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ABSTRACT 

The self-assembly of short peptides into amyloid structures is linked to several diseases but 

has also been exploited for the design of novel functional amyloid-based materials. Such materials 

are potentially biocompatible and biodegradable, while their unique molecular organization 

provides them with remarkable mechanical properties. Amyloid fibrils are among the stiffest 

biological materials and exhibit a high resistance to breakage. Apart from the aforementioned 

properties, they are particularly attractive due to their easy synthesis and the ability to be re-

designed through mutations at sequence level, which can result in potential functionality. 

Previous studies have reported the rational based design of functional amyloid materials, 

designed through primarily scientists’ intuition, and their applications in several fields as agents 

for tissue-engineering, antimicrobial and antibacterial agents, drug carriers, materials for 

separation applications, etc. 

The current work starts from the use of previously reported protocols for the computational 

elucidation of the structure of amyloids, leading to the formation of amyloid materials, and the 

investigation of the functional properties of rationally designed self-assembling peptides, and 

introduces a new approach for the computational design of functional amyloid materials, based on 

engineering and biophysical principles. In summary, we developed a computational protocol 

according to which an optimization-based design model is used to introduce mutations at non-β-

sheet residue positions of an amyloid designable scaffold (amyloid with non-β-sheet forming 

residues at its termini). The designed amino acids are introduced to the scaffold in such a way so 

that they mimic how amino acids bind to particular ions/compounds of interest according to 

experimentally resolved structures (defined by us as materialphore models) and also aim at 

energetically stabilizing the bound conformation of the pockets. The optimum designs are 
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computationally validated using a series of simulations and structural analysis techniques to select 

the top designed peptides, which are predicted to form fibrils with specific ion/compound binding 

properties for experimental testing. 

The computational protocol has been implemented first for the design of amyloid materials 

(i) binding to cesium ions, and in additional cases, for the design of amyloid materials  (ii) serving 

as potential AD drug carriers, (iii) which could promote cell-penetration and possess DNA binding 

properties, and (iv) incorporating potential cell-adhesion, calcium and strontium binding 

properties. The computational protocol is also presented here as a step toward a generalized 

computational approach to design functional amyloid materials binding to an ion/compound of 

interest. This work can constitute a stepping stone for the functionalization of peptide/protein-

based materials for several applications in the future. 
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1. INTRODUCTION 

1.1 Molecular Self-assembly 

Molecular self-assembly is the process in which simple molecules, usually in a less ordered 

state (random coil, disordered aggregate, or a solution), spontaneously form complex 

multicomponent three-dimensional ordered structures (a folded macromolecule or a crystal)1. The 

interactions occurring during the self-assembly process between the molecules are generally non-

covalent (Coulomb interactions, hydrogen bonds, hydrophobic interactions, and Van der Waals 

interactions) in nature1. Molecular self-assembly is ubiquitous in various fields like biology, 

material science, and chemistry. Some of the examples in the field of chemistry and material 

science are the formation of crystals2, formation of colloids3, and phase separated polymers4. 

Molecular self-assembly is particularly important in the field of biology as it is centrally 

important to life. Self-assembly occurs in all organisms from very simple bacteria to mammals. 

For example, phospholipids, the most abundant cell membrane lipid, self-assemble naturally to 

form lipid bilayers which provide structural integrity for a cell5,6,7. Phospholipids are amphiphilic 

molecules that contain hydrophilic phosphate head group and hydrophobic fatty acid tail. Upon 

coming into contact with aqueous environment, phospholipids self-assemble spontaneously to 

avoid the energetic penalty of hydrophobic tail interacting with water. Thus, phospholipids 

organize themselves into lipid bilayers where hydrophobic tails interact with each other and 

hydrophilic heads interact with inside part of the cell or with the outside bulk water. 

An additional paradigm of biomolecular self-assembly involves protein self-assembly, the 

self-organization of individual proteins into highly ordered protein architectures ranging from nm 

to μm in size. For example, two-dimensional arrays of proteinaceous subunits form bacterial cell 

surface layers (S-layers) through the process of self-assembly in hundreds of species of walled 
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bacteria and in almost all archaea5,8,9. Silk is another example of protein self-assembly, which is a 

remarkable biomaterial comprising protein fibers spun by insects and spiders, which is produced 

through self-assembly of predominantly two protein molecules5,10,11,12. Silk is produced for various 

functions like web construction, cocoon formation, and prey catching. Silk has outstanding 

mechanical properties including high strength and flexibility even though the interactions between 

the molecules making up silk are non-covalent in nature. Spider silk is considered to be remarkably 

stronger than a steel filament of same diameter but also highly flexible10. 

1.2 Amyloids 

The aggregation of proteins into amyloid fibrils is an additional key example of molecular 

self-assembly5. Unlike the self-assembled structures described above which could be functional in 

nature, self-assembled amyloid structures may be relevant to diseases. The amyloid state of 

proteins was initially discovered in the context of diseases where the proteins self-assemble into 

amyloid fibrils, a key structural characteristic of amyloid diseases, that are insoluble and 

heterogenous extracellular protein deposits13,14. Amyloid fibrils share a common underlying 

structural architecture where the proteins self-assemble into β-sheets and the core structure of the 

β-sheets in the amyloid fibrils align perpendicular to the fibril axis. This alignment is termed as 

cross-β organization14,15. Currently, 50 different peptides or proteins are known to self-assemble 

into amyloid fibrils which are associated with human disease14. Some of the diseases include 

among others Alzheimer’s disease (AD) where amyloid-β (40-42 amino acids long) forms senile 

plaques and tau protein forms neurofibrillary tangles as pathological features14,16; Parkinson’s 

disease where α-synuclein forms Lewy bodies as pathological features14,16; type 2 diabetes where 

islet amyloid polypeptide (IAPP) forms pancreatic islet amyloid as pathological feature14,16. It has 
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been shown that the strength of specifically studied amyloid fibrils is comparable to steel and 

mechanical stiffness comparable to silk17. 

Despite the fact that amyloids were first identified and were linked to human diseases in 

which peptides and proteins misfold into amyloid fibrils, subsequent studies have indicated several 

functional amyloid fibrils that perform physiological roles in humans.18 In addition, interestingly, 

naturally occurring sequences from amyloidogenic proteins or natural fibrous proteins can be 

extracted to form amyloids outside the native context of the entire protein. For example, while 

amyloid fibrils formed by the peptides such as amyloid-β (40-42 amino acids long) and islet 

amyloid polypeptide (37 amino acids long) are the pathological features of Alzheimer’s disease 

and type 2 diabetes as mentioned above, respectively, short fragments such as KLVFFAE19 

extracted from Aβ as well as NFGAIL20 extracted from IAPP form amyloid fibrils too and possess 

similar ultrastructural, molecular conformational and cytotoxic properties to that the ones formed 

by the full length corresponding polypeptide (Aβ and IAPP respectively). Also, following a 

minimalistic approach to find the smallest peptide that can self-assemble, Görbitz21 in 2001 

reported the self-assembly of a very short peptide, the Alzheimer’s β-amyloid diphenylalanine 

structural motif. This change from larger proteins or peptide to short peptide fragments enabled 

the large-scale synthesis of amyloid fibrils and their use in various nanotechnological applications. 

Thus, the roles of naturally occurring sequences from disease related amyloid peptides/proteins or 

β-sheet rich peptide/protein regions has been expanded to include their use as elementary blocks 

for the formation of amyloid materials10,22,23,24,25,26,27,28,29,30,31,32,33,34,35. 
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1.3 Amyloid Materials 

  Amyloids as materials (amyloid materials) show many favorable properties such as they 

(i) can be easily fabricated through self- assembly, (ii) have properties that can be tailored through 

mutations at the sequence level, (iii) can be produced via chemical synthesis or recombinant 

technologies in sufficient quantities, (iv) have biocompatible nature, (v) have ability to be 

biodegradable, and (vi) have high Young’s modulus due to the dense hydrogen bonding network 

that is the characteristic of core of amyloid fibrils36. Thus, these advantages of amyloid materials 

make them attractive as artificial functional materials and they are involved in applications 

including but not limited to cell culture scaffolds, biosensors, photoluminescent materials, amyloid 

nanocomposites, adhesive amyloids, organic quantum dots, and vehicles for drug delivery36.  

Several examples of exploiting amyloid or amyloid-like self-assembly for the fabrication 

of materials have been reported in the literature (reviewed in refs10,36). For example, Reches and 

Gazit31 in 2003 reported that they observed the “amyloid-like” self-assembly of the 

diphenylalanine peptide mentioned above into discrete, and stiff nanotubes which upon reduction 

with ionic silver followed by enzymatic degradation, resulted in the production of discrete 

nanowires with a long persistence length31. An analogue of the diphenylalanine peptide, 

diphenylglycine peptide also self-assembles and forms nanospherical structures efficiently and 

have remarkable stability37. Furthermore, Kasai and colleagues38 combined the IKVAV containing 

amyloidogenic peptide A208 (2097-2108 peptide fragment from mouse laminin α1 chain) with 

RGD tripeptide to promote cell-adhesion on amyloid gel scaffolds. The authors inspired by the 

sequences of cell-adhesion active sites in the extracellular fibrils of fibronectin demonstrated that 

the RGD conjugated A208 peptide has self-assembling properties combined with cell-attachment 

properties, thus inferring the possible use of these systems in tissue engineering as cell culture 
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scaffolds38. Moreover, Mezzenga and colleagues39 combined graphene and amyloid fibrils from 

the milk protein β-lactoglobulin and synthesized biodegradable nanocomposites in which amyloid 

fibrils provided the enzyme sensing substrate and the graphene layers contributed with electron 

conductivity and mechanical strength. The nanocomposites were shown to possess shape memory 

features which could be used in water sensing. 

The functionality of such materials is an additional important aspect with regard to their 

potential application. Functionality can be related to the ability of the amyloid materials to bind 

ions, compounds or surface (cell attachment); such properties can enable amyloid materials’ 

applicability in several areas including as tissue engineering, separations or drug delivery. 

Functional amyloid materials have been produced to bind ions which resulted in tissue engineering 

applications. For example, Mitraki and colleagues25,40 rationally designed aspartate-rich self-

assembling peptides binding calcium ion using insights of MD simulation provided by Tamamis 

et al25. They further investigated the cell adhesion and proliferation of the calcium bound 

mineralized aspartate-rich self-assembling peptides and observed that the designed peptide 

strongly supports cell adhesion and proliferation with significant increase of biomineralization.25 

The specific designed peptide can be used as a secondary scaffold on top of a primary laser-

fabricated strong inert scaffold. Thus, the combinations of these scaffolds can be used as a support 

for the directed growth of cell into biomineralization units for bone tissue engineering 

applications.25 

Functional amyloid materials have also been exploited to bind ions (e.g., arsenic41, gold42, 

mercury42, lead42, and palladium42) which could result in applications in the field of separations. 

For example, Mezzenga and colleagues41,42 synthesized hybrid composite membranes consisting 

of β-lactoglobulin amyloid fibrils and activated carbon which can be used as an efficient tool to 
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remove heavy metal ion pollutants like gold42, mercury42, lead42 and palladium42 form wastewater. 

Additionally, the hybrid membranes were also able to capture radioactive compounds like uranyl 

acetate and phosphorus-32 from the wastewater42. The specific hybrid membranes were also used 

to remove arsenic (both the arsenate and arsenite oxidation forms) from contaminated ground 

water with efficiency as high as 99.6%41. Eisenberg and colleagues32,33 designed amyloid fibers 

capable of capturing carbon dioxide from flue gas. They showed that the ε-amino group of an 

exposed lysine at high pH in an amyloid fibril can capture carbon dioxide via carbamate formation. 

Apart from amyloid materials’ applications in tissue engineering or separations, amyloid 

materials have also been suggested for drug delivery applications (i.e., amyloid materials 

potentially serving as carriers). For example, Silva and colleagues43 investigated the use of amyloid 

material as potential vehicles for drug delivery. Specifically, they showed that the microtubes 

formed from the self-assembly of the peptide L-diphenylalanine can be conjugated to a hydrophilic 

model drug rhodamine. They observed that the model drug is embedded homogeneously into the 

microtubes and also the microtubes modulate the release of the drug. In addition, they have 

observed that cell viability in presence of the microtubes is high indicating that they have low 

toxicity. Marchesan and colleagues44 reported the self-assembly of the tripeptide Leu-Phe-Phe 

with one of the most effective antibiotics for skin and eye infections, ciprofloxacin. They reported 

that the antibiotic appears bound within the hydrogel formed by the peptide and antibiotic via non-

covalent interactions. They observed that the ciprofloxacin-peptide hydrogel showed anti-bacterial 

activity against specific bacteria, but the hydrogel showed no cytotoxicity in haemolysis assays of 

human red blood cells. Mezzenga and colleagues45 investigated the ability of β-lactoglobulin 

amyloid fibrils to bind iron where the specific amyloid fibrils act as carriers for iron fortification. 

Traditional fortificants generally cause strong organoleptic changes in foods whereas iron 
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generally accumulates in solutions due to its strong oxidative tendency45. The specific amyloid 

fibrils which are biodegradable can act as an iron fortificant with minimal organoleptic changes in 

food and also stabilizes iron due to the fibrils’ natural reducing properties45. The resulting material 

containing iron releases the ion during acidic and enzymatic in vitro digestion45. The specific 

material was also tested in vivo in rats and the high iron bioavailability was observed without 

accumulation in organs suggesting their safety and usefulness as efficient iron fortificant45. All in 

all, functional amyloid materials can be successfully designed to bind ions, compounds or surfaces 

which can have applications in field of tissue engineering, separations and drug carriers. Based on 

most of the cases outlined in the introduction, the design of such functional materials can be 

rationally achieved through intuition and can also be complemented through computational-

theoretical methods. An important aspect related to functionalizing amyloid materials is associated 

with the ability to study their structure and their self-assembly process, which can be performed 

using a combination of experimental and computational methods, as outlined in chapter 2. An 

additional important aspect related to functionalizing amyloid materials, which is also outlined in 

chapter 2, is associated with the ability of computational methods to – not only predict their 

structure – but also enable the design of mutations to peptides and proteins, which could yield 

functionality. 
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2. STRUCTURAL DETERMINATION OF AMYLOID FIBRILS - IMPORTANCE OF 

COMPUTATIONAL METHODS IN STUDYING THE AMYLOID PROPENSITY AND 

FORMATION, AND IN PROTEIN DESIGN 

2.1 Experimental Methods for the Characterization of the Structure of Amyloid Fibrils 

Amyloid fibrils are identified by using florescent dye Thioflavin T and Congo red, a deep 

crimson dye adapted from fabric industry. Benzathiole dye Thioflavin-T (ThT), a potent florescent 

dye has large enhancement of florescent emission upon binding amyloid fibrils. Amyloid fibrils 

also bind to the dye Congo red, and emit a green birefringence in polarized light after the fibrils 

are stained with Congo red15,46,47,48. 

Electron and atomic microscopy can be used to characterize the typical macromolecular 

structure of amyloid fibrils as long, straight and unbranched protein fibrils with diameters up to 

100 nm and length reaching several micrometers13,15. The X-ray diffraction pattern given by 

amyloid fibrils is cross-β, meaning that the core structure of the fibrils consists of a β-sheet 

conformation in which the β-sheet strands are perpendicular to the fibril axis and the hydrogen 

bonding directions are parallel to the fibril axis13,15. The cross-β X-ray diffraction pattern typically 

consist of two major reflections, a ~ 4.7 Å reflection along the fibril axis corresponding to the 

hydrogen bonding distance and ~ 8-10 Å reflection perpendicular to the fibril axis corresponding 

to the sidechain packing between the sheets (Figure 2.1). Circular dichroism (CD) spectroscopy is 

also a commonly used technique to characterize and study the secondary structure of amyloid 

fibrils49,50 and the specific spectroscopy is predominantly based on excitation of electronic amide 

groups50. CD spectroscopy identifies the amyloid fibrils’ characteristic β-sheet secondary structure 

based on the specific F, Y dihedral angles and H-bond patterns affecting the spectrum50.  
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Figure 2.1 Example X-ray diffraction pattern of a 5-residue amyloid forming peptide with 
sequence GAITIG. The diffraction pattern depicted here is cross-β with ~ 4.7 Å reflection along 
the fibril axis and ~ 8-10 Å reflection perpendicular to the fibril axis. Figure taken from ref.51 
 

More recently, X-ray crystallography, solid state nuclear magnetic resonance (SSNMR) 

spectroscopy, cryo-electron microscopy methods have been used to provide additional details into 

the structure of amyloid fibrils49. These recent methods have produced highly detailed composition 

of amyloid fibrils and their molecular architecture49. Specifically, X-ray crystallography was used 

to yield atomic-resolution structures of short amyloid peptides or short peptide segments from 

amyloidogenic proteins15,52,53,54. This was enabled by the fact that the short fibril-forming peptides 

form needle-shape microcrystals in which the fibrils span the entire length of the crystals52. 

However, longer amyloid fibrils are non-crystalline, insoluble and heterogeneous, so it is more 

challenging  to decipher the atomic-resolution structure by using X-ray crystallography52,55. Thus, 

SSNMR method was used to produce the atomic-resolution structure of various amyloidogenic 

proteins55. The intrinsically disordered nature of a lot of amyloidogenic proteins didn’t the allow 

the SSNMR to produce full-scale atomic model56. Thus, cryo-EM technique was successfully used 

to produce atomic structures of fibrils formed by the amyloidogenic proteins Aβ57, Tau58, and α-

synuclein56,59. 
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2.2 Computational Methods on the Study of Amyloid Propensity and Amyloid Formation 

In addition to experimental methods providing invaluable insights into the identification 

and structural characterization of amyloid fibrils, computational methods have been developed as 

well to study the amyloid propensity of peptide or protein sequences, as well as the structures 

formed by amyloid-forming peptides and proteins. Computational methods have primarily focused 

on the use of (i) sequence-based bioinformatics methods to investigate aggregation propensity of 

the peptides or proteins and thus identify the peptides or proteins most likely to form amyloid 

fibrils, and (ii) structural modelling-based methods including simulations, where the energy of 

amino acids is represented by statistical potentials or all atom energy potentials, to gain insights 

into the amyloid formation properties for peptides or proteins. The development of sequence-based 

bioinformatics methods has been primarily facilitated by the significant improvements in 

computing and the use of big-data analysis and/or machine learning methods. The development of 

structural modelling-based has been primarily facilitated by the ability of computers to simulate 

amyloid formation which in turn has been enabled by improvements in computational power, 

advanced force fields, and simulation algorithms. 

2.2.1 Sequence-Based Bioinformatics Methods 

 Several sequence-based algorithms in bioinformatics like TANGO60,61,62, 

AGGRESCAN63, Waltz64, Amyloidogenic Pattern65, Average Packing Density66, FoldAmyloid67, 

Hexapeptide Conformational Energy68, Beta-strand contiguity69, Pafig70, SecStr (Possible 

Conformational Switches)71, Amyloid Mutants72, NetCSSP73,74,75,76, AMYLPRED77, PASTA78, 

BETASCAN79 have been developed to predict the amyloid propensity of a peptide or protein based 

on the sequence. In what follows, an outline of the key principles associated with the function of 

a portion of the aforementioned tools is provided. 
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TANGO60,61,62, a statistical mechanics-based algorithm, is one of such methods that 

identifies β-aggregating region of peptide or protein sequence. TANGO60,61,62 considers different 

competing conformations such as α-helix, β-aggregation, β-turn, α-helical aggregation, and 

random coil and assumes that every segment of a peptide or protein can be populated by the 

aforementioned according to the Boltzmann distribution. In addition, the algorithm also assumes 

that the core segments in β-aggregates are fully buried and they generally show a tendency to 

satisfy their hydrogen bonding potential. In order to predict the β-aggregating regions of a peptide 

or protein, the algorithm calculates the partition function of the conformational phase-space. It 

should be noted that the algorithm predicts the β-aggregation propensity of a peptide or protein.  

AGGRESCAN63, a web-based tool for the aggregation-prone regions in a peptide or 

protein sequences is based on an aggregation propensity scale developed based on in vivo 

experiments. The main assumption of the specific algorithm is that short and specific segments in 

a peptide or protein modulate the aggregation of the protein. The specific algorithm has 

successfully predicted the aggregation regions of disease-related proteins.63 In addition, the 

algorithm can also help in identifying the aggregation prone regions of bioactive polypeptides 

thereby anticipating the problems during the storage or recombinant production of the specific 

peptides or proteins.63 

Waltz64, a web-based bioinformatics tool, uses a position specific scoring matrix (PSSM) 

to identify or predict amyloid forming peptide or protein sequences. The specific algorithm was 

trained based on sequence diversity of more than 200 amyloid hexapeptides investigated using 

various biophysical and structural methods. Interestingly, it was observed that different amino 

acids had strong position specific tendencies to form amyloid structures in disease related and 

functional amyloids. The specific computational algorithm assigns a score Stotal which is calculated 
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as follows: (Stotal = αprofile Sprofile + αphysprop Sphysprop + αstruct Sstruct). Sprofile is the score calculated 

from the log-based position specific scoring matrix (PSSM) for the amyloid propensity. The 

specific matrix was calculated based on the position specific tendencies for different amino acids 

as described above. Sphysprop is the score calculated based on nineteen physical properties that based 

describe the amyloid propensity and the specific score is the sum of the products of the amino acid 

frequency with the normalized property value of the respective amino acid for each position. Sstruct 

is the score calculated from a position specific pseudo-energy matrix which was evaluated from 

structural modeling using amyloid backbone structures. It is worth noting that the specific 

algorithm can help user better distinguish between amorphous β-aggregates and amyloid peptide 

sequences.64  

Additional sequence-based amyloid prediction tools in bioinformatics are summarized 

below along with their key properties.  

• Amyloidogenic Pattern65 uses a saturation scanning mutagenesis method on the de novo 

designed amyloidogenic peptide STVIIE to identify sequence pattern that could be 

involved in amyloid-like fibril formation.  

• The computational algorithm, Average Packing Density66, relates the average packing 

density of amino acid segments to the formation of amyloid fibrils. Later, the specific 

algorithm was extended to FoldAmyloid67 by including hydrogen-bonding interactions 

between amino acids in the peptide or protein segments of interest.  

• The computational algorithm, Hexapeptide Conformational Energy68 identifies 

hexapeptide amino acid regions in a peptide or protein that fit as β-strands in a stacked 

β-sheet structure based on the crystal structure of the peptide NNQQNY, an 

amyloidogenic hexapeptide segment from the yeast prion protein Sup35.  
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• Beta-strand contiguity69 is a computational algorithm that identifies and locates regions 

in a peptide or protein with high propensity for β-strand structure. The specific 

algorithm, also known as SALSA (Simple ALgorithm for Sliding Averages) calculates 

and assigns a β-strand propensity score by generating varying peptide segments (from 

4 to 20 amino acids) within a peptide or protein sequence.  

• Prediction of amyloid fibril-forming segments (Pafig)70, a method based on Support 

Vector Machines (SVM), identifies hexapeptide sequences which can be associated 

with amyloid fibril formation. The specific method is trained based on 41 

physicochemical methods selected from the Amino Acid index database (AAindex).  

• SecStr (Possible Conformational Switches)71 is a computational algorithm that uses the 

consensus secondary structure prediction program of same name to identify segments 

that have high tendency to form β-strands or α-helices.  

• AmyloidMutants72, a web-based tool, uses energy calculation to predict mutational and 

structural landscapes of amyloid fibrils.  

• NetCSSP73,74,75,76 is a computational method that calculates the hidden β-propensity for 

segments that appears to be α-helical in native state but have the ability to form β-

strands.  

• AMYLPRED77 is a consensus amyloid prediction computational algorithm that 

employed five of the above described algorithms (Amyloidogenic Pattern65, Average 

Packing Density66, Hexapeptide Conformational Energy68, Beta-strand contiguity69, 

Pafig70, SecStr71) to predict the aggregation prone segments in a peptide or protein. The 

method was later extended to include all the eleven aforementioned algorithms to 

predict the aggregation prone segments in a peptide or protein.  
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Such sequence-based bioinformatics methods have been utilized to predict the aggregation 

propensity of various peptides or proteins. For example, TANGO60,61,62 was used to test the 

amyloidogenic propensity of 71 peptides that were not experimentally tested before61. The specific 

set of peptides were derived from the prion protein, lysozyme, and β2-microglobulin. TANGO 

correctly predicted the amyloidogenic propensity of 65 peptides indicating high accuracy61.   

2.2.2 Structural Modeling-Based Methods 

 Several types of structural modelling-based computational methods have been developed 

to study peptide or protein aggregation and amyloid formation, as the self-assembly process 

involves timescales that can exceed hours and also length scales varying from one to several 

hundred nanometers80. This resulted in a hierarchy of structural modeling-based computational 

methods, outlined below, from “extremely” coarse-grained computational models where the length 

scales are in the order of millimeters and time scales are in the order of seconds to the atomic-

detail computational models where the length scales are primarily in the order of nanometers and 

time scales are in the order of nanoseconds up to microseconds.   

Coarse-grained Computational Models 

Coarse-grained computational methods can investigate systems with length scales in the 

order of μm and time scales in the order of μs, and they are frequently used to investigate amyloid 

aggregation. Molecular dynamics (MD) simulations is the standard method for simulating proteins 

where the velocities and positions are calculated by employing molecular mechanics81. Typically, 

in coarse-grained computational models, an ensemble of atoms is grouped into single bead, thus 

allowing longer simulation times80. Coarse-grained computational models have several advantages 

such as they can investigate the full assembly process from peptide or protein monomers to the 
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formation of fibrils which is currently beyond the scope of atomistic simulations80. Coarse-grained 

computational models can also be used to study amyloid aggregation in presence of other 

biomolecules that are in present in the cell environments such as lipid structures80,82 and 

membranes80,83.  

A wide range of coarse graining models are available starting from models where coarse-

graining is performed on the molecular scale to the models where coarse graining is performed 

lightly, thus mostly retaining the atomic resolution of the protein or peptides involved80. It should 

be noted that the coarse-grained computational models come with the trade-off between 

computational efficiency and accuracy80. As a result, the degree of coarse graining must be chosen 

carefully depending on the time and length scale of the system under investigation, as well as the 

type of question that needs to be addressed.80 Examples of coarse-grained computational models 

are outlined below in order of increasing resolution, starting from extreme coarse-graining to light 

coarse-graining. 

 Muthukumar and colleagues84 presented a coarse-grained computational method where an 

extended peptide chain is considered as an elementary building block which is modeled as a 

cuboid. Each cuboid can have several orientations and two cuboids can aggregate when the 

orientation of both are same. Through the course of the simulation each cuboid undergoes a random 

walk and changes its orientation. The specific cuboid lattice coarse-grained computational 

simulation aimed to capture the essence of nucleation growth mechanism of the amyloid fibrils.84 

Vendruscolo and colleagues85 developed a coarse-grained model where the elementary building 

block was represented as a tube and they aimed to capture the nucleation growth mechanism of 

amyloid fibrils as well. The results from these simulations such as the size of the fibril, lag time 

during the mechanism, solubility and elongation rate were in line with experimental 
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observations.85 The two aforementioned computational models are highly coarse-grained resulting 

in lower atomic resolution but are useful when the length and time scales are in the order of μm 

and μs, respectively. 

 Additional coarse-grained computational methods have been presented with higher 

resolution than the ones that were described above. The specific type of coarse-grained 

computational methods could also be called as phenomenological methods where one or more 

beads are used to represent each amino acid in the peptide or protein.80 For example, Caflisch and 

colleagues86,87,88,89,90,91 developed a model where each amino acid is represented by two beads. 

Within this model, each peptide can possess can two possible configurations, a β-competent 

conformation or a folded conformation, with a dihedral potential that can bias both the 

conformations to different degrees. The specific model showed the capability of differentiating 

highly amyloidogenic proteins from the less amyloidogenic ones. Examples of the high 

amyloidogenic proteins include Aβ40, GNNQQNY, Phe-Phe whereas the less amyloidogenic ones 

include Aβ42, prion proteins, myoglobin and Sup35.88 According to the model, fibril formation for 

the systems investigated is a single pathway process and does not involve the formation of 

intermediates such as protofilaments or micelles and starts with the formation of smaller nucleus.88  

 An additional example involves the studies of Shea and colleagues92,93,94,95,96 who 

developed a coarse-grained computational model where each amino acid was represented by three 

beads (one for the side chain and two for the backbone).  Similar to the Caflisch model86,87,88,89,90,91, 

dihedral potential within the model can control the β-sheet propensity of the simulation system. 

The specific model indicated different aggregation pathways for peptides depending on the β-sheet 

propensity of the peptide; highly amyloidogenic proteins formed fibrils through an ordered β-sheet 

nucleus whereas lower amyloidogenic peptides formed disordered oligomers first through which 
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ordered β-sheets emerged.80 The specific model was also used to fibrils growth from which they 

observed that fibrils grew both by elongating (standard or primary growth mechanism) and by 

lateral growth (secondary growth mechanism)93,94,95,96. 

 Furthermore, Hall and colleagues97,98,99,100,101,102,103 developed a coarse-grained 

computational model called PRIME. The specific model represents each amino acid as four beads 

and is effectively able to capture the hydrogen bonding energetics by employing a directional 

square-well hydrogen bond. The specific model aims to perform parametrization by attempting to 

minimize the number of interaction parameters subject to the constraints that the parameters are 

physically meaningful. Hall and colleagues97,98,99,100,101,102,103 applied the PRIME model in 

combination with discontinuous molecular dynamics (DMD) where transmission/reflection of the 

beads are computed in discontinuity to apply discontinuous breaks in the energy function. They 

applied the specific method to study the fibrillization of 48 fragment peptides from Tau with 

sequence VQIVYK at different temperatures99. They observed that at higher temperatures, fibrils 

formed rapidly through a templated mechanism. In addition, Hall and colleagues102 also 

investigated the fibril formation for the peptide fragment Aβ (16-22) similar to the tau fragment 

mentioned above. They observed that at lower temperatures, fibril formation was through 

nucleation growth mechanism and at higher temperatures through templated mechanism. They 

also noted the formation of structural details such as the formation of antiparallel β-sheets, 

intersheet distance, side chain interdigitation in consistency with the experiments15,104,105,106. 

 Moreover, Derreumaux and colleagues107,108 employed a higher resolution coarse-grained 

model called OPEP109. The specific model represents the backbone of an amino acid in full atomic 

resolution for heavy atoms and represents the sidechain as a single bead. Among others, they 
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performed a simulation with trimer structures of Aβ (17-42) using the specific model in 

conjunction with a thermodynamically enhanced sampling method, REMD (described below)107.  

Atomistic Computational Models 

 Atomistic computational models typically offer the most detail where each atom of a 

protein is explicitly represented. Atomistic models are generally used to investigate proteins 

aggregation problems where the length scales are in the range of nm to μm and the time scales are 

in the range of ns to μs.80 Similar to coarse-grained computational models, molecular mechanics 

is employed to calculate the velocities and positions of atoms in simulations using atomistic 

models. In order to calculate the positions and velocities of atoms, the potential energy of the 

proteins needs to be represented appropriately, from which positions and velocities are 

calculated.110 The representation of the potential energy function, often called “force field”, is used 

to calculate the potential energy of the system. Currently, there are various all atom force fields 

such as CHARMM110,111,112,113,114, AMBER115,116, OPLS117. The potential energy function of the 

CHARMM force field is presented below in Eq. 2.1. 
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2.1 

 

The potential energy is described by the sum of bonded and non-bonded energy 

contributions as a function of the coordinates of the atoms in the system. According to Eq. 2.1, 

bonded terms comprise of bond (b), valence angle (θ), Urey-Bradley (UB, S), dihedral angle (φ), 

improper angle (ω), and backbone torsional correction (CMAP,φ,ψ) contributions. Kb, Kφ, KUB, Kθ 

and Kω are parameters which describe the force constants, while variables containing subscript 0 

represent the corresponding values of equilibrium. With the exception of the dihedral angle term, 

represented by sinusoidal expression (n: multiplicity or periodicity of the dihedral angle, δ:phase 

shift) all the rest of the bonded terms are described by harmonic potentials. All possible valence 

and dihedral angles were included for bonded atoms. About a given bond, the dihedral angle term 

is expanded using Fourier series and one dihedral angle term is the most common although it can 

be expanded up to six terms. A numerical correction term, CMAP, has also been implemented for 

the protein main chain. The bonded term, Urey-Bradley, is implemented for three bonded atoms 

A-B-C and is a quadratic function of distance between atoms A and C. The bonded term, improper 
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dihedral angles are implemented when an atom is bound to three other atoms and is also a quadratic 

function of the dihedral angle for the four atoms. The Urey-Bradley is generally only used in 

special cases where as the improper dihedral angle term is commonly used. Non-bonded terms 

comprise of the Lennard-Jones (LJ) 6–12 term representing attractive and repulsive van der Waals 

interactions and Coulombic interactions between the point charges (qi and qj). Both the non-bonded 

terms are calculated within a distance specified by the user (covalently bonded atoms are 

excluded).110 From the potential energy function defined above, force and acceleration on each 

atom are calculated using the Newton’s second law of motion. Several algorithms are available for 

the determination of positions and velocities of atoms as a function of time.110 

As protein aggregation involves timescales that can exceed hours and also length scales 

varying from one to several hundred nanometers, atomistic models are typically used to investigate 

the initial aggregation stages where the structural details can even exceed the experimental 

capabilities80. Atomistic models are also used to study the stability of preformed fibrils or the 

structural characteristics of monomers. Specifically, simulations using atomistic models have been 

helpful in studying intrinsically disordered proteins like Aβ.80 The simulations could provide the 

transient secondary structure of the protein which could suggest the protein regions that are 

responsible for aggregation80.  

The performance of the atomistic models to investigate protein aggregation can be 

enhanced by employing various sampling methods such as replica exchange molecular dynamics 

(REMD) and by representing the solvent molecules implicitly via a mean effective potential 

without losing significant accuracy. The implicit representation of solvent molecules with 

sufficient accuracy is computationally efficient thus being cost effective. Several implicit solvent 

models118,119 were first introduced based on the assumption that the protein under investigation is 
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a low dielectric medium even though the dielectric constant varies significantly in the protein’s 

interior120,121. The specific models also assume the solvent as a medium with high dielectric 

constant and charge spatially distributed118,119. However, more detailed models were eventually 

formulated of which some commonly used implicit solvation models are based on generalized 

born (GB) electrostatics110,122 represented by the equation Eq. 2.2. 
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In the above equation, εw, and εp are the exterior and interior dielectric constants with rij 

being the distance between atoms i and j, and αi being the effective Born radius of the atom i. The 

effective born radius, α, varies with the position of the atoms. The empirical factor, F, modulates 

the length-scale of the Gaussian term. The specific generally ranges from 2 to 10, with 4 as the 

most commonly used value. The continuum dielectric models based on GB electrostatics can be 

efficient compared to the explicit implementation of solvent and it also often works well in 

describing the thermodynamic aspects of the water solvation123. The specific models, referred to 

as generalized Born (GB) models, are also one of the fastest implicit solvent models and they are 

widely used for MD simulations of proteins. In contrast to a lot of simple implicit solvent 

models124,125,126 which evaluate an electrostatic interaction between atom pair by using just 

distance dependent function, GB models also take into account the solvent exposure of the 

charges123,127,128,129. GB models evaluate the degree of burial of individual charges by calculating 

effective Born radii. The specific calculation is used to correct the Coulomb law for each pair of 
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atoms. Fast analytical continuum treatment of solvation (FACTS)123, is one of simple version of 

GB models that evaluates solvent accessible surface area (SASA) and self-electrostatic solvation 

energy of each atom using intuitive geometric properties of the protein. The evaluation of those 

geometric properties requires only protein interatomic vectors. The specific model was extensively 

validated against more accurate GB models and the simulations performed using the FACTS 

implicit model were only four times slower than the corresponding simulations performed in 

vacuum123, and has been used in several studies investigating amyloid formation.40,130,131,132 

 As mentioned above, the performance of MD simulations can also be improved by 

augmenting the simulations with enhanced sampling methods80. Replica exchange molecular 

dynamics (REMD)133,134,135,136,137,138 is one of such enhanced sampling methods and it has been 

used extensively to investigate the problem of protein aggregation139,140. The specific method 

enhances sampling by starting multiple parallel simulations which each simulation exploring a 

particular point in the parameter space80,138. Temperature is the most commonly employed 

parameter for the specific method. After launching multiple simulations (also referred as 

trajectories) of the same system at different temperatures, each trajectory has the opportunity to 

exchange with neighboring trajectories. The exchanging between trajectories is performed 

according to a Metropolis criterion which enforces the proper thermodynamics. The specific 

exchanging procedure results in a discontinuous trajectory at each temperature, thus implicating 

the loss of kinetics in a simulation80.  

 Various computational techniques have been developed to investigate protein aggregation 

which employ a combination of implicit solvent models and sampling method to enhance the 

performance of atomistic models. Among others, the computational protocol developed by 

Tamamis and Archontis130 is an example of one such computational technique which investigates 
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the self-assembly properties of short amyloid peptides. The specific computational protocol, which 

has been extensively used in the current dissertation, performs MD simulations where multiple 

peptides with same sequence are placed in a cubic periodic box with finite concentration. The 

simulations are performed using CHARMM110 with the corresponding CHARMM force-field. 

Water molecules in the simulation are take into account implicitly using FACTS123 implicit solvent 

model (briefly described above). The performance of the simulation is enhanced by employing 

replica-exchange method133,134,135,136,137,138 (briefly described above). Upon completion of the 

REMD simulation for an amyloid peptide under investigation, simulation snapshots at a specific 

temperature (typically at 300 K) are collected and structural analysis and statistical free energy 

calculations are performed to elucidate the peptide’s elementary β-sheet structural units. 

Specifically, structural and statistical free energy analyses were performed by their in-house 

FORTRAN programs which are used to (i) analyze the propensity of the peptides to form 

intermolecular β-sheet structures of high complexity, and (ii) elucidate the key amyloidogenic 

physicochemical properties and β-sheet structures. High complexity β-sheet structures with 

highly-ordered and well-aligned strands (using nematic-P2 and polar-P1 order parameters 

calculated using WORDOM141,142) are collected from free energy minima basins of free energy 

landscapes and are analyzed in detail, as they are expected to elementary β-sheet represent 

structural units in the naturally formed amyloids. The computational protocol is schematically 

represented in the Figure 2.2 and has been implemented in several studies.  

 Specifically, on the basis of the insights gained by the computational study of the self-

assembly of the peptide with sequence NSGAITIG which indicated that the N-terminal residues 

are not participating in the β-sheets and are solvent exposed, a series of amyloid materials with 

have been produced with a series of potential applications.25,26,28 
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Figure 2.2 Schematic representation of the computational protocol developed by Tamamis and 
Archontis.130 
 

2.3 Computational Protein Design and Functionalization, and their Application in the 

Design of Amyloid Materials 

 Computational protein design is generally defined as the design of new peptides or proteins 

that can fold into a specific target protein structure143,144,145,146,147,148,149. The ultimate goal of the 

protein design is to create a protein that can perform desired function and the function that could 

be performed by a protein is largely dictated by the structure of the specific protein. Thus, 

computational protein design uses in silico methods to design a target protein structure which 

encodes the function of the protein. Protein design is also referred as an “Inverse folding problem” 

(IFP) where protein folding problem is the determination of a protein structure given the sequence 

of the specific protein143. Thus, the goal in an IFP is to determine the protein sequence with lowest 
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free energy state that can form a target conformation. Traditionally, protein design was performed 

using experimental methods like site directed mutagenesis, rational design, and directed 

evolution150. However, the recent increase in the computational capacity prompted significant 

improvements of molecular force fields, structural bioinformatics, and protein design algorithms 

which enabled the advancement of computational protein design.  

 Anfinsen’s thermodynamic hypothesis of protein folding states that protein should fold to 

a conformation or structure with lowest free energy. However, it should be noted that many of the 

proteins occurring in the nature are only marginally stable with energy difference between 

misfolded or unfolded states and native folded state as low as 5 kcal/mol146. This could be 

equivalent to just a few hydrogen bonds’ contribution.146 Many naturally occurring proteins could 

be marginally stable due to several reasons such as the functional activity of the protein could 

necessitate compromising structural features; marginally stable proteins are easy to degrade and 

clear by proteases as opposed to highly stable which are resistant to degradation; conformational 

entropy for protein folding is generally high as the misfolded or unfolded protein states outnumber 

the native folding states; proteins in nature are generally optimized only until the stage after which 

gains in organism fitness are hard to make.146 Marginal stability generally sensitizes the protein to 

the changes in environment or mutations which easily lead to misfolding or aggregation of the 

protein.146 Proteins in vivo overcome these limitations by employing a network of molecular 

chaperones called proteostatsis network (PN)146. These set of molecular chaperones help the 

proteins to fold and function efficiently under both normal and stress conditions. However, 

marginal stable proteins without the help of PN are going to be very sensitive to environment, have 

low expressibility rates due to higher chance of misfolding, have increased cost of production. 

This limits their use in many research applications.146  
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Thus, increasing the thermodynamic stability of a protein is the primary principle that 

drives the computational protein design research so that the specific highly stabilized can be used 

in research applications.146 Factors contributing to the stability of a protein can be classified into 

four types.146 First, hydrophobic effect which is the preference for the non-polar amino acids to 

isolate themselves from water which is a dominant force for protein stability.146 This also 

necessitates the presence of polar and charged amino acid on the surface of the protein.146 Second, 

van der Waals interactions where the hydrophobic amino acids generally pack themselves in 

protein cores where they form large number of favorable van der Waals contacts.146 Third, 

hydrogen bonding where partial positive and negative charge atoms become hydrogen donor and 

acceptor, respectively and form favorable polar interactions.146 It should be noted that 

conformational loss of entropy from hydrogen bond formation is relatively high since they are 

sensitive to orientation of acceptor and donor groups and also, they are formed at very close 

separation of the specific groups.146 Although the energetic contribution from hydrogen bond 

formation is small, they are important in specifying the native structure of protein.146 Fourth, salt 

bridges which are formed between opposite charged amino acids contribute to protein stability but 

only to a small extent.146 Salt bridges are generally formed between amino acids that are surface 

exposed.146 Although, buried salt bridges have large stabilizing effects due to the low dielectric 

environment at the core of the protein, they are rarely seen as the penalty to transfer the specific 

amino acid from polar to non-polar environment would be high.146 Indeed, in the cases where 

buried salt bridges are observed, they are generally part of a network polar interactions which 

could provide additional stabilization.146 Buried salt bridges are also important in specifying native 

protein structures as buried charged residues which do not form salt bridges in misfolded protein 

incur huge penalties.146  
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 Computational protein design could also be broadly classified into four classes. In the first 

class, proteins are designed from scratch from the first principle of biophysics. This is generally 

referred as de novo protein design. In the second class, amino acid substitutions are performed on 

a protein with known structure and sequence. Here, amino acid at non mutable positions are 

occupied by the wild-type amino acids. This approach could also be referred to as protein redesign. 

In the third class, multi-component or self-assembling proteins are designed computationally using 

the principles of de novo protein design, which introduces a complexity that mutations need to be 

taken into account in a multimeric/self-assembly fashion. In the fourth class, protein design is 

performed computationally to a protein with the aim to produce a new protein with a specific 

functionality, such as the ability to bind to another substance (e.g., specific ion or compound). 

2.3.1 Class 1: de novo Protein Design 

Although there are various algorithms developed for de novo protein design, they typically 

follow an approach that can be divided into the following steps.147 First, building the target protein 

structure which can be done using a known structure of a similar protein. However, if the target 

protein structure is not observed in nature, then the target structure can be built mimicking many 

defining characteristics of the proteins that occur in nature147. Some of characteristics are backbone 

polar amino acids should form hydrogen bonds with other backbone amino acids, backbone 

torsional angles should occupy the regions in the Ramachandran plot that are allowed, and there 

should be sufficient space between secondary structure units which allows tight packing between 

amino acid side chains. Top7 is an example novel protein that does not exist in nature which was 

computationally designed from scratch151.  

The second step in the de novo protein design is to account for the rigidity or flexibility of 

the backbone in the design template(s). Both flexible and rigid design templates have been used in 



 28 

various de novo protein design studies152. De novo protein design efforts have begun by 

considering that backbone structure of a protein in three-dimensional space is fixed153. These rigid 

backbone templates are generally combined with a discrete set of side chain conformations that 

are frequently observed which are referred to as rotamers154. Examples of the successful studies 

which were performed with rigid backbone template include full sequence design of a protein that 

adopts zinc finger fold155, β1 domain design in the protein G156, and redesign of T4 Lysozyme’s 

core157. Subsequently, experiments have noted that backbone shows flexibility by making 

adjustments when mutations are performed. Thus, de novo protein design efforts were focused on 

accounting for flexibility in the backbone design templates. Flexible design templates can be 

classified into three types152: (i) Multiple backbone templates with fixed backbone assumption on 

each template combined with discrete side chain rotamers. Examples of this class include the 

design of the novel 93 residue α/β protein Top7151, redesign of β1 domain’s core of the 

streptococcal protein158. (ii) Generation of a continuum backbone design template through 

algebraic parametrization combined with discrete side chain rotamers. Examples of this class 

include the design of a family of α-helical protein which have a right handed super helical twist159. 

(iii) Using continuum backbone template in combination with continuous ranges of backbone 

angles. Examples of this class include design of new compstatin variants with improved activity 

to inhibit complement protein 3 (C3)160,161,162, redesign of the human β-defensin-2 peptide which 

a 41-residue antimicrobial peptide of the innate immune system163. 

 The third step in the de novo protein design is to define the sequence space that is allowed 

to explore. Defining the sequence space generally includes specifying the set of amino acids that 

are allowed at each mutable residue position. The set of amino acids can be defined based on the 

four factors that were defined earlier which contribute to the stabilization of the protein namely 
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hydrophobic effect, van der Waals interactions, hydrogen bond formation, and buried salt bridge 

formation.146  

 The fourth step in the de novo protein design is the formulation of an energy function that 

will be able to discriminate sequences that are stable to form target protein structure from the 

sequences that are stable to form other competing protein structures. An ideal energy function in 

the computational protein design algorithms should be both simple and accurate to design protein 

successfully but achieving simplicity and accuracy at the same time is difficult145. Energy 

functions in various computational protein design programs generally consider all the four factors 

contributing to protein stability (discussed above) which are summed as contributions to molecular 

energy. However, different de novo design programs calculate the terms in energy function by 

employing different approaches145. RossettaDesign, a suite of computational tools to design 

proteins, uses a combination of knowledge-based terms calculated based on protein structure with 

physical-based calculations for hydrogen bonding and van der Waals terms to represent its energy 

function164,165,166. EGAD, a genetic algorithm for protein design, bases its energy function largely 

on the physical based molecular mechanics force field167. Liang-Grishin, a score function for 

effective protein design uses a combination of physical-based, geometrical-based and knowledge-

based terms to construct its energy function168.  

2.3.2 Class 2: Computational Protein Redesign 

 The second class of computational protein design, protein redesign, follows the same 

approach as de novo protein design. However, there is no necessity to build the target protein 

structure and backbone design templates from scratch as the structure of the protein on which 

mutations are going to be performed is already available. The range of sequence space to be 
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explored is generally smaller than the corresponding de novo design as most of the amino acids 

are maintained as their wild-type amino acids.147 

2.3.3 Class 3: Computational Design of Self-assembling Peptides 

 Computational protein design algorithms have also been employed to design self-

assembling proteins or peptides169,170,171,172,173,174,175. Andre and colleagues169 successfully 

designed a class of self-assembling peptides with βαβ fold by developing a computational protocol 

which employed the structure of seven-residue self-assembling peptide (GNNQQNY) from a 

prion-like protein, sup35, in microorganism yeast. Baker and colleagues developed computational 

methods to design self-assembling proteins170,171,172,173,174. For example, they designed co-

assembling peptide system which organize themselves to highly ordered nanoscale 

architectures.173 The co-assembling peptide system consist of 24 subunits with two distinct 

peptides which self-assemble into an architecture with tetrahedral point group symmetry.173 

Floudas and colleagues175 developed a two-stage peptide design framework which can generate 

self-associating peptides. The first stage comprises of optimization-based sequence selection with 

simulated multimeric templates as inputs where the aim was to generate low energy sequences. 

The second stage comprises of computational validation where association affinity and fold 

specificity were evaluated. The specific peptide design framework was applied to design self-

assembling tripeptides which were subsequently shown to have self-associating properties using 

experiments. 

2.3.4 Class 4: Computational Protein Design for Functionalization 

Computational protein design algorithms have been successfully employed to design 

functional proteins151,164,165,166,176,177. Yuan and colleagues176 developed a computational protein 
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design program, metal search, which design tetrahedral binding sites for metals in known protein 

structures. The specific program was employed to introduce zinc binding sites in the β1 domain of 

streptococcal protein and also in the four-helix bundle protein α4. Richards and colleagues177 

developed a computational design program, DEZYMER, which constructs ligand binding sites in 

known protein structures. The specific program was employed to introduce copper binding site in 

the E. Coli protein thioredoxin. Rossetta, a computational protein design program developed by 

Baker and colleagues151,164,165,166 has also been employed successfully in the design of numerous 

functional proteins. 

2.4 Dissertation layout 

 The overall goal of this doctoral study is to computationally design novel functional 

amyloid materials rationally or through the use of rational and protocol-based approaches that have 

been developed within the study’s framework. Chapter 3 will be dedicated to describing the design 

of a bifunctional self-assembling peptide RGDSGAITIGC which originated from a combination 

of rational computational and experimental methods. Chapter 4 will be dedicated to describing the 

design of the bifunctional self-assembling peptide RGDSGAITIGY which was designed using a 

combination of optimization and rational computational methods as well as experimental methods. 

Chapter 5 discusses the investigation of the amyloidogenic properties of a pentapeptide, GAIIG, 

as well as discusses the discovery of a novel amyloid designable scaffold encompassing GAIIG as 

a central amyloidogenic core. Chapter 6 discusses the computational design of functional amyloid 

materials with cesium binding, deposition and capture properties, and presents our first steps 

toward a computational protocol to design functional amyloid materials. Chapter 7 discusses our 

approach toward a generalized computational protocol for the design of functional amyloid 

materials binding to ions or compounds. Chapter 8 discusses the implementation of the protocol 
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to design functional amyloid materials binding to compounds involved in treating Alzheimer’s 

disease. Chapter 9 discusses the implementation of the protocol to design functional amyloid 

materials with cell-penetration and DNA binding properties. Chapter 10 discusses the 

implementation of the protocol to design functional amyloid materials with cell-adhesion, calcium 

ion, strontium ion binding properties. Conclusion are finally presented in chapter 11, in addition 

to some insights into future work.  
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3. SELF-ASSEMBLED AMYLOID PEPTIDES WITH ARG-GLY-ASP (RGD) MOTIFS AND 

METAL BINDING RESIDUES AS SCAFFOLDS FOR TISSUE ENGINEERING* 

3.1 Introduction 

3.1.1 Overview and Significance 

Self-assembling peptides and proteins are steadily gaining more interest for their potential 

use as scaffolds in tissue engineering applications, due to their ability to be self-organized into 

supramolecular structures, which can mimic the native extracellular matrix (ECM). In addition, as 

mentioned in the introduction, their properties can be simply tuned through changes at the 

sequence level, and they can be produced in sufficient quantities with recombinant technologies 

or chemical synthesis to allow them to address standardization and homogeneity issues required 

for applications. Thus, several studies focused on the exploitation of self‐assembling proteins, 

peptides, and peptide amphiphiles and their potential application to form scaffolds suitable for 

tissue engineering.10 

ECM macromolecules encompass bioactive signal sequences which are recognized by cells 

via cell transmembrane receptors called integrins. The interaction between integrins and bioactive 

epitopes of ECM activates signal transduction mechanisms. This in turn induces specific cellular 

functions including adhesion, migration, proliferation and differentiation. The RGD sequence 

motif is a paradigm of a bioactive epitope found in the structure of extracellular matrix proteins 

such as fibronectin.178 Incorporation of this motif into peptide and protein scaffolds is used as a 

strategy in order to convey cell adhesion properties to them. Such scaffolds range from the simple 

 
* Reprinted with the permission from “Self-Assembled Amyloid Peptides with Arg-Gly-Asp (RGD) Motifs As 
Scaffolds for Tissue Engineering” by Deidda et al., 2017. ACS Biomaterials Science & Engineering, 3, 7, 1404-1416, 
Copyright 2016 by American Chemical Society 
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Fmoc-phenylalanine amino acid179 to short peptides180,181 and to recombinant proteins such as 

spider silk.182 Nevertheless, the incorporation of RGD sequence motif within a self-assembled 

amyloid material needs to be done in suitably selected positions within the sequence of the peptide 

or protein scaffold in order to ensure proper surface accessibility of the motif. 

In addition, a previous study demonstrated the engineering of proteins incorporating 

cysteine which allows site-specific functionalization.183 Comparison of the engineered variants 

with the original cysteine-free silk protein revealed no apparent differences in solution and in the 

films.183 Nevertheless, functionalization of the thiol groups of these silk protein-based films with 

molecules such as nanogold, dyes, biotin and β-galactosidase demonstrated the potential of such 

films for a broad range of applications, including tissue replacement183. 

3.1.2 Goal 

In this work, we aimed to design a bifunctional self-assembling amyloid peptide, based on 

the NSGAITIG β-amyloid forming motif of the adenovirus fiber shaft that would encompass cell 

adhesion properties through the incorporation of an ArgGly-Asp (RGD) sequence motif and 

functionalization possibilities through a cysteine (C) residue, respectively. 

3.1.3 Hypothesis 

We hypothesized that can be achieved through the rational design of a novel peptide 

preserving the β-sheet core (S)GAITIG131,132 of the NSGAITIG self- assembling sequence, and 

simultaneously incorporating the RGD sequence motif and a cysteine at suitably selected terminal 

peptide positions. To address this, we introduced computational and experimental methods 

investigating the incorporation of RGD and C (i) at the C- and N-terminal ends, and (ii) the N- and 
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C-terminal end, and thus we investigated peptides NH3+CSGAITIGRGD-CONH2 

(CSGAITIGRGD), and NH3+RGDSGAITIGC-CONH2 (RGDSGAITIGC), respectively. 

3.1.4 Objectives Accomplished 

Insights from simulations verified that both peptides self-assemble into structures rich in 

β-sheet content. Computational studies comparing the two peptides indicated that RGDSGAITIGC 

possesses advantageous properties to serve as a bifunctional biomaterial compared to 

CSGAITIGRGD. Therefore, the RGDSGAITIG peptide was chosen for further experimental 

investigation. In addition, peptide NH3+RGESGAITIGC-CONH2 (RGESGAITIGC), which 

contains a glutamate instead of aspartate at residue position 3, was computationally and 

experimentally investigated. 

Additionally, according to experiments performed by our experimental collaborators (see 

below), on the basis of insights provided by the theoretical studies, our collaborators investigated 

the ability of the RGDSGAITIGC as well as the ability of the RGESGAITIGC to self-assemble 

into amyloid-like fibrils when suspended in physiological solutions. Different techniques such as 

transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), 

atomic force microscopy (AFM), and X-ray fiber diffraction analysis were utilized in order to 

experimentally confirm whether the original sequence could conserve the ability to self-assemble 

in the presence of the RGD motif in one terminus and the incorporation of an additional 

cysteine/alanine residue in the other terminus. Furthermore, our collaborators aimed to investigate 

whether thiols remain in their reduced state in cysteine-containing peptides externally from their 

fibrous network. In fact, the presence of exposed −SH functional groups is crucial for binding 

selectively to metals or surfaces and possibly to conjugate with signaling molecules. DTNB 

titration was used as a valid technique to quantify the degree of exposed sulfhydryl groups from 
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peptides in solution. In the experimental part, our collaborators also tested along a peptide 

containing an alanine at the C terminus (RGDSGAITIGA) as a non-cysteine analogue of the 

peptide RGDSGAITIGC. All peptides were tested for their ability to support adhesion and 

proliferation of a model fibroblast cell line. 

This study resulted in a publication of Dr. Tamamis’ computational lab in collaboration 

with Dr. Mitraki’s experimental lab, and other experimentalists which their names are listed below 

in the complete publication reference: “Deidda, G.; Jonnalagadda, S.V.R.; Spies, J.W.; Ranella, 

A.; Mossou, E.; Forsyth V.T.; Mitchell, E.P.; Bowler, M.W.; Tamamis, P.; Mitraki, A. Self-

Assembled Amyloid Peptides with Arg-Gly-Asp (RGD) Motifs as Scaffolds for Tissue 

Engineering. ACS Biomater. Sci. Eng. 2017, 3, 1404-1416.” 

G.D. and S.V.R.J. are equally contributing first authors.  

3.2 Computational Methods 

The computational protocol developed by Tamamis and Archontis130 described in chapter 2 was 

introduced to investigate the self-assembly properties of the peptides with sequences 

CSGAITIGRGD, RGDSGAITIGC, and RGESGAITIGC.  

3.2.1 “Self-Assembly” Replica Exchange MD Simulations 

Initially we placed six copies of peptide sequences CSGAITIGRGD, RGDSGAITIGC, and 

RGESGAITIGC, independently, in a cubic periodic 148 Å box, which approximately corresponds 

to a 3 mg/ml concentration. The initial conformations of the six peptides were extracted using 

clustering analysis from replica exchange MD simulations investigating the isolated peptides in 

infinite dilution which varied and primarily contained random coil and β-turn structural elements. 

All six peptides were initially placed in the center of the box, and subsequently peptides 1 and 2 

were translated by +25 Å and -25 Å in the x direction, peptides 3 and 4 were translated by +25 Å 
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and -25 Å in the y direction, and peptides 5 and 6 were translated by +25 Å and 25 Å in the z 

direction. We performed replica exchange MD simulations to investigate the self-assembly 

properties of the three peptides, independently, as in references40,130, 131,132,184. Water was modelled 

implicitly using the FACTS19123 solvation model and the value of the surface tension coefficient 

equal to 0.015 kcal/(mol*Å2). We used Langevin dynamics, and a 5ps-1 friction coefficient was 

introduced on all non-hydrogen atoms of each peptide. The duration of each replica exchange run 

was equal to 10 ps. In the replica exchange MD simulation runs, sixteen temperatures (290, 295, 

300, 305, 310, 315, 321, 327, 333, 339, 345, 352, 359, 366, 373 and 380 K) were employed, and 

the total simulation time for all temperatures per system was equal to 8 μs. The simulations were 

performed using CHARMM110. For each peptide sequence, we collected the final conformations 

of each replica exchange run at 300 K. These conformations were combined in one trajectory per 

peptide sequence, which corresponds to 500 ns and contains 50,000 snapshots. 

3.2.2 Categorization and Probability of β-Sheet Conformations 

Following the computational protocol developed by Tamamis and Archontis130 described 

in chapter 2,  we used DSSP185 and in-house FORTRAN programs to investigate the self-assembly 

properties of the three different peptides, CSGAITIGRGD, RGDSGAITIGC, and 

RGESGAITIGC, using a similar protocol to the one described in references40,131,132. Specifically, 

DSSP185 was employed to identify the formation of intermolecular beta sheet structures, and 

FORTRAN programs categorized the intermolecular beta sheet patterns observed into antiparallel, 

parallel and mixed conformations comprising 2- to 6- peptide strands. This analysis provided us 

with the information on which configuration, parallel versus antiparallel, is the most dominant per 

peptide sequence, according to the self-assembly simulations. 
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3.2.3 β-Sheet Residue-Pairwise Interactions 

The aforementioned simulations resulted in the self-assembly of all three peptide sequences 

investigated into β-sheet rich conformations consisting of two to six peptides. The 4-, 5-, and 6-

stranded antiparallel or parallel β-sheets that were computationally investigated acquire higher 

complexity than 2- and 3-stranded β-sheets; hence, the β-sheet patterns observed in the former can 

potentially correspond to patterns which may exist in the naturally occurring amyloid fibrils. In 

what follows, we focused our analysis on the 4-, 5-, and 6- antiparallel and parallel β-sheets. With 

the exception of 2-stranded antiparallel β-sheets in RGDSGAITIGC, the previous analysis 

depicted that a parallel β-sheet arrangement is more favored than antiparallel in CSGAITIGRGD, 

whereas an antiparallel β-sheet arrangement is more favored than parallel for the amyloid fibrils 

formed by both RGDSGAITIGC, RGESGAITIGC peptides. Thus, in the subsequent analysis we 

focused our analysis on 4-, 5-, and 6-stranded parallel β-sheets formed by CSGAITIGRGD 

peptides, as well as 4-, 5-, and 6-stranded antiparallel β-sheets formed by peptides 

RGDSGAITIGC and RGESGAITIGC. We calculated the (%) probability of an intermolecular pair 

of residues, which belong to two neighboring β-interacting peptides, to be involved in a β-sheet 

(extended β-sheet or isolated β-bridge) formation. This analysis shows the predominant patterns 

of intermolecular residue-pairwise β-sheet interactions and provides insights into the expected 

amyloidogenic regions of each of the peptides. Furthermore, it reveals which residues are not 

involved in the formation of intermolecular β-sheets in each peptide sequence, which may be 

important for functionalization purposes and specific biomaterial applications. 
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3.2.4 Classification of β-sheet Conformations Using P1 and P2 Parameters and Identification of 

Well-Aligned and Well-Ordered β-Sheet Conformations 

We examined the extent of peptide alignment of the 4- to 6- stranded β-sheet conformations 

via the polar order-parameter P1 and the nematic order-parameter P2, defined in Eq. 3.1. These 

parameters are used in the structural characterization of liquid crystals, and have been employed 

successfully in simulation studies of peptide aggregation.40,130,132,131,186,187 

 

  3.1 

 

In Eq. 3.1, N is the number of molecules in the simulation and  is a unit vector along a 

suitably defined molecular direction; is a unit vector along a preferred direction of alignment, 

which emerges from the properties of the system. For CSGAITIGRGD, we selected   to be 

defined by the segment spanning from Cα atom of residue 4 to the Cα atom of 9, while for 

RGDSGAITIGC and RGESGAITIGC we selected   to be defined by the segment spanning from 

Cα atom of residue 5 to the Cα atom of 10.  The selection was primarily based on the key β-sheet 

regions of each peptide. 

We computed P1 and P2 for the 4-, 5-, and 6- stranded parallel β-sheets formed by 

CSGAITIGRGD peptides, as well as the antiparallel β-sheets formed by peptides RGDSGAITIGC 

and RGESGAITIGC peptides using Wordom141,142. According to the results, among 4-, 5-, and 6- 

stranded β-sheets, highly populated and highly-ordered β-sheets are observed only in 4-stranded 
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β-sheet conformations across all systems. We focused our analysis on 4-stranded β-sheets and 

specifically aimed at examining the structural properties of highly-ordered and well-aligned 

conformations corresponding to the parallel β-sheets formed by CSGAITIGRGD, and the 

antiparallel β-sheets formed by RGDSGAITIGC and RGESGAITIGC. We constructed free-

energy surfaces for the specific 4-stranded β-sheets, using the two dimensional probability P(P1, 

P2) and the relation: 

 

 3.2 

 

In each case we detected the free-energy basin which encompasses the majority of 

conformations and where the global minimum falls into, and subsequently we extracted the states 

with the highest polar order and highest nematic order. The selected highly-ordered and well-

aligned 4-stranded conformations were utilized for all subsequent analyses which aimed at 

obtaining additional insights, primarily focusing on the peptides’ structural properties, as well as 

the role of the RGD/RGE sequence motifs and residue C, which are the potential key functional 

groups of the peptides.  

3.2.5 Side Chain Contacts and Solvent Accessible Surface Areas 

We used in-house FORTRAN programs to investigate the propensity of intra- and inter- 

molecular contacts formed between the side chains of residues of peptides within the selected 4-

stranded highly ordered and well-aligned β-sheet states. We used a 6.5 Å distance cutoff between 

the geometric centers of two side chains as a criterion to denote that they are in contact. In addition, 

we used Wordom141,142 to investigate the degree of solvent accessibility of the RGD/RGE sequence 
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motifs and residue C within the 4-stranded highly ordered and well-aligned states. We calculated 

the ratios of solvent/total accessible surface areas for specific backbone and side chain moieties 

belonging to RGD or RGE sequence motifs and residue C, of the two central peptides in each 4-

stranded highly ordered and well-aligned β-sheet states. The degree of solvent accessibility of the 

two outer peptides is artificially high owing to the absence of interacting peptides on both sides; 

thus, the values for the two outer peptides are not reported. The total accessible surface areas were 

approximated as the maximum solvent accessible surface area (SASA) and is computed by 

calculating the SASA of the residue or residue moiety in the structure when all other atoms are 

removed. While this approximation is expected to overestimate the total SASA of a residue 

compared to other studies (e.g., ref 188), we used this definition as we considered it as an optimum 

way to perform a fair comparison of the investigated residue groups’ solvent accessibility across 

the different peptides investigated in this study. A 1.4 Å sphere (approximating the radius of a 

water molecule) was introduced to “probe” the surface of the molecule. 

3.2.6 Hydrogen Bonds and Salt Bridges Formed by the Positively Charged Group of Arginine 

The positively charged groups of Arg9 in CSGAITIGRGD, as well as Arg1 in 

RGDSGAITIGC and RGESGAITIGC are expected to be critical for cell attachment properties. 

For the selected 4-stranded highly ordered and well-aligned β-sheet states, we used in-house 

FORTRAN programs and calculated the intra- and intermolecular (%) occupancies of hydrogen 

bonds formed by the charged amide group of Arginine with all possible oxygen donors or 

acceptors. Furthermore, we calculated the probability of Arg9 in CSGAITIGRGD, as well as Arg1 

in RGDSGAITIGC and RGESGAITIGC to be involved in an intermolecular salt-bridge or 

intramolecular salt-bridge or inter/intra- molecular salt-bridge. A 3.7 Å distance cutoff between 
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two heavy atoms was used as a criterion to denote a hydrogen bond/salt-bridge formation in this 

analysis. 

3.2.7 Geometrical Properties of the RGD motif in Fibronectin Compared to the Designed 

Amyloid Peptides 

NMR structural analysis of recombinant polypeptide domains encompassing an RGD 

motif, such as the tenth type III repeat of fibronectin depict that the RGD motif is located at the 

apex of a solvent exposed loop formed by two antiparallel β-strands189. Apart from the critical role 

of the solvent accessibility of the motif in its functionality178, we also examined additional 

geometrical features of the RGD motif in the NMR structure of the fibronectin189 which may also 

contribute to its functionality. Specifically, we investigated the correlation between three 

geometrical features of the RGD motif in the ensemble of NMR structures189: (i) the solvent 

accessibility of the motif, (ii) the tendency for a salt-bridge formation between the positively and 

negatively charged groups, and (iii) the tendency for a bend formation in the backbone of the motif. 

The solvent accessibility was assessed by calculating the ratio of the SASA divided by the total 

SASA of motif, the tendency for a salt-bridge formation was assessed by calculating the distance 

between the CZ atom of positively charged group and CG atom of negatively charged group, and 

the tendency for a bend in the motif was assessed by calculating the Cα : Cα distance between the 

first and the last residue of the motif. The aforementioned geometrical features which were 

calculated for the RGD motif in the fibronectin189 were compared to the corresponding features of 

the RGD/RGE motifs, calculated for the ensemble of highly ordered and well-aligned 4-stranded 

parallel β-sheets formed by the CSGAITIGRGD peptide, as well as the antiparallel β-sheets 

formed by the RGDSGAITIGC and RGESGAITIGC peptides.  
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3.3 Materials and Experimental Methods 

All experiments described in 3.3 were performed by Dr. Mitraki’s lab and by additional 

experimental collaborators, listed as authors in ref.24 

3.3.1 Materials 

 The following synthetic peptides were studied: a) NH3+-RGDSGAITIGA-CONH2, b) 

NH3+-RGDSGAITIGC-CONH2, and c) NH3+-RGESGAITIGC-CONH2. The peptides were 

purchased from Genecust (Luxemburg) and possessed a degree of purity higher than 95%. These 

synthetic lyophilized peptide powders were dissolved in sterile water pH 7.4 or in 10 mM 

phosphate buffer pH 7.4 at concentrations of 3 mg/ml. 

3.3.2 Transmission Electron Microscopy (TEM) 

Samples for TEM analysis were prepared after drying for 24h a battery of grids (300 square 

mesh copper, 3,05 mm, Agar Scientific) coated with formvar film. After that, 8 µl of the sample 

were applied on the shiny face of the grid, left aside for two minutes, dried with a filter paper and 

then the same procedure was repeated with the stain. The samples were negatively stained with 8 

µl of uranyl acetate 1% for two minutes. The TEM experiments have been performed by using a 

JEOL JEM 2100, High Resolution microscope, operating at 80 kV (University of Crete, Biology 

Department). 

3.3.3 DTNB titrations 

The first titrations setting with Ellman's reagent (5,5'-dithiobis-2-nitrobenzoic acid) or 

commonly named DTNB, Sigma Aldrich) was prepared by following the experimental section of 

Hauser’s group181. Further details are provided in the ref24. 
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3.3.4 Cell Culture and MTT Test 

Cell cultures were performed by using murine fibroblasts NIH/3T3 (ATCC American Type 

Culture Collection) which were incubated at a concentration of 105 cells/mL in Dulbecco’s 

Modified Eagle’s Medium (DMEM)/Ham’s Nutrient Mixture supplemented with 10% fetal bovine 

serum (FBS, Sigma), 4 mmol/L L-glutamine (Sigma) and 1% antibiotic (Pen-Strep) solution 

(GIBCO, Invitrogen). The MTT assay measures the capacity of viable cells to metabolize a light-

yellow water-soluble tetrazolium salt (3-4,5 dimethylthiazol-2,5 diphenyl tetrazolium bromide) 

into an insoluble purple formazan product190. The assay was carried out by referring to the Sigma-

Aldrich protocol. Further details are provided in the ref24. 

3.4 Results and Discussion 

3.4.1 β-sheet Conformations 

All the three peptides which were computationally investigated are frequently arranged 

into β-sheet conformations, in line with their amyloidogenic propensities (Figure 3.1). The β-sheet 

conformations formed by the peptides include antiparallel/parallel 2-stranded β-sheets, as well as 

antiparallel/parallel/mixed 3-, 4-, 5-and 6- stranded β-sheets. For β-sheet conformations with high 

degree of complexity (e.g., 4-, 5- and 6-stranded β-sheets), the parallel arrangement is more 

favorable compared to the antiparallel one for the CSGAITIGRGD peptide, while the antiparallel 

arrangement is more favorable compared to the parallel one for RGDSGAITIGC and the 

RGESGAITIGC peptides. The predominant parallel arrangement in the CSGAITIGRGD peptide 

is in line with our previous study indicating that NSGAITIG peptides tend to be arranged in a 

parallel configuration131. The predominant antiparallel arrangement of the RGDSGAITIGC and 

the RGESGAITIGC peptides can, at least for the current peptide sequences, presumably be 

attributed to the fact that the parallel arrangement may be somewhat disfavored owing to the 
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energetically unfavorable accumulation of two positively charged groups (a positively charged N-

terminal domain, and a positively charged arginine side chain) on one side of the fibril, which 

presumably it cannot be counterbalanced by the presence of highly favorable intermolecular non-

covalent interactions between cysteine residues on the other side of the fibril. 

3.4.2 β-Sheet Residue-Pairwise Interactions 

We focused our analysis on β-sheet conformations containing 4-, 5-, or 6- strands of (i) 

peptide CSGAITIGRGD bonded in parallel fashion, (ii) peptide RGDSGAITIGC bonded in 

antiparallel fashion, and (iii) peptide RGESGAITIGC bonded in antiparallel fashion. The analysis 

focused on 4-, 5-, or 6- β-sheets as these conformations represent β-sheet structures with higher 

complexity which can potentially correspond to the naturally occurring amyloid fibrils. We 

calculated the propensity of two residues which belong to neighboring β-sheet interacting peptides 

to be involved in a β-sheet formation (β-bridge) and the results are presented in Figure 3.2. In all 

systems, the β-sheet rich region is primarily comprised by residues within the sequence segment 

GAITIG. Sequence segment RGD and residue C do not play a primary role in the stabilization of 

the β-sheet conformations, with the exception of residues Arg9 and Gly10 which may participate 

in β-sheet interactions in CSGAITIGRGD (Figure 3.2A, 3.2D, 3.2G). 
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Figure 3.1 Moving averages of the fraction (%) of conformations with intermolecular β-sheets in 
the replica exchange MD simulations at 300 K for peptides with sequence CSGAITIGRGD, 
RGDSGAITIGC, and RGESGAITIGC. Figures A, D, G, J, M in the first column correspond to 2-
, 3-, 4-, 5-, 6- stranded β-sheets of peptide CSGAITIGRGD, respectively. Figures B, E, H, K, N 
in the second column correspond to 2-, 3-, 4-, 5-, 6- stranded β-sheets of peptide RGDSGAITIGC, 
respectively. Figures C, F, I, L, O in the third column correspond to 2-, 3-, 4-, 5-, 6- stranded β-
sheets of peptide RGESGAITIGC, respectively. Red color corresponds to antiparallel β-sheets, 
green color corresponds to parallel β-sheets, and blue color corresponds to mixed β-sheets. 
Reprinted with the permission from ref.24 
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Figure 3.2 Density (%) maps of residue pairs forming intermolecular β-bridges for β-sheet 
conformations of CSGAITIGRGD, RGDSGAITIGC, and RGESGAITIGC. The pairs of residues 
belong to nearest neighboring peptides participating in an isolated β-bridge or extended β-sheet 
conformation in the replica exchange MD simulations at 300 K. Figures A, D, G correspond to the 
β-bridges in 4-, 5- and 6-stranded parallel conformations formed by peptide CSGAITIGRGD. 
Figures B, E, H correspond to the β-bridges in 4-, 5- and 6- stranded antiparallel conformations 
formed by peptide RGDSGAITIGC, respectively. Figures C, F, I correspond to the β-bridges in 4-
, 5-and 6- stranded antiparallel conformations formed by peptide RGESGAITIGC, respectively. 
Reprinted with the permission from ref.24 
 

3.4.3 Classification of β-sheet Conformations using P1 and P2 parameters and Identification of 

Well-Aligned and Highly-Ordered β-Sheet Conformations 

We extracted the states containing 4-, 5- and 6-stranded β-sheet parallel conformations 

from peptide CSGAITIGRGD, as well as antiparallel conformations from peptides 

RGDSGAITIGC and RGESGAITIGC, and evaluated their degree of alignment and order by 
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plotting P1 polar order parameter P2 nematic order parameter (Figure 3.3). The results show that 

for all peptides which were investigated computationally, highly-ordered (high P2 value) and well-

aligned β-sheets (P1 value depends on the number of peptides in the β-sheet) are predominantly 

observed in the 4-stranded rather than 5- and 6- stranded β-sheet conformations. Hence, since our 

aim was to identify β-sheet conformations containing high degree of order and well-aligned strands 

which can correspond to the naturally occurring β-sheet structures in the amyloid fibrils, we 

constructed 2D energy free surfaces, using the calculated P1 and P2 parameters for the 4-stranded 

parallel β-sheets formed by CSGAITIGRGD, as well as the 4-stranded antiparallel β-sheets formed 

by RGDSGAITIGC, RGESGAITIGC peptides (top panel of Figure 3.4). The global free energy 

minima in the plots are located in basins which are marked using black dashed lines, and within 

these basins we observe the presence of highly-ordered and well-aligned β-sheet conformations. 

As the specific β-sheet conformations are very likely to correspond to the naturally occurring 

conformations, we extracted a subset of 4-stranded highly-ordered and well-aligned β-sheet states 

for subsequent computational structural investigation. Representative conformations of the 

selected highly-ordered and well-aligned β-sheet states are shown in the bottom panel of Figure 

3.4. 

3.4.4 Amyloid-Forming Ability of the Designed Peptides 

To determine whether the designed peptides conserved their ability to form amyloid fibrils, 

the peptide-lyophilized powders were dissolved in ultrapure water and followed by TEM over time 

by experimental collaborators listed as authors in ref. 24 Figure 3.5 shows TEM micrographs of the 

RGDSGAITIGA, RGDSGAITIGC, and RGESGAITIGC peptides after negative staining. For all 

peptides, straight, non-branched fibrils with diameters ranging from 10 to 50 nm and reaching 

several micrometers in length are observed. The TEM results confirm that the designed peptides 
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maintain the ability to self-assemble into amyloid-type fibers and the extra RGD or RGE residues 

can be accommodated at the N-terminus without hindering the self-assembling propensity of the 

amyloid-forming core. 

 

 

Figure 3.3 Plots of P1 (x-axis) as a function of P2 (y-axis) for the 4-, 5-, 6- stranded β-sheet 
conformations observed in the replica exchange MD simulations at 300 K of peptides with   
sequence CSGAITIGRGD, RGDSGAITIGC, and RGESGAITIGC. Panels A, D, G in the first 
column correspond to 4-, 5-, 6- stranded parallel configurations of peptide CSGAITIGRGD, 
respectively. Panels B, E, H in the second column correspond to 4-, 5-, 6- stranded anti-parallel 
configurations of peptide RGDSGAITIGC, respectively. Panels C, F, I in the fourth column 
correspond to 4-, 5-, 6- stranded anti- parallel configurations of peptide RGESGAITIGC, 
respectively. Reprinted with the permission from ref.24 
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Figure 3.4 Free energy surfaces constructed from the 2-D probabilities of order parameters P1 and 
P2 and molecular graphics images of representative structures of CSGAITIGRGD, 
RGDSGAITIGC, and RGESGAITIGC peptides extracted from the free energy minima. Upper 
Panel: Free energy surfaces constructed from the 2-D probabilities of order parameters P1 and P2, 
calculated for the 4-stranded β-sheets observed in the replica exchange MD simulations at 300 K. 
Surface in panel A corresponds to 4-stranded parallel β-sheets formed by CSGAITIGRGD 
peptides, and surfaces in panels B and C correspond to 4-stranded antiparallel β-sheets formed by 
RGDSGAITIGC and RGESGAITIGC peptides, respectively. Bottom Panel: Simulation snapshots 
of representative highly-ordered and well-aligned β-sheet states of CSGAITIGRGD peptides in 
parallel arrangement (panel D), RGDSGAITIGC and RGESGAITIGC peptides in antiparallel 
arrangement (panels E and F). Reprinted with the permission from ref.24 
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Figure 3.5 TEM micrographs of peptides RGDSGAITIGA (A), RGDSGAITIGC (B) and 
RGESGAITIGC (C) peptides at a concentration of 3mg/ml, aged for 96 hours at pH 7.4. The 
samples were diluted 1/3 prior to staining with uranyl acetate 1%. Figure was produced by our 
experimental collaborators and reprinted with the permission from ref.24 
 

3.4.5 Side Chain Contacts and Solvent Accessibility of the Functional Groups 

We performed a statistical analysis of the intra- and intermolecular side chain contacts 

within the highly ordered and well-aligned states of 4- stranded parallel β-sheets formed by 

CSGAITIGRGD, 4- stranded antiparallel β-sheets formed by RGDSGAITIGC and 

RGESGAITIGC peptides to gain additional insights on the role of side chain interactions in the 

stabilization of the β-sheets, as well as to investigate in-depth the side chain contacts formed by 

the key functional sequence motif RGD/RGE and residue C (Figure 3.6). The intermolecular 

contacts involve side chain interactions between nearest neighboring β-sheet interacting peptides 

only, whereas intramolecular contacts involve side chain interactions between residues within the 

same peptide. As for intermolecular side chain contacts, in all β-sheet states analyzed here, we 

observe a tendency for the side chains to cluster across the β-sheet region of each peptide (Figure 

3.6) and form an amyloid steric zipper15, (Figure 3.6). In CSGAITIGRGD the amyloid zipper 

formed involves partly the RGD sequence motif, in contrast to RGDSGAITIGC and 

RGESGAITIGC peptides (Figures 3.4 and 3.6). This result suggests that the RGD sequence motif 

is potentially more solvent exposed when it is part of the β-sheet states formed by RDGSGAITIGC 
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compared to CSGAITIGRGD (see below). As for intramolecular side chain contacts, apart from 

the expected tendency of nearest neighboring residues in the sequence to interact with each other, 

the RGD motif in the antiparallel RGDSGAITIGC β-sheet states forms contacts with the side 

chains of residue moiety 6−10. An in- depth investigation revealed that this is partly attributed to 

the fact that one of the two outer peptides tends to bend in approximately 1/3 of the β-sheet states, 

which is presumably an artifact of the limited number of peptides used in the simulations. 

 

 

Figure 3.6 Percentage (%) probability density maps of side chain contacts for the highly-ordered 
and well-aligned 4-stranded β-sheets observed at 300 K for peptides with sequence 
CSGAITIGRGD, RGDSGAITIGC, and RGESGAITIGC. Maps A, B, C correspond to 
intermolecular side chain residue-residue contacts between nearest neighboring interacting 
peptides. Maps D, E, F correspond to intramolecular side chain residue-residue contacts. A contact 
is present when the two geometric centers of the two side chains are within 6.5 Å. Maps A and D 
correspond to parallel β-sheets formed by CSGAITIGRGD, maps B and E correspond to 
antiparallel β-sheets formed by RGDSGAITIGC, and maps C and F correspond to antiparallel β-
sheets formed by RGESGAITIGC. Reprinted with the permission from ref.24     
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In addition, we performed a statistical analysis of the degree of exposure of the entire 

residues and side chains of the sequence motifs RGD/E, as well as the arginine and cysteine 

residues which belong to the two central peptides. The degree of solvent accessibility by RDG/E 

motif is higher in the antiparallel RGDSGAITIG (66±8%) and RGESGAITIGC (69±6%) β-sheet 

states compared to the parallel CSGAITIGRGD (41±7%) β-sheet states, and this can partly be 

attributed to the fact that the side chain group of the arginine residue is more solvent exposed in 

the RGDSGAITIG (55±11%) and RGESGAITIG (56±10%) β-sheet states compared to 

CSGAITIGRGD (35±8%) ones. The side chain group of cysteine residues is more solvent exposed 

in the CSGAITIGRGD (48±9%) parallel β-sheet states compared to the antiparallel 

RGDSGAITIGC (34±9%) and RGEGAITIGC (36±10%) β-sheet states. A visual inspection of the 

4-stranded highly-ordered and well-aligned β-sheets formed by all peptides shows that the thiol 

group of cysteines is adequately solvent exposed to be functional with regard to metal-

nanoparticle/surface-attachment (Figure 3.4). 

3.4.6 Geometrical Properties of the RGD motif in Fibronectin Compared to the Designed 

Amyloid Peptides 

The geometrical analysis of the RGD motif as part of the fibronectin NMR structures 

validates that high solvent accessibility can be considered as a factor correlating with functionality 

as in all structures the RGD motif experiences high exposure to the solvent (Figure 3.7)178. While 

the formation of a salt-bridge between the oppositely charged groups should not preclude 

functionality of the motif as it occurs with an approximately 16% in the NMR structures189, it is 

plausible that a persistent salt-bridge formation would potentially limit arginine’s accessibility, 

and thus weaken the motif’s functionality. Also, the formation of a bend within the motif does not 

seem to correlate with the motif’s functionality (Figure 3.7).   
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In the highly-ordered and well-aligned parallel β-sheets formed by CSGAITIGRGD and 

antiparallel β-sheets formed RGDSGAITIGC and RGESGAITIGC peptides we observe that the 

occurrence of an intramolecular salt-bridge between the oppositely charged groups in the 

RGD/RGE motifs (as the distance between Arg CZ : Asp/Glu CG can be below 6.0 Å), and that 

the formation of a bend within the RGD motif are possible (Figure 3.7); in line with the 

aforementioned salt-bridge analysis, the formation of an intramolecular salt-bridge between the 

oppositely charged groups within the RGD/RGE motif is significantly more favored in the 

antiparallel β-sheets formed by RGESGAITIGC peptides. While the solvent exposure of the RGD 

motif in the fibronectin is comparable to the solvent exposure of the RGD/RGE motifs in the highly 

ordered antiparallel RGDSGAITIGC and RGESGAITIGC β-sheets, it is interestingly significantly 

higher than the solvent exposure of the RGD motif in the highly ordered parallel CSGAITIGRDD 

β-sheets (Figure 3.7). As the solvent exposure of the RGD motif is essential for cell adhesion178, 

the aforementioned analyses suggest that the fibrils formed by RGDSGAITIGC and 

RGESGAITIGC peptides are expected to possess the desired bifunctional properties, in contrast 

to the fibrils formed by CSGAITIGRGD peptides. The lower solvent accessibility in the latter is 

in correlation with the fact that in the parallel CSGAITIGRGD β-sheets the amyloid zipper 

involves residues 3-10 and includes partly the RGD sequence motif, in contrast to the antiparallel 

RGDSGAITIGC and RGESGAITIGC β-sheets, where the amyloid zipper does not overlap with 

the RGD motif. Thus, the amyloid fibrils formed by RGDSGAITIGC and RGEGAITIGC peptides 

are expected to simultaneously encompass cell-attachment and metal nanoparticle-attachment 

properties. 
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Figure 3.7 Three-dimensional plot of the ratio of the solvent over the total accessible surface area 
(Z-axis) with respect to the Cα : Cα distances between Arg and Asp/Glu (X-axis) and the distance 
between the Arg CZ atom and Asp/Glu CG atom (Y-axis) of the RGD/RGE motif in the Fibronectin 
protein [PDB code:1TTF189] (red dots) and the peptides CSGAITIGRGD (green dots), 
RGDSGAITIGC (blue dots), RGESGAITIGC (black dots). All the data points in the three-
dimensional space are projected onto the XY plane as well. Reprinted with the permission from 
ref.24 
 

3.4.7 Titration of exposed thiol groups with DTNB 

The following experiments were performed by Drs. Mitraki’s lab and by additional experimental 

collaborators, listed as authors in ref.24 DTNB (5,5'-dithiobis-2-nitrobenzoic acid), or Ellmann’s 

reagent produces a yellow color upon reaction with free thiols. To evaluate the percentage of free 

thiols remaining post-assembly, aliquots of the peptide solutions were titrated with DTNB at 

different time points after dissolving the peptide powder in water.  The values at each time point, 

normalized to the value at time 0 to give the percentage of free thiols remaining, are presented in 

Figure 3.8. A control sample of peptide dissolved in 8 M Guanidine hydrochloride, where 

assembly cannot take place was carried out in parallel.  After 96 hours in water nearly 80 % of 

thiols remain titratable by DTNB and therefore exposed; at this time point, assembly and fibril 

formation is essentially complete, as shown by the microscopy results. Following this time point, 
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the percentage of free thiols is slowly declining to reach a percentage of about 60% after two 

weeks. As the profile of free thiols in the water sample and in the guanidine sample are essentially 

the same, it can be assumed that the thiols are not buried during assembly and they remain exposed 

from the self-assembling core. The slow decline of free thiols in water following the first 96 hours 

could be attributed to post-assembly oxidation events. 

 

 
Figure 3.8 Free –SH concentrations monitored by DTNB titration of the peptide RGDSGAITIGC 
3 mg.ml in pH 7.4 in water (black bars) and in guanidine hydrochloride 8M (light grey bars). 
Figure was produced by our experimental collaborators and is reprinted with the permission from 
ref.24 
 

3.4.8 Fibroblast adhesion and proliferation 

The following experiments were performed by Drs. Mitraki’s lab and by additional 

experimental collaborators, listed as authors in ref.24 The adhesion and proliferation of the 

fibroblast model cell NIH/3T3 was followed in cell culture polystyrene plates covered with tissue 

culture coverslips where the peptide networks were deposited. Cell viability was followed over 

time, from day 1 to day 7. Metabolic activity showed significant increase from day 1 to day 7 in 
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all substrates [Ftime (2, 276) = 314.6, P < 0.0001; 2-way-ANOVA] (Figure 3.9).  At days 1 and 4 

cells appeared to attach and proliferate similarly in the coverslips and peptide networks (P > 0.05), 

however, at day 7, a significant increase in metabolic activity was observed in the peptide networks 

compared to coverslips. The statistically most significant difference was observed for the peptide 

RGDSGAITIGC (P < 0.0001), followed by the peptide RGESGAITIGC (P < 0.01) and last by the 

peptide RGDSGAITIGA (P <0.05).  

 

 
Figure 3.9 Survival and viability of NIH/3T3 murine fibroblasts on the peptide substrates over 
one-week period. The metabolic activity was measured by the MTT test and statistical analyses 
were performed by using grouped two-way analysis of variance (Two-way ANOVA) with Graph 
Pad Prism 6. Figure was produced by our experimental collaborators and reprinted with the 
permission from ref.24 
 

3.5 Concluding Remarks 

In this chapter, we rationally designed RGDSGAITIGC, a bifunctional self-assembling 

amyloid peptide which encompasses cell-attachment and potential metal nanoparticle/ surface 

attachment properties through the incorporation of an RGD sequence motif and a cysteine residue 

at the N- and C- terminal end, respectively. The novel peptide sequence preserves the β-sheet core 

(S)GAITIG of the NSGAITIG self-assembling sequence,51,131 and simultaneously incorporates the 
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RGD sequence motif and a cysteine at suitably selected terminal peptide positions. We consider 

that the current bifunctional properties of the RGDSGAITIGC fibril-forming peptide can be 

exploited to fabricate novel biomaterials with promising biomedical applications10. Apart from the 

current biomedical applications of the RGDSGAITIGC fibrils, the comparison of solvent 

accessibility of the RGD motif in the RGDSGAITIGC peptide and the fibronectin protein was 

utilized by others to validate the solvent accessibility of the RGD motif in the peptide investigated 

by them191. Additionally, the computationally derived structural scaffolds of the highly-ordered 

and well-aligned antiparallel/parallel β-sheet states formed by the peptide were used as designable 

scaffolds to computationally design bifunctional self-assembling peptide RGDSGAITIGY192 

which encompasses cell-adhesion and cross-linking properties. 

3.6 Innovation in Methods 

In this study, we defined a systematic approach to calculate the ratio of solvent/total 

accessible surface area of amino acids in amyloid fibrils. It was applied to certain backbone and 

side chain functional motifs in order to determine the relative exposure of functional amino acid 

motifs in amyloid self-assembling peptide structures using Wordom141,142. In this approach, we 

calculated the ratio of solvent/total accessible surface area for specific backbone and side chain 

functional motifs. Recently, this approach has been utilized by others for calculating the solvent 

accessibility of the RGD functional motif for five different peptides.191 

3.7 New Findings and Potential Applications 

In collaboration with Dr. Mitraki’s experimental lab and by additional experimental 

collaborators, listed as authors in ref24, we successfully rationally designed the self-assembling 

peptide RGDSGAITIGC with cell-adhesion and metal binding properties which can be exploited 

to fabricate novel biomaterials with promising biomedical applications10. We also investigated the 
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role of key geometrical features of the RGD motif that determine its functionality. We observed 

that high solvent accessibility of the RGD motif is the key factor correlating to its functionality.  

We also observed  that the RGE sequence motif in the peptide RGESGAITIGC  is less 

functional compared to the RGD sequence motif in the peptide RGDSGAITIGC with regard to 

cell-adhesion properties presumably owing to the fact that in the RGE sequence motif, the arginine 

may be partially “locked” in an intramolecular salt-bridge with its neighboring glutamate residue, 

and thus is less susceptible to interact with the cell. Since the Arg : Glu salt-bridge in the RGE 

sequence motif is facilitated to be formed intramolecularly between arginine and its i+2 nearest 

covalently bonded neighbor, in contrast to the Arg : Asp salt-bridge in the RGD sequence motif, 

it is possible that this observation can shed light into why in general the RGE sequence motif could 

be considered a negative control with regard to cell-adhesion properties compared to the RGD 

sequence motif. 
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4. COMPUTATIONAL DESIGN OF AMYLOID SELF-ASSEMBLING PEPTIDES BEARING 

AROMATIC RESIDUES AND THE CELL ADHESIVE MOTIF ARG-GLY-ASP* 

4.1 Introduction 

4.1.1 Overview and Significance 

In chapter 3, we used rational computational and experimental design approaches to design 

a self-assembling peptide with sequence RGDSGAITIGC which can potentially be used as a novel 

sandwich self-assembly construct with multi-functional cell targeting and functionalization properties, 

toward geometrically and spatially directing the fate of a cell population. The peptide comprised of an 

RGD sequence motif which allows cell-attachment properties and a free-thiol group through the C-

terminal cysteine, which could be used for metal-binding properties. 

RGD, which was also presented in chapter 3, is the principal integrin-binding domain 

present within extracellular matrix (ECM) proteins such as fibronectin, vitronectin, fibrinogen, 

osteopontin, and bone sialoprotein; due to the capacity of the RGD sequence to bind to multiple 

integrin species, synthetic RGD peptides offer several advantages for biomaterial applications.193 

RGD bearing self-assembling peptide amphiphiles not only have cellular adhesion properties but 

also serve as ideal scaffolds to induce bone tissue growth and biomineralization, to induce 

osteogenic differentiation of rat mesenchymal stem cells (rMSCs), and can be used for the 

functionalization of bone implants.194,195,196 

Apart from the importance of incorporating an RGD sequence motif in biomaterials, in 

some natural biomaterials, dityrosine residues are found, which are formed through covalent 

 
* Reprinted with the permission from “Computational design of amyloid self-assembling peptides bearing aromatic 
residues and the cell adhesive motif Arg-Gly-Asp” by Jonnalagadda et al., 2017. RSC Molecular Systems Design & 
Engineering, 2, 321-335, Copyright 2017 by Royal Society of Chemistry. 
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crosslinking of tyrosines. For example, tyrosine–tyrosine crosslink networks found in resilin 

provide outstanding mechanical properties such as elasticity,197 which were exploited for the 

formation of peptide hollow nanocapsules and peptide lamella films,197 as well as to engineer small 

tyrosine-containing peptide hydrogels with enhanced mechanical properties.198 

Specifically, dityrosine cross-linking of short peptide sequences was previously exploited 

for the fabrication of nanostructures197,199,200 and to significantly strengthen peptide-based 

biomaterials.198 For example, self-assembled, hollow, nanocapsules were synthesized using a one-

step photopolymerization of a tyrosine-rich peptide exhibiting an elastic modulus of approximately 

30 GPa and a hardness of 740 MPa.197 Dityrosine-based gold nanoparticles have also been 

fabricated by cross-linking of Lys-co-Tyr polypeptides using either UV irradiation or chloroaurate 

reduction.200 Moreover, design of a peptide incorporating tyrosine residues allowed for both self-

assembly of the peptides and subsequent dityrosine cross-linking; in this case, incorporation of the 

covalent cross-links increased the modulus by 104-fold, significantly increasing the properties and 

potential applications of the material.198 Thus, the incorporation of dityrosine cross-linking in short 

self-assembling peptides can provide advance biomaterials with significant advantageous 

properties for tissue engineering applications.199 

4.1.2 Goal 

In this work, we aimed to introduce a computational strategy to energetically stabilize and 

potentially functionalize an amyloid peptide fibril. The flexible structures used as designable 

scaffolds in the model comprised of two independent sets of computationally derived, parallel and 

antiparallel highly ordered and well-aligned β-sheet states formed by peptide RGDSGAITIGC, 

investigated in chapter 3. A computational design model was developed and introduced at the 

beginning of the strategy to minimize the energy of the designable scaffolds upon a single amino 
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acid mutation at position 11, so as to preserve the peptide's amyloidogenic and cell-adhesive 

properties. This enabled us to investigate the mutational effect on realistically modeled β-sheet 

arrangements of peptides. According to the results produced, the introduction of aromatic (Tyr, 

Trp, Phe) or imidazole ring (His) groups at residue position 11 were among the most energetically 

favorable mutations in parallel β-sheet bonded peptides. 

4.1.3 Hypothesis 

Based on the aforementioned results denoting that the introduction of aromatic (Tyr, Trp, 

Phe) or imidazole ring (His) groups at residue 11 were among the most energetically favorable 

mutations in parallel β-sheet bonded peptides, we hypothesized that the one of the designed 

peptides, with sequence RGDSGAITIGY, would be capable of possessing a crosslinking capacity 

through the tyrosine residues belonging to adjacent β-sheet pairs of peptide RGDSGAITIGY. 

Previous studies provided above show the significance of such dityrosine linking in biomaterials, 

thus, we aimed to provide additional insights into the potential cross-linking properties of the 

dityrosines in the designed peptide with sequence RGDSGAITIGY. 

4.1.4 Objectives Accomplished 

Following the results of the computational design model, an additional constraint was 

introduced to the computational design model to investigate the crosslinking capacity of tyrosine 

residues belonging to adjacent β-sheet pairs of peptide RGDSGAITIGY. Furthermore, we used 

replica exchange molecular dynamics (REMD) simulations and free energy calculations depicting 

that the designed peptides self-assemble into parallel β-sheets, and suggesting that the highly 

ordered and well-aligned amyloid fibrils formed by RGDSGAITIGY can combine potential cell 

adhesive and crosslinking properties. Experiments by our experimental collaborators confirmed 
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that designer peptides self-assemble into amyloid-type fibrils, and ongoing studies aim to exploit 

the predicted bifunctional properties of RGDSGAITIGY in biomaterial and tissue engineering 

applications. 

This paper resulted in a publication of Dr. Tamamis’ computational lab in collaboration 

with Dr. Mitraki’s experimental lab, and other experimentalists which their names are listed below 

in the complete publication reference: “Jonnalagadda, S.V.R.; Ornithopoulou, E.; Orr, A.A.; 

Mossou, E.; Forsyth, V.T.; Mitchell, E.P.; Bowler, M.W.; Mitraki, A.; Tamamis, P. Computational 

Design of Amyloid Self-Assembling Peptides Bearing Aromatic Residues and the Cell Adhesive 

Motif Arg-Gly-Asp. Mol. Syst. Des. Eng. 2017, 2, 321-335.” 

S.V.R.J. and E.O. are equally contributing first authors. 

4.2 Computational Methods 

4.2.1 Computational Design – Modification of Position 11 

We developed and introduced a computational design model to stabilize the self-

assembling β-sheets formed by the peptide RGDSGAITIGC24 by minimizing the energy of a short 

modeled amyloid fibril upon single or multiple amino acid substitutions. The computational design 

model was implemented using our in-house Fortran programs. The energy term under 

minimization in the objective function accounts for protein-protein interactions, analogously to 

references201,202,203,204, as well as protein-water interactions, which are expected to play an 

important role in stabilizing the structure of a self-assembling peptide. The decomposition of 

energy into residue pairwise terms and the minimization of the total energy of a protein has been 

implemented as a strategy in several protein design202,203,204 and protein folding studies201.  
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The aforementioned model was inspired by late Dr. Floudas’ studies201, and simultaneously 

minimizes the pairwise interaction energy, , accounting for protein-protein interactions 

using a coarse-grained surface residue pairwise force field, SIPPER Surface205, and solvent 

accessible surface area, , multiplied by the surface tension coefficient, γ, accounting for 

protein-water interactions. The specific force field is based on residue composition of protein 

surfaces and was trained to consider residue pairs with separated partners having relative 

Accessible Surface Area (ASA) ≥ 5% (with respect to that of the given residue type when it is 

exposed). We considered that the specific force field is more proper to estimate energetic effects 

of a mutated residue at the fibril’s surface compared to other coarse-grained residue pairwise force 

fields trained to account for residue pairwise interactions in globular proteins in general (e.g., 

references206,207,208). The pairwise interaction energy, , corresponds to the interaction energy 

between residue j at mutable position i in strand a and residue l at position k in strand b. The 
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positions i and k can belong to the same peptide strand (intra-molecular interactions) or different 

peptide strands (inter-molecular interactions). In this study, the total number of residue positions, 

n, is 11 per strand for the peptide RGDSGAITGC24 and the total number of peptide strands, p, is 

4.  is a set of residue positions that are amenable for modification in the peptide 

under the condition that . In the present study, position 11 is mutable, i.e. { =11}. 

The average of the pairwise interaction energy was taken over the total number of designable 

scaffolds, f, for the peptide RGDSGAITGC24. In the present study, mutations at position 11 were 

introduced to two sets of 4-stranded highly ordered and well-aligned β-sheet fibrils, referred to as 

designable scaffolds. Of the two sets, one set comprised of highly ordered and well-aligned 4-

stranded parallel β-sheet fibrils and the other set comprised of highly ordered and well-aligned 4-

stranded antiparallel β-sheet fibrils. Both antiparallel and parallel designable scaffolds were used 

to investigate in which fashion, parallel or antiparallel, a specific mutation would be most 

favorable to be introduced. The number of designable scaffolds used, f, was equal to 50 for both 

parallel and antiparallel configurations, independently.  

The computational design model was solved in Fortran using exhaustive enumeration 

independently for both antiparallel and parallel configurations of designable scaffolds; thus, there 

are two change in energy values from the objective function (Eq.4.1) per amino acid substitution. 

The binary variable  equals one if position i is occupied by amino acid j, and zero otherwise. 

The binary variable  equals one if position k is occupied by amino acid l, and zero otherwise. 

The binary variable  equals one if the center of mass of the residue side chain at position k 

is within a specific distance of the center of mass of the residue side chain at position i. The specific 

distance in our case is taken to be 6.5 Å, as this distance proved optimal to account interactions of 
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the mutated residues with its neighboring counterpart residues. The constraint, 

, defined under Eq.4.1 is introduced in order to ensure that 

mutations occurring at a position in a peptide strand simultaneously occur at that position in each 

of the peptide strands of the self-assembled structures. 

The second term of Eq.4.1, approximately estimates the non-polar solvation free energy 

change upon a mutation in the elementary structural unit of the designed fibrils. The non-polar 

solvation free energy is required for (1) the formation of a cavity in the solvent to accommodate 

the solute and (2) establishing solute-solvent dispersion interactions. The formation of the cavity 

requires entropic and solvent-reorganization energy, and due to the strong self-attraction of water 

stemming from its ability to form hydrogen bond networks with itself, energy is also lost due to 

the introduction of hydrophobic molecules, which cannot form hydrogen bonds and disrupt the 

hydrogen bond network209,210,211. Thus, the second term may also be considered as a penalty for 

the introduction of larger hydrophobic residues into the designable scaffold, which would result in 

the formation of a larger cavity and the disruption of more solvent-solvent interactions. To account 

for solute-solvent interactions, we additionally used a coarse-grained approach to approximate the 

contribution of each residue to the solvation free energy by assuming a linear dependence between 

the solvation free energy and the solvent accessible surface area (SASA)212,213. Under this 

assumption, the cavity formed to accommodate a solute is proportional to the SASA of the 

introduced solute, and the solute-solvent dispersion interaction energy also correlates with SASA 

as solute atoms at the solute-solvent interface interact more strongly with the solvent compared to 

buried solute atoms; in the present study. The  term is the estimated solvent accessible 

surface area of the introduced amino acid j at position i in strand a. The surface tension coefficient, 

l = j∀(k ∈ α1,α2,...,αv{ };k = i;a ≠ b)

SASA(t)i,a
j
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γ used in Eq.4.1 for this study is equal to 0.002 kcal/(mol·Å2). The  term is 

approximated through the following calculation:  

 
4.3 

 

where the second term, [(theoretical SASA of the native residue) – (SASA of the native residue in 

the scaffold(t))], represents the solvent-excluded surface, or how “buried” the residue is. The 

theoretical SASA values are ASA values of the whole residue (X) in the tripeptide, Ala-X-Ala, 

taken from Table 2 of reference188 and the structural SASA values are calculated using the 

GEPOL214 algorithm in Wordom141,142 for the whole residue in the designable scaffold.  

According to the results, apart from a cysteine placement at position 11 (investigated by us 

in chapter 3), aromatic residues (tyrosine, tryptophan and phenylalanine), methionine, histidine 

and arginine can additionally be considered energetically favorable substitutions at position 11 

according to the energy term under minimization in Eq.4.1. Motivated by our findings in 

conjunction with previously published studies suggesting the role of aromatic residues with π-

stacking properties in peptide self-assembly184,215,216,217, we focused our investigation on residue 

substitutions containing an aromatic (tyrosine, tryptophan and phenylalanine) or an imidazole ring 

(histidine). According to the coarse-grained computational design, the specific residue 

substitutions were among the most energetically favorable mutations in parallel β-sheet bonded 

peptides. Thus, a tyrosine mutation at position 11 may lead to potential functionalization of the 

self-assembled peptides via tyrosine crosslinking between adjacent β-sheet peptides bonded in 

parallel upon fibril formation. 

j
ait ,)(SASA

SASA(t)i,a
j = theoretical SASA of the introduced residue( )−

                      theoretical SASA of the native residue( )− SASA of the native residue in scaffold(t)( )⎡⎣ ⎤⎦
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4.2.2 Constraint Introduced to Investigate the Potential Crosslinking Capacity between Tyrosine 

Residues upon Fibril Formation 

The aforementioned results suggest that the placement of a tyrosine at position 11 stabilizes 

the self-assembling β-sheet peptide in a parallel configuration of peptides. It is possible that owing 

to the proximity of aromatic/imidazole-ring containing residues, π-π interactions formed between 

residues at position 11 belonging to neighboring peptide strands might play a key role in the fibrils’ 

stabilization. Inspired by the fact that tyrosine-tyrosine crosslink networks found in resilin have 

outstanding mechanical properties such as elasticity197, we introduced an additional constraint 

(Eq.4.2) during the solution of the computational design problem, to investigate the possibility of 

tyrosine residues in adjacent (neighboring) β-sheet forming peptides to be crosslinkable upon fibril 

formation, in the designed peptide RGDSGAITIGY. Through the constraint defined in Eq.4.2 we 

investigated the probability of a Cα : Cα distance  , between residues at position 11 

belonging to parallel β-sheet forming adjacent peptides in the designable scaffolds to be less than 

10.65 Å, which is the maximum Cα : Cα distance for covalently bonded dityrosine molecules 

deposited in the ZINC database218. Specifically, for the dityrosine compounds of the ZINC 

database218 the Cα : Cα distances between the two covalently bonded tyrosines range from 7 Å to 

10.65 Å.  

4.2.3 Infinite dilution simulations 

We first simulated an isolated peptide of each of the four designed peptides NH3+-

RGDSGAITIG(Y/W/H/F)-CONH2 in aqueous solution. The aqueous solvent effects were 

modeled implicitly using the FACTS19123 solvation model in conjunction with the CHARMM19 

all-atom force field111. The value of surface tension coefficient in the solvation model is taken to 
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be 0.015 kcal/(mol*Å2), which is in line with the CHARMM19 force-field for reversible folding 

simulations of the structured peptides. We performed replica exchange molecular dynamics 

(REMD) simulations,133,134,135,136,137,138 employing a total of eight replicas with temperatures 283, 

300, 318, 336, 356, 377, 403, and 432 K, and using Langevin dynamics with a friction coefficient 

of 5.0 ps-1 on heavy atoms and 0 ps-1 on hydrogen atoms. The total simulation time for all 

temperatures per designed peptide system was 1.6 μs. We analyzed 20,000 snapshots of the 300 K 

trajectory, extracted at 100 ps intervals. To extract the most representative conformations, we 

performed a root mean square deviation (RMSD)-based clustering analysis on the extracted 

snapshots. The clustering analysis was conducted via WORDOM141,142 employing all backbone 

atoms and a clustering radius of 2 Å. The six most representative conformations were extracted 

from the six most populated clusters for each of the four designed peptides and were used as initial 

structures for simulations in finite dilution described below. 

4.2.4 Self-assembly Simulations 

We investigated the self-assembly properties of the four computationally designed 

peptides, RGDSGAITIGY, RGDSGAITIGW, RGDSGAITIGF, and RGDSGATIGH using 

REMD simulations analogous to the computational protocol developed by Tamamis and 

Archontis130 as described in chapter 2. Using the replica-exchange method,133,134,135,136,137,138 we 

performed MD simulations of the designed peptide systems. We placed six copies of each peptide 

sequence, with a positively charged N-terminal and an amidated C-terminal end, with different 

initial conformations in a cubic periodic 148 Å box, resulting in an approximate 3 mg ml−1 peptide 

concentration. The simulations were performed using CHARMM,110 analogously to 

refs.24,40,130,131,132. Initially the six copies of each peptide sequence were placed at the center. After 

the initial placement, peptides 1, 3, and 5 were translated by +25 Å in the x, y, and z directions, 
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respectively, and peptides 2, 4, and 6 were translated by −25 Å in the x, y, and z directions, 

respectively. We modeled water implicitly using the FACTS19123 solvation model, as in 

refs.24,40,130,131,132, and the surface tension coefficient was set to 0.015 kcal/(mol*Å2). For the 

purpose of Langevin dynamics, a 5.0 ps−1 friction coefficient was introduced on all non-hydrogen 

atoms of each peptide. We employed a total of sixteen temperatures (290, 295, 300, 310, 305, 315, 

321, 327, 333, 339, 345, 352, 359, 366, 373 and 380 K) with each replica exchange run's duration 

being equal to 10 ps. The total simulation time for all temperatures per system was equal to 16 μs. 

We collected the final conformations of each replica exchange run at 300 K for each peptide 

sequence. These conformations were combined into one trajectory per peptide sequence, 

corresponding to a length of 1000 ns and 100,000 snapshots per self-assembling peptide. 

4.2.5 Categorization of β-Sheet Conformations and Key β-Sheet Interactions 

We used DSSP185 to determine the secondary structure of the designed peptides within the 

simulations, and identified the formation of intermolecular β-sheet structures. We categorized the 

β-sheets into antiparallel, parallel and mixed conformations comprising 2 to 5 peptide strands and 

the categorization was performed following the computation protocol by Tamamis and 

Archontis.130 The (%) moving averages of antiparallel, parallel and mixed β-sheet conformations, 

composed of 2-, 3-, 4-, and 5-stranded peptides depict that the designed peptides in the simulations 

have the tendency to self-assemble into β-sheet rich conformations. For all four computationally 

designed peptides, an overall tendency for the formation of parallel, rather than antiparallel β-

sheets is observed. 4- and 5-stranded antiparallel and parallel β-sheets have higher complexity than 

2- and 3-stranded β-sheets; hence, the structural patterns observed in the former can potentially 

correspond to patterns that may exist in naturally occurring fibrils formed by the peptides. Since 

parallel configuration is primarily the dominant configuration for the designed peptides, we 
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extracted the 4- and 5-stranded parallel β-sheets from the corresponding MD simulation snapshots 

for each designed peptide sequence. We calculated the percent probability of an intermolecular 

pair of residues, belonging to two adjacent β-sheet peptides in the 4- and 5-stranded parallel β-

sheet states of the four designed peptides, to be involved in a β-sheet (or β-bridge) conformation. 

The propensities of β-intermolecular interactions between adjacent residue pairs are presented in 

two-dimensional maps (see Results and Discussion). Through this analysis we identified the 

predominant patterns of pairwise β-sheet interactions between intermolecular residues, and the key 

amyloidogenic regions of each peptide. In addition, this analysis can be used to indicate the 

residues that are unlikely to be involved in the formation of intermolecular β-sheets in each peptide 

sequence, and thus, can be mutated for functionalization purposes. 

4.2.5 Identification of Well-Aligned and Well-Ordered β-Sheet Conformations using P1 and P2 

Parameters 

Using the polar order-parameter, P1, and the nematic order-parameter, P2, defined in 

Eq.4.4, we examined the extent of peptide alignment and order for the extracted 4- and 5-stranded 

parallel β-sheet conformations. These parameters are used in the structural characterization of 

liquid crystals, and have been employed successfully in simulation studies of peptide 

aggregation40,130,132,131,219,220. 
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In Eq. 4.4, N is the number of molecules in the simulation and  is a unit vector along a 

suitably defined molecular direction; is a unit vector along a preferred direction of alignment, 

which emerges from the properties of the system. For all four peptides, we selected   to be 

defined by the segment spanning from the Cα atom of residue 5 to the Cα atom of 10, as these 

residues primarily comprise the key β-sheet regions of each designed peptide. 

Using WORDOM,141,142 we computed P1 and P2 parameters for the 4- and 5-stranded 

parallel β-sheets of the designed peptides. The results revealed that among the 4- and 5-stranded 

parallel β-sheets across all systems, β-sheets that are both highly populated and highly ordered 

occur only in 4-stranded parallel β-sheet conformations. The lower population and lower degree 

of order observed in 5-stranded parallel β-sheets can partly be attributed to the limited number of 

peptides used in the self-assembly simulations. Thus, we focused our further analysis on 4-stranded 

parallel β-sheets and examined the structural properties of highly ordered and well-aligned 

conformations formed by the designed peptides. We constructed free energy landscapes for the 

specific 4-stranded parallel β-sheets, using the two dimensional probability P(P1, P2) and Eq.4.5. 

 

 4.5 

 

In each case we identified the free energy basin that encompasses the majority of 

conformations and the location of the global minimum. We extracted the states with the highest 

polar order and highest nematic order, corresponding to P1, P2 regions [P1 = 0.8:1.0, P2 = 0.75:1.0] 
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aligned 4-stranded parallel conformations were utilized for subsequent analysis focusing on the 

peptides' structural properties. Representative conformations of the selected highly ordered and 

well-aligned parallel β-sheet states are shown in the Results and Discussion. 

4.2.6 Amyloid zipper formation, salt bridge formation and exposure of functional motifs 

We investigated the propensity of intramolecular and intermolecular contacts formed 

between the residue side chains of peptides within the 4-stranded highly ordered and well-aligned 

parallel β-sheet states. We defined a distance threshold of 6.5 Å between geometric centers of two 

side chains as a criterion for a contact. Furthermore, we calculated the average propensity for Arg1 

and Asp3 to be involved in the (i) intermolecular salt bridge, (ii) intramolecular salt bridge, and 

(iii) intra or intermolecular salt bridge for the selected 4-stranded highly ordered and well-aligned 

β-sheet states in each of the four designed peptides. A distance cutoff of 3.7 Å between the 

corresponding nitrogen: oxygen atoms of the oppositely charged groups was used as a criterion to 

denote a salt bridge formation between Arg1 and Asp3. 

In addition, we investigated the degree of solvent accessibility of the RGD sequence motifs 

and residues at position 11 (Y/W/H/F) within the 4-stranded highly ordered and well-aligned 

parallel β-sheet states of the designed peptides. We calculated the solvent accessible surface areas 

for the backbone and side chain moieties belonging to the RGD sequence motif and the residue at 

position 11 (Y/W/H/F) of the two central peptides in each 4-stranded highly ordered and well-

aligned parallel β-sheet state. A 1.4 Å radius sphere (approximating the radius of a water molecule) 

was introduced to “probe” the surface of the molecule for the solvent accessible and total 

accessible surface area calculations.221 The total accessible surface area of a specific moiety in a 

peptide strand was approximated as the maximum solvent accessible surface area (SASA) and was 

calculated by assuming that the specific moiety in that strand is not part of the peptide system. 
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While this approximation is expected to overestimate the total solvent accessible surface of a 

specific moiety, we used this definition as we considered it an appropriate way to perform a fair 

comparison of the investigated moieties across the four designed peptides, as well as in the context 

of the entire fibronectin (see Results and Discussion).24 Subsequently, we summed the total 

accessible surface area of a specific moiety in the two central peptides, and calculated the ratio of 

solvent accessible surface area/total accessible surface area for these specific moieties. The solvent 

accessible surface area and total accessible surface area values for the two outer peptides are not 

reported as the degree of solvent accessibility of the two outer peptides is artificially high due to 

the absence of interacting peptides on the ends.24 Nevertheless, the two outer peptides were 

appropriately considered for the purpose of calculating the solvent accessibility areas of specific 

regions belonging to the central peptides.24 

RGD sequence motif is known for its capacity to promote cell adhesive properties in 

extracellular matrix (ECM) proteins such as fibronectin, vitronectin, and fibrinogen.178 The RGD 

sequences in the ECM proteins are solvent exposed, thus aiding the ECM proteins in fast 

recognition and binding to the cell adhesive receptors.189 To uncover the potential cell adhesive 

properties of the RGD motif in our designed peptides, we compared their solvent accessibility 

properties to the NMR-resolved functional cell adhesive RGD motif of the fibronectin (PDB code: 

1TTF189). 

4.2.7 Potential of Crosslinking in the Computationally Designed Self-Assembling Peptide 

RGDSGAITIGY 

We calculated the distance (D) and angle (A) between the tyrosine's aromatic rings of the 

adjacent interacting peptides in the highly ordered and well-aligned 4-stranded parallel β-sheet 

states of the computationally designed self-assembling peptide RGDSGAITIGY. To investigate 
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the peptides' crosslinking potential upon fibril formation, we extracted the distance and angle 

between the tyrosine's aromatic rings in the covalently bonded dityrosine compounds from the 

ZINC database,218 and compared the values of these parameters with the ones calculated for the 

designed peptide RGDSGAITIGY. 

We projected the 4-stranded highly ordered and well-aligned parallel β-sheet states of the 

computationally designed peptide RGDSGAITIGY on the free energy landscape using the 

aforementioned distances (D) and angles (A) as reaction coordinates. We divided the (D, A) 

subspace into grids of size (0.5 Å, 2.5°) and then we calculated the two-dimensional probability 

P(D, A). Subsequently, the free energy landscape was constructed through Eq.4.6. 

 

  4.6 

 

We identified two free energy minima regions and compared the distances (D) and angles 

(A) between the tyrosine's aromatic rings of the adjacent interacting peptides in highly ordered and 

well-aligned 4-stranded parallel β-sheets of the peptide RGDSGAITIGY with the distances (D) 

and angles (A) extracted from the covalently bonded dityrosine compounds in ZINC database.218 

4.3 Experimental Materials and Methods 

All experiments described in 4.3 were performed by Drs. Mitraki’s lab and by additional 

experimental collaborators, listed as authors in ref.192 
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4.3.1 Materials 

The peptides were purchased from Genecust (Luxemburg) and possessed a degree of purity 

higher than 95%. These synthetic lyophilized peptide powders were dissolved in sterile water pH 

7 or in 10 mM phosphate buffer pH 7.4 at concentrations of 3 mg/ml. 

4.3.2 Transmission Electron microscopy 

Sample preparation included the deposition of an 8 microlitre droplet of the sample onto a 

formvar covered 300 mesh copper grid (used for TEM). After 2 minutes, the excess fluid was 

soaked by a filter paper, and an 8 microlitre droplet of a solution of 2% uranyl acetate was 

deposited onto the mesh. After that, the excess fluid was removed in the same way, and the grid 

placed in the grid holder. Experiments were performed on a JEOL JEM-2100 Microscope, at the 

Electron Microscopy Lab “Vassilis Galanopoulos”, at the Department of Biology, University of 

Crete. For observation, a voltage of 100–120 kV and Ultra High Vacuum were used. 

4.4 Results and Discussion 

4.4.1 Computational Design – Modification of Position 11 

We started from our computationally derived highly ordered and well-aligned antiparallel 

as well as parallel β-sheets formed by peptide RGDSGAITIGC.24 We initially aimed to further 

stabilize the fibrils by not interfering with either the residues in the sequence motif RGD that 

encompass cell adhesive properties or with the residues of the amyloidogenic core (S)GAITIG of 

the peptide RGDSGAITIGC. Thus, we selected position 11 as a mutable position, and identified 

optimum mutations which could potentially lead to amyloid fibrils with improved properties (e.g., 

stability, rigidity, functionality). Apart from the placement of cysteine, additional energetically 

favored mutations were identified which primarily involved the presence of aromatic or imidazole 
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ring side chain groups at residue position 11. As mentioned in the Computational Methods, 

motivated by our findings in conjunction with previously published studies suggesting the role of 

aromatic residues with π-stacking properties in peptide self-assembly,184,215,216,217 we focused our 

investigation on residue substitutions containing an aromatic (tyrosine, tryptophan and 

phenylalanine) or an imidazole ring (histidine). The introduction of aromatic (Tyr, Trp, Phe) or 

imidazole ring (His) groups at residue 11 were among the most energetically favorable mutations 

in a parallel arrangement of peptides, while the introduction of cysteine seems to favor an 

antiparallel arrangement, in line with our previous findings.24 It is possible that the interactions 

between the non-covalently bonded cysteine residues in the parallel β-sheet arrangement of 

RGDSGAITIGC may not suffice to sufficiently counterbalance energetically the unfavorable 

presence of two-positively charged groups at the first N-terminal position (charged N-terminal 

group and charged arginine residue).24 

4.4.2 Constraint Introduced to Investigate the Potential Crosslinking Capacity between Tyrosine 

Residues upon Fibril Formation 

Upon the solution of the model, we introduced an additional constraint during the solution 

of the computational design problem to investigate the feasibility of crosslinking between adjacent 

tyrosine residues upon fibril formation, in the parallel β-sheet designable scaffolds of peptide 

RGDSGAITIGY. According to the ZINC database218, the Cα : Cα distance between covalently 

bonded tyrosines in the dityrosine compounds is less than 10.65 Å, and thus, the specific distance 

was considered in the constraint.  In 42 out of 50 parallel β-sheet designable scaffolds we used in 

the computational design, the Cα : Cα distance between residues at position 11 of adjacent β-sheet 

forming peptides is less than 10.65 Å. According to this preliminary constraint, tyrosine residues 

in the RGDGAITIGY fibrils can potentially be crosslinkable upon fibril formation.  
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4.4.3 Computational Categorization of β-sheet Conformations and Key β-sheet Interactions 

Following the computational design results, we investigated the self-assembly properties 

of the four designed peptides using REMD simulations. Within the simulations, all peptides were 

frequently arranged into β-sheet conformations (Figure 4.1), which include 2-, 3-, 4-, and 5-

stranded β-sheet states. 2-stranded β-sheets include parallel/antiparallel β-sheets (Figure 4.1A-

4.1D); 3-, 4-, and 5-stranded include parallel/antiparallel and mixed β-sheets (Figure 4.1E-4.1P). 

Mixed conformations are composed by at least one pair of parallel and one pair of antiparallel β-

sheets and, due to their high entropic favorability, have large populations. Non-symmetric β-sheets 

(containing strands in different orientations, such as mixed arrangements rather than entirely 

antiparallel or parallel) are entropically favored because of the larger number of possible 

configurations that the peptides can be arranged into.130 These conformations are not investigated 

in this study as they are not expected to be formed naturally due to their asymmetry. Configurations 

in which one peptide is forming β-sheet interactions with more than two peptides at a specific 

instance were considered “complex” and were not investigated in detail either as they are not 

expected to be present in the naturally occurring amyloid fibrils. The analysis of the REMD 

simulations indicates that the parallel configuration is overall more favorable than the antiparallel 

one for all the computationally designed peptides (Figure 4.1). While all peptides have a 

predominantly higher tendency to form parallel β-sheets, it is worth noting that in specific cases, 

e.g., mainly involving 2-stranded or 5-stranded β-sheets, the population of antiparallel β-sheets 

can be larger. Yet, this can be attributed to the fact that 2-stranded β-sheets are of low complexity 

as only two peptides are involved in the β-sheet, while the population of 5-stranded β-sheets is low 

and the statistics is poorer. The overall higher tendency of parallel β-sheet formation suggests that 

the favorable intermolecular π-stacking interactions which can be formed by histidine, tyrosine, 
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tryptophan or phenylalanine residues in the parallel-fashion (see below), can counterbalance the 

unfavorable presence of two-positively charged groups at the first N-terminal position owing to a 

positively charged N-terminal and the positively charged group of arginine. 

 

 

Figure 4.1 Moving averages of the fraction (%) of conformations with intermolecular β-sheets (Y-
axis) in the REMD simulations at 300 K with respect to time (X-axis) for peptides 
RGDSGAITIGY/W/H/F. Figures A, E, I, and M correspond to 2-, 3-, 4-, and 5-stranded β-sheets 
of peptide RGDSGAITIGY, respectively. Figures B, F, J, and N correspond to 2-, 3-, 4-, and 5-
stranded β-sheets of peptide RGDSGAITIGW, respectively. Figures C, G, K, and O correspond to 
2-, 3-, 4-, and 5-stranded β-sheets of peptide RGDSGAITIGH, respectively. Figures D, H, L, and 
P correspond to 2-, 3-, 4-, and 5-stranded β-sheets of peptide RGDSGAITIGF, respectively. Red 
color corresponds to antiparallel β-sheets, green color corresponds to parallel β-sheets, and blue 
color corresponds to mixed β-sheets. Reprinted with the permission from ref.192 
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From the four computationally investigated peptides, we focused our analysis on 4-, 5-

stranded parallel β-sheet conformations as they may represent to a higher extent the naturally 

occurring fibrils compared to lower complexity states, e.g., 2- and 3-stranded β-sheets. The 

propensities of two residues which belong to adjacent β-sheet interacting peptides to form 

intermolecular “β-bridge” interactions were calculated from the simulations at 300 K, and the 

results are presented in Figure 4.2. In all four designed peptides, the residues involved in the β-

sheet interactions are primarily the residues in the GAITIG motif (see Figure 4.2A-4.2H). 

Intermolecular parallel β-sheets formed by the peptides RGDSGAITIGY and RGDSGAITIGH are 

primarily in-register 5–10:5–10 patterns. Both peptides in some cases also form off-register (e.g., 

5–9:6–10) patterns. (Figure 4.2A and 4.2E for the peptide RGDSGAITIGY and Figure 4.2C and 

4.2G for the peptide RGDSGAITIGH). Intermolecular parallel β-sheets formed by the peptides 

RGDSGAITIGW and RGDSGAITIGF are primarily in-register 6–10:6–10 patterns. (Figure 4.2B 

and 4.2F for the peptide RGDSGAITIGW and Figure 4.2D and 4.2H for the peptide 

RGDSGAITIGF). In all four of the designed peptides, both the RGD motif and the residue at 

position 11 (Tyr11/Trp11/His11/Phe11) are not involved in the β-sheet interactions, indicating that 

the RGD and Y/W/F/H motifs can be exposed at the surface of the fibril and possess functional 

properties, including cell adhesion and crosslinking as is the case for RGD and tyrosine, 

respectively. 

 



 81 

 

Figure 4.2 Density (%) maps of residue pairs forming intermolecular β-bridges for peptides 
RGDSGAITIGY/W/H/F. Figures B and F correspond to 4- and 5- stranded parallel configurations 
of peptide RGDSGAITIGW respectively. Figures C and G correspond to 4- and 5- stranded 
parallel configurations of peptide RGDSGAITIGH respectively. Figures D and H correspond to 
4- and 5- stranded parallel configurations of peptide RGDSGAITIGF respectively. Reprinted with 
the permission from ref.192 
 

4.4.4 Experimental Amyloid Fibril Formation 

 All experiments were performed by Drs. Mitraki’s lab and by additional experimental 

collaborators, listed as authors in ref.192 The lyophilized powders were dissolved in ultrapure water 

and followed by TEM over time in order to determine whether the designed peptides could self-

assemble into amyloid fibrils. Figure 4.3 shows TEM micrographs of the RGDSGAITIGY, 

RGDSGAITIGW, RGDSGAITIGH and RGDSGAITIGF peptides after negative staining. For all 

peptides, straight, non-branched fibrils with diameters ranging from 10 to 50 nm and reaching 

several micrometers in length are observed. The TEM results confirm that the four designed 

peptides self-assemble into β-amyloid fibrils, validating that the in silico introduced mutations at 
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position 11, indeed can be accommodated in the amyloid-like b-sheet self-assembling peptide 

RGDSGAITIGC. 

 

 

Figure 4.3 TEM Images of peptide solutions of 3mg/ml concentration. (A) RGDSGAITIGY after 
24 hours in water. (B) RGDSGAITIGW after 48 hours in water. (C) RGDSGAITIGH after 24 
hours in phosphate buffer (10mM-pH 7.4). (D) RGDSGAITIGF after 24 hours in water. Figure 
was produced by our experimental collaborators and is reprinted with the permission from ref.192 
 

4.4.5 Computational Identification of Well-Aligned and Well-Ordered β-Sheet Conformations 

using P1 and P2 Parameters 

We computationally evaluated the degree of alignment and order by plotting polar order 

parameter P1 against nematic order parameter P2 for the 4- and 5-stranded parallel β-sheets formed 

by the four designed peptides. For all the peptides that were investigated computationally, highly 

ordered and well-aligned states predominantly occur in 4-stranded rather than 5-stranded parallel 

β-sheet conformations (Figure 4.4). This can possibly be attributed to larger population of 4-

stranded compared to 5-stranded parallel β-sheet conformations. We constructed two dimensional 
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free energy landscapes of 4-stranded parallel β-sheets formed by the designed peptides using the 

calculated P1 and P2 parameters as reaction coordinates (Figure 4.5A-4.5D), to investigate the 

degree of order and identify β-sheet conformations containing highly ordered and well-aligned 

strands that most likely correspond to naturally occurring amyloid fibrils. The global free energy 

minima in the plots are located in basins, marked with black dashed lines. From these basins we 

extracted the highly ordered and well-aligned β-sheet states for all subsequent computational 

analysis, as these conformations likely correspond to elementary β-sheet structural units of the 

naturally occurring fibrils. Representative conformations of the selected highly ordered and well-

aligned β-sheet states are shown in the bottom panel of Figure 4.5 displaying the exposed residues 

and the amyloid zipper region of each peptide. 

 

Figure 4.4 Plots of P2 (Y-axis) as a function of P1 (X-axis) for the 4- and 5- stranded parallel β- 
sheet conformations observed in the REMD simulations at 300 K for peptides 
RGDSGAITIGY/W/H/F. Figures A and E correspond to 4- and 5- stranded parallel configurations 
of peptide RGDSGAITIGY, respectively. Figures B and F correspond to 4- and 5- stranded parallel 
configurations of peptide RGDSGAITIGW, respectively. Figures C and G correspond to 4- and 5- 
stranded parallel configurations of peptide RGDSGAITIGH, respectively. Figures D and H 
correspond to 4- and 5- stranded parallel configurations of peptide RGDSGAITIGF, respectively. 
Reprinted with the permission from ref.192 
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Figure 4.5 Free energy surfaces constructed from the 2-D probabilities of order parameters P1 and 
P2 and molecular graphics images of representative structures of RGDSGAITIGY/W/H/F 
extracted from the free energy minima. Upper panel: Free energy landscapes constructed from the 
2-D probabilities of order parameters P1 and P2, calculated using the 4-stranded parallel β-sheets 
observed in the REMD simulations at 300 K. The surface in panels A, B, C and D correspond to 
4-stranded parallel β-sheets formed by RGDSGAITIGY, RGDSGAITIGW, RGDSGAITIGH and 
RGDSGAITIGF respectively. Bottom panel: Molecular graphic images of representative highly 
ordered and well-aligned conformations of peptides RDSGAITIGY (E), RGDSGAITIGW (F), 
RGDSGAITIGH (G) and RGDSGAITIGF (H) in parallel arrangement. Reprinted with the 
permission from ref.192 
 

4.4.6 Computational Analysis of Amyloid Zipper Formation, Salt Bridge Formation and 

Exposure of Functional Motifs 

We performed a statistical analysis of the intra- and intermolecular side chain contacts 

within the highly ordered and well-aligned states of 4-stranded parallel β-sheets formed by the four 

computationally designed peptides (Figure 4.6). The intermolecular contacts involve side chain 

interactions between adjacent β-sheet interacting peptides only, while intramolecular contacts 

involve side chain interactions between residues within the same peptide. In general (i) the side 
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chains of aromatic residues at position 11 interact significantly with each other (Figure 4.6A-

4.6D), indicating the presence of aromatic π–π interactions (aromatic residues are participating in 

such π-stacking in the bottom panels of Figure 4.5), and (ii) the side chains within the residue 

moiety GAITIG stabilize the β-sheet formation and tend to cluster across the β-sheet region 

forming an “amyloid zipper” (shown in surface representation in Figure 4.5E-4.5H). According to 

the contact maps, Arg1 and Asp3 of the RGD motif have the tendency to form both intra- and 

intermolecular contacts (Figure 4.6), as a result of intra- and intermolecular salt bridges formed by 

the two residues. The corresponding average propensities of salt bridge formation are similar for 

the four designed peptides. The average propensity for Arg1 and Asp3 to be involved in an (i) 

intermolecular salt bridge, (ii) intramolecular salt bridge, and (iii) intra or intermolecular salt 

bridge is 47%, 19%, 57% in the RGDSGAITIGY 4-stranded highly ordered and well-aligned 

parallel β-sheet states; 32%, 33%, 54% in the RGDSGAITIGW 4-stranded highly ordered and 

well-aligned parallel β-sheet states; 40%, 17%, 52% in the RGDSGAITIGH 4-stranded highly 

ordered and well-aligned parallel β-sheet states; 29%, 35%, 60% in the RGDSGAITIGF 4-

stranded highly ordered and well-aligned parallel β-sheet states. Additionally, the probability of 

an arginine residue to form either an intra- or intermolecular salt bridge never exceeds 60%, 

indicating that arginine residues are sufficiently exposed. Figure 4.5E-4.5H show representative 

intramolecular salt bridges (shown in red dashed circles) and intermolecular salt bridges (shown 

in black dashed circles) formed by the four designed peptides. A detailed investigation of highly 

ordered and well-aligned β-sheet states formed by the four designed peptides within the REMD 

simulations, revealed the importance of intermolecular π–π interactions formed by the mutated 

residues at position 11 in the stabilization of the amyloid fibrils. This result complies with findings 
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of previous studies outlining the key role of π-stacking in peptide and protein self-

assembly.184,215,216,217 

We examined the degree of exposure of the entire functional motif RGD as well as the side 

chain of the designed residue at position 11 belonging to the two central peptides in the highly 

ordered and well-aligned states of 4-stranded parallel β-sheets formed by the four computationally 

designed peptides. The extent to which the RGD motif is solvent accessible in the four designed 

peptides is similar, and is equal to 58 ± 8%, 63 ± 7%, 66 ± 9%, 66 ± 7%, respectively for peptides 

RGDSGAITIG(Y/W/H/F)-CONH2. The degree of solvent accessibility of the RGD motif in the 

ensemble of NMR structures of the fibronectin protein102 is equal to 70 ± 5%, and in the selected 

4-stranded highly ordered and well-aligned antiparallel β-sheet states of the self-assembling 

peptide RGDSGAITIGC,24 which was experimentally verified for its cell adhesive properties, is 

equal to 66 ± 8%. Thus, a comparison between the degree of solvent accessibility of the RGD 

motif in our designed peptides and fibronectin as well as the cell adhesive fibrils formed by 

RGDSGAITIGC suggests that the RGD motif in the designed peptides of the present study is 

adequately solvent exposed to potentially possess cell adhesion properties. Despite the fact that 

the ratio is slightly smaller in the RGDSGAITIGY (58 ± 8%) peptide compared to fibronectin or 

the amyloid fibrils formed by RGDSGAITIGC,24 the solvent accessibility of the RGD motif in 

39% of the 4-stranded highly ordered and well-aligned parallel β-sheet formed by 

RGDSGAITIGY is within the range of solvent accessibility of the corresponding motif in the 

ensemble of NMR structures of fibronectin. Also, the solvent accessibility of the RGD motif in 

90% of the 4-stranded highly ordered and well-aligned parallel β-sheets formed by 

RGDSGAITIGY is within the range of solvent accessibility of the corresponding motif in the 4-

stranded highly ordered and well-aligned antiparallel β-sheet conformations formed by 
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RGDSGAITIGC.24 Thus, the aforementioned results suggest that in the highly ordered and well-

aligned parallel β-sheet states of the four designed peptides, the RGD motif is not part of the β-

sheet core, it is exposed and it can possess functional cell adhesive properties within the fibrils 

formed. 

The side chain moieties of residues Tyr11/Trp11/His11/Phe11 in the designed peptides are 

also adequately solvent exposed, and the ratios of solvent over total accessible surface areas ranges 

from 0.37 ± 0.09 (RGDSGAITIGH) to 0.46 ± 0.08 (RGDSGAITIGY). The significant degree of 

solvent accessibility of the tyrosine residues in the self-assembled structures is in agreement with 

the fact that the tyrosine residues are not part for the amyloid-like zipper formed. This further 

suggests that the tyrosine residues of adjacent β-sheet bonded peptides can be crosslinkable in the 

amyloids formed by the peptide with sequence RGDSGAITIGY, which is analyzed in detail 

below. 

 

 

Figure 4.6 Percentage (%) probability density maps of side chain contacts of the highly ordered 
and well-aligned 4-stranded parallel β-sheets observed at 300 K for RGDSGAITIGY/W/H/F.  
Maps A, B, C and D correspond to intermolecular side chain residue–residue contacts between 
adjacent interacting peptides. Maps E, F, G and H correspond to intramolecular side chain residue–
residue contacts. A contact is present when the two geometric centers of the two-side chain are 
within 6.5 Å. Figures A and E correspond to 4-stranded parallel configurations of peptide 
RGDSGAITIGY, respectively. Figures B and F correspond to 4-stranded parallel configurations 
of peptide RGDSGAITIGW, respectively. Figures C and G correspond to 4-stranded parallel con- 
figurations of peptide RGDSGAITIGH, respectively. Figures D and H correspond to 4-stranded 
parallel configurations of peptide RGDSGAITIGF, respectively. Reprinted with the permission 
from ref.192 
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Figure 4.6 Continued 
 

 
 

4.4.7 Potential of Crosslinking in the Computationally Designed Self-Assembling Peptide 

RGDSGAITIGY 

The aromatic residues at position 11 in each of the four designed peptides are not part of 

the amyloidogenic core and are accessible to the solvent, indicating that tyrosine residues within 

the designed peptide with sequence RGDSGAITIGY can presumably be crosslinked upon fibril 

formation. As tyrosine–tyrosine crosslink networks have outstanding mechanical properties197,198 

and a possible crosslinking between tyrosine residues within the RGDSGAITIGY fibrils can be of 

utmost importance for the designed fibril's stability, we focused our investigation on the designed 

peptide RGDSGAITIGY and examined its potential crosslinking properties. We calculated the 

distance (D) and angle (A) between the aromatic ring centers of tyrosines that belong to adjacent 

peptides of the 4-stranded highly ordered and well-aligned β-sheet states of RGDSGAITIGY. 

Using distance (D) and angle (A) as reaction coordinates (Figure 4.7) we constructed a free energy 

landscape to investigate the correlation between the distance and angle between tyrosine aromatic 

ring centers in the π–π interactions (e.g., when D is below approximately 7.5 Å). In the landscape, 

two free energy minima basins are observed in which the distance between the tyrosine aromatic 

ring centers is primarily within the range of 4–6 Å, and the angle between the tyrosine aromatic 
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ring centers is primarily within the range of 60–80° and 10–30° in the first and second free energy 

minima, respectively. Notably, the values of the distance and angle between tyrosine aromatic ring 

centers in the first minimum are close to corresponding distance and angle of the covalently bonded 

dityrosine compounds found in the ZINC database218 (marked using a black “X” in Figure 4.7); 

the smaller value of the distance between the aromatic ring centers in the covalently bonded 

tyrosine compounds can be attributed to the fact that the two rings are covalently bonded and thus 

can be in closer proximity. Nevertheless, the relatively close proximity between the tyrosine 

aromatic ring centers in the modeled amyloid fibrils, in combination with the appropriate angle 

between the aromatic ring centers provide an additional indication that tyrosine residues can 

potentially be crosslinked upon fibril formation. 

 

 

Figure 4.7 Angle between aromatic rings (Y-axis) as a function of distance between aromatic rings 
(X-axis). The angle and distance between the aromatic rings in the covalently bonded dityrosine 
compounds taken from the ZINC database is marked using a black “X”. Panel A: The angle and 
the distance between the aromatic rings of tyrosine residues in adjacent interacting peptides of 4-
stranded highly ordered and well- aligned parallel β-sheet states observed in the REMD 
simulations at 300 K of the peptide RGDSGAITIGY are shown in red dots. Panel B: Free energy 
landscape constructed from the 2-D probabilities, using as reaction coordinates, the distance and 
angle between the aromatic rings of tyrosine residues in adjacent interacting peptides of 4-stranded 
highly-ordered and well-aligned parallel β-sheet states observed in the REMD simulations at 300 
K of the peptide RGDSGAITIGY. Reprinted with the permission from ref.192 
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4.5 Concluding Remarks 

According to the computational design and analysis, a cysteine to tyrosine substitution 

from RGDSGAITIGC to RGDSGAITIGY “switches” the preferred β-sheet configuration from 

antiparallel to parallel, and the distance between adjacent tyrosine residues in the parallel β-sheet 

designable scaffolds is appropriate for crosslinking upon fibril formation. In addition, according 

to the highly ordered and well-aligned parallel β-sheet states formed by RGDSGAITIGY peptides 

within the simulations, the geometric properties of tyrosine residues belonging to adjacent β-sheet 

forming peptides are expected to be appropriate to accommodate crosslinking properties upon 

fibril formation. Preliminary experiments suggest the crosslinking ability of the specific peptide 

fibril scaffolds, which in combination with the findings of the current study, propose that the 

amyloid fibrils formed by the RGDSGAITIGY may pave the way for future biomaterials with 

tissue engineering applications. 

4.6 Innovation in Methods 

 In the present work, we developed and introduced an in-house computational design 

strategy to energetically stabilize and potentially functionalize an amyloid peptide fibril. In 

summary, the following six features were innovatively combined and led to the successful design 

of a novel amyloid biomaterial with potential cell adhesive and crosslinking properties: (i) the 

minimized energy function in the computational design model, considered both protein-protein 

and protein-water interactions; (ii) the designable scaffolds (flexible templates) corresponded to 

an ensemble of computationally modeled highly ordered and well-aligned β-sheet states and not 

random peptide aggregates; (iii) the designable scaffolds comprised of both antiparallel and 

parallel modeled β-sheets independently, and thus, both possible configurations parallel versus 

antiparallel were energetically examined upon an amino acid substitution; (iv) the choice of the 
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coarse-grained force field used205; (v) the additional constraints introduced to verify the 

functionality of the designed peptide sequences for potential crosslinking applications; (vi) the use 

of REMD simulations and free energy calculations to extract highly-accurate structures as modeled 

fibrils validating that the computationally designed peptides (a) self-assemble into highly ordered 

and well-aligned parallel β-sheet states, (b) are arranged in line with the computational design 

results, and (c) possess potential bifunctional cell adhesion and crosslinking properties. Notably, 

according to points (ii) and (iii) the mutations during the design are introduced on realistically 

modeled β-sheet arrangements of peptides, parallel or antiparallel, which can constitute elementary 

structural units of the fibrils. Our study suggests that an analogous computational design strategy 

can be introduced for the design of novel functional biomaterials with diverse applications. 

4.7 New Findings and Potential Applications 

We observed that the introduction of the aromatic residues at position 11 stabilize the fibrils 

formed by the peptide RGDSGAITIGC along with a switch in the dominant configuration (from 

antiparallel to parallel) of the peptide. We also computationally predicted the potential cross-

linking properties of the designed peptide RGDSGAITIGY by comparing the geometrical 

properties of the highly-ordered and well-aligned conformations formed by the peptide with the 

geometrical properties of the dityrosine compound in Zinc database. Preliminary experiments 

suggest the crosslinking ability of the specific peptide fibril scaffolds. Thus, the designed amyloid 

materials formed by the peptide can pave the way for the discovery of tissue engineering agents 

formed by self-assembling peptides, encompassing cell-adhesion and cross-linking properties, 

with potential superior mechanical properties. 
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5. A NOVEL AMYLOID DESIGNABLE SCAFFOLD INSPIRED BY GAIIG OF AMYLOID 

BETA AND THE HIV-1 V3 LOOP* 

5.1 Introduction 

5.1.1 Overview and Significance 

As outlined in the Introduction, naturally occurring peptide sequences extracted from 

amyloid proteins or β‐sheet protein regions can self‐assemble outside the context of the entire 

sequence into amyloid β‐sheets and can serve as scaffolds for novel 

materials.25,26,27,28,29,36,222,223,224,225,226,227,228 GAIIGL229 and NSGAITIG131 are two peptide 

sequences similar in sequence which are part of the amyloid‐β (Aβ) peptide, linked to Alzheimer's 

disease, and the adenovirus fiber shaft230,231, respectively. Both GAIIGL and NSGAITIG form 

amyloid β‐sheets outside the context of the entire peptide or protein. According to experimental 

X‐ray and computational molecular dynamics (MD) simulation studies, in both peptides, residues 

outside the GAIIG or GAITIG sequences are not part of the amyloidogenic β‐sheet core: the C‐

terminal leucine, and the N‐terminal asparagine and serine residues in the two peptides, 

respectively, are exposed. The latter provided impetus131 for the discovery of a series of amyloid 

materials with several applications25,26,27,28,29 by modifying the NS‐residues. While aromatic 

residues are key components of amyloid self‐assembly (as pioneered by Gazit and 

colleagues184,215,217), patterns of aliphatic residues are also key self‐assembly components51,232233 , 

contributing to the amyloid properties of GAIIGL229.  

 
* Reprinted with the permission from “A novel amyloid designable scaffold and potential inhibitor inspired by 
GAIIG of amyloid beta and the HIV-1 V3 loop” by Kokotidou et al., 2018. Federation of European Biochemical 
Societies Letters, 2, 321-335, Copyright 2018 by Federation of European Biochemical Societies. 



 93 

The recent experimentally resolved structures of entire Aβ fibrils234,235,236 depicted that the 

last glycine of GAIIG could introduce a turn into the amyloid β‐sheets. The aforementioned 

information suggests that GAIIG can be a sufficiently short amyloidogenic core of larger amyloid 

forming peptides containing additional (e.g., 2–3) residues at both termini, which can be outside 

the amyloid β-sheet, as glycine residues can act as β-turn promoters halting β-sheet elongation. 

The discovery of such amyloid designable scaffolds formed by relatively short peptides can serve 

as a source of inspiration for the discovery of amyloid materials with advanced properties, as the 

exposed residues can be modified accordingly depending on the desired application. 

5.1.2 Goal 

In this study, we carried out experimental and computational studies to investigate if the 

shorter (compared to GAIIGL) GAIIG peptide (amidated at the C‐terminus) self‐assembles into 

amyloid β‐sheets. Following the positive outcome, we aimed to exploit the GAIIG as a core of 

longer self-assembling peptides which can constitute amyloid designable scaffolds (see below). 

5.1.3 Hypothesis 

Dr. Tamamis’ postdoctoral studies in late Dr. Floudas lab237,238 showed that the HIV‐1 

gp120 V3 loop adopts a structure in which the opposite stems of the loop form a β‐sheet in its 

interaction with chemokine receptors CXCR4 and CCR5. Interestingly, in this study, we observed 

that a GAIIG sequence fragment (or other homologous fragments including GQIIG, GQIVG, etc.) 

is part of one of the two stems, comprising residues 24–28 in a typical 35‐residue long V3 loop, 

according to the HIV sequence database (https://www.hiv.lanl.gov/). This observation led us to 

postulate that such variable sequences derived from the HIV‐1 gp120 V3 loop containing GAIIG 
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as an amyloid core and additional (e.g., 2–3) residues at both termini could serve as a source of 

inspiration for novel amyloid material scaffolds. 

5.1.4 Objectives Accomplished 

We performed computational studies which combined with experiments showed that the 

GAIIG sequence, common to the amyloid beta peptide (residues 29–33) and to the HIV‐1 gp120 

(residues 24–28 in a typical V3 loop), self‐assembles into amyloid fibrils, as suggested by theory 

and the experiments presented here. The studies also showed that the longer YATGAIIGNII 

sequence from the V3 loop also self‐assembles into amyloid fibrils, of which the first three and 

the last two residues are outside the amyloid GAIIG core. We postulated that this sequence, with 

suitably selected modifications at the flexible positions, can serve as a designable scaffold for 

novel amyloid‐based materials.  

This study resulted in a publication of Dr. Tamamis’ computational lab in collaboration 

with Dr. Mitraki’s, and Dr. Llamas‐Saiz’s experimental labs, and other experimentalists which 

their names are listed below in the complete publication reference: “Kokotidou, C.; Jonnalagadda, 

S. V. R.; Orr, A. A.; Seoane-Blanco, M.; Apostolidou, C. P.; van Raaij, M. J.; Kotzabasaki, M.; 

Chatzoudis, A.; Jakubowski, J. M.; Mossou, E.; Forsyth, V.T.; Mitchell, E.P.; Bowler, M.W.; 

Llamas-Saiz, A.L.; Tamamis, P.; Mitraki, A. A novel amyloid designable scaffold and potential 

inhibitor inspired by GAIIG of amyloid beta and the HIV-1 V3 loop. FEBS Lett. 2018, 592, 1777-

1788.” 

CK, SVRJ, AAO and MS-B are equally contributing first authors. 

5.2 Computational Methods 

The following two peptides, NH3+-GAIIG-CONH2, and NH3+-YATGAIIGNII-COO-, were 

studied using a combination of computational and experimental methods. The computational 



 95 

methods were performed by following the computational protocol developed by Tamamis and 

Archontis130 described in chapter 2. We first performed infinite dilution simulations to investigate 

the conformational properties of the isolated peptides, followed by finite dilution simulations, at 

which we initially placed the isolated peptides in a cubic periodic box to investigate the self-

assembly properties of the three peptides. In both cases, we used replica exchange MD (REMD) 

simulations133,134,135,136,137,138 to facilitate peptides’ conformational sampling as well as to avoid the 

system of self-assembly peptides in finite dilution to being trapped in local energetic minima. After 

the completion of the self-assembly (finite dilution) simulations, we categorized the observed β-

sheet content into 2-,3-,4-,5-, and 6-stranded β-sheets and identified the key β-sheet interactions. 

Subsequently, we investigated the presence of highly ordered and well-aligned β-sheets for the 

three peptides. In what follows, we summarize each step. 

5.2.1 Infinite Dilution Simulations 

We independently simulated an isolated peptide of NH3+-GAIIG-CONH2, NH3+-

YATGAIIGNII-COO- in aqueous solution using REMD simulations in CHARMM110. A total of 

eight replicas with temperatures 283, 300, 318, 336, 356, 377, 403, and 432 K were employed. 

The simulations were performed using the FACTS19123 implicit solvent model and a surface 

tension coefficient value of 0.015 kcal/(mol*Å2). We employed Langevin dynamics and a friction 

coefficient of 5 ps-1 was introduced on all heavy atoms. The simulation time for each temperature 

per peptide system was 150 ns. Upon completion of the simulations, we analyzed 15000 snapshots 

of the 300 K trajectory, extracted at 100 ps intervals. Subsequently, we performed a root mean 

squared deviation (RMSD)-based clustering analysis using Wordom141,142 on the extracted 

snapshots to obtain six representative conformations for each peptide. The clustering analysis was 

performed using all backbone atoms and a clustering radius of 2 Å. From each of the six most 
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populated clusters, we extracted the most representative conformation, resulting in a total of 6 

conformations per peptide. These conformations were used as initial structures in the subsequent 

self-assembly simulations described below. 

5.2.2 Self-Assembly Simulations 

We performed two independent REMD simulations in CHARMM110, analogously to 

refs24,40,130,132,131,192 , to investigate the self-assembling properties of the three peptides in solution. 

We placed six copies of the peptide NH3+-GAIIG-CONH2 in a 110 Å cubic periodic box, and six 

copies of the peptide NH3+-YATGAIIGNII-COO- in a 148 Å cubic periodic box, resulting in an 

approximate 3 mg/ml concentration for the two peptide systems. All six conformations from each 

peptide were initially placed at the center of the box. Subsequently, for each of the peptide systems, 

the two first peptide conformations were translated by +25 Å and -25 Å in the x-direction 

respectively, the following two peptide conformations were translated by +25 Å and -25 Å in the 

y-direction respectively, and the last two peptide conformations were translated by +25 Å and -25 

Å in the z-direction respectively. The simulations were performed using the FACTS19123 implicit 

solvent model and a surface tension coefficient value of 0.015 kcal/(mol*Å2). We employed 

Langevin dynamics and a friction coefficient of 5 ps-1 was introduced on all heavy atoms. In the 

simulations investigating the self-assembling properties of GAIIG, we employed sixteen replicas 

with temperatures 284, 292, 300, 309, 319, 330, 342, 355, 368, 382, 397, 413, 430, 448, 467, and 

487 K. In the simulations investigating the self-assembling properties of YATGAIIGNII, we 

employed sixteen replicas with temperatures 290, 295, 300, 305, 310, 315, 321, 327, 333, 339, 

345, 352, 359, 366, 373, and 380 K. The time duration for each of the three replica exchange runs 

was equal to 10 ps and the total simulation for all the temperatures per peptide system was equal 

to 16 μs. Upon completion of the simulations, we collected the final conformations at 300 K for 
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each of the self-assembling peptide sequences. These final conformations were combined into one 

trajectory per peptide sequence, which corresponded to 1000 ns and 100,000 snapshots. 

5.2.3 Analysis of the Self-Assembly Simulation Trajectories 

We identified the formation of intermolecular β-sheet structures and categorized the 

observed β-sheets into 2-, 3-, 4-, 5-, 6- stranded parallel, antiparallel, mixed, and complex β-sheet 

conformations similarly to the refs24,40,130,132,131,192. According to our definitions, complex 

conformations correspond to cases in which one peptide forms β-sheet interactions with more than 

two peptides at a specific instance24,40,130,132,131,192. This analysis showed that antiparallel is the 

dominant configuration for all of the three peptides. Subsequently, similar to our previous 

studies24,40,130,132,131,192, we focused our further analysis on 4-, 5-, and 6-stranded antiparallel β-

sheets which represent conformations of higher complexity competed to 2- and 3-stranded β-

sheets. We extracted 4-, 5- and 6-stranded antiparallel β-sheets from the corresponding MD 

simulation snapshots for each peptide and calculated the (%) probability of an intermolecular pair 

of residues, belonging to two neighboring β-sheet interacting peptides, to be involved in a β-sheet 

(or β-bridge) conformation. This analysis indicated the predominant patterns of intermolecular 

residue-pairwise β-sheet interactions, depicting the key amyloidogenic regions of each peptide. 

Subsequently, we identified highly ordered and well-aligned β-sheets for the three peptides using 

P1 and P2 parameters. The analysis was performed similarly to refs24,40,130,132,131,192  with the only 

difference being the unit vector, , for each peptide.  For GAIIG, we selected unit vector  to be 

defined by the segment spanning from the Cα atom of residue 1 to the Cα atom of 5. For 

YATGAIIGNII, we selected unit vector  to be defined by the segment spanning from the Cα 

atom of residue 4 to the Cα atom of 9. We computed P1 and P2 parameters for the 4- to 6- stranded 
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antiparallel β-sheets of each of the three peptides as in ref24. We observed the existence of highly 

populated and highly ordered β-sheets in the 4-stranded antiparallel β-sheet conformations formed 

by GAIIG and YATGAIIGNII. 

Subsequently, we focused our further analysis on 4-stranded antiparallel β-sheets formed 

by GAIIG and YATGAIIGNII as they are more populated than 5- and 6- stranded antiparallel β-

sheets and encompass highly-ordered and well-aligned β-sheet structures. Specifically, we 

examined the structural properties of the highly ordered and well-aligned conformations formed 

by the two peptides. We constructed free energy landscapes for the specific 4-stranded antiparallel 

β-sheets, using the two dimensional probability P(P1, P2) and Eq. 5.1: 

 

 5.1 

 

For both GAIIG and YATGAIIGNII self-assembling peptide systems, we identified the 

free energy basin that encompasses the majority of conformations, from which we extracted the 

highly ordered and well-aligned states. For YATGAIIGNII, the selected highly ordered and well-

aligned 4-stranded antiparallel conformations were utilized for subsequent analysis focusing on 

the peptides’ structural properties, and similarly to our previous studies24,192 , we investigated the 

solvent accessibility of the terminal residues in the peptide YATGAIIGNII. We observed that the 

first three N-terminal residues, Tyr1, Ala2, and Thr3 as well as the last two C-terminal residues 

Ile10 and Ile11 are solvent exposed, and thus they are amenable for modification for 

functionalization purposes. 

[ ]),(ln),( 2121 PPPTkPPG B-=
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5.3 Materials and Experimental Methods 

All experiments described in 5.3 were performed by Drs. Mitraki’s and Llamas‐Saiz’s labs and by 

additional experimental collaborators, listed as authors in ref.23 

5.3.1 Peptides and chemicals 

The two peptides NH3+-GAIIG-CONH2, and NH3+-YATGAIIGNII-COO- were purchased 

from Genecust (Luxemburg) and possessed a degree of purity higher than 95%.  

5.3.2 Transmission Electron Microscopy (TEM) 

Samples for TEM analysis were prepared by depositing 8 µl of the sample on carbon-

coated formvar copper grids (Agar Scientific), left aside for two minutes, dried with a filter paper 

and then the same procedure was repeated with the stain. The samples were negatively stained 

with 8 µl 1% (w/v) phosphotungstic acid for two minutes for GAIIG and with 8 µl 2% (w/v) uranyl 

acetate for YATGAIIGNII. The TEM experiments were performed using a JEOL JEM 2100 High 

Resolution microscope, operating at 80 kV (University of Crete, Biology Department). 

5.3.3 X-ray fiber diffraction 

A droplet of a peptide fibril solution was placed between two glass rods that were supported 

by two plasticine balls and allowed to dry while pulling to induce shear alignment as previously 

described239. The X-rays were focused on the aligned fibers at right angles and the diffraction pat- 

terns were recorded. 

For the GAIIG peptide fibrils, the diffraction patterns were recorded with a SIEMENS 

M18XHF Rotating anode generator equipped with a MarResearch 345 image detector system, at 

a wavelength of 1.541 Å (Cu Ka edge). The exposure times were 30 min per image. 
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For the YATGAIIGNII peptide fibrils, X-ray fiber diffraction experiments were carried out 

at the European Synchrotron Radiation Facility (ESRF in Grenoble) on the MASSIF-1 beamline240 

with a wavelength of 0.966 Å and a beam size of 15 lm. The exposure time was of the order of 3 

s. The sample–detector distance was set to 435.14 mm for giving a resolution of 3.5 Å at the edge 

of the detector. 

5.4 Results and Discussion 

5.4.1 Self-Assembly of the GAIIG and YATGAIIGNII Sequences 

According to 16 μs replica exchange MD simulations and a subsequent computational 

analysis performed analogously to previous studies,24,40,130,132,131,192 GAIIG primarily self-

assembles into antiparallel off-register β-sheets (Figure 5.1A, 5.1C) which possess a high degree 

of order and alignment of peptides (Figure 5.2A). The β-sheet core of the peptide is predominantly 

composed of the two isoleucine residues Ile3 and Ile4. A representative structure of a highly-

ordered and well-aligned β-sheet composed by four peptide strands is presented in Figure 5.3A. 

Compared to the antiparallel β-sheets formed by GAIIGL, our analysis suggests that the presence 

of an additional leucine at the end of GAIIG is not necessary for self-assembly.  

Experiments performed by Drs. Mitraki’s and Llamas‐Saiz’s labs and by additional 

experimental collaborators, listed as authors in ref23 validated the amyloidogenic properties of 

GAIIG, revealing that the peptide forms non-branched fibrils with diameters of around ten nm and 

lengths reaching the order of microns as revealed by Transmission Electron Microscopy (Figure 

5.4A). Fibrous rods of the peptide display the characteristic cross- beta signature in X-ray fiber 

diffraction: a 4.6 Å meridional reflection that corresponds to the distance between b-strands and a 

10.1 Å equatorial reflection that corresponds to the distance between b-sheets (Figure 5.4B). 
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Figure 5.1 Density (%) maps of residue pairs forming intermolecular β-bridges for GAIIG and 
YATGAIIGNII. The pairs of residues belong to nearest neighboring peptides participating in an 
isolated β-bridge or extended β-sheet conformation in the REMD simulations at 300 K. Figures A, 
and C correspond to 4- and 5- stranded antiparallel configurations of peptide GAIIG respectively. 
Figures B, and D correspond to 4-, and 5-stranded antiparallel configurations of peptide 
YATGAIIGNII respectively. Reprinted with the permission from ref.23 
 

 
Figure 5.2 Free energy surfaces constructed from the 2-D probabilities of order parameters P1 and 
P2, calculated using the 4-stranded antiparallel β-sheets observed in the replica exchange MD 
simulations at 300 K for GAIIG and YATGAIIGNII. Surface in panel A, and B correspond to 4-
stranded antiparallel β-sheets formed by GAIIG and YATGAIIGNII peptides respectively. 
Reprinted with the permission from ref.23 
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Figure 5.3 Molecular graphics images of representative highly ordered and well aligned 4-
stranded β-sheet fibrils of A) GAIIG and B) YATGAIIGNII peptides. Reprinted with the 
permission from ref.23 
 

The aforementioned information suggests that GAIIG can be a sufficiently short 

amyloidogenic core of larger amyloid forming peptides containing additional (e.g. 2-3) residues at 

both   termini which can be outside the amyloid β-sheet, as glycine residues can act as β-turn 

promoters halting β-sheet elongation. The discovery of such amyloid peptide scaffolds can serve 

as a source of inspiration for the discovery of amyloid materials with advanced properties, as the 

exposed residues can be modified accordingly depending on the desired application. 
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Figure 5.4 TEM micrograph and X-ray fiber diffraction images of GAIIG solutions. (A) TEM 
micrograph of a 20 mg•mL-1 solution of the GAIIG peptide following 62 days of incubation in 
phosphate buffer pH 7, negatively stained with phosphotungstic acid 1%. (B) X-ray fiber 
diffraction pattern of rods formed from a 7 mg•mL-1 solution in phosphate buffer following aging 
for 40 days. Figure was produced by our experimental collaborators and is reprinted with the 
permission from ref.23 
 

In this study, we focused on one such sequence: YATGAIIGNII derived from a V3 loop241 

(without any modifications at the termini). Similarly to GAIIG, according to 16 μs replica 

exchange MD simulations and a subsequent computational analysis, which was performed 

analogously to previous studies,24,40,130,132,131,192 the YATGAIIGNII peptide primarily self-

assembles into antiparallel off-register β-sheets (Figure 5.1B, 5.1D), which possess a high degree 

of order and alignment of peptides (Figure 5.2B). The β-sheet core of the peptide is predominantly 
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composed of residues Gly4 to Asn9, encompassing the GAIIG domain. A representative structure 

of a highly-ordered and well-aligned β-sheet composed by four peptide strands is presented in 

Figure 5.3B. Interestingly, we observe that both glycine residues act as β-turn promoters, which 

halt the elongation of the β-sheet core outside the domain. Thus, N-terminal residues Tyr1, Ala2, 

Thr3, as well as C-terminal residues Ile10 and Ile11 are rarely involved in β-sheet formation and 

are outside the amyloid zipper-like region formed within the GAIIG domain and Asn9 (Figure 

5.1B, 5.1D). As a result, the amyloid scaffolds formed by YATGAIIGNII can be considered as 

excellent designable scaffolds for the synthesis of functional amyloid materials. This can be 

achieved by introducing suitably selected mutations at the non β-sheet forming terminal residue 

positions 1, 2, 3, 10 and 11, which would not disrupt the amyloid self-assembly properties and at 

the same time would allow the newly designed amyloid fibrils to bind to ions, molecules or 

surfaces.  

Experiments validated the amyloidogenic properties of YATGAIIGNII. TEM micrographs 

of YATGAIIGNII fibrils reveal a typical amyloid-type morphology (Figure 5.5A) and X-ray fiber 

diffraction of rods display the characteristic cross-b signature with a 4.67 Å reflection at the 

meridian and 9.92 Å at the equator (Figure 5.5B). Additional replica exchange MD simulation runs 

with a longer 13-residue peptide with sequence AFYATGAIIGNII extracted from the same HIV-

1 gp120 V3 loop show that the inclusion of additional residues result in the formation of U-shaped 

b-sheets (preliminary results not shown) similarly to β-sheets formed by LSFDNSGAITIG132. 

Thus, 11-residue peptides containing three residues before and after the GAIIG domain can be 

optimal designable amyloid scaffolds containing the maximum number of mutable positions and 

at the same time comprising linear shaped peptides in which the non-b-sheet residues are exposed 

for functionalization purposes. 
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Figure 5.5 TEM micrograph and X-ray fiber diffraction images of YATGAIIGNII solutions. (A) 
TEM micrograph of a 5 mg•mL-1 solution of the YATGAIIGNII peptide following 5 days of 
incubation in water, negatively stained with uranyl acetate 2%. (B) X-ray fiber diffraction pattern 
of rods formed from a 3 mg•mL-1solution in water after 2 h of incubation. Figure was produced by 
our experimental collaborators and is reprinted with the permission from ref.23 
 

5.5 Concluding Remarks 

Our computational studies in tandem with experimental studies performed by collaborators 

(see ref23) point to the GAIIG sequence as an amyloid-forming building block. Larger amyloid 

forming peptides like YATGAIIGNII have GAIIG as amyloidogenic core, and additional (e.g. 2-

3) residues at both termini are outside the amyloid β-sheet, as glycine residues can act as β-turn 

promoters halting β-sheet elongation. By introducing suitably selected mutations at the non β-sheet 

forming terminal residue positions of the longer sequence YATGAIIGNII, novel materials could 

be designed. Additional peptide sequences containing the GAIIG amyloid core plus 2-3 residues 
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at both termini and inspired by either the HIV-1 V3 loop sequence variability or other naturally 

occurring proteins encompassing the amyloid GAIIG, may also be designable amyloid scaffolds 

that could be further investigated. Interestingly, this can be supported by the fact that GAIIG 

domain can be found in amyloid or β-sheet rich regions of proteins of known structure, including 

Αβ (29GAIIG33 in PDB ID: 5OQV235), α-tubulin acetyl transferase (91GAIIG95 in PDB ID: 

4PK2242 Chain A), Mycobacterium smegmatis alpha-ketoglutarate decarboxylase homodimers 

(275GAIIG279 in PDB ID: 2XT6243Chain A), and Japanese encephalitis virus non-structural protein 

1' (181GAIIG185 in PDB ID: 5O36244 Chain A).  

5.6 Innovations in Methods 

 Using well-established computational methods, we have elucidated that peptide sequence 

YATGAIIGNII can represent an amyloid designable scaffold as GAIIG can act as amyloidogenic 

core, while additional (e.g. 2-3) residues at both termini are outside the amyloid β-sheet core; this 

could be attributed to the fact that glycine residues may act as β-turn promoters halting β-sheet 

elongation. Such variable sequences with GAIIG as an amyloid core and additional (e.g. 2-3) 

residues could serve as a source of inspiration for novel amyloid material scaffolds with variable 

geometries. Such designable scaffolds can be methodologically instrumental as templates for the 

computational design of amyloid functional materials (refer to chapters 6, 7, 8, 9, and 10) and can 

transform the way of functionalization of amyloid materials. 

5.7 New Findings and Potential Applications  

We have computationally elucidated the elementary β-sheet structural units of the peptide 

YATGAIIGNII using the computational protocol developed by Tamamis and Archontis.130 Our 

experimental collaborators also showed that the specific peptide self-assembles into amyloid 

fibrils. The specific peptide forms highly ordered and well-aligned antiparallel β-sheet structures 
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predominantly although the peptide can form highly ordered and well-aligned parallel β-sheet 

structures as well. Both the glycine residues of the peptide act as β-turn promoters halting the 

elongation of the β-sheet core. As a result, the residue at the termini don’t form β-sheet and are 

flexible. The non-β-sheet forming residue can be mutated to achieve desired functionality 

(achieved in the following chapters). Thus, the amyloid scaffolds formed by the specific peptide 

can be considered as excellent designable scaffolds for the synthesis of novel functional amyloid 

materials. Even though the peptide predominantly antiparallel designable scaffolds, both parallel 

and antiparallel designable scaffolds can be considered suitable for the design of functional 

amyloid materials to improve the success rates of the successfully designed amyloid materials), 

which can potentially be functional in either configurations (further elaborated in chapter 7 and 8). 
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6. COMPUTATIONAL DESIGN OF FUNCTIONAL AMYLOID MATERIALS WITH 

CESIUM BINDING, DEPOSITON AND CAPTURE PROPERTIES* 

6.1 Introduction 

6.1.1 Overview and Significance 

Dr. Tamamis’  doctoral studies on the amyloid self-assembly of peptides with sequence 

NSGAITIG extracted from the adenovirus fiber shaft showed that the NS domain is primarily 

exposed outside the β-sheet amyloid core;131 this provided impetus for the design of novel amyloid 

materials, through the incorporation of suitably selected modifications at the non-β-sheet forming 

positions, with a series of applications in biomedicine and technology.25,26,27,28,29 We recently 

utilized this result in conjunction with computational methods to design amyloid-forming peptides 

RGDSGAITIGC24 presented in chapter 3 and RGDSGAITIGY192 presented in chapter 4. The 

amyloid materials formed by both peptides were suggested to possess promising biomedical 

applications; the former supports cell adhesion and proliferation of a model cell line and contains 

free thiols for metal binding properties,24 whereas the latter has potential dityrosine cross-linking 

properties according to preliminary experiments.192 Dityrosine cross-linking can provide a means 

to control the mechanical properties of the materials, which is reflected by their inclusion in several 

natural and engineered materials (e.g., resilin, fibrinogen, silk, keratin, collagen, and elastin).245  

Although functional amyloid materials have been produced for several applications 

including ion binding (e.g., calcium25,40, arsenic41, gold42, mercury42, lead42, and palladium42) or 

compound binding (e.g., CO232,33), experiments have primarily relied on scientists’ intuition to 

 
* Reprinted with the permission from “Computational Design of Functional Amyloid Materials with Cesium Binding, 
Deposition, and Capture Properties” by Jonnalagadda et al., 2018. The Journal of Physical Chemistry B, 122, 30, 
7555-7568, Copyright 2018 by American Chemical Society 
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introduce mutations to amyloid scaffolds yielding functional amyloid materials, which hinders 

their discovery. Therefore, if functionalization is not computationally guided (based on 

biophysical, mathematical, physicochemical principles), several mutants need to be generated and 

tested experimentally, often with low success, making the procedure inefficient or nearly 

impossible if the desired property is hard to achieve. As a result, the computational design of 

functional amyloid materials has been limited to rational or optimization-based approaches, which 

do not explicitly consider their functionalization during the design (e.g., our studies on 

RGDSGAITIGC,24 presented in chapter 2 and RGDSGAITIGY,192 presented in chapter 3 

respectively).  

In this chapter, we considered the computational design of functional amyloid materials 

with the potential applicability to remove cesium ions from water. During nuclear reactor accidents 

or minor nuclear power station accidents, cesium, a key uranium fission product, can easily 

dissolve in water,246 posing a significant risk to human health.247 With its long half-life (approx. 

30 years) and high activity, volatility, and solubility in water, cesium-137 can easily enter the food 

chain to inflict radiological harm to humans, potentially causing diseases such as hematological 

abnormalities, morphological abnormalities, and cancers.247 Technologies including natural 

inorganic cation exchangers (e.g., zeolites and clays) and synthetic inorganic materials (e.g., 

synthetic γ-zirconium phosphate, niobate molecular sieves, micas, and titanate nanomaterials) 

have been shown to capture cesium ions.246,248,249,250,251 In addition, poly(ethylene glycol)-

decorated Prussian blue magnetic nanoparticles have recently been synthesized for the removal of 

cesium ions from blood.247 Thus, considering the potential biocompatibility of amyloid materials, 

the design of amyloid materials removing cesium ions from blood could be considered a promising 

step in the field. 



 110 

6.1.2 Goal 

In this work, our two-fold aim was to (i) develop the first computational protocol for the 

design of functional amyloid materials binding to an ion of interest which could constitute 

constituting a stepping-stone for the future design of amyloid materials with advanced applications 

potentially binding to any ion of interest, and (ii) implement-validate the protocol in a test case 

involving the design of peptides forming amyloid materials capable of binding to cesium ions, 

which can effectively be used as materials encompassing cesium deposition and capture properties. 

Specifically, our utmost goal was to design novel amyloid materials that bind and capture cesium 

ions at neutral and low pH conditions. 

6.1.3 Hypothesis 

Here, we hypothesized that our goal could achieved through the development of a 

computational protocol for the design of functional amyloid materials capable of binding to an ion 

of interest. The key postulation within the computational protocol involved the generation of an 

optimization-based design model that could introduce mutations at non-β-sheet residue positions 

of an amyloid designable scaffold in such a way that the designed amino acids introduced to the 

scaffold (i) mimic how amino acids bind to cesium ions according to experimentally resolved 

structures and, (ii) form energetically stable binding pockets binding to cesium ions. 

6.1.4 Objectives Accomplished 

We developed the first to our knowledge protocol for the computational design of 

functional amyloid materials which can summarized in the following steps: (i) The flexible 

structural templates representing the elementary β-sheet structural unit of an amyloid designable 

scaffold are analyzed, and the mutable positions are identified. (ii) Binding motifs of amino acids 
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in complex with the ion of interest deposited in the Protein Data Bank (PDB)252 are analyzed to 

define materialphore models describing how amino acids bind to the ion. (iii) Mutations are 

introduced to the non-β-sheet residue positions of the amyloid designable scaffold’s flexible 

structural templates, aiming to mimic how amino acids bind to the ion according to the defined 

materialphore models as well as to energetically stabilize the bound conformation of the pockets. 

(iv) Short MD simulations are performed to investigate the conformational properties of the most 

energetically favorable designed peptides determined in (iii), and a two-component validation 

procedure is applied to select the simulated designs with the highest probability to represent the 

corresponding materialphore models and thus form proper amino acid pockets capable of binding 

to the ion of interest. (v) REMD simulations according to Tamamis and Archontis’ protocol130 

outlined in the Introduction  are performed to investigate the top selected designed peptides from 

(iv) for their capacity to self-assemble into the anticipated elementary β-sheet structural units and 

re-assure, via the aforementioned two-component validation procedure, that the designed amino 

acid pockets are capable of binding to the ions of interest.  

The developed computational protocol was successfully applied for the design of two 

peptide sequences, which according to experiments have cesium binding and deposition properties. 

The experiments were performed in Dr. Mitraki’s lab and Dr. Jeong’s experimental labs, and 

additional experimentalists which their names are listed below in the complete publication 

reference: “Jonnalagadda, S.V.R.; Kokotidou, C.; Orr, A.A.; Fotopoulou, E.; Henderson, K.J.; 

Choi, C.H.; Lim, W.T.; Choi, S.J.; Jeong, H.K.; Mitraki, A.; Tamamis, P. Computational Design 

of Functional Amyloid Materials with Cesium Binding, Deposition, and Capture Properties. J. 

Phys. Chem. B 2018, 122(30), 7555-7568.” 

SVRJ and CK are equally contributing first authors.  
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6.2 Computational and Experimental Methods 

A computational protocol was developed with the aim to design amyloid materials capable 

of binding to an ion of interest (i.e., cesium). The protocol consists of an optimization-based design 

model and computational validation procedure and was applied in the first stage of this study to 

functionalize amyloid materials for cesium ion binding. In the second stage of this study, the 

capacity of the designed peptides to form fibrils with cesium ion deposition properties was 

experimentally verified, followed by additional experiments investigating their ability to capture 

cesium ions in neutral and acidic aqueous conditions. Furthermore, additional simulations were 

performed investigating the cesium ion binding properties of modeled elementary β-sheet 

structural units of the designed amyloid materials. The computational and experimental methods 

are summarized below. 

6.2.1 Elucidating the Elementary β-sheet Structural Unit of a Short Amyloid-Forming Peptide 

We introduced the computational protocol developed by Tamamis and Archontis130, 

described in chapter 2, analogously to the refs.24,40,130,131,192, to investigate the amyloid peptide’s 

self-assembly properties and elucidated its elementary β-sheet structural units the peptide with 

sequence NH3+-AGKGAIIGFIK-COO-. We computationally investigated the self-assembly 

properties of the peptide by performing replica exchange molecular dynamics (REMD) 

simulations investigating 6 copies of a peptide in a 150 Å cubic periodic boundary condition box 

using CHARMM110 and by performing a structural analysis of the simulated conformations to 

examine the gradual formation of β-sheet structures as in refs.24,40,130,131,192. For the REMD 

simulations, we employed a total of sixteen temperatures (290, 295, 300, 310, 305, 315, 321, 327, 

333, 339, 345, 352, 359, 366, 373 and 380 K). The total simulation time for all temperatures 

combined was equal to 16 μs (1μs per temperature). We collected the final conformations produced 
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at 300 K, which were combined into one trajectory, corresponding to a length of 1μs, and 100,000 

snapshots. We categorized the resulting β-sheet structures formed by the peptide into antiparallel, 

parallel and mixed conformations comprising 2- to 6- peptide strands and observed that the 

antiparallel arrangement is the most dominant. We focused our further analysis on 4-stranded 

antiparallel β-sheets as they are more highly populated and highly ordered than 5-, 6-stranded β-

sheets and acquire higher complexity than 2-, 3-stranded β-sheets24,131. Using polar-P1 and 

nematic-P2 order parameters, we constructed a free energy landscape and extracted highly ordered 

and well-aligned antiparallel β-sheet structures from the global energy minima of the free energy 

landscape. Subsequently, we investigated the degree of solvent accessibility of the residues that 

are not involved in β-sheet interactions. The analysis showed that the 3 first N-terminal and 2 last 

C-terminal residue positions are exposed, and that the peptide forms linear-shaped β-sheets. Thus, 

we extracted the top ten highly ordered and well-aligned 4-stranded antiparallel β-sheet structures 

formed by the peptide, which are predicted to represent the peptide’s self-assembled elementary 

β-sheet structural units. The ensemble of structures was used as input flexible structural templates 

of the amyloid designable scaffold formed by AGKGAIIGFIK in the optimization-based 

computational design model described below. 

6.2.2 Uncovering How Amino Acid Motifs Recognize Cesium Ions Using Experimentally 

Resolved Protein Structures 

The analysis of 3D structures of protein-ligand binding sites can provide valuable insights 

on how amino acids recognize ligands. The PDB252 currently contains ~130,000 3D protein 

structures, providing an abundance of information on how amino acids can bind particular ions or 

compounds. This information can be used to functionalize proteins253 or protein-based materials. 

We extracted, to the best of our knowledge, the complete set of X-ray resolved structures of protein 
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: cesium (ion) complexes from the PDB; date of extraction: 08/01/2016. Using FORTRAN 

programs, we collected amino acid : cesium ion binding motifs, which are defined here as a set of 

amino acids with side chain centers of mass within 8.5 Å of the resolved cesium ion, and their 

corresponding coordinates from each of the extracted X-ray resolved structures to analyze how 

amino acid motifs bind to cesium ions. Using the coordinates of the collected amino acid : cesium 

ion binding motifs, for each motif we stored the identities of the amino acids, and (i) their relative 

distances, as well as (ii) their distances to the cesium ion. Hereinafter, (i) and (ii) are referred to as 

primary and secondary materialphore models. Representation using the aforementioned distances 

can completely capture the geometry of an amino acid : cesium ion binding pocket. The primary 

materialphore model represents the geometry of the amino acids in the cesium ion binding site and 

was used for both computational optimization-based design modeling and validation purposes. 

The secondary materialphore model represents how a cesium ion interacts with the amino acids in 

the binding pocket and was used only for computational validation purposes. If, in an X-ray 

resolved structure, the number of amino acid : cesium binding motifs was more than one, then the 

different binding motifs were considered as independent materialphore models. For example, the 

structure of a thermotoga maritima CorA protein (PDB ID: 4EEB)254 contains 9 cesium ions, 

resulting in 9 separate extracted materialphore models. In the computational design model all 

primary materialphore models were considered while searching for optimum solutions, while both 

the primary and secondary materialphore models were used to validate the computationally 

designed sequences. It is worth noting that the number of amino acids interacting with a cesium 

ion in each binding motif may vary.  

The programs for extracting materialphore models for an ion (current study) or compound; 

(see further studies) of interest were initially developed by Chang-Hyun Choi, an undergraduate 
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student of Dr. Tamamis’ lab, and were further advanced for the purpose of the current study and 

subsequent studies. 

6.2.3 Optimization-Based Design Model Stabilizing and Functionalizing the Amyloid Designable 

Scaffold to Bind to Cesium Ions 

A computational design model was developed that designs the sequence of β-sheet forming 

peptides, so that cesium ions can bind to pockets consisting of non-β-sheet forming amino acids 

belonging to a pair of β-sheet bonded peptides. The ten obtained flexible structural templates of 

the amyloid designable scaffold, and the primary materialphore models collected from the X-ray 

resolved amino acid : cesium ion complex structures deposited in the PDB252 (Figure 1B) were 

used as inputs to the design model. The computational design model is formulated as follows: 
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The objective function (Eq. 6.1) minimizes the energy of an ideal amyloid designable 

scaffold, represented by an ensemble of flexible structural templates (elementary β-sheet structural 

units), subject to the constraints (Eq. 6.2-6.14) by introducing amino acid substitutions at the 

designable positions (Eq. 6.12-6.14) in a coarse grained fashion, which simultaneously allow for 

the functionalization of cesium ion binding to be satisfied (Eq. 6.2-6.11); the energy accounts for 

amino-acid : amino-acid interactions and the desolvation free energy of nonpolar surfaces, which, 

is calculated from the change in solvent-accessible surface area (∆SASA) as in ref.188 The 
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constraints introduced for functionalization purposes guarantee that all possible combinations of 

distances between the centers of mass of the designed amino acid side chains in the flexible 

structural templates can be matched with any combination of distances between the centers of mass 

of the same amino acid side chains in any of the primary materialphore models (Eq. 6.2-6.11). The 

matching between the distances of the introduced amino acids with reference to the corresponding 

distances of the primary materialphore models is carried out by Eq. 6.2-6.3. These equations allow 

matching to occur only if the relative difference between the two sets of the compared distances is 

below certain cutoff values in at least a fraction λ (=0.05) of the total number if designable binding 

pockets available (six pockets per flexible structural template) within the 10 flexible structural 

templates representing the amyloid designable scaffold. When defining the cutoff values, we 

considered (i) the large flexibility of the designable binding pocket, (ii) the fact that the 

aforementioned compared distances cannot match exactly, and (iii) the fact that the sizes of the 

introduced amino acids which are placed on the flexible structural templates can also be different 

from the sizes of the original amino acids of the amyloid designable scaffold. Thus, we allowed a 

2.5 Å maximum deviation to occur for four out of the six compared distances, and a more generous 

3.5 Å maximum deviation to occur for any of the two remaining compared distances; this is defined 

by Eq. 6.9. In addition, upon tuning and testing higher and lower values of λ, the specific value 

was chosen to account for the significantly large conformational variability of the designable 

amino acid side chains (belonging to non-β-sheet forming residues) in the flexible structural 

templates (≈8.2 Å); larger values of λ were not preferred as they yielded a significantly lower 

number of designed peptides to be further investigated. 

The term  Ejliakb represents the pairwise interaction energies between amino acid j at 

position i and amino acid l at position k (taken from the SIPPER force field205). Position i is the 
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modified residue position within strand a. Amino acid j is one of 20 amino acids, mi, corresponding 

to the amino acid occupying position i. Position k is the residue position within strand b interacting 

with any residue position i (k≠i if a=b). Amino acid l is one of the 20 amino acids, mk, 

corresponding to the amino acid occupying position k. Positions i and k may belong to the same 

peptide strand (representing intra-molecular interactions) or different peptide strands (representing 

inter-molecular interactions). The term γ (SASA(s)jia) accounts for protein-water interactions, 

where SASA(s)jia is the solvent accessible surface area of amino acid j at position i in strand a at 

structure s and γ (=0.001 kcal/mol·A2) is the surface tension coefficient; this term was used 

analogously to ref.192 Structure s corresponds to one of the ten flexible structural templates of 

AGKGAIIGFIK, comprising elementary β-sheet structural units of the amyloid designable 

scaffold. SASA(s)jia is calculated as the theoretical SASA of the introduced amino acid188 minus 

the buried surface area of the native amino acid in the original flexible structural template s (as in 

ref.192). n (=11) is the total number of residue positions per strand and p (=4) is the total number 

of peptide strands. The pairwise interaction energy calculated for each structure, s, was summed 

and averaged over the total number of flexible structural templates, f (=10). Binary variables yji 

and ylk are equal to one if position i and k are occupied by amino acids j, l, respectively, and zero 

otherwise. The binary variable w(s)jlik equals one if D(s) jliakb, the distance between side chain center 

of mass of amino acid j at position i in strand a and amino acid l at position k in strand b of structure 

s, is less than a specific distance, tol (=6.5 Å), and zero otherwise. d jPDBPMM is an integer variable 

indicating if a primary materialphore model can be satisfied in at least λ (=0.05) fraction of the 

total number of binding pockets in the flexible structural templates. 

D(PDBPMM)jl is the distance between the side chain center of mass of amino acids j and l 

in a primary materialphore model, PDBPMM. Amino acids j and l in the designed peptide are 
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identical to the amino acids j and l of the corresponding amino acid : cesium ion binding motif. c 

is a dummy index that indicates the strand which residue positions i or k belong to. v (=4) is the 

total number of residue positions amenable for modification. r (=2) is the number of designable 

positions at the N-terminal end of the flexible structural templates, while v-r is the number of 

designable positions at the C-terminal end. {f1, f2,…., fν} is a set of residue positions that are 

amenable for modification in the peptide under the condition that f1<f2<….<fν. In the present 

study, positions 2, 3, 10, 11 are designable, i.e. {f1=2, f2=3, f3=10, f4=11}. Alanine at position 1 

of the amyloid designable scaffold was replaced with an acetylation in the designed peptides, 

which aimed to enhance the designed peptides’ self-assembly properties32. YiakbPDBPMM is a binary 

variable ensuring that a designed binding pocket is formed by amino acids belonging to sets S1 and 

S2. Sets S1 and S2 define the combination of amino acids at designable positions that make up a 

designed binding pocket. g(s) jPDBPMM is a binary variable indicating if a primary materialphore 

model can be satisfied in a designed binding pocket of a structure s. tMM(=436) is the total number 

of primary materialphore models. 

The computational design model was solved in Fortran. Of the 204 possible designs, the 

functionalization constraints (Eq. 6.2-6.11) reduced the feasible set of designs to 89442. For the 

resulting designs, the energy defined in the objective function (Eq. 6.1) was calculated and the 

designs were rank ordered based on this energy. Imposing the additional constraints (described in 

Results and Discussion) specific to cesium ion capture resulted in a total number of 1331 of 

possible designs. From these reduced set of designs, we selected the top 10% (total of 134 

sequences) designs for further investigation. 
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6.2.4 Modeling, Simulation and Computational Validation of Selected Designed Peptides 

Predicted to Form Functional Amyloid Fibrils Binding to Cesium Ions 

MD Simulation-Based Modeling of the Designed Amino Acids on the Original Designable 

Scaffold and Computational Screening-Validation of the Selected Designed Peptides  

The initial structures of the elementary β-sheet structural units of the selected designed 

peptides were modeled using one of the ten flexible structural templates as the initial conformation 

with the designed amino acids introduced using CHARMM110. Water was modeled implicitly 

using the FACTS19 solvation model123, and the value of the surface tension coefficient was equal 

to 0.015 kcal/(mol·Å2). The elementary β-sheet structural units of each of the selected designed 

peptides were subjected to 100 steps of steepest descent minimization with 100 kcal/(mol·Å2) 

harmonic constraints on all non-hydrogen atoms and 50 steps of Adopted Basis Newton-Raphson 

minimization with 30 kcal/(mol·Å2) harmonic constraints on all non-hydrogen atoms. An 

additional 50 steps of steepest descent minimization with 10 kcal/(mol·Å2) harmonic constraints 

on all backbone atoms and subsequently 50 steps of steepest descent minimization with 5 

kcal/(mol·Å2) harmonic constraints on all backbone atoms were performed.  

The simulation systems for each of the designed peptides were subsequently equilibrated 

in two stages. In the first stage, each designed peptide system was simulated for 0.04 ns with 5 

kcal/(mol·Å2) harmonic constraints on the backbone atoms of the amyloidogenic core (GAIIG 

motif). In the second stage, each designed peptide system was simulated for 0.04 ns with 3 

kcal/(mol·Å2) harmonic constraints on the backbone atoms of the amyloidogenic core. 

Subsequently, the designed peptide systems entered production stage with 1.5 kcal/(mol·Å2) 

harmonic constraints on the backbone atoms of the amyloidogenic core. Each of the designed 

peptide systems were simulated for 20 ns with snapshots extracted every 10 ps. All constraints 



 121 

imposed during the equilibration and production stages were applied using the bestfit module in 

CHARMM110. We used Langevin dynamics with a 5 ps-1 friction coefficient introduced on all non-

hydrogen atoms of each peptide and a temperature of the heat bath set to 300 K. All simulations 

were performed using CHARMM110. Upon the completion of the MD simulation runs, the 20 ns 

simulations for each designed peptide, containing 2,000 snapshots each, was subjected to 

validation procedure described below.  

Upon the completion of the MD simulation runs, we computationally determined whether 

the designed peptides can form binding pockets consisting of non-β-sheet forming amino acids 

which are part of a pair of β-sheet bonded peptides resembling the geometry of the amino acid : 

cesium ion binding motifs using a two component validation procedure. In the first validation 

component, we determined whether the center of mass of the designed amino acid side chains form 

appropriate side chain conformations to form pockets with geometries resembling the primary 

materialphore model(s). Each elementary β-sheet structural unit of a designed peptide comprises 

four peptide strands forming six, non-identical designed pockets. Then, we compared the distances 

between the four centers of mass of the designed amino acid side chains to the corresponding 

distances of the same amino acids within the primary materialphore model, from which the design 

originated from, for each of the 2000 simulation snapshots produced in each simulation. Designed 

pockets with four out of six distances falling within 2.0 Å and two out of six distances within 3.0 

Å of the corresponding distances of the amino acid : cesium ion binding motif were considered 

primary matches. If a primary match with any of the six pockets occurred, then the snapshot and 

its corresponding pocket was saved for further analysis. In the second component of the validation 

procedure, the ability of the designed amino acid side chain pockets to encapsulate a cesium ion 

in the same fashion as the secondary materialphore model(s) from which the designed amino acids 
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originated was evaluated. The evaluation was done only for the pockets containing primary 

matches. We used the distances between the cesium ion and the centers of mass of the amino acid 

side chains in the secondary materialphore model from which each design originated from as a 

guide to place the cesium ion in the designed binding pocket. Specifically, the cesium ion was 

placed in such a way to minimize the difference between the distances of the cesium ion to the 

centers of mass of the designed amino acid side chains in comparison to the corresponding 

distances in the secondary materialphore model it originated from. If the difference between each 

of the compared distances was within 2.0 Å, then the designed cavity was considered a secondary 

match. To avoid steric clashes of the placed cesium ion and any other atom of the designed 

peptides, pockets containing secondary matches in which the distance between the cesium ion and 

any peptide in the snapshot under investigation less than 2.0 Å were not considered as successful 

validations. The designed peptides were ranked based on their first validation stage percentages 

and the designed peptides with second validation stage percentages less than 40% were removed 

from the rank-ordered list of designs. From the reduced list of designs, the designed peptides with 

the top 10% highest first validation stage percentages (13 designed peptides) underwent further 

analysis through REMD simulations investigating their self-assembly properties and subsequent 

structural analysis described below.  

MD Simulations Investigating the Self-Assembly Properties of the Designed Peptides and 

Final Computational Screening-Validation  

The selected designed peptides were subsequently investigated through REMD simulations 

to examine their self-assembly properties and determine if the designed peptides were likely to 

form the desired antiparallel β-sheet fibrils while forming designed binding pockets that match 

both primary and secondary materialphore models for cesium ion binding properties. The REMD 



 123 

simulations were performed in CHARMM110 through the Tamamis and Archontis protocol130 

described in chapter 2 which was also applied in this study to elucidate the β-sheet elementary 

structural unit of the amyloid designable scaffold, AGKGAIIGFIK. We performed 13 independent 

REMD simulations for each of the 13 designed peptides. Analogously to the simulations 

performed initially to investigate the self-assembly properties of AGKGAIIGFIK, the total 

duration of each REMD run was equal to 16 μs (which corresponds to 16 replicas of 1 μs duration 

each per investigated peptide). The corresponding 1 μs trajectories collected at 300 K for each of 

the 13 designed peptides were collected for further analysis. β-sheet conformations comprising 2- 

to 6- peptides strands were categorized into antiparallel, parallel, and mixed β-sheet structures. 

Designed peptides predicted to favor primarily parallel β-sheet formation over antiparallel β-sheet 

formation were immediately discarded from further investigation. The 500 most highly ordered 

and well-aligned antiparallel β-sheet structures from the remaining designed peptides were 

extracted, and the same two-component validation procedure described above was performed on 

the extracted structures.  

6.2.5 Experimental Testing, Verification of Amyloid Self-Assembly, and Determination of Cesium 

Ion Capture Properties by the Designed Amyloid Materials 

All microscopic analyses to verify the self-assembly properties and cesium deposition 

properties of the designed peptides were performed by Dr. Mitraki’s lab. Elemental analysis 

experiments were done by Dr. Bryan Tomlin through the elemental analysis facilities of Texas 

A&M University using amyloid materials and solutions prepared by the student and Asuka A. Orr 

prepared in Dr. Tamamis’ and Dr. Karim’s labs under the guidance of Dr. Hae-Kwon Jeong (see 

ref22). 
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Amyloid Materials Synthesis  

The peptides NH3+-AGKGAIIGFIK-COO-, Ace-FQGAIIGFNE-CONH2, and Ace-

FNGAIIGFQE-CONH2 were custom-synthesized by WuXi AppTec with purity over 95%. Each 

synthetic lyophilized peptide powder was dissolved in double distilled water (pH 7) to a 

concentration of 12 mg/ml and incubated at room temperature for 3 days. Fiber formation was 

confirmed with Field Emission Scanning Electron Microscopy (FESEM) and Transmission 

Electron Microscopy (TEM). The complete solubilization of the peptide powders into aqueous 

solution for increased concentrations up to 20 mg/ml was observed. For all tested concentrations 

the peptide powder becomes clear instantaneously upon addition to water, indicating the complete 

dissolving of the peptide powder. Increased blurring of the dissolved peptide solution was 

observed indicating the immediate fibril formation. At the concentrations (12 mg/ml) used for our 

cesium capture experiments, only fibril formation, and not amorphous aggregation, was observed 

after careful scanning of the area of the sample with the use of electron microscopy.   

Transmission Electron Microscopy (TEM) 

8μl of each diluted 1:10 sample was deposited directly onto formvar/carbon coated electron 

microscopy grids (Agar Scientific) for 2 min. After 2 min incubation, the excess was removed with 

filter paper, an additional wash with 8 μl of double distilled water was performed and the sample 

was stained with 2% wt/vol uranyl acetate for 2 min. For the samples treated with CsCl no negative 

staining was used, therefore the contrast afforded is only due to the cesium deposition. Specimens 

were examined in a JEOL JEM-2100 Transmission Electron Microscope at an accelerating voltage 

of 80 kV and 200kV. 
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Field Emission Scanning Electron Microscopy (FESEM) 

A sample solution (10 µL, diluted 1:10) was deposited on a circular cover glass and left to 

dry in air overnight. Samples were subsequently covered with 10 nm Au/Pd sputtering and 

observed directly. Experiments were performed using a JEOL JSM-7000F microscope operating 

at 15 kV. 

Congo Red Staining 

Each solution of the fibrils was thoroughly mixed with the Congo Red assay solution (10 

mM Congo Red, 2.5 mM NaOH in 50% ethanol) in a ratio of 6:1. 10 μL of the mixture was 

deposited on a glass coverslip to be dried at room temperature. Stains were examined with a Zeiss 

Stemi 2000-C microscope with and without the use of a crossed polarizer. 

Elemental Analysis  

Using the same procedure described above (see Amyloid Materials Synthesis) we 

synthesized the amyloid materials for the investigated peptides at pH 7. After 3 days of incubation 

allowing the peptides to self-assemble, the amyloid fibrils were collected by centrifugation at 

13300 rpm for 30 min at 25oC. The collected amyloid fibrils were subsequently resuspended in a 

10 ppm cesium chloride aqueous solution (pH 7) to a concentration of 12 mg/ml. The same 

procedure was also conducted using a 10 ppm cesium chloride, 10 mM boric acid solution of pH 

4.5 to resuspend the amyloid fibrils. The resuspended amyloid fibrils were subjected to vigorous 

shaking for 15 hours and subsequently allowed to settle for 6 hours. The amyloid fibrils were 

separated from the supernatant through a total of 4 centrifugation cycles at 13300 rpm for 30 min 

at 25oC. During the last centrifugation cycle, 0.22 μm nylon filters were used to further improve 

the separation of the fibrils from the supernatant solution. The supernatant solution was collected 
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and submitted for cesium elemental analysis. The elemental analysis was conducted on a 

PerkinElmer NexION 300D ICP-MS instrument which analyzed the concentration of cesium in 

the supernatant solution. The percentage of cesium ions removed from the 10 ppm cesium chloride 

solution by the amyloid fibrils were calculated using Eq. 6.15: 

 

 
6.15 

 

Ci and Vi are the initial concentration (10 ppm) and initial volume of the cesium chloride 

solution in which the amyloid fibrils were resuspended. Cf and Vf are the final concentration and 

the final volume of the supernatant collected. 

6.2.6 Explicit-Solvent MD Simulations Investigating the Cesium Ion Binding Properties of the 

Designed Amyloid Materials 

Explicit-solvent, all-atom MD simulations in presence of cesium ions were performed 

using CHARMM110 to investigate cesium ion interactions with an elementary structural β-sheet of 

the designed peptides FNGAIIGFQE and FQGAIIGFNE, as well as peptide AGKGAIIGFIK, 

which served as an amyloid designable scaffold to derive the first two peptides. We performed 

five independent runs of 10 ns MD simulations for each of the three systems under investigation, 

with snapshots collected every 2.5 ps. Thus, the total number of simulation snapshots in each of 

the three systems was equal to 20,000. The designed peptides N- and C- termini were acetylated 

and amidated, whereas the amyloid designable scaffold peptide’s termini were not modified, in 

line with the previous analysis. 

(%) Cs ions removed = 
CiVi −CfVf
CiVi

×100
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The initial structure of the explicit-solvent MD simulations for each of the investigated 

peptides was extracted from the ensemble of highly ordered and well-aligned antiparallel β-sheet 

structures produced by the REMD simulations described above. All explicit-solvent MD 

simulations were performed using CHARMM36 topology and parameters255. The MD simulations 

were performed using the Drude polarizable force field256,257,258 and the velocity verlet 2 (VV2) 

integrator. Each of the peptide fibril systems was solvated in pre-equilibrated water box with sides 

17.0 Å greater than the maximum dimension of the isolated fibril. The cesium chloride 

concentration was set to 0.5 M for each of the peptide fibril systems with additional cesium ions 

introduced to neutralize the systems. We used a higher concentration to enable the computational 

study of the cesium ion binding mechanism of the designed fibrils. The cesium and chloride ions 

were introduced through 2000 steps of Monte Carlo simulations. Solvent molecules underwent 

energy minimizations through 100 steps of steepest descent, 100 steps of Adopted Basis Newton-

Raphson, and 100 steps of steepest descent minimization. An additional 100 steps of steepest 

descent, 100 steps of Adopted Basis Newton-Raphson, and 100 steps of steepest descent 

minimization were performed on each system with all backbone atoms constrained under 1.0 

kcal/(mol·Å2) and all non-hydrogen side chain atoms constrained under 0.1 kcal/(mol·Å2). The 

simulation systems were equilibrated for 0.25 ns, during which all protein backbone atoms were 

constrained under 1.0 kcal/(mol·Å2) and all side chain atoms were constrained under 0.5 

kcal/(mol·Å2). Subsequently, all constraints were released, and the systems were simulated for 10 

ns with simulation snapshots extracted every 2.5 ps. The simulations were performed in five 

independent runs using different initial seeds for reproducibility purposes. The dual Nosé-Hoover 

thermostat was used to maintain the temperature of the systems at 300K and the Andersen-Hoover 

barostat was used to maintain the systems at a constant pressure of 1.0 atm. All simulations were 
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performed using periodic boundary conditions and the SHAKE algorithm to constrain covalently 

bonded hydrogens. 

In the simulations investigating cesium ions binding to AGKGAIIGFIK, we considered 

that a cesium ion or a chloride ion is interacting with an amino acid if the distance between the 

center of mass of the amino acid side chain and the cesium ion or chloride ion is within 6.5 Å. In 

the simulations investigating cesium ions binding to FQGAIIGFNE and FNGAIIGFQE, we 

considered that a cesium ion is interacting with four amino acid side chains simultaneously if the 

four distances between the center of mass of the amino acid side chains and a cesium ion are within 

6.5 Å. In the analysis of all the three simulations, we neglected glycine amino acids which do not 

contain any side chain atoms. 

6.3 Results and Discussion 

6.3.1 Elucidating the Elementary β-sheet Structural Unit of a Short Amyloid-Forming Peptide 

An important factor for the design of functional amyloid materials is the choice of an 

amyloid scaffold based on which mutations will be introduced to yield functionalization. As 

mutations functionalizing an amyloid scaffold should not interfere with its self-assembling 

properties, confining the mutations to residue positions outside its β-sheet core is considered an 

attractive solution. This can be approached by adding extensions to an amyloid scaffold, which 

can serve as functional motifs. Yet, attention should be paid as such extensions to the termini may 

elongate the β-sheet domain of the peptide, disrupt self-assembly or result in a change of 

conformation (e.g., U-shaped β-sheets). We consider that an ideal “I”-shaped amyloid scaffold for 

the design of functional amyloid materials should encompass (i) a key central β-sheet region, and 

(ii) at least 2 non-β-sheet residue positions at both termini which can be mutated to yield a certain 

function (Figure 6.1A).  
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Figure 6.1 Overview of the computational protocol used for the design of amyloid materials 
capable of binding to cesium ions. (A) Illustrations of highly ordered and well-aligned structures 
extracted from the replica exchange molecular dynamics (REMD) simulations of the amyloid 
designable scaffold and a molecular graphics image of a representative elementary β-sheet 
structural unit representing a flexible structural template of AGKGAIIGFIK. In the top section of 
panel (A), the backbone of the peptides is shown as cartoons; the key central β-sheet region is 
highlighted in yellow; the first and last two mutable positions are shown using maroon dotted 
circles. In the bottom section of panel (A), the peptides are shown in blue cartoon representation 
with the backbone atoms forming β-bridges shown in licorice representation; β-bridge-associated 
hydrogen bonds are shown using black dashed lines. Residues 4–9 form amyloid-zipper-like 
patterns and are shown in transparent surface representation. Residues 1, 2, 3, 10, and 11 are not 
involved in β-sheet formation and their Cα atoms are shown as maroon spheres; these residue  
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Figure 6.1 Continued 
 
positions are deemed as mutable positions. (B) Examples of amino acid–cesium ion binding motifs 
from experimentally resolved structures and a schematic representation of the extracted 
materialphore models. Each protein–cesium ion complex is shown in a transparent silver cartoon 
representation with bound cesium ions shown in opaque ochre spheres. Amino acids in the 
extracted amino acid–cesium ion binding motifs, encircled by dotted ochre lines, are shown in a 
licorice representation. The bottom section of panel (B) shows an illustration of the primary and 
secondary materialphore models. Distances, indicated using green dotted arrows, between the 
extracted amino acids, indicated using orange symbols, constitute information encapsulated in 
primary materialphore models. Distances, indicated using maroon arrows, between the extracted 
cesium ion, indicated by a beige circle, and each of the amino acids, indicated using orange 
symbols, constitute information encapsulated in secondary materialphore models. The structures 
produced in (A) and the materialphore models produced in (B) are provided as input to the 
optimization-based design model stabilizing and functionalizing the amyloid designable scaffold 
to bind to cesium ions, which is presented in panel (C). On the far-left section of panel (C), a 
designable amyloid scaffold is presented with its four mutable positions marked in maroon dotted 
circles. If the geometry of certain amino acid combinations in the primary materialphore models, 
indicated using orange symbols in the molecular graphics images of the Protein Data Bank (PDB) 
structures, can be matched to the geometry of a flexible structural template, indicated by solid 
orange symbols and green dotted arrows, then a green checkmark is indicated; otherwise, red 
crosses are indicated. For the matched amino acid combinations, the introduction of the amino 
acids to the scaffold is evaluated by the energy defined in the objective function. The designed 
peptides are ranked according to their energy, and the top 10%, highlighted in yellow, are selected 
for computational validation (shown in panel (D)). (D) Two-step, two-component computational 
validation procedure comprising two steps of simulations and structural analysis. In the first step, 
the designed amino acids are introduced to an elementary structural β-sheet unit and are sampled 
using short MD simulations. In the far-left section of (D), sampled conformations of the designed 
amino acids from the short MD simulation snapshots are shown; the designed amino acids are 
shown in licorice representation, and peptides are shown in blue cartoon representation. The two-
component validation procedure comparing the geometry of the designed amino acids to that of 
the primary (green dotted arrows) and secondary (solid maroon arrows) materialphore models 
from the PDB (for example, as shown, PDBID: 4EEB) evaluates the designs. The top designed 
peptides based on a two-component validation procedure are selected. In the second step, the 
selected top designs are investigated further using longer REMD simulations assessing the 
peptides’ self-assembly properties. In the far-right section of (D), sampled conformations of the 
designed amino acids collected from the REMD simulations are shown. Subsequent structural 
analysis is used to assess the designed peptide ability to (i) self-assemble into the proper 
arrangement that they were designed based on (antiparallel is check marked in green, whereas 
parallel is crossed-out in red), and (ii) form of the desired binding pockets for cesium ion binding. 
Selected top designed peptides are chosen for experimental verification. In both steps (short MD 
simulations and REMD simulations investigating the peptides’ self-assembly properties), a two-
component validation procedure is performed. In the first component (bottom left section of panel 
(D)), the distances between the modeled designed amino acids are compared to the distances of 
the primary materialphore models they originated from, indicated by the green dotted arrows in  
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Figure 6.1 Continued 
 
the molecular graphics image of the amino acid–cesium ion binding motif. In the second 
component (bottom left section of panel (D)), the distances between the cesium ion and the 
modeled designed amino acids are compared to the distances of the secondary materialphore 
models they originated from, indicated by maroon arrows in the molecular graphics image of the 
amino acid–cesium ion binding motif. Reprinted with the permission from ref.22 

 

Our studies suggest that naturally occurring sequences comprising a central amyloid 

GAIIG motif extracted from amyloid-forming peptides (e.g., Αβ) or proteins with regions rich in 

β-sheet content (e.g., α-tubulin acetyl transferase242 or the HIV-1 gp120 V3 loop) are a promising 

starting point to extract amyloid designable scaffolds. The selection of such peptide sequences 

with 2-3 amino acids outside the GAIIG amyloid core at both termini can potentially result in the 

formation of amyloid designable scaffolds, as these amino acids can maintain the linear 

conformation of the peptide while not participating in β-sheets (i.e., not elongating the peptide’s 

amyloid core). This can be attributed to the fact that glycine amino acids of GAIIG may act as β-

turn promoters234,235,236. Motivated by our recently published study showing that the peptide with 

sequence YATGAIIGNII23, extracted from an HIV-1 gp120 V3 loop, self-assembles into amyloid 

designable scaffolds, in this study we selected an additional peptide with sequence NH3+-

AGKGAIIGFIK-COO- (AGKGAIIGFIK), extracted from the β-sheet domain (residues 88 to 98) 

of the α-tubulin acetyl transferase protein (αTAT1 with PDB code: 4PK2)242, to examine its 

capacity to self-assemble into amyloid designable scaffolds using computational and experimental 

methods. We considered that the presence of a phenylalanine residue sequentially after the GAIIG 

motif can potentially further enhance self-assembly31 and fibril stability192. The analysis depicted 

that AGKGAIIGFIK self-assembled into highly-ordered and well-aligned antiparallel, “I”-shaped 

(non-U-shaped) β-sheets with the first 3 N-terminal and last 2 C-terminal residue positions being 
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outside the amyloid core and thus exposed and amenable for further functionalization (Figure 

6.1A). Thus, the peptide can self-assemble into amyloid designable scaffolds, of which residue 

positions 1, 2, 3, 10, and 11 are mutable and can be modified to enhance functionalization. 

Subsequent experiments showed that the AGKGAIIGFIK peptide forms distinctive fibrillar 

morphologies with widths in the range of 10-20 nm as observed under FESEM (Figure 6.2). Thus, 

from the 16 μs REMD simulations, we extracted the top ten highly-ordered and well-aligned 4-

stranded antiparallel β-sheets formed by the peptide from the 1 μs replicas sampled at 300 K, 

representing flexible structural templates of its elementary β-sheet structural unit (similarly to 

refs23,24,40,131,192). The selected flexible structural templates were subsequently used as inputs to the 

optimization-based design model that was developed in this study for the functionalization of 

amyloid materials. A representative flexible structural template of the amyloid designable scaffold 

is presented in Figure 6.1A. 

 

 

Figure 6.2 FESEM picture of the self-assembled fibrils of the peptide AGKGAIIGFIK after 
incubation in double distilled water for 3 days. Figure was produced by our experimental 
collaborators and is reprinted with the permission from ref.22 
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6.3.2 Uncovering How Amino Acid Motifs Recognize Cesium Ions Using Experimentally 

Resolved Protein Structures 

We extracted all available 106 X-ray resolved protein : cesium ion complexes containing 

at least one cesium ion deposited in the PDB252 (date extracted: 08/01/2016). From the extracted 

protein structures, we collected amino acid : cesium ion binding motifs, defined here as a set of 

amino acids with side chain centers of mass within 8.5 Å of the resolved cesium ion. Examples of 

experimentally resolved protein : cesium ion complex structures and their amino acid : cesium ion 

binding motifs are presented in Figure 6.1B. Each of the amino acid binding motifs has a minimum 

of four amino acids as there are four mutable positions within each of the peptide strands of the 

flexible structural templates (described in the following section). Some of the extracted protein : 

cesium ion complexes have multiple cesium ions bound within the resolved protein, resulting in 

multiple amino acid : cesium ion binding motifs from the resolved complex. For example, the 

protein structure with PDB ID: 5CJZ, presented in Figure 6.1B, contains three cesium ions, thus 

three amino acid : cesium ion binding motifs were extracted from this structure. As a result, a total 

of 436 amino acid : cesium ion binding motifs were extracted from the 106 X-ray resolved 

structures. For each of the collected amino acid : cesium ion binding motifs, we stored the identities 

of the amino acids as well as their (i) distances to other amino acids within the motif and (ii) 

distances to the resolved cesium ion. (i) and (ii) are indicated in dotted green double headed arrows 

and solid maroon double headed arrows, respectively, in Figure 6.1B. Similar to pharmacophore 

models describing the structural features necessary for the molecular recognition of a ligand by a 

macromolecule in drug design259,260,261,262, here we refer to (i) and (ii) as primary and secondary 

materialphore (material + gr. phérō φέρω) models respectively, which combined can capture the 

geometric properties of amino acid : cesium ion binding motifs. Thus, 436 primary and secondary 
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materialphore models were extracted to be subsequently used for design purposes under the 

postulation that amyloid materials bearing mutations, which encompass the geometric properties 

captured by both primary and secondary materialphore models, can be functional to bind to cesium 

ions. Based on our definitions, primary materialphore models represent the geometry of the amino 

acid binding site and are used in both the optimization-based design model and computational 

validation procedure. Secondary materialphore models represent the distances of cesium ions with 

the interacting amino acids, reflecting how amino acids interact with cesium ions, and are used 

only in the computational validation procedure.  

The programs for extracting materialphore models for an ion (current study) or compound; 

(see further studies) of interest were initially developed by Chang-Hyun Choi, an undergraduate 

student of Dr. Tamamis’ lab, and were further advanced for the purpose of the current study and 

subsequent studies. 

6.3.3 Optimization-Based Design Model Stabilizing and Functionalizing the Amyloid Designable 

Scaffold to Bind to Cesium Ions 

Using the designable scaffolds (Figure 2.1A) and primary materialphore models collected 

from the X-ray resolved protein : cesium ion complex structures deposited in the PDB252 (Figure 

2.1B) as inputs, we developed and introduced the optimization-based design model described in 

Methods. The model was developed to functionalize the amyloid designable scaffold to bind a 

specific ion (cesium) by introducing mutations at the mutable positions of the amyloid designable 

scaffold’s flexible structural templates while considering the energetic stability of the mutations 

introduced in the scaffold. Functionalization is achieved through the introduction of mutations at 

pockets consisting of non-β-sheet forming amino acids which are part of a pair of β-sheet bonded 

peptides. Suitably selected constraints are introduced to allow only the introduction of 
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combinations of amino acids which, according to primary materialphore models, bind to cesium 

ions and conform to geometries that match, with some deviation, the corresponding geometry of 

the residue positions in the flexible structural templates of the amyloid designable scaffold. 

Specifically, the constraints introduced guarantee that all possible combinations of distances 

between the centers of mass of the designed amino acid side chains can be matched with any 

combination of distances between the centers of mass of the same amino acid side chains in any 

of the primary materialphore models in a portion of the flexible structural templates. As illustrated 

in Figure 6.1C, matching is indicated with green checkmarks, whereas failure in matching is 

indicated with red crosses. Stabilization of the introduced mutations at the mutable positions of 

the flexible structural templates is represented by an objective function minimizing the energy to 

identify designed amino acids that yield the most stable conformations, thereby increasing the 

probability that the resulting designed peptides achieve the proper fold or geometry for 

functionalization. This term can additionally serve as a means to avoid the destabilization of the 

amyloid-forming properties of the designed peptides. In the present study, residue positions 2, 3, 

10, and 11 were amenable for modification while Ala1 was treated as an acetylation in the designed 

peptides, which we introduced to further enhance the self-assembly properties of the designed 

peptides similarly we considered an amidated C-terminal end modification. The modifiable residue 

positions are represented as dotted circles labeled 1, 2, 3, and 4 in Figure 21C of which designed 

amino acids in the first two positions of one peptide and the last two positions of an adjacent 

peptide form a designed pocket. In the computational design model, we use a coarse-grained 

approach where each of the amino acid side chains are treated as one united point (e.g., see ref.192).  

Out of the 204 total possible theoretical designed peptides, our optimization-based 

computational model produced 89442 designed peptides that could match the primary 
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materialphore models in different combinations of amino acids. The model was solved to global 

optimality and the produced sequences were rank ordered based on the energy defined in the 

objective function. We imposed additional constraints specific to cesium ion binding to guide the 

computational design procedure. Specifically, we extracted the designs that meet the following 

criteria: (i) an aspartic acid or glutamic acid is present at first or last designable position, (ii) a 

polar amino acid (serine, threonine, asparagine, glutamine) is present in at least two designable 

positions, (iii) the total charge of amino acids in the designable positions is equal to -1, and (iv) 

the exclusion of glycine, proline, cysteine, methionine, or histidine amino acids in the designable 

positions. As for (i), an aspartic acid or glutamic acid mutation at first or last designable position 

is desirable as these positions are expected to be the most solvent accessible positions; thus an 

aspartic acid or glutamic acid at those positions maximizes the probability of the negatively 

charged amino acids directly interacting with positively charged cesium ions. As for (ii), we 

performed an additional bioinformatics analysis on the propensities of amino acids that are present 

in the collected materialphore models. The analysis showed that polar amino acids occur most 

frequently: polar amino acids (serine, threonine, asparagine, and glutamine) make up 31.3% of all 

amino acid : cesium ion binding motifs, non-polar amino acids (alanine, valine, leucine, and 

isoleucine) contribute 27.9%, negatively charged amino acids (aspartic acid and glutamic acid) 

contribute 20.3%, positively charged amino acids (lysine and arginine) contribute 10.5%, and 

aromatic amino acids (tyrosine, phenylalanine, and tryptophan) contribute 9.9%. Furthermore, 

according to a study by Armentrout et al.263, polar amino acids have been shown to bind cesium 

ions with enhanced affinity263. Thus, we imposed an additional constraint according to which a 

polar amino acid should be included in any two designable positions, while in the remaining 

positions, any allowable amino acid except the ones listed in (iv) was allowed as other amino acids, 
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such as aromatic amino acids263, may be beneficial for cesium ions binding. As for (iii), a charge 

of -1 was imposed for charge complementarity to the positively charged cesium ion. As for (iv), 

glycine, proline and cysteine amino acids were excluded as glycine may contribute minimally to 

functionality, proline can bias the backbone conformation of the pocket, and cysteine can, under 

specific conditions, result in unintended intermolecular disulfide bridges. In addition, methionine 

and histidine residues were excluded as both amino acids are not abundant in the materialphore 

models, and histidine could bias the net charge of the pocket due to slight pH changes, and thus 

have a negative effect on cesium ion binding due to small pH variations. From the reduced rank 

ordered list of sequences, we selected the top 10% (total of 134 sequences) of the designed peptide 

sequences for further investigation.  

6.3.4 Modeling, Simulation and Computational Validation of Selected Designed Peptides 

Predicted to Form Functional Amyloid Fibrils Binding to Cesium Ions 

MD Simulation-Based Modeling of the Designed Amino Acids on the Original Designable 

Scaffold and Computational Screening-Validation of the Selected Designed Peptides 

The ability of the elementary β-sheet structural units of the designed peptides to form 

binding pockets resembling the materialphore models from which their design originated was 

investigated through short MD simulations modeling the designed amino acids and subsequent 

computational validation. Using one of the ten flexible structural templates belonging to the 

amyloid designable scaffold AGKGAIIGFIK as an initial starting conformation, we modeled the 

elementary β-sheet structural units of the selected designed peptides. Appropriate mutations were 

introduced using CHARMM110. We performed short 20 ns implicit-solvent MD simulations for 

the selected designed peptides, in the absence of cesium ions, and extracted the snapshots for each 
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of the designed peptides to explore the conformational variability of the binding pockets 

comprising the designed amino acids in their β-sheet conformations. The absence of cesium ions 

served as an ultimate test to check the capacity of the designed peptides to form amyloid structures 

in which the designed pocket of the elementary β-sheet structural unit can adopt the proper 

geometry to bind to a cesium ion in its absence. Throughout the simulations, the core of the 

elementary β-sheet structural units of the designed peptides was subjected to light constraints to 

maintain the β-sheet interactions, thus preserving the integrity of the elementary β-sheet structural 

units, and the four designed amino acids in each peptide were unconstrained and flexible.  

Visual inspection of the MD simulation snapshots indicated that, with the β-sheet forming 

amino acids constrained during the simulations, the short duration of the MD simulations was 

sufficient to allow the conformational exploration of the binding pocket and to screen out the 

designed peptides incapable of forming the desired amino acid pockets required for 

functionalization. The choice of short rather than long simulations aimed at a fast screening 

procedure that can efficiently be used to sample the conformational space of the designed amino 

acids and could facilitate its implementation for hundreds of selected designed peptides. 

Considering that the backbone of each of the first two and last two unrestrained amino acids has 

two degrees of freedom in the φ-ψ space (helical or β-sheet), the total degrees of freedom for 

backbone conformations is equal to 24.  Thus, such short simulation durations can be attractive in 

their application in a future implementation of our protocol as a computational package to design 

functional amyloid materials on demand. It is worth noting that longer and more highly-accurate 

simulations investigating the top designed peptides’ self-assembly properties are additionally 

performed afterwards to guarantee higher precision in validation. From this perspective, this step 

can be considered as a tool screening out designs that are not highly promising. 
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Upon the completion of the MD simulations, we introduced a two-component 

computational validation procedure to evaluate the ability of the designed peptides’ elementary β-

sheet structural units to form binding pockets resembling the geometry of the amino acid : cesium 

ion binding motifs (far left section of Figure 6.1D). In the first component of the validation 

procedure, we evaluated the ability of the designed amino acid side chain binding pockets, per pair 

of two β-sheet bonded peptides, to acquire geometries similar to the primary materialphore models 

they originated from. In the second component of the validation procedure, we evaluated the ability 

of the designed peptides’ amino acid side chain pockets to bind a cesium ion in the same fashion 

as the secondary materialphore model(s) from which the designed amino acids originated. 

Specifically, in the first validation component, the distances between the centers of mass of the 

four designed amino acid side chains within the MD simulation were compared to the 

corresponding distances encompassed in the primary materialphore model(s) each design 

originated from. An example of a primary materialphore model is presented in bottom left section 

of Figure 6.1D. If the two sets of distances were similar for any of the designed pockets within a 

given simulation snapshot, then the snapshot and its corresponding pocket was saved for further 

analysis and the pocket was considered a primary match. The percentage of snapshots containing 

primary matches for the first validation component for the simulated designed peptides is presented 

in Table 6.1. In the second validation component, a cesium ion was placed in the designed pockets 

comprising primary matches, which formed appropriate side chain conformations according to the 

primary materialphore models. Specifically, the second validation component assures that cesium 

ions can be placed successfully in the designed pockets containing primary matches and also 

guarantees that the placed cesium ion does not have a steric hindrance with any atoms, belonging 

to both designed and unmodified amino acids. If the distances between the centers of mass of the 
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four designed amino acid side chains and the placed cesium ion within the MD simulations were 

similar to the corresponding distances encompassed in the secondary materialphore model(s) each 

design originated from designed pocket was considered a secondary match. An example of a 

secondary materialphore model is presented in bottom left section of Figure 6.1D. The percentage 

of pockets containing secondary matches in the snapshots used in the second validation stage for 

the selected designed peptides is presented in Table 6.1. The designed peptides were ranked based 

on their first validation component percentages. We removed any designed peptides with second 

validation component percentages less than 40% from the rank-ordered list of designs. From the 

reduced list of designed peptides, we selected the top 10% (13 designed peptides) of peptides with 

the highest first validation component percentages for further investigation described below. 

 

Table 6.1 Designed peptide sequences predicted to bind to cesium ions and their corresponding 
first and second validation component percentage statistics calculated over the snapshots extracted 
from short MD simulations. The listed percentages for the first validation component correspond 
to the percentage of snapshots containing primary matches. The listed percentages for the second 
validation component correspond to the percentage of pockets containing secondary matches 
within the snapshots containing primary matches, which were identified from the first validation 
component. The designed peptide sequences were ranked according to their first validation 
component percentages. The designed peptide sequences shown in boldface text were selected for 
further investigation of their self-assembly properties using REMD simulations, and re-validation 
(see Table 6.2). Reprinted with the permission from ref.22 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

DSGAIIGFFS 100.00 93.67 
DTGAIIGFWQ 99.95 93.07 
QTGAIIGFYD 99.70 91.58 
FNGAIIGFQD 99.70 65.08 
DSGAIIGFQW 99.65 87.65 
DNGAIIGFYT 99.65 99.33 
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Table 6.1 Continued 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

WSGAIIGFQD 99.60 90.83 
WTGAIIGFQD 99.40 94.92 
SSGAIIGFWE 99.35 91.03 
QTGAIIGFWD 99.35 67.40 
QSGAIIGFYE 99.10 43.55 
FQGAIIGFNE 99.10 53.51 
ESGAIIGFWS 97.00  
DTGAIIGFWS 96.90  
YTGAIIGFQD 96.65  
DSGAIIGFFN 96.25  
NQGAIIGFFE 96.15  
YSGAIIGFSE 95.55  
SQGAIIGFFE 94.70  
STGAIIGFWD 94.65  
SSGAIIGFFD 94.40  

DQGAIIGFWT 93.25  
EQGAIIGFYS 92.40  
FQGAIIGFQD 91.50  
STGAIIGFYD 91.30  
QYGAIIGFSD 90.85  
DTGAIIGFYQ 90.50  
SWGAIIGFQD 90.10  
DQGAIIGFWS 88.80  
NQGAIIGFFD 87.75  
QNGAIIGFFD 86.15  
DQGAIIGFFN 84.60  
SNGAIIGFYD 84.45  
NNGAIIGFYE 83.95  
DSGAIIGFFQ 83.25  
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Table 6.1 Continued 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

SNGAIIGFYE 83.10  
SYGAIIGFQE 82.05  
FNGAIIGFQE 81.60  
ESGAIIGFYN 80.45  
SSGAIIGFYD 79.75  
DYGAIIGFQS 78.75  
SQGAIIGFWD 78.15  
SQGAIIGFYE 77.05  
ESGAIIGFYQ 76.30  
QSGAIIGFFD 76.25  
NSGAIIGFYE 74.80  
DQGAIIGFFQ 74.45  
YSGAIIGFSD 74.40  
QQGAIIGFFD 74.20  
DSGAIIGFWQ 73.80  
SSGAIIGFWD 72.70  
DYGAIIGFNS 72.10  
DYGAIIGFSN 71.25  
DYGAIIGFSS 70.60  
DNGAIIGFFQ 70.25  
NTGAIIGFYE 70.10  
DQGAIIGFYS 67.85  
QSGAIIGFWD 67.65  
DSGAIIGFYQ 66.60  
YQGAIIGFTD 65.80  
DNGAIIGFYS 64.75  
DTGAIIGFYS 64.50  
FSGAIIGFQE 63.85  
QQGAIIGFLD 63.80  
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Table 6.1 Continued 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

ETGAIIGFYQ 61.95  
DYGAIIGFQT 61.90  
DSGAIIGFWS 61.30  
QNGAIIGFFE 53.05  
YQGAIIGFSE 51.35  
YSGAIIGFND 51.10  
FQGAIIGFSE 50.95  
DTGAIIGFYN 48.90  
YSGAIIGFQE 47.40  
QSGAIIGFYD 45.55  
WSGAIIGFSD 44.45  
DQGAIIGFYT 43.95  
YQGAIIGFSD 41.40  
DNGAIIGFFS 41.20  
ENGAIIGFYS 36.90  
DSGAIIGFQY 36.50  
SQGAIIGFYD 35.40  
DSGAIIGFWT 34.60  
DYGAIIGFNQ 32.20  
SSGAIIGFYE 29.60  
QTGAIIGFYE 29.60  
ENGAIIGFWS 28.35  
EQGAIIGFYN 28.25  
LQGAIIGFQE 28.10  
EQGAIIGFFQ 26.30  
DYGAIIGFSQ 24.70  
FQGAIIGFQE 24.10  
YQGAIIGFNE 23.55  
DSGAIIGFYN 23.15  
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Table 6.1 Continued 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

NSGAIIGFYD 22.70  
YSGAIIGFQD 20.75  
EQGAIIGFYT 20.60  
YTGAIIGFND 19.25  
YSGAIIGFNE 18.60  
QYGAIIGFNE 11.25  
SQGAIIGFFD 10.00  
YNGAIIGFSE 9.65  
NQGAIIGFYE 9.40  
SYGAIIGFQD 9.25  
YQGAIIGFND 9.15  
ESGAIIGFWN 7.75  
EYGAIIGFQN 7.45  
DQGAIIGFYN 6.35  
FSGAIIGFQD 5.90  
QQGAIIGFFE 5.80  
YNGAIIGFTD 5.40  
QFGAIIGFQD 4.10  
NTGAIIGFYD 3.80  
FQGAIIGFSD 3.60  
QNGAIIGFYE 3.55  
ENGAIIGFYN 3.50  
DNGAIIGFFN 3.10  
ENGAIIGFYT 3.05  
QNGAIIGFYD 2.60  
YNGAIIGFSD 2.05  
YNGAIIGFQE 2.05  
YQGAIIGFTE 1.95  
NYGAIIGFQE 0.80  
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Table 6.1 Continued 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

NQGAIIGFYD 0.75  
ENGAIIGFYQ 0.60  
DNGAIIGFWN 0.60  
YTGAIIGFQE 0.25  

 

MD Simulations Investigating the Self-Assembly Properties of the Designed Peptides and 

Final Computational Screening-Validation 

In the computational validation using short MD simulations-based modeling described 

above, we assumed that the designed peptides self-assemble into β-sheet structures with 

elementary structural units resembling the amyloid designable scaffold’s flexible structural 

templates on which design was performed. Here, we computationally investigated the selected 13 

peptides’ capacity to self-assemble into amyloid β-sheet structures containing designed pockets 

appropriate for functionalization. In contrast to the previous simulations, in this step, the β-sheet 

structure of the 13 designed peptides is not assumed to be identical to the structure of the 

elementary β-sheet structural unit of the designable scaffold it originated from. Thus, to investigate 

the peptides’ self-assembly properties in a first-principles-based approach, we employed REMD 

simulations (16 μs each for each of the 13 deigned peptides) followed by structural analysis, 

analogously to our aforementioned investigation on the designable amyloid scaffolds formed by 

peptide sequence AGKGAIIGFIK, and in line with the computational protocol published in 

refs23,24,40,131,192. This analysis was performed in order to verify that the 13 selected designed 

peptides indeed self-assemble into the desired functional structures without any prior assumption, 
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and in the absence of cesium ions. Similar to the previous section, the absence of cesium ions 

served as an ultimate test to check the capacity of the designed peptides to form amyloid structures 

in which the designed pocket of the elementary β-sheet structural unit can adopt the proper 

geometry to bind to a cesium ion in its absence. Upon completion, our results suggested that 11 

out of the 13 designed peptides showed a tendency to favor parallel β-sheet formation over 

antiparallel β-sheet formation and were discarded from further investigation since the initial 

amyloid designable scaffold that the designed peptides originated from were antiparallel and the 

formation of parallel β-sheets rather than antiparallel β-sheets would disallow the formation of the 

intended designed amino acid functional pockets capable of binding to cesium ions. An example 

of a discarded designed peptide favoring parallel configuration is presented in right section of 

Figure 6.1D. For the remaining 2 designed peptides, with sequences FQGAIIGFNE (Ace-

FQGAIIGFNE-CONH2) and QTGAIIGFYD (Ace-QTGAIIGFYD-CONH2), favoring antiparallel 

β-sheet formation, we extracted their highly ordered and well-aligned antiparallel β-sheet 

structures. Using the extracted structures, we performed a second additional step of the two-

component validation procedure (far right section of Figure 6.1D) described above, which 

identified the former, FQGAIIGFNE, as the most promising designed peptide for experimental 

testing and further computational analysis. The results of the two-component validation procedure 

are presented in Table 6.2. 
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Table 6.2 Designed peptide sequences predicted to bind to cesium ions and their corresponding 
first and second validation component percentage statistics calculated over the highly ordered and 
well-aligned snapshots extracted from the REMD simulations investigating the peptides’ self-
assembly properties. The listed percentages for the first validation component correspond to the 
percentage of snapshots containing primary matches. The listed percentages for the second 
validation component correspond to the percentage of pockets containing secondary matches 
within the snapshots containing primary matches, which were identified from the first validation 
component. Reprinted with the permission from ref.22 
 

Designed peptide 
sequences 

First validation 
component (%) 

Second validation 
component (%) 

FQGAIIGFNE 81.80 87.33 
QTGAIIGFYD 52.80 80.70 
FNGAIIGFQE 78.40 61.80 

 

6.3.5 Designs Selected for Experimental Testing and Further Computational Analysis 

We applied the computational protocol for the design of amyloid materials and identified 

the designed peptide with sequence FQGAIIGFNE as the most promising peptide for cesium ion 

binding. The designed amino acids (F, Q, N, E), originated from three materialphore models, 

corresponding to experimentally resolved protein : cesium ion complex structures: (1) the 

Thermotoga maritima CorA coiled-coil mutant (PDB ID: 4EEB264), (2) the acid-sensing ion 

channel in complex with snake toxin (PDB ID: 4NTY265), and (3) the Lactococcus lactis cell wall 

pellicle by the phage 1358 receptor binding protein (PDB ID: 4L9B266). According to further 

analysis (not shown) on the two-component validation procedure performed using the highly 

ordered and well-aligned antiparallel β-sheet structures of FQGAIIGFNE, the simulated 

conformations of the four designed amino acids resemble to a higher degree the first of the three 

aforementioned materialphore models264. This is well represented in Figures 6.3A and 6.3C which 
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present the mimicry between the four designed amino acids in the designed β-sheet structures to 

the corresponding amino acids of the experimentally resolved structure264. 

 

 

Figure 6.3 Molecular graphic images showing the mimicry of the designed pockets formed by the 
peptides FQGAIIGFNE, FNGAIIGFQE to the materialphore model comprising the amino acid : 
cesium ion binding motif from the structure of a Thermotoga maritima CorA coiled-coil mutant 
(PDB ID: 4EEB). Panels A, and B show the computationally predicted cesium binding modes by 
the designed peptides FQGAIIGFNE, and FNGAIIGFQE, respectively. Panels C, and D show the 
amino acid : cesium ion binding motif from which the designed peptides FQGAIIGFNE, and 
FNGAIIGFQE originated from. Reprinted with the permission from ref.22 
 

Given that FQGAIIGFNE was identified as the most promising designed peptide, we 

returned to the reduced rank ordered list of designed sequences and searched for additional 

designed peptides with the same amino acid composition (F, Q, N, and E in the designable 

positions). From this search, we additionally selected the designed peptide with sequence 

FNGAIIGFQE (Ace-FNGAIIGFQE-CONH2), of which the asparagine and glutamine amino acids 

are switched compared to FQGAIIGFNE. The designed peptide, FNGAIIGFQE, was actually 
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ranked higher in the rank ordered list of sequences from the design model than FQGAIIGFNE. 

Although the designed peptide FNGAIIGFQE was not among the top 10% of designed peptides 

ranked using the first validation procedure step based on short MD simulations-based modeling, 

its first and second component validation percentages were decent. Thus, we additionally 

investigated the self-assembly properties of FNGAIIGFQE using REMD simulations, followed by 

further structural and validation analysis, as detailed in the aforementioned section for 

FQGAIIGFNE. Similarly to FQGAIIGFNE, FNGAIIGFQE favors antiparallel β-sheet structural 

formation, its two-component validation statistics are also decently high, and its four designed 

amino acids (F, N, Q, E) originated from same three materialphore models that FQGAIIGFNE 

originated from, with the higher degree of resemblance corresponding to the same materialphore 

model264. This is also well represented in Figures 6.3B, 6.3D which present the mimicry between 

the four designed amino acids in the designed β-sheet structures to the corresponding amino acids 

of the experimentally resolved structure264. 

Thus, both FQGAIIGFNE and FNGAIIGFQE were selected for experimental testing and 

further computational analysis. As mentioned above, the designed amino acids (F, Q, N, E) of 

peptides FQGAIIGFNE and FNGAIIGFQE originate from the same materialphore model, and 

correspond to the amino acids Phe182 of chain B, Glu88 of chain C, Asn92 of chain C, and Gln95 

of chain C in the structure of a CorA coiled-coil mutant (PDB ID: 4EEB264). The amino acids 

Glu88 of chain C, Asn92 of chain C, and Gln95 of chain C that were included in the designed 

pocket are interacting directly with the resolved cesium ion and Phe182 of chain B forms long-

range cation-π interactions267,268 with the resolved cesium ion. The fact that only four residue 

positions are available for modification limited the capacity of the designed peptides to completely 

mimic the binding of cesium ions by proteins shown in X-ray resolved structure, which may 
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include more than four amino acids interacting with a bound cesium ion. Despite this limitation, 

the design procedure was not significantly affected as the net charge of the vast majority of the 

neglected amino acids binding to the specific cesium ion that were not included in the 

computationally designed pockets are serendipitously counterbalanced. Of the excluded amino 

acids, Asp253 of chain B interacts with His257 of chain B and Asp89 of chain C interacts with 

Lys98 of chain C in the X-ray resolved structure264.  

6.3.6 Experimental Testing, Verification of Amyloid Self-Assembly, and Determination of Cesium 

Ion Capture Properties by the Designed Amyloid Materials 

All microscopic analyses to verify the self-assembly properties and cesium deposition 

properties of the designed peptides were by Dr. Mitraki’s lab. Elemental analysis experiments were 

performed by Dr. Bryan Tomlin through the elemental analysis facilities of Texas A&M 

University using amyloid materials and solutions prepared by the student and Asuka A. Orr 

prepared in Dr. Tamamis’ and Dr. Karim’s labs under the guidance of Dr. Hae-Kwon Jeong (see 

ref22). 

Amyloid Fiber Formation and Fiber Stability 

The ability of the computationally designed peptides, Ace-FQGAIIGFNE-CONH2 and 

Ace-FNGAIIGFQE-CONH2, to self-assemble into amyloid fibrils was verified through FESEM 

observations and CR staining. Both the designed peptides form distinctive fibrillar morphologies 

with width in the range of 10-20 nm as observed under FESEM.  
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Cesium Ion Binding and Capture Capacity of the Designed Amyloid Fibers  

We observed the fibrils formed by FQGAIIGFNE and FNGAIIGFQE under TEM before 

and after exposure to cesium to visually verify that the fibrils bind cesium (Figures 6.4A, 6.4B, 

6.4C, 6.4D). The fibrils that were exposed to cesium chloride solution were washed and were not 

negatively stained before observation under TEM.  Since cesium has a high atomic number (Z=55) 

which leads to an increased electron density in the area of the fibrils bound with cesium, it can 

contribute to the detection of the fibrils via transmission electron microscopy, as compared to 

organic moieties consisting of carbon, hydrogen, and oxygen269. The detection of the fibrils 

exposed to cesium using TEM indicates that the designed peptides form amyloid materials 

functional to capture cesium. TEM studies also confirmed that the fibril morphology is maintained 

after uptake of cesium ions.  

We subsequently performed elemental analysis in triplicates to quantify the amount of 

cesium ions captured by the amyloid materials formed by designed peptides, FQGAIIGFNE and 

FNGAIIGFQE. To form the fibrils, 6 mg of each designed peptide was self-assembled in 0.5 mL 

of water. The fibrils were subsequently separated from the water and exposed to 0.5 mL of 10 ppm 

cesium chloride solution. At the neutral pH 7, the amyloid materials formed by FQGAIIGFNE and 

FNGAIIGFQE exhibited high cesium binding capacities with 70.9 ± 2.2% and 60.4 ± 0.8% of 

cesium ions removed from a 10 ppm cesium chloride solution, respectively. We additionally 

investigated the ability of the amyloid materials to capture cesium ions in acidic conditions. At pH 

4.5, the amyloid materials formed by FQGAIIGFNE and FNGAIIGFQE maintain their ability to 

capture cesium, removing 64.9 ± 1.9% and 59.3 ± 0.4% of the cesium ions from a 10 ppm cesium 

chloride solution, respectively. The maintained capacity of the designed amyloid materials in 

acidic conditions indicates that amyloid materials may be promising for further improvement (e.g., 



 152 

re-design) to remove cesium from radioactive acidic wastewater conditions. We also performed 

the same analysis for the amyloids formed by the amyloid designable scaffold, NH3+-

AGKGAIIGFIK-COO-; at neutral pH 7, the amyloid fibrils formed by AGKGAIIGFIK removed 

16.2 ± 3.3% of cesium ions from a 10 ppm cesium chloride solution. At pH 4.5, the amyloid fibrils 

formed by AGKGAIIGFIK removed 18.1 ± 6.1% of cesium ions from a 10 ppm cesium chloride 

solution. Further investigations were performed to delineate the non-specific cesium capture 

properties of AGKGAIIGFIK. The percent cesium ions captured by the amyloid materials formed 

by FQGAIIGFNE and FNGAIIGFQE as well as the amyloid fibrils formed by AGKGAIIGFIK 

are plotted in Figure 6.4E. 
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Figure 6.4 TEM micrographs of peptide fibrils before and after cesium deposition and histogram 
showing percentage (%) of cesium ions removed from a 10 ppm cesium chloride solution. Panels 
A and C show fibrils formed after 3 days of incubation by the peptides FQGAIIGFNE and 
FNGAIIGFQE, respectively. Panels B and D show fibrils after cesium capture for peptides 
FQGAIIGFNE and FNGAIIGFQE, respectively. Panel E shows the percentage (%) of cesium ions 
removed from a 10 ppm cesium chloride solution by the amyloid material formed by the peptide 
FQGAIIGFNE (blue), amyloid material formed by the peptide FNGAIIGFQE (orange), and fibrils 
formed by the peptide AGKGAIIGFIK (green) under two different pH conditions, pH 4.5 and pH 
7. Figures A-D were produced by our experimental collaborators. Raw values are available in an 
excel spreadsheet of the student’s lab book. Reprinted with the permission from ref.22 
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6.3.7 Explicit-Solvent MD Simulations Investigating the Cesium Ion Binding Properties of the 

Designed Amyloid Materials 

Explicit-solvent, all-atom MD simulations were performed using the Drude polarizable 

force field256,257,258 in CHARMM110 to delineate why the amyloid fibrils formed by 

AGKGAIIGFIK exhibited a low cesium ion capture capacity, as well as to provide insights into 

how the amyloid material formed by the designed peptides FQGAIIGFNE and FNGAIIGFQE bind 

to and capture cesium ions. Specifically, we aimed to investigate whether the capture can primarily 

be attributed to the computationally designed mechanism. For this purpose, we performed 5 

independent MD simulations runs, 10 ns each, investigating the 4-stranded elementary β-sheet 

structural units of each of the three peptides in the presence of cesium chloride (0.5 M).  

According to the MD simulations cesium ions interact with all the amino acids of the 

modeled AGKGAIIGFIK fibrils nearly uniformly, with the exception of Ala1, which has an 

elongated backbone owing to its acetylation (Figure 6.5A), potentially suggesting a partly non-

specific binding mechanism. Upon visual inspection we observed that cesium ions frequently 

interact with the C-terminal end of the peptide, which is not amidated. We quantified the specific 

interactions and observed that these interactions occur in approximately 20% of the snapshots. 

Furthermore, we have also observed that in 25% of the snapshots in which this interaction occurs, 

chloride ions interact with positively charged group of Lys11.  This suggests that a portion of the 

capture can be associated with cesium chloride salts being “trapped” in such a way that their 

positive and negative ions simultaneously interact with the negatively charged C-terminus and the 

positively charged side chain group of lysine residues (Figure 6.5B).   

On the contrary, according to the MD simulations, cesium ions interact primarily with the 

designed residues located at the termini of the modeled FQGAIIGFNE and FNGAIIGFQE fibrils 
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(results not shown). In the simulations performed to investigate cesium ion binding to the 

elementary β-sheet structural units formed by peptides FQGAIIGFNE and FNGAIIGFQE, our 

structural analysis focused on detecting the binding pockets formed by four amino acid side chains 

that can simultaneously interact with a cesium ion during the simulation trajectory. From this 

analysis, we considered only binding pockets formed by four amino acids which belong to two 

different peptide strands; this consideration neglects any potential binding pockets formed by 

amino acids which belong only to any of the two outer peptides; such pockets, if formed, are simply 

an artifact of our simulations lacking a nearly infinite array of peptides in an amyloid fibril. 

According to the analysis, in the FQGAIIGFNE simulations, the probability of a cesium ion to 

interact with all four designed amino acids is equal to 24%, which is also the most populated cluster 

among all other possible binding pockets comprising four amino acids (Figure 6.5C), while the 

corresponding probability of a cesium ion to interact with at least three of the four designed amino 

acids is equal to 43%. Importantly, this suggests that the binding and related capture mechanism 

of the FQGAIIGFNE amyloid fibrils can be attributed to the designed amino acids (Figure 6.5C). 

In the FNGAIIGFQE simulations, the probability of a cesium ion to interact with all four designed 

amino acids is equal to 3% (Figure 6.5D), while the corresponding probability of a cesium ion to 

interact with at least three of the four designed amino acids is equal to 82%; the latter is attributed 

to the fact that in the majority of cases, one out of the four designed amino acids is not participating 

in interactions with a cesium ion, and instead another nearby amino acid does. For example, in the 

top two populated clusters (31% and 27% respectively), Ala4 of the first strand interacts with a 

cesium ion instead of Gln9 of the second strand (Figure 6.5E), and Phe8 of the first strand interacts 

with a cesium ion instead of Phe1 of the second strand (Figure 6.5F). Thus, the binding and related 

capture mechanism of the FNGAIIGFQE amyloid fibrils can be primarily attributed to the 
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designed amino acids. Quite interestingly, we observe that Phe8 which was originally part of the 

amyloid designable scaffold AGKGAIIFIK, can in place of designed amino acid Phe1, bind to the 

cesium ion resembling the materialphore model from which FNGAIIGFQE originated from 

(Figure 6.5F, Figure 6.3D). While the aforementioned simulations can provide insights into the 

cesium ion binding and capture mechanisms of the designed peptides, longer simulations are 

needed to provide more in-depth insights, especially in the case of FNGAIIGFQE for which the 

instances of pockets formed comprising four amino acid side chains simultaneously interacting 

with a cesium ion was smaller (170) compared to FQGAIIGFNE (773). Yet, this investigation was 

not a primary scope of the current study, which focused mainly on the computational 

functionalization design aspect. 
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Figure 6.5 Interactions of the designed amyloid peptide materials to cesium ions. A: Histogram 
showing the percent propensities for each of the amino acid side chains of the AGKGAIIGFIK 
amyloid peptide to interact with a cesium ion in the explicit-solvent simulations. B: Molecular 
graphics images depicting the interaction of negative charged C-terminus of the AGKGAIIGFIK 
amyloid peptide with a cesium ion and positively charged side chain group of lysine residues with 
chloride ion. C: Molecular graphic image depicting the cesium ion binding to the designed amino 
acids Phe1, Gln2, Asn9, and Glu10 for the designed amyloid peptide FQGAIIGFNE (1st most 
populated cluster). D, E, F: Molecular graphic images depicting the cesium ion binding to: the 
designed amino acids Phe1, Asn2, Gln9, and Glu10 (D; 9th most populated cluster), the designed 
amino acids Phe1, Asn2, and Glu10 and additionally amino acid Ala4 (E; 1st most populated 
cluster), and the designed amino acids Asn2, Gln9, and Glu10 and additionally amino acid Phe8 
(F; 2nd most populated cluster), for the designed amyloid peptide FNGAIIGFQE. Reprinted with 
the permission from ref.22 
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6.4 Concluding Remarks 

Here, we developed and applied a computational protocol for the design of functional 

amyloid materials functional for cesium ion capture. Considering the increasing demand for novel 

amyloid materials that can be designed “on demand” to bind (and either capture, or to be used for 

the sustained release of) specific ions or compounds for biomedical, environmental and 

technological applications, we suggest that such a protocol can be advanced to tackle a series of 

problems associated with, but not limited to, the application of amyloid materials in tissue 

engineering, separations and water treatment, as well as drug delivery. An advanced protocol with 

improvements on the capacity and specificity of the designed amyloid materials could provide a 

possible solution to weaknesses associated with existing rational approaches functionalizing 

amyloid materials, which rely on scientists’ intuition and may yield low success rates or 

unsuccessful designs if the desired functional properties are hard to achieve. Therefore, it can 

constitute a stepping stone toward a generalized protocol for the computational design of 

functional amyloid materials in the future. 

6.5 Innovation in Methods 

We developed the first computational design protocol functionalizing amyloid materials to 

bind a specific ion (cesium in the current study). According to the protocol’s strategy, an amyloid 

material can be functionalized to bind a specific ion by introducing mutations at suitably selected 

non-β-sheet residue positions at the termini of an amyloid scaffold. The introduced mutations at 

the selected positions mimic how amino acids bind to the ion according to experimentally resolved 

structures, through choosing the amino acid combinations and geometries yielding the most stable 

bound conformations for functionalization. 
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The computational design is operated through an optimization-based model, which 

minimizes the energy of designed amino acids outside the amyloid core of a designable scaffold. 

The designed amino acids are introduced in non-β-sheet residue positions of a pair of two β-sheet 

bonded peptides to spatially reproduce, and thus mimic, any of the extracted materialphore models, 

which represent how proteins bind to the ion according to available experimentally resolved 

structures. The mimicry is innovatively handled by constraints, which are introduced such that the 

optimum solutions, among all possible materialphore models considered, and the lowest energy 

solutions are selected for further investigation. The selection of lowest energy solutions aims to 

both stabilize the bound conformation of the designed amino acids, as well as to avoid destabilizing 

the self-assembly properties of the designed peptides. Additional constraints during the solution 

of the design model are used to ensure that mutations are introduced at non-β-sheet forming 

positions belonging to a pair of non-covalently bonded β-sheet peptides, considering the peptides’ 

fibrillar structural arrangement (e.g., antiparallel), and also considering the necessary condition 

that the designed peptide sequences must be identical. Simulations and structural analysis 

programs are subsequently used to screen, computationally validate and select top performing 

designs for further experimental validation. All aforementioned components were crucial and 

essential pieces that were strategically assembled in the computational protocol to overcome 

limitations of current computational tools253, which in general can be used to functionalize a 

protein but not necessarily an amyloid material. An inherent limitation of existing computational 

tools to solve the problem addressed in this study is that they are developed to functionalize 

proteins in which the designed amino acid pockets consist of amino acids covalently bonded in a 

macromolecular protein structure22. On the contrary, in our approach, functionalizing mutations 

(i) are introduced to all peptides (specifically to binding pockets formed by two adjacent β-sheet 
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bonded peptides) so that the designed peptides are identical in sequence and can form functional 

binding pockets when bonded in β-sheets, (ii) are guided by the properties of the amyloid scaffold, 

and attention is payed so as not to disrupt self-assembly, (iii) are checked to ensure their 

introduction does not lead to an unanticipated structural arrangement of the peptides for 

functionalization (e.g., switch from parallel to antiparallel structure or vice versa). While the 

aforementioned points impose additional difficulty in the computational design of functional 

amyloid materials, our approach was significantly empowered by the use of multiple materialphore 

models from existing X-ray resolved PDB structures which were all simultaneously considered 

during the search for optimal solutions22. 

6.6 New Findings and Potential Applications 

Through our innovative computational protocol, we designed amyloid materials capturing 

cesium ions at physiological and acidic conditions. Importantly, materials with these properties 

can be useful in the development of technologies to capture radioactive cesium ions from acidic 

wastewater conditions or as biocompatible materials removing cesium from blood. The current 

protocol also has specific limitations, which include the fact that key amino acids for binding 

according to materialphore model(s) may be neglected during the optimization-based design due 

to the limited number of mutable positions on the designed peptide elementary structural units and 

the fact that the interaction energy between the ions and the designed amino acids has not been 

considered during both the computation design and validation. Features selecting and placing the 

most critical amino acids for functionality and incorporating ion-amino acid interactions can 

potentially be added in future studies of the computational protocol aiming at improving the 

protocol’s accuracy and the designed amyloid material’s capacity and specificity; notably, the 

latter component was not investigated in this study and requires further investigation. Although 
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the materials were computationally designed to bind cesium ions, our study and analysis do not 

preclude binding to other ions (e.g., ions of the same group, such as rubidium). Overall, the 

capacity and specificity of future amyloid materials can be benefited from both future 

computational advancements improving our protocol combined with experimental studies tuning 

and optimizing the conditions of the amyloid materials preparation and testing (e.g., filtration in 

the present study). The difference between the percentage of cesium ions captured on the basis of 

the elemental analysis of the supernatant between the computationally designed peptides and the 

amyloid designable scaffold, the experiments showing the cesium deposition properties of the 

amyloid materials, and the explicit-solvent simulations investigating the cesium ion binding 

properties of a modeled amyloid fibril formed by FQGAIIGFNE strongly suggest that the cesium 

ion capture properties can be principally attributed to the computationally designed mechanism. 

While in the two designed peptides, mimicry is primarily attributed to the designed residues N, Q, 

E, and to a lesser extent F, which has weaker long-range cation- π interactions of which the latter 

is observed in the X-ray structure,254 the formation of such interactions of the designed fibrils with 

cesium ions proved important in our explicit solvent MD simulations. In addition, the methodology 

applied aimed at identifying the most promising designed materials following a specific strategy, 

which was not engineered for optimum outcome. Thus, it is possible that due to user-defined 

parameters a portion of the discarded designed sequences could prove successful upon 

experimental testing.  
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7. TOWARD A GENERALIZED COMPUTATIONAL PROTOCOL FOR THE DESIGN OF 

FUNCTIONAL AMYLOID MATERIALS 

7.1 Introduction 

7.1.1 Overview and Significance 

In chapters 3, 4, and 5, we investigated peptide sequences containing GAIIG or GAITIG 

as amyloidogenic cores and showed that additional residues at their termini are predominantly not 

forming β-sheet interactions in their self-assembling structures. Thus, the additional (e.g. 2-3) 

residues at both termini could serve as a source of inspiration for novel amyloid material scaffolds. 

In chapter 6, we developed a computational protocol for the design of functional amyloid materials 

capable of binding to cesium ions, at which mutations were introduced at the termini of an amyloid 

designable scaffold with sequence AGKGAIIGFIK. We postulated that our introduced protocol 

could constitute a stepping stone toward a generalized computational protocol for the design of 

functional amyloid materials. 

There are various available computational design tools, protocols or algorithms to 

functionalize proteins which among others include Metal Search270, ORBIT271, and Rosetta272. 

Metal Search270 is a computational program to design tetrahedrally coordinated metal binding sites 

on a protein with known structure. The input to the specific computational program is the backbone 

atomic coordinates of the scaffold protein structure with the output being the positions of amino 

acids that can form tetrahedrally coordinated binding sites if the wild type amino acids were 

replaced with histidines and cysteines. In addition, the program also output the projected 

coordinates of the metal ion along with the dihedral angles for the amino acid side chains forming 

the binding pocket. The specific program employs simple geometrical criteria that constitute the 
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tetrahedral coordinated binding from the existing literature for the specific ion. The specific 

program starts by dividing the entire protein space into cubic lattices and subsequently reduces the 

search space by identifying four amino acid sets that are part of a specific lattice. Subsequently, 

each set is divided into subsets where each subset is a different combination of side chain dihedral 

angles and rotamers and the position of the metal ion is evaluated for each subset. Furthermore, 

the subsets to subjected to tetrahedral geometric criteria to evaluate the feasible designed 

sequences that could potentially bind to metal ions. The specific program has been used to 

introduce zinc binding sites in the β1 domain of streptococcal protein and also in the four-helix 

bundle protein α4.270 

Optimization of rotamers by iterative techniques, ORBIT271, is a cyclical protein design 

strategy consisting of four components such as a design module, a simulation module, 

experimental verification, and data analysis. The design module uses the fixed backbone as design 

template and describes the side chains using rotamers. The specific design module employs Dead 

End Elimination (DEE) algorithm, a fast-discrete search algorithm, which guarantees optimal 

global packing in the protein if the algorithm converges. The specific algorithm can reduce the 

sequence search space by eliminating the rotamer choices that are probably not part of the Global 

Minimum and employing the DEE algorithm reduces the search space by a combinatorial factor.271  

Rosetta272 is a suite of widely used protein design computational tools developed by David 

Baker’s lab. Rosetta de novo enzyme design protocol, a module in Rosetta272, has been developed 

to design enzymes that catalyze chemical reactions. Enzymes, typically proteins, are biomolecules 

that catalyze a chemical reaction by stabilizing the intermediate transition state. Thus, specific 

interactions between the amino acids in the enzymes and the chemical reactant that stabilize the 

transition state need to be known to design enzymes with improved stability. The design enzyme 
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protocol starts by taking the specific interactions as inputs in the form of geometric constraints 

which are fed into a file called “cstfile”. For each interaction between an amino acid’s side chain 

atom belonging to enzyme and compound’s atom there are six degrees of freedom: one distance, 

two angles, and three dihedrals. Thus, these parameters need to be defined in order to specify an 

interaction. Once the interactions are specified, the design protocol tries to identify the sites on a 

scaffold protein where the active sites can be realized. The identification is done by a module in 

Rosetta called RosettaMatch which designs the specific interactions by matching the geometrical 

constraints in the “cstfile” onto the residue positions in the scaffold which are specified by the 

user. Subsequently, the identities of the amino acids the surrounding the amino acids are mutated 

so that the catalytic interactions are optimal, and the resulting designed sequences are evaluated to 

identify the most stable designed enzymes. The specific design protocol could also be applied to 

design proteins that can bind to ion or compound of interest as specifying the interactions between 

the ion or compound of interest and mimicking the interactions on a target protein could potentially 

functionalize the protein to bind the specific ion or compound of interest.272 

7.1.2 Considerations and Challenges Associated with the Design of Functional Amyloid 

Materials 

Importantly, there are various challenges associated with designing functional amyloid 

materials binding to an ion or compound of interest which could impede the immediate use of 

existing computational protein design tools, as is, to address the problem: The following 

considerations need to be taken into account: (1) amyloid materials are composed of identical β-

sheet strands, thus mutations made on a β-sheet strand should be appropriately made on all other 

β-sheet strands; (2) if design by mimicry is considered, the set of amino acids designed to bind a 

specific ion or compound of interest can be part of two or more identical β-sheet strands with the 
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orientation of the β-sheet strands being antiparallel or parallel configuration, and thus the designed 

peptide strands should retain the same configuration for the peptide to be functional; (3) mutations 

introduced to functionalize such a material should not interfere with the amyloid peptide’s self-

assembly properties, and if possible, they should provide further stabilization, rather than 

destabilizing the amyloid fibril. All these considerations impose challenges in the design of 

functional amyloid materials using existing computational protein design tools270,271,272. The 

considerations provided above: 

- may significantly limit the number of possible feasible solutions, thus, when designing 

by mimicry, one should ideally consider a big-data approach, including a rich representation of 

models of amino acids that can be designed through mimicry on the amyloid fibril. These models 

are defined by us as materialphore models.  

- suggest the importance of the use of methods taking into account the energy of the 

designed fibril to avoid destabilization of the fibril during matching of the materialphore models. 

- suggest the importance of the use of multi-scale simulations, from short simulations 

investigating the capacity of the designed amino acids to form binding pockets resembling the 

materialphore models, and long simulations investigating the designed peptides self-assembly 

properties and their ability to form binding pockets appropriate for functionalization.  

- could also require the use of simulations of the designed fibril in solution with the ion or 

compound of interest to investigate how the amyloid materials formed by the designed peptides 

bind to or capture the ion or compound of interest. 

7.1.3 Goal 

Accounting for the challenges described above, this chapter focuses toward a generalized 

protocol to design amyloid capturing an ion or compound of interest. As part of the protocol, an 
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optimization-based design model is used to introduce mutations at non-β-sheet residue positions 

of an amyloid designable scaffold. The designed amino acids are introduced to the scaffold 

mimicking how amino acids bind to ion or compound of interest according to experimentally 

resolved structures and also aim at energetically stabilizing the bound conformation of the pockets. 

The optimum designs are computationally validated using a series of simulations and structural 

analysis to select the top designed peptides, which are predicted to form fibrils with ion or 

compound of interest binding properties for experimental testing. 

7.1.4 Objectives Accomplished 

The computational protocol presented in the previous chapter was generalized to design 

amyloid materials that can bind to an ion or compound of interest. Additionally, the computational 

protocol can also be used in combination with rational design or intuition such as introducing the 

motif RGD for cell adhesion property. The protocol subsequently has been used in three example 

cases for the design of amyloid materials as drug carriers of Alzheimer’s disease drugs which is 

presented in chapter 8. The protocol has also been used in tandem with rational approaches to 

design amyloid materials that can be used as DNA carriers and penetrate the cell (chapter 9). 

Additionally, the protocol has been used for the design of amyloid materials combining cell 

adhesion properties with binding properties to calcium and strontium ions (chapter 10). 

In the current chapter, the computational protocol is divided into three modules. Module I 

presents the extraction and generation of materialphore models for an ion or compound of interest. 

This module also generates additional statistical analysis on the collected materialphore models 

for an ion or compound of interest (detailed below). Module II involves the selection of an amyloid 

designable scaffold from a set of previous computationally investigated and elucidated amyloid 

designable scaffolds,22,23,24 and subsequently involves the execution of computational design. 
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After design is performed, the top ranked designed sequences are selected for further investigation. 

Module III involves the execution of short MD simulations to computationally validate the 

computationally designed peptides of Module II. Subsequently, the top ranked design sequences 

according to the computational validation are selected for experimental investigation. The overall 

schematic of the computational protocol is presented in Figure 7.1. 

 

 

Figure 7.1 Overall schematic of the computational protocol. Designing amyloid materials using 
materialphore models is shown using blue color. Designing amyloid materials just by minimizing 
the energy due to mutations is shown in red color. 
 

In what follows, each module is described in detail including the purpose and the execution 

of computational tasks performed. This also includes the inputs required for each module, the 



 168 

calculations being performed in each module and the outputs from each module along with the 

interpretation about the generated outputs. Additionally, details required to execute each module 

is also presented. The specific modules are available in the shared folder of Dr. Tamamis’ lab 

within the address: /mnt/research/Tamamis_Phanourios/Shared/ComDesFun. 

7.1.5 Necessary Resources 

• A computer with Linux, Unix or Mac OS X operating systems or a Windows operating 

system with a bash terminal 

• At least 8 GB RAM and 10 GB free disk space.  

 

7.2 Module I: Generating Materialphore Models for an Ion or Compound of Interest 

The programs for extracting materialphore models for an ion (current study) or compound; 

(see further studies) of interest were initially developed by Chang-Hyun Choi, an undergraduate 

student of Dr. Tamamis’ lab, and were further advanced. 

7.2.1 Purpose  

The main aim of this module is to extract primary and secondary materialphore models 

which combined incorporate the information of how amino acids bind to an ion or compound of 

interest according to the experimentally resolved structures from the PDB.252 Specifically, binding 

motifs of amino acids in complex with an ion or compound of interest are collected from the 

experimentally resolved structures, and (i) the distances between the pairs of amino acids in the 

binding motifs, as well as (ii) the distances between the ion or compound of interest and amino 

acids in the binding motifs are subsequently calculated. The set of distances described in (i) along 

with the identities of the amino acids involved is designated as a primary materialphore model and 
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the set of distances described in (ii) along with the identity of the amino acid involved is designated 

as a corresponding secondary materialphore model. 

7.2.2 Input 

The experimentally resolved protein structures containing amino acids binding to an ion or 

compound of interest in the PDB252 format constitute the first source of input. Details on how to 

download the protein structures is presented in the file README_moduleI.txt. According to the 

developed programs, the downloaded protein structures should be placed in the same folder as the 

modules. 

7.2.3 Input Parameter Specifications 

1. The standard name code of the ion or compound of interest according to the PDB252. For 

example, CS for cesium ion (see chapter 6), or E20 for the compound donepezil (see 

chapter 8). 

2. Type of ion or compound of interest. Each ion or compound of interest is classified into 

three types. A monoatomic ion of interest is classified as type 1, a polyatomic compound 

of interest for which the analysis needs to be done with respect to the center of mass is 

classified as type 2, and a polyatomic compound of interest for which the analysis needs to 

be done with respect to a specific-selected atom is classified as type 3 (the numerical 

number 1, 2 or 3 is provided as input).  

3. Maximum distance in Å between the ion or compound of interest and the side chain center 

of mass of an amino acid that is considered to be interacting. Inputs 2 to 4 should be 

provided in the file ModuleI.in according to the programs. 
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7.2.4 Description 

In-house Fortran programs were developed to execute the tasks described in this module. 

The specific module starts by preparing the experimentally resolved protein structures by 

removing any other information in the structure other than the information about the coordinates 

of the atoms. This processing to be done is written to a script file mk.prep created by the program 

mkcreator.f. In addition to the processing script file, the program also creates a script file 

mk.organize which organizes all the outputs produced in this module (described below) into 

different folders. After the processing is done, each processed experimentally resolved protein 

structure is read by the program asteria.f. The specific program reads each processed protein 

structure and identifies side chain atoms for each amino acid present in the structure. Subsequently, 

the program separately identifies all the ligands present in the structure. If the ligand is polyatomic 

and the analysis needs to be done with respect to its center of mass, the program calculates the 

center of mass coordinates for all the ligands present. The program then calculates the side chain 

center of mass coordinates for all the amino acids present in the protein structure and estimates the 

distance between each ion or compound of interest and each interacting amino acid. If the distance 

between the ligand and an amino acid is less than the specified distance (input parameter 

specification 3), the program saves the distance and the identity of the amino acid into a secondary 

materialphore model for that particular ligand. The number of materialphore models resulting from 

one protein structure corresponds to the total number of the same type of ligands present in the 

protein structure. The total number of materialphore models from all available structures in the 

PDB can be constituted to be the summation of number of ligands in each structure from the PDB 

under investigation over the total number of experimentally resolved protein structure for that 

ligand. Each ligand in the selected protein structures is designated with a unique code. The unique 
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code consists of the four letter PDB code, the chain name to which the ligand belongs in that 

protein structure, and the number of the ligand on that specific chain. The number for the specific 

ligand is assigned based on the order in which ligands are encountered on that specific chain in the 

protein structure. For example, the unique code for the compound donepezil belonging to the chain 

A in the experimentally resolved Acetylcholinesterase protein structure with PDB ID: 4EY7 is 

1A4EY7. Subsequently, the programs calculate the distances between the amino acids in a specific 

binding motif in complex with an ion or compound of interest using the center of mass coordinates 

calculated above. The values of the distances between pairs of amino acids along with their 

identities are saved into primary materialphore model for each ligand. The secondary 

materialphore model is extracted first and prior to the primary materialphore model. This facilitates 

the identification of amino acids in the binding motifs, which subsequently allows the calculation 

of both amino acid to ion or compound of interest distances (secondary materialphore models) and 

amino acid to amino acid distances (primary materialphore models). In addition, the programs 

identify the number of amino acids in each binding motif and estimates the size distribution of 

binding motifs based on the number of amino acids in each binding motif. Subsequently, the 

module is organized into different folders which are detailed below. The overall schematic of the 

files and programs is presented in Figure 7.2. 
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Figure 7.2 Overall schematic of programs and files in Module I. Inputs to a program or a script 
file is presented in blue color and calculations or outputs from a program or script files is present 
in red color. 
 

7.2.5 Outputs 

• The generated primary and secondary materialphore models are located in the folder: 

~/ModuleI/ lig_codeoutputs where lig_code is the input 2 in this module. The generated 

primary materialphore models are located in the file lig_codereldist.txt with the format: 

distance between a pair of amino acids followed by the identities of the amino acids 

followed by the unique code for a ligand (described above) and followed by the PDB ID 

of the experimentally resolved protein structure. The identities of the amino acids contain 



 173 

both the standard three letter code for an amino acid as well as the residue number of the 

amino acid in the protein structure. Since some protein structures have same residue 

numbers for amino acids belonging to different chains, the chain name is appended to the 

residue number of an amino acid. The generated secondary materialphore models are 

located in the file lig_codepocket.txt with the format: distance between the ligand and an 

amino acid followed by the identity of the amino acid followed by the unique code for the 

ligand. 

• The downloaded experimentally resolved protein structures from the PDB containing the 

ion or compound of interest are present in the folder: ~/ModuleI/ lig_codepdb 

• The processed experimentally resolved protein structures from the PDB without any 

remarks and only the coordinates of the atoms are present in the folder: ~/ModuleI/ 

lig_codecoord 

• Inputs used by various programs are present in the folder: ~/ModuleI/ lig_codeinputs. 

• Additionally, the folder ~/ModuleI/ lig_codepockets contains the files pocketstats.txt and 

stats.txt which result from a statistical analysis on materialphore models. 

o pocketstats.txt: It contains the number of amino acids in each materialphore model 

and the frequency of materialphore models containing specific number of amino 

acids. The specific statistics can be used to reevaluate the maximum distance in Å 

between the ion or compound of interest and the side chain center of mass of an 

amino acid that is considered to be interacting (input parameter specification 3). If 

the number of amino acids of the most representative materialphore models is 

relatively high, the specific input parameter specification (i.e., the maximum 

distance in Å between the ion or compound of interest and the amino acid in a 
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binding motif) could be readjusted to include the nearest neighboring amino acids 

only. 

o stats.txt: It contains information that can aid in determining post-design constraints, 

including amino acid propensities across all extracted and analyzed materialphore 

models, and providing the amino acid propensity by categorizing amino acids into 

families of polar, non-polar, aromatic and charged (further elaborated in the 

following module). 

7.3 Module II: Optimization-Based Computational Design Model to Design Functional 

Amyloid Materials 

7.3.1 Purpose  

The main aim of this module is to design amyloid-forming peptides that can potentially 

capture the ion or compound of interest. For this purpose, mutations are introduced on the terminal 

non-β-sheet forming amino acids of amyloid designable scaffolds (such as the ones elucidated in 

the chapters 3, 5, and 6). Mutations are introduced according to the primary materialphore models 

calculated in module I to mimic how ion or compound of interest binds according to the 

experimentally resolved protein structures. Following the functionalization, the energy due to 

mutations is calculated for each designed peptide represented by an ensemble of flexible structural 

templates of elementary β-sheet structural units, and the designs are ranked in ascending order 

according to the energy. Energy minimization in the objective function aims to both stabilize the 

bound conformation of the designed amino acids within the β-sheets, as well as to avoid 

destabilizing the self-assembly properties of the designed peptides.  
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7.3.2 Input 

 The following amyloid designable scaffolds can be used as an input on which the 

computational design can be performed.  

• Antiparallel or parallel flexible structural templates of the amyloid designable scaffold with 

sequence YATGAIIGNII23 (elucidated in chapter 5) 

• Antiparallel or parallel flexible structural templates of the amyloid designable scaffold with 

sequence RGDSGAITIGC24 (elucidated in chapters 3, and 4)  

• Antiparallel flexible structural templates of the amyloid designable scaffold with sequence 

AGKGAIIGFIK22 (elucidated in the chapter 6). 

The flexible structural templates for the three aforementioned amyloid designable scaffolds 

are available in the shared folder of Dr. Tamamis’ lab with the address: 

/mnt/research/Tamamis_Phanourios/Shared/ComDesFun/ModuleII/Scaffolds. 

7.3.3 Input Parameter Specifications 

1. Inputs for module II can be provided in two ways. In the first way, information for inputs 

2 to 11 below can be provided at the bash terminal. In the second way, information can be 

provided within the file ModuleII.in, and in this case, the default number 0 in the first line 

of the specific file should be changed to 1. The second input in the first line of the specific 

file refers to whether the design needs to be done based on primary materialphore models 

(described below) or by exploring all possible combinations of mutations without any 

specifically determined functionalization associated with the binding of specific ion or 

compound of interest. This option is currently applicable only for the design of antiparallel 

flexible structural templates (see below). The input in the former case would be “con” while 

in the latter case it would be “uncon”. 
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2. The standard code for the ion or compound of interest according to the PDB252. For 

example, CS for cesium ion, E20 for the compound donepezil (same as input parameter 

specification 2 in module I). 

3. The name of the designable scaffold on which design will be performed. Currently, there 

are three designable scaffolds available in the module. If the design needs to be performed 

on the scaffold AGKGAIIGFIK, answer as AGK, if the design needs to be performed on 

the scaffold YATGAIIGNII, answer as YAT, if the design needs to be performed on the 

scaffold RGDSGAITIGC, answer as RGD. 

4. The number of flexible structural templates to be used or that are available for each of the 

three amyloid designable scaffolds. This depends on the designable scaffolds on which 

designs are going to be performed. For the three scaffolds, the maximum number of flexible 

structural templates provides is 50. They correspond to the top 50 most highly-ordered and 

well-aligned β-sheet conformations produced in the corresponding studies at which they 

were derived. 

5. The number of peptide strands in a flexible structural template. For the three designable 

scaffolds, the number of peptide strands in a flexible structural template is 4. 

6. If the number of peptide strands in a flexible structural template for the designable scaffolds 

is more than 1, then the configuration of the flexible structural templates, antiparallel or 

parallel should be provided as anti or para respectively. If the method of input is through 

moduleII.in file, then the specific entry should be placed at the second input of line 5.  

7. The total number of residues per strand: the number of the residues per strand for all 

available amyloid designable scaffolds are 11 each. 
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8. The type of design to be performed depending on if the mutable positions belong to one or 

two adjacent β-sheet bonded peptide strands. If the amino acid positions forming the 

designed binding pocket are on the same strand, then the input entry should be 1; if the 

amino acid positions forming the designed binding pocket are on two adjacent β-sheet 

bonded peptide strands, then the input entry should be 2.  

9. The number of mutable positions comprising the designed binding pocket in a flexible 

structural template of the designable scaffold. For example, in the design of amyloid 

materials binding to cesium (chapter 6)22, the number of mutable positions were 4. 

Currently, the programs can handle from 3 to 5 mutable positions for antiparallel designs 

and 4 mutable positions only for parallel. 

10. The maximum value of the distance between two to be designed amino acids in a designed 

binding pocket which can deviate from the corresponding distance in a primary 

materialphore model. For example, if the number of mutable positions is 4, then the number 

of distances between the mutable positions is equal to the number of combinations of 4 per 

2, which is equal to 6. In the design of amyloid material binding to cesium ions (chapter 

6)22, 4 of the distances were allowed to deviate 2.5 Å and 2 of the distances were allowed 

to deviate 3.5 Å. The specific input is given in a single line where all the deviations are 

written separated by a space. For example, the input for the design of amyloid material 

binding to cesium ions was given as 2.5 2.5 2.5 2.5 3.5 3.5. 

11. The positions of each designable position on a peptide strand. For example, in the design 

of amyloid materials binding to cesium ions (chapter 6)22, the mutable positions were 2, 3, 

10, and 11. The specific input is given in a single line where all the designable positions 
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are written separated by a space. For example, the input for the design of amyloid material 

binding to cesium ions was given as 2 3 10 11. 

12. If the configuration of the flexible structural templates is selected to be antiparallel (input 

6) and the type of design to be performed is type 2 (input 8), then the first mutable position 

on the C-terminal end. For example, in the design of amyloid materials binding to cesium 

ions (chapter 6)22, this was determined to be residue position 10. 

13. The fixed mutable positions if there are any. For example, in the design of amyloid 

materials binding to cesium ions (chapter 6)22, residue position 1 was considered a fixed 

mutation to alanine. For example, to introduce this, two new lines should be introduced at 

which in the first line the number of mutable positions is specified (for example 1 2 3 if 

positions 1, 2 and 3 will be fixed), and in the second line the single letter code of the amino 

acids is provided (for example R G D if positions 1, 2 and 3 will be fixed). 

14. The fraction of designed binding pockets in which the functionalization criteria should 

occur. For example, in the design of amyloid materials binding to cesium (chapter 6)22,  

there were 10 flexible structural templates and each flexible structural template contained 

6 binding pockets. The functional criterion was required to be satisfied in at least 5% (0.05 

fraction value is given as input) of the 60 designed binding pockets. The specific fraction 

was denoted by λ in the Eq. 6.7 of the previous chapter and the published study.22 

7.3.4 Description  

In-house Fortran programs were developed to execute the module containing the 

computational design model. The whole module can be executed by running the script file 

mk.design which in turn runs a set of programs and script files described below. Before running 

the module, output files from the folder ~/ModuleI/lig_codeoutputs should be manually copied 
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into the current folder. Specifically, Module II requires the primary materialphore model informed 

which is present in the file lig_codereldist.txt. The inputs described above for this module are read 

by the program mkgepol.f. Depending on the input 1 choice, the program reads either input file 

method or command-based method. After processing the inputs, the program writes output files 

containing required information for the subsequent programs in the module. The program then 

creates a script file mk.sasa which evaluates the solvent accessibility surface area (SASA) of each 

of the designed amino acids in the flexible structural templates. The program mkgepol.f then 

creates a script file mk.execdes which copies files containing the structural information of the 

scaffolds from the folder ~/ModuleII/Scaffolds. The script file mk.execdes also runs the script file 

mk.sasa to calculate the SASA and subsequently runs the programs design_bridge_anti4.f (or 

design_bridge_para4.f if the flexible structural templates have parallel configuration) and 

overall_anti.f (or overall_para.f if flexible structural templates have parallel configuration). The 

aforementioned programs are described in detail below. 

The design program design_bridge_anti4.f (or design_bridge_para4.f) reads the required 

input information from the file ligdesigninfo.txt created by the program mkgepol.f and reads the 

primary materialphore models from the file lig_codereldist.txt provided as output in module I. The 

design program then calculates the distances between the amino acids that form the designed 

binding pocket in a template. The aforementioned distances are calculated for each designed 

binding pocket in all flexible structural templates of the designable scaffold. Functionalizing 

selected amyloid designable scaffold based on the primary materialphore models is executed in a 

pyramid style and the program currently can functionalize designed binding pockets having 3, 4, 

or 5 mutable positions. Let the number of mutable positions be nmut and x1, x2, …,xnmut be the 

mutable positions on a peptide strand under the condition that x1<x2< …<xnmut. The design 
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program is executed for each primary materialphore model, each flexible structural template, each 

designed binding pocket in a flexible structural template independently. Specifically, if the total 

number of primary materialphore models are p, the number of flexible structural templates within 

an amyloid designable scaffold are n, and the number of designed binding pockets in a flexible 

structural template are d (i.e., 6 in an elementary β-sheet structural unit composed of 4 peptide 

strands), then the total number of iterations of the design program core algorithm (described below) 

are p*n*d. For an iteration i, the core algorithm of the design program is executed in stages.  

In the first stage, each distance between two amino acids in a designed binding pocket is 

compared with the corresponding distance in a primary materialphore model. The comparison is 

done separately for each distance in each designed binding pocket with every corresponding 

distance in the primary materialphore model. During comparison, each distance in the designed 

binding pocket is allowed to deviate between 1.5 Å and 3.5 Å with 0.5 Å increase from a distance 

in the primary materialphore model. If a match occurs between a distance in the designed binding 

pocket and a distance in the primary materialphore model, then the identities of the amino acids 

involved with the specific distance in the primary materialphore model are saved. The set of amino 

acid combinations, denoted via symbol “-”, which are generated at this stage are {x1-x2, x1-x3, x1-

xnmut-1, x1-xnmut, x2-x3, x2-xnmut-1, x2-xnmut,…., xnmut-1-xnmut}. It should be noted that at this stage only 

the identities of amino acids involved in the pair are known. For example, the identities of the 

amino acids involved in the pair x1-x2 are known initially but the identity of amino acid at positions 

x1, or x2 is at this point not known. If the number of distances of the total amino acid pairs in a 

primary materialphore model is np (e.g., for a materialphore model comprising of 10 amino acids 

np is number of combinations of 10 per 2) then the possible number of matches of a distance 

between a pair of two amino acids in the designed binding pocket is between 0 and np. Thus, 
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matching between all possible pairs of distances in a primary materialphore model and a designed 

pocket is performed exhaustively, and all matches are equally considered for further investigation. 

In this stage, the matching of distances in the designed binding pocket is considered to be 

independent of each other. In the special case where the number of matches for a distance in the 

designed binding pocket is 0, then the evaluation for iteration i is skipped and the program 

continues to the next possible iteration, i+1. 

In the second stage, matching pairs of two are aimed to be expanded into matching pairs 

of three. If the set of amino acid combinations generated in the first stage are {x1-x2, x1-x3, x1-xnmut-

1, x1-xnmut, x2-x3, x2-xnmut-1, x2-xnmut,…., xnmut-1-xnmut}, then amino acid combinations {x1-x2-x3, x1-

xnmut-1-xnmut, x2- x3-xnmut-1,…., xnmut-2- xnmut-1-xnmut} are generated and examined. While combining 

the amino acid combinations, attention is paid so that there is at least one amino acid common 

between the combinations that are combined, otherwise matching is rejected. For example, the 

pairs x1-x2, and x1-x3 since x1 is common. While combining the pairs, as the identities of amino 

acids at individual positions are still not known, each amino acid identity in a combination of two 

is compared with each amino acid identity in a combination of other two. If the identity of amino 

acids between the combinations match, then the combinations are further evaluated to make sure 

that the identity of other two amino acids across the two combinations are not same. Subsequently, 

the identities of amino acids involved in each combination are stored for further stages evaluation. 

Additionally, the deviation of the distance in the designed binding pocket from the corresponding 

primary materialphore model distance assigned in the first stage is also stored. For example, if the 

x1-x2, and x1-x3 are to be combined, then each amino acid identity involved in the combination x1-

x2 is compared with each identity of amino acid in the combination x1-x3 which results in a total of 

four comparisons (i.e., x1 of the first pair to x1 of the second pair, x1 of the first pair to x3 of the 
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second pair, x2 of the first pair to x1 of the second pair, x2 of the first pair to x3 of the second pair; 

x1 of the first pair to x1 of the second pair is compared because the individual identify of x1 is not 

known at this point). The identities of other two amino acids, supposedly x2 and x3, are evaluated 

to ensure they are not same. The identities of amino acids at positions x1, x2, and x3 are stored along 

with deviations associated with the combinations x1-x2, and x1-x3. The identities of amino acids at 

different positions are fixed in each combination of three after this stage. For example, the 

identities of amino acids x1, x2, and x3 in the combination x1-x2-x3 are known after this stage unlike 

first stage where individual identity at positions x1 and x2 are known in the combination x1-x2. If 

the number of combinations after the first stage is odd, the remaining combination in the second 

stage is combined with a combination generated in the subsequent stage (see below).  

In the subsequent stages, two combinations of all possible matching three entities (initially 

from the previous stage), or more (progressively) are generated and combined. This is done in such 

a way that there are as many amino acid positions common between the combinations as possible, 

so that all combinations are considered as equal feasible solutions. The number of stages 

(progressively) depends on the number of mutable positions constituting the designed binding 

pocket and the stages are executed until the combination x1-x2-x3-….-xnmut-1-xnmut is generated, 

which constitutes the final stage in the progressive search. At any stage in the progressive search, 

if the number of matches for a specific combination are 0, then the evaluation of further stages for 

the iteration i is not performed and the iteration value is increased to i+1. While progressively 

searching, deviations between the distances in the primary materialphore models and the distances 

of amino acid combinations placed at different positions are considered, guaranteeing that distance 

matching is within the maximum allowed values. For the final stage, there are number of 

combinations of nmut per 2 deviations which were originally assigned during the first stage. The 
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specific set of deviations are compared with the set of deviations which can be provided through 

input parameter specification 10 (see above). For the comparison, both the sets of deviations are 

arranged from highest value to lowest, and one on one comparison is done. If the deviation is 

greater than the specified deviation, then the whole combination generated after the final stage is 

discarded. The above generated successful combinations of amino acids represent “slices” of a 

materialphore model. For a given materialphore model, the slices represent combination of nmut 

(input parameter specification 9) amino acids interacting with the ion or compound of interest. 

While the notion of slices was not explicitly mentioned in chapter 6, we clarify here that such 

slices were used as number of mutable positions in the designed binding pocket (4) and the number 

of amino acids in the primary materialphore models did not necessarily match. 

The core algorithm of the design program design_bridge_para4.f has additional constraints 

during second stage to final stage. This is because the type of amino acids present at some positions 

should be same in parallel flexible structural templates. For example, if the set of mutable positions 

are {x1=1, x2=2, x3=10, x4=11}, then x1, x2 belonging to a strand and x1, x2 belonging to the 

adjacent strand form a designed binding pocket. It should be noted that in a design involving two 

strands and antiparallel flexible structural templates, all the designed binding pockets in a flexible 

structural template are identical whereas in a design involving two strands and parallel flexible 

structural templates, there are two sets of identical designed binding pockets. In case of single 

stranded designs, the configuration (antiparallel or parallel) of the flexible structural templates is 

irrelevant as the mutable positions constituting the designed binding pocket belong to the same 

peptide strand. The number of designed binding pockets in case of a design involving two strands 

is number of combinations of nstr per 2 where nstr is number of identical peptide strands in a flexible 

structural template (input 5). The number of designed binding pockets in case of a design involving 
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one strand is nstr. The specific style of execution performed here ensures that all the distance 

constraints are simultaneously satisfied. 

The generated combinations which qualified all the above stages described constitute a 

new designed peptide sequence. Subsequently, for each design sequence, energy due to mutations 

is evaluated by introducing the identities of amino acids involved in the combination using a 

coarse-grained fashion. The evaluation of energy is done using the SIPPER surface force field205 

and the values of interaction energy between any two of the twenty of amino acids is represented 

as a single value. The interaction energy values between the amino acids is presented in the file 

sippersurface.txt in the folder ~/ModuleII/. The specific file contains a total of 400 interaction 

energy values in the form of a 20X20 matrix and amino acids are arranged in the alphabetical order 

as follows: alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, 

histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, 

tryptophan, tyrosine, valine. For example, value at the position 1X1 represents the interaction 

energy between two alanines; values at the position 1X2 and 2X1 represents the interaction energy 

between an alanine, and an arginine. The energy term that is being evaluated has two components: 

1) the pairwise interaction energy between amino acids 2) desolvation free energy of nonpolar 

surfaces, which is calculated from the change in solvent-accessible surface area. The details about 

the evaluation of energy term is presented in the ref22. It should be noted that the interaction energy 

between two amino acids is evaluated only when at least one of amino acids is at one of the 

positions under modification, and that the interaction energy values between two interaction amino 

acids are considered when two interacting amino acids are within 6.5 Å in a given flexible 

structural template. The evaluation is done by assuming that the designed amino acids are present 

on all the identical strands in a flexible structural template and the energy is averaged over all the 
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flexible structural templates. It should also be noted that all the above described energy evaluation 

is done for the iteration i (refer above), that is for a specific combination generated from a specific 

primary materialphore model, specific flexible structural template, and a specific designed binding 

pocket in that template. However, the energy calculations do include substitutions to all pockets. 

The identities of the amino acids along with the evaluated energy are written to the output file 

energies_anti.dat (or energies_para.dat). Subsequently the iteration i is increased to i+1 and the 

above described design algorithm is executed again. Following the completion of all iterations, all 

the design sequences are sorted according to their energy value from low to high following the 

objective function under minimization. The specific program design_bridge_anti4.f (or 

design_bridge_para4.f) is schematically presented in the Figure 7.3. 

The specific program design_bridge_anti4.f can also perform design by exploring all 

possible combinations of mutations without any specifically determined functionalization 

associated with the binding of specific ion or compound of interest. In this case, the program skips 

reading the information associated with primary materialphore models, and the model is solved 

only for any constraints provided (associated with sequence or the peptide arrangement into 

antiparallel β-sheets). Subsequently, the stages associated with functionalization using primary 

materialphore models are also skipped. As described above, for each design sequence generated 

by exploring all possible combinations, energy due to mutations is evaluated by introducing the 

identities of amino acids involved in the combination using a coarse-grained fashion. Following 

the completion of exploration of all possible combinations, the design sequences are sorted 

according to their energy value from low to high following the objective function under 

minimization. Currently this option is unavailable for the design of peptides bonded in parallel β-

sheets. While this is a direction currently considered in the lab, the minimalistic approach to design 
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both antiparallel and parallel β-sheets without the introduction of materialphore constraints has 

been accomplished in chapter 4. The design program for antiparallel and parallel β-sheets is 

design_anti_final.f and design_para_final.f, respectively available in the shared folder of Dr. 

Tamamis’ lab within the address: /mnt/research/Tamamis_Phanourios/Shared/Example-

cases/Minimalistic_approach_chapter4. The analyzed highly-ordered and well-aligned β-sheets 

formed by the designed peptides are provided in 

/mnt/research/Tamamis_Phanourios/Shared/Example-cases/chapter4, and could be additionally 

used as amyloid designable scaffolds in future studies. 

While performing the design for functionalization using primary materialphore models, it 

is possible that identical sequences can be produced in the following four ways: 1) two designed 

sequences could originate from two different primary materialphore model but result in the same 

designed peptide, 2) two designed sequences could originate from different slices of the same 

primary materialphore model and result in same designed peptide, 3) two designed sequences 

could originate from the same slice of a primary materialphore model but the identities of amino 

acids at the mutable positions are different and result in same designed peptide, and 4) two 

designed sequences could be identical with respect to the identities of amino acids at all the 

designable positions but they originate from different designed binding pockets or different 

flexible structural templates. All the designed sequences generated are subjected to a screening 

where the designed sequences that don’t occur at least in a user-specified fraction of designed 

binding pockets (input parameter specification 14) are discarded. The above evaluation is done by 

counting the identical designed sequences (fourth category described above) and applying the 

specified fraction (denoted by λ in the Eq. 6.7 of chapter 6 and the published study.22). The specific 

evaluation is done in the program overall_anti.f (or overall_para.f). The specific program also 
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produces a file sequencelist.txt that lists the unique peptide designs and their evaluated energy. 

Two designed sequences are considered different if they don’t fall into either of the four categories 

described above. The program also produces a file presequence.txt that lists all the non-identical 

designed sequences and their evaluated energy value.  

 

 

Figure 7.3 Schematic of the design program design_bridge_anti4.f.  
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Extra ion or compound of interest specific constraints can be applied if necessary, by 

running the program custom_constraints.f. The following type of constraints can be introduced:  

1) Amino acid types that may/may not be allowed to appear at the designable positions and the 

number of instances an amino acid can occur out of the total designable positions. 2) Charge 

constraints over the total designable positions. For example, the following can be specified: the 

net charge of the designable positions can be between -2 and -1. 3) Constraints at specific 

designable positions to a set of amino acids. For example, the following constraint can be specified: 

the first and last designable positions to aspartic acid and glutamic acid. 4) Constraints based on 

the amino acid types (aromatic, charged, polar, and non-polar).  

The optimization-model is constructed in such a way so that the lowest in energy solution 

represents the global optimum given the introduced constraints. Nevertheless, apart from the 

global optimum solution, additional solutions ranked low in energy can be evaluated-validated 

using subsequent simulations. Validating additional solutions with low energies (including the 

global optimum) can be considered a useful strategy given the coarse-grained energy 

representation used to solve the problem. The number or percentage of designs to be selected for 

further investigation could be adjusted based on the number of solutions produced, and depends 

on the ion or compound of interest. Selecting too few sequences will considerably lower the 

chances of getting a successful design to capture the ion or compound of interest. Selecting too 

many sequences requires high computational and experimental resources. Thus, in addition to the 

points referred above 5) one can select sequences by using an energy value threshold, and 6) one 

can select a specific subset (number) of sequences from the global minimum solution. 

Outputs from Module I, particularly the files in the folder ~/ModuleI/ lig_codepockets 

could be helpful in formulating the constraints and the applying ion or compound of interest 
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specific constraints can help achieve successful designs with less resources. All or any of the 

constraints can be introduced by modifying the file custom_constraints.in. The format of the 

specific file is described in the file custom_constraints_input_format.txt. Designs selected after 

introducing any or all of the constraints-selections 1 to 5 are written into the file sequencelist_cc.txt 

whereas the designs selected after exercising constraint 6 on the designs in the file 

sequencelist_cc.txt are written into the file sequencelist_cc_top.txt. The overall schematic of the 

programs and files for the specific module is presented in Figure 7.4. 

 

Figure 7.4 Overall schematic of programs and files in Module II. Inputs to a program or a script 
file is presented in blue color and calculations or outputs from a program or script files is presented 
in red color. 
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7.3.5 Commands  

To run Module I and Module II, execute the following the commands: 

• chmod 755 mk.execute 

• ./mk.execute 

7.4 Module III: Performing MD simulations and Two-Component Validation to Select 

Promising Designed Amyloid Materials 

7.4.1 Purpose 

The main aim of this module is to verify whether the binding pockets in the designed 

peptides resemble the materialphore model from which they are derived. For this purpose, 

designed amino acids are introduced at the mutable positions on the designable scaffold and short 

MD simulations are performed. During the simulations, the amyloidogenic core of the designed 

peptides is constrained so that the simulating structure maintains the β-sheet interactions. 

However, the designed amino acids are unconstrained and flexible. The simulations are performed 

in the absence of ion or compound of interest which serves as ultimate test to check whether the 

designed binding pockets in the simulated snapshots can adopt proper geometry to bind to an ion 

or compound of interest in its absence. Inspection of the MD simulation snapshots is recommended 

to ensure that the duration of the MD simulations is adequate to allow the mutated side chains to 

explore efficiently the conformational space. 

Upon the completion of the short MD simulation runs, the designed peptides are 

computationally investigated to check the formation of pockets resembling the geometry of the 

amino acid : ion or compound of interest binding motifs using a two component validation 

procedure. In the first validation component, the center of mass of the designed amino acid side 
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chains are determined to verify whether they form appropriate side chain conformations to form 

pockets with geometries resembling the primary materialphore model(s). In the second component 

of the validation procedure for an ion, the ability of the designed amino acid side chain pockets to 

encapsulate the ion in the same fashion as the secondary materialphore model(s) from which the 

designed amino acids originated is evaluated; for a compound where the materialphore models are 

generated with respect to the center of mass (COM) of the compound, the ability of the designed 

amino acid side chain pockets to encapsulate the COM of the compound in the same fashion as 

the secondary materialphore model(s) from which the designed amino acids originated is 

evaluated; for a compound where the materialphore models are generated with respect to a specific 

atom of the compound, the ability of the designed amino acid side chain pockets to encapsulate 

the specific atom of the compound in the same fashion as the secondary materialphore model(s) 

from which the designed amino acids originated is evaluated.  The evaluation is done only for the 

pockets containing primary matches. It should be noted that in the computational validation using 

the aforementioned short MD simulations, it is assumed that the designed peptides self-assemble 

into β-sheet structures with elementary structural units resembling the amyloid designable 

scaffold’s flexible structural templates on which design was performed. 

7.4.2 Input 

 A dcd trajectory converted to PDB containing short MD simulation snapshots for each of 

the selected peptides designed to bind the specific ion or compound of interest. 
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7.4.3 Input Parameter Specifications 

1. N-terminal and C-terminal ends for the designed peptide. The N-terminal end can be 

natural (designated as NTER) or acetylated (designated as ACE) and the C-terminal end 

can be natural (designated as CTER) or amidated (designated as CONH2). 

2. Job name when submitted to the supercomputing system. 

3. Number of short MD simulation snapshots for each designed peptide on which validation 

is going to be performed. 

4. Tolerances for the relative distances between the designed amino acid positions. Each 

relative distance can have its own tolerance and the tolerance can range from 1.0 to 3.5 Å. 

5. Tolerances for the distances between the designed amino acid and the element or 

compound of interest. Again, each distance can have its own tolerance value and the value 

can range from 1.0 to 3.5 Å. 

7.4.4 Description 

The lists containing the designed peptide sequences selected at the end of Module II 

(sequencelist.txt or sequencelist_cc.txt or sequencelist_cc_top.txt and presequence.txt) should be 

copied into Module III along with file containing the information about mutable positions 

(ligdesigninfo.txt). Short MD simulations are performed for each selected designed peptide by 

introducing mutations at the designable positions on a flexible structural template on the 

designable scaffold. The flexible structural template selected is one of the flexible structural 

templates used for computational design in ModuleII. The selected flexible structural template 

with the name fibril.4.pdb is automatically copied into ModuleIII at the end of ModuleII. The 

simulations are performed using CHARMM110 with CHARMM19111 forcefield and FACTS19123 

implicit solvent model. Input simulation file for each designed peptide named as md.inp is created 
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by the program inpcreator4.f; the right input file (sequencelist.txt or sequencelist_cc.txt or 

sequencelist_cc_top.txt) should be specified. The specific program takes the terminal ends of the 

designed peptides as input (input 1) and constrains the amyloidogenic core of the designed peptides 

under light constraints so that the designed peptides maintain structural integrity. Subsequently, a 

folder is created for each designed peptide with the single letter code of the designed amino acids 

as the name of the folder. Program mkcreator4.f creates a script file mk.direc which copies the 

created simulation input file md.inp into the folder for each designed peptide; similarly,  the right 

input file (sequencelist.txt or sequencelist_cc.txt or sequencelist_cc_top.txt) should be specified. 

The script file also copies the flexible structural template, fibril.4.pdb, topology, and parameter 

files required for simulation into the folder for each designed peptide. Subsequently, all the 

designed peptide folders are moved into a folder, Simulation. The script file also runs a program 

jobcreator.f which creates script files to run the simulations on the supercomputing system, Ada. 

The script file mk.direc also copies the files lig_codereldist.txt,  lig_codepocket.txt from Module I 

and presequence.txt from Module II which are required to perform validation after the short MD 

simulations. The folder, Simulation, which contains all the files required for performing short MD 

simulation for each designed peptide needs to be moved to the supercomputing system. After 

moving the folder onto supercomputing machine the script file, mk.bsub, can submit the MD 

simulation for each designed peptide. The simulation time for each designed peptide is 20 ns and 

can be changed accordingly in the CHARMM input file md.inp which generates the simulation 

trajectory. The overall schematic of the programs and files involved in performing MD simulations 

in Module III is presented in Figure 7.5. 
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Figure 7.5 Overall schematic of programs and files involved in performing MD simulation in 
Module III. Inputs to a program or a script file is presented in blue color and calculations or outputs 
from a program or script files is presented in red color. 
 

Upon completion of the short MD simulations, the script file mk.head should be executed. 

The script file in turn runs a program, validation_prep.f, which prepares files need to run the two-

step validation procedure. The specific program requires as input information the number of 

simulation snapshots (input parameter specification 3), tolerances for first step (input parameter 

specification 4) and second step (input parameter specification 5) of the validation procedure 

(described below) as inputs, and also reads the file, ligdesigninfo.txt, which contains information 

about the mutable positions. The specific program creates the file, validinfo.txt, which takes the 

information required for validation from the file ligdesigninfo.txt. The program, validation_prep.f, 
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reads the file, presequence.txt, which contains the list of designed sequences for each type of 

designed peptide. The specific program creates a file, sequence.txt, for each design which contains 

the design sequences. If the N-terminal end of the designed peptides is acetylated, CHARMM19111 

force field considers acetylation as an amino acid during the simulation. Thus the program, 

validation_prep.f, creates a script file, mk.renumber, which removes the acetylation as an amino 

acid, integrates acetylation as a part of next amino acid, and renumbers all the amino acids of a 

designed peptide. The program subsequently creates a script file, mk.executeval, which converts 

the produced simulation output file from dcd format to pdb format so that validation can be 

performed. The script file, mk.executeval, for each designed peptide is run in parallel by the scrip 

file, mk.mastexe1, which uses the help of tamulauncher. The created pdb file containing the 

simulation snapshots is under the name, foldername_ligcode_fin.pdb, where foldername is the 

single letter designed amino acid codes using each designed peptide’s folder is named. The 

program, validation_prep.f, also creates the script file, mk.mastexe2, which runs the two-step 

validation program, validation_anti.f (or validation_para.f), described in detail below. Finally, the 

program, validation_prep.f, creates a bash file, validscript.sh, which contains the information 

required to run the validation batch job on the supercomputing system ada. The bash file, 

validscript.sh, first runs the script file, mk.mastexe1, then runs a script file, mk.intermediate, which 

copies the files ligcode_reldist.txt, ligcode_pocket.txt, validinfo.txt, sequence.txt which are 

required for the validation into each designed folder. The bash file, validscript.sh, finally runs the 

script file, mk.mastexe2.  

The program, validation_anti.f (or validation_para.f) performs the two-step validation 

procedure for each designed peptide independently. The program starts by reading required 

information to perform the design from the file validinfo.txt. The program then reads the pdb file 
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containing the simulation snapshots and calculates the distances the between designed amino acids 

in each designed binding pocket of each short MD simulation snapshot. The program then reads 

the list of the designed sequences from which the designed peptide originated from the file 

sequence.txt. Based on the identities of the amino acids involved in a design sequence, the program 

assigns the distances between two amino acids in the design sequence. The specific distances are 

extracted from the file, ligcode_reldist.txt, which contains the primary materialphore models. 

During the first step of the validation, the total number of iterations performed are s*n*d, where s 

is the number of the design sequences for a designed peptide, n is the total number of simulation 

snapshots for each designed peptide, d is the number of designed binding pockets in a simulation 

snapshot. For an iteration i, the distances between a pair of amino acids in a designed binding 

pocket of a MD simulation snapshot are compared with the distances between a pair of amino 

acids in a design sequence. While comparison, each distance in the designed binding pocket is 

allowed to deviate between 1.0 Å and 3.5 Å with 0.5 Å increase from a corresponding distance 

belonging to the design sequence. The specific set of deviations are compared with the set of 

deviations given by the user (input parameter specification 4). For the comparison, both the sets 

of deviations are arranged from highest value to lowest value and one on one comparison is done. 

If a specific deviation is greater than the user specified deviation, then the iteration i is increased 

to i+1 without saving anything. On the contrary, if the two set of distances match within the user 

specified deviation, then the designed binding pocket is considered as a primary match. For a 

designed peptide, theoretically, there can be s*n*d number of primary matches. Subsequently, we 

calculate the percentage of snapshots containing at least one primary match.  

For the second step of the validation procedure, the program assigns the distances between 

an amino acid in the design sequence to its corresponding ion or compound of interest. The specific 
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distances are extracted from the file, ligcode_pocket.txt, which contains the secondary 

materialphore models. In contrast to the first step of the validation procedure, the set of distances 

assigned from the materialphore model (secondary in this case) cannot be directly compared to a 

set of distances of the designed binding pockets as the ion or compound of interest is not actually 

present in the designed binding pockets of the MD simulation snapshots. Instead, we 

hypothetically attempt to place the ion or compound of interest in the designed binding pockets to 

check the feasible points that can match the corresponding distances of the designed sequence from 

the secondary materialphore models. The volume around each designed binding pockets is divided 

into spherical grids with each sphere having a radius of 0.5 Å. We assume that each of these 

spherical grids represents the ion or compound of interest and calculate the distance between the 

amino acid and a specific spherical grid. If these distances match the corresponding distances for 

a designed sequence from a secondary materialphore model, then the specific designed binding 

pocket is considered as a secondary match. It should be noted that the second step of validation is 

performed only for the designed binding pockets which are primary matches. Subsequently, we 

calculate the percentage of designed binding pockets containing secondary matches given that the 

designed binding matches are already primary matches. The overall schematic of programs and 

files involved in performing two-component validation of Module III is presented in Figure 7.6. 

7.4.5 Commands  

To run Module III, execute the following the commands: 

• chmod 755 mk.head 

• ./mk.head 
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Figure 7.6 Overall schematic of programs and files involved in performing two-component 
validation in Module III. Inputs to a program or a script file is presented in blue color and 
calculations or outputs from a program or script files is presented in red color. 
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7.4.6 Output 

 Upon completion of the two-component computational validation for each of the designed 

peptides, the percentage of snapshots containing a primary match is written into the file cutoff1.txt 

in each designed peptides’ folder. The percentage of pockets containing the secondary matches 

within the snapshots containing primary is written into the file cutoff2.txt in each designed 

peptides’ folder. The percentage of primary and secondary matches of all the designed peptides 

are rank ordered according to the percentage of primary matches and are used as a basis to select 

designed peptides for further evaluation.  

 The designed peptides selected after performing Module III could be investigated using 

simulations investigating the designed peptides’ self-assembly properties. The specific simulations 

performed can computationally investigate the designed peptides’ capacity to self-assemble into 

amyloid β-sheet structures containing designed pockets appropriate for functionalization. The 

simulations and along with the elucidation of the elementary β-sheet structural unit elucidation are 

performed by implementing the computational protocol developed by Tamamis and Archontis130 

described in chapter 2. The simulations performed here are also in the absence of the ion or 

compound of interest which could serve as an ultimate check the capacity of the designed peptides 

to form amyloid structures in which the designed pocket of the elementary β-sheet structural unit 

can adopt the proper geometry to bind to the ion or compound of interest in its absence. Designed 

peptides should have the predominant configuration same as the configuration of the flexible 

structural templates of amyloid designable scaffolds they originated from as otherwise the 

formation of opposite configuration elementary β-sheet structural units would disallow the 

formation of the intended designed amino acid functional pockets capable of binding to the ion or 

compound of interest. Implementing the same protocol130, highly ordered and well-aligned β-sheet 
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structures for each designed peptide. The extracted β-sheet structures the two-component 

validation can be performed again to identify the most promising peptides.  

The protocol presented above was already executed in chapter 6 for the design of amyloid 

materials binding to cesium ions; the files are located in 

mnt/research/Tamamis_Phanourios/Shared/Example-cases/CS. In addition, the protocol as 

described in chapter 7 has been additionally implemented in three example cases. In the first case, 

using the protocol functional amyloid materials have been computationally designed to capture 

Alzheimer’s disease drugs donepezil, and tacrine (presented in chapter 8; located in 

mnt/research/Tamamis_Phanourios/Shared/Example-cases/AD). In the second case, the protocol 

has been used to facilitate the rational design of amyloid materials that are used as DNA carriers 

and can penetrate cell (presented in chapter 9; located in 

mnt/research/Tamamis_Phanourios/Shared/Example-cases/positive). In the third case, the 

protocol has been used to design amyloid materials with cell adhesion properties as well as binding 

properties to calcium and strontium ions (presented in chapter 10; located in 

mnt/research/Tamamis_Phanourios/Shared/Example-cases/CASR). 

In addition, the protocol was implemented for two test cases involving the design of 

amyloid materials binding to gallium ions and quercetin, with mutations introduced to the 

antiparallel β-sheet flexible template structures of YATGAIIGNII (mutated positions are 

underlined). The test cases were performed upto the stage of Module II and are located in 

mnt/research/Tamamis_Phanourios/Shared/Test-cases/GA and 

mnt/research/Tamamis_Phanourios/Shared/Test-cases/QUE, respectively. The test cases aimed 

to show the versatility of the protocol, and thus, no detailed analysis was performed on the results 

produced.  
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8. AMYLOID PEPTIDE SCAFFOLDS COORDINATE WITH ALZHEIMER’S DISEASE 

DRUGS 

8.1 Introduction 

8.1.1 Overview and Significance 

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that develops 

slowly and worsens over time,273 characterized by progressive deterioration of cognitive behavior 

and functionality that impairs significantly the activities of daily life.274,275 AD is strongly related 

with acetylcholine (ACh), a neurotransmitter that is found in the brain and blood,276,277 which is 

eleased by nerve cells to transfer signals to other cells, related to memory, motivation, language, 

and muscle contraction.278 A characteristic of AD is the low concentration of ACh between 

cholinergic synapses in AD patients that makes neuroconnection extremely difficult. Current 

approved AD drugs, apart from Memantine which is an N-methyl-D-aspartate (NMDA) receptor 

antagonist, are acetylcholinesterase (AChE) inhibitors that block the enzyme in the cholinergic 

system (regulating the levels of ACh for postsynaptic nerve stimulation), allowing for higher 

accumulation of the neurotransmitter ACh in synapses, and therefore higher cognition. Donepezil, 

Galantamine, Rivastigmine, Memantine, and a Donepezil/Memantine combination are currently 

administered to patients depending on the progression stage. The first three comprise 

Cholinesterase inhibitors, while Memantine acts as an antagonist that blocks the NMDA receptors 

(glutamate receptors and ion channel proteins) found in nerve cells, reducing the glutamate 

neuroactivity. Though the aforementioned 4+1 AD drugs have been approved by FDA and used 

clinically, modest and transient therapeutic effects have been witnessed so far,279 while minimal-

to-negligible cognition is confessed by neurologists, caregivers, and primary care providers, most 
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likely due to the short half-life of the inhibitors.280,281,282,283,284 Formulations that could enhance the 

effectivity of current marketed AD drugs and their delivery to the target enzyme seem to be the 

most optimal option in order to stabilize or even enhance cognition. 

Recent studies showed the potential application of amyloid- or amyloid-like materials as 

carriers or compounds (including drugs and antimicrobials, e.g., ciprofloxacin, rhodamine B, and 

polyphenols,43,44,285). In addition, a most recent study showed that amyloid materials bind to iron 

with high affinity for the therapeutic release of iron ions to treat iron deficiency anemia in 

rodents,45 and suggested the importance of amyloid materials as carriers of ions or compounds for 

their therapeutic release.  

As outlined in chapter 1, the functionalization of amyloid materials to bind to specific ions 

or compounds using an experimentalists’ intuition is not straightforward and has proven 

challenging when it is hard to achieve, relying solely on intuition on which modifications can 

transform an amyloid into a functional material. As a result, the exploitation of amyloid materials 

which can be used as carriers for the therapeutic-sustained release of drugs has been significantly 

limited due to (i) the scarcity of studies on amyloid peptide fibrils with exposed non-β-sheet 

forming mutable residues at the termini, and (ii) the lack of computational methods for designing 

such functional amyloid materials tailored to bind to certain compounds.  

However, the solution to the design of amyloid materials binding to the aforementioned 

AD drugs can be provided through the computational protocol for the design of functional amyloid 

materials capable of binding to ions/compounds, demonstrated in chapter 7.  

8.1.2 Goal 

In this work, we aimed to implement and advance the computational design protocol for 

the design of functional amyloid materials binding to compounds, specifically AD drugs 
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Donepezil, Tacrine, Galantamine, and Memantine, acting as novel drug delivery carriers, targeting 

to enhance the half-life and effectivity of current AD drugs and potentially the stabilization of 

cognition (enhancement of current AD treatments). The advancement of the protocol was made by 

Joseph Jakubowski of Dr. Tamamis’ lab who developed a method which can be executed after 

module III of computational protocol presented in chapter 7. The specific method is used to 

investigate the binding properties of the compounds in complex with the designed peptide fibrils. 

8.1.3 Hypothesis 

In previous chapters 5 and 6 and refs23,24, inspired by the presence of the GAIIG 

amyloidogenic core, extracted from an HIV-1 gp120 V3 loop237,238, and the α-tubulin acetyl 

transferase,242 we showed that the peptide sequences YATGAIIGNII23 and AGKGAIIGFIK,22 can 

self-assemble into amyloid fibrils which can constitute amyloid designable scaffolds, 

incorporating mutable terminal non-β-sheet forming residues.22,23 Specifically, flexible template 

structures of highly-ordered and well-aligned β-sheets formed by AGKGAIIGFIK used as input 

in our recently published computational protocol for the design of functional amyloid materials 

that bind cesium ions.22 Here, we hypothesized that the same protocol can be further advanced for 

the design of amyloid materials binding to compounds of medical interest as well, such as the AD 

drugs, which is the point of interest in the current chapter. For this purpose, we used the amyloid 

designable scaffolds formed by YATGAIIGNII as a starting point to design novel amyloid 

materials with desired properties. 

8.1.4 Objectives Accomplished 

In this chapter, we suggest the design of two specific sequences which can constitute 

functional amyloid materials with the potential capacity to bind to AD drugs, acting as novel drug 
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delivery carriers, targeting to enhance the half-life and effectivity of current AD drugs and 

potentially the stabilization of cognition (enhancement of current AD treatments). Motivated by 

amyloids biocompatibility36,286,287,288, and their ability to be modified at the sequence level, so as 

they can bind to one or combinations of AD drugs289 with high affinity, such potentially successful 

drug-carrier amyloid materials could pave the way for a novel direction of delivering AD drugs. 

Experiments evaluating the computationally designed materials binding properties to the 

AD drugs are performed in Dr. Gkikas’ lab, and by additional experimentalists at the University 

of Massachusetts Lowell.  

8.2 Computational Methods 

In this study, we aimed to computationally design amyloid materials that can potentially 

bind to the four compounds representing AD drugs, Donepezil, Tacrine, Galantamine, and 

Memantine, through implementing the generalized computational protocol presented in the 

chapter 7. According to the protocol, amino acid mutations were optimally introduced at non-β-

sheet residue positions of an amyloid designable scaffold, aiming to transform it into a functional 

amyloid material binding to Donepezil, Tacrine, Galantamine, and Memantine. In summary, the 

protocol as implemented in this study consists of the following steps executed successively: (1) 

The elementary β-sheet structural units (represented by flexible structural templates) of both 

antiparallel and parallel configurations formed by peptide YATGAIIGNII, previously elucidated 

by us in chapter 5 and ref23, were further analyzed and were used as flexible structural templates 

for subsequent design, with the first and last two residues considered amenable for modification. 

(2) Primary and secondary materialphore models, which geometrically describe in a coarse-

grained representation how amino acids bind to the four compounds, were independently extracted 

from experimentally resolved structures deposited in the PDB252. (3) An optimization-based model 
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was used to introduce combinations of mutations to the non β-sheet residue positions of the flexible 

structural templates of the amyloid designable scaffold aiming to mimic how amino acids bind to 

the four AD drugs according to slices of the primary materialphore models of the compounds. The 

designed binding pockets consist of amino acids belonging to the termini of two adjacent β-sheet 

bonded peptides. (4) The two designed peptides, FYTGAIIGNYF, YFTGAIIGNFY, which could 

be potentially functional in either antiparallel or parallel configurations in binding to all four AD 

drugs, and which possessed the lowest energy according to the optimization-based model’s 

objective function were selected for further investigation. (5) The two selected designed peptides 

were further investigated using simulations, structural and binding free energy analyses; the 

analyses scope was to computationally validate and examine whether the designed peptides can 

self-assemble and form pockets capable to accommodate the binding of the four AD drugs, with 

respect to both primary and secondary materialphore models.  

Additionally, we investigated whether the designed peptides can bind to the four AD drugs 

with sufficiently low binding free energy, and interact with the drugs similarly to the 

experimentally resolved complex structures they were derived from. This investigation was 

performed through programs developed and executed by Joseph Jakubowski, a student of Dr. 

Tamamis’ lab. Specifically, the mimicry was examined and assisted through the additional 

definitions of tertiary and quaternary materialphore models, an important advancement to our 

computational protocol described in chapter 6, 7 and ref22, which allowed us to accurately represent 

interactions between the designed amino acids and the compounds of interest. It is worth noting 

that one of the challenging aspects of the computational design-based functionalization is that the 

designed binding pockets consist of amino acids belonging to pairs of two adjacent β-sheet bonded 

peptides which are not covalently bonded.  
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8.2.1 Structural Analysis of an Amyloid Designable Scaffold and Determination of its Mutable 

Positions 

In chapter 5, we have elucidated the amyloid self-assembly properties of the peptide with 

sequence YATGAIIGNII23. In summary, our analysis showed that self-assembled structures of 

YATGAIIGNII comprise a central β-sheet amyloidogenic core and terminal non β-sheet forming 

amino acids at which mutations can be introduced to achieve desired functionality; thus according 

to our definition it constituted an amyloid designable scaffold. Within the simulations, the peptide 

showed a higher propensity to form antiparallel rather than parallel β-sheets, and therefore our 

previous analysis focused on analyzing the antiparallel β-sheets which were more predominant.23  

Here, we examined and verified that both configurations, antiparallel and parallel, can be 

defined as amyloid designable scaffolds. Initially, we analyzed the propensities of β-bridges 

formation between per pairs of residues in the β-sheets, which showed that the first three and last 

two residues were primarily involved in β-sheets in neither antiparallel nor parallel configurations. 

Additionally, we analyzed the degree of solvent exposure of the terminal residues using the same 

procedure as described in ref.24, which verified that the first and last two residues are adequately 

solvent exposed in both configurations. Thus, there positions were deemed suitable for 

modifications to yield functionality for binding to the four compounds. As a result, the top 50 

highly-ordered and well-aligned antiparallel and parallel 4-stranded β-sheet conformations, 

constituting the peptide’s elementary β-sheet structural units in the two configurations, were 

collected independently and were used as flexible structural templates for subsequent design 

purposes, at which the designed amino acids were independently introduced in the first and last 

two terminal positions in both configurations (see below). Our rationale to consider both 

configurations as potential amyloid designable scaffolds was to improve the success rates of the 
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successfully designed amyloid materials (see below), which can potentially be functional in either 

configurations. 

8.2.2 Uncovering How Amino Acid Motifs Bind to Donepezil, Tacrine, Galantamine, and 

Memantine According to Experimentally Resolved Protein Structures 

As inputs, the computational protocol (described in detail in chapter 7) requires both 

flexible structural templates of the amyloid designable scaffold (determined above), and a library 

of primary and secondary materialphore models, which represent how amino acids bind to the 

compounds of interest (i.e., Donepezil, Tacrine, Galantamine and Memantine) according to 

experimentally resolved protein structures. The Protein Data Bank (PDB)252 is a repository for 

three dimensional structures of biological molecules such as proteins and nucleic acids and 

contains an abundance of information on how ions or compounds bind to amino acids. From the 

PDB,252 we collected all the experimentally resolved X-ray structures of protein complexes with 

the AD drugs Donepezil, Tacrine, Galantamine, and Memantine. From the collected protein 

structures, we defined and extracted materialphore models describing the identity and geometry of 

the amino acids interacting with a compound and located within an 8.5 Å cutoff radius from its 

center of mass. A relatively large cutoff distance was chosen due to the relatively large size of the 

four compounds. As described in chapter 6, 7, and ref,22 primary materialphore models represent 

the distances between the centers of mass of all combinations of amino acids within the cutoff 

distance, and secondary materialphore models represent the distances between the centers of mass 

of the amino acids and the center of mass of a compound.  

Primary materialphore models were used as input in the optimization-based design model, 

and contain all information needed for the design of the amyloid scaffold’s mutable residue 

positions so that the newly placed amino acids geometrically mimic how amino acids bind to a 
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compound of interest (e.g., Donepezil, Tacrine, Galantamine, and Memantine) according to the 

PDB.252 Both primary and secondary materialphore models were used to examine if the designed 

peptides’ elementary β-sheet structural units can, within the simulations, form binding pockets 

resembling the corresponding materialphore model they were derived from. In both primary and 

secondary materialphore models, the compound and each of the amino acids are independently 

represented as single points corresponding to their centers of mass. Additional types of 

materialphore models, named as tertiary and quaternary, detailing specific interactions between 

amino acids and the compounds were defined below to examine the structural and energetic 

binding properties of the compounds in complex with the two designed peptides in docking studies. 

8.2.3 Optimization-Based Design of the Functional Amyloid Materials Aiming to Bind to 

Donepezil, Tacrine, Galantamine, and Memantine 

We introduced an optimization-based design model detailed in the chapter 7. The 

optimization model aimed to introduce amino acids at the mutable, underlined residue positions of 

both antiparallel and parallel flexible structural templates, independently, of the amyloid 

designable scaffold YATGAIIGNII to design amyloid materials binding to the four AD drugs 

Donepezil, Tacrine, Galantamine, and Memantine, independently. Thus, eight different design 

problems were solved in total. Within the design, we aimed that the substituted amino acids could 

be placed to reproduce the geometry of a slice of primary materialphore for each of the four 

compounds, independently, at least in a portion λ of the fifty antiparallel or parallel flexible 

structural templates. As in chapter 6, both the small value of λ (10% in this case) and the fact that 

we allowed a specific deviation for the matching between the distances of introduced amino acids 

in the flexible structural template and the corresponding distances in the primary materialphore 

model, enabled our design and accounted for the difference in distances that could originate due 
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to the different size of the substituted amino acids compared to the original amino acids Tyr1, 

Ala2, Ile10 and Ile11.  

The optimization model was solved in such a way that primary materialphore model 

constraints were introduced first to eliminate number of substitutions and result in a total number 

of feasible number of solutions, for antiparallel and parallel flexible structural templates, 

independently. Due to the complexity of the current problem, aiming to identify designed peptides 

capable of potentially binding to all four AD drugs, and our additional condition on the 

functionality of the designed peptides to not depend on their finally predicted and potentially 

naturally occurring arrangement, parallel or antiparallel, only three peptides FYTGAIIGNYF, 

YFTGAIIGNFY, and YFTGAIIGNYF were capable to meet all aforementioned constraints. 

FYTGAIIGNYF, and YFTGAIIGNFY were selected for further investigation as the ones with 

lowest energy defined by the objective function of the optimization model.22  

The optimization model’s objective function aims to identify combinations of amino acid 

substitutions that yield the most energetically favorable selections by taking into account residue-

residue energy interactions represented by a coarse-grained force field205, and a term accounting 

for non-polar solvation free energy due to amino acid substitution.22 It can be considered to act as 

a criterion to select designs of which the mutated residues’ binding pocket is energetically 

stabilized to bind to each of the compounds investigated, and also act as a means to disallow the 

destabilization of the amyloid fibrils due to the designed amino acid substitutions. 

8.2.4 MD Simulations Investigating the Self-assembly Properties of the Designed Peptides and 

Computational Validation against the Primary and Secondary Materialphore Models 

The two selected peptides were investigated using triplicate implicit solvent REMD 

simulations according to the protocol developed by Tamamis and Archontis130 to examine their 



 210 

conformational self-assembly properties, and more importantly whether within the simulations the 

two peptides can form the desired binding pockets, mimicking the corresponding primary and 

secondary materialphore models, capable of binding to the four compounds. Each designed peptide 

was subjected to three independent REMD simulations which resulted in a total of six independent 

REMD simulations. The simulations were performed using CHARMM.110 We used FACTS19123 

implicit solvent model in the simulations with the surface tension coefficient value of 0.015 kcal 

mol−1 Å−2. Langevin dynamics were used with a 5.0 ps-1 friction coefficient on all non-hydrogen 

atoms of both designed peptides. A total of sixteen temperatures (290, 295, 300, 310, 305, 315, 

321, 327, 333, 339, 345, 352, 359, 366, 373 and 380 K) were employed with each replica exchange 

run’s duration equal to 10 ps.  

The collected snapshots were categorized into antiparallel, parallel and mixed 2-, 3-, 4-, 5-

, and 6-stranded β-sheet conformations. The categorization was done according to the 

computational protocol described in chapter 2 developed by Tamamis and Archontis.130 

Analogously to the refs22,23,24,40,130,131,132, in order to uncover the most favorable configuration, 

antiparallel or parallel of each the two designed peptides, we focused our analysis on 4-, 5-, 6-

stranded β-sheet conformations due to their higher complexity compared to 2-, 3-stranded β-sheet 

conformations. In both peptides both parallel, antiparallel and mixed configurations were depicted. 

We observed that the designed peptide YFTGAIIGNFY acquires a higher tendency to form 

antiparallel conformations, whereas the designed peptide FYTGAIIGNYF acquires a clear 

tendency towards parallel conformations. Subsequently, we combined all the 4-stranded β-sheet 

conformations from the three independent simulations for each peptide and used polar and nematic 

order parameters to examine the extent of peptide alignment and order. We identified and collected 

the highly ordered and well-aligned 4-stranded β-sheet conformations and from the collected 
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conformations, we discarded the structures which either had partial helical content or a bend in 

any of the outer peptide strands. As a result, we extracted the top 500 refined highly ordered and 

well-aligned 4-stranded antiparallel β-sheet structures for the designed peptide YFTGAIIGNFY 

and parallel β-sheet structures for the designed peptide FYTGAIIGNYF. These structures were 

used as input in the two-component computational validation to examine whether the two peptides 

within the β-sheet structures can form functional pockets to bind to the compounds under 

investigation. It is worth noting that the REMD simulations were performed in the absence of the 

compounds which served as an ultimate test to check whether proper binding pockets are formed 

in the presence of the compounds.  

In the first component of the validation, we evaluated whether the distances between the 

centers of mass of the designed amino acids’ side chains, per pair of two β-sheet bonded peptides 

in a given structure, are similar to the corresponding distances within the slice of the primary 

materialphore model(s) they originated from; the similarity criteria are detailed in the ref22. The 

designed binding pockets complying with the above criteria were considered primary matches. 

Given a primary match, in the second component of the validation, we determined whether the 

hypothetical center of mass of a compound (Donepezil, Tacrine, Galantamine, or Memantine) can 

be positioned in such a way that the distances between the hypothetical center of mass of a 

compound to the centers of mass of each designed amino acid are similar to the corresponding 

distances within the slice of the secondary materialphore model(s) they originated from; the 

placement of the compound’s hypothetical center of mass as well as the similarity criteria are 

detailed in the ref22. These were considered secondary matches. The designed binding pockets 

which complied with both the validation components were selected for subsequent docking and 

energetic calculations. 
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8.2.6 Docking Studies Investigating the Structure and Binding Free-Energy of the Four AD 

Drugs to the Designed Amyloid Peptides 

The methodology described in 8.2.6 was performed through programs developed and 

executed by Joseph Jakubowski, a student of Dr. Tamamis’ lab. 

In the two-component computational validation procedure described previously, we 

identified a set of selected structures with qualifying primary and secondary matches. For the 

specific subset of structures encompassing such binding pockets potentially capable to 

accommodate the four compounds, we performed docking studies to assess the compounds’ (1) 

ability to be inserted in the designed binding pocket and to be oriented such that they interact with 

the designed amino acids, in line with their corresponding tertiary and quaternary materialphore 

models, and (2) binding free energy, evaluating their energetic favorability to bind to the designed 

peptides’ elementary β-sheet structural units. 

The docking studies were significantly enabled by defining and extracting additional sets 

of materialphore models, which we named as tertiary and quaternary materialphore models, for 

the four AD drugs under investigation. While primary and secondary materialphore models contain 

sufficient information to study the insertion of an ion in a designed binding pocket, the 

aforementioned types of materialphore models cannot fully construct and examine the insertion of 

a compound in a designed binding pocket, accompanied by its relative orientation and the 

formation of interactions with the designed amino acids. Undeniably, a compound’s orientation 

within the designed binding pocket as well as its specific interactions with the designed amino 

acids are important for both the correct docking of a compound in the binding pocket and for the 

assessment of interactions formed between the compound and the designed amino acids. For this 

purpose, we classified the amino acids and compounds (encompassed within the primary and 
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secondary materialphore models) into a set of chemical features such as charged, hydrogen bond 

donor or acceptor, aromatic, and hydrophobic groups, and following this, we defined ionic, 

hydrogen bond, cation-π interactions as tertiary materialphore models, and π-π and hydrophobic 

interactions as quaternary materialphore models. Following definitions used by Piovesan et al290., 

ionic interactions were defined as interactions between oppositely charged groups within 5.0 Å. 

Hydrogen bonds were defined as interactions between hydrogen bond donors and acceptors within 

a relaxed 5.5 Å distance cutoff. Cation-π interactions were defined as interactions between the 

closest ring atom to the charged group within 7.0 Å. π-π interactions were defined as interactions 

between aromatic rings of which the nearest atomic distance is within 7.0 Å. Finally, we defined, 

π-hydrophobic or hydrophobic-hydrophobic interactions as interactions between the nearest 

atomic distance of an aromatic ring and a hydrophobic group, or the nearest atomic distance 

between two hydrophobic groups, respectively, within a relaxed criterion of 7.5 Å. These tertiary 

and quaternary materialphore models were used in the following section in order to enable us to 

dock the compounds in the designed binding pockets. The programs for defining and extracting 

tertiary and quaternary materialphore models was developed by Joseph M. Jakubowski, Dr. 

Tamamis’ lab, Texas A&M University. 

The docking was performed manually through an in-house docking algorithm written in 

CHARMM110. Specifically, we docked each AD drug at its designed binding pocket of four amino 

acids, guided by, and thus mimicking its interactions with the interacting amino acids to the tertiary 

and quaternary materialphore models it was derived from. The docking aimed to provide the 

designed amino acids, extracted from simulations performed in the absence of the compounds, the 

ability to adjust their conformations and accommodate the compounds binding, as would be the 

case in a naturally occurring process. Specifically, our in-house CHARMM110 programs developed 
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for this purpose allowed the side chains of the designed amino acid in the binding pocket to refine 

their positions and relative orientations to mimic within docking the distances of interactions 

present in the tertiary and quaternary materialphore models; if multiple interactions formed 

between a specific amino acid and compound were present, then distances of interactions between 

their constituting heavy atom chemical groups were prioritized in the following order: ionic 

(between oppositely charged groups) > hydrogen bond > cation-π > π-π > hydrophobic-

hydrophobic, and only one interaction between an amino acid and a compound was taken into 

account.  

Within docking, the corresponding distances of the nearest neighboring heavy-atom 

interactions within the tertiary and quaternary materialphore models were introduced as constraints 

during a three-stage minimization in CHARMM,110 while the compounds’ center of mass initial 

placement would coincide with its defined position according to the previous validation stages. 

During minimization, residues not participating in binding were fixed to their initial positions. The 

energy minimization (of which its stage comprised of steepest descent and adopted Newton-

Rapshon minimization) occurred in stages at which the harmonic force constants, imposed to 

enable mimicry between the amino acid-compounds’ interactions in the tertiary and quaternary 

materialphore models and the docked structure, were gradually reduced from 5 kcal/(mol*Å2) to 

0.1 kcal/(mol.Å2).  

At the end the minimization-based docking procedure, the final potential energy of the 

constraint terms was recorded, and was used as a first metric to ensure within the docked output 

structure, a sufficiently high level of mimicry was achieved; docked structures accompanied by a 

constraint energy above a certain cutoff (chosen to be equal to 1 kcal/mol by visual inspection) 

were discarded and considered as infeasible solutions. This value was used to ensure that imposed 
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distance constraints were met to a sufficiently reasonable extent for the structures chosen to be 

analyzed in the last step of energy computations. At the last step a slight energy minimization of 

50 steps was introduced and the final output structure was extracted to evaluate the compounds’ 

binding free energy according the semi-empirical energy function, AutoDock Vina.291 Finally, we 

introduced, a second metric, an posteriori criterion to ensure that after docking and minimization, 

the minimum distance between a designed amino acid and a heavy atom of a compound does not 

exceed 6 Å, which constitutes an additional check to verify the participation of all designed amino 

acids in the binding. 

It is worth noting that AutoDock Vina291 was not used for docking purposes and was used 

only to calculate the binding affinity of a compound to the entire elementary structural unit, 

represented by flexible structural templates of the designed peptides produced in the simulations. 

Also, non-designed amino acid side chains (e.g., which are part of the amyloid scaffold) may also 

contribute to the binding affinity in addition to the designed amino acid side chains.  

The above docking procedure served as an ultimate test to select the structures that had 

already been validated by primary and secondary matches, for their ability to  form the proper 

binding pockets so that the compounds can bind to the designed amino acids similarly to their 

binding to amino acids within the experimentally resolved structures. the value of the final 

potential energy of the constraint terms. Specifically, the final potential energy of the constraint 

terms calculated above for each docked structure indicated to which extent the mimicry could be 

achieved, while the binding free energies estimated between the docked compounds and the 

designed peptides enabled us to estimate the binding affinity of each of the four compounds to the 

designed amyloid materials (represented computationally by their elementary structural β-sheet 

units), enabling us to investigate the relative potency of the four compounds to the designed 
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amyloid peptides. Nevertheless, the constraints were not fully met (i.e., the value of the final 

potential energy of the constraint terms ranged between 0 to 1 kcal/mol) and thus the degree of 

mimicry between the geometry of the designed amino acids and the materialphore model they 

originated from was acceptable but not necessarily perfect. The in-house CHARMM programs for 

docking studies were developed by Joseph M. Jakubowski, Dr. Tamamis’ lab, Texas A&M 

University. 

8.3 Results and Discussion 

8.3.1 Structural Analysis of an Amyloid Designable Scaffold and Determination of its Mutable 

Positions 

In chapter 5, we showed that the peptide with sequence YATGAIIGNII self-assembles into 

amyloid fibrils which can be considered amyloid designable scaffolds due to the fact that the first 

three and last two residues are primarily not involved in β-sheets.23 According to our statistical 

analysis, we observed that the peptide can self-assemble into both β-sheet antiparallel and parallel 

conformations, with higher probability for antiparallel conformations. Within the simulations, we 

observed the formation of antiparallel or parallel β-sheets involving 2-6 peptide strands, as well as 

cases at which the peptides were bonded in mixed antiparallel/parallel fashion.23 In order to 

elucidate the elementary β-sheet structural units formed by the peptide in both the antiparallel and 

parallel configurations, we focused our analysis on 4-stranded antiparallel or parallel β-sheets. 

This is because they can comprise elementary β-sheet structural units, they possess higher 

complexity than 2- and 3-stranded β-sheets, and their population within the simulations is 

significantly higher than that of 5- or 6- stranded β-sheet, which allows richer statistical analysis. 

The analysis is performed according to the computational protocol developed by Tamamis and 

Archontis130 and is described in detail in refs.24,40,131,192 
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We used polar (P1) and nematic (P2) order parameters, describing the degree of polarity 

and order across a specific unit vector of the self-assembled peptide structures, respectively, to 

create free energy landscapes through which we identified and extracted 4-stranded highly ordered 

and well-aligned β-sheet conformations (antiparallel or parallel), which can constitute flexible 

structural templates of the amyloid designable scaffold YATGAIIGNII. From the extracted β-sheet 

conformations, we discarded ones containing a partially helical or bend conformation within the 

outer peptide structures as a result of the absence of a nearly infinite array of peptides. For the 

remaining β-sheet conformations, which are considered to be the elementary β-sheet structural 

units of the peptide representing antiparallel and parallel configurations, we calculated the 

propensity for an intermolecular pair of residues that belong to adjacent β-sheets to be involved in 

extended β-sheet or isolated β-bridge formation (Figure 8.1A, 8.2B). This analysis verified that in 

both the antiparallel and parallel elementary β-sheet structural units of the peptide, the first three 

and last two residues (YATGAIIGNII) are predominantly not participating in the β-sheets, and 

thus can be considered mutable positions to yield functionalization. To further support this notion, 

we calculated the average degree of solvent accessibility of the first three and last two residues in 

both configurations. The minimum value of solvent accessibility probability, calculated for all five 

residues in both configurations, was estimated 0.44, which was above the minimum solvent 

accessibility of the functional amino acids (e.g., cysteine residues) as estimated in our previous 

study,24 where the solvent accessibility was validated experimentally. This additionally supported 

that the first and last two residues (underlined residue positions YATGAIIGNII) are solvent 

exposed in both configurations, and thus they are amenable for modification. The specific residues 

could be mutated to form functional binding pockets that can bind to the compounds.  

Subsequently, we independently selected the top 50 highly ordered and well-aligned antiparallel 
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β-sheet conformations and top 50 highly ordered and well-aligned parallel β-sheet conformations 

to represent the flexible structural templates of the amyloid designable scaffold in both 

configurations, independently. In this study, the centers of mass positions of the sidechains within 

the flexible structural templates were used as input in the optimization-based design model. A 

schematic representation of antiparallel and parallel flexible structural templates is presented in 

Figure 8.2A.  

 

 

Figure 8.1 Density (%) maps of β-bridge interacting residue pairs formed between nearest 
neighboring peptides participating in a highly ordered and well-aligned 4-stranded β-sheet 
conformation observed at 300 K for YATGAIIGNII and YFTGAIIGNFY. Panels A, and C 
correspond to antiparallel conformations formed by the peptides YATGAIIGNII, and 
YFTGAIIGNFY, respectively. Panels B, and D correspond to parallel conformations formed by 
the peptides YATGAIIGNII, and FYTGAIIGNYF, respectively. Highly ordered and well-aligned 
4-stranded β-sheet conformations were extracted from the corresponding 4-stranded β-sheet 
conformations for a specific peptide by using polar (P1) and nematic (P2) order parameters which 
examine the extent of peptide alignment and order.  
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Figure 8.2 Overview of the steps used for the computational design and study of the two designed 
amyloid peptides in complex with the four compounds under investigation. In panel A, we show a 
schematic representation of antiparallel and parallel flexible structural templates of which their 
mutable residue positions are shown in green and maroon dotted circles, respectively. In panel B, 
we show examples of materialphore models extracted from experimentally resolved structures for 
each compound, and also describe the slices of materialphore models comprising combinations of 
four amino acids, which are represented by different orange symbols. In panel C, we show a 
schematic representation of the optimization-based procedure used to design the amyloid peptides, 
by considering functionality and energetic calculations in the objective function.  Functionality is 
considered by evaluating if the geometry of slices in the primary materialphore models, indicated 
using orange symbols in the molecular graphics images of the Protein Data Bank (PDB) structures, 
can be matched to the geometry of a flexible structural template, indicated by solid orange symbols 
and green dotted arrows. Successful match is indicated using a green checkmark and unsuccessful 
match using red cross. In panel D, we show the formation of β-sheet structures by the two selected 
peptides, FYTGAITIGNYF and YFTGAIIGNFY, accompanied by the two-component 
computational validation procedure identifying primary and secondary matches. In panel E, we 
define and schematically represent the tertiary and quaternary materialphore models. In panel F, 
we show docking studies performed to investigate the interactions and affinity of the four 
compounds to the designed amyloid peptides.  
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8.3.2 Uncovering How Amino Acid Motifs Bind to Donepezil, Tacrine, Galantamine, and 

Memantine According to Experimentally Resolved Protein Structures 

We collected all the experimentally resolved structures of proteins in complex with any of 

the compounds Donepezil, Tacrine, Galantamine, and Memantine, and their Protein Data Bank252 

(PDB) IDs are presented in the second column of Table 8.1. From the collected protein structures, 

we extracted materialphore models for each of the four compounds independently, mapping the 

geometries of amino acids and the compounds in experimentally resolved protein structures. 

Within a binding pocket of a compound interacting with amino acids in a specific PDB structures, 

primary materialphore models represent the all possible relative distances of pairs of interacting 

amino acids, and secondary materialphore models represent all distances between the amino acids 

and the compounds. Amino acids and compounds in the aforementioned definitions are 

geometrically described by their centers of mass, and an amino acid is considered to be within a 

compound’s binding pocket if their distance is below 8.5 Å. An example of a materialphore model 

for each of the AD drugs is presented in Figure 8.2B.  

Our analysis resulted in the extraction of multiple materialphore models for each of the 

four AD drugs. Given the fact that, in each experimentally resolved structure, a certain compound 

may have been resolved to bind to multiple either nearly identical (e.g., materialphore models 

derived for Donepezil binding to chains A and B of Acetylcholinesterase in the PDB ID: 4EY7292) 

or diverse binding pockets (e.g. materialphore models derived for Memantine binding to chains E 

and F of pentameric ligand gated ion channels in the PDB ID: 4TWD293), the total number of 

materialphore models extracted for each compound is equal to the sum of the number of 

experimentally resolved proteins multiplied by the number of complexed compounds with each 

proteins and is provided Table 8.1. Nearly identical binding pockets were automatically considered 
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individually to avoid exclusion of any possible binding mode, as this would not add to the 

complexity of solving the optimization-based model design model, described below, due to limited 

number of materialphore models that could be extracted (as the number of experimentally resolved 

structures of proteins complexed with the compounds is low). 

In the present study, the number of designable residue positions is equal to two per peptide 

per binding pocket, and thus upon β-sheet formation, the total number of residue positions 

amenable for subsequent design in each binding pocket is four (green and marron dotted circles in 

Figure 8.2A). Since the primary and secondary materialphore models can contain more than four 

amino acids interacting with the compounds (as the number of amino acids interacting with the 

compound can be greater than four), we additionally considered “slices” of materialphore models 

to be used for subsequent design purposes. For a given materialphore model, the slices represent 

combinations of four amino acids interacting with the compounds and are used as input 

information in the optimization-based design. A schematic representation of slices originating 

from materialphore models is presented above in Figure 8.2B. For example, in the materialphore 

model shown in the Figure 8.2B for Donepezil, the number of amino acids in the binding pocket 

is 14, and thus the number of slices of materialphore models which can be extracted for design, is 

equivalent to the number of combinations of 14 per 4, which is equal to 1001. Nevertheless, 

constraints introduced in the optimization-based model, can reduce the number of possible 

combinations considered feasible during design (see below).  

Primary materialphore models were used as input in the optimization-based design model, 

and contain all information needed for the design of the amyloid scaffold’s mutable residue 

positions so that the newly placed amino acids geometrically mimic how amino acids bind to a 

compound of interest (e.g., Donepezil, Tacrine, Galantamine, and Memantine) according to 
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experimentally resolved structures in PDB. Both primary and secondary materialphore models 

were used to examine if the designed peptides’ elementary β-sheet structural units can within the 

simulations form binding pockets resembling the corresponding materialphore model they were 

derived from (see below). 

 

Table 8.1 Experimentally X-ray resolved structures of proteins in complex with the four 
compounds, their corresponding PDB IDs, and number of materialphore models extracted for each 
compound. The total number of materialphore models extracted for each compound is equal to the 
sum of the number of experimentally resolved proteins multiplied by the number of complexed 
compounds within each protein. 
 

Compound 

Experimentally 

resolved protein 

structures 

Number of Compounds 

complexed in each of 

the structures 

Total number of 

Materialphore models 

extracted 

Donepezil 
4EY7292 

1EVE294 

2 

1 
3 

Tacrine 

4BDS295 

2AOW296 

2AOX296 

1MX1297 

1ACJ298 

1 

2 

2 

6 

1 

12 

Galantamine 

4EY6292 

2PH9299 

1W6R300 

1W76300 

1DX6301 

1QTI302 

2 

2 

1 

2 

1 

1 

 

9 

Memantine 4TWD293 10 10 
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8.3.3 Optimization-Based Design of the Functional Amyloid Materials Aiming to Bind to 

Donepezil, Tacrine, Galantamine, and Memantine 

The optimization-based design model described in chapter 7 is introduced here for the 

design of amyloid materials binding to the four AD drugs of interest. The top fifty highly-ordered 

and well-aligned flexible templates of both antiparallel and parallel β-sheets were introduced as 

input to the model, and mutations were attempted and performed at the two first and last residue 

positions, guided by the collected primary materialphore models of each of the four AD drugs, 

independently. Within the flexible structural templates, represented by elementary β-sheet 

structural units of both 4-stranded antiparallel and parallel β-sheets, a total of six identical in 

sequence binding pockets were considered during design, composed by four amino acids in pairs 

of two-adjacent β-sheet bonded peptides (Figure 8.2A).  

We independently solved an optimization-based design model with the aim to design 

amyloid materials binding to the four compounds. The optimization-based design model was 

solved for both antiparallel and parallel flexible structural templates of the amyloid designable 

scaffold. This resulted in a total of eight independent problems. Out of the 204 (20: total number 

of natural amino acids, 4=2+2: number of mutable positions per peptide) theoretical number of 

possible designed peptides, the optimization model produced 644, 7841, 1899, and 1703 different 

designed peptides that could potentially bind to Donepezil, Tacrine, Galantamine, and Memantine 

respectively on antiparallel flexible structural templates, as well as 18, 1258, 165, and 420 different 

designed peptides that could potentially bind those drugs on parallel flexible structural templates. 

The total number of designed peptides (originating from antiparallel and parallel flexible structural 

templates) is low for Donepezil because it has the lowest number of materialphore models (Table 

8.1).  
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Upon solution of the problem, we selected peptide sequences which can potentially bind 

to all the four compounds, and thus we identified the designed peptides which were common for 

all the four compounds (Figure 8.2C). Furthermore, we introduced an additional constraint to 

identify designed peptide sequences which could be functional in both antiparallel and parallel 

configurations; through this, we aimed to improve the success rates as the finally produced 

designed materials could potentially be functional irrespective of the dominant configuration 

adopted by each peptide. The introduction of the additional selection feature and constraint yielded 

a limited number of three solutions, FYTGAIIGNYF, YFTGAIIGNFY, and YFTGAIIGNYF, 

which were common across all the eight set of design and possessed low energies as estimated 

within the objective function. The two lowest in energy (defined in by the minimized term in the 

objective function) were selected for further investigation comprising simulations, structural and 

energetic calculations. Through these analyses, we evaluated the capacity of the two peptides to 

self-assemble into highly ordered and well-aligned β-sheets and form binding pockets which 

possess the expected geometry (in line with the materialphore models they were derived from) to 

bind to the compounds in the absence of the compounds, and subsequently, their ability to bind to 

the four compounds as well as their affinity to the compounds, all independently.  

8.3.4 MD Simulations Investigating the Self-assembly Properties of the Designed Peptides and 

Computational Validation against the Primary and Secondary Materialphore Models 

We performed three independent REMD simulation runs to investigate each of the two 

peptides’ self-assembly structural properties, which were analyzed according to the protocol of 

Tamamis and Archontis.130 The simulation runs were performed for each of the two peptides 

independently in order to increase the statistical sampling of β-sheet conformations used in our 

analysis. The propensities of β-sheet conformations were analyzed as described in refs24,40,130 ,131,192 



 225 

and the statistical convergence of the highly populated β-sheet conformations was verified as a 

function of time. Within the simulations, YFTGAIIGNFY acquired an overall higher tendency for 

antiparallel compared to parallel configurations, whereas the designed peptide FYTGAIIGNYF 

acquired a dominant tendency for parallel configurations. Subsequently we extracted the highly 

ordered and well-aligned 4-stranded β-sheet conformations of the two peptides in their most 

dominant configuration, antiparallel for YFTGAIIGNFY and parallel for FYTGAIIGNYF (Figure 

8.1C and 8.1D). Representative conformations for both the designed peptides are shown in Figure 

8.2D. First, we analyzed the propensities of β-bridge formation between per pairs of residues in 

the β-sheets, which showed that the designed amino acids were predominantly not involved in β-

sheets. The calculated propensities of the two peptides were highly similar to the corresponding 

propensities of YATGAIINII which served as the amyloid designable scaffold they were derived 

from, while the main difference between the two is associated with the fact that Phe2 and Thr3 in 

the designed peptide YFTGAIIGNFY can be involved in the β-sheets to a small extent (Figure 

8.1C). Subsequently, we performed a two-component computational validation procedure (Figure 

8.2D), comparing the geometries of the binding pockets formed by the designed amino acids, in 

comparison to their corresponding geometries in the primary and secondary materialphore models, 

derived from experimentally resolved structures. Within the comparative analysis, we identified 

primary and secondary matches, which are detailed in the Materials and Methods section. The 

former denotes the capacity of the designed amino acids in the two peptides to form binding 

pockets such that the distances between their centers of mass in the extracted β-sheet 

conformations are similar to the corresponding distances of the same amino acids within the 

primary materialphore models from which the designed peptides originated. A representative 

primary match for each of the designed peptides is shown in Figure 8.2D where the distances 
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between the amino acids are indicated by green dotted lines. If a primary match occurs, then the 

latter denotes the capacity of the designed amino acids in the two peptides to form binding pockets 

such that the distances between their centers of mass and the hypothetical center of mass of the 

four compounds are similar to the corresponding distances between the same amino acids and the 

compounds within the secondary materialphore models. Representative primary match and 

secondary match for each of the designed peptides is shown in Figure 8.2D where the distances 

between the amino acids are indicated by green dotted lines and the distances between the amino 

acids and the compound are indicated by solid marron lines. According to the results presented in 

Table 8.2, the percentage values for the first and second validation components are relatively high. 

This is an indication that even in the absence of compounds, the two peptides can adopt proper 

binding pockets at which the designed amino acids belonging to two adjacent β-sheet bonded 

peptides can form binding pockets resembling the experimentally resolved ones they originated 

from. 

 

Table 8.2 Designed peptide sequences for the four compounds and their corresponding first and 
second validation component percentage statistics. The validation statistics were calculated over 
the highly ordered and well-aligned snapshots extracted from the REMD simulations investigating 
the peptides’ self-assembly properties. The listed percentages for the first and second validation 
components correspond to the percentage of snapshots containing primary and secondary matches, 
within the snapshots containing primary matches, which were identified from the first validation 
component.   
 

Compound YFTGAIIGNFY FYTGAIIGNYF 

 
First validation 

component (%) 

Second validation 

component (%) 

First validation 

component (%) 

Second validation 

component (%) 

Donepezil 96.00 80.05 98.00 61.92 

Tacrine 89.40 78.97 79.60 60.90 
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Table 8.2 Continued 
 

Compound YFTGAIIGNFY FYTGAIIGNYF 

 
First validation 

component (%) 

Second validation 

component (%) 

First validation 

component (%) 

Second validation 

component (%) 

Galantamine 83.80 79.52 90.80 70.40 

Memantine 62.80 63.09 88.60 46.20 

 

8.3.5 Docking Studies Investigating the Structure and Binding Free-Energy of the Four AD 

Drugs to the Designed Amyloid Peptides 

The analysis described in 8.3.5 was performed through programs developed and executed 

by Joseph Jakubowski, a student of Dr. Tamamis’ lab.  

As described in the Materials and Methods section, docking of the AD drugs to the binding 

pockets of the two designed peptides, with primary and secondary materialphore model matches, 

was performed to assess the compounds’ (1) ability to be inserted in the designed binding pocket 

and to be oriented such that they interact with the designed amino acids, in line with their 

corresponding interactions to the amino acids within the PDB structures they were derived from, 

and (2) binding free energy by evaluating their energetic favorability to bind to the two designed 

peptides’ extracted β-sheet structures, represented by their elementary β-sheet structural units. 

Instead of using available standard docking algorithms which could randomly place each of the 

fours compounds in complex with the β-sheet structures formed by the two peptides (within or 

without the binding pocket composed of the designed amino acids) without any guidance on the 

key expected interactions between them and the designed amino acids, we introduced an in-house 

docking algorithm written in CHARMM110. The in-house algorithm used a manually-constrained 
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docking procedure which aimed to provide the designed amino acids with the ability to adjust in 

the presence the compounds, as well as accommodate the compounds similarly to how the same 

amino acids bind to the compounds in the corresponding experimentally resolved structures that 

each design originated from, ultimately aiming to mimic the naturally occurring process (Figure 

8.2F). For this purpose, we expanded the definitions of our previously defined materialphore 

models, to additionally include tertiary and quaternary materialphore models, entailing for each 

corresponding (slice of a) materialphore model key additional information on distances 

corresponding to any type of potential electrostatic, hydrogen-bond, cation-π, π-π, hydrophobic-π 

or simply hydrophobic interactions between the amino acids and the compounds (see Materials 

and Methods). The distances of these interactions included in the tertiary and quaternary 

materialphore models were used as constraints during energy minimization which allowed docking 

and refinement of interactions of the four compounds to the designed amino acids within both 

peptides’ 4-stranded β-sheet structures. 

Upon docking the four AD drugs to the extracted β-sheet structures of both 

YFTGAIIGNFY and FYTGAIIGNYF, we selected the top ten binding modes with the highest 

affinity (i.e., lowest binding free energy assessed with Autodock Vina’s scoring function291) for 

both designed peptides. Any docked conformations failing to reproduce the constraints imposed 

by the tertiary or quaternary materialphore models were not considered in the selection. The 

selection of the top ten binding modes was based on the observation that overall the lowest free 

energy modes of each of the four AD drugs in complex with the two peptides correspond to binding 

modes with not necessarily very high structural similarity but with alike interactions and molecular 

recognition properties (see below). The presence of alike interactions rather than identical 

interactions across different binding modes is attributed to the variability of the designed amino 
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acids’ geometries in the β-sheet structures used for docking. Due to the variability, the distances 

of interactions within the binding modes were not necessarily identical to the imposed distance 

constraints within the tertiary and quaternary materialphore models. Importantly, the energy 

minimization used in the presence of constraints allowed the compounds to optimize their 

interactions with the designed amino acids. 

Subsequently, we performed a statistical analysis of the binding free energies of the four 

AD drugs in complex with the two peptides’ β-sheet structures, presented in Figure 8.3. The 

binding affinities of the selected top ten structures per compound were subjected to a single factor 

ANOVA test, independently, for both designed peptides YFTGAIIGNFY (Figure 8.3A), and 

FYTGAIIGNYF (Figure 8.3B). Each test yielded a p-value of less than 0.0001 with α = 0.05, 

suggesting with 95% confidence that the means values between the four compounds were 

different, in both cases (Figure 8.3A and 8.3B). The statistical analyses were performed one-way 

analysis of variance (One-way ANOVA) in Microsoft Excel. The overall strategy for the docking 

is presented in Figure 8.2F. 

 

 

 

 



 230 

 

Figure 8.3 Binding affinity of the designed peptides for the four compounds Donepezil, Tacrine, 
Galantamine, and Memantine. Panels A, and B represent the binding capacities for the four 
compounds by the designed peptides YFTGAIIGNFY, and FYTGAIIGNFY, respectively. 
Statistical analyses were performed one-way analysis of variance (One-way ANOVA) in 
Microsoft excel. 
 

Our results suggest that Donepezil and Tacrine have relatively higher affinity to the two 

designed peptides, YFTGAIIGNFY and FYTGAIIGNYF, than Galantamine, and Memantine. To 

confirm that the trend (observed in Figure 8.3) is not an artifact, the statistical analysis was 

performed on the top 25 and 50 structures, and it was observed that the trend remained the same, 

while the overall p-values remained less than 0.0001. It is worth noting that the computational 

predicted affinities suggest a trend of energetic favorability of the designed peptides to the four 

AD drugs rather than the ability of a designed peptide to bind to a compound or not. The relatively 

low free energies suggest that the two designed peptides have the potency to bind to all four 

compounds, achieving our original goal, while the binding free energy to Donepezil and Tacrine 

is predicted to be lower (and more energetically favorable) to Galantamine and Memantine.  

Figures 8.4 and 8.5 present the representative mimicry between the docked AD drugs 

binding to the four designed (two initial and two terminal) amino acids in the β-sheet structures of 
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the two designed amyloid peptides, and the corresponding amino acids in the experimentally 

resolved structures from which materialphore models have been extracted. Interestingly, our 

designed peptides and their corresponding designed amino acids at the termini can bind to 

Donepezil and Galantamine based on how the two drugs bind to their target protein AChE as part 

of their inhibition mechanism;292 this depicts the first to our knowledge amyloid materials 

suggested to bind to a compound by mimicking the mechanism according to which the same 

compound could act as an inhibitor. Analogously, our designed peptides and their corresponding 

designed amino acids at the termini can bind to Tacrine based on how the AD drug binds to 

Histamine N-methyltransferase296 and Memantine based on how the AD drug binds to Erwinia 

chrysanthemi (ELIC).293  

We performed a visual inspection of the interaction formed by the four AD drugs in 

complex with the designed amino acids of the extracted β-sheets of the two designed peptides. 

Donepezil primarily adheres to the binding pocket formed by the four designed amino acids of the 

two peptides. In the case of designed peptide YFTGAIIGNFY, Donepezil adheres to the designed 

binding pocket primarily through its amine containing moiety (Figure 8.4A). Alternatively, in the 

case of designed peptide FYTGAIIGNYF, the entire compound adheres to the binding pocket 

formed by the four designed amino acids (Figure 8.4B). For both designed peptides, Donepezil 

forms rich π-π and cation-π interactions with designed amino acids (Figure 8.4A and 8.4B). 

Additionally, for both the designed peptides, the amide group of Donepezil forms a hydrogen bond 

with the hydroxyl group of the designed tyrosines of the elementary β-sheet structural units formed 

by both peptides in nearly half of the top ten selected structures (Figure 8.4A and 8.4B).  
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Figure 8.4. Molecular graphic images showing the mimicry between the binding modes of 
Donepezil and Tacrine binding to designed peptides, YFTGAIIGNFY and FYTGAIIGNYF, and 
experimentally resolved structures of Donepezil and Tacrine in complex with proteins human 
acetylcholinesterase and human methyltransferase. (A) Computationally docked binding mode of 
Donepezil binding to YFTGAIIGNFY (top), designed and validated against (E) a materialphore 
model extracted from PDB ID: 4EY7292. (B) Computationally docked binding mode of Donepezil 
binding to FYTGAIIGINYF (top), designed and validated against (F) a materialphore model 
extracted from PDB ID: 4EY7292. (C) Computationally docked binding mode of Tacrine binding 
to YFTGAIIGNFY (top), validated against (G) a materialphore model extracted from PDB ID: 
2AOX296. (D) Computationally docked binding mode of Tacrine binding to FYTGAIIGNYF (top), 
validated against (H) a materialphore model extracted from PDB ID: 2AOW296. Panels E and H 
represent different slices of same materialphore model derived from the protein structure with PDB 
ID: 4EY7292. The backbone of the designed peptides and the specific amino acid−compound 
binding motif is shown in blue cartoon representation. The amino acid side chains interacting with 
a compound are shown in licorice representation; the compounds are shown in thick licorice 
representation; hydrogen formed between a tyrosine and compound is indicated by black dotted 
lines. 
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Figure 8.5. Molecular graphic images showing the mimicry between the designed peptides, 
YFTGAIIGNFY and FYTGAIIGNYF, binding modes to Galantamine and Memantine, and 
experimentally resolved structures of proteins human Acetylcholinesterase and Erwinia 
chrysanthemi binding to Galantamine and Memantine. (A) Computationally docked binding mode 
of Galantamine binding to YFTGAIIGNFY (top), designed and validated against (E) a 
materialphore model extracted from PDB ID: 4EY6292. (B) Computationally docked binding mode 
of Galantamine to FYTGAIIGINYF (top), designed and validated against (F) a materialphore 
model extracted from PDB ID: 4EY6292. (C) Computationally docked binding mode of Memantine 
to YFTGAIIGNFY (top), validated against (G) a materialphore model extracted from PDB ID: 
4TWD293. (D) Computationally docked binding mode of Memantine to FYTGAIIGNYF (top), 
validated against (H) a materialphore model extracted from PDB ID: 4TWD293. Panels E and F 
represent different slices of same materialphore model derived from the protein structure with PDB 
ID: 4EY6292. The backbone of the designed peptides and the specific amino acid−compound 
binding motif is shown in blue cartoon representation. The amino acid side chains interacting with 
a compound are shown in licorice representation; the compounds are shown in thick licorice 
representation; hydrogen formed between a tyrosine and compound is indicated by black dotted 
lines. 
 

Tacrine is primarily “wrapped” by the designed amino acids of the designed peptide 

YFTGAIIGNYF clustering around the entire compound (Figure 8.4C), whereas Tacrine primarily 

adheres the binding pocket formed by the four designed amino acids of the designed peptide 
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FYTGAIIGNYF (Figure 8.4D). For both designed peptides, Tacrine forms rich π-π and cation-

π interactions with the designed amino acids (Figure 8.4C and 8.4D). Additionally, for both 

designed peptides, Tacrine forms a hydrogen bond with the hydroxyl group of the designed 

tyrosines through both its charged and uncharged amine groups of the respective designed peptides 

in nearly half of the top ten selected structures (Figure 8.4C and 8.4D). 

The central core of Galantamine is primarily “wrapped” by the designed amino acids of 

the designed peptide YFTGAIIGNFY (Figure 8.5A), whereas Galantamine primarily adheres to 

the binding groove formed by the designed amino acids of the designed peptide FYTGAIIGNYF 

(Figure 8.5B). For both designed peptides, Galantamine forms rich π-π and cation-π interactions 

with the designed amino acids (Figure 8.5A and 8.5B). For the designed peptide YFTGAIIGNFY, 

Galantamine forms a hydrogen bond with the hydroxyl group of the designed tyrosines through its 

charged amine group in nearly half of the top ten selected structures as well as through its hydroxyl 

group in three of the top ten selected structures (Figure 8.5A). For the designed peptide 

FYTGAIIGNYF, Galantamine forms a hydrogen bond with the hydroxyl group of the designed 

tyrosines through its charged amine group in three of the top ten selected structures as well as 

through its hydroxyl group in two of the top ten selected structures (Figure 8.5B). 

Memantine is primarily loosely “wrapped” by the designed amino acids of both designed 

peptides YFTGAIIGNYF and FYTGAIIGNYF, clustering around the entire compound (Figure 

8.5C and 8.5D). Memantine is not tightly “wrapped”, as is the case for Tacrine, presumably due 

to the bulkier shape of Memantine. For both designed peptides, Memantine forms rich 

hydrophobic-π and cation-π interactions with the designed amino acids (Figure 8.5C and 8.5D). 

Additionally, for both designed peptides, Memantine forms hydrogen bonds with the hydroxyl 
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group of the designed tyrosines through its amine group in nearly half of the top ten selected 

structures for each of the designed peptides (Figure 8.5C and 8.5D). 

8.4 Concluding Remarks 

The study presents the first, to our knowledge, functional amyloid materials that can 

potentially bind AD drugs by mimicking the mechanism according to which the same AD drugs 

bind to proteins according to experimentally resolved structures, including the target enzyme 

AChE, which is part of the inhibition mechanism for three of the four AD drugs investigated. 

While Tacrine was withdrawn from the market owing to hepatotoxicity, the computationally 

designed amyloid materials could be very promising carriers for Donepezil, constitute as starting 

points for the design of additional drug carriers that could bind to combinations of NMDA and 

Cholinesterase inhibitors. The importance of the former lies within the fact that among all the 

Cholinesterase inhibitors, Donepezil is the most superior due to its high potency and selectivity 

for AChE. In addition, a combination of Memantine and Donepezil (Namzaric) is administered to 

patients with moderate-to-severe AD. Especially after the announcement of the majority of AD 

companies that they will stop research and investment on new AD drugs due to failure in stage III 

clinical trials, our amyloid peptide drug delivery carriers could be very promising in enhancing the 

effectivity of current marketed drugs. 

8.5 Innovation in Methods 

In this study, we showed that the computational protocol as presented in chapter 7 with an 

additionally component developed and executed by Joseph Jakubowski, a graduate student of Dr. 

Tamamis’ lab, can be successfully implemented to design functional amyloid materials binding to 

compound (AD drugs in this case). In addition to implementing the protocol of chapter 7 to design 

amyloid materials for the AD drugs, the following additional investigations were performed: (i) 
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We considered both antiparallel and parallel configurations as potential amyloid designable 

scaffolds to improve the success rates of the successfully designed amyloid materials, which can 

potentially be functional in either configurations. (ii) As our goal here was to design amyloid 

materials binding to compounds, advancement was made in the computational validation to take 

into account specific interactions (e.g., electrostatic interactions, hydrogen bonds, cation-π, 

aromatic and hydrophobic interactions) between the compounds’ group and the amino acids. In 

this perspective, we additionally performed a structural and energetic analysis investigating the 

compounds’ interactions with the designed amino acids and their binding affinity to the 

computationally designed amyloid materials. As mentioned above, the latter (i.e ii) was developed 

and executed by Joseph Jakubowski, a graduate student of Dr. Tamamis’ lab. 

8.6 New Findings and Potential Applications 

 In this study, we have explored the possibility of amyloid materials as carriers for the 

therapeutic-sustained release of AD drugs such as donepezil and tacrine. The amyloid materials 

designed here if proven successful can potentially act as novel drug delivery carriers which can 

enhance the half-life and effectivity of current AD drugs and potentially the stabilization of 

cognition (enhancement of current AD treatments). Motivated by the ability to design amyloid 

materials to bind multiple AD drugs, their ability to be modified at the sequence level and their 

biocompatibility, such potentially successful drug-carrier amyloid materials could pave the way 

for a novel direction of delivering the specifically studied AD drugs. 
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9. DESIGN OF AMYLOID MATERIALS WITH CELL PENETRATING AND DNA 

BINDING PROPERTIES 

9.1 Introduction 

9.1.1 Overview and Significance 

The delivery of nucleic acids into cells to restore a deficient gene to normal expression 

level is an important is a powerful tool in the field of gene therapy. An ideal delivery agent should 

be able to bind to nucleic acids effectively, access cells, avoid degradation of the carrying nucleic 

acids and deliver them in cytosol for gene regulation or to the nucleus for gene expression.303,304,305 

Yet, the delivery of nucleic acids into cell can be challenging due to their strong negative charge 

that inhibits their internalization, in addition to their susceptibility to nucleolytic enzymes. Thus, 

there has been significant interest recently to develop stable, efficient, and biocompatible delivery 

agents which led to the development of a variety of non-viral vectors that can incorporate genetic 

material and efficiently deliver it into the cells.306 

Cell-penetrating peptides (CPPs) are one such group of non-virial vectors that recently 

emerged to deliver nucleic acids. The specific group of vectors are generally short cationic peptides 

with 5-30 amino acids and have positively charged amino acids arginine and lysine amino acids in 

abundance. They can effectively cross cellular membranes, they have limited toxicity and could 

function as transfection carriers for nucleic acid cargos including siRNAs and plasmids.307 The 

cellular uptake of the CPPs can occur through various energy-independent308 or energy-dependent 

internalization mechanisms309 such as the interaction of the positively charged residues with the 

negatively charged phospholipids of the cell membrane to facilitate direct internalization and 

endosomal uptake via endocytic pathways310,311. Due to their ability of accessing cellular 
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membranes, CPPs could enhance the transportation of conjugated bioactive cargos, which could 

initiate the expression or function of specific intracellular targets. Biomolecules can be conjugated 

with the CPPs through a covalent bond or by a non-covalent complex formation.306   

CPPs act as delivering agents of nucleic acids by forming non-covalent complex which 

involves the electrostatic interaction of the positively charged residues of the peptide with the 

negatively charged nucleic acids. Yet, there are challenges such as DNA condensation and 

enzymatic degradation protection through the formation of the peptide-DNA complex.312 

Examples of the peptide delivery agents or enhancers of the expression of a gene of interest into 

cells include PepFect14 peptide vector,313 amphipathic α-helical peptide NF55314,315, and the 

highly cationic TAT peptide that can directly penetrate the plasma membrane as polyelectrolytic 

complex upon interacting with plasmid DNA312. Amyloid forming peptides are considered also as 

promising nanomaterials in boosting gene transduction by utilizing the positive charges on the 

fibrillar nanosheet to capture nucleic acids and virion particles and subsequently increase their cell 

attachment and fusion.33,316,317,318 

9.1.2 Goal 

Motivated by the fact that (i) cell penetrating peptides have a majority of positively charges 

residues, (ii) cell penetrating peptides can act as DNA delivering agents, and (iii) amyloid forming 

peptides can act as DNA delivering agents, we aimed to design amyloid materials combining cell 

penetrating and DNA binding properties.  

9.1.3 Hypothesis 

We hypothesized that our goal could be achieved through the use of a combination of 

computational and rational design approaches, starting from amyloid designable scaffolds 
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RGDSGAITIGC and YATGAIIGNII (presented in chapters 3 and 5), and the introduction of 

mutations at their non-β-sheet forming residues via the use of an amalgam of sequence-based 

information associated with amino acid motifs leading to CPPs and DNA binding properties. 

9.1.4 Objectives Accomplished 

In this chapter, we suggest the design of two specific sequences which can constitute 

functional amyloid materials with the potential capacity to bind to promote cell-penetration and 

DNA binding. The design was performed through a combination of computational and rational 

design approaches and was complemented by Dr. Tamamis’ and Archontis’ computational 

protocol for the elucidation of structures of self-assembling peptides130. Overall, our results 

indicate that the designed peptides could be promising amyloid materials promote cell-penetration 

and DNA binding, as the designed amino acids in the highly-ordered and well-aligned structures 

of the amyloid fibrils are sufficiently solvent exposed for functionalization purposes.  

Experiments evaluating the computationally designed materials functional properties are 

currently being performed in Dr. Mitraki’s lab, and by additional experimentalists at the University 

of Crete.  

9.2 Computational Methods 

In summary we used data-driven design approaches (in two directions), and rationally 

designed two peptides, with sequence, NH3+-KYRSGAITIGY-CONH2 and NH3+-

KYKGAIIGNIK-CONH2. Upon selection of the two peptide sequences, we computationally 

investigated the two designed peptides using Replica Exchange Molecular Dynamics (REMD) 

simulations. Firstly, we performed simulations of the two peptides in infinite dilution to investigate 

their conformational properties, while subsequently, we performed simulations of copies of the 

two peptides in a cubic box to investigate their self-assembly properties. Using the structures 
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extracted from the finite dilution simulations, we categorized the β-sheet structures formed into 2-

,3-,4-,5-, and 6-stranded antiparallel, parallel, or mixed β-sheet structures and identified the 

predominant configuration (parallel or antiparallel) of each of the two peptides in the β-sheets as 

well as the key β-sheet interactions formed in the self-assembled structures of the two peptides. 

Subsequently, we extracted the highly ordered and well-aligned β-sheet structures, investigated 

the key interactions formed between the amino acids within the structures, calculated the solvent 

accessibility of the designed residues to assess the peptides’ functionality. The simulations and 

analysis were performed in line with a protocol developed by Tamamis and Archontis130 which 

was widely used by our group to shed light into the amyloid self-assembly properties of short 

peptides22,23,24,192. In what follows, we provided a detailed description of the computational 

methods employed to design and study the two peptides. 

9.2.1 Design of Amyloid Forming Peptides with Cell Penetrating and DNA Binding Properties 

We aimed to design functional amyloid peptides which possess cell penetrating and DNA 

binding properties through two separate approaches:  

In the first approach, we used the computationally elucidated structures of elementary 

antiparallel β-sheet structural units of the amyloid designable scaffold formed by the peptide 

RGDSGAITIGC24 (elucidated in chapter 3 and ref24) as flexible structural templates which is an 

input in the Module II of the computational protocol (presented in chapter 7). The computational 

design was performed by introducing mutations to designable (underlined) positions 1, 2, 3, and 

11 of RGDSGAITIGC24. The computational design in Module II of the protocol was performed 

without subjecting the model to the constraints related to the primary materialphore models. Upon 

solution of the model, a total of 204 set of mutations were evaluated and they were ranked 

according to the energy defined in the objective function. Subsequently, for the post design 
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constraints, we hypothesized that a combination of positively charged residues (Arg, and Lys) and 

tyrosine residues at the designable positions would be desirable as (i) positively charged residues 

are known to penetrate cell membranes319, and (ii) aromatic residues in the order Y>W>F were 

popular in the proteins interacting with DNA320. To introduce cell penetrating motifs at the N-

terminal of the designed sequence, we performed a bioinformatics analysis on the motifs with 

sequence XXXS in cell penetrating peptides deposited in the Database of Cell-Penetrating Peptides 

(CPPsite2.0321). From the bioinformatics search, we observed that only RYYS and KYRS 

sequence motifs occurred as a part of any cell penetrating peptides. We selected the sequence motif 

KYRS as we considered that tyrosine at position 3 in the motif RYYS could extend the β-sheet 

core, probably negatively affect its functional properties. After imposing the above post-design 

constraints, KYRSGAITIGY was the top ranked designed peptide, and was selected for further 

investigation. It is worth noting that the selected designed peptide sequence is among the top 10% 

of all 204 possible sequences according to the energy defined in the objective function prior to the 

introduction of any constraints. 

In the second approach, we aimed at rationally designing a functional amyloid peptide, 

which possesses cell penetrating and DNA binding properties, by introducing mutations to 

designable (underlined) positions 1, 2, 3, and 11 of YATGAIIGNII. Similarly to the rational design 

describe above, we performed a bioinformatics analysis for sequence motifs containing positively 

charged residues or tyrosines in cell penetrating peptides deposited in the Database of Cell-

Penetrating Peptides321. In the analysis, we disallowed tyrosine at position 3 to avoid the extension 

of the β-sheet core of the self-assembled designed peptides. Based on the bioinformatics analysis, 

the motifs KYK, KYR, RYK, and RYR are possible amino acid replacements at the designable 

positions 1, 2, and 3 with the motif KYK occurring most frequently. Thus, we mutated the residue 
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positions 1, 2, and 3 to lysine, tyrosine, and lysine, respectively. In contrast to the computational 

design described above in the first approach, in this approach, motivated by the fact that positively 

charged residues are beneficial for both cell-penetration and DNA binding functionality, we 

rationally substituted position 11 with lysine. Thus, the aforementioned direction resulted in the 

designed peptide KYKGAIIGNIK, which was selected for further investigation. 

The first designed peptide was engineered on the basis of NH3+-RGDSGAITIGC-CONH2. 

For the current study, we investigated both selected peptides with the same NH3+- and -CONH2 

terminal ends. Thus, the selected designed peptides with sequence NH3+-KYRSGAITIGY-CONH2 

and NH3+-KYKGAIIGNIK-CONH2 were subsequently investigated using infinite and finite 

dilution simulations to uncover their self-assembly properties, independently, as described in the 

following sections. 

9.2.2 Infinite Dilution Simulations Investigating the Peptides’ Conformational Properties 

We performed infinite dilution simulations of the two selected peptides with sequence 

NH3+-KYRSGAITIGY-CONH2 and NH3+-KYKGAIIGNIK-CONH2 in aqueous solution, 

independently, using REMD simulations133,134,135,136,137,138 in CHARMM110. The REMD 

simulations consisted of eight replicas with temperatures 283, 300, 318, 336, 356, 377, 403, and 

432 K. The initial structures of the peptides corresponded to linear structures build in 

CHARMM110. The peptides were modeled using the CHARMM19 force-field322, and the aqueous 

environment was modeled using the FACTS19123 implicit solvent model with the surface tension 

coefficient set to 0.015 kcal mol-1 Å-2 23,24,192. For all simulations, we used Langevin dynamics with 

a friction coefficient of 5 ps-1 introduced on all heavy atoms and simulation snapshots extracted in 

100 ps intervals. The duration of each simulation per temperature was 150 ns for both peptides, 

independently, for an aggregate total simulation duration of 1.2 μs per peptide. Upon completion 
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of the infinite dilution simulations, we extracted the 15000 simulation snapshots of the 300 K 

trajectory. We subsequently performed a root mean squared deviation (RMSD)-based clustering 

analysis on the extracted snapshots using Wordom141,142 and selected representative conformations 

from the six most populated clusters for each peptide resulting in six conformations per peptide. 

The clustering analysis was performed based on the backbone atoms of the peptides using a 

clustering radius of 2 Å and the quality-clustering algorithm. The six extracted conformations per 

peptide corresponded to the centers, or most representative structure, of each cluster and were used 

as initial structures in the finite dilution REMD simulations investigating the peptides’ self-

assembly properties described in the latter section.  

9.2.3 Finite Dilution Simulations Investigating the Peptides’ Self-Assembly Properties 

We performed independent REMD simulations in CHARMM110 for both designed peptides 

to investigate their self-assembly properties, analogously to refs22,23,24,40,130,131,192. The simulation 

system corresponded to six copies of the peptide KYRSGAITIGY in a 157 Å cubic periodic box 

and KYKGAIIGNIK in a 154 Å cubic periodic box, resulting in an approximately 3 mg/ml 

concentration for the two simulation systems. The initial conformation of the six peptide copies 

were obtained from the six conformations extracted from the corresponding aforementioned finite 

dilution REMD simulations. For each of the two simulations, all six copies of each peptide were 

initially placed in the center of the cubic periodic box, and then translated by +25 Å in the x-

direction, -25 Å in the x-direction, +25 Å in the y-direction, -25 Å in the y-direction respectively, 

+25 Å in the z-direction, or -25 Å in the z-direction such that a peptide was placed at the center of 

each face of a 50 Å cubic box. The REMD simulations, for each peptide independently, consisted 

of sixteen replicas with temperatures 290, 295, 300, 310, 305, 315, 321, 327, 333, 339, 345, 352, 

359, 366, 373 and 380 K. The simulations were performed using the CHARMM19 force-field322 
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and the FACTS123 implicit solvent model with the surface tension coefficient set to 0.015 kcal mol-

1 Å-2 23,24,192 and simulation snapshots extracted in 10 ps intervals. For all simulations, we used 

Langevin dynamics with a friction coefficient of 5 ps-1 on all heavy atoms. The duration of each 

simulation per temperature was 1,000 ns for both peptides, independently, for an aggregate total 

simulation duration of 16 μs per peptide. Upon completion of the finite dilution simulations, we 

extracted the 100,000 simulation snapshots of the 300 K trajectory for each peptide independently.  

9.2.4 Categorization of β-sheet Structures and Key β-sheet Interactions 

We analyzed the formation of intermolecular β-sheet structures and categorized the 

intermolecular β-sheet patterns into antiparallel, parallel, or mixed 2-, 3-, 4-, 5-, 6- stranded β-

sheet structures, similarly to refs22,23,24,40,130,131,192 for designed peptides KYRSGAITIGY and 

KYKGAIIGNIK. The intermolecular β-sheet structures were identified using DSSP185 and 

categorized using in-house FORTRAN programs. We calculated the (%) moving average number 

of structures containing antiparallel, parallel, or mixed β-sheet structures in each of the 2-,3-,4-,5-

, 6- stranded peptides. For both designed peptides, the analysis showed that the peptides 

preferentially form antiparallel β-sheet structures over parallel β-sheet structures. Following this 

analysis, we focused our further analysis on 4-,5-, and 6- stranded antiparallel β-sheet structures, 

which we considered more complex compared to 2- and 3- stranded β-sheet22,23,24,40,130,131,192, and 

thus can potentially correspond to patterns naturally occurring fibrils. Thus, we extracted the 4-, 

5-, and 6-stranded antiparallel β-sheet structures from each of the simulation trajectories 

corresponding to the two designed peptides and calculated the (%) probability of a pair of residues 

belonging to separate adjacent peptides to be involved in a β-bridge conformation. From this 

analysis, we identified the predominant configuration (parallel or antiparallel) and key patterns of 

β-sheet interactions which indicate the key amyloidogenic regions of each designed peptide. The 
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specific analysis, in addition, also identifies if the designed residues are predominantly 

participating in the β-sheet interactions, which would hinder their availability for functionality. 

9.2.5 Identification of Well-Aligned and Highly Ordered β-sheet Conformation Using Polar (P1) 

and Nematic (P2) Order Parameters 

We assessed the extent of peptide alignment and relative orientation of the individual 

peptides within the 4-,5-, and 6-stranded antiparallel β-sheet structures using the P1 and P2 

parameters. The analysis was performed in line with refs.22,23,24,40,130,131,192, with the unit vector, 

, defined as the segment spanning from the Cα atom of residue 4 to the Cα atom of residue 9. 

According to the computed P1 and P2 parameters, among the 4-,5-, and 6-stranded antiparallel β-

sheet structures, highly populated and highly ordered β-sheet structures were observed only in the 

4-stranded antiparallel β-sheet structures for both peptide systems. This can be attributed to the 

limited number of peptides within the finite dilution self-assembly simulations. Thus, we focused 

our analysis on 4-stranded antiparallel β-sheet structures formed by the two designed peptides and 

constructed free energy landscapes for each peptide system using two dimensional probability 

P(P1,P2) and Eq. 9.1.  

 

 9.1 

 

From the free energy basins within the free energy landscapes, we extracted the highly 

ordered and well-aligned β-sheet structures for each peptide system.  

9.2.6 Structural Analysis of the 4-strandend Highly Ordered and Well-Aligned Structures 
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We determined the solvent accessibility of the designed residues to assess their exposure 

and their potential functionality. The degree of solvent accessibility of residues at positions 1, 2, 

3, and 11 within the extracted highly ordered and well-aligned 4-stranded antiparallel β-sheet 

structures for both designed peptides, KYRSGAITIGY and KYKGAIIGNIK, was determined 

using Wordom141,142. Similarly to refs.24,192 , we calculated the solvent accessible surface area : 

total accessible surface area ratio of residues at positions 1, 2, 3, and 11 of the two central peptides 

in each highly ordered and well-aligned 4-stranded antiparallel β-sheet structures. As the degree 

of solvent accessibility of the two outer peptides should be artificially high due to the absence of 

interacting peptides on both sides, their values are not reported. The total accessible surface areas 

were defined as the maximum solvent accessible surface area (SASA), which is the SASA of the 

set of residues with all other atoms removed as in refs.24,192.  

9.3 Computational Results 

9.3.1 Categorization of β-sheet Structures and Key β-sheet Interactions 

We investigated the self-assembly properties of designed peptides KYRSGAITIGY and 

KYKGAIIGNIK using independent REMD simulations. Within the simulations, the peptides 

frequently formed β-sheet structures comprising 2-, 3-, 4-, 5-, and 6-stranded β-sheet structures 

(Figure 9.1). 2-stranded β-sheet structures were observed in both parallel and antiparallel 

conformations (Figure 9.1). 3-,4-,5-, and 6-stranded β-sheet structures were observed in parallel, 

antiparallel, and mixed conformations (Figure 9.1). As in refs.22,23,24,40,130,131,192, structures 

comprising mixed conformations, in which the peptides are forming at least one pair of parallel 

and one pair of antiparallel β-sheet conformations, or complex conformations, in which one 

peptide is forming β-sheet interactions with more than two separate peptides, were not investigated 

as they are not expected to be representative of naturally occurring amyloid fibrils. In line with the 
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dominant configuration of the designable scaffolds that were used to produce the designed peptides 

sequences, both peptides showed a tendency to form antiparallel β-sheet structures over parallel 

β-sheet structures (Figure 9.1C to 9.1J). Thus, we extracted the antiparallel 4-,5-, and 6-stranded 

β-sheet structures for further analysis as they are more likely to represent naturally occurring fibrils 

than the less complex 2- and 3-stranded β-sheet structures. 

Using these structures, we calculated the propensities of any two residues belonging to 

separate adjacent β-sheet bonded peptides to form intermolecular β-bridge interactions (Figure 

9.2). In the designed peptide KYRSGAITIGY, the residues involved in β-bridge interactions were 

predominantly within the GAITIG motif (Figure 9.2A, 9.2C, 9.2E). In the designed peptide 

KYKGAIIGNIK, the residues involved in β-bridge interactions were predominantly within the 

GAIIGN motif (Figure 9.2B, 9.2D, 9.2F). Importantly, for both peptides, the designed residues are 

not involved in β-bridge interactions, indicating that the designed residues may be exposed and 

possess functional properties, including cell penetration and DNA binding.   
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Figure 9.1 Moving averages of the fraction (%) of conformations with intermolecular β-sheets (Y-
axis) in the REMD simulations at 300 K with respect to time (X-axis) for KYRSGAITIGY and 
KYKGAIIGNIK. Figures A, C, E, G, and I correspond to 2-, 3-, 4-, 5-, and 6-stranded β-sheets of 
peptide KYRSGAITIGY, respectively. Figures B, D, F, H, and J correspond to 2-, 3-, 4-, 5-, and 
6-stranded β-sheets of peptide KYKGAIIGNIK, respectively. Purple color corresponds to 
antiparallel β-sheets, green color corresponds to parallel β-sheets, and blue color corresponds to 
mixed β-sheets. 



 249 

 

Figure 9.2 Density (%) maps of residue pairs forming intermolecular β-bridges for 
KYRSGAITIGY and KYKGAIIGNIK. The pairs of residues belong to nearest neighboring 
peptides participating in an isolated β-bridge or extended β-sheet conformation in the REMD 
simulations at 300 K. Figures A, C, and E correspond to 4-, 5-, and 6-stranded antiparallel 
configurations of peptide KYRSGAITIGY respectively. Figures B, D, and F correspond to 4-, 5-, 
and 6-stranded antiparallel configurations of peptide KYKGAIIGNIK respectively.  
 



 250 

9.3.2 Identification of Well-aligned and Highly Ordered β-sheet Conformation Using Polar (P1) 

and Nematic (P2) Order Parameters 

We determined the degree of alignment and order of the peptides within the 4-,5-, and 6-

stranded antiparallel β-sheet structures based on P1 and P2 parameters. For both of the designed 

peptides, KYRSGAITIGY and KYKGAIIGNIK, similarly to our previous studies23,24,192, highly 

ordered and well-aligned antiparallel β-sheet structures predominantly occurred within 4-stranded, 

rather than 5- or 6-stranded, antiparallel β-sheet structures, potentially due to the larger population 

of 4-stranded antiparallel β-sheet structures. Thus, we constructed free energy landscapes based 

on the P1 and P2 parameters corresponding to the 4-stranded antiparallel β-sheet structures (Figure 

9.3A, 9.3B). From the free energy basin, indicated by black dotted lines in Figure 9.3A, 9.3B, we 

extracted the highly ordered and well-aligned 4-stranded antiparallel β-sheet structures, as these 

structures can potentially correspond to elementary β-sheet structural units of the naturally 

occurring fibrils. Representative conformations of the 4-stranded antiparallel β-sheet structures are 

shown in Figure 9.3C, 9.3D. The ensemble of highly ordered and well-aligned 4-stranded 

antiparallel β-sheet structures for both the designed were collected and analyzed below to 

determine the functionality of the designed residues. 
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Figure 9.3 Free energy surfaces constructed from the 2-D probabilities of order parameters P1 and 
P2 and molecular graphics images of representative structures of KYRSGAITIGY and 
KYKGAIIGNIK extracted from the free energy minima. Upper panel: Free energy surfaces 
constructed from the 2-D probabilities of order parameters P1 and P2, calculated using the 4-
stranded antiparallel β-sheets observed in the replica exchange MD simulations at 300 K. Surface 
in panel A, and B, correspond to 4-stranded antiparallel β-sheets formed by KYRSGAITIGY, and 
KYKGAIIGNIK, respectively. The global free energy minima in the plots are located in basins 
which are marked using black dashed lines, and within these we observe the presence of highly 
ordered and well-aligned β-sheet conformations. Bottom panel: Molecular graphic images of 
representative highly ordered and well-aligned conformations of peptides KYRSGAITIGY, and 
KYKGAIIGNIK in antiparallel arrangement. The peptides’ backbone is shown in tube 
representation and the backbone atoms forming β-bridges are shown in thin licorice representation 
and are colored by name, and the β-bridge associated hydrogen bonds are shown using black 
dashed lines. The peptides are colored in blue, red, gray and orange from left to right. Residue 
moieties 4-9 in each of the two designed peptides form amyloid-zipper like patterns and are shown 
in transparent surface representation. Side chain atoms of residues at positions 1, 2, 3, and 11 are 
shown in thick licorice representation, and are colored by name. 
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9.3.3 Structural Analysis of the 4-Strandend Highly Ordered and Well-Aligned Structures 

In the 4-stranded highly ordered and well-aligned antiparallel β-sheet structures of the 

designed peptides, the amyloid steric zipper comprises residues GAITIG for KYRSGAITIGY and 

residues GAIIGN for KYKGAIIGNIK, in line with our previous analysis (Figure 9.2). Apart from 

this, we observe that the designed residues of both peptides occasionally form specific interactions 

to neighboring residues. Within the structures of KYRSGAITIGY, the sidechain amide group of 

Lys1 occasionally forms hydrogen bonds to the backbone oxygen of Gly10 of an adjacent peptide 

(e.g., between peptides 1-2, 2-3, 3-4), and rarely forms hydrogen bonds to the backbone oxygen 

of Tyr11 of an adjacent peptide and to the sidechain hydroxyl group of Ser4 of a non-adjacent 

peptide (e.g., between peptides 1-3, 2-4). The side chain of Tyr2 occasionally forms hydrogen 

bonds to the sidechain hydroxyl group of Ser4 of a non-adjacent peptide, π-π interactions with Y11 

of an adjacent peptide, and cation-π interactions with Arg3 of a non-adjacent peptide, and rarely 

forms hydrogen bonds to the backbone atoms of Gly10 and Tyr11. The side chain of Arg3 

occasionally forms cation-π interactions with Tyr11 of an adjacent peptide and hydrogen bonds 

with the backbone oxygen or side chain hydroxyl group of Ty11 of an adjacent peptide. The side 

chain of Tyr 11 occasionally forms cation-π or hydrogen bonds to the side chain of Arg3 of an 

adjacent peptide and π-π interactions with Tyr2 of an adjacent peptide, and rarely forms hydrogen 

bonds to the backbone oxygen of Ser4 of an adjacent peptide. Within the structures of 

KYKGAIIGNIK, the sidechain amide group of Lys1 rarely forms cation-π or hydrogen bonds with 

the side chain of Tyr2 of a non-adjacent peptide. The side chain of Tyr2 rarely forms hydrogen 

bonds to the backbone atoms of Ile10 or Lys11 of an adjacent peptide, sidechain atoms of Asn9 of 

an adjacent peptide, and sidechain amide group of Lys1 of a non-adjacent peptide. The side chain 

amide group of Lys3 occasionally forms hydrogen bonds to the backbone oxygen of Lys1 of a 
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non-adjacent peptide. The side chain amide group of Lys11 rarely forms hydrogen bonds to the 

side chain atoms of Tyr2 of a non-adjacent peptide or Asn9 of an adjacent peptide.  

Motivated by the occasional formation of interactions formed by the designed residues in 

both the peptides, we determined the degree of solvent accessibility of the designed residues within 

the highly ordered and well-aligned 4-stranded antiparallel β-sheet structures to assess their 

exposure and thus their potential functionality. The degree of solvent accessibility of the designed 

residues are presented in Table 9.1. For both of the designed peptides, KYRSGAITIGY and 

KYKGAIIGNIK, the degree of solvent accessibility of all four designed residues, with respect to 

the initial scaffolds, are above 0.40. According to our previous study on a peptide with sequence 

NH3+-RGDSGAITIGC-CONH2, the solvent accessibility of rationally designed Cys was 0.34 ± 

0.09, which was experimentally shown to be adequate for metal binding properties24. Thus, all of 

the designed residues of the two designed peptides of the current study should be considered 

adequately solvent exposed for DNA and cell penetrating functionality. Combined with their 

sufficient degree of exposure, the low instances of the designed residues interacting with other 

residues within the highly ordered and well-aligned 4-stranded antiparallel β-sheet structures 

supports that the designed residues could yield potentially cell penetrating and DNA binding 

functionality. Experiments evaluating the computationally designed materials functional 

properties are currently being performed in Dr. Mitraki’s lab, and by additional experimentalists 

at the University of Crete.  
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Table 9.1 Degree of solvent accessibility of the four designed residues in the two designed peptides 
KYRSGAITIGY and KYKGAIIGNIK. The degree of solvent accessibility is calculated for the 
sidechains of the designed residues based on the definitions provided in the ref24,192. The designed 
residues of the peptide sequences are indicated in bold text. 
 

Peptide 
Residue 

Position 1 

Residue 

Position 2 

Residue 

Position 3 

Residue 

Position 11 

NH3+-KYRSGAITIGY-CONH2 0.58 ± 0.06 0.45 ± 0.10 0.49 ± 0.08 0.43 ± 0.11 

NH3+-KYKGAIIGNIK-CONH2 0.63 ± 0.06 0.42 ± 0.09 0.53 ± 0.06 0.53 ±0.07 

 

9.4 Concluding Remarks 

 In this study, we rationally designed two peptides with sequences KYRSGAITIGY and 

KYKGAIIGNIK using a combination of data-driven, computational and rational approaches. The 

two peptides were subsequently investigated for their self-assembly properties. Within the 

simulations, we observed the frequent formation of intermolecular β-sheets for both the peptides 

indicating their self-assembly properties. We also observed that both the designed peptides formed 

antiparallel as their dominant configuration in line with the configuration of the designable 

scaffolds from which each of them was designed. The key β-sheet forming residue motifs of the 

peptides KYRSGAITIGY and KYKGAIIGNIK are predicted to be GAITIG and GAIIGN, 

respectively, indicating the potential functionality of the designed residues which are outside the 

predicted amyloid core. Subsequently, the designed residues were predicted to be sufficiently 

solvent exposed suggesting their potential functionality for cell-penetration and DNA binding 

properties. Experiments evaluating the computationally designed materials functional properties 

are currently being performed in Dr. Mitraki’s lab, and by additional experimentalists at the 

University of Crete. 
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9.5 Innovation in Methods 

 In this study, we innovatively used a combination of rational and data-driven approaches 

to design two peptides with potential cell-penetration and DNA binding properties. In contrast to 

our previous study where materialphore models were used to computationally design peptides, 

here, we used sequence-based bioinformatics data to enable the performed design. This indicates 

the versatility of the computational protocol presented in chapter 7 to operate under different type 

of constraints. 

9.6 New Findings and Potential Applications 

 In this study, we aimed to design amyloid materials that can act as nucleic acid delivering 

agents. We have observed that CPPs are one group of peptides which were frequently used to 

deliver nucleic acids to cells. We have also observed that CPPs have a majority of positively 

charges residues, thus we hypothesized that positively charged amyloid materials can act as DNA 

delivering agents with cell-penetration abilities. Using a combination of computational, and 

rational approaches we have designed two peptides with cell-penetration and DNA binding 

abilities. The two peptides were subsequently computational investigated for their (i) self-

assembly properties, and (ii) the exposure of designed residues. Our computational results suggest 

that both the peptides could potentially have cell-penetration and DNA binding properties.  
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10. COMPUTATIONAL DESIGN OF FUNCTIONAL AMYLOID MATERIALS WITH CELL 

ADHESION AND CALCIUM/STRONTIUM BINDING PROPERTIES 

10.1 Introduction 

10.1.1 Overview and Significance 

Increasing number of people each year suffer from diseases related to bone and joints, 

accidents and traumas that affect bones323. Bone tissue engineering is the development of viable 

alternates that can perform the functions of a bone when they are replaced25. Seeding porous 

scaffold which is shaped in the form of desired bone with cell and growth factors is one of the 

most popular strategies in bone tissue engineering25. The porous scaffolds are subsequently 

cultured and implanted to induce and direct the growth of the desired bone25.  

Commonly used tissue engineering scaffolds such as collagen, gelatin, hyaluronic acid, 

chitosan, alginate, and decellularized extracellular matrix (ECM) are typically derived from animal 

or plant sources. Native tissues are composed of hierarchical organization of biological structures 

from the nanometer to the centimeter scale and their complex biological functions closely link to 

their high order organization; therefore such scaffolds need to mimic the hierarchical structure of 

natural tissues in order to provide the necessary structural and biomechanical framework. 

Mimicking the ECM can therefore be the best strategy to develop advanced functional materials 

to control cellular behavior and to determine cell fate. Biological self‐assembly offers a versatile 

bottom‐up fabrication technology to construct such nanoscale materials imitating the complex 

hierarchical order of natural tissues. In particular, protein and peptide self‐assembling scaffolds 

are gaining increasing interest compared to synthetic biodegradable polymers.10  
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Bone matrix proteins such as bone sialoprotein and osteopontin contain the sequence motif 

Arg-Gly-Asp (RGD) 324. Therefore, RGD bearing self-assembling peptides could serve as ideal 

scaffolds to induce bone tissue growth and biomineralization, to induce osteogenic differentiation 

and can used for the functionalization of bone implants194,195,196. In addition, as discussed in 

chapters 3 and 4, RGD is the principal integrin-binding domain present within extracellular matrix 

(ECM) proteins such as fibronectin, vitronectin, fibrinogen, osteopontin, and bone sialoprotein; due to 

the capacity of the RGD sequence to bind to multiple integrin species, synthetic RGD peptides offer 

several advantages for biomaterial applications. 

Moreover, bone is made from calcium phosphate in the form of the mineral hydroxyapatite 

and 99% of the human bodies’ calcium is stored in bones325. Calcium functions as a stimulant for 

bone cell differentiation, proliferation of osteoblasts (cells that secret the matrix for bone 

formation), bone metabolism, and bone mineralization323,325,326,327,328,329. Specifically, calcium 

regulates the proliferation of osteoblasts by increasing the expression of insulin like growth factors 

(IGFs)325,327. Additionally, the recruitment, differentiation and survival of bone cells is modulated 

by seven transmembrane-spanning extracellular calcium sensing proteins327. For example, Tejeda-

Montes et al.330 combined cell attachment motifs such as RGDS or REDV with the calcium 

mineralizing sequences within the same elastin-like recombinamer membrane in order to test any 

synergistic effects towards bone regeneration applications, and reported on the enhanced 

mineralization, osteogenesis, and in vivo bone regeneration properties of a bioactive elastin-like 

recombinamer (ELR) membrane.   

Strontium is generally also stored in the human body in the bones which replaces calcium 

in some of the hydroxyapatite crystal lattices325. It has been shown that low concentrations of 

strontium can stimulate the bone formation325,331,332,333,334,335,336. Specifically, strontium has the 
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ability to increase bone mass through the activation of osteoblast (bone forming) activity and 

suppression of osteoclast (bone resorbing) function. This also results in the improvement of bone 

mechanical properties in normal humans. The recognition of strontium effects on bone has led to 

its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies 

aiming at bone repairing and regeneration. For example, Place et al.337 proposed a bone tissue 

engineering approach in which arginine-glycineaspartic acid (RGD)-modified alginate hydrogels 

were crosslinked with bioactive strontium, and calcium. It has been shown that strontium released 

from the gel promotes the osteo-differentiation as shown by the increase of alkaline phosphatase 

activity, suggesting that the Sr-containing gel could represent a new strategy in bone tissue 

engineering. 

Organic/inorganic composite scaffolds, particularly for bone tissue engineering 

applications, made of bioceramics or bioactive glasses and biodegradable polymers338, often 

include metallic ions as part of the bioceramic or bioactive glass structural composition. These 

inorganic materials enable metal ion release during their degradation in vitro or in vivo339,340. In 

addition, a wide range of biomaterials have been developed for tissue-engineering applications, 

which include the RGD motif as a bioactive signal sequence motif that could be recognized by 

cells via integrins (cell transmembrane receptors).10 Interaction between integrins and bioactive 

epitopes of ECM could activate signal transduction mechanisms, which can induce specific 

cellular functions including adhesion, migration, proliferation and differentiation.10  

10.1.2 Goal 

Taking into account the potential advanced properties of amyloid materials, including their 

potential biocompatibility and excellent mechanical properties, and the ability of computational 

design approaches to introduce changes at their sequence level to yield specific functionality (i.e., 
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binding to specific ions/compounds) through our computation protocol presented in chapter 7, here 

we aimed to design amyloid materials which combine cell-adhesion and calcium/strontium binding 

properties.  

10.1.3 Hypothesis 

We hypothesized that our aim can be achieved through the use of our computational design 

protocol for the functionalization of amyloid materials, by using as inputs: 

(1) The flexible structural templates of the amyloid designable scaffolds YATGAIIGNII 

(chapter 5 and ref23), and 

(2) An ensemble of materialphore models extracted from a set of experimentally-resolved 

protein structures from the PDB entailing information on how amino acids bind to 

calcium and strontium ions. 

Following knowledge gained in previous chapters 2, 3 showing the beneficial effect of 

introducing the RGD motif at the N-terminal domain for its exposure and functionality, we 

hypothesized that cell-adhesion properties can be achieved by introducing the well-known, and 

widely studied in the current thesis, cell-adhesion motif RGD at the amino acid positions 1, 2, 3 

as in chapter 2, and 3 and refs24,192 and additional studies.178,193 Based on that, we hypothesized 

that functionalization and binding to calcium, and strontium ions could be achieved by the 

introduction of mutations at residue positions 9, 10 and 11, in combination with the presence of an 

aspartic acid at position 3, as a fixed mutation; actually the fixed mutation at position 3 can be 

justified by the fact that most materialphore models collected consist of amino acids binding to 

calcium and strontium are rich in aspartates. 
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10.1.4 Objectives Accomplished 

The computational protocol described in chapter 7 has been implemented to 

computationally design amyloid materials with cell adhesion and calcium/strontium binding 

properties. The computational design was performed using the amyloid designable scaffolds 

formed by the peptide YATGAIIGNII (chapter 5 and ref23) with the amino acid positions 1, 2, and 

3 mutated to Arg, Gly, and Asp for cell-adhesion properties. The designable positions 9, 10, and 

11 were independently designed for calcium and strontium based on the materialphore models 

calculated for the two specific ions. Subsequently, following the procedure of the protocol, MD 

simulations and two-component computational validation were performed for a set of selected 

designed peptides to evaluate their binding ability to calcium and strontium. In what follows, we 

analytically describe the methods and results of computational designing amyloid material with 

cell adhesion and calcium/strontium binding properties. 

10.2 Computational Methods 

10.2.1 Selection of an Amyloid Designable Scaffold, Structural Analysis and Determination of its 

Mutable Positions 

In chapter 5, we have investigated the amyloid self-assembly properties of the peptide with 

sequence YATGAIIGNII23 by performing self-assembly REMD simulations according to the 

protocol by Tamamis and Archontis130. Within the simulations, we observed rich β-sheet content 

and thus we classified the observed β-sheet conformations into 2-, 3-, 4-, 5-, and 6-stranded 

antiparallel, parallel, and mixed β-sheet conformations. We observed that the peptide 

predominantly forms antiparallel β-sheets and GAIIG motif primarily forms the β-sheet core. We 

also observed that the residues at the termini were not participating in β-sheets and solvent 

exposed. Thus, we postulated that the specific peptide can be considered as a designable scaffold 
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and the terminal amino acids can be amenable for modification yielding the desired functionality. 

We collected the top 50 highly ordered and well-aligned conformations formed by the peptide 

produced with in the simulations; these structures were used as flexible structural templates in the 

subsequent design purposes. 

10.2.2 Uncovering How Amino Acid Motifs Bind to Calcium and Strontium Ions According to 

Experimentally Resolved Protein Structures 

For the purpose of the current chapter, we collected a small subset of the experimentally 

resolved structures of proteins binding to calcium and strontium ions. We collected sixteen 

experimentally resolved structures of proteins binding to calcium ions with the following PDB 

IDs: 3ws2, 4rhz, 4tx8, 4x3n, 4y5q, 4yu5, 4zg7, 4zpl, 4zps, 5aqe, 5ar2, 5b5s, 5bwg, 5cxf, and 5dpe; 

we collected fifteen experimentally resolved structures of proteins binding to strontium ions with 

the following PDB IDs: 1dd9, 1oo0, 1oq7, 1qrk, 1s8f, 1tjm, 1wc3, 2glq, 2woh, 3e4p, 3ws5, 4bw7, 

4g25, 4iak, and 4kbn. From each experimentally resolved protein structure, we independently 

collected amino acid : calcium and strontium ion binding motifs, to construct materialphore 

models, similar to chapters 6, and 8 (which are defined as the set of amino acids whose side chain 

center of mass was within 6.5 Å of the resolved calcium and strontium ion). From each of the 

binding motif, we identified, calculated, and stored the identity of the amino acids as well as (i) 

distances between amino acid pairs, and (ii) distances between an amino acid and the resolved ion. 

Points (i) and (ii) along with the identities of the amino acid were defined as primary and secondary 

materialphore models in the chapters 6, 7, and 8. Both materialphore models combined can capture 

the geometric properties of the binding motifs. 
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10.2.3 Optimization-Based Design of Functional Amyloid Materials Combining Cell-adhesion 

and Calcium/Strontium Binding Properties  

We used both the flexible structural templates of the designable scaffold YATGAIIGNII23 

collected in section 10.2.1 and primary materialphore models collected in the section 10.2.2 as 

inputs to computationally design amyloid material with both cell-adhesion and calcium/strontium 

binding properties following the computational protocol described in chapter 7. Through the 

optimization-based computational design model, we aimed to introduce mutations at the positions 

1, 2, 3, 9, 10, and 11 of the designable scaffold YATGAIIGNII (intended mutable positions in 

bold). From previous studies, we observed the cell-adhesion properties for a peptide could be 

achieved through the incorporation of RGD motif in a peptide24,192 (presented in chapters 3, and 

4). Thus, we fixed the mutable positions 1, 2, and 3 to arginine, glycine, and aspartic acid (RGD) 

on the designable scaffold through the incorporation of suitably selected constraints. To achieve 

the calcium/strontium binding properties, we mutated the designable positions 3 (fixed as aspartic 

acid), 9, 10, and 11 by minimizing the energy due to mutations with respect to the constraints of 

primary materialphore models. We independently solved two optimization-based design models, 

one for calcium binding, with primary materialphore models collected for calcium ions as input, 

and one for strontium binding, with primary materialphore models collected for strontium ions as 

input. From the solution sets, namely, (i) designed peptides with cell-adhesion and calcium 

binding, and (ii) designed peptides with cell-adhesion and strontium binding, we extracted the 

designed peptides which were common to both sets since we aimed to design peptide(s) with cell-

adhesion and calcium/strontium binding. This resulted in seven peptides which were subjected to 

further investigation described as follows. 
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10.2.4 MD Simulation-based Modeling of the Designed Amino Acids on the Designable Scaffold 

and Computational Validation against Primary and Secondary Materialphore Models 

Appropriate mutations were introduced through CHARMM110 on one of the top 50 flexible 

structural template of the designable scaffold to create a starting conformation for each of the 

selected designed peptides’ elementary β-sheet structural units. We performed a short 20 ns (at 

300 K) simulation for each of designed peptide with water modeled implicitly using FACTS19123 

solvation model. GAIIG core for each of designed peptide was constrained in order to maintain 

the structural integrity of the β-sheets. Additional technical details for the simulations are detailed 

in the chapter 6 and ref22. Upon completion of the simulations, we extracted snapshots at 10 ps 

interval which resulted in 2000 snapshots for each of the designed peptide.  

Subsequently, we performed the two-component computational validation on the collected 

simulation snapshots for each of the designed peptide as described in the chapter 7. In summary, 

in the first component, we evaluated the ability of the designed amino acids to mimic the slice of 

the primary materialphore model from which the specific design originated. The evaluation was 

done by comparing the distances between the designed amino acids’ side chain center of mass with 

the corresponding distances in the slice of the primary materialphore model. In the second 

component of the computational validation, we evaluated the ability of the hypothetical center of 

mass of the calcium/strontium ion and designed amino acids to mimic the slice of the secondary 

materialphore model from which the specific design originated. The evaluation was done by the 

comparing the distance between the designed amino acid side chain center of mass and the 

hypothetical center of mass of the calcium/strontium ion with the corresponding distance in the 

slice of the secondary materialphore model. The second component of the computational 

validation was performed only on the designed pockets which passed the first component of the 
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computational validation. In addition, we also calculated the percentage of snapshots which passed 

the first component (designated as primary matches) and calculated the percentage of designed 

pockets that passed the second component given that they passed the first component (designated 

as secondary matches) as presented in chapter 7. Both the components of computational validation 

were performed independently for calcium and strontium binding properties for each of the 

designed peptides. 

10.2.5 MD Simulations Investigating the Self-assembly Properties of the Designed Peptides and 

Final Computational Validation against Primary and Secondary Materialphore Models 

The resulting designed peptides following the computational validation were subjected to 

self-assembly replica exchange MD (REMD) simulations, analogously to the refs22,23,24,130,131,192. 

In summary, the self-assembly simulations were performed using CHARMM110 with FACTS19123 

implicit solvation model with a surface tension coefficient of 0.015 kcal mol−1 Å−2. Langevin 

dynamics were employed with a 5.0 ps-1 friction coefficient on all non-hydrogen atoms of the 

designed peptides. Sixteen temperatures (290, 295, 300, 310, 305, 315, 321, 327, 333, 339, 345, 

352, 359, 366, 373 and 380 K) were employed with a total simulation time of 16 μs and each 

replica exchange run’s duration equal to 10 ps. Upon completion of the simulations, snapshots at 

300 K were extracted at 10 ps intervals which resulted in 10,000 snapshots. The extracted 

snapshots were analyzed according to Tamamis and Archontis protocol130 summarized in chapter 

2. 
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10.3 Computational Results 

10.3.1 Selection of an Amyloid Designable Scaffold, Structural Analysis and Determination of its 

Mutable Positions 

We used the elementary β-sheet structural units formed by the amyloid designable scaffold 

YATGAIIGNII23 (elucidated in chapter 5) as flexible structural templated for the computational 

design with only antiparallel β-sheets considered for design purposed in this chapter. Residue 

positions 1, 2, 3, 9, 10, and 11 were considered mutable positions on the top50 extracted highly 

ordered and well-aligned conformations were used as the flexible structural templates in the 

optimization-based design model (in what follows). 

10.3.2 Uncovering How Amino Acid Motifs Bind to Calcium and Strontium Ions According to 

Experimentally Resolved Protein Structures 

We collected sixteen and fifteen experimentally resolved protein structures for calcium and 

strontium ions, respectively. From the collected protein structures, we extracted materialphore 

models for both the ions, independently. Within a binding pocket of an ion interacting with amino 

acids in a specific PDB structures, primary materialphore models represent the all possible relative 

distances of pairs of interacting amino acids, and secondary materialphore models represent all 

distances between the amino acids and the ions. Amino acids and ions in the aforementioned 

definitions are geometrically described by their centers of mass, and an amino acid is considered 

to be within a compound’s binding pocket if their distance is below 6.5 Å. 

Our analysis resulted in the extraction of multiple materialphore models for both the ions. 

The total number of materialphore models extracted for each ion is equal to the sum of the number 
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of experimentally resolved proteins multiplied by the number of complexed ions with each protein 

which resulted in 49 and 43 materialphore models for calcium and strontium respectively.  

In the present study, the number of designable residue positions is equal to two per peptide 

per binding pocket, and thus upon β-sheet formation, the total number of residue positions 

amenable for subsequent design in each binding pocket is four. Since the primary and secondary 

materialphore models can contain more than four amino acids interacting with the ions (as the 

number of amino acids interacting with the compound can be greater than four), we additionally 

considered “slices” of materialphore models to be used for subsequent design purposes. We 

followed a similar approach in chapters 6 and 8. For a given materialphore model, the slices 

represent combinations of four amino acids interacting with the compounds and are used as input 

information in the optimization-based design. 

10.3.3 Optimization-Based Design of Functional Amyloid Materials Combining Cell-adhesion 

and Calcium/Strontium Binding Properties 

We introduced the optimization-based design model detailed in the chapter 7. The 

optimization model aimed to introduce amino acids at the mutable, underlined residue positions of 

antiparallel flexible structural templates of the amyloid designable scaffold YATGAIIGNII. We 

independently solved two optimization-based computational design models for the design of 

amyloid-forming peptides combining, (i) cell-adhesion and calcium binding properties, and (ii) 

cell-adhesion and strontium binding properties. Positions 1, 2, 3 were mutated to RGD for cell-

adhesion, thus positions 9, 10, and 11 were the three mutable positions. Within the design, we 

aimed that the substituted amino acids could be placed to reproduce the geometry of a slice of 

primary materialphore for both the ions, independently, at least in a portion λ of the fifty 

antiparallel flexible structural templates. As in chapter 6, both λ (25% in this case) and the fact 
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that we allowed a specific deviation for the matching between the distances of introduced amino 

acids in the flexible structural template and the corresponding distances in the primary 

materialphore model, enabled our design and accounted for the difference in distances that could 

originate due to the different size of the substituted amino acids compared to the original amino 

acids Thr3, Asn9, Ile10 and Ile11.  

The optimization model was solved in such a way that primary materialphore model 

constraints were introduced first to eliminate number of substitutions and result in a total number 

of feasible number of solutions. Out of 203 possible solutions, design for calcium binding 

properties resulted in 31 designed peptide sequences and design for strontium binding properties 

resulted in 45 designed peptide sequences. Since we aimed to design peptides with cell-adhesion 

and both calcium/strontium binding properties, we extracted designed peptides which were 

common in both sets of solutions. This resulted in a total of seven peptides which were: 

RGDGAIIGDAD, RGDGAIIGDDA, RGDGAIIGDEN, RGDGAIIGADD, RGDGAIIGDNE, 

RGDGAIIGDTD, and RGDGAIIGTDD. The resulting seven peptides were investigated further 

below. For the selected limited number of materialphore models that were extracted overall the 

entire possible materialphore models available in the PDB, and for the solutions produced aiming 

at both calcium and strontium binding, we did not consider the energy minimization-based ranking 

provided by the objective function as a criterion to select the top solutions (or discard any peptides) 

due to low number of feasible solutions produced for further investigation. 

10.2.4 MD Simulation-based Modeling of the Designed Amino Acids on the Designable Scaffold 

and Computational Validation against Primary and Secondary Materialphore Models 

We performed short MD simulations at 300 K to investigate the ability of the designed 

peptides’ elementary β-sheet structural unit to form binding pockets resembling the materialphore 
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models from which their design originated. Upon completion of the simulations, we performed 

two-component computational validation as described in chapter 7. The percentage values of 

primary and secondary component of the validation are presented in Table 10.1. The designed 

peptides can be considered promising for further evaluation (see below) with the exception of 

RGDGAIIGTDD for its strontium binding properties. Nevertheless, all peptides were investigated 

analytically in what follows. 

 

Table 10.1 Designed peptide sequences for calcium/strontium binding and their corresponding 
first and second validation component percentage statistics based on short MD simulations. The 
validation statistics were calculated over snapshots extracted from the short MD simulations. The 
listed percentages for the first and second validation components correspond to the percentage of 
snapshots containing primary and secondary matches, within the snapshots containing primary 
matches, which were identified from the first validation component (see additional details in 
chapter 6 and ref22). Here, the designed pockets with four out of six distances falling within 1.5 Å 
and two out of six distances within 2.0 Å of the corresponding distances in primary materialphore 
models were considered primary matches and the designed pockets with all the four distances 
falling within 1.5 Å of the corresponding distances in the secondary materialphore models were 
considered secondary matches.  
 
 

 Calcium Strontium 

Peptide 
First validation 

component (%) 

Second validation 

component (%) 

First validation 

component (%) 

Second validation 

component (%) 

RGDGAIIGDAD 100.00 51.31 99.75 61.25 

RGDGAIIGDDA 100.00 68.88 100.00 62.53 

RGDGAIIGDEN 94.65 35.21 75.60 42.91 

RGDGAIIGADD 100.00 59.15 99.90 52.94 

RGDGAIIGDNE 97.90 36.62 50.10 38.24 

RGDGAIIGDTD 100.00 61.88 86.95 41.59 

RGDGAIIGTDD 99.40 30.62 99.45 9.70 
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10.2.5 MD Simulations Investigating the Self-assembly Properties of the Designed Peptides and 

Final Computational Validation against Primary and Secondary Materialphore Models 

The resulting seven peptides were investigated for their self-assembly properties using the 

self-assembly REMD simulations, analogously to the refs22,23,24,130,131,192.  Upon completion of the 

simulations, we collected 100,000 snapshots which corresponded to 1 μs for each of the seven 

designed peptides. We classified the observed β-sheet conformations in the simulations into 2-, 3-

, 4-, 5-, and 6-stranded antiparallel, parallel, mixed, and complex β-sheets. We observed that the 

designed peptides RGDGAIIGDTD, RGDGAIIGDAD, RGDGAIIGTDD, and RGDGAIIGADD 

showed an overall tendency to form antiparallel β-sheets (Figure 10.1) whereas the designed 

peptides RGDGAIIGDEN, RGDGAIIGDNE, and RGDGAIIGDDA showed an overall tendency 

to form parallel β-sheets (Figure 10.2). The three peptides which favored parallel configuration 

were discarded and not subjected to further investigation as the flexible structural templates on 

which the computational design was performed were antiparallel and the formation of the parallel 

β-sheets for the three peptides would disallow the formation of intended functional designed 

binding pockets. For the remaining four designed peptides, we analyzed the propensity of the 

peptides to form intermolecular β-sheet structure for the 4-, 5-, and 6-stranded antiparallel β-sheets 

(Figure 10.3). We observed that residues in the GAIIG core are the primary residues that are 

involved in β-sheet formation. We also observed that residues 3, and 9 in the designed peptides 

occasionally participated in β-sheet formation. We constructed free energy landscapes based on 

the P1 and P2 parameters corresponding to the 4-stranded antiparallel β-sheet structures (Figure 

10.4). From the free energy basin, we extracted the highly ordered and well-aligned 4-stranded 

antiparallel β-sheet structures, as these structures can potentially correspond to elementary β-sheet 

structural units of the naturally occurring fibrils. For the designed peptide RGDGAIIGDAD, we 
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did not observe the formation of highly ordered and well-aligned β-sheet conformations. Thus, the 

specific peptide was discarded from further investigation. For the designed peptides 

RGDGAIIGDTD, RGDGAIIGTDD, and RGDGAIIGADD the collected highly ordered and well-

aligned β-sheet conformation were subjected to two-component computational validation as 

described in Methods. The results of the computational validation are presented in the Table 10.2 

 

 

Figure 10.1 Moving averages of the fraction (%) of conformations with intermolecular β-sheets 
(Y-axis) in the REMD simulations at 300 K with respect to time (X-axis) for the peptides 
RGDGAIIGDTD, RGDGAIIGDAD, RGDGAIIGTDD, and RGDGAIIGADD. Figures A, E, I, M, 
and Q correspond to 2-, 3-, 4-, 5-, and 6-stranded β-sheets of peptide RGDGAIIGDTD, 
respectively. Figures B, F, J, N, and R correspond to 2-, 3-, 4-, 5-, and 6-stranded β-sheets of 
peptide RGDGAIIGDAD, respectively. Figures C, G, K, O, and S correspond to 2-, 3-, 4-, 5-, and 
6-stranded β-sheets of peptide RGDGAIIGTDD, respectively. Figures D, H, L, P, and T 
correspond to 2-, 3-, 4-, 5-, and 6-stranded β-sheets of peptide RGDGAIIGADD, respectively. 
Purple color corresponds to antiparallel β-sheets, green color corresponds to parallel β-sheets, and 
blue color corresponds to mixed β-sheets. 



 271 

 
Figure 10.2 Moving averages of the fraction (%) of conformations with intermolecular β-sheets 
(Y-axis) in the REMD simulations at 300 K with respect to time (X-axis) for the peptides 
RGDGAIIGDEN, RGDGAIIGDNE, RGDGAIIGDDA. Figures A, D, G, J, and M correspond to 
2-, 3-, 4-, 5-, and 6-stranded β-sheets of peptide RGDGAIIGDEN, respectively. Figures B, E, H, 
K, and N correspond to 2-, 3-, 4-, 5-, and 6-stranded β-sheets of peptide RGDGAIIGDNE, 
respectively. Figures C, F, I, L, and O correspond to 2-, 3-, 4-, 5-, and 6-stranded β-sheets of 
peptide RGDGAIIGDDA, respectively. Purple color corresponds to antiparallel β-sheets, green 
color corresponds to parallel β-sheets, and blue color corresponds to mixed β-sheets. 
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Figure 10.3 Density (%) maps of residue pairs forming intermolecular β-bridges for the peptides 
RGDGAIIGDTD, RGDGAIIGDAD, RGDGAIIGTDD, and RGDGAIIGADD. The pairs of 
residues belong to nearest neighboring peptides participating in an isolated β-bridge or extended 
β-sheet conformation in the REMD simulations at 300 K. Figures A, E, and I correspond to 4-, 5-
, and 6-stranded antiparallel configurations of peptide RGDGAIIGDTD, respectively. Figures B, 
and F correspond to 4-, and 5-stranded antiparallel configurations of peptide RGDGAIIGDAD, 
respectively. Figures C, G, and J correspond to 4-, 5-, and 6-stranded antiparallel configurations 
of peptide RGDGAIIGTDD, respectively. Figures D, H, and K correspond to 4-, 5-, and 6-stranded 
antiparallel configurations of peptide RGDGAIIGADD, respectively. 
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Figure 10.4 Free energy surfaces constructed from the 2-D probabilities of order parameters P1 
and P2, calculated using the 4-stranded antiparallel β-sheets observed in the replica exchange MD 
simulations at 300 K for the peptides RGDGAIIGDTD, RGDGAIIGDAD, RGDGAIIGTDD, and 
RGDGAIIGADD. Surface in panel A, B, C, and D correspond to 4-stranded antiparallel β-sheets 
formed by RGDGAIIGDTD, RGDGAIIGDAD, RGDGAIIGTDD, and RGDGAIIGADD, 
respectively. 
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Table 10.2 Designed peptide sequences for calcium/strontium binding and their corresponding 
first and second validation component percentage statistics based on REMD simulations. The 
validation statistics were calculated over the highly ordered and well-aligned β-sheet 
conformations extracted from the self-assembly REMD simulations. The listed percentages for the 
first and second validation components correspond to the percentage of snapshots containing 
primary and secondary matches, within the snapshots containing primary matches, which were 
identified from the first validation component (see additional details in chapter 6 and ref22). Here, 
the designed pockets with four out of six distances falling within 1.5 Å and two out of six distances 
within 2.0 Å of the corresponding distances in primary materialphore models were considered 
primary matches and the designed pockets with all the four distances falling within 1.5 Å of the 
corresponding distances in the secondary materialphore models were considered secondary 
matches. 
 

 Calcium Strontium 

Peptide 
First validation 

component (%) 

Second validation 

component (%) 

First validation 

component (%) 

Second validation 

component (%) 

RGDGAIIGTDD 97.00 26.55 86.20  10.78 

RGDGAIIGDTD 80.40 57.57 38.80 35.42 

RGDGAIIGADD 96.60 77.77 100.00 83.01 

 

10.4 Concluding Remarks 

 In this study, we aimed to computationally design peptides with potential cell-adhesion, 

calcium, and strontium binding properties. The computational design was achieved by 

implementing the generalized computational protocol presented in chapter 7 by using the amyloid 

designable scaffold YATGAIIGNII. The amino acid positions 1, 2, and 3 were mutated to Arg, 

Gly, and Asp for cell-adhesion properties and the positions 9, 10, and 11 were independently 

designed for calcium and strontium based on the materialphore models calculated for the two 

specific ions. Subsequently, MD simulations and two-component computational validation were 

performed for the designed peptides to evaluate their binding ability to calcium and strontium. Out 

of the seven designed peptides, the self-assembly simulations performed, and subsequent two-
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component computational validation performed indicated that the three peptides with sequences 

NH3+-RGDGAIIGTDD-CONH2, NH3+-RGDGAIIGDTD-CONH2, and NH3+-RGDGAIIGADD-

CONH2 could be considered for further computational and experimental investigation. According 

to the second component of validation (on the ability of an ion to be introduced in the pocket of 

the designed amino acid based on the materialphore model it originated from), the latter two 

peptides could presumably better incorporate both calcium and strontium binding properties. 

 

10.5 Innovation in Methods 

In chapter 8, we showed that the computational protocol presented in chapter 7 can be 

solved for multiple problems resulting in the design of multifunctional materials in terms of 

binding properties. In chapter 9, we used sequence-based bioinformatics data to enable the use of 

the computational protocol in tandem with rational approaches to suggest the design of two 

peptides with potential cell-penetration and DNA binding properties. Here, we combined 

sequence-based constraints in conjunction with the solution of two problems, one for each ion 

under investigation. We showed the capacity of the computational protocol to be combinedly used 

in designing functional amyloid materials combining multi-functional properties, including cell-

attachment introduced through a sequenced-based constraint (placement of RGD at first three 

positions), in tandem with binding to calcium and strontium ions, introduced through 

materialphore model-based constraints at positions 3, 9, 10 and 11, with position 3 constituting a 

“fixed” mutation as part of both aimed functionalities.  

10.6 New Findings and Potential Applications 

 In this study, we aimed to design novel potential tissue engineering scaffolds specifically 

for bone tissue engineering applications. From the previous studies, we have observed that bone 
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tissue engineering scaffolds have cell-adhesion properties and release metallic ions such as 

calcium, and strontium. The specific metallic ions are play a huge role in bone growth on the 

scaffolds. We aimed to use amyloid materials as scaffolds, as they could combine potential 

advanced properties such as potential biocompatibility, excellent mechanical properties, and the 

ability to introduce changes at their sequence level to yield specific functionality. We suggested 

the design of two peptides using our computational protocol, potentially incorporating cell-

adhesion, calcium binding, and strontium binding properties. These peptides have not been 

experimentally validated yet. 
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11. SUMMARY AND FUTURE SCOPE 

11.1 Summary 

Protein self-assembly is defined as the self-organization of the individual protein 

molecules, usually in a less ordered state, into high ordered three-dimensional protein 

architectures. The aggregation of protein into amyloid fibrils is a key example of protein self-

assembly, where individual proteins self-assemble into β-sheets perpendicular to the fibril axis. 

Even though amyloid self-assembly was discovered in the context of diseases, naturally occurring 

sequences from amyloid peptides were used as elementary blocks for the formation of amyloid 

materials. Functional amyloid materials have been rationally designed to bind ions, compounds, 

and surfaces (cell attachment) which resulted in several applications including the fields of tissue 

engineering, separations and drug delivery.  

Computational tools are increasing becoming powerful tools in predicting the structure of 

amyloid which enables the design of functional amyloid materials. Here, we developed new 

computational tools, and used them in tandem with existing computational tools and in 

combination with rational approaches to design novel functional materials.  We have successfully 

designed a bifunctional self-assembling peptide RGDSGAITIGC with cell-adhesion and metal-

binding properties. 24 The specific peptide could potentially be exploited to fabricate novel 

biomaterials with promising tissue engineering applications.24 Subsequently, we developed an in-

house computational design strategy to energetically stabilize and potentially functionalize an 

amyloid peptide fibril.192 We stabilized the fibrils formed by the peptide RGDSGAITIGC by 

introducing mutations at position 11 which resulted in the designed peptide RGDAGAITIGY.192 

In addition to stabilizing the fibril, the introduction of tyrosine at position 11 was computationally 

predicted to possess cross-linking properties.192  
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Subsequently, we aimed to computationally design amyloid materials on demand with the 

capacity to bind ions, compounds or possess cell-attachment properties. To achieve this, we 

identified self-assembling peptides with a β-sheet core and additional residue at the termini.23 The 

elementary β-sheet structural units formed by those peptides were referred by us as amyloid 

designable scaffolds.23 For example, we have elucidated that peptide sequences like 

YATGAIIGNII,23 and AGKGAIIGFIK22 can act as amyloid designable scaffolds as GAIIG can 

act as amyloidogenic core, and additional (e.g. 2-3) residues at both termini are outside the amyloid 

β-sheet, as glycine residues can act as β-turn promoters halting β-sheet elongation. 

Subsequently, we developed a computational protocol for the design of amyloid materials 

binding to an ion of interest.22 The protocol introduces mutations at the terminal non-β-sheet 

forming residues of an amyloid designable scaffold through an optimization-based computational 

model which mimics how amino acids bind to ions in materialphore models.22 Materialphore 

models represent how amino acids bind to ions according to the experimentally resolved structures 

containing the specific ion. The computational model simultaneously minimizes the energy due to 

the mutations aimed at stabilizing the bound conformation of the designed amino acids, as well as 

to avoid destabilizing the self-assembly properties of the designed peptides.22 The optimum 

designs were then computationally validated using a series of simulations and structural analysis 

to select the top designed peptides, which are predicted to form fibrils with ion binding 

properties.22 The computational developed was first applied for the design of amyloid materials 

with cesium ion deposition and capture properties.22 The designed amyloid materials could 

potentially be useful in the development of technologies to capture radioactive cesium ions from 

acidic wastewater conditions or as biocompatible materials removing cesium from blood.22 
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The developed protocol was subsequently formulated toward a generalized protocol to 

design amyloid materials that can bind to an ion or compound of interest. Additionally, the 

computational protocol was also generalized in such in a way that it can be used in combination 

with rational design approaches or intuition, such as introducing the motif RGD to combine cell 

adhesion properties. The resulting computational protocol was implemented to design and suggest 

functional amyloid materials binding to AD drugs, including donepezil and tacrine. Such 

potentially successful and experimentally validated amyloid materials designed could act as novel 

drug delivery carriers which can enhance the half-life and effectivity of current AD drugs and 

potentially the stabilization of cognition (enhancement of current AD treatments). The resulting 

computational protocol was also used in combination with data-driven approach (enabled by 

sequence-based bioinformatics data) to design amyloid materials with cell-penetration and DNA 

binding properties. Such potentially successful and experimentally validated could act as efficient 

nucleic acid delivery agents to the cell nuclei by effectively penetrating the cell membrane. Lastly, 

the resulting computational protocol was used in tandem with rational approaches to design 

functional amyloid materials combining cell-adhesion, calcium binding, and strontium binding 

properties. Such potentially successful and experimentally validated amyloid materials could act 

as bone tissue engineering scaffolds by releasing the specific metallic ions which play an important 

role in bone growth on the scaffolds. 

11.2 Future Scope 

This study laid the foundations for the computational design of functional amyloid materials, 

specifically for applications of binding to an ion/compound of interest. In what follows a list of 

potential improvements currently under consideration in the lab is provided: 
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1. Amyloid designable scaffolds: In this dissertation, we defined and elucidated the structure 

of amyloid designable scaffolds, representing short amyloid peptides with the capacity to 

self-assemble into amyloid-like self-assembled structures with exposed residues at the 

termini not participating in β-sheets. The elementary structural β-sheet unit of such 

scaffolds are used as input the computational functionalization-based design according to 

which functional amino acids are mutated on the scaffolds’ non-β-sheet forming residue 

positions. One significant limitation is associated with the limited number of amyloid 

designable scaffolds (and their corresponding elementary β-sheet structures) available, 

which are currently limited to the amyloid designable scaffolds formed by the peptides 

RGDSGAITIGC24, YATGAIIGNII23, and AGKGAIIGFIK22. Thus, the discovery of a 

series of amyloid designable scaffolds with diverse geometries particularly on the non-β-

sheet forming positions is a significant future direction which can significantly enhance the 

functionalization of materials and increase success rates in design. Such amyloid 

designable scaffolds can be inspired by similar approaches reported in our published 

studies.22,23 

2. Materialphore models: In this dissertation, we defined materialphore models to represent 

amino acid motifs and their corresponding geometries, extracted from experimentally 

resolved protein structures, denoting how amino acids bind to a specific ion/compound of 

interest. Such models were used as constraints in the computational functionalization-

based design, enabling the production of combinations of designed amino acids on the 

amyloid materials with the potential to bind an ion/compound of interest. Two related 

significant limitations of the currently produced materialphore models is that (i) all 

materialphore models extracted are considered equally important in the functionalization 
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based design without any prioritization on the most important and (potentially naturally) 

conserved amino acid motifs which are key for the recognition of an ion/compounds, and 

(ii) all amino acids within a materialphore model are considered equally important in the 

functionalization-based design without any prioritization of the most important amino 

acids within a model. Thus, the use of support vector machines is a direction currently 

considered in the lab to resolve this, and select the most important amino acids to be 

substituted during design. Such approaches could be used in the future to significantly 

expand the materialphore models which can be considered, as they would reduce the space 

by prioritizing the solutions; this could be helpful when the number of available 

materialphore models that can be extracted for specific ions/compounds is significantly 

large (e.g., calcium and strontium ions presented in chapter 10, where only a limited subset 

of all possible materialphore models was considered).  

3. The computational functionalization-based design is handled through the substitution of 

amino acids, by considering their energy in a coarse-grained representation and their ability 

to form the right pocket in a sufficiently small number of pockets (considered to be 

important for functionalization). Future considerations currently in Dr. Tamamis’ lab aim 

to improve the accuracy of energy representation by including an all-atom representation 

of the designed amino acids and the ion/compound, by taking into account additionally the 

actual interaction energy between the ion/compound with the designed amino acids. These 

will alleviate any issues with the limitations of the current considerations outlined above. 

4. The validation of the designed peptides is currently achieved in two stages. While the first 

stage is not computationally demanding, it may not provide an accurate representation of 

the self-assembled structures, and therefore, the second stage, at which the self-assembly 
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properties of the designed peptides are investigated computationally is needed. While the 

second stage is more accurate, its computational cost is prohibitive for including it in a 

potential server where users in the future could potentially use the capabilities of the 

computational design to validate the designed peptides. Future considerations currently in 

Dr. Tamamis’ lab aim at alleviating this by using other types of methods that do not 

necessarily need the use of computationally costly REMD simulations. In addition, the use 

of sequence-based prediction algorithms, including the ones outlined in chapter 2, could 

be used to improve the amyloid-predicting ability of the newly designed peptides, as an 

extra validation stage. 
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