLT2017, TotalText CSD(5k) 88.26 92.70 95.13 5.35
Cubic ABCNet R50 Syn1,Syn2,MLT2017, TotalText TT 85.34 93.96 90.81 0.26
Cubic ABCNet R50 Syn1,Syn2,MLT2017, TotalText TT CSD(5k) 88.40 93.05 94.97 0.14

The feature pyramid network extracts features from the feature extractor at half (p2),

one fourth (p3), one-eight (p4), one-sixteenth (p5), one-thirty-two (p6), and one-sixty-

fourth (p7) the original resolution. For ABCNet, the default setting uses p3, p4, p5, p6, p7

for extracting features for detection. The features are then converted into fixed-size using

RoIAlign. The recognizer uses the features at p2, p3, p4 for recognition. The extracted

features are converted into fixed-size features using Bezier Align. Table 4.6 shows the

experiment results of using different scales of Feature Pyramid Network for detection and

recognition. The main motive behind the experiments is to find the minimum FPN scales

extracted features required for detection and recognition such that the designed model is

energy efficient. From the table, it can be seen that using only one scale is not enough

for detection. A combination of p3 and p4 or p4 and p5 has moderate performance. The

performance is better for p3, p4. Using a combination of p3,p4,p5 has close to the same

23

results as the default settings. This suggests that for the detector p6 and p7 features can

be discarded for detection predictions to make a tradeoff for efficiency over accuracy. In

the recognition branch, the default setting uses p2, p3, p4 for recognition prediction. From

the results, it can be seen that p2 alone is enough to get good recognition results. This

suggests that the recognizer requires a feature map of larger size with more information to

make good recognition results and using one scale is sufficient. For the recognizer using

only p2 is a good tradeoff for energy efficiency over accuracy.

Table 4.6: Effect of Different Scale of Feature Pyramid Network used for Detection and
Recognition

Model Detection Recognition IoU IoP IoG EditDistance
Cubic ABCNet* p3,p4,p5,p6,p7 p2,p3,p4 85.34 93.96 90.81 0.26
Cubic ABCNet p3 p2,p3,p4 84.49 91.43 92.29 3.67
Cubic ABCNet p4 p2,p3,p4 86.13 95.97 89.67 2.84
Cubic ABCNet p5 p2,p3,p4 85.47 96.68 88.50 3.97
Cubic ABCNet p3,p4 p2,p3,p4 85.17 93.53 91.01 1.48
Cubic ABCNet p4,p5 p2,p3,p4 86.26 96.03 89.80 1.78
Cubic ABCNet p3,p4,p5,p6,p7 p2,p3 85.34 93.96 90.81 0.26
Cubic ABCNet p3,p4,p5 p2 85.37 93.88 90.93 0.43
Cubic ABCNet p3,p4,p5 p3 85.37 93.88 90.93 1.37
Cubic ABCNet p3,p4,p5 p4 85.37 93.88 90.93 5.67
Cubic ABCNet p3,p4,p5 p2,p3 85.37 93.87 90.93 0.43
Cubic ABCNet p3,p4,p5 p3,p4 85.37 93.88 90.93 1.37
Cubic ABCNet p3,p4,p5 p2,p3,p4 85.37 93.86 90.93 0.43

Table 4.7 shows the effect of different cropped images used for training. The model

used is the ABCNet model with the Bezier Align consisting of Cubic Bezier Curve with

eight points. The backbone used is Mobilenetv2. The normalization scheme used is batch

normalization. The column 2 value C denotes the cropped image finetune dataset obtained

by Algorithm 3. The algorithm uses images resized 960 × 540. Then the center point of

the bounding box is calculated and the x and y coordinate of the center of the bounding box

24

is shifted based on cropXChange and cropYChange. Next, the cropped image is resized to

all the values in the anchor list [640, 672, 704, 736, 768, 800, 832, 864, 896]. A total of 45

different combinations for the same text region is created. Column 3 Default means Type

A setting is for training. No means the input resolution is resized to the nearest multiple

of 32. Column 4 indicates the dataset used for inference. It could be O which denotes the

original test dataset or C meaning the cropped image dataset generated by Algorithm 3.

Column 5 indicates the number of iterations for which finetuning is done. The goal behind

the experiments is to attain good model performance on cropped images. Row 2 indicates

the model directly tested on cropped images. Row 3 indicates the model fine-tuned on

cropped images dataset with default multi-scale training strategy and tested on cropped

images. Row 4 indicates the model fine-tuned on the cropped dataset without any multi-

scale training strategy and tested on cropped images. Row 4 performs best as expected.

The model is trained and tested on the same resolution. Row 3 involves using the same

dataset but trained on a resolution that is two times of test image resolution. This model

performs worse as it misses detecting many texts. Row 2 has slightly poor performance.

Algorithm 3: Algorithm to generate Cropped Text Regions in Image
1 cropXChange = [0.25, 0.5, 0.5, 0.5, 0.75]; cropYChange = [0.5, 0.25, 0.5, 0.75,

0.5]
2 anchorList = [640, 672, 704, 736, 768, 800, 832, 864, 896]
3 Downsample image to 960x540
4 For all the annotations of an image - xmin, ymin, xmax, ymax is calculated. This

is used to calculate the center point x,y of the rectangle with start point (xmin,
ymin) and end point (xmax, ymax).

5 45 different combinations from anchorlist, cropXChange, cropYChange are
checked for validity. If it is valid the image is cropped.

25

Table 4.7: Effect of Different Cropped Images used for training

Model Finetune MS Strategy Test Inf Res Iter IoU IoP IoG EditDistance
Cubic ABCNet+Mv2+BN Default O Orig 5k 86.65 94.06 92.01 0.61
Cubic ABCNet+Mv2+BN Default C N/A 5k 84.76 87.60 96.98 1.59
Cubic ABCNet+Mv2+BN C Default C N/A 20k 81.00 84.09 96.45 4.57
Cubic ABCNet+Mv2+BN C No C N/A 25k 85.07 93.39 91.09 1.07
Cubic ABCNet+Mv2+BN Default O N/A 5k 86.67 94.67 91.45 0.55
Cubic ABCNet+Mv2+BN C No O N/A 25k 82.03 97.01 84.30 0.54

4.5 FOT++ Experiments

Two different types of FOT++ methods were experimented. The first one is where

the recognizer makes predictions by extracting predicted bounding box regions from the

text detector on the input image. This is called the two-step text spotting method. This

is because first detection is done, then recognition is done on the input image. The sec-

ond one is where the recognizer makes predictions by extracting the predicted bounding

box from the text detector on the detector feature map. This is called the two-stage text

spotting method because it is analogous to the Faster R-CNN object detector. To measure

the performance of the algorithms Edit Distance is used. First, the FOT++ experiment is

carried out between the two-step and the two-stage text spotting method. In both meth-

ods, the EAST text detector is first trained. To train the EAST detector the Case-Sensitive

LPCVC Challenge Dataset and the Synthetic dataset are used. For training the recognizer

of the two-step text spotting method the ground truth bounding box is used. The ground

truth bounding box is fed to the BezierAlign to extract fixed size features from the input

image. This is then fed to the recognizer which consists of CRNN and Attention to make

word-level predictions for each ground truth bounding box. The model is trained using

the CTC loss. In the two-stage text spotting method, the only difference is that the Bezier

Align extracts fixed size features from the feature map using the ground truth bounding

box. During inference, the two-step text spotting method uses the EAST bounding box

26

predictions which are then used to extract fixed size features from the input image with the

help of BezierAlign. The extracted features are fed to the recognizer to predict the word

label associated with the predicted bounding box. For two-stage text spotting inference

similar to training the only difference is that EAST bounding box predictions are extracted

from the feature map using the Bezier Align. Table 4.8 and Table 4.9 are the prediction

results of the two-step text spotting and two-stage text spotting method. Both the meth-

ods were trained on Syntext1, Syntext2, MLT7K, TotalText, and Case Sensitive Sample

Dataset. The Case Sensitive LPCVC Challenge Dataset test set was used to measure the

performance of the models. Table 4.8 and Table 4.9 indicates that for any given input res-

olution of the image the two-step text spotting method performs better than the two-stage

text spotting method for our use case. This result is significant because the two-stage text

spotting method also called the Aligned RoIPool method which is the method followed

in the literature for text spotting model design performs inferior when compared with the

two-step text spotting method. From Table 4.8 and Table 4.9 it can be seen that the model

performs better for larger bounding box area to char count ratio and lower character count.

The bounding box area to char count ratio is the area of one character under the assump-

tion that all the characters occupy an equal area in the bounding box. The bounding box to

character count ratio is the area of one character in the image. The results indicate that the

larger the area of one character in the image the better is the recognition result i.e. lesser

the Edit distance. The second parameter is the character count. The results indicate that

the lesser the number of characters in the word, the better is the recognition results. The

third metric is the Blur level. It comes as a surprise that the recognition result gets better

as the blur level in the image increases. To measure the blur level the metric calculates

the blur for the entire image. This might not be indicative of the blur level in the local

text regions. The number of the bounding box in the image does not show any trend in

the results. This indicates that the recognition results are not dependent on the number

27

of bounding boxes in the input image. The bounding box area parameter shows an unex-

pected trend i.e. as the bounding box area increases the recognition result becomes poorer.

This is not expected. This suggests that the bounding box area is not a good metric to

understand the recognition result performance. This is because the text bounding box area

generally has a fixed height with varying width. This might result in a higher bounding

box area for a smaller height of the bounding box with a large width due to text containing

many characters. So, the bounding box area might not be a good metric to understand the

recognition results.

Table 4.8: EAST + CRNN (Image) results on Case-Sensitive Sample Dataset Test Set

BBox Area BBox Count Blur Level BBox Area/Char Count Char Count TotalRes
<=1024 <=9216 <=9216 <=5 <=10 >10 L M H <=20 <=60 >60 <=4 <=8 >8

2240 0.68 1.00 3.28 1.36 2.38 1.36 2.46 1.84 0.79 Inf Inf 1.83 0.87 1.97 4.00 1.83
1200 1.14 1.43 4.61 1.46 2.49 1.42 2.62 1.91 0.93 Inf 5.25 1.93 1.08 1.86 4.2 1.93
600 1.80 2.14 7.38 1.92 2.58 1.24 3.02 1.92 1.05 6.86 2.12 2.00 1.31 2.08 3.79 2.04
300 3.13 4.20 Inf 3.52 3.64 2.39 4.09 3.07 2.94 3.69 3.60 2.92 2.21 3.56 5.32 3.26

Table 4.9: EAST + BezierAlign + CRNN (Feature Map) results on Case-Sensitive Sample
Dataset Test Set

BBox Area BBox Count Blur Level BBox Area/Char Count Char Count TotalRes
<=1024 <=9216 <=9216 <=5 <=10 >10 L M H <=20 <=60 >60 <=4 <=8 >8

2240 1.22 1.36 3.15 1.58 2.50 1.55 2.31 2.09 0.98 Inf Inf 2.00 1.07 2.26 3.86 2.00
1200 1.72 2.50 3.72 2.42 2.86 2.40 2.75 2.73 1.79 Inf 4.56 2.62 1.83 2.98 3.95 2.62
600 3.45 3.38 7 3.39 3.66 3.28 3.90 3.43 3.10 6.84 2.84 3.48 2.38 4.21 4.92 3.48
300 5.15 6.67 Inf 5.95 5.36 4.49 5.64 5.24 4.70 4.19 5.19 5.97 3.28 6.12 8.61 5.25

In both the two-stage text spotting and two-step text spotting method described earlier

the EAST detector predicted bounding box is used by the recognizer. The main question

is to understand the influence of the recognizer results on the feature map and on the

image. So, to remove the influence of the text detector experiments were conducted by

using the ground truth bounding boxes. The ground truth bounding box region extracted

from the image is the CRNN+Attn (Image) results shown in Table 4.10. The ground truth

bounding box region extracted from the feature map is the CRNN+Attn (Feature Map)

28

results shown in Table 4.11. Even after removing the effect of the detector, it can be seen

that the recognizer performs better when the input features are extracted from the input

image. Here again, the recognition results are better as the character count in the word

decreases and when the ratio of bounding box area to character count increases.

Table 4.10: CRNN+Attn (Image) results on Case-Sensitive Sample Dataset Test Set

BBox Area BBox Count Blur Level BBox Area/Char Count Char Count TotalRes
<=1024 <=9216 <=9216 <=5 <=10 >10 L M H <=20 <=60 >60 <=4 <=8 >8

2240 0.43 0.36 1.05 0.44 0.89 0.33 0.97 0.57 0.37 Inf Inf 0.62 0.23 0.45 1.94 0.62
1200 0.55 0.45 1.30 0.47 0.85 0.32 0.93 0.56 0.35 Inf 2.69 0.60 0.22 0.46 1.83 0.60
600 0.47 0.92 3.43 0.62 1.00 0.30 1.08 0.66 0.31 5.76 0.49 0.68 0.28 0.54 2.09 0.70
300 1.69 1.83 Inf 1.77 1.84 1.40 2.06 1.64 1.37 2.97 1.64 1.20 1.12 1.72 3.09 1.69

Table 4.11: CRNN+Attn (Feature Map) results on Case-Sensitive Sample Dataset Test Set

BBox Area BBox Count Blur Level BBox Area/Char Count Char Count TotalRes
<=1024 <=9216 <=9216 <=5 <=10 >10 L M H <=20 <=60 >60 <=4 <=8 >8

2240 0.98 0.45 0.51 0.42 0.65 0.31 0.58 0.51 0.30 Inf Inf 0.49 0.35 0.45 0.94 0.49
1200 1.48 1.56 1.10 1.27 1.73 1.22 1.57 1.53 1.00 Inf 4.44 1.47 1.17 1.51 2.16 1.47
600 3.16 2.17 2.05 2.51 2.86 2.75 3.00 2.65 2.84 5.82 2.36 2.73 2.02 3.18 3.74 2.74
300 4.73 5.88 Inf 5.38 4.88 4.21 5.05 4.79 4.50 3.99 4.79 5.28 3.26 5.48 7.46 4.80

4.6 Model Deployment Results

Table 4.12 shows the model deployment results of two-step FOT++ text spotting

model on the Raspberry Pi. The model used for deployment was work done by another

person in the team. My work was focused on creating an energy measurement tool to

measure the energy consumption of the algorithm. The FOT++ model deployed is slightly

different from the FOT++ explained earlier. The recognizer only contains the CRNN and

the attention is removed. The Bezier Align is not used. Instead, Affine Transformation is

used. The model is pruned and quantized to improve energy efficiency and reduce latency.

4.7 FLOPs Calculation and Speed Test

Table 4.13 shows the FLOPS calculation of the ABCNet model for different input

resolution. It indicates the theoretical amount of multiply-add operations required during

29

Table 4.12: Performance, Latency, and Energy Measurement of two-step FOT++ model
on Raspberry Pi

Model FOTS++
IoU 72.21
IoP 76.24
IoG 93.94

Edit Distance 1.39
Latency (s) 12.90

Avg Energy (J) 31.77

Table 4.13: FLOPS calculation of ABCNet for different resolution

Model Resolution Ops Params
ABCNet 1280*720 137.33G 28.21M
ABCNet 1920*1080 304.06G 28.21M

model inference. The fourth column in the table indicates the number of trainable param-

eters. From the table, it can be seen that as the input resolution increases the flops count

increases. Table 4.14 shows the speed test of the ABCNet and the FOTS text spotting

model. From the table, it can be inferred that the lower inference time of the FOTS model

is due to the lightweight EAST detector.

Table 4.14: Speed Test (in ms) for different components of FOTS and ABCNet

ABCNet FOTS
Detector 83 7

Bezier Align 1.1 2.4
Recognizer 18 8

Post Processing 0.9
Total Time 100 70

30

5. CONCLUSION

In the thesis, experiments are conducted for efficient design of the ABCNet and FOT++

text spotting model. Different backbones, normalization schemes, FPN features for detec-

tion and recognition are experimented with for ABCNet. Two different backbones were

experimented i.e. Resnet-50 and Mobilenetv2. From the results, it can be seen that the

Resnet-50 model has better performance but the Mobilenetv2 model has less than half

model size and lower inference time with a minor performance hit. The same is observed

while using batch normalization when compared with group normalization. Group Nor-

malization has better performance than batch normalization but batch normalization has

half the inference time on CPU for a small performance hit. Also, batch normalization is

quantization-friendly. The default ABCNet model uses p3,p4,p5,p6,p7 for detection and

p2,p3,p4 for recognition. From the experiments it can be concluded that using p3, p4,

p5 for detection, and p2 for recognition has the best tradeoff for efficiency over accuracy.

Another result is that using Case-sensitive labeling improves the recognition performance.

Two different methods i.e. two-step Crop+Resize and two-stage text spotting methods are

experimented with for the FOT++ model. From the experimental results, it can be seen that

the two-step text spotting method performs better than the two-stage text spotting method

for all input resolutions. Further to better understand the influence of different parameters

on the recognition results the effect of bounding box count, bounding box area, character

count, bounding box to character count ratio, and the blur level is measured. From the

experiments, it can be concluded that the greater bounding box to character count ratio

better is the recognition results. This means that the greater the area of a character bet-

ter is the recognition results. Another conclusion that can be made is that the lesser the

character count in the text better is the recognition results. One surprising result is that as

31

the blur level increases the models’ recognition results get better. This is contradictory to

what is expected. The reason for this could be because of the metric used for measuring

the blur level of the image. There could be cases where the text region is blurry but the

overall image is clear so the blur metric might indicate that the image is clear. A better

blur quantification metric could be used as well. The energy measurement of the FOT++

two-step text spotting model deployment results on Raspberry Pi is done using an energy

measurement tool. Proof of concept for the energy measurement tool is also shown. Fi-

nally, the flops count of ABCNet at different input resolutions and the speed test of FOTS

and ABCNet are also shown.

32

REFERENCES

[1] Z. Cheng, J. Lu, B. Zou, L. Qiao, Y. Xu, S. Pu, Y. Niu, F. Wu, and S. Zhou, “FREE:

A Fast and Robust End-to-End Video Text Spotter,” IEEE Transactions on Image

Processing, vol. 30, pp. 822–837, 2021.

[2] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “EAST: An

Efficient and Accurate Scene Text Detector,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 2642–2651, 2017.

[3] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-

Based Sequence Recognition and Its Application to Scene Text Recognition,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 11,

pp. 2298–2304, 2017.

[4] Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “ABCNet: Real-Time Scene

Text Spotting With Adaptive Bezier-Curve Network,” in 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 9806–9815, 2020.

[5] S. Long, X. He, and C. Yao, “Scene Text Detection and Recognition: The Deep

Learning Era,” International Journal of Computer Vision, vol. 129, pp. 161–184,

2020.

[6] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading Text in the

Wild with Convolutional Neural Networks,” vol. 116, p. 1–20, Jan. 2016.

[7] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating Object Proposals from Edges,”

in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,

eds.), (Cham), pp. 391–405, Springer International Publishing, 2014.

33

[8] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “TextBoxes: A Fast Text Detector

with a Single Deep Neural Network,” in AAAI, 2017.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“SSD: Single Shot MultiBox Detector,” in Computer Vision – ECCV 2016 (B. Leibe,

J. Matas, N. Sebe, and M. Welling, eds.), (Cham), pp. 21–37, Springer International

Publishing, 2016.

[10] C. Bartz, H. Yang, and C. Meinel, “SEE: Towards Semi-Supervised End-to-End

Scene Text Recognition,” in AAAI, 2018.

[11] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “FOTS: Fast Oriented Text

Spotting with a Unified Network,” in 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pp. 5676–5685, 2018.

[12] M. Bušta, L. Neumann, and J. Matas, “Deep TextSpotter: An End-to-End Trainable

Scene Text Localization and Recognition Framework,” in 2017 IEEE International

Conference on Computer Vision (ICCV), pp. 2223–2231, 2017.

[13] T. He, Z. Tian, W. Huang, C. Shen, Y. Qiao, and C. Sun, “An End-to-End TextSpotter

with Explicit Alignment and Attention,” in 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 5020–5029, 2018.

[14] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist Temporal

Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Net-

works,” in Proceedings of the 23rd International Conference on Machine Learning,

ICML ’06, (New York, NY, USA), p. 369–376, Association for Computing Machin-

ery, 2006.

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

34

[16] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525,

2017.

[17] K.-H. Kim, Y. Cheon, S. Hong, B.-S. Roh, and M. Park, “PVANET: Deep

but Lightweight Neural Networks for Real-time Object Detection,” ArXiv,

vol. abs/1608.08021, 2016.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser,

and I. Polosukhin, “Attention is All You Need,” in Proceedings of the 31st Interna-

tional Conference on Neural Information Processing Systems, NIPS’17, (Red Hook,

NY, USA), p. 6000–6010, Curran Associates Inc., 2017.

[19] M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai, “Mask TextSpotter: An End-

to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 2, pp. 532–

548, 2021.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 2017 IEEE Inter-

national Conference on Computer Vision (ICCV), pp. 2980–2988, 2017.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-

nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778, 2016.

[22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

Pyramid Networks for Object Detection,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 936–944, 2017.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis

35

and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[24] S. Qin, A. Bissaco, M. Raptis, Y. Fujii, and Y. Xiao, “Towards Unconstrained End-

to-End Text Spotting,” in 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), pp. 4703–4713, 2019.

[25] L. Xing, Z. Tian, W. Huang, and M. Scott, “Convolutional Character Networks,” in

2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9125–

9135, 2019.

[26] P. X. Nguyen, K. Wang, and S. Belongie, “Video text detection and recognition:

Dataset and benchmark,” in IEEE Winter Conference on Applications of Computer

Vision, pp. 776–783, 2014.

[27] C. Merino-Gracia, “Real-time text tracking in natural scenes,” IET Computer Vision,

vol. 8, pp. 670–681(11), December 2014.

[28] A. Kay, “Tesseract: An Open-Source Optical Character Recognition Engine,” Linux

J., vol. 2007, p. 2, July 2007.

[29] X. Wang, Y. Jiang, S. Yang, X. Zhu, W. Li, P. Fu, H. Wang, and Z. Luo, “End-to-End

Scene Text Recognition in Videos Based on Multi Frame Tracking,” in 2017 14th

IAPR International Conference on Document Analysis and Recognition (ICDAR),

vol. 01, pp. 1255–1260, 2017.

[30] L. Qiao, S. Tang, Z. Cheng, Y. Xu, Y. Niu, S. Pu, and F. Wu, “Text Perceptron:

Towards End-to-End Arbitrary-Shaped Text Spotting,” in The Thirty-Fourth AAAI

Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Ap-

plications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-

sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,

USA, February 7-12, 2020, pp. 11899–11907, AAAI Press, 2020.

36

[31] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully Convolutional One-Stage Ob-

ject Detection,” in 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), pp. 9626–9635, 2019.

[32] “Low-Power Computer Vision Challenge 2020 CVPR Workshop, UAV video,”

https://lpcv.ai/2020CVPR/video-track.

[33] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” vol. 60,

p. 91–110, Nov. 2004.

[34] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography,”

Commun. ACM, vol. 24, p. 381–395, June 1981.

[35] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic Data for Text Localisation in

Natural Images,” in 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 2315–2324, 2016.

[36] N. Nayef, Y. Patel, M. Busta, P. N. Chowdhury, D. Karatzas, W. Khlif, J. Matas,

U. Pal, J.-C. Burie, C.-l. Liu, and J.-M. Ogier, “ICDAR2019 Robust Reading Chal-

lenge on Multi-lingual Scene Text Detection and Recognition — RRC-MLT-2019,”

in 2019 International Conference on Document Analysis and Recognition (ICDAR),

pp. 1582–1587, 2019.

[37] C. K. Ch’ng and C. S. Chan, “Total-Text: A Comprehensive Dataset for Scene Text

Detection and Recognition,” in 2017 14th IAPR International Conference on Docu-

ment Analysis and Recognition (ICDAR), vol. 01, pp. 935–942, 2017.

[38] “Web GUI for RuiDeng USB testers (UM34C, UM24C, UM25C, TC66C),”

https://github.com/kolinger/rd-usb.

37

[39] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2:

Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 4510–4520, 2018.

[40] “ABCNet Official GitHub Repository,” https://github.com/aim-uofa/AdelaiDet.

[41] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift,” in Proceedings of the 32nd International Con-

ference on International Conference on Machine Learning - Volume 37, ICML’15,

p. 448–456, JMLR.org, 2015.

[42] Y. Wu and K. He, “Group Normalization,” in Proceedings of the European Confer-

ence on Computer Vision (ECCV), September 2018.

38

