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Abstract

JavaScript is a popular programming language widely used on both the browser and

the server sides. Researchers have extensively studied different aspects of the security

and privacy of JavaScript, for instance, the vulnerability detection of the server-side

Node.JS applications and the browser-side fingerprinting techniques. Despite the

research efforts, multiple challenges of JavaScript remain unsolved: on the server-side,

existing vulnerability detection approaches do not generalize to a wide range of popular

vulnerabilities and the detection rate is not satisfactory; on the client-side, service

providers can only fingerprint users within a single browser but not cross different

browsers.

In this dissertation, we propose a flow-, branch- and context-sensitive static

analysis approach to generate a novel graph structure, named Object Dependence

Graph (ODG), to address the server-side vulnerability detection challenges, and a

cross-browser fingerprinting method that utilizes multiple novel OS and hardware

level features to solve the client-side fingerprinting challenge.

On the server-side, ODG represents JavaScript objects as nodes and their relations

with Abstract Syntax Tree (AST) as edges, and allows users to detect multiple

types of vulnerabilities during and after the generation process of ODG and by graph

queries. Our evaluation shows that for server-side vulnerability detection, our approach

outperforms all the state-of-the-art JavaScript vulnerability detection tools in terms

of false-positive rate and false-negative rate. We apply our tool to detect six types of

vulnerabilities on top of an NPM package dataset, which correctly reports 241 zero-day

ii



vulnerable packages, and 81 of them are assigned with CVE identifiers.

On the client-side, our approach utilizes multiple novel OS and hardware level

features, such as those from graphics cards and CPUs, to achieve better accuracy and

stability. The evaluation shows that our approach can identify 99.24% of the browsers

and 84.64% of the devices, as opposed to 90.83% and 68.98% of the state-of-the-art

approaches, respectively.

Thesis Readers

Dr. Yinzhi Cao (Primary Advisor)
Assistant Professor
Department of Computer Science
Johns Hopkins University

Dr. Ryan Huang
Assistant Professor
Department of Computer Science
Johns Hopkins University

Dr. Rigel Gjomemo
Research Associate Professor
Department of Computer Science
University of Illinois at Chicago

iii



Dedicated to my great mother and father,

for their unconditional love and support.

You raise me up to more than I can be.

iv



Acknowledgements

First and foremost, I would like to express my most sincere gratitude and respect

to my advisor, Dr. Yinzhi Cao, for his treasured guidance and support throughout

my Ph.D. study. He guided me to find my research interests, helped me to shape

my research direction, timely pointed out the mistakes I made, and gradually pushed

me to be an independent researcher. His invaluable expertise and enduring support

formulated my research methodology and will continuously contribute to my research

in the future.

I would like to thank Dr. Ryan Huang and Dr. Rigel Gjomemo for serving as my

thesis committee members. Their thoughtful comments and feedback are crucial in

shaping the dissertation. I would also like to thank Dr. Justin Wang for his valuable

guidance during my two wonderful internships at Microsoft as my internship mentor.

I would like to express my appreciation to all the fellow members of SecLab at

Johns Hopkins University. Especially to my friends Shujiang Wu, Zifeng Kang, Jianjia

Yu, Mingqing Kang, Yuchen Yang, Bo Hui, and Haolin Yuan. I am also grateful to

the former lab members – Zhiheng Liu, Zhanhao Chen, Guanlong Wu, Jianwei Hou

and my roommate Yuan Xue. We had a great time together. Your friendship and

support were deeply rooted in my heart.

Last but not least, I wish to give my deepest thank to my parents Shecheng Li

and Aiwu Li, for their unconditional support and love overseas throughout my Ph.D.

study. I would also like to give special thanks to my fiancee Xueqi Ren, who stood by

v



me during my hardest time and encouraged me for years.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Node.js Vulnerability Detection . . . . . . . . . . . . . . . . . . . . . 1

1.2 (Cross-)browser Fingerprinting . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Detecting Node.js Prototype Pollution Vulnerabilities

via Object Lookup Analysis . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1.1 Why is the package vulnerable? . . . . . . . . . . . . 11

2.2.1.2 How does ObjLupAnsys detect the vulnerability? . 12

vii



2.2.1.3 Why is it hard for existing analysis to detect the vul-

nerability? . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 AST Node Interpretation . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Object Property Graph (OPG) . . . . . . . . . . . . 17

2.3.2.2 Branch-sensitive Abstract Interpretation . . . . . . . 18

2.3.3 Taint Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3.1 Constraint Collection and Solving . . . . . . . . . . . 20

2.3.3.2 Taint Propagation based on Constraint Satisfiability 20

2.3.4 Object lookup analysis . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4.1 Source Cluster Expansion . . . . . . . . . . . . . . . 22

2.3.4.2 Sink Cluster Expansion . . . . . . . . . . . . . . . . 22

2.3.4.3 Conditions attached to Vulnerable Object Lookup . . 23

2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Evaluation Methodologies . . . . . . . . . . . . . . . . . . . . 24

2.5.1.1 Baseline Detectors: PPFuzzer and PPNoest . . . . . 24

2.5.1.2 Experiment Setup . . . . . . . . . . . . . . . . . . . 25

2.5.1.3 Research Questions . . . . . . . . . . . . . . . . . . . 25

2.5.2 RQ1: TP, FP and FN . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2.1 Comparison with PPFuzzer, the state-of-the-art dy-

namic detector . . . . . . . . . . . . . . . . . . . . . 26

2.5.2.2 Comparison with PPNodest, a static analysis detector

created from Nodest . . . . . . . . . . . . . . . . . . 27

2.5.2.3 Branch Sensitivity . . . . . . . . . . . . . . . . . . . 27

viii



2.5.2.4 A Case Study on True Positive . . . . . . . . . . . . 28

2.5.3 RQ2: Indirectly-vulnerable Applications/Packages . . . . . . . 28

2.5.3.1 Case Studies on Indirectly-vulnerable Node.js Appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 RQ3: Code Coverage . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.5 RQ4: Performance . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3 Mining Node.js Vulnerabilities via Object Dependence

Graph and Query . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1.1 Query to Detect Internal Property Tampering . . . . 43

3.2.1.2 Query to Detect Taint-style Vulnerability . . . . . . 44

3.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2.1 Application-level Vulnerabilities . . . . . . . . . . . . 46

3.2.2.2 Package-level Vulnerabilities . . . . . . . . . . . . . . 47

3.3 Object Dependence Graph . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 49

3.4 ODG Queries for Node.js Vulnerabilities . . . . . . . . . . . . . . . . 51

3.4.1 Graph Traversals . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Vulnerability Descriptions . . . . . . . . . . . . . . . . . . . . 53

3.4.2.0.1 Object-related Vulnerabilities . . . . . . . . 53

3.4.2.0.2 Injection Vulnerabilities . . . . . . . . . . . 54

ix



3.4.2.0.3 Improper File Access . . . . . . . . . . . . . 54

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 RQ1: Historical Node.js vulnerability coverage . . . . . . . . . 56

3.6.2 RQ2: Zero-day Node.js vulnerabilities . . . . . . . . . . . . . . 58

3.6.2.0.1 Results. . . . . . . . . . . . . . . . . . . . . 58

3.6.2.0.2 Case Study. . . . . . . . . . . . . . . . . . . 59

3.6.3 RQ3: FP and FN . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.3.0.1 Baseline Detectors. . . . . . . . . . . . . . . 60

3.6.3.0.2 False Positives. . . . . . . . . . . . . . . . . 61

3.6.3.0.3 False Negatives. . . . . . . . . . . . . . . . . 62

3.6.4 RQ4: Abstract Interpretation Performance . . . . . . . . . . . 63

3.6.4.0.1 Code Coverage. . . . . . . . . . . . . . . . . 64

3.6.4.0.2 Performance Overhead. . . . . . . . . . . . 64

3.6.5 RQ5: Branch-sensitivity . . . . . . . . . . . . . . . . . . . . . 65

3.7 Discussion and Limitation . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 4 (Cross-)Browser Fingerprinting via OS and Hardware

Level Features . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Fingerprintable Features . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Prior Fingerprintable Features . . . . . . . . . . . . . . . . . . 80

4.2.2 Old Features with Major Modifications . . . . . . . . . . . . . 80

4.2.3 Newly-proposed Atomic Fingerprintable Features . . . . . . . 83

4.2.4 Newly-proposed Composite Fingeprintable Features . . . . . . 85

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



4.3.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Rendering Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3 Fingerprints Composition . . . . . . . . . . . . . . . . . . . . 96

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 Comparing Our Dataset with AmIUnique and Panopticlick . . 99

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.2 Breakdown by Browser Pairs . . . . . . . . . . . . . . . . . . . 102

4.6.3 Breakdown by Features . . . . . . . . . . . . . . . . . . . . . . 104

4.6.3.1 Screen Resolution and Ratio . . . . . . . . . . . . . . 104

4.6.3.2 List of Font . . . . . . . . . . . . . . . . . . . . . . . 104

4.6.3.3 Anti-aliasing . . . . . . . . . . . . . . . . . . . . . . 106

4.6.3.4 Line&Curves . . . . . . . . . . . . . . . . . . . . . . 106

4.6.3.5 Camera . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.3.6 Texture . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.3.7 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.3.8 Light . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.3.9 Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.3.10 Clipping Planes . . . . . . . . . . . . . . . . . . . . 108

4.6.3.11 Rotation . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.3.12 AudioContext . . . . . . . . . . . . . . . . . . . . . 109

4.6.3.13 Video . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6.3.14 Writing Scripts . . . . . . . . . . . . . . . . . . . . . 109

4.6.3.15 CPU Virtual Cores . . . . . . . . . . . . . . . . . . 110

4.6.3.16 Normalized WebGL Renderer . . . . . . . . . . . . . 110

4.6.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



4.7 Defense of the Proposed Fingerprinting . . . . . . . . . . . . . . . . . 113

4.8 Discussions on Ethics Issues . . . . . . . . . . . . . . . . . . . . . . . 114

4.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9.1 Web Tracking Techniques and Measurement . . . . . . . . . . 115

4.9.1.1 Cookie or Super-cookie based Tracking . . . . . . . . 115

4.9.1.2 Browser Fingerprinting . . . . . . . . . . . . . . . . . 116

4.9.2 Existing Anti-tracking Mechanisms . . . . . . . . . . . . . . . 117

4.9.2.1 Anti-tracking against Cookie or Super-cookie based

Techniques . . . . . . . . . . . . . . . . . . . . . . . 117

4.9.2.2 Anti-tracking against Browser Fingerprinting . . . . 118

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 5 A Large-scale Measurement Study and Classification of

Fingerprint Dynamics . . . . . . . . . . . . . . . . . . . . . 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Measurement Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Terminology Definition . . . . . . . . . . . . . . . . . . . . . . 122

5.2.2 Raw Dataset Collection . . . . . . . . . . . . . . . . . . . . . 123

5.2.2.1 Fingerprinting and Data Collection Tool . . . . . . . 124

5.2.2.2 Tool Deployment . . . . . . . . . . . . . . . . . . . . 124

5.2.3 Dynamics Dataset Generation . . . . . . . . . . . . . . . . . . 125

5.2.3.1 Browser Instance Representation . . . . . . . . . . . 126

5.2.3.2 Diff Operation . . . . . . . . . . . . . . . . . . . . . 127

5.2.3.3 False Negative and Positive Estimation . . . . . . . . 127

5.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1 Raw Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Dynamics Dataset . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.2.1 Statistics of Browser Instance . . . . . . . . . . . . . 133

xii



5.3.2.2 Classification of Fingerprint Dynamics . . . . . . . . 135

5.3.2.3 Breakdown of Dynamics by Features . . . . . . . . . 137

5.4 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6.1 Fingerprint Evolution/Dynamics . . . . . . . . . . . . . . . . 151

5.6.2 Web Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6.2.1 Cookie or Super Cookie based Tracking . . . . . . . 153

5.6.2.2 Browser Fingerprinting . . . . . . . . . . . . . . . . . 153

5.6.3 Anti-tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6.3.1 Defense against Cookie- or Supercookie-based Tracking 154

5.6.3.2 Anti-fingerprinting . . . . . . . . . . . . . . . . . . . 155

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . 157

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xiii



List of Tables

2-I True Positive, False Positive and False Negative of ObjLupAnsys and

PPFuzzer from Arteau [3] on two benchmarks. . . . . . . . . . . . . 27

2-II A selective list of zero-day vulnerabilities found by ObjLupAnsys

(weekly download data is a snapshot of August 23, 2020). . . . . . . 28

2-III Indirectly-vulnerable Applications/Packages. . . . . . . . . . . . . . 28

3-I Nodes, Edges, and Operations of ODG . . . . . . . . . . . . . . . . . 48

3-II Basic Graph Traversals (edges are defined in Table 3-I) . . . . . . . . 52

3-III Graph Traversals for Different Vulnerabilities . . . . . . . . . . . . . . 53

3-IV [RQ1] Vulnerability coverage of different code representation for mod-

eling vulnerability types in the CVE database between January 2019

and September 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3-V [RQ2] A breakdown of zero-day vulnerabilities found by ODGen. . . 59

3-VI Baseline Detectors (CI: Command Injection, ACE: Arbitrary Code

Execution, PT: Path Traversal, PP: Prototype Pollution) . . . . . . . 60

3-VII[RQ3-FP] FP/(FP+TP) of general-purpose static detectors. . . . . . 61

3-VIII[RQ3-FP] A breakdown of FPs of ODGen. . . . . . . . . . . . . . . 61

3-IX [RQ3-FN] Comparison of ODGen with prior program analysis in

detecting legacy CVE vulnerabilities. (CI: Command Injection, ACE:

Arbitrary Code Execution, PT: Path Traversal, PP: Prototype Pollution,

IPT: Internal Property Tampering) . . . . . . . . . . . . . . . . . . . 63

xiv



3-X [RQ3-FN] A breakdown of reasons of FNs of ODGen. . . . . . . . . 63

3-XI [RQ5] the number of detected legacy CVE vulnerabilities with branch

sensitivity enabled and disabled. . . . . . . . . . . . . . . . . . . . . . 65

4-I Normalized Entropy for Six Attributes of the Dataset Collected by Our

Approach, AmIUnique, and Panopticlick (The last two columns are

copied from the AmIUnique paper) . . . . . . . . . . . . . . . . . . . 99

4-II Overall Results Comparing AmIUnique, Boda et al. excluding IP

Address, and Our Approach (“Unique” means the percentage of unique

fingerprints out of total, “Entropy” the Shannon entropy, and “Stability”

the percentage of fingerprints that are stable across browsers. We do not

list cross-browser number for AmIUnique and single-browser number

for Boda et al. in the table, because these number are very low and

their approaches are not designed for that purpose. ) . . . . . . . . . 101

4-III Cross-browser Fingerprinting Uniqueness and Stability Break-down by

Browser Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4-IV Entropy and Cross-browser Stability by Features . . . . . . . . . . . . 105

5-I Statistics of different features used in the dynamics dataset (“Distinct #”

the number of distinct values for fingerprint or dynamics and “Unique

#” the number of values that only appear once. A feature with an

indent means that the feature is a subset of the top-level one.) . . . 131

5-II A Breakdown of Fingerprint Changes (The total percentage of finger-

print changes adds up to 100%, and the union of all browser instances

equals to the percentage of browser instances with fingerprint changes). 138

xv



5-III Case Studies on Feature Correlation with Browser or OS Updates

(Emoji type means a redesign of emoji, and emoji rendering is some

subtle rendering detail changes; text width means the width of text

rendered in browser canvas, and text detail is some subtle text rendering

detail changes. ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xvi



List of Figures

Figure 2-1 A motivating example (paypal-adaptive) with a prototype pol-

lution vulnerability (CVE-2020-7643) found by ObjLupAnsys. 10

Figure 2-2 An Example Object Property Graph (Note we only keep im-

portant, i.e., vulnerability-relevant, edges and nodes and skip

many others, e.g., the prototype, constructor and other built-in

properties of many objects, for the simplicity and beauty of

the graph). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2-3 A exploitable web server example (leading to command injec-

tion) that includes undefsafe, a vulnerable package found by

ObjLupAnsys. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2-4 System Architecture. . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2-5 Flowchart for Object Lookup Analysis. . . . . . . . . . . . . 21

Figure 2-6 A prototype pollution vulnerability and its exploit code for

dot-object (CVE-2019-10793). . . . . . . . . . . . . . . . . . 29

Figure 2-7 Exploit code that leads to a denial-of-service attack on a local

copy of a real-world website (http://jsonbin.org), which hosts

a personal RESTful API service. . . . . . . . . . . . . . . . . 30

Figure 2-8 Exploit code that leads to a denial-of-service attack on simple-

odata-server. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xvii



Figure 2-9 Statement coverage distribution of ObjLupAnsys, PPFuzzer

and PPNodest (timeout: 30 seconds). One major reason of

uncovered code in ObjLupAnsys is some dead code (e.g.,

uninvoked functions or dead branching statement). . . . . . 31

Figure 2-10 CDF graph of total analysis time. . . . . . . . . . . . . . . 32

Figure 3-1 An exemplary code. . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3-2 Object Dependence Graph (ODG, Bottom) Integrated with

Code Property Graph (CPG, Top) of the Exemplary Code in

Figure 5-11. For readers’ convenience, we copied corresponding

AST nodes from top to bottom and skipped several unimpor-

tant nodes and edges, such as __proto__ of many objects, the

global object and many built-in objects. . . . . . . . . . . . 43

Figure 3-3 Nodes and Edges related to Graph Query for Internal Property

Tampering Detection. . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3-4 Nodes and Edges related to Graph Query for Taint-style Vul-

nerability Detection. . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3-5 Operational Semantics for ODG Construction (1). . . . . . . 71

Figure 3-6 Operational Semantics for ODG Construction (2). . . . . . . 72

Figure 3-7 [RQ2] A package-level prototype pollution in deparam and the

exploit code (It leads to an application-level vulnerability in

PDX-Parks, a park search application). . . . . . . . . . . . . 73

Figure 3-8 [RQ3-FP] A false positive example of prototype pollution

reported by ODGen. . . . . . . . . . . . . . . . . . . . . . . 73

Figure 3-9 [RQ3-FN] A false negative example in detecting a legacy path

traversal vulnerability (multiple recursive calls lead to object

explosion and time-out). . . . . . . . . . . . . . . . . . . . . 74

xviii



Figure 3-10 [RQ4-Coverage] Distribution of statement and function cov-

erage (timeout: 30 seconds). One major reason of uncovered

code is the runtime inclusion of JavaScript files depending on

inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3-11 [RQ4-Performance] CDF graph of total execution time to finish

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3-12 [RQ5] A false negative in detecting a legacy command injec-

tion vulnerability with branch-sensitive mode (The number of

objects explodes and ODGen times out). . . . . . . . . . . 75

Figure 4-1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4-2 Client-side Rendering Tasks for the Purpose of Fingerprinting 89

Figure 5-1 Architecture and deployment of our tool deployed at an Euro-

pean website for eight months. . . . . . . . . . . . . . . . . . 123

Figure 5-2 Percentage of identifiable browser fingerprints vs. the size of

anonymous set in our raw dataset . . . . . . . . . . . . . . . 130

Figure 5-3 A Breakdown of the Number of Browser IDs per User ID and

the Number of Cookies per Browser ID (For example, the

purple bar with no fills in “# Browser IDs per User ID” means

the percentage of all user IDs that have one browser ID.). . . 133

Figure 5-4 The number of first-time and returning browser instances over

the entire deployment period . . . . . . . . . . . . . . . . . . 133

Figure 5-5 The number of browser instances broken down into different

browser types . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 5-6 The number of browser instances broken down into different

OS types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xix



Figure 5-7 A breakdown of the number of browser IDs based on the

number of dynamics and the number of visits (For example,

the solid, green bar above 3 on the x-axis indicates the number

of browser IDs satisfying the following two conditions: (i)

a browser instance visits our deployment website for only

three times and (ii) the fingerprint of that browser instance

changes only once—i.e., containing only one piece of dynamics

information. ) . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 5-8 Samsung Browser version 6.2 introduces a new emoji that

is also visible from a Google Chrome Browser co-installed

with the Samsung Browser (The difference between those two

emojis is the red-color part, i.e., a smiling face emoji shown in

Subfigure (b)) . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 5-9 Matching Time of FP-Stalker against One Fingerprint (Note

that matching time greater than 100 ms is considered unac-

ceptable because ads real-time bidding (RTB) requires that an

advertiser provides a decision under 100 ms [136, 137], a hard

limit enforced by many ad exchange networks like Google) . 144

Figure 5-10 F1-Score, Precision and Recall of FP-Stalker for Top 10 Pre-

diction (Note that we run both learning- and rule-based FP-

Stalker for 240 hours, which is ten full days; learning-based

FP-Stalker is not scalable to a large dataset as acknowledged

in the paper as well). . . . . . . . . . . . . . . . . . . . . . . 144

xx



Figure 5-11 False Positives and Negatives of both Rule- and Learning-based

FP-Stalker ((a) and (b) are false negatives, as they belong to

the same browser instance but are not linked; (c) and (d) are

false positives, as they are from different browser instances but

are linked together. We skip the same features between each 1

and 2 pair). . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 5-12 Percentage of browser instances with dynamics related to

browser updates over the entire period of our deployment . . 149

xxi



Chapter 1

Introduction

JavaScript is a popular programming language that provides services on both the

front end and the back end: In the front end, people use JavaScript to run various

applications on top of browsers; In the back end, JavaScript can provide services based

on the Node.JS environment. The flexible features of JavaScript allow programmers

to develop a whole system conveniently, while they also introduce multiple potential

vulnerabilities and may leak the users’ private information. On the server-side,

various vulnerabilities, like OS command injection and Prototype Pollution, hide

inside the complex Node.JS packages and can not be accurately detected. On the

client-side, service providers can only fingerprint browser instances but not devices.

In this dissertation, we propose several approaches to address the security and privacy

challenges of JavaScript–On the server-side, we introduce a novel graph structure

to detect multiple vulnerabilities; On the browser-side, we proposed a cross-browser

fingerprinting method, do a large-scale measurement study, and give suggestions to

both the users and service providers.

1.1 Node.js Vulnerability Detection

Node.js is a popular framework that provides a runtime environment to run JavaScript

on the server-side, which can serve multiple purposes such as being a web server
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or a desktop application. Node Package Manager (NPM), as the manager program

of the Node.js ecosystem, includes millions of packages developed by programmers

in the wild, is known to be vulnerable to multiple vulnerabilities such as command

injection [1, 2], prototype pollution [3], and path traversal [4]. Previous researchers

have proposed methods to detect individual vulnerabilities, for example, [1, 2] for

command injection and [3] for prototype pollution. However, despite the research

efforts, the detection performance of vulnerabilities like prototype pollution is not

satisfactory and there are no generalized frameworks that can detect all the Node.js

vulnerabilities.

Prototype pollution, a vulnerability caused by a flexible feature of JavaScript

– prototype chain, may lead to severe consequences such as Denial-of-Service and

cross-site scripting. Despite that, there is not much prior work to detect prototype

pollution. As far as we are aware, the first detecting approach is introduced by Arteau

[3], which is a dynamic fuzzer that feeds a limited number of possible inputs to the

target packages and then detects prototype pollution by checking whether the built-in

methods are polluted or not. Although dynamic fuzzers provide sound detecting

results, the false-negative rate is relatively high compared with static analysis since

it is hard to reach the vulnerable statements and trigger the vulnerabilities due to

the low code coverage. Existing static analysis tools like DAPP [5] rely on matching

patterns on top of the Abstract Syntax Tree (AST) with the help of control flows to

detect prototype pollution. However, the false-positive rate is not satisfactory since

this approach can not represent and use the inner object structures of the target

programs.

In Chapter 2 and Chapter 3, we introduce a novel graph structure – Object

Property Graph (OPG), which uses nodes to represent objects in JavaScript and edges

to represent the relationships between objects. In chapter II, we talk about how to

detect prototype pollution vulnerability during the generation process of OPG, and in
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chapter III, we talk about how can we detect multiple types of vulnerabilities such as

command injection, path traversal, and interval property tampering by doing graph

query on top of the generated OPG.

1.2 (Cross-)browser Fingerprinting

Browser fingerprinting is a browser-side technique, which identifies users by utilizing a

list of browser-side features, such as the agent string and the screen resolution, without

installing any information to the browser storage. Compared with traditional stateful

identification methods, for instance, cookie and evercookie [6], browser fingerprinting

is a stateless identifying method that can not be easily notified and deleted by

client-side users. The famous browser fingerprinting website panopticlick [7] and

multiple other related works [8–13] introduce different features and a recent study

called AmIUnique [11] pushes the accuracy of single-browser fingerprinting to 90.84%

without the help of the user-controllable and unstable IP features. Despite the

advantages of browser fingerprinting, there are two challenges that remain unsolved:

1), Existing fingerprinting methods can not fingerprint users across different browsers

since it uses multiple browser-based features, for instance, the browser type and

browser version; 2), How and why the browser fingerprinting changes over time and

the accuracy of browser fingerprinting in the wild is still unclear.

In Chapter 4, we propose a cross-browser fingerprinting approach that utilizes

multiple novel OS and hardware level features such as the OS type and the performance

of the CPU. Those features can be obtained by browser-side JavaScript programs

and stay the same even when users change their browsers on the same device. One

set of important novel features we want to emphasize is the WebGL-based features.

By analyzing the results of multiple WebGL rendering tasks, we find that there are

human un-noticeable differences for the same tasks in different devices and operating

systems. The rendering results are stable in the same OS and hardware settings and
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thus can be used as a feature to do cross-browser fingerprinting. Compared with the

state-of-the-art browser fingerprinting tools, our approach can not only fingerprint

devices instead of browsers but also increase the single-browser fingerprinting accuracy

from 90.84% to 99.24%.

In Chapter 5, to understand how the evolution-aware fingerprinting tools behave

in the real-world setting, we perform the first large-scale browser fingerprinting

measurement study with over a million browser fingerprints collected from a popular

website. With the help of the hashed user login ID, together with the most stable OS

and hardware features such as the OS type and the number of CPU cores, we generate

a novel device ID for each device and use the device ID as the ground truth to analysis

the dynamics of browser fingerprinting. Our analysis shows that the reasons for the

dynamics of browser fingerprinting can be categorized into three major categories: 1),

browser or OS updates, 2), user actions and 3), system environment updates. We also

propose four insights based on the analyzing result of the dataset, which illustrates

that the performance of browser fingerprinting degrades significantly in the real-world

setting, and browser fingerprints may leak the privacy- or security-related information.

The thesis of this dissertation is that static patterns, such as graph structures

and the browser-side canvas rendering can be used for detection and identification.

Specifically, on the server-side, graph-based patterns are used to detect various

vulnerabilities among Node.js packages; on the client-side, OS and hardware level

patterns provide additional entropy for device identifications.
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Chapter 2

Detecting Node.js Prototype Pollution
Vulnerabilities via Object Lookup
Analysis

2.1 Introduction

JavaScript is a popular programming language with many dynamic, flexible features

and being used widely in different platforms including Node.js. For example, one

notable dynamic feature is that JavaScript is prototype-based, i.e., any property

lookup does not end up with the present object but goes further up to traverse a chain

of prototypical objects, called a prototype chain, for a definition. Another interesting,

dynamic feature is that JavaScript allows flexible redefinitions to customize almost all

the objects including built-in functions.

Interestingly, the combination of two aforementioned dynamic features leads to a

new type of object-related vulnerability—called prototype pollution [3]. Specifically,

an adversary abuses vulnerable property lookups to traverse the prototype chain for

the base object and then redefines a built-in function. Let us look at an illustrative

example: say, there is a vulnerable statement with two property lookups and an

assignment, i.e., obj[a][b]=c. If a, b and c are all controllable by an adversary,

the adversary can use obj["__proto__"]["toString"]="hack" to redefine the built-
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in function Object.prototype.toString. The consequence of prototype pollution

is severe, including Denial-of-Service (DoS), arbitrary code execution, and session

fixation, according to prior work [3].

There is not much prior work on prototype pollution detection: The first detection

tool from Arteau [3] is a dynamic fuzzer that enumerates different possible attack

inputs and then tests whether the base object’s property is polluted. Although a

dynamic analysis tool like the fuzzer has its advantages, such as low false positives,

the drawbacks are also apparent. First, the fuzzer may not trigger the vulnerable

code and thus cannot detect a vulnerability accordingly, i.e., the relatively low code

coverage is an issue. Second, the fuzzer needs a full installation of the target Node.js

package including all the dependencies, which takes considerable amount of time

during testing.

Another classic research direction in parallel to dynamic analysis is the use of

static analysis to detect JavaScript vulnerabilities. DAPP [5] mostly adopts Abstract

Syntax Tree (AST) and control-flow features as simple detection patterns of prototype

pollution vulnerabilities. However, because DAPP cannot handle recursive calls, object

lookups (e.g., those via aliases) and constraints, both the false positive and negative

rates are very high (i.e., 50.6% and 84.6% according to the paper).

Regardless of prototype pollution, prior works [1, 14, 15] have also adopted flow-,

context-sensitive and branch-insensitive abstract interpretation to construct accurate

control-flows. Then, some of them, particularly Nodest [1], propagate taints from

a source like external inputs to a sink such as a dangerous function call like eval

and exec to detect injection-related vulnerabilities. However, state-of-the-art taint

analysis of JavaScript cannot detect prototype pollution vulnerabilities. The major

challenges come from the complexity of the sink and source structures in prototype

pollution detection using static analysis.

First, let us start from the sink, which is a system built-in function such as
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Object.prototype.toString. The challenge here is that the sink is implicit, instead

of a clearly-defined function like eval for injection-related vulnerabilities. Specif-

ically, an adversary needs to guide the vulnerable program to find the sink ob-

ject gradually in multiple statements via different lookup paths to finally reach the

target. The aforementioned obj["__proto__"]["toString"] is one lookup path

and obj["constructor"]["prototype"]["toString"] is another. The lookup path

could be arbitrary long as far as the prototype chain exists and all the lookups of a

path can be scattered in different statements across the entire program.

Second, let us explain the source. Many traditional vulnerabilities, such as com-

mand injection, usually start from a user input with a simple type like String, i.e.,

the source is a single value and can simply be annotated as tainted from the beginning.

By contrast, the input in a prototype pollution vulnerability is often an object with

complex structures, e.g., one parsed from a JSON input. The challenge is that the

input object structure is often unknown and dynamic, i.e., being determined by the

adversary. A simple mark of the object as tainted does not reflect the inner structure

and how the structure may affect the aforementioned sink object lookup.

In this paper, we design a flow-, context-, and branch-sensitive static taint analysis

tool, called ObjLupAnsys, to detect prototype pollution vulnerabilities. The key

insight is that ObjLupAnsys performs a so-called object lookup analysis, which

performs conditional object lookups to expand source and sink objects into two clusters

and then finally reach a system built-in function. The source cluster starts from a few

objects directly controllable by the adversary and expands as the vulnerable program

accesses objects in the cluster. For example, when the program accesses source[str],

ObjLupAnsys infers that source object has a property and then creates one ac-

cordingly. The sink cluster starts from a few objects accessible by the adversary

and expands towards system built-in objects so that they can be overridden by the

adversary in the future. For example, when the program executes obj[attackVal],
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ObjLupAnsys includes obj["__proto__"] and obj["constructor"] with the con-

ditions that attackVal equals to __proto__ and constructor respectively.

To support this object lookup analysis, we propose a new, heterogeneous graph

structure, called Object Property Graph (OPG). An OPG represents all the object

information (such as variable names and properties) and objects themselves as nodes in

a graph-like structure and then the relations of those nodes—such as one contributing

to another (i.e., an object-level dataflow) and one being a property of another—via

graph edges. By doing so, ObjLupAnsys not only propagates traditional taints

between objects and properties via dataflow edges but also includes more objects to

expand source and sink clusters via object property edges.

Specifically, here is how ObjLupAnsys works to detect prototype pollution vul-

nerabilities. ObjLupAnsys parses a target JavaScript program into Abstract Syntax

Tree (AST) and abstractly interprets each node following control-flow edges. There

are three steps in the abstract interpretation of each AST node. First, ObjLupAnsys

constructs OPG—e.g., adding or deleting OPG nodes and edges—by following the

semantics of the AST node. Second, ObjLupAnsys propagates taints like traditional

taint analysis. Note that if conditional object lookups as described below are used

in the taint propagations, ObjLupAnsys ensures that all the constraints putting

together are solvable. Lastly, ObjLupAnsys resolves adversary-controlled object

lookups. If the object is not controllable by the adversary but the looked-up property

is, ObjLupAnsys expands the sink object cluster by adding conditional OPG edges

with constraints specifying the adversary-controlled value as the property name and

shortening the paths to the system built-in objects. If both the object and the looked-

up properties are controllable by the adversary, ObjLupAnsys expands the source

object cluster by adding a new property node to the target source object. During the

analysis, if a system built-in function is redefined, ObjLupAnsys reports a prototype

pollution vulnerability.
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We evaluated our prototype implementation of ObjLupAnsys in terms of true vs.

false positives, indirectly-vulnerable packages, and performance. First, ObjLupAnsys

discovered 61 true positives from all the Node.js packages with more than 1,000 weekly

downloads as opposed to 18 from prior work [3]. 11 of them have already independently

verified by a third-party vulnerability database maintainer and assigned with CVE

numbers. At the same time, ObjLupAnsys reports 33 false positives: The true vs.

false positive ratio is comparable with existing vulnerability detection tools [16–20] and

reasonable for a human expert to sieve through. Second, ObjLupAnsys found seven

indirectly-vulnerable Node.js applications or packages including a real-world, online

website (http://jsonbin.org/). The website is vulnerable to Denial of Service (DoS)

attack according to our offline testing on a local copy of the online version. Lastly, the

performance evaluation on the same benchmark shows that ObjLupAnsys finishes

analyzing 90% of Node.js packages with 30 seconds.

We make the following contributions:

• We designed a novel object lookup analysis and proposed a graph structure,

called Object Property Graph (OPG), to support such an analysis in detecting

prototype pollution vulnerabilities.

• We implemented an open-source framework, called ObjLupAnsys, to generate

OPG, perform object lookup analysis, and detect prototype pollutions. Our

implementation is available at https://github.com/Song-Li/ObjLupAnsys.

git.

• ObjLupAnsys found 61 exploitable zero-day vulnerabilities in 61 Node.js

packages and also detected seven indirectly-vulnerable ones due to inclusion

of vulnerable packages. The complete zero-day vulnerability list is in the

aforementioned Github repository.
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(a) Vulnerable code:

1 function merge(a, b) {
2 for (var p in b) {
3 try {
4 if (b[p].constructor === Object){
5 a[p] = merge(a[p], b[p]);
6 } else {
7 a[p] = b[p];
8 }
9 } catch (e) {

10 a[p] = b[p];
11 }
12 }
13 return a;
14 }
15 ...
16 var Paypal = function (config) {
17 if (!config.userId)
18 throw new Error(’Config must have userId’);
19 if (!config.password)
20 throw new Error(’Config must have password’);
21 ...
22 this.config = merge(defaultConfig, config);
23 };
24 ...
25 module.exports = Paypal;

(b) Exploit:

1 var PayPal = require(’paypal-adaptive’);
2 var p = new PayPal(JSON.parse(
3 ’{"__proto__": {"toString": "polluted"}, "userId":
4 "foo", "password": "bar", "signature": "abcd",
5 "appId": "1234", "sandbox": "1234"}’))
6 console.log(({}).toString);

Figure 2-1. A motivating example (paypal-adaptive) with a prototype pollution vulnera-
bility (CVE-2020-7643) found by ObjLupAnsys.

2.2 Overview

In this section, we give an overview by starting from a motivating example and then

presenting the threat model.

2.2.1 A Motivating Example

In this subsection, we describe a zero-day prototype pollution vulnerability (CVE-

2020-7643) found by ObjLupAnsys in paypal-adaptive 0.4.2 as a motivating

example. Specifically, paypal-adaptive is an sdk for Paypal Adaptive Payments and

Accounts. Users can create a PayPal object with a JSON-formatted configuration

object, possibly controlled by the adversary, as the parameter to log into and transfer
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balance between PayPal Adaptive Accounts.

2.2.1.1 Why is the package vulnerable?

The vulnerable code of paypal-adaptive, particularly the vulnerable function merge,

is shown in Figure 2-1 (a), which recursively merges all the properties of two objects

a and b. We also show the exploit code in Figure 2-1 (b) and describe how the exploit

code triggers the vulnerability. Briefly speaking, the control-flow of the vulnerability

triggering is as follows: Line 22->Line 1->Line 5->Line 1->Line 7. Here are the

details (Note that we marked two important object lookups as red):

• Line 22->Line 1: merge(a=defaultConfig, b=config). This function call at

Line 22 passes two objects to the vulnerable merge function. The first object,

defaultConfig, is created by the vulnerable program but accessible to the

adversary: This object is used as an entry point for further lookup to the final

sink object. The second object, config, is fully controllable by the adversary

and used to guide the first object to reach the final sink object.

• Line 5->Line 1: a[p]=merge(a[p],b[p]). This function call together with an

object lookup (the second a[p] marked as red) makes the adversary one-step

further to the final sink object. Specifically, when we consider the original

objects and the values in the exploit code, the two parameters in the function

call becomes: defaultConfig["__proto__"] and config["__proto__"]).

• Line 7: a[p]=b[p]. This object lookup and assignment is the final vulnerable

location, which overrides Object.prototype.toString. Specifically, based on

the new a and b, the statement will expand to the following:

defaultConfig["__proto__"][p]=config["__proto__"][p]. Then, based on

the p value in config["__proto__"], the assignee becomes

11
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Figure 2-2. An Example Object Property Graph (Note we only keep important, i.e.,
vulnerability-relevant, edges and nodes and skip many others, e.g., the prototype, con-
structor and other built-in properties of many objects, for the simplicity and beauty of the
graph).

defaultConfig["__proto__"]["toString"], i.e., Object.prototype.toString

and the assigner is config["__proto__"]["toString"], which is "polluted".

2.2.1.2 How does ObjLupAnsys detect the vulnerability?

From a high-level perspective, ObjLupAnsys expands both clusters and reports a

prototype pollution vulnerability if a system built-in object is redefined. Figure 2-2

shows both source and sink clusters as well as object lookups and taint propagations

of two clusters in Figure 2-1 (a). This analysis can be broken down into four types of

edges: (i) two object lookups in the source cluster, (ii) one object lookup in the sink

cluster, (iii) two data-related edges with taint propagations, and (iv) two conditional

object lookups, which eventually lead to the built-in object redefinition.

First, we start from the two object lookups in the source cluster, which are the
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two b[p] at Lines 5 and 7 respectively and marked as edges in the source cluster of

Figure 2-2. Both properties are marked as wildcards (*), because the values (i.e., p)

are unknown when the program looks up the properties. By doing so, ObjLupAnsys

expands the single source object into a complex structure based on how the program

used the source object.

Second, we look at one object lookup in the sink cluster, which is the a[p] at Lines

5 and marked as the outgoing, red edge of the green __proto__ node in Figure 2-2.

ObjLupAnsys performs sink object lookups so that the path to a target system built-

in object is shortened in terms of number of object lookups: Therefore, ObjLupAnsys

performs the lookup via __proto__. Note that the red edges are just one possible

lookup path and there exists an alternative path via constructor and prototype,

which can also be found by ObjLupAnsys.

Third, we describe two data-related edges. The first starts from the first wildcard

property in the source cluster, flows to an object, and is then aligned with the

__proto__ property in the sink cluster; the second starts from the second wildcard

property in the source cluster, flows to another object, and is then aligned with the

toString property in the sink cluster. Both alignments are made by ObjLupAnsys

to reach the final system built-in object.

Lastly, we explain two conditional object lookups. The first is the lookup of

a at Line 7 of the second merge call and denoted as the left outgoing edge of the

a node in Figure 2-2. The lookup has a condition that the first wildcard equals

to __proto__. These conditions are important, because some object lookups may

not be solvable. For example, an adversary cannot pollute a system built-in object

with obj[str][str], because str cannot be both __proto__ and toString at the

same time. The second—i.e., the one leading to a prototype pollution reported by

ObjLupAnsys—is the lookup of a[p] at Line 7. The lookup has a condition that the

second wildcard equals to toString. Note that the object lookup also have another
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condition, which is inherited when ObjLupAnsys performs the first conditional object

lookup of a at Line 7.

2.2.1.3 Why is it hard for existing analysis to detect the vulnerability?

We now explain why this is a challenging example for existing dynamic analysis,

particularly the fuzzer from Arteau [3], and existing static analysis [1, 14, 15, 21].

First, the fuzzer from Arteau [3] cannot detect this vulnerability, because the merge

function can only be triggered when conditions at Line 17 and 18 of Figure 2-1 are

satisfied; Otherwise, the program will exit directly. This is a classic tradeoff between

static and dynamic analysis.

Second, existing static analysis [1, 14, 15, 21] does not detect this vulnerability,

and it is challenging for them to do so. We list three major reasons. (i) The source

object that eventually compromises the vulnerable program has a complex, three-layer

inner structure. Existing static analysis only marks config as tainted and thus

cannot differentiate these three fine-grained taint flows involving different parts of

config as shown in Figure 2-2. (ii) The sink object is not directly reachable: It

is indirectly accessible via two object lookups, and existing static analysis does not

model such complex lookups. (iii) The static analysis to detect many prototype

pollution vulnerabilities requires branch sensitivity, e.g., the analysis of Lines 5 and 7

in Figure 2-1.

2.2.2 Threat Model

In this subsection, we describe our threat model and also a real-world example to

illustrate the consequence of prototype pollution vulnerabilities. We consider a Node.js

package as vulnerable to prototype pollution if an adversary can control package inputs,

e.g., those in exported Node.js functions, which directs the package execution to modify

a built-in function of Node.js environment. Note that our threat model aligns with
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(a) Vulnerable code:

1 class Notes {
2 edit_note(id, author, raw) {
3 undefsafe(this.note_list, id + ’.author’, author);
4 undefsafe(this.note_list, id + ’.raw_note’, raw);
5 }
6 ...
7 }
8 app.route(’/edit_note’).post(function(req, res) {
9 body=req.body;

10 notes.edit_note(body.id, body.author, body.raw);
11 })
12 app.route(’/status’).get(function(req, res) {
13 ... // All elements of the commands array are known.
14 for (let index in commands)
15 exec(commands[index], {shell:’/bin/bash’}, (err, stdout, stderr) => {...});
16 })

(b) Exploit:

1 POST /edit-note id=__proto__.a&author=curl%20http://x.x.x.x/shell|bash&raw=123
2 GET /status

Figure 2-3. A exploitable web server example (leading to command injection) that
includes undefsafe, a vulnerable package found by ObjLupAnsys.

existing works on injected-related vulnerabilities in Node.js, such as Synode [2] and

Nodest [1], as well as historical prototype pollution and injected-related vulnerabilities

in CVE, e.g., CVE-2019-10744 and CVE-2017-16042.

Next, we illustrate an exploitable Node.js web server example that we find online

for the purpose of describing the vulnerability consequence. The server includes one

of the vulnerable packages found by ObjLupAnsys, namely undefsafe (Lines 3–4

of the vulnerable code). The name of undefsafe seems to suggest that it is a safe

package, but it has a prototype pollution vulnerability allowing adversaries to pollute

any properties under the Object object. Specifically, an adversary can craft an HTTP

POST request (Line 1 of the exploit) to create a property under Object, and then the

originally-safe exec call (Line 15 of the vulnerable code) becomes vulnerable, because

the injected property value is accessible via commands[index], leading to a command

injection (Line 2 of the exploit).

Note that the web server itself is safe because the inputs to exec are supposed to

be restricted in an enumerable set. However, the vulnerability in undefsafe makes

this safe web server vulnerable and leads to an even severe consequence, i.e., the
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Figure 2-4. System Architecture.

execution of arbitrary OS command.

2.3 Design

In this section, we describe the design of ObjLupAnsys.

2.3.1 System Architecture

Figure 5-1 shows the overall architecture of ObjLupAnsys, which takes the Abstract

Syntax Tree (AST) of a target Node.js program as an input, abstractly interprets the

program, and detects whether the program has a prototype pollution vulnerability by

checking whether a built-in function can be redefined. ObjLupAnsys starts from the

entry points of the AST with adversary-controlled parameters as tainted and follows

the control flow to analyze each AST node. Specifically, the analysis can be broken

down into three steps. First, ObjLupAnsys abstractly interprets the target AST

node and constructs a special graph structure, called Object Property Graph (OPG),

which is used for later analysis. Second, ObjLupAnsys performs a taint analysis

to propagate taints if all the constraints can be satisfied along a certain propagation

path. Lastly, ObjLupAnsys analyzes vulnerable object lookups by querying OPG,

such as a[b], where b can be tainted by the adversary. ObjLupAnsys will expand

the source and sink cluster based on whether a is tainted by the adversary and add
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constraints to cluster expansions. ObjLupAnsys reports a vulnerability if a built-in

function is redefined.

2.3.2 AST Node Interpretation

In this subsection, we describe how ObjLupAnsys abstractly interprets each AST

node. We first present the definition OPG and then describe our branch-sensitive

abstract interpretation.

2.3.2.1 Object Property Graph (OPG)

In this part, we introduce Object Property Graph (OPG), which is used to facilitate

our cluster-based taint propagation. Specifically, an Object Property Graph (OPG) is

a runtime representation, using graph notation, of all the JavaScript object interplays

such as object properties, object value influences and object definitions.

We start from describing OPG nodes. There are two types of nodes in OPG as

shown in Figure 2-2: object and name. An object node represents an object of any

type in the abstract interpretation. A name node represents an identifier. It can

be a variable name or a property name of an object. A name node will be under a

certain scope in the abstract interpretation, which defines accessibility of JavaScript

variables. Scopes are classified as three types—global, function/file, and block—and

are connected in a tree structure by edges. A global scope node is the root of the scope

tree and represents the global runtime environment. Function scope nodes represent

the scope of functions. Block scope nodes represent the scopes of code blocks like the

body of if or for. Variables defined by let or const are under a block scope and

accessible only within the same block scope.

We then describe OPG edges, which can be roughly classified as property-related

for object look-ups and data-related. First, OPG has two types of edges to represent

object lookups, which are name→object and object→name edges. For example, the one
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between the defaultConfig name node and the connected object is a name→object

edge. The object node further points to a name node __proto__, which indicates that

defaultConfig has a child property and the edge between them is an object→name

edge. Second, OPG has two types of data-related edges: source-sink object lookup

alignment edges and (traditional) dataflow edges. The former is made by ObjLupAn-

sys to align a source object lookup to a sink object lookup by matching the input

value with the property. The latter is just a dataflow edge ( ∗−→) between object and

name nodes as shown in Figure 2-2.

2.3.2.2 Branch-sensitive Abstract Interpretation

In this part, we describe the branch-sensitive abstract interpretation design. ObjLu-

pAnsys adopts different strategies for different types of AST nodes and constructs

corresponding OPG. We describe some representative AST node types below due to

space limit and similarity in semantics.

• Branch-sensitive Interpretation of Conditional Statements. ObjLupAnsys

executes both or all branches of a conditional statement in parallel assuming

that the condition can be satisfied, called branching, constructs OPG during the

execution of each branch, and then merges the branched OPGs into one, called

merging. (i) Branching. During the branching stage, every name→object edge

in the OPG, no matter added or deleted, is accompanied by a tag to indicate the

corresponding branch, e.g., consequent or alternative branch in if statement,

and the operation, i.e., addition or deletion. Such a tag is added recursively if

multiple branches are present, i.e., an edge may have two tags under two nested

if statements. When ObjLupAnsys looks up an identifier, ObjLupAnsys

only follows edges that have the correct branching tag and are not deleted under

this branch. (ii) Merging. During the merging stage, ObjLupAnsys keeps an

added edge as long as the edge has one branching tag and deletes an edge if the
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edge is deleted by all the branches. Say for example, if a variable is redefined

in both branches of an if statement, the old name→object edge is deleted.

However, if only one branch redefines the variable, both the old and the new

name→object edge are preserved.

• Loops. ObjLupAnsys tries its best to calculate the loop condition based on all

the known values, e.g., constant variables, and executes loops. If ObjLupAnsys

cannot estimate the number of executed times, ObjLupAnsys executes a loop

extensively until no more objects outside the loop become tainted. Here are

the details based on the loop type. (i) ObjLupAnsys first executes its pre-

run-block in the for loop, determines whether to run the loop, and executes

its post-run-block. (ii) The procedure of a while loop is similar to a for loop

but without post-run-block execution. (iii) ObjLupAnsys goes over all the

properties of a for...in or for...of loop under a target object and executes

the loop body with each property name or object as a parameter.

• Function Call and New Operation. We group function call and new operation

together because both involve the invocation of a function. We describe how

ObjLupAnsys handles both operations via four steps. First, ObjLupAnsys

looks up the function object in the OPG and finds its definition. Second, if

this is a new operation, ObjLupAnsys creates a new object and then points

this pointer to the new object. ObjLupAnsys also adds the function object

in the new operation as the new object’s constructor and the function object’s

prototype as the new object’s __proto__. Third, ObjLupAnsys adds dataflow

edges for all the function parameters and executes the function body. Note

that if the function is a built-in one implemented natively, ObjLupAnsys will

simulate its behavior as documented in ECMAScript and Node.js. Lastly, if this

is a new operation, ObjLupAnsys points the return object to the new object
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and also restores the this pointer.

2.3.3 Taint Analysis

In this subsection, we describe the taint analysis, which can be divided into two

sub-steps. First, ObjLupAnsys collects the conditions that are attached to object

lookups for the target AST node and then converts these conditions into constraints

that are understandable by a constraint solver. Second, if all the collected constraints

are satisfiable, ObjLupAnsys will propagate taints between objects based on the

target AST node type.

2.3.3.1 Constraint Collection and Solving

In this part, we describe how ObjLupAnsys collects and solves constraints before

taint propagation. Specifically, ObjLupAnsys records all the conditions attached

to object lookups and then traverses backward along the dataflow edge related to

each condition to collect constraints. Let us take a look at Line 7 in the second

merge run of Figure 2-1. ObjLupAnsys collects two conditions marked as circled

numbers one and two in Figure 2-2: Circled one is from the object lookup of a and

the other circled two is from the vulnerable object lookup of b[p]. ObjLupAnsys

then traverses backward the original dataflow edge to find the wildcard properties and

generates two constraints—These two constraints are obviously solvable because they

are independent from each other.

2.3.3.2 Taint Propagation based on Constraint Satisfiability

In this part, we describe how ObjLupAnsys propagates taints if all the constraints

together are satisfiable. We illustrate the propagation using two major AST node types:

operators (such as plus and minus) and built-in function calls. (i) ObjLupAnsys

propagates taints from operands to the result for operators. (ii) ObjLupAnsys models
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Figure 2-5. Flowchart for Object Lookup Analysis.

built-in functions and propagates taints from parameters to the return value based on

the built-in function. Note that the taint propagation adopted by ObjLupAnsys is

on the object level instead of statement level in program dependency graph (PDG).

The major advantage is that if two variables point to the same object, e.g., tmp1=tmp2,

ObjLupAnsys does not need to propagate taints because the propagation is within

the same object.

2.3.4 Object lookup analysis

In this subsection, we describe how ObjLupAnsys handles object lookups that are

potentially vulnerable to prototype pollution in Figure 2-5. Specifically, we call an

object lookup in the format of a[b] vulnerable if b is controllable by the adversary,

i.e., marked as tainted. There are two sub-cases: (i) if a is also controllable by the

adversary, the object lookup is entirely controllable by the adversary, thus being

considered as an expansion of the source cluster, and (ii) if a is not controllable but

only accessible to the adversary via b, this object lookup is a path to redefine a built-in

function, thus considered as an expansion of the sink cluster.

After object lookup analysis, ObjLupAnsys will check whether a system built-in
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function is redefined, i.e., whether there exists a solvable edge from a system name

node to an attacker-controlled object node. If the answer is yes, i.e., the existence of

the second conditional edge at the bottom of Figure 2-2, ObjLupAnsys will report a

prototype pollution vulnerability.

2.3.4.1 Source Cluster Expansion

In this part, we describe how ObjLupAnsys expands the source cluster. The high-

level idea is that ObjLupAnsys gradually adds new properties to the source object

based on how the target program uses the object. For example, the program in

Figure 2-1 (a) accesses the source object config twice in two merge calls and therefore

ObjLupAnsys creates two wildcard (∗) properties under config. Here is the detailed

procedure. Particularly, when ObjLupAnsys handles a[b], ObjLupAnsys first

creates a wildcard (∗) name node under a. Next, ObjLupAnsys looks up b to find

the object node. Then, ObjLupAnsys follows dataflow edges ( ∗−→) both forward

and backward to find out the value of the object node. If the value is known, e.g.,

determined before in object lookups, ObjLupAnsys creates another dataflow edge

between the object and the name node.

2.3.4.2 Sink Cluster Expansion

In this part, we describe how ObjLupAnsys expands the sink cluster. The high-level

idea is that ObjLupAnsys attempts to assign the value of b in a[b] to decrease the

distance, i.e., the number of property edges, between the object that a[b] represents

and built-in objects like Object.prototype.toString in OPG. Here is the detailed

procedure. Specifically, ObjLupAnsys first looks up b to find its object node. Then,

ObjLupAnsys analyzes all the properties of a and finds those that can decrease

the distance. Next, ObjLupAnsys creates dataflow edges ( ∗−→) between the object

that b points to and those properties of a. Note that before creating dataflow edges,
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ObjLupAnsys will check whether all the constraints are satisfiable as described in

Section 2.3.4.3 and 2.3.3.1.

2.3.4.3 Conditions attached to Vulnerable Object Lookup

In this part, we describe OPG edges that are created due to the aforementioned

vulnerable object lookup in source or sink cluster expansion. For example, when a

statement is res=a[b] or res=a[b]+str, ObjLupAnsys will create corresponding

name→object or dataflow edge. These edges are conditional: The condition is that

there exist the dataflows created in cluster expansion, e.g., bobj
∗−→__proto__name in

the sink cluster expansion.

There are two things worth noting here. First, these conditions are transferrable,

i.e., when conditional edges are used to create future edges, these edges are also

attached with conditions. For example, when the aforementioned res is used in

tmp=res, the name→object edge for the tmp node is also attached with the same

condition. Second, ObjLupAnsys may create more than one parallel edge with differ-

ent conditions during sink cluster expansion. For example, there are two alternative

object lookup paths to reach a system built-in function for the example in Figure 2-1.

Therefore, the name node a points to two different object nodes, config.__proto__

and config.constructor, with different conditions. Note that the latter is not shown

in Figure 2-2 due to limited space.

2.4 Implementation

We implemented an open-source prototype of ObjLupAnsys and released it as this

repository (https://github.com/Song-Li/ObjLupAnsys.git). Our implementation

has two major parts: 3,150 lines of JavaScript code and 5,843 lines of Python code.

The JavaScript code converts the AST produced by Esprima (https://esprima.org)

to the structure adopted by ObjLupAnsys and also models Node.js built-in objects
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and functions. The Python code is our core implementation on abstract interpretation,

OPG construction, vulnerable object lookups (including source and sink cluster

expansion), and cluster-based taint analysis.

2.5 System Evaluation

In this section, we describe the evaluation of ObjLupAnsys.

2.5.1 Evaluation Methodologies

We describe the general evaluation methodology of ObjLupAnsys.

2.5.1.1 Baseline Detectors: PPFuzzer and PPNoest

We compare ObjLupAnsys with two baseline approaches, one dynamic and the other

static, in the evaluation. First, the dynamic analysis tool is the only existing prototype

pollution detection tool from Arteau [3]—for brevity, we call the tool PPFuzzer in

this paper.

Second, because there is no static analysis to detect prototype pollution, we used

the state-of-the-art taint analysis on JavaScript, called Nodest [1], and then modified

Nodest to detect prototype pollution vulnerability. The modified version is called

PPNodest in the paper. Since Nodest does not support OPG, we cannot migrate

our object lookup analysis for the detection of prototype pollution. Instead, for a

statement a[b]=c, if the base object a, the looked-up property b, and the assigned

value c are all tainted, PPNodest reports a prototype pollution vulnerability. We also

uploaded our implementation of PPNodest as a supplementary material.

Note that Nodest itself is closed source and we have to re-implement it. We did

contact the authors for their source code but did not obtain it due to the authors’

company rule. At the same time, we scheduled several conference calls with the

authors and showed them our implementation. The authors pointed out several
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missing implementations and confirmed that the rest is correct—We then added the

missing implementation following the authors’ suggestion.

2.5.1.2 Experiment Setup

All the experiments are performed on a server with 192 GB = 6*32GB RDIMM

2666MT/s Dual Rank memory, Intel® Xeon® E5-2690 v4 2.6GHz, 35M Cache,

9.60GT/s QPI, Turbo, HT, 14C/28T (135W) Max Mem 2400MHz, and 4 * 2TB 7.2K

RPM SATA 6Gbps 3.5in Hot-plug Hard Drive.

2.5.1.3 Research Questions

In this part, we describe four research questions to be answered in the evaluation.

• RQ1: What are the TP, FP and FN of ObjLupAnsys on detecting vulnerable

Node.js packages?

• RQ2: Will Node.js applications or packages become indirectly vulnerable due to

inclusion of a vulnerable package?

• RQ3: What is the code coverage of ObjLupAnsys on analyzing Node.js

packages?

• RQ4: What is performance overhead of ObjLupAnsys on analyzing Node.js

packages?

2.5.2 RQ1: TP, FP and FN

In this subsection, we evaluate True Positive (TP), False Positive (FP) and False

Negative (FN) of ObjLupAnsys. We adopt two benchmarks for the comparison.

• [NPM Benchmark] Popular packages crawled from the Node Package Manager

(NPM). Specifically, we crawled 48,162 NPM packages with over 1,000 weekly
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downloads on February 25, 2020. We mainly evaluate TP and FP using this

benchmark due to the lack of ground truth information in vulnerability dis-

tribution. Note that we choose popular NPM packages because they tend to

be well maintained and used by many people, thus increasing the impacts of

vulnerabilities.

• [CVE Benchmark] Legacy vulnerable packages from Common Vulnerabilities

and Exposures (CVE) database. Specifically, we searched the CVE database

for prototype pollution vulnerabilities and obtained 52 historically-vulnerable

packages as a benchmark. We mainly evaluate TP and FN using this benchmark,

because we have ground truth information and there are no safe packages in the

benchmark. Note that this benchmark favors PPFuzzer because many existing

CVEs are found by the fuzzer.

2.5.2.1 Comparison with PPFuzzer, the state-of-the-art dynamic detector

Table 2-I shows that ObjLupAnsys found 43 more zero-day vulnerabilities than

PPFuzzer on real-world NPM benchmark and eight more on the CVE benchmark.

The main reason is that vulnerable parts of packages may not be triggered in dynamic

analysis. We show a selective list of true positives in Table 2-II.

There are two things worth noting here. First, as a general drawback of static

analysis, ObjLupAnsys also produces more false positives (FPs) than PPFuzzer. The

true vs. false positive rate of ObjLupAnsys (between 1:1 and 2:1) is on par with

prior vulnerability detection tools [16–20]. The major reason for FPs is that there are

unmodelled constraints between object property lookup and the value assignment. For

example, one package adopts Object.keys to iterate all the keys under the current

object and avoid a prototype chain lookup. Second, ObjLupAnsys still has some FNs

and we describe two main reasons below. (i) Due to the large number of all built-in

functions, some functions may not be modeled in ObjLupAnsys. (ii) Some packages,
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Table 2-I. True Positive, False Positive and False Negative of ObjLupAnsys and
PPFuzzer from Arteau [3] on two benchmarks.

Name Real-world NPM Packages Legacy CVE Packages

TP FP TP FN

PPFuzzer 18 0 32 20
PPNodest 3 3 6 46
ObjLupAnsys (branch-insensitive) 38 14 28 24
ObjLupAnsys (branch-sensitive) 61 20 40 12

e.g., lodash, are very large and ObjLupAnsys will time out without finishing the

abstract interpretation after thirty seconds.

2.5.2.2 Comparison with PPNodest, a static analysis detector created
from Nodest

Table 2-I also shows that ObjLupAnsys finds much more vulnerabilities than PPN-

odest on both benchmarks. The reasons are described below. First, TAJS, the abstract

interpretation tool that PPNodest and Nodest rely on, is branch-insensitive. Therefore,

PPNodest fails to detect many zero-day vulnerabilities in an if statement, like our

motivating example. Second, TAJS does not support many ES6 features, such as

arrow function, which also contributes some failed analysis.

Table 2-I also shows that the false positive rate of PPNodest is high. The reason

is that PPNodest does not support source and sink cluster expansion, which cannot

capture the complex object structure in both the source and the sink and propagate

taints. Instead, traditional taint analysis has to report many impossible cases, such as

a[p][p].

2.5.2.3 Branch Sensitivity

The last row of Table 2-I shows the importance of branch sensitivity in detecting

prototype pollution vulnerabilities. Specifically, we switch off branch sensitivity in

ObjLupAnsys and show that this version of ObjLupAnsys detects significantly fewer

vulnerabilities. The branch-insensitive ObjLupAnsys detects 23 fewer vulnerabilities
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Table 2-II. A selective list of zero-day vulnerabilities found by ObjLupAnsys (weekly
download data is a snapshot of August 23, 2020).

Node.js Package LoC Weekly Download Vulnerable Version Location CVE # Patched

undefsafe 96 2,532,740 2.0.2 lib/undefsafe.js (Line 106) CVE-2019-10795 Yes
append-field 123 1,301,874 1.0.0 lib/set-value.js (Line 14) N/A No
graphql-anywhere 953 386,530 4.2.6 /lib/bundle.cjs.js (Line 141) N/A No
aws-xray-sdk-core 6,967 187,901 2.5.0 subsegment.js (Line 161) N/A No
cli-table-redemption 427 178,822 1.0.1 lib/utils.js(Line 64) N/A No
dot-object 4,216 109,419 2.1.2 index.js (Line 415) CVE-2019-10793 Yes
fastest-validator 2,265 28,811 1.0.2 lib/helpers/deep-extend.js (Line 7) N/A No
protractor-jasmine2-html-reporter 5,192 23,158 0.0.7 index.js (Line 28) N/A No
@progress/kendo-angular-charts 98,259 12,060 4.1.3 configuration.service.js (Line 55) N/A No
eivindfjeldstad-dot 40 11,511 0.0.1 index.js (Line 20) CVE-2020-7639 No
i18next-sync-fs-backend 13,178 7,235 1.1.1 lib/utils.js (Line 60) N/A No
mathjax-full 61,009 4,621 3.0.1 js/components/global.js (Line 27) N/A No
component-flatten 2,464 2,268 1.0.1 index.js (Line 56) CVE-2019-10794 No
paypal-adaptive 197 1,890 0.4.2 lib/paypal-adaptive.js (Line 31) CVE-2020-7643 No
querymen 496 1,838 2.1.3 dist/index.js (Line 42) CVE-2020-7600 Yes
bodymen 281 1,433 1.1.0 dist/index.js (Line 43) CVE-2019-10792 Yes
ini-parser 30 1,139 0.0.2 index.js (Line 14) CVE-2020-7617 No

Table 2-III. Indirectly-vulnerable Applications/Packages.

Vulnerable Package Indirectly-vulnerable Applications/Packages

undefsafe http://jsonbin.org
dset design-system-utils (1.5.0), weoptions (0.0.11), quaff (4.2.0)
just-safe-set magasin (0.2.2)
object-set node-architect (0.0.15)
simple-odata-server the default server [22] for the package

on the NPM packages and 12 fewer on the CVE benchmark.

2.5.2.4 A Case Study on True Positive

In this subsection, we illustrate one vulnerable package as an example to illustrate zero-

day vulnerabilities found by ObjLupAnsys. Specifically, dot-object is a popular

utility package with more than 100K weekly downloads, which transforms Javascript

objects using dot notation. The developer fixed the vulnerable code after we reported

the vulnerability to them. Figure 2-6 (a) shows simplified version of the vulnerable

code and Figure 2-6 (b) the corresponding exploit code. Specifically, at Line 10 of

(a), key equals to __proto__, k equals to toString and val[k] equals to "exploit".

Therefore, Object.prototype.toString is polluted to another string.

2.5.3 RQ2: Indirectly-vulnerable Applications/Packages

In this subsection, we answer the question whether safe Node.js packages become

vulnerable and exploitable due to inclusion of vulnerable packages. Specifically, the
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(a) Vulnerable code:

1 module.exports.set = function (path, val, obj, merge) {
2 var i, k, keys, key;
3 keys = parsePath(path, ’.’);
4 for (i = 0; i < keys.length; i++) {
5 key = keys[i];
6 if (i === keys.length - 1) {
7 if (merge) {
8 for (k in val) {
9 if (hasOwnProperty.call(val, k)) {

10 obj[key][k] = val[k];
11 }
12 }
13 }
14 }
15 ...
16 }
17 return obj;
18 }

(b) Exploit:

1 var a = require("dot-object");
2 var path = "__proto__";
3 var val = {toString:"exploit"};
4 a.set(path,val,{},true);

Figure 2-6. A prototype pollution vulnerability and its exploit code for dot-object
(CVE-2019-10793).

vulnerable function of a directly-vulnerable package is used in another package and

the parameter related to the vulnerability is controllable by the adversary, e.g., also

being exported. Then, those packages are defined as indirectly-vulnerable packages in

the paper. Our methodology is as follows. First, we find packages or applications that

have a dependency on the vulnerable packages found by ObjLupAnsys. We find

them by searching in both NPM and Github. Second, we run ObjLupAnsys on the

combination of the target and vulnerable packages and decide whether the combination

is vulnerable. Lastly, we manually generate exploits for the target package together

with the vulnerable one.

Here are the results. ObjLupAnsys detects seven packages as indirectly vulnerable

and then our manual verification confirms them as exploitable as shown in Table 2-III.

Next, we illustrate two examples as a case study on how to exploit those indirectly-

vulnerable packages.
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curl -X POST http://localhost:8100/test/test
-H ’authorization: token xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’
-d ’{ }’

curl -X PATCH http://localhost:8100/test/test
-H ’authorization: token xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’
-d ’{ "__proto__": { "toString" : "abc"} }’

Figure 2-7. Exploit code that leads to a denial-of-service attack on a local copy of a
real-world website (http://jsonbin.org), which hosts a personal RESTful API service.

curl -d ’{"constructor": {"prototype": {"toString": "exploited"}}}’
-H "Content-Type: application/json" -X POST http://localhost:1337/users

Figure 2-8. Exploit code that leads to a denial-of-service attack on simple-odata-server.

2.5.3.1 Case Studies on Indirectly-vulnerable Node.js Applications

In this subsection, we give two case studies on end-to-end vulnerable Node.js applica-

tions.

• A vulnerable website. http://jsonbin.org is hosting a personal RESTful

API service and the source code of the website is at https://github.com/remy/

jsonbin. The website adopts undefsafe, a package with a prototype pollution

vulnerability found by ObjLupAnsys. We found this website via searching

the keyword, undefsafe, on github. As a proof of concept, we downloaded the

github repository and deployed the website locally for attack—Note that, due

to ethics concerns, we cannot attack the online website directly.

The result is that we successfully launched a denial of service attack to any users

of the service by crashing the local server with the exploit code in Figure 2-7.

Following up on our successful attack, we have disclosed it to the website owner

and are still waiting for a response.

• A vulnerable server code. simple-odata-server is an implementation OData

server running on Node.js with adapters for mongodb and nedb. We deployed

the default server [22] coming with the Node.js package locally at port 1337 and

successfully exploited the server with exploit code as shown in Figure 2-8. The
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Figure 2-9. Statement coverage distribution of ObjLupAnsys, PPFuzzer and PPNodest
(timeout: 30 seconds). One major reason of uncovered code in ObjLupAnsys is some
dead code (e.g., uninvoked functions or dead branching statement).

server crashes after exploitation, leading to a denial-of-server consequence.

2.5.4 RQ3: Code Coverage

In this subsection, we evaluate the code coverage of ObjLupAnsys in terms of

statement coverage and compare it with PPFuzzer [3] and PPNodest. Specifically,

statement coverage defines the percentage of statements that are abstractly interpreted

by ObjLupAnsys or executed by PPFuzzer. We measure statement coverage of

ObjLupAnsys or PPNodest directly during abstract interpretation and adopt Istan-

bul/nyc [23] together with mocha [24] for measuring PPFuzzer’s coverage. Now, we

show the cumulative distribution of statement coverages in Figure 3-10: The median

coverage of ObjLupAnsys is 71.9% as opposed to 28.0% for PPFuzzer and 19.0%

for PPNodest. The reason for the low coverage of PPFuzzer is that PPFuzzer is

a dynamic tool, which can only cover a branching statement when the branching
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condition is satisfied. The reason for the low coverage of PPNodest is that PPNodest

cannot exhaustively find all the entry points and it stops abstract interpretation if an

unimplemented function is encountered.

Note that the coverages of ObjLupAnsys in some packages are also relatively

low. There are three major reasons. (i) Some functions are dead code, which are

never called from the entry function (ii) Some branching statement conditions will

never be satisfied—when ObjLupAnsys can decide the branching condition statically,

ObjLupAnsys will smartly skip the dead branch. Note this and the former are both

probably because the developer copies and pastes code from somewhere else. (iii) Some

files included via require contain variables from a package input—ObjLupAnsys

cannot resolve these variables without concrete inputs.

2.5.5 RQ4: Performance

In this subsection, we evaluate the performance in terms of how fast ObjLupAnsys

and PPNodest can finish analyzing Node.js packages on the NPM benchmark. Figure 3-
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11 shows a CDF graph with 30 seconds as the time-out threshold: ObjLupAnsys

finishes analyzing 85% of packages within 30 seconds with branch sensitivity and 90%

without branch sensitivity. The performance of branch-insensitive ObjLupAnsys

is similar to PPNodest, which is also a branch-insensitive static analysis. PPNodest

needs additional time to compute control flows and that is why it does not finish any

packages in the first five seconds.

2.6 Discussion

Responsible Disclosure. We have responsibly disclosed all the vulnerabilities found

by ObjLupAnsys to their developers together with Proof of Vulnerability (PoV) and

will not release those vulnerabilities before a 60-day window. If the developers ask us

for more time for patching, we will also wait for their patches before public release.

Loop Execution and Recursive Call. ObjLupAnsys executes a loop or a recursive

call extensively until no more new objects outside the loop or recursive call become

tainted in the object-level, prototype-oriented taint analysis.

Array Handling. Arrays are handled similar to objects in ObjLupAnsys, because

an array is essentially a special type of objects represented in JavaScript, in which

indexes are the property names. Many array operations, such as push and pop, may

introduce ambiguities especially when we do not know the number of elements in the

array.

Dynamic Code. JavaScript code can be introduced dynamically via eval and new

Function. If those dynamic code are known, ObjLupAnsys parses and abstractly

interprets the code. If part of the dynamic code is unknown, ObjLupAnsys will

adopt the template approach adopted by CSPAutoGen [25].

Implementation of JavaScript features. We investigated randomly-selected 10k

Node.js packages on NPM and implemented all the features (based on AST node
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type outputted by Esprima) that are used by more than 5% of packages. Specifically,

the current implementation of ObjLupAnsys supports all ES5 features except for

“with”, which is used by less than 1% of Node.js packages and deprecated in the

strict mode of JavaScript. The support beyond ES5 (i.e., ES2015 and plus) is

still developing: Currently, ObjLupAnsys supports Promise (including await and

yield), arrow function, template literals, and template element. Note that although

ObjLupAnsys does not support some ES2015 features, e.g., class and extends, it

can be combined with Babel (https://babeljs.io/) to convert ES2015 and plus

features to be ES5 compatible for analysis.

Asynchronous Callbacks and Events. The current implementation of ObjLupAnsys

puts asynchronous callbacks in a queue during registration and then invokes them

after ObjLupAnsys finishes executing the current entry function. In many cases,

this is just one of many possibilities in executing asynchronous callbacks— we will

leave this as a future work to model them as an event-based call graph like Madsen et

al. [26].

2.7 Related Work

In this section, we discuss related work. We start from describing security works on

Node.js platform, and then present client-side JavaScript security. Lastly, we present

general vulnerability detection work on other platforms.

Node.js Security. Many research works have been proposed to study the security of

Node.js platform on a variety types of vulnerabilities and we describe them separately

below. For example, Ojamaa et al. [27] and Nodest [1] proposed potential risks including

command injection attack. SYNODE [2] adopts a rewriting technique to enforce a

template before executing a possible injection API like eval. Arteau [3] proposes

a fuzzer to execute Node.js package and finds prototype pollution vulnerabilities.
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Then, the general issue of path traversal has been studied for web applications [28,

29] using static or dynamic analysis. Next, researchers have studied Node.js-specific

Denial of Service (DoS) attacks, such as Regular Expression DoS (ReDoS) [30] and

Event Handler Poisoning (EHP) [31]. The binding layers of the Node.js also have

vulnerabilities [32]. ConflictJS [33] analyzed conflicts among different JavaScript

libraries and Zimmermann et al. [34] studied the robustness of a small number of

third-party Node.js packages to influence the security of other packages.

As a comparison, prototype pollution is specific to JavaScript due to dynamic

features of JavaScript, i.e., prior works on other vulnerabilities cannot detect prototype

pollution. Arteau [3] is the first work that detects prototype pollution, but misses

many vulnerabilities because it is a dynamic analysis tool with limited code coverage.

DAPP [5] mostly adopts Abstract Syntax Tree (AST) and control-flow features as

simple detection patterns of prototype pollution vulnerability detection, which leads

to high false positives and negatives (>50% in both cases).

Client-side JavaScript Security. Researchers have also studied client-side JavaScript

security in addition to the server side. For example, Cross-site scripting (XSS) [35–40]

and Cross-Site Script Inclusion attack (XSSI) [41] attacks are well studied on the client

side. Many research works, such as HideNoSeek [42], JShield [43] and JSTap [44],

have been proposed to detect or analyze malicious JavaScript code. Researchers

have also proposed to secure JavaScript using security policies with works, such as

GateKeeper [45] and CSPAutoGen [25]. Program analysis [46, 47] have also been

adopted at the client side for security analysis. Many prior works [48–55] have been

proposed to restrict JavaScript, especially those from third-party, in a subset for

security. It worth noting that object property graph (OPG) can also be applied to

analyze client-side JavaScript code but is left as a future work.

Error Analysis of JavaScript Programs. Prior works have proposed to detect common

errors that developers may make when writing JavaScript programs. For example, both
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TAJS [14] and JSAI [15] adopt abstract interpretation to analyze JavaScript programs

for more accurate call graph generation and then detect type-related errors. Madsen et

al. [26] propose event-based call graph to detect problems reported on StackOverflow.

As a comparison, none of the aforementioned works can detect prototype pollution

vulnerabilities like those targeted in this paper due to the lack of modeling interplays

between objects.

Other Graph-representation of JavaScript Objects. Prior works have also used graph

structures to represent JavaScript objects. For example, the heap graph proposed by

Guarnieri et al. [21] models local object relations. However, Guarnieri et al. do not

simulate JavaScript execution via abstract interpretation like TAJS [14] and JSAI [15],

which leads to the lack of runtime states, e.g., scopes, in the graph. Therefore, object

resolution related to runtime states, e.g., parameters of two separate executions of

the same function, are inevitably approximated. In addition, JavaScript functions are

not represented as objects in the heap graph, leading to another object resolution

approximation. Brave’s PageGraph [56] and its predecessor AdGraph [57] model

the relations between different browser objects like scripts, DOM and AJAX during

runtime with concrete inputs. As a comparison, ObjLupAnsys models fine-grained

relations between JavaScript objects without any concrete inputs, which are not in

PageGraph or AdsGraph.

General Vulnerability Analysis Framework. Code Property Graph (CPG) is proposed

by Yamaguchi et al. [19] as a general frame work combining CFG, DFG, and AST to

detect C/C++ vulnerabilities. Later on, CPG is ported to PHP by Backes et al. [20]

as an open-source tool called phpjoern [58]. In the past, code analysis [17, 59–61]

has been also widely used to detect various vulnerabilities on different platforms.

The concept of objects and relations between object are also adopted in traditional

program analysis and defenses [62, 63], such as Object Flow Integrity [63]. The

concepts of objects in JavaScript are different from those on C/C++ due to the
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existence of prototype and runtime resolution, which makes traditional object analysis

not applicable on JavaScript.

2.8 Conclusion

Dynamic, flexible JavaScript features not only bring convenience to web developers,

but also introduce new vulnerabilities like prototype pollution. In this paper, we

propose Object Property Graph (OPG) to capture the interplays of JavaScript objects

via abstract interpretation and design a framework, called ObjLupAnsys, to facilitate

object lookup analysis and detect prototype pollution vulnerabilities. ObjLupAnsys

finds 61 previously-unknown vulnerabilities with 11 CVEs and also detects seven

indirectly-vulnerable Node.js applications or packages due to the inclusion of vulnerable

packages. We have responsibly reported all the vulnerabilities to their developers and

five have already been fixed.
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Chapter 3

Mining Node.js Vulnerabilities via
Object Dependence Graph and Query

3.1 Introduction

Node.js is a popular JavaScript runtime environment that executes JavaScript code

outside web browsers such as being a web server to serve the client. Node.js ecosystem

including millions of NPM packages is known to be vulnerable to a variety of vulnera-

bilities, such as command injection [1, 2], prototype pollution [3], path traversal [4],

and internal property tampering [64–66]. In the past, researchers have proposed

various program analysis-based approaches [1–3, 5, 14, 15, 21, 44, 67, 68] targeting

individual vulnerability, such as command injection [1, 2] and prototype pollution [3].

However, despite their success, there is no general framework to detect all kinds of

Node.js vulnerabilities.

One recent advance of vulnerability detection in languages other than JavaScript

such as C/C++ and PHP is to build a graph structure representing different properties

of a target program and perform graph queries to mine vulnerabilities. For example,

researchers proposed a particular graph structure, called Code Property Graph (CPG),

which combines Abstract Syntax Tree (AST), Control Flow Graph (CFG), and Program

Dependence Graph (PDG). CPG is demonstrated to be effective in mining many

types of vulnerabilities in C/C++ [19] and PHP [20]. However, CPG does not model
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object relations, such as object lookups based on prototype chain and this object

lookup especially with a bind call. Therefore, it cannot model and detect popular

object-based JavaScript vulnerabilities, such as prototype pollution [3] and internal

property tampering [64–66].

At the same time, prior static JavaScript analysis works [1, 14, 15, 67, 69] model

objects and their relations via abstract interpretation [70] together with an online

data structure, such as a lattice. However, prior abstract interpretations face two

major challenges. First, previous data structures are unsuitable for offline (i.e., post

abstract interpretation) detections of a variety of vulnerabilities—in other words, their

target is a specific type of vulnerability. The reason is that object information in these

structures keeps changing during abstract interpretation. Thus, vulnerability-related

object information is likely overwritten and lost in the final state. Second, existing

JavaScript analysis—in terms of branch sensitivity—interprets all branches either in

sequence, which compromises accuracy, or in parallel, which compromises scalability.

Both cases lead to many false negatives: the former due to reduced detection capability

and the latter due to excessive number of objects.

In this paper, we propose flow- and context-sensitive static analysis with hybrid

branch-sensitivity and points-to information to generate a novel graph structure, called

Object Dependence Graph (ODG), using abstract interpretation. ODG accepts graph

queries for the offline detection of a wide range of Node.js vulnerabilities. The key

insight of ODG is to represent JavaScript objects as nodes and the relations among

objects and between objects and AST nodes as edges. Specifically, ODG includes

fine-grained data dependencies between objects, thus helping taint-style vulnerability

detection such as command injection. At the same time, ODG is also integrated with

CPG, or particularly Abstract Syntax Tree (AST) of CPG, to represent and preserve

all object definitions and lookups (e.g., these via the prototype chain) in abstract

interpretation for the offline detection of object-related vulnerabilities such as internal
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property tampering and prototype pollution.

We build a prototype system, called ODGen, to generate ODG during abstract

interpretation. Specifically, ODGen starts from entry points and follows AST node

sequence to define and lookup objects for each AST node under abstract scopes. Then,

ODGen records object definitions and lookups as part of ODG, which are also used

to generates CFG (if an object lookup is related to functions) and object-level data

dependencies (if an object definition is derived from another object). ODGen is

hybrid branch-sensitive because the default of ODGen is to abstractly interpret all

branches in parallel, but ODGen switches back to sequential branch interpretation for

a function if the number of object nodes explodes. ODGen has points-to information

because different aliases of an objects point to the same object node in ODG.

To demonstrate the effectiveness of ODGen, we studied all recent Node.js vul-

nerabilities in the CVE database and modeled them with graph queries to ODG

together with existing graph-based code representations. Our evaluation shows that

13 out of 16 vulnerability categories can be successfully modeled by graph queries to

ODG+AST+CFG. We then evaluate ODGen on real-world Node.js packages. The

results show that ODGen is able to detect 43 application-level zero-day vulnerabilities

with 14 false positives and we also confirmed 137 package-level zero-day vulnerabilities

with 84 false positive. We received 70 CVE identifiers for these vulnerabilities.

We make the following contributions in the paper.

• We design a novel graph structure, called Object Dependence Graph (ODG), to

model JavaScript objects and their relations to AST node in terms of definition

and use.

• We design offline graph queries that match object-related patterns for a variety of

Node.js vulnerabilities, particularly internal property tampering and prototype

pollution.
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1 function Func() {};
2 Func.prototype.x="ab";
3 myFunc = new Func;
4 if (source1)
5 myFunc[source2]=myFunc.x+source1; // internal property tampering
6 sink(myFunc.x); // taint-style vulnerability like command injection

Figure 3-1. An exemplary code.

• We build a prototype, open-source system using abstract interpretation to

generate ODG for Node.js packages.

• Our evaluation of ODGen on real-world NPM packages reveals 43 application-

level and 137 package-level zero-day vulnerabilities (70 being assigned with CVE

identifiers).

3.2 Overview

In this section, we start from a motivating example and then describe the threat model

in detecting Node.js vulnerabilities.

3.2.1 A Motivating Example

Figure 5-11 shows a simple exemplary code with only six lines in motivating the use

of ODG in vulnerability detection. Both source1 and source2 are controllable by an

adversary and sink is a sink function, such as exec in command injection. The code

has two vulnerabilities:

• Internal Property Tampering [64–66]. This vulnerability is triggered when

source2 is "__proto__". Because the prototype chain of myFunc is overwritten

at Line 5, the internal property x of myFunc is tampered. Specifically, when the

code tries to access myFunc.x at Line 6, the object lookup in the property x fails

as the prototype chain to Func.prototype is broken. This vulnerability may

lead to a consequence like Denial of Service (e.g., the execution of Line 6 fails) or

privilege escalation (e.g., if myFunc.x is used later as part of an authentication).
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• Taint-style Vulnerability (e.g., command injection [1, 2]). This vulnerability

is triggered when source2 is "x". The code will then create a new property x

under myFunc directly with an adversary controllable value from source1. Next,

when the code accesses myFunc.x at Line 6, the object lookup goes to myFunc

directly instead of Func.prototype, leading to a possible injection.

What we learned from these two vulnerabilities is that the key is the object lookup

myFunc[source2] at Line 5. Different lookups lead to different vulnerabilities—which

motivates the design of ODG in modeling different object lookups in a graph for

vulnerability detection. Another interesting observation worth noting is that the data

dependencies are different for two vulnerability triggering conditions. In the case of

internal property tampering at Line 5, we do not have a dataflow dependency between

Lines 2 and 6 and the lack of such a dependency leads to the vulnerability. By contrast,

in the case of a taint-style vulnerability, we have a dataflow dependency between Lines

5 and 6 (which does not exist before) and the existence of this dependency leads to

the vulnerability.

Figure 3-2 shows the object dependence graph (ODG) integrated with code property

graph (CPG) of the code in Figure 5-11. The top part of Figure 3-2 is CPG with

AST, CFG and Program Dependence Graph (PDG) nodes and edges; the bottom

part is ODG with object/name nodes, object lookup/definition edges to AST nodes

(copied from top for clarity purpose), and property edges. Note that because ODG has

object-level data dependencies, we do not need the statement-level data dependencies

in PDG as part of CPG. We include these edges in the figure for the purpose of a

comparison. We now describe how to detect these two vulnerabilities via graph queries

and more importantly how ODG edges contribute to the detection.
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Figure 3-2. Object Dependence Graph (ODG, Bottom) Integrated with Code Property
Graph (CPG, Top) of the Exemplary Code in Figure 5-11. For readers’ convenience, we
copied corresponding AST nodes from top to bottom and skipped several unimportant
nodes and edges, such as __proto__ of many objects, the global object and many built-in
objects.

Figure 3-3. Nodes and Edges related to Graph Query for Internal Property Tampering
Detection.

3.2.1.1 Query to Detect Internal Property Tampering

We summarize the detection of this internal property tampering vulnerability using

ODG as follows. From a high-level perspective, ODGen finds an object assignment
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statement via a property lookup, which is then followed by another property lookup

statement. Both the lookup and the assigned values in the first statement are

controllable by an adversary so that the prototype chain of the object can be tampered.

Then, the property lookup in the second statement needs to have the tampered

prototype chain involved. We extract related edges from Figure 3-2, show them in

Figure 3-3 and describe below.

• 1 AST pattern matching (obj[prop]=value). The query finds an assignment

statement with a property lookup via AST edges, which is

myFunc[source2]=myFunc.x+source1 at Line 5 of Figure 5-11.

• 2 Property in 1 (prop) is controllable by an adversary. The query follows the

object-level data dependencies to determine whether source2 is controllable by

an adversary. Therefore, the value of source2 can be __proto__.

• 3 Assigned value in 1 (value) is controllable by an adversary. The query fol-

lows the object-level data dependencies to determine whether myFunc.x+source1

can be controllable by an adversary.

• 4 Object in 1 (obj) has a prototypical object and the prototypical object has

a property. The query follows prototype chain of the object myFunc to find the

prototype object myFunc.__proto__, which has a property x.

• 5 Property in 4 is used later in the control flow and has more than one

possible lookup. The query follows the property x to find other uses of the

object (myFunc.x at Line 6 of Figure 5-11) and ensures that it has a control

dependency with the previous assignment.

3.2.1.2 Query to Detect Taint-style Vulnerability

The detection of a taint-style vulnerability using ODG can be summarized as finding

a data dependency between the source object and the argument object in the sink
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Figure 3-4. Nodes and Edges related to Graph Query for Taint-style Vulnerability
Detection.

function. We extracted related edges from Figure 3-2 and show them in Figure 3-4.

• 1 AST Pattern matching for sink function (sink(arg)). The query finds a

statement with a sink function invocation (i.e., sink(myFunc.x) at Line 6 of

Figure 5-11).

• 2 Object lookup for arg in 1 . The query finds the object node in ODG.

• 3 Data dependency for the object in 2 . The query follows object-level data

dependency edges to determine whether the sink function argument can be

influenced by a source.

• 4 AST Node for the source in 3 . The query follows object lookup edges to

find the AST node for the source.

Note that the handling of myFunc[source2] is implicit in the detection of this taint-

style vulnerability. During ODG construction, ODGen creates a so-called wildcard

object with a property ∗ to represent myFunc[source2] for all kinds of possibilities.

Then, myFunc.x can be resolved via two ways: one to Func.prototype.x and the
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other as myFunc.*. Therefore, our query can find an object-level data dependency

between myFunc.* and source1.

3.2.2 Threat Model

In this subsection, we describe the threat model of vulnerabilities in scope of ODGen.

ODGen considers all JavaScript-level Node.js vulnerabilities but excludes low-level

ones, such as those related to the V8 engine. Specifically, such vulnerabilities can be

categorized as two types: (i) application-level and (ii) package-level. We now describe

these two in details.

3.2.2.1 Application-level Vulnerabilities

An application-level vulnerability assumes that an adversary has some controls over

contents in network connection, e.g., an HTTP request or a response, because the

application is communicating with a malicious party. The detailed capability of the

adversary also depends on the semantics of the application. We now describe two

concrete senarios:

• Adversary-controlled network request to a vulnerable server. Say the applica-

tion is a web server serving web contents to clients. An adversary can send

HTTP requests with malicious contents to the server and trigger a vulnerabil-

ity. Consider rollup-plugin-serve, which has a path traversal vulnerability

(CVE-2020-7684) found by ODGen. The vulnerable code reads a file using

readFile via an arbitrary path provided by the client without sanitization, i.e.,

the filePath value eventually comes from the request object controllable by a

possible adversary.

• Adversary-controlled network response to a vulnerable client. Say the application

is at client-side talking with servers. An adversary, i.e., a malicious server, can
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send HTTP responses with malicious contents to the application and trigger a

vulnerability. Let us take a real-world, client-side github notification system,

called github-growl, for example. github-growl gives an alert at the client side

if a github issue is posted to a subscribed github repository. An adversary can

post an issue with a crafted title with OS commands and trigger the command

injection vulnerability in github-growl.

3.2.2.2 Package-level Vulnerabilities

Packages in Node.js are libraries that are imported by other packages or applica-

tions. Package-level vulnerabilities assume that an adversary can control inputs to

a vulnerable package (i.e., those accessible via module.exports), thus triggering the

vulnerability. It is worth noting that package-level vulnerabilities are not stand-alone

and have to be combined with applications for a possible exploitation.

The reason that Node.js community considers package-level vulnerabilities—which

are demonstrated in both academic works [1, 2] and many prior CVEs [64, 71, 72]—are

that one package-level vulnerability may affect many applications if the inputs to the

package are not correctly sanitized. Take the previous github-growl for example.

The application itself is not vulnerable, but the vulnerability lies in an imported

package called growl (CVE-2017-16042). In fact, the vulnerable package also affects

other applications, such as mqtt-growl a mqtt monitor based on growl, by making

them vulnerable as well.

Other than the aforementioned application- vs. package-level, we further classify

Node.js vulnerabilities into two categories based on the vulnerability location, i.e.,

directly vulnerable where the package itself is vulnerable, and indirectly vulnerable

where an imported package is vulnerable.

47



Table 3-I. Nodes, Edges, and Operations of ODG

Name Description

Nodes (N) A set of ODG nodes

Object node (o ∈ No) An object created in the abstract interpretation.
Scope node (s ∈ Ns) An abstract interpretation scope.
Variable node (v ∈ Nv) A variable under a scope or a property under an object.
AST node (a ∈ Na) An abstract syntax tree node.

Edges (E) A set of ODG edges

Object def. (o s−→ a) The AST node (a) defining the object o under scope s.
AST-obj lookup (a s−→ o) The object (o) used by the AST node (a) under s.
Scope hierarchy (s→ s) A parent-child scope relation.
Variable lookup (s→ v) A variable v is defined under a scope s.
Var-obj lookup (v Br−−→ o) An object o that v points to with branch tags Br.
Property lookup (o→ v) A property v of an object o.
Data dependency (o→ o) Data dependency between two objects.
Control dependency (a→ a) Control dependency between two AST nodes.

Procedures (P ) All the ODG-related operations

ChildEdgeType
parentNode Getting the child node of parentNode with EdgeType

AddEdgeEdgeType

src
p−→dst

Adding an edge from src node to dst node with EdgeType and a property being
either branch tags (Br) or a scope (s)

GetEdgeEdgeType
src Getting all the edges start from src node with EdgeType

AddNodeNodeType
a Adding a node from a with NodeType

AddObjObjType
a Adding an object node from a with ObjType in typeof list and linking proto-

typical objects
LkupVarsBr(n) Looking up a variable node under the scope (s) with branch tags (Br) and

name n
LkupObj sBr(n) Looking up object nodes under scope (s) with branch tags (Br) and name (n),

i.e., {Childv
Br−−→o

LkupV ars
Br

(n)
}

3.3 Object Dependence Graph

In this section, we describe the definition of Object Dependence Graph (ODG) and the

operational semantics of the abstract interpretation and the procedure of constructing

ODG.

3.3.1 Definitions

In this section, we define an Object Dependence Graph (ODG) as a representation,

using graph notation, of all the JavaScript objects, variables and scopes generated

during abstract interpretation as nodes and their relations as edges. These edges

include object and AST relations (such as object definition and object lookup) and

object relations (such as object property and object-level data dependency).
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Table 3-I summarizes different ODG nodes and edges. Objects, variables, scopes

and AST are all represented as nodes and their relations as edges. We start from

AST-related edges: object definition and AST-obj lookup. The former is used to locate

the AST node where the object is defined when the object is used later. These types

of edges are unique to one object node because an object is only defined once. The

latter is used to reproduce object lookups in abstract interpretation. One AST node

may have multiple AST-obj lookup edges because the AST node can be abstractly

interpreted for multiple times in a for loop or a recursive call.

We then describe edges between objects, variables, and scopes. Note that we

skipped branch tags (introduced later in Section 3.3.2) for a simple explanation. First,

the combination of s → s, s → v, v → o, and o → v edges can be used to resolve a

statement like obj.prop during abstract interpretation. ODGen first looks up obj

under current scope using s → v and then follows the scope chain using s → v to

find obj if the lookup under current scope fails. Once the variable is found, ODGen

follows v → o to find the object node and then o → v to find the prop. Then, o → o

indicates the latter object has a data dependency on the former. For example, the

object that myFunc[source2] points to at Line 5 of Figure 5-11 has an object-level

data dependency on both objects that myFunc.x and source1 point to.

Next, we describe how ODG models points-to information via v → o edges. Say

two variables a and b and an object property obj.v point to the same object. There

is only one object node in ODG representing this object and three v → o edges from

a, b and obj.v to the object node. Therefore, all three object lookups will resolve to

the same object node during abstract interpretation.

3.3.2 Operational Semantics

In this subsection, we describe our abstract interpretation and the construction of

ODG using operational semantics shown in Figure 3-5 and Figure 3-6. From a high
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level, ODGen abstractly interprets each AST node (a) based on the statement (e),

generates nodes (N) and edges (E) for ODG, and then follows control-flow edges

(which are generated during abstract interpretation) to the next AST node. During

the abstract interpretation of each AST node, the state of ODGen is represented as

a tuple ρ = (N,E, s, Br), where N is all the ODG nodes, E is all the ODG edges, s

is the current scope node, and Br ⊆ Sbr is a set of branch tags that represents the

current conditional branch in the branch-sensitive mode. Each branch tag is a unique

identifier representing the current conditional branch.

Now, we describe the operational semantics of the abstract interpretation of

different statements in Figure 3-5 and Figure 3-6. First, we start from the definition of

either a variable or an object property in Figure 3-5. ODGen attempts to look up the

variable or the property from ODG. If the look-up fails, ODGen creates new variable

and object nodes and links corresponding nodes via edges; if the look-up succeeds,

ODGen reuses existing variable nodes but creates new edges for these nodes.

Second, we describe branching statements (i.e., IF and SWITCH in Figure 3-6).

ODGen first tries to determine the value of the branching condition and chooses

corresponding branch(es). If the branching condition value cannot be determined, the

operational semantics depends on branch sensitivity. (i) ODGen creates a unique

branching tag for each branch in the branch-sensitive mode and attaches the branching

tag with all the nodes and edges created during the abstract interpretation of each

branch. When all the branches of a statement are abstractly interpreted, ODGen

merges all the objects and nodes from different branches based on the tags for continued

abstract interpretation. (ii) ODGen sequentially performs abstract interpretation for

all the branches in the branch-insensitive mode, i.e., the objects and edges created

in later branches will overwrite those created in earlier branches. The default mode

is branch sensitive, but ODGen will switch to branch insensitive if the number of

objects explodes, i.e., exceeding a certain number (e.g., 10k), for a given function.
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Third, we describe function definition in Figure 3-5. ODGen adds a variable node

if the function is not defined in an anonymous closure, creates an object node and

edges between the object and the variable nodes, and then handles edges related to

prototypes.

Fourth, we describe function calls in Figure 3-5 and Figure 3-6, which has two

phase: pre-call and call. In the pre-call phase, ODGen looks up the function object

and creates corresponding object and control-flow edges. Then, in the call phase,

ODGen handles all the parameters, changes the current scope and this point, and

then jumps to the AST node following a call edge. Finally, in the return statement,

ODGen handles return objects and creates corresponding dataflow edges. Because

ODGen handles function calls using the current scope and returns to the exact call

site, ODGen is considered as a context-sensitive approach.

Lastly, we describe loops in Figure 3-6. ODGen abstractly interprets a loop (and

a recursive call) extensively until no more new objects outside the loop (or recursive

call) are being looked-up. ODGen also sets up a minimum and a maximum limit for

loops (and recursive calls).

3.4 ODG Queries for Node.js Vulnerabilities

In this section, we describe graph queries to ODG for all kinds of Node.js vulnerabilities.

We first present how to model queries as several types of graph traversals in Section 3.4.1

and then describe how to represent all kinds of vulnerabilities via those graph traversals

in Section 3.4.2.

3.4.1 Graph Traversals

A graph traversal, as defined in the CPG paper [19], is a function T : P (V ) → P (V )

that maps a set of nodes to another set of nodes on top of ODG, where V is a set of

ODG nodes and P is the power set of V . There are multiple operations that can be
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Table 3-II. Basic Graph Traversals (edges are defined in Table 3-I)

Traversal Description

Defobj Object Definition: (a1 = obj)→ o→ a2.

Useobj Object use: (a1 = obj)→ o
reverse−−−−−→ a2.

Propname
obj Property Lookup: (a = obj)→ o1 → (v = name)→ o2.

Prototypex[y]
Prototype-related Property Lookup: (a0 = x) → o0 → {(vk =

“__proto__”)
Brk−−−→ ok}k>0,Brk+1⊂Brk → (v = y)→ ok+1, where {}k means

repeating k times.

Unsanitizedobj A Backward Unsanitized Dataflow traversal [19].

UnsanitizedSinksink A Forward Unsanitized Dataflow traversal, i.e., a reverse version of
Unsanitizedobj .

Matchp This Match Traversal finds an AST node p [19].

VulAsgmto1[o2]=o3 Unsanitizedo2
⋂︁

Matcho1[o2]=o3

VulAsgmto1=o2[o3] Unsanitizedo3
⋂︁

Matcho1=o2[o3]

Argn
func A traversal matches a function func and obtains its nth argument.

Ctrn
before/after A traversal follows control flow edges either forward (after) or backward

(before).

performed on T :

• A function composition ◦. Two graph traversals T0 and T1 on V can be chained

together by T1 ◦ T0(V ).

• A function intersection
⋂︁

. The results of two graph traversal T0 and T1 on V

can be intersected by T0

⋂︁
T1(V ).

• A function union
⋃︁

. The results of two graph traversal T0 and T1 on V can be

unioned by T0

⋃︁
T1(V ).

By those three simple operations, we can break a complex graph traversal into

multiple basic traversal components shown in Table 3-II. These basic traversals include

object definition and use from AST (Defobj and Useobj), property lookups (Propname
obj

and Prototypex[y]), data-flows (Unsanitizedobj and UnsanitizedSinksink), AST

pattern matching (Matchp, VulAsgmto1[o2]=o3, VulAsgmto1=o2[o3], and Argn
func)

and control-flows (Ctrn
before/after).
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Table 3-III. Graph Traversals for Different Vulnerabilities

Vulnerability Graph Queries

Internal Property Tampering

Prototypical PrototypeLookupo1[o5] ◦ (Useo1
⋂︁

Ctrafter) ◦
(Unsanitizedo3

⋂︁
VulAsgmto1[o2]=o3)

Direct VulAsgmto1=o4[o5] ◦Defo1 ◦ (Unsanitizedo3
⋂︁

VulAsgmto1[o2]=o3)

Prototype Pollution

__proto__ VulAsgmto1=o4[o5] ◦Defo1 ◦ (Unsanitizedo3
⋂︁

VulAsgmto1[o2]=o3)

constructor VulAsgmto4=o6[o7] ◦ Defo4 ◦ VulAsgmto1=o4[o5] ◦ Defo1 ◦
(Unsanitizedo3

⋂︁
VulAsgmto1[o2]=o3)

Injection-related Vulnerabilities

Command injection Unsanitized ◦Arg1
Child_process.exec

Arbitrary code exe. Unsanitized ◦Arg1
eval

SQL injection Unsanitized ◦Arg1
connection.query

Reflected XSS Unsanitized ◦Arg1
response.write

Stored XSS Unsanitized ◦ (Arg1
connection.query

⋃︁
(Arg1

connection.query ◦ Unsanitized ◦
Arg1

response.write))

Improper File Access

Path traversal

(UnsanitizedSinkPropwrite
Arg2

callback

⋂︁
Ctrafter) ◦

(UnsanitizedSinkReadFile
⋂︁

Ctrafter) ◦ Prop∗ ◦ Arg1
callback ◦

Def As callback ◦ (Arg1
CreateServer

⋃︁
Arg2

CreateHttpServer)

Arbitrary file write
(UnsanitizedSinkPropwriteFile

fs

⋂︁
Ctrafter) ◦Prop∗ ◦Arg1

o1 ◦Def As o1 ◦

(Arg1
CreateServer

⋃︁
Arg2

CreateHttpServer)

3.4.2 Vulnerability Descriptions

In this subsection, we describe how to use graph traversals to represent four big

categories of vulnerabilities in Table 3-III.

3.4.2.0.1 Object-related Vulnerabilities We describe graph traversals of two

object-related vulnerability:

• Internal Property Tampering. Internal property tampering (IPT) [64–66] allows

an adversary to alter an internal property, either under an object directly or

a prototypical object, so that future property lookups are affected. IPT has

two main conditions: (i) a vulnerable assignment statement controllable by an

adversary, and (ii) a property lookup after (i). We list graph traversals of both
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prototypical and direct property tampering in Table 3-III based on these two

conditions.

• Prototype Pollution. Prototype pollution allows an adversary to alter a built-in

function following the prototype chain. There are traditionally two prototype

pollution patterns: one through __proto__ (i.e., obj.__proto__.toString)

and the other through constructor (i.e., obj.constructor.prototype). We

describe graph traversals for both patterns in Table 3-III: The former has two

vulnerable assignments before the target and the latter has three.

3.4.2.0.2 Injection Vulnerabilities Injection vulnerabilities allow adversaries

to execute arbitrary code via injections into a sink function via user inputs. Such

vulnerabilities are detected via finding a backward taint-flow from a sink to an

adversary-controlled source and we model this taint-flow as Unsanitized ◦ Arg∗sink.

The traversals for specific injection vulnerabilities are shown in Table 3-III.

3.4.2.0.3 Improper File Access Improper file access allows an adversary to

either read or write files on the filesystem without a proper permission. We model

two example types of vulnerabilities in Table 3-III.

• Path Traversal. Path (directory) traversal allows an adversary to navigate

through directories via ../ to access local files. We model it from a web server

creation, to the callback of HTTP(s) request, then to a file read (ReadFile),

and finally to the HTTP(s) response in Table 3-III.

• Arbitrary File Write. Arbitrary file read allows an adversary to write to arbitrary

files due to improper input validation. We model the vulnerability from a web

server creation, to the callback, and then to the write to the file system in

Table 3-III.
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3.5 Implementation

We implemented an open-source prototype of ODGen at this repository (https:

//github.com/Song-Li/odgen). The implementation has three major parts:

• (i) ODG representation and query. The ODG together with AST and CFG

is stored in memory and queried based on a Python library, NetworkX (https:

//networkx.github.io/). We also store ODG with AST and CFG using pickle,

a Python object serialization method, to the harddisk for future queries. Note

that we adopt NetworkX instead of a graph database like Neo4j, because we find

that an in-memory graph management is more efficient than a graph database

stored on the disk, especially during abstract interpretation.

• (ii) JavaScript parser. The JavaScript parser is based on Esprima (https:

//esprima.org) and we added implementations to convert AST from Esprima to

the standard format of CPG, i.e., those accepted by joern [19] and phpjoern [58].

Note that we adopt the standard format so that we can compare ODG with

CPG in the evaluation.

• (iii) Abstract interpretation. We implemented a customized abstract interpre-

tation in Python and modeled popular built-in functions via JavaScript. Our

implementation includes popular AST features that are used by >5% of Node.js

packages. Note that we set a timeout as 30 seconds in practice of analyzing

Node.js packages.

3.6 Evaluation

In this section, we evaluate ODGen by answering the following research questions.

• RQ1: What are the recent Node.js vulnerability types and is ODG capable of

modeling them?
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Table 3-IV. [RQ1] Vulnerability coverage of different code representation for modeling
vulnerability types in the CVE database between January 2019 and September 2020.

Vulnerability type # of CVE Code Representations

CPG∗ AST+ODG AST+CFG+ODG

Prototype pollution 71 (✓) ✓
Command injection 67 ✓ ✓ ✓
Cross Site Scripting (XSS) 60 ✓ ✓ ✓
Path (directory) traversal 32 (✓) ✓
Arbitrary code execution 18 ✓ ✓ ✓
Improper access control 14 ✓ ✓
Internal property tampering 11 (✓) ✓
Denial of Service (DoS) 11
Regex DoS (ReDoS) 9
Design errors 8
Information exposure 8 ✓ ✓ ✓
Arbitrary file write 8 (✓) ✓
SQL injection 5 ✓ ✓ ✓
SSRF 4 ✓ ✓
CSRF 2 ✓ ✓
Insecure HTTP 2 ✓ ✓ ✓

Total 330
∗: CPG = AST + CFG + PDG.
(✓): It can be detected but with reduced capability.

• RQ2: What is the capability of ODGen in detecting zero-day vulnerabilities

among a large number of real-world NPM packages?

• RQ3: What are the False Positives (FPs) and False Negatives (FNs) of ODGen?

• RQ4: What is the code coverage and performance overhead of the abstract

interpretation?

• RQ5: How will branch-sensitivity affect the vulnerability detection of ODGen?

We performed our experiments on a server with 192 GB = 6*32GB RDIMM

2666MT/s Dual Rank memory, Intel® Xeon® E5-2690 v4 2.6GHz, 35M Cache,

9.60GT/s QPI, Turbo, HT, 14C/28T (135W) Max Mem 2400MHz, and 4 * 2TB 7.2K

RPM SATA 6Gbps 3.5in Hot-plug Hard Drive.

3.6.1 RQ1: Historical Node.js vulnerability coverage

In this subsection, we answer the research question on the ODG’s capability in

modeling real-world Node.js package vulnerabilities. We start from querying the
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central database maintained by the MITRE organization together with information

provided by the synk.io database for recent (i.e., January 2019–September 2020)

vulnerabilities of Node.js packages on NPM. In total, we retrieved 330 vulnerabilities

of Node.js packages after excluding vulnerabilities of Node.js platforms (e.g., those

with underlying memory issues). We then manually go through the vulnerability by

downloading the originally vulnerable package and analyze the code together with the

descriptions on CVE and snyk.io to understand the vulnerability category. Table 3-IV

shows all 16 vulnerability categories and corresponding # of CVEs in the database.

Next, we follow the evaluation methodology adopted in the CPG paper [19]

to manually analyze what code representations are necessary in describing those

vulnerability categories in Node.js. In addition to the code presentations in CPG, we

add ODG and try to understand the capability of ODG in describing vulnerabilities.

Note that the object-level data dependency is a more fine-grained version of statement-

level data dependency in PDG, and thus we do not need to study PDG+ODG in the

code representation.

Table 3-IV shows the analysis results: ODGen is able to model 13 out of 16

vulnerability types, i.e., 302 out of 330 recent vulnerabilities. The rest vulnerability

types are general Denial of Service, Regex Denial of Service (ReDoS), and bad designs.

ODG cannot model ReDoS because it is caused by a vulnerable regex rather than

JavaScript; ODG cannot model many other DoS because some of them are caused by

the event loop. Fortunately, Staicu et al. [30] and Davis et al. [31] either detect or

defend against DoS attacks. ODG cannot model vulnerabilities due to bad designs,

e.g., incorrect validation of inputs—this is the same as the CPG paper, which leaves

design errors out of scope as well.
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3.6.2 RQ2: Zero-day Node.js vulnerabilities

In this research question, we evaluate the capability of ODGen in detecting zero-day

Node.js vulnerabilities both at the application-level and the package-level as described

in Section 3.2.2. Specifically, we crawled 300K NPM packages on February 25, 2020

and applied ODGen with graph queries to detect corresponding vulnerabilities. Our

target vulnerability is selected from the top ones in Table 3-IV; we also intentionally

include those that are unique to JavaScript, such as prototype pollution and internal

property tampering.

3.6.2.0.1 Results. Table 3-V (the “# reported” column) shows a list of vulnera-

bilities found by ODGen. Due to time limit and the extensive number of reported

vulnerabilities, we manually checked and exploited all the vulnerable applications and

these vulnerable packages with >1,000 weekly downloads. The “TP” column indicates

that we can generate an exploit to compromise the package if deployed locally and the

vulnerability is not an intended functionality of the package, and the “FP” column that

we fail to generate a working exploit or the vulnerability is an intended functionality

of the package, e.g., a package like shell-utils designed to execute arbitrary OS

command. Lastly, the “# CVE” column is the total number of CVE identifiers that

we obtained.

We first break down all the found vulnerabilities by application- vs. package-level in

Table 3-V . The number of application-level vulnerabilities is relatively small compared

with the one of package-level. This is because the total number of Node.js standalone

applications is also much smaller than the one of packages.

We then break down these vulnerabilities by their types in Table 3-V. The number

of command injection vulnerabilities is the most among all the vulnerability types

as Node.js is commonly used as a client- or server-side utility application to start

OS applications. We also find many prototype pollution vulnerabilities as this is a
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Table 3-V. [RQ2] A breakdown of zero-day vulnerabilities found by ODGen.

#Reported #Checked TP FP #CVE

Total 2,964 264 180 84 70

App. vs. package breakdown

Application-level 57 57 43 14 6
Indirect Package-level 34 34 15 19 0
Direct Package-level 2,873 173 122 51 64

Vulnerability type breakdown

Path traversal 109 40 30 10 6
Command injection 1,253 108 80 28 52
Arbitrary code execution 183 17 14 3 8
Internal property tampering 910 46 24 22 0
Prototype pollution 492 36 19 17 4
Cross Site Scripting (XSS) 17 17 13 4 0

relatively new type. The number of XSS vulnerabilties is small because our prototype

implementation only models the simple web server provided by the Node.js framework

but not those advanced web frameworks.

3.6.2.0.2 Case Study. In this part, we describe a popular Node.js package,

called deparam, which has two other variations on NPM, node-jquery-deparam and

jquery-deparam. All three packages provide reverse functions for the famous jquery

function $.param(), called deparam. The function deparam takes a parameterized

query string and converts the string back into an object.

deparam is vulnerable to prototype pollution as shown in the simplified code of Fig-

ure 3-7 (a) and the exploit in Figure 3-7 (b). Specifically, when deparam constructs an

object, it does not check whether a property lookup follows the prototype chain (Line 14

of Figure 3-7 (a)). Therefore, an adversary can pollute Object.prototype.toString

using the code at Line 2 of Figure 3-7 (b): When the for-loop at Line 9 is executed

for the second time, toString is polluted at Line 14.

Since one popular use of deparam is to parse the query string of an URL, it will lead

to application-level vulnerabilities. We search the use of deparam on github and find
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Table 3-VI. Baseline Detectors (CI: Command Injection, ACE: Arbitrary Code Execution,
PT: Path Traversal, PP: Prototype Pollution)

Name Type In-scope vuln. Original tool Our impl.∗ (LoC)

JSJoern static CI, ACE, PT phpjoern [58] 260 (Java)+415 (Python)
NodeJsScan regex CI, ACE, PT NodeJsScan [73] N/A
JSTap-vul static CI, ACE, PT JSTap [44] 134 (Python)
Synode-det static CI, ACE, PT Synode [2] 74 (Java)
PPFuzzer dynamic PP Arteau [3] N/A
Nodest static CI, ACE Nodest [1] 288 (Java)+27 (Javascript)

Ensemble The combination of the above six detectors.
∗: Because some tools are not for vulnerability detection, target another language or are close-sourced,
we have to retrofit them for evaluation of vulnerability detection. Note that we keep their static
analysis part integral.

a real-world vulnerable web application, called PDX-Parks (https://github.com/

meandavejustice/pdx-parks), which allows a user to search for nearby parks with

given latitude and longitude. PDX-Parks adopts deparam to decompose a query string

into an object, thus being vulnerable. Specifically, we deployed the website locally

and exploited the site via http://localhost/parks?[__proto__][toString]=123,

which leads to a Denial-of-Service (DoS) for all legitimate requests. The reason is that

PDX-Parks adopts express, which needs a correct toString function.

3.6.3 RQ3: FP and FN

In this subsection, we answer the research question of the false positives (FPs) and

false negatives (FNs) of ODGen.

3.6.3.0.1 Baseline Detectors. We now introduce several baseline vulnerability

detectors for the purpose of comparing with ODGen in Table 3-VI including the

technique type (static vs. dynamic vs. regex) and their in-scope vulnerabilities.

Because we modified several existing JavaScript static analysis tools, such as phpjoern,

Synode, and JSTap, to detect Node.js vulnerabilities, we also make our modification

open-source in the same URL as ODGen.
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Table 3-VII. [RQ3-FP] FP/(FP+TP) of general-purpose static detectors.

JSJoern JSTap-vul ODGen

15/(15+5) = 75% 16/(16+4) = 80% 84/(84+180) = 32%

Table 3-VIII. [RQ3-FP] A breakdown of FPs of ODGen.

Vulnerability Unmodeled function Unsolvable constraints Intended functionality

Command injection 7 9 12
Arbitrary code execution 1 1 1
Prototype pollution 7 8 2
Path traversal 0 10 0
Internal property tampering 0 21 1

3.6.3.0.2 False Positives. In this part, we evaluate the false positives (FPs) of

ODGen and compare it with two other general-purpose, static detectors, i.e., JSJoern

and JSTap-vul. We apply both tools on 300K Node.js packages and then select the

detected packages with Top 20 weekly downloads for manual verification. Table 3-VII

shows the comparison results. JSJoern and JSTap have very high FPs because they

do not have points-to information. Due to the lack of points-to information, they have

to make many over-approximations, which lead to wrong call edges. Note that we

did not compare with either dynamic or regex based detectors on FPs, because they

are using different techniques, which tend to have low FPs. We also did not compare

with Synode-det or Nodest due to scalability issues: Nodest needs installations of all

dependencies and Synode-det does not support many ES6 features.

We also manually inspect all the FPs for ODGen and break down the FPs by

vulnerability types and reasons in Table 3-VIII. There are three main reasons: (i)

unmodeled built-in functions, (ii) unsolvable constraints, and (iii) intended functional-

ities. First, our prototype of ODGen only models popular Node.js built-in functions,

i.e., those used by more than 5% packages. If ODGen does not model a unpopular

function especially when it is used for sanitization, ODGen may report a false positive.

Second, ODGen does not solve all the control- and data-flow constraints, but only
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calculates all possible constant values if they are available. Therefore, it is possible

that ODGen finds a path, but the constraints along the path cannot be satisfied.

Third, some packages may be designed for a certain functionality, e.g., executing an

OS command. ODGen will detect them as command injection, but this is not a

vulnerability.

Figure 3-8 shows an FP example of unsolvable constraints for prototype pollution.

ODGen reports it as prototype pollution because ODGen finds two vulnerable

assignments at Lines 7 (in the first loop run) and 8 (in the second loop run). Then, the

assigned value at Line 8 is also controllable by the adversary. However, although the

assigned value o at Line 8 is controllable by the adversary, it happens to be the same

as the assignee cur[nameTokens[i]]. ODGen needs to add additional constraints

for the assigned value so that it can remove such an FP.

3.6.3.0.3 False Negatives. In this part, we evaluate the false negatives (FNs) of

ODGen by using a benchmark of legacy CVE vulnerabilities. Specifically, we down-

loaded historical packages (until February 2020) with five categories of vulnerabilities

from CVE as a benchmark. It is worth noting that we exclude some vulnerabilities,

such as XSS in this benchmark, because they involve many different web frameworks,

many of which have not been modeled in our prototype implementation.

Table 3-IX shows the false negatives of ODGen and existing analysis tools in

detecting CVE vulnerabilities. Clearly, ODGen’s true positives are the highest and

false negatives are the lowest, i.e., outperforming all existing works in detecting legacy

CVE vulnerabilities because of the modeling of object-level data dependencies. We

breakdown all the FNs of ODGen into two reasons in Table 3-X and describe them

below. First, we only modeled a limited number of built-in functions, i.e., those that

are adopted by more than 5% of Node.js packages. Therefore, ODGen may miss

some data dependencies due to lack of modeling. Second, the abstract interpretation
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Table 3-IX. [RQ3-FN] Comparison of ODGen with prior program analysis in detecting
legacy CVE vulnerabilities. (CI: Command Injection, ACE: Arbitrary Code Execution, PT:
Path Traversal, PP: Prototype Pollution, IPT: Internal Property Tampering)

Detector Total CI PP ACE PT IPT

TP FN TP FN TP FN TP FN TP FN TP FN

NodeJsScan 5 251 2 73 - - 2 29 1 86 - -
JSJoern 39 217 22 53 - - 5 26 12 75 - -
JSTap-vul 52 204 27 48 - - 5 26 12 75 - -
Synode-det 7 249 6 69 - - 1 30 0 87 - -
Nodest 7 249 7 68 - - 0 31 - - - -
PPFuzzer 29 23 - - 29 23 - - - - - -
Ensemble 115 141 46 29 29 23 13 18 27 60 0 11

ODGen 189 67 67 8 40 12 20 11 55 32 7 4

Table 3-X. [RQ3-FN] A breakdown of reasons of FNs of ODGen.

Vulnerability name # Timeout # Unmodeled function

Command injection 4 4
Prototype pollution 9 3
Arbitrary code execution 5 6
Path traversal 22 10
Internal property tampering 2 2

of ODGen may time out and leave a partial ODG without finishing interpreting all

Node.js functions.

We also show a specific FN example in Figure 3-9. This example has a path

traversal vulnerability, but the abstract interpretation cannot reach the vulnerable

code because of multiple recursive calls for both request() and copy() functions.

The number of object nodes for each functions is over 15k and multiple recursive calls

lead to an object explosion even with our hybrid branch sensitivity.

3.6.4 RQ4: Abstract Interpretation Performance

We answer the research question on the code coverage and performance overhead of

abstract interpretation implemented in ODGen.
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3.6.4.0.1 Code Coverage. In this subsection, we answer the research question

on the code coverage of ODGen’s abstract interpretation in terms of two specific

metrics: statement coverage and function coverage. Statement coverage defines the

percentage of statements that are executed and function coverage the percentage of

functions that are analyzed by ODGen. Both metrics show how complete ODGen is

in analyzing Node.js packages. Figure 3-10 shows a distribution graph of statement

and function coverages when analyzing 500 randomly-selected Node.js packages with

a timeout as 30 seconds. The figure is almost an even distribution graph from 0 to

90% and then shows a sudden jump in 90–100%. Actually, about 40% of packages

have 100% code coverage.

The reasons of a relatively low coverage of some packages are as follows. First,

there are some dead code that are copied from another package or online that is

not invoked from the exported function. Second, some packages may dynamically

include a file depending on the inputs, which cannot be statically resolved. Third,

some functions, particularly exported ones, will return another function as a return

value—such returned functions will only be called if another package invokes them.

3.6.4.0.2 Performance Overhead. In this subsection, we answer the research

question of the performance overhead of ODGen in generating ODG for real-world

Node.js packages. Our methodology is as follows. We randomly select 500 Node.js

packages and run ODGen against all the packages until the analysis finishes or time

out. Figure 3-11 shows a CDF graph with 30 seconds as the time-out threshold:

ODGen finishes analyzing 85% of packages within 30 seconds when being branch

sensitive and 93% when being branch insensitive. This evaluation shows that ODGen

is efficient in generating ODG for most of Node.js packages.
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Table 3-XI. [RQ5] the number of detected legacy CVE vulnerabilities with branch
sensitivity enabled and disabled.

Vulnerability name Hybrid Branch-sensitive Branch-insensitive

Command injection 67 64 66
Prototype pollution 40 36 29
Arbitrary code execution 20 18 17
Path traversal 55 55 51
Internal property tampering 7 6 7

Total 189 179 170

3.6.5 RQ5: Branch-sensitivity

In this subsection, we answer the research question on how branch-sensitivity affects

the vulnerability detection of ODGen. Table 3-XI shows the number of detected vul-

nerabilities under different branch sensitivities. Clearly, the hybrid branch sensitivity

adopted by ODGen detects the largest number of vulnerabilities: It combines both

advantages, i.e., accuracy and scalability, with and without branch sensitivity.

Figure 3-12 shows why the hybrid branch sensitivity will help the detection of more

vulnerabilities. We annotate the source code with the number of object nodes in branch

sensitivity enabled. Because the source code has multiple conditional expressions and

a for loop, the number of object nodes quickly increases to over 34 million. ODGen

will reduce to branch insensitive mode in abstractly interpreting the code when object

explosion is detected.

3.7 Discussion and Limitation

Ethics: Responsible Disclosure. We have disclosed all 180 zero-day vulnerabilities to

their developers together with Proof of Vulnerability (PoV) under the help of snyk.io.

All the details of these vulnerabilities can be found in the appendix. If we do not hear

from the developer, we will publicly release the vulnerability after a 60-day disclosure

window. So far, 12 vulnerable packages have already been fixed.

Prototype Implementation and Limitation. We now discuss several implementation
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choice and limitation.

• Supported JavaScript Features. Our prototype implementation follows the

popularity of AST features among Node.js packages, i.e., we implemented those

that are used by more than 5% of packages. Note that ODGen can still analyze

packages with unimplemented features but just skip the unimplemented part.

• Asynchronous Callbacks and Events. The prototype implementation of ODGen

adopts a queue structure to store asynchronous callbacks during registration

and invokes them one by one. We acknowledge that this is just one of many

possibilities that could happen in a real execution and leave the modeling of an

event-based call graph like Madsen et al. [26] as a future work.

• For-loop and Recursive Call in Abstract Interpretation. As discussed in

Section 3.3.2, ODGen extensively executes a for-loop until no more new objects

outside the loop are being looked-up. ODGen also adopts a minimum time as

three and a maximum as ten in abstractly interpreting for loops and recursive

calls. The minimum value is designed in case some external objects are not

modeled in depth; the maximum value is designed to avoid dead loop and reduce

performance overhead.

• Dynamically-included Files. As a general limitation of static analysis, ODGen

cannot analyze any files that are dynamically included depending on user inputs.

This can only be analyzed with user inputs and dynamic analysis.

• Sanitization Functions. The prototype implementation of ODGen adopts a

list of sanitization functions, e.g., parseInt, in analyzing dataflow. Currently,

the list is generated manually and we leave it for the future work for automatic

generation.
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Path-sensitivity. ODGen is partially path-sensitive, i.e., ODGen will calculate

boolean, string and integer values if they are either constant or enumerable. For an

if statement, if the value can be determined, ODGen will abstractly interpret only

one branch; otherwise, ODGen will abstractly interpret both branches in parallel.

3.8 Related Work

Node.js Vulnerability Detection and Defense. In the past, researchers have

studied Node.js vulnerabilities and we discuss them based on their vulnerability types.

Arteau [3] proposes a fuzzer to explore Node.js packages for prototype pollution.

DAPP [5] uses AST and control-flow patterns to detect prototype pollution vulnerabil-

ities with very high false positive and negative rates (50.6% and 84.6% respectively).

ObjLupAnsys [67] detects prototype pollution by expanding object lookups and prop-

agating taints during abstract interpretation. Nodest [1] proposed a closed-source

detection framework to detect command injection vulnerabilities following the risks as

mentioned by Ojamaa et al. [27]. Then, SYNODE [2] adopts a rewriting technique to

enforce a template before executing a possible injection API like eval. Many prior

works [30, 74, 75] propose to detect or defend against regular expression DoS (ReDoS);

Davis et al. [31] propose to defend against Event Handler Poisoning (EHP) DoS attack.

Other than specific vulnerabilities, ConflictJS [33] studied and analyzed conflicts

among different JavaScript libraries; Zimmermann et al. [34] studied the robustness

of third-party Node.js packages and their influence on other packages’ security. Re-

searchers [32] have also proposed to study the binding layers of the Node.js for all

kinds of vulnerabilities. Mininode [76] proposes to reduce the attack surface of Node.js

and improve the overall security. As a comparison, ODGen is the first general

graph query-based framework of JavaScript for efficient detection of a variety types of

Node.js vulnerabilities.
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Client-side JavaScript Security. JavaScript is traditionally used at client-side as

the scripting language and has been studied [55, 77–79] long before the appearance

of Node.js. Cross-site scripting (XSS) [35–39] and Cross-Site Script Inclusion attack

(XSSI) [41] attacks are well studied on the client side. Malicious JavaScript has been

studied by many prior works, such as HideNoSeek [42], JShield [43] and JSTap [44],

for detection and defense. Researchers proposed to secure JavaScript via security

policies, such as content security policy. Examples are like GateKeeper [45] and

CSPAutoGen [25]. Program analysis [46, 47] have also been adopted at the client

side for security analysis. Many prior works [48–51] have been proposed to restrict

JavaScript, especially those from third-party, in a subset for security. We believe that

ODG is able to analyze client-side JavaScript as well and leave those as our future

work. In the evaluation, we compared ODGen with JSTap, a client-side JavaScript

analysis tool that can generate program dependency graph (PDG). The results show

that ODGen can detect more vulnerability than JSTap.

Static Analysis of JavaScript. TAJS [14] and JSAI [15] adopt abstract inter-

pretation to analyze JavaScript programs for more accurate call graph generation

and then detect type-related errors. Madsen et al. [26] propose event-based call

graph to detect problems reported on StackOverflow. Brave’s PageGraph [56] and

its predecessor AdGraph [57] model the relations between different browser objects

like scripts, DOM and AJAX during runtime with concrete inputs. JAW [80] models

browser objects in a Hybrid Property Graph, which contains Event Registration,

Dispatch and Dependency Graph, Inter-Procedural Call Graph, AST, PDG, and CFG.

Guarnieri et al. [21] propose to adopt heap graph to model local object relations.

SAFE [81] and follow-ups [69, 82] convert JavaScript to an IR form and adopt an

internal structure for abstract interpretation. As a comparison, the lattice structure

in TAJS and JSAI, the heap graph by Guarnieri et al., the Object Property Graph in

the aforementioned ObjLupAnsys [67], and the data structure in SAFE change during
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abstract interpretation, which cannot be used offline for graph query, because many

object-related information gets lost as the interpretation. PageGraph, AdsGraph and

Hybrid Property Graph are offline structure, but they are designed to include browser

objects rather than JavaScript objects. That is, none of these three can be used to

detect JavaScript vulnerabilities in this paper.

General Vulnerability Detection Framework. Previous works, such as Program

dependence graph (PDG) [83] and Combined C Graph (CCG) [84], have proved that

it is effective to combine program analysis with graph representation to model data

and control dependencies for operations in a program. Based on graph representation,

many program analysis problems can be converted to graph-related problems, such

as graph-reachability problem [85], graph query problem [19, 20, 86–88]. Specifically,

Code Property Graph (CPG) is proposed by Yamaguchi et al. [19] as a general frame

work combining CFG, DFG, and AST to detect C/C++ vulnerabilities. Later on, CPG

is ported to PHP by Backes et al. [20] as an open-source tool called phpjoern [58]. As

a comparison, ODGen models object dependencies, such as object lookup/definition,

which are unavailable in any of existing graph structures.

Other than graph-based frameworks, in the past, code analysis [16, 17, 59–61]

has been also widely used to detect various vulnerabilities on different platforms.

The concept of objects and relations between objects are also adopted in traditional

program analysis and defenses [62, 63], such as Object Flow Integrity [63]. The

concepts of objects in JavaScript are different from those on C/C++ due to the

existence of prototype and runtime resolution, which makes traditional object analysis

not applicable on JavaScript.

3.9 Conclusion

In this paper, we propose to generate a novel graph structure, called Object Dependence
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Graph (ODG), via abstract interpretation. ODG accepts graph queries to mine a

variety of Node.js vulnerabilities, especially those related to objects such as prototype

pollution and internal property tampering. We implement a prototype, open-source

system, called ODGen, to construct ODG via context- and flow-sensitive static

analysis with hybrid branch sensitivity and points-to information. Our evaluation

reveals 180 zero-day vulnerabilities and 70 of them have already been assigned with

CVE identifiers.
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ρ ⇒ (N,E, s, Br)

(x, a, ρ) ⇒ if LkupV ars∅(x),= ∅ then (N,E, s, Br) else (N,E ∪ {AddEdgea
s−→o

x
s−→o′

where ∀o′ ∈ LkupObjs
Br

(a)}, s, Br)

(variable)

ρ ⇒ (N,E, s, Br)

(let/var/const/∅ x, a, ρ) ⇒ (N ∪ Na := {AddNodevar
a.name}, E ∪ {AddEdges→v

s′→na
, ∀na ∈ Na}, s, Br)

where
{︁ s′ := s (BLOCK_SCOPE) let/const

s′ := GLOBAL_SCOPE ∅
s′ := upper FUNC/FILE_SCOPE var

(variable def)

ρ ⇒ (N,E, s, Br), (x, a.x, ρ) ⇒ (Nx, Ex, sx, Brx), (p, a.p, ρ) ⇒ (Np, Ep, sp, Brp)

(x[p]/x.const, ρ) ⇒
{︁ (Nx ∪ {pov(0), ∀pov ∈ Pov}, Ex ∪ {AddEdgeo→v

pov(0)→pov(1), ∀pov ∈ Pov}, s, Br) if on = ∅

(Nx, Ex ∪ {AddEdgea
s−→o

a
s−→no

, ∀no ∈ No}, s, Br) otherwise

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

No := {LkupObj
ox
Brx

(op.name), ∀op ∈ Childa
s−→o

a.p , ∀ox ∈ Childa
s−→o

a.x }

Pov := {(AddNodevar
p′ , o′), ∀o′ ∈ Childa

s−→o
a.x , ∀p′ ∈ Childa

s−→o
a.p } x[p]

No := {LkupObj
ox
Brx

(const), ∀ox ∈ Childa
s−→o

a.x }

Pov := {(AddNodevar
const, o

′), ∀o′ ∈ Childa
s−→o

a.x } x.const

(property)

ρ ⇒ (N,E, s, Br), (x1, a.x1, ρ) ⇒ (Nx1
, Ex1

, sx1
, Brx1

), (x2, a.x2, ρ) ⇒ (Nx2
, Ex2

, sx2
, Brx2

)

(x1 op x2, a, ρ) ⇒ (Nx1
∪ Nx2

∪ Nnew, Ex1
∪ Ex2

∪ Edep ∪ Edef , s, Br)

where
{︃ Nnew := {AddObj∗a, ∀o1 ∈ Childa

s−→o
a.x1

, ∀o2 ∈ Childa
s−→o

a.x2
}

Edep := {AddEdgeo→o
u′→o′ , ∀o

′ ∈ Nnew, ∀u′ ∈ {Childa
s−→o

a.x1
∪ Childa

s−→o
a.x2

}}

Edef := {AddEdgeo→a
o′→a

, ∀o′ ∈ Nnew}

(binary op)

ρ ⇒ (N,E, s, Br), (kn, a.kn, ρ) ⇒ (Nkn , Ekn , skn , Brkn ), (vn, a.vn, ρ) ⇒ (Nvn , Evn , svn , Brvn )

({k1 : v1, . . . , kn : vn}, a, ρ) ⇒ (Oa := N,E, s, Br)

,where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Evo := {AddEdgev
br−−→o

nvi
Br−−→Childa

s−→o
a.vi

, ∀i ∈ {1, . . . , n}}

Eov := {AddEdgeo→v
ao→vi

, ∀i ∈ {1, . . . , n}}

N := {AddObj∗a} ∪ {nvi := AddNodevar
a.ki

, ∀i ∈ {i, . . . , n}}} ∪ {
n⋃︁

i=1
Nki

} ∪ {
n⋃︁

i=1
Nvi

}

E := {
n⋃︁

i=1
Eki

} ∪ {
n⋃︁

i=1
Evi

} ∪ Eov ∪ Evo ∪ {AddEdgea
br−−→o

a
Br−−→oa

, ∀oa ∈ Oa}

(Object Literal)

ρ ⇒ (N,E, s, Br)

(this, a, ρ) ⇒ (N,E ∪ {AddEdgea
s−→o

a
s−→o′

where ∀o′ ∈ LkupObjs
Br

(”this”)}, s, Br)

(this)

ρ ⇒ (N,E, s, Br)

(Bpre, a, ρ) ⇒ (N ∪ {as := AddNode
scope
a }, E ∪ {AddEdges→s

s→as}, as, Br)
(pre block)

(Bpre, a, ρ) ⇒ ρBpre , (S1, ρBpre ) ⇒ ρ1, . . . , (Sn, ρn−1) ⇒ ρn

(S1, . . . , Sn, ρ) ⇒ (Nρn , Eρn ∪ {AddEdgea→a
a.Si→a.Si+1

, ∀i ∈ {1, . . . , n − 1}}, sρ, Brρn )
(block)

ρ ⇒ (N,E, s, Br), (let/var/const/∅ x, a.x, ρ) ⇒ (Nx, Ex, sx, Brx), (e, a.e, ρ) ⇒ (Ne, Ee, se, Bre)

(let/var/const/∅ x = e, ρ) ⇒ (Nx ∪ Ne, Ex ∪ Ee/{GetEdgev→o
LkupV ars∅a.x

} ∪ AE, s,Br)

, whereAE := {AddEdge
v

br−−→o

LkupV ars∅a.x
Br−−→o′

where ∀o′ ∈ Child
a

s−→o
a.e }(assign)

ρ ⇒ (N,E, s, Br), (f, a.f, ρ) ⇒ (Nf , Ef , sf , Brf )

(function f(p1, . . . , pn), a, ρ) ⇒ (Nf ∪ {on := AddObj
func
a.f

}, Ef ∪ AE, sf , Brf )

, whereAE := {AddEdge
v

br−−→o

LkupV ars∅a.f.name
Brf−−−→on

} ∪ {AddEdge
a

s−→o

a
s−→on

} ∪ {AddEdge
o→a
on→a}(function def)

ρ ⇒ (N,E, s, Br)

(function (p1, . . . , pn), a, ρ) ⇒ (Nf ∪ {on := AddObj
func
∅ }, Ef ∪ {AddEdgea

s−→o

a
s−→on

} ∪ {AddEdgeo→a
on→a}, s, Br)

(closure def)

ρ ⇒ (N,E, s, Br), (f, a.f, ρ) ⇒ (Nf , Ef , sf , Brf ), (a1, a.a1, ρ) ⇒ (Na1
, Ea1

, sa1
, Bra1

), . . . , (an, a.an, ρ) ⇒ (Nan , Ean , san , Bran )

(f(a1, . . . an), a, ρ) ⇒ (
n⋃︁

i=1
Nai

∪ Sc ∪
n⋃︁

i=1
vnai

,
n⋃︁

i=1
Eai

∪ {AddEdges
br−−→s

s
br−−→sc

, ∀sc ∈ Sc} ∪ Ecall ∪ Evo, Sc, Br)

, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Psd := {(AddNode
scope

a′
def

, a′
def ), ∀a′

def ∈ adef}, Sc := {psd[0], ∀psd ∈ Psd},

adef := {Childo→a
o′ , ∀o′ ∈ Childa

s−→o
a.f }, Ecall := {AddEdgea

s−→a

a
psd[0]
−−−−−→psd[1]

, ∀psd ∈ Psd}

Pvo := {(sc, AddNodevar
a.ai

, Childa
sc−−→o

a.ai
), ∀sc ∈ Sc, ∀i ∈ {1, . . . , n}}, vnai

:= {pvo[1], ∀pvo ∈ Pvo},

Evo := {AddEdgev
br−−→o

pvo[1]
Br−−→p′vo[2]

, ∀pvo ∈ Pvo, ∀p′vo[2] ∈ pvo[2]}

(pre call)

Figure 3-5. Operational Semantics for ODG Construction (1).
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ρ ⇒ (N,E, s, Br), (f(a1, . . . an), apc, ρ) ⇒ ρpc, (B, aB , ρpc) ⇒ ρB

(f(a1, . . . an), a, ρ) ⇒
{︁ (NρB

, EρB
, s, Br) Call

(NρB
∪ {nto := AddObjobja } ∪ {ntv := AddNodevar

”this”}, EρB
∪ Esv ∪ Evo ∪ Eres, s, Br) New

, where
{︃ B := {a′.B, ∀a′ ∈ Childa→a

a }
Esv ; = {AddEdges→v

sρpc→ntv
}

Evo := {AddEdgev
br−−→o

ntv
Br−−→nto

}

Eres := {AddEdgea
s−→o

a
s−→nto

}

(call, new)

ρ ⇒ (N,E, s, Br), (e, a.e, ρ) ⇒ (Ne, Ee, se, Bre),

ρ′if := (Ne, Ee, se, Bre ∪ new br(a.if)) (branch sensitive)
ρ′else := (Ne, Ee, se, Bre ∪ new br(a.else)) (branch sensitive)
ρ′else := ρ′if := (Ne, Ee, se, Bre) (branch insensitive)

,

(Bif , a.Bif , ρ′if ) ⇒ ρif , (Belse, a.Belse, ρ
′
else) ⇒ ρelse

(if(e){Bif}else{Belse}, a, ρ) ⇒
(Nρif

, Eρif
∪ {AddEdgea→a

a→a.if}, sρif , Brρif ) Ctrue = True

(Nρelse
, Eρelse

∪ {AddEdgea→a
a→a.else}, sρelse , Brρelse ) Cfalse = False

(Nρif
∪ Nρelse

, Eρif
∪ Eρelse

∪ {AddEdgea→a
a→a.if} ∪ {AddEdgea→a

a→a.else}, s, Br) else

, where Ctrue = ∧{Child
a

s−→o
aρe

}, Cfalse = ∨{Child
a

s−→o
aρe

}(if)

(x = x + 1, a′, ρ) ⇒ ρx+1

(x + +, a, ρ) ⇒ ρx+1

(x = x − 1, a′, ρ) ⇒ ρx−1

(x − −, a, ρ) ⇒ ρx−1

(inc/dec)
(x1 = x1 op x2, a

′, ρ) ⇒ ρx1 op x2

(x1 aop x2, a, ρ) ⇒ ρx1 op x2

(assign op)

ρ ⇒ (N,E, s, Br)

(c, a, ρ) ⇒ (N ∪ {ao := AddObj∗a}, E ∪ {AddEdgea
s−→o

a
s−→ao

}, s, Br)

(const)

(e1, a.e1, ρ) ⇒ (Ne1
, Ee1

, se1 , Bre1 ), . . . , (en, a.en, ρ) ⇒ (Nen , EEn , sen , Bren ),

(e1, . . . , en, a, ρ) ⇒ (
n⋃︁

i=1
Nei

,
n⋃︁

i=1
Eei

, sen , Bren )

(expression list)

(Btry, a.Btry, ρ) ⇒ (Nt, Et, st, Brt), (Bcatch, a.Bcatch, ρBtry
) ⇒ (Nc, Ec, sc, Brc)

(try{Btry}catch{Bcatch}, a, ρ) ⇒ (Nt ∪ Nc, Et ∪ Ec, s, br)
(try-catch)

(e1, a.e1, ρ) ⇒ ρe1 , (B1, a.B1, ρ
′
e1

) ⇒ ρB1
, . . . , (en, a.en, ρ) ⇒ ρen , (Bn, a.Bn, ρ′en ) ⇒ ρBn

(switch e1{B1} . . . en{Bn}, a, ρ) ⇒ (N,E, s, Br)

, where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N := (
n⋃︁

i=1
{if Childa

s−→o
aρei

= True then NρBi
else ∅}

E :=
n⋃︁

i=1
{if Childa

s−→o
aρei

= True then EρBi
∪ {AddEdgea→a

a→a.Bi
} else ∅}

ρ′ei
=

{︂ (Nρei
, Eρei

, sρei
, new br(ei) ∪ Brρei

) (branch-sensitive)
(Nρei

, Eρei
, sρei

, Brρei
) (branch-insensitive)

(switch)

ρ ⇒ (N,E, s, Br), (e, a.e, ρ) ⇒ (Ne, Ee, se, Bre)

(return e, a, ρ) ⇒ (Ne, Ee ∪ {AddEdgea
s−→o

a′ s−→o′
, where a′ = ASTcaller, o

′ = Childa
s−→o

a.e }, s, Br)

(return)

(e, a.e, ρ) ⇒ ρe, (B1, a.B1, ρe) ⇒ ρB1
, (B2, a.B2, ρe) ⇒ ρB2

(e : {B1}?{B2}, a, ρ) ⇒ if Childa
s−→o

a.ρe
= True then ρB1

else ρB2

(Ternary)

ρ ⇒ (N,E, s, Br), (x1, a.x1, ρ) ⇒ (Nx1
, Ex1

, sx1
, Brx1

), . . . , (xn, a.xn, ρ) ⇒ (Nxn , Exn , sxn , Brxn )

([x1, . . . , xn], a, ρ) ⇒ (N,E, s, Br)

, where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N :=

n⋃︁
i=1

Nxi
∪ {ao := AddObj

array
∅ } ∪ {vi = AddNodevar

i , ∀i ∈ {1, . . . , n}}

E :=
n⋃︁

i=1
Exi

∪ {AddEdgeo→v
ao→vi

, AddEdgev
br−−→o

vi
Br−−→oi

, where ∀oi ∈ Childa
s−→o

a.xi
, ∀i ∈ {1, . . . , n}}

(array)

ρ ⇒ (N,E, s, Br), (e, a.e, ρ) ⇒ ρe, (B, a.B, ρe) ⇒ ρB

(while (e){B}, a, ρ) ⇒ (NρB
, EρB

, s, Br)
(while)

ρ ⇒ (N,E, s, Br), (e1, a.e1, ρ) ⇒ (ae1
, ρe1 ), (e2, a.e2, ρe1 ) ⇒ ρe2 , (B, a.e2, ρe2 ) ⇒ ρB , (e3, ρB) ⇒ ρe3

(for(e1; e2; e3){B}, a, ρ) ⇒ (Nρe3
, Eρe3

, s, Br)
(for)

loop until ρB or ρe3 does not change or the number of looping reaches the threshold

Figure 3-6. Operational Semantics for ODG Construction (2).

72



(a) Vulnerable code:

1module.exports = function deparam( params ) {
2 var obj = {};
3 params.replace(/\+/g, ’ ’).split(’&’).forEach(function(v){
4 var param = v.split(’=’), key = decodeURIComponent(param[0]), cur = obj, i = 0;
5 ... // convert string "key" to array "keys", e.g., ’a[b][c]’ -> [’a’, ’b’, ’c’]
6 var keys_last = keys.length - 1;
7 if ( param.length === 2 ) {
8 val = decodeURIComponent( param[1] );
9 for ( ; i <= keys_last; i++ ) {

10 key = keys[i];
11 if (i < keys_last) {
12 cur = cur[key] || (keys[i+1] && isNaN( keys[i+1] ) ? {} : []);
13 } else {
14 cur = cur[key] = val; // vulnerable location
15 }
16 }
17 }
18 });
19 return obj;
20};

(b) Exploit:

1 var deparam = require("deparam");
2 var payload = "a[__proto__][toString]=123";
3 deparam(payload);
4 console.log({}.toString)

Figure 3-7. [RQ2] A package-level prototype pollution in deparam and the exploit code
(It leads to an application-level vulnerability in PDX-Parks, a park search application).

1 //pixi-gl-core@1.1.4
2 function getUniformGroup(nameTokens, uniform)
3 {
4 var cur = uniform;
5 for (var i = 0; i < nameTokens.length - 1; i++)
6 {
7 var o = cur[nameTokens[i]] || {data:{}};
8 cur[nameTokens[i]] = o;
9 cur = o;

10 }
11 return cur;
12 }

Figure 3-8. [RQ3-FP] A false positive example of prototype pollution reported by
ODGen.
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1 // curlrequest@1.0.1
2 exports.request = function(options,callback){
3 if (arguments.length === 1) {
4 exports.request.call(this, options, callback);
5 ... } // request calls itself.
6 if (options.retries) {
7 exports.request(options, function (err) {}
8 ... } // request calls itself.
9 exports.copy(options); // request calls copy.

10 }
11 exports.copy = function (obj) {
12 for (var i in obj) {
13 if (Array.isArray(obj[i])) {...}
14 else if (typeof obj[i] === ’object’) {
15 copy[i] = obj[i] ? exports.copy(obj[i]) : null; // copy calls itself.
16 } else {...}
17 }
18 return copy;
19 };

Figure 3-9. [RQ3-FN] A false negative example in detecting a legacy path traversal
vulnerability (multiple recursive calls lead to object explosion and time-out).
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Figure 3-10. [RQ4-Coverage] Distribution of statement and function coverage (timeout:
30 seconds). One major reason of uncovered code is the runtime inclusion of JavaScript
files depending on inputs.
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Figure 3-11. [RQ4-Performance] CDF graph of total execution time to finish analysis.

1// limdu@0.9.4
2 exports.toSvmLight =
3 function(dataset, bias, binarize, firstFeatureNumber) {
4 var lines = "";
5 for (var i=0; i<dataset.length; ++i) {
6 var line = (i>0? "\n": "") + // 2 objects
7 (binarize? (dataset[i].output>0? "1": "-1"): dataset[i].output) + // 2+1 objects
8 featureArrayToFeatureString(dataset[i].input, bias, firstFeatureNumber); // 54 objects
9 // 2*3*54 objects

10 lines += line;
11 }; // (2*3*54)^3=34,012,224 objects
12 ...
13 }

Figure 3-12. [RQ5] A false negative in detecting a legacy command injection vulnerability
with branch-sensitive mode (The number of objects explodes and ODGen times out).
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Chapter 4

(Cross-)Browser Fingerprinting via OS
and Hardware Level Features

4.1 Introduction

Web tracking is a debatable technique used to remember and recognize past website

visitors. On the one hand, web tracking can authenticate users—and particularly

a combination of different web tracking techniques can be used for multi-factor

authentication to strengthen security. On the other hand, web tracking can also be

used to deliver personalized service—if the service is undesirable, e.g., some unwanted,

targeted ads, such tracking is a violation of privacy. No matter whether we like web

tracking or whether it is used legitimately in the current web, more than 90% of Alexa

Top 500 websites [89] adopt web tracking, and it has drawn much attention from

general public and media [90].

Web tracking has been evolving quickly. The first-generation tracking technique

adopts stateful, server-set identifiers, such as cookies and evercookie [6]. After that,

the second-generation tracking technique called fingerprinting emerges, moving from

stateful identifiers to stateless—i.e., instead of setting a new identifier, the second-

generation technique explores stateless identifiers like plug-in versions and user agent

that already exist in browsers. The second-generation technique is often used together

with the first to restore lost cookies. Both first and second generation tracking are
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constrained in a single browser, and nowadays people are developing third-generation

tracking technique that tries to achieve cross-device tracking [91].

The focus of the paper is a 2.5-generation technique in between the second and

the third, which can fingerprint a user not only in the same browser but also across

different browsers on the same machine. The practice of using multiple browsers is

common and promoted by US-CERT [92] and other technical people [93]: According

to our survey,1 70% of studied users have installed and regularly used at least two

browsers on the same computer.

The proposed 2.5-generation technique, from the positive side, can be used as part

of stronger multi-factor user authentications even across browsers. From another angle,

just as many existing research works on new cyber attacks, the proposed 2.5-generation

tracking can also help to improve existing privacy-preserving works, and we will briefly

discuss the defense of our cross-browser tracking in Section 4.7.

Now, let us put aside the good, the bad and the ugly usages of web tracking,

and look at the technique itself. To fingerprint different browsers installed on the

same machine, one simple approach is to use existing features that fingerprint single

browser. Because many existing features are browser specific, the cross-browser stable

ones are not unique enough even when combined together for fingerprinting. That is

why the only cross-browser fingerprinting work, Boda et al. [94], adopts IP address

as a main feature. However, IP address, as a network-level feature, is excluded from

modern browser fingerprinting in the famous Panopticlick test [7] and many other

related works [8–13]. The reason is that IP address changes if allocated dynamically,

connected via mobile network, or a laptop switches locations such as from home to

office—and is unavailable behind an anonymous network or a proxy.

In the paper, we propose a (cross-)browser fingerprinting based on many novel

OS and hardware level features, e.g., these from graphics card, CPU, audio stack,
1More details about our experiment can be found in Appendix ??.
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and installed writing scripts. Specifically, because many of such OS and hardware

level functions are exposed to JavaScript via browser APIs, we can extract features

when asking the browser to perform certain tasks through these APIs. The extracted

features can be used for both single- and cross-browser fingerprinting.

Let us take WebGL, a 3D component implemented in browser canvas object,

for example. While canvas, especially the 2D part, has been used in single-browser

fingerprinting [12, 95], WebGL is actually considered as “too brittle and unreliable”

even for a single browser by a very recent study called AmIUnique [11]. The reason for

such conclusion is that AmIUnique selects a random WebGL task and does not restrict

many variables, such as canvas size and anti-aliasing, which affect the fingerprinting

results.

Contrasting with this conclusion drawn by AmIUnique, we show that WebGL can

be used not only for single- but also for cross-browser fingerprinting. Specifically,

we ask the browser to render more than 20 tasks with carefully selected computer

graphics parameters, such as texture, anti-aliasing, light, and transparency, and then

extract features from the outputs of these rendering tasks.

Our principal contribution is being the first to use many novel OS and hardware

features, especially computer graphics ones, in both single- and cross-browser finger-

printing. Particularly, our approach with new features can successfully fingerprint

99.24% of users as opposed to 90.84% for AmIUnique, i.e., state of the art, on the same

dataset for single-browser fingerprinting. Moreover, our approach can achieve 83.24%

uniqueness with 91.44% cross-browser stability, while Boda et al. [94] excluding IP

address only have 68.98% uniqueness with 84.64% cross-browser stability.

Our secondary contribution is that we make several interesting observations for

single- and cross-browser fingerprinting. For example, we find that the current

measurement of screen resolution, e.g., the one done in AmIUnique, Panopticlick [7,

96] and Boda et al. [94], is unstable, because the resolution changes in Firefox and IE
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when the user zooms in or out the web page. Therefore, we take the zoom level into

consideration, and normalize the width and height in screen resolution. For another

example, we find that both DataURL and JPEG formats are unstable across different

browsers, because these formats are with loss and implemented differently in multiple

browsers and the server side as well. Therefore, we need to adopt lossless formats for

server-client communications in cross-browser fingerprinting.

Our work is open-source and available at https://github.com/Song-Li/cross_

browser/, and a working demo is at http://www.uniquemachine.org.

The rest of the paper is organized as follows. We first present all the features

including old ones adopted and modified from AmIUnique and new ones proposed

by us in Section 4.2. Then, we introduce the design of our browser fingerprinting

including the overall architecture, rendering tasks, and mask generation in Section 4.3.

After that, we talk about our implementation in Section 4.4, and data collection in

Section 4.5. We evaluate our approach and present the results in Section 4.6. Next, we

discuss the defense of our fingerprinting in Section 4.7, some ethics issues in Section 4.8,

and related work in Section 5.6. Our paper concludes in Section 5.7.

4.2 Fingerprintable Features

In this section, we introduce fingerprintable features used in this paper. We start from

features used in prior works, and then introduce some features that need modification

especially for cross-browser fingerprinting. Next, we present our newly-proposed

features.

Although there are no restrictions for features on single-browser fingerprinting, our

cross-browser features need to reflect the information and operation of the level below

the browser, i.e., the OS and hardware level. For example, both vertex and fragment

shaders expose the behaviors of GPU and its driver in the OS; the number of virtual
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cores is a CPU feature; the installed writing scripts are OS-level features. The reason

is that these features in the OS and hardware level are relative more stable across

browsers: all browsers are running on top of the same OS and hardware.

Note that if an operation, especially the outputs of the operation, is contributed

by both the browser and the underlying (OS and hardware) levels, we can use it for

single-browser fingerprinting, but need to get rid of the browser factor in cross-browser

fingerprinting. For example, when we render an image as a texture on a cube, the

texture mapping is an GPU operation but the image decoding is a browser one.

Therefore, we can only use PNG, a lossless format, for cross-browser fingerprinting.

For another example, the dynamic compression operation of audio signals is performed

by both the browser and the underlying audio stack, and we need to extract the

underlying features. Now let us introduce these features used in the paper.

4.2.1 Prior Fingerprintable Features

In this part of the section, we introduce fingerprintable features that we adopted from

state of the art. There are 17 features presented in the Table I of the AmIUnique

paper [11], and we have all of them for our single-browser fingerprinting. More detailed

can be found in their paper. Because many of such features are browser specific,

we adopt a subset with 4 features for cross-browser fingerprinting, namely screen

resolution, color depth, list of fonts, and platform. Some of these features need

modifications and are introduced below.

4.2.2 Old Features with Major Modifications

One prior feature, screen resolution, needs refactoring for both single- and cross-browser

fingerprinting. Then, we introduce another fingerprintable feature, the number of CPU

virtual cores. Lastly, two prior features need major modifications for cross-browser

fingerprinting.
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Screen Resolution. The current measurement of screen resolution is via the “screen”

object under JavaScript. However, we find that many browsers, especially Firefox and

IE, change the resolution value in proportion to the zoom level. For example, if the

user enlarges the webpage with “ctrl++” in Firefox and IE, the screen resolution is

inaccurate. We believe that the zoom level needs to be considered in both single- and

cross-browser fingerprinting.

Specifically, we pursue two separate directions. First, we adopt existing work [97]

on the detection of zoom levels based on the size of a div tag and the device pixel

ratio, and then adjust the screen resolution correspondingly. Second, because the

former method is not always reliable as acknowledged by the inventors, we adopt a

new feature, i.e., the ratio between screen width and height, which does not change

with the zoom level.

In addition to screen resolution, we also find that some other properties, such as

availHeight, availWidth, availLeft, availTop, and screenOrientation, are useful in both

single- and cross-browser fingerprinting. The first four represents the available screens

for the browser excluding system areas, such as the top menu and the tool bar of a

Mac OS. The last one shows the position of the screen, e.g., whether the screen is

landscape or portrait, and whether the screen is upside down.

Number of CPU Virtual Cores. The core number can be obtained by a new browser

feature called hardwareConcurrency, which provides the capability information for

Web Workers. Now, many browsers support such feature, but some, especially early

versions of browsers, do not. If not supported, there exsits a side channel [98] to

obtain the number. Specifically, one can monitor the finishing time of payload when

increasing the number of web workers. When the finishing time increases significantly

at a certain level of web workers, the limit of hardware concurrency is reached, making

it useful to fingerprint the number of cores. Note that, some browsers, such as Safari,

will cut the number available cores to Web Workers by half, and we need to double
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the number for cross-browser fingerprinting.

The number of cores is known by the inventor to be fingerprintable [99] and this is

one of the reasons that they call it hardwareConcurrency rather than cores. However,

the feature is never being used or measured in prior arts of browser fingerprinting.

AudioContext. AudioContext provides a bundle of audio signal processing functionali-

ties from signal generation to signal filtering with the help of audio stack in the OS

and the audio card. Specifically, existing fingerprinting work [100] uses OscillatorNode

to generate a triangle wave, and then feed the wave into DynamicsCompressorNode, a

signal processing module that suppresses loud sounds or amplifies quiet sounds, i.e.,

creating a compression effect. Then, the processed audio signal is converted to the

frequency domain via AnalyserNode.

The wave in the frequency domain differs from one browser to another on the same

machine. However, we find that peak values and their corresponding frequencies are

relatively stable across browsers. Therefore, we create a list of bins with small steps

on both the frequency and value axes, and map the peak frequencies and values to

the corresponding bins. If one bin contains a frequency or value, we mark the bin as

one and otherwise zero: such list of bins serve as our cross-browser feature.

In addition to the wave processing, we also obtain the following information from

the destination audio device: sample rate, max channel count, number of inputs,

number of outputs, channel count, channel count mode, and channel interpretation.

Note that to the best of our knowledge, none of existing fingerprinting works have

used such audio device information for browser fingerprinting.

List of Fonts. The measurement in AmIUnique is based on Flash plugin, however

Flash is disappearing very fast, which is also mentioned and acknowledged in their

paper. At the time of our experiment, Flash has already become little supported

to obtain the font list. Instead, we adopt the side-channel method mentioned by
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Nikiforakis et al. [10], where the width and height of a certain string is measured

to determine the font type. Note that not all fonts are cross-browser fingerprintable

because some fonts are web specific and provided by browsers, and we need to apply

a mask shown in Section 4.3.3 to select a subset. Another thing worth noting is that

we are aware that Fifield et al. [9] provide a subset of 43 fonts for fingerprinting,

however their work is based on single-browser fingerprinting and not applicable in our

cross-browser scenario.

4.2.3 Newly-proposed Atomic Fingerprintable Features

In this and next subsection, we introduce our newly-proposed fingerprintable features.

We first start with atomic features, and by atomic, we mean that the browser exposes

either an API or a component directly to the JavaScript. Then, we will introduce

composite features, which usually requires more than one API and component to

collaborate.

Line, curve, and anti-aliasing. Line and curve are 2D features supported by both

Canvas (2D part) and WebGL. Anti-aliasing is a computer graphics technique used

to diminish aliasing by smoothing jaggies, i.e., jagged or stair-stepped lines, in either

single line/curve object or the edge of a computer graphics model. There are many

existing algorithms [101] for anti-aliasing, such as first-principles approach, signal

processing approach, and mipmapping, which make anti-aliasing fingerprintable.

Vertex shader. A vertex shader, rendered by GPU and the driver, converts each vertex

in a 3D model to its coordinate in a 2D clip-space. In WebGL, a vertex shader may

accept data in 3 ways: attributes from buffers, uniforms that always stay the same, and

texture from fragment shader. A vertex shader is usually combined with a fragment

shader described below when rendering a computer graphics task.

Fragment shader. A fragment shader, rendered by GPU and the driver as well,

processes a fragment, such as a triangle outputted by the rasterization, into a set
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of colors and a single depth value. In WebGL, fragment shader takes data in the

following ways:

• Uniforms. A uniform value stays the same for every pixel in a fragment during

a single draw call. Therefore, uniforms are non-fingerprintable features, and we

list it here for completeness.

• Varyings. Varyings pass values from the vertex shader to the fragment shader

that interpolates between these values and rasterizes the fragment, i.e., drawing

each pixel in the fragment. The interpolation algorithm varies in different

computer graphics cards, and thus varyings are fingerprintable.

• Textures. Given a setting of mapping between vertexes and texture, a fragment

shader calculates the color of each pixel based on the texture. Due to the limited

resolution of the texture, the fragment shader needs to interpolate values for a

target pixel based on these pixels in the texture surrounded by the target. The

texture interpolation algorithm also differs from one graphic card to another,

making texture fingerprintable.

Textures in WebGL can be further classified into several categories: (1) normal

texture, i.e., the texture that we introduced above; (2) depth texture, i.e., a

texture that contains depth values for each pixel; (3) animating texture, i.e., a

texture that contains video frames instead of static images; and (4) compressed

texture, i.e., a texture that accepts compressed format.

Transparency via Alpha Channel. Transparency, a feature provided by GPU and the

driver, allows the background to be intermingled with the foreground. Specifically,

alpha channel with a value between 0 and 1 composites background and foreground

images into a single, final one using a compositing algebra. There are two fingerprinting

points in an alpha channel. First, we can use one single alpha value to fingerprint
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the compositing algorithm between background and foreground. Second, we can

fingerprint the changes of transparency effects when the alpha value increases from 0

to 1. Because some graphics cards adopt discrete alpha values, some jumps may be

observed in the changes of transparency effects.

Image encoding and decoding. Images can be encoded and compressed in different

formats, such as JPEG, PNG, and DataURL. Some of the formats, such as PNG, are

lossless, while some, such as JPEG, are compressed with loss of information. The

decompression of a compressed images is a fingerprintable feature, because different

algorithms may uncover different information during decompression. According to our

study, this is a single-browser feature, and cannot be used for cross-browser.

Installed writing scripts (languages). Writing scripts (systems), or commonly known

as written languages, such as Chinese, Korean, and Arabic, require the installation of

special libraries to display due to the size of the libraries and locality of the languages.

Browsers do not provide APIs to access the list of installed languages, however such

information can be obtained via a side channel. Specifically, a browser with a particular

language installed will display the language correctly, and otherwise show several

boxes. That is, the existence of boxes can be used to fingerprint the presence of that

language.

4.2.4 Newly-proposed Composite Fingeprintable Features

Now, let us introduce our newly-proposed composite fingeprintable features, which are

rendered by more than one browser API or component, and sometimes with additional

algorithms built atop of browser APIs.

Modeling and multiple models. Modeling, or specifically 3D modeling in this paper,

is a computer graphics process of mathematically describing an object via three-

dimensional surfaces. The vertexes of a model are handled by the vertex shader, and

the surface by the fragment shader. Different objects are represented by different
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models, and may interact with each other especially when techniques below, such as

lighting, exist.

Lighting and shadow mapping. Lighting is the simulation of light effects in computer

graphics, and shadow mapping is to test whether a pixel is visible under a certain

light and add corresponding shadows. There are many types of lighting, such as

ambient lighting, directional lighting, and point lighting, which differ in the sources

of the light. Additionally, many effects are accompanied by lights, such as reflection,

translucency, light tracing, and indirect illumination, when lights interact with one

computer graphics model or multiple models. WebGL does not provides direct APIs

for lights and shadows, and some WebGL libraries (such as three.js) provides high-level

APIs built on top of WebGL’s vertex and fragment shaders for lights and shadows.

Camera. Camera, or specifically pinhole camera model, maps 3D points in a space onto

2D points in an image. In WebGL, a camera is represented by a camera projection

matrix handled by the vertex and fragment shaders, and can be used to rotate and

zoom in and out an object.

Clipping Planes. Clipping restricts the rendering operations within a defined region

of interest. In 3D rendering, a clipping plane is some distance away from and

perpendicular to the camera so that it can prevent rendering surfaces that are too

far from the camera. In WebGL, clipping planes are performed by the vertex and

fragment shaders with additional provided algorithms.

4.3 Design

4.3.1 Overall Architecture

Figure 4-1 shows the system architecture. First, the task manager at the server side

sends various rendering tasks, such as drawing curves and lines, to the client side. Note

that the rendering tasks also involve obtaining OS and hardware level information,
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Figure 4-1. System Architecture

like screen resolution and timezone. Then, the client-side browser renders these tasks

by invoking a specific API or a combination of APIs, and produces corresponding

results, e.g., images and sound waves. Then, these results, especially images, are

converted into hashes so that they can be conveniently sent to the server. Meantime,

the browser also collects browser-specific information, such as whether anti-aliasing

and compressed textures are supported, which will be used at the server side for

fingerprints composition.

Next, when the server collects all the information from the client side, the server

will start to composite fingerprints. Specifically, a fingerprint is generated from a list

of hashes from the client side and a mask that is a list of one or zero corresponding

to the hash list—we perform an “and” operation between the list of hashes and

the mask, and then generate another hash as the fingerprint. The mask for single-

browser fingerprinting is straightforward, a list of all ones. The mask for cross-browser

fingerprinting is composited from two sources. First, the collected browser information

will contribute to the mask: if the browser does not support anti-aliasing, the bit

values in the mask for all tasks that involve anti-aliasing are zero. Second, we will

have a different mask for each browser pair, e.g., Chrome vs. Firefox and Chrome vs.

Windows Edge.
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In the next two sections, we first introduce our rendering tasks at client side, and

then our fingerprints composition, especially how to generate the masks.

4.3.2 Rendering Tasks

In this section, we introduce different rendering tasks proposed in this work. Before

that, let us first present the basic canvas setting below. The size of the canvas is

256×256. The axes of the canvas are defined as follows. [0, 0, 0] is the middle of the

canvas, where x-axis is the horizontal line that increases to the right, y-axis is the

vertical line that increases to the bottom, and z-axis increases when moving far from

the screen. An ambient light with the power of [R: 0.3, G: 0.3, B: 0.3] on a scale of 1

is present, and a camera is placed at the location of [0, 0, -7]. These two components

are necessary, because otherwise the model is entirely black. In the rest of the paper,

unless specified, such as Task (d) with 2D features and other tasks with additional

lights, we use the same basic settings in all the tasks.

Note that unlike the settings in AmIUnique [11], our canvas setting is reliable when

the condition of the current window changes. Specifically, we tested three different

changes: window size, side bar, and zoom-level. First, we manually change the window

size, and find that the contents in the canvas remain the same both visually and

computationally in terms of hash value. Second, we zoom in and out the current

window, and find that the contents change visually according to definition, but the

hash value remain the same. Lastly, we open a browser console as a side bar, and find

that the canvas contents also remain the same similar to changing window size. Now

let us introduce our rendering tasks from Task (a) to (r).

Task (a): Texture. The task in Figure 4-2(a) is to test the regular texture feature

in the fragment shader. Specifically, a classical Suzanne Monkey Head model [102]

is rendered on a canvas with a randomly-generated texture. The texture, a square

with a size as 256×256, is created by randomly picking a color for each pixel. That
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Figure 4-2. Client-side Rendering Tasks for the Purpose of Fingerprinting

89



is, we generate three random values uniformly between 0 and 255 for three primary

colors—red, green and blue—at one pixel, mix three primary colors together, and use

it as the color for the pixel.

We choose this randomly-generated texture rather than a regular one, because this

texture has more fingerprintable features. The reasons are as follows. When a fragment

shader maps a texture to a model, the fragment shader needs to interpolate points

in the texture so that the texture can be mapped to every point on the model. The

interpolation algorithm differs from one graphic card to another, and the difference is

amplified when the texture changes drastically in color. Therefore, we generate this

texture in which colors change greatly between each pair of adjacent pixels.

Task (b): Varyings. This task, shown in Figure 4-2(b), is designed to test the varying

feature of the fragment shader on a canvas. Different varying colors are drawn on

six surfaces of a cube model with a specification of the color of four points on each

surface. We choose this varying color to enlarge the color differences and changes on

each single surface. For example, when blue is abundant (such as 0.9 with a scale of

1) on one vertex of a surface, the other vertex will lack blue (such as 0.1) and have

more green or red color. Additionally, a camera is placed at the location of [0, 0, -5]

for the purpose of comparison with Task (c).

Task (b’): Anti-aliasing+Varyings. The task in Figure 4-2(b’) is to test the anti-aliasing

feature, i.e., how browsers smooth the edge of models. Specifically, we adopt the same

task in Task (b), and add anti-aliasing. If we enlarge Figure 4-2(b’), we will find that

the edges of both models are smoothed.

Task (c): Camera. The task in Figure 4-2(c) is to test the camera feature, i.e., a

projection matrix fed into the fragment shader. Every setting in this task is the same

as Task (a) except for the camera, which is moved to a new location of [-1, -4, -10].

The same cube looks smaller than the one in Task (a), because the camera is moved

further from the cube (the z-axis is -10 as opposed to -5).
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Task (d): Lines and Curves. The task in Figure 4-2(d) is to test lines and curves. One

curve and three lines with different angles are drawn on a canvas. Specifically, the curve

obeys the following function: y = 256− 100cos(2.0πx/100.0) + 30cos(4.0πx/100.0) +

6cos(6.0πx/100.0), where [0, 0] is the left and top of the canvas, x-axis increases to

the right, and y-axis increases to the bottom. The starting and ending points of three

lines are {[38.4, 115.2], [89.6, 204.8]}, {[89.6, 89.6], [153.6, 204.8]}, and {[166.4, 89.6],

[217.6, 204.8]}. We choose these specific lines and curves so that we can test different

gradients and shapes.

Task (d’): Anti-aliasing+Lines and Curves. Task (d’) is an anti-aliasing version of

Task (d).

Task (e): Multi-models. The task in Figure 4-2(e) is to test how different models

influence each other in the same canvas. In addition to the Suzanne model, we

introduce another model that looks like a single-person armed sofa (called sofa model),

and put two models in parallel. Another randomly-generated texture following the

same procedure described in Task (a) is mapped to the sofa model.

Task (f): Light. The task in Figure 4-2(f) is to test the interaction of a diffuse, point

light and the Suzanne model. A diffuse, point light causes diffuse reflection when

illuminating an object. Specifically, the light is white with the same values across

RGB, the power of the light is 2 for each primary color, and the light source is located

at [3.0, -4.0, -2.0].

We choose a white light source in this task because the texture is colorful, and

a single-color light may diminish some subtle differences on the texture. The power

of the light is also carefully chosen, because a very weak light will not illuminate

the Suzanne model, making it invisible, but a very strong light will make everything

white and diminish all the fingerprintable features. In a small scale experiment with 6

machines, when increasing the power from 0 to 255, we find that when the light power

is 2, the pixel differences among these machines are the maximum. The light position
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is randomly chosen and does not affect the feature fingerprinting results.

Task (g): Light and Models. The task in Figure 4-2(g) is to test the interaction of a

single, diffuse, point light and two models, because one model may create a shadow

on another when illuminated by a point light. Every setting of light is the same as

Task (f), and the models are the same as Task (e).

Task (h): Specular Light. The task in Figure 4-2(h) is to test the effects of a diffuse

point light with another color and a specular point light on two models. Similar to

diffuse point light, a specular point light will cause a specular reflection on an object.

Specifically, both lights are located at [0.8, -0.8, -0.8], the RGB of the diffuse point

light is [0.75, 0.75, 1.0], and the RGB of the specular light is [0.8, 0.8, 0.8].

There are two things worth noting. First, we choose the specific camera location

because it is closer to the models and has bigger effects. Particularly, one may notice

the spot on the back of the sofa model illuminated by the specular point light. Second,

although the color of the diffuse point light is towards blue, but still has much red and

green. We want to test other colors, but white light is still the best for fingerprinting

given that the texture is colorful.

Task (h’): Anti-aliasing+Specular Light. Task (h’) is an anti-aliasing version of Task

(h).

Task (h”): Anti-aliasing+Specular Light+Rotation. Task (h’) is the same as Task (h’)

but with 90 degree rotation.

Task (i): Two Textures. The task in Figure 4-2(i) is to test the effects of mapping two

different textures to the same objects. On top of Task (h), i.e., every other setting is

the same, we map another layer of randomly-generated texture to both the Suzanne

and sofa model.

Task (j): Alpha. The task in Figure 4-2(j) consisted of 8 sub-tasks is to test the effects

of different alpha values. Specifically, we put the Suzanne and sofa models in parallel,

92



and change the alpha values chosen from this specific set, {0.09, 0.1, 0.11, 0.39, 0.4,

0.41, 0.79, 1}, where 0 means completely transparent and 1 no transparency.

Again, there are two things worth noting. First, we choose this value set carefully

to reflect different alpha values and small value changes: three representative values

{0.1, 0.4, 0.8} as well as their nearby values are selected. Values are augmented in

0.01, because many GPUs do not accept smaller steps. Second, the Suzanne and sofa

models are positioned so that they are partially overlapped and the hidden structure

of the sofa model is visible when the model becomes transparent. For example, the

arm of the sofa model is partially visible when viewing from the back of the model.

Task (k): Complex Lights. The task in Figure 4-2(k) is to test complex light features,

such as reflection, moving lights, and light tracing among multiple models. Specifically,

we generate 5,000 metallic ring models with different angles randomly placed on the

ground and piled together. For reliability, we use a seeded random number generator

with the same random seed every time so that the test can be repeated on different

browsers and machines. Two point light sources, yellow and red, towards the bottom

are circling around in the right top corner of the entire scene. When lights illuminate

the rings underneath, other rings also get illuminated through reflection and two colors

from different sources are intermingled together.

Note that we choose single-color light sources because the models are not colorful,

and lights with colors will illuminate more details on the rings. Furthermore, lights

with different colors will interact with each other and create more detailed effects.

Task (k’): Anti-aliasing+Complex Lights. Task (k’) is an anti-aliasing version of Task

(k).

Task (l): Clipping Plane. The task in Figure 4-2(l) is to test the movement of a

clipping plane and the FPS. Specifically, we put a static positive tetrahedron on the

ground, illuminate it with collimated light, and move the clipping plane so that the
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observer feels that the tetrahedron is moving. The captured image in Figure 4-2(l) is

upside down when the clipping plane moves to that position.

Task (m): Cubemap Texture+Fresnel Effect. The task in Figure 4-2(m) is to test cube-

map texture and fresnel effect in light reflection. Particularly, cubemap texture [103]

is a special texture that utilizes the six faces of a cube as the map shape, and fresnel

effect is an observation that the amount of reflected light depends on the viewing

angle. We create a cubemap texture with a normal campus scene, and put several

transparent bubbles on top of the texture for the fresnel effect. All the bubbles are

moving randomly and bumping to each other in animation.

Task (n): DDS Textures. DDS Textures refer to those that use DirectDraw Surface file

format, a special compressed data format with the S3 Texture Compression (S3TC)

algorithm. There are five different variations of S3TC from DXT1 to DXT5, and

each format has an option to enable mipmapping, a technique to scale high-resolution

texture into multiple resolutions within the texture file. Because DXT2 is similar to

DXT3 and DXT4 similar to DXT5, Task (n) only tests DXT1, DXT3, and DXT5 with

and without mipmapping in each column as shown in Figure 4-2(n). For comparison,

we also include an uncompressed texture with ARGB format in the rightmost column.

There are two gray cubes in Figure 4-2(n) because DXT3 and DXT5 with mipmapping

is unsupported on that specific machine.

Task (o): PVR Textures. PVR texture, or called PVRTC texture, is another texture

compression format adopted mostly by mobile devices, such as all iPhone, iPod Touch,

and iPad as well as some Android products. Based on the size of data blocks, there

are two modes: 4 bit mode and 2 bit mode. Further, there are two popular versions,

v1 and v3, and we can choose to enable mipmapping as well. In total, Task (o),

shown in Figure 4-2(o), has 8 subtasks that enumerate different combinations of bit

mode, version, and mipmapping. Similarly, a gray cube means that the format is not

supported.
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Task (p): Float Textures. Float texture, or called floating point texture, uses floating

points instead of integers to represent color values. A special type of floating point

texture is depth texture that contains the data from the depth buffer for a particular

scene. Task (p), shown in Figure 4-2(p), is adopted from an existing online test [104]

for the purpose of rendering float and depth textures.

Task (q): Video (Animating Textures). The task in Figure 4-2(q) is to test the

decompression of videos. Specifically, we create a two-second static scene video from a

PNG file with three different compression formats (namely WebM, high quality MP4,

and standard MP4), maps the video as an animating texture to a cube, and capture

six consecutive frames from the video.

Note that although all the videos are created with one single PNG file, the captured

frames are different because the compression algorithm is with loss. We choose six

consecutive frames because JavaScript only provides an API to obtain frames at a

certain time but not with certain frame numbers—six consecutive frames can make

sure that the target frame is within the set based on our experiment.

Task (r): Writing Scripts. The task in Figure 4-2(r) is to obtain the list of supported

writing scripts, such as Latin, Chinese, and Arabic, in a browser. Because none of

existing browsers provide an API to obtain the list of supported writing scripts, we

adopt a side channel to test the existence of each writing script. Specifically, the

method is as follows. The name of each writing script in its own language is rendered

in the browser. If the writing script is supported, the rendering will succeed; otherwise,

a set of boxes will be shown instead of the script. Therefore, we can detect the boxes

to test whether the browser supports the script: For example, Figure 4-2(r) shows that

Javanese, Sudanese, Lontara and Thaana are not supported in that specific tested

browser. Our current test list has 36 writing scripts obtained from Wikipedia [105]

and ranked by their popularity.
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Algorithm 1 Cross-browser Mask Generation
Input:
1: M : the set of all possible masks.
2: Hbrowser,machine = {Hashtask1, Hashtask2, Hashtask3, ...} : the hash list for all the rendering tasks on one

browser of a specific machine.
3: Hbrowser = {Hbrowser,machine1, Hbrowser,machine2, ...} : the hash list for a browser.
4: HS = {Hchrome, Hfirefox, Hopera, ..} : the overall hash list.
5:
Process:
6:
7: for all possible {hbrowser1, hbrowser2} ⊂ HS do
8: Maxuniq ← 0
9: Maxmask ← null
10: for mask in M do
11: FS ← {}
12: Count← 0
13: for m1 ∈ hbrowser1 and m2 ∈ hbrowser2 do
14: if m1&mask == m2&mask and m1&mask /∈ FS then
15: Count++
16: FS.add(m1&mask)
17: end if
18: end for
19: Uniq ← Count/size(hbrowser1)
20: if Uniq > Maxuniq then
21: Maxuniq ← Uniq
22: Maxmask ←Mask
23: end if
24: end for
25: Maxmask is the mask for browser 1 and 2.
26: end for

4.3.3 Fingerprints Composition

In this section, we present how to form a fingerprint at the server side based on

the hashes from the client-side rendering tasks. As mentioned, a fingerprint is a

hash computed from an “and” operation of the hash list of all the tasks and a mask.

The mask is straightly all ones for single-browser fingerprinting, and computed from

two sub-masks for cross-browser fingerprinting. We have talked about the first sub-

mask computed from the fact whether a browser support certain functionalities in

Section 4.3.1, and now will discuss the second sub-mask, which differs for every browser

pair.

The generation of the mask for every two browsers is a training-based approach.

Specifically, we use a small subset to obtain a mask that optimizes both the cross-

browser stability and the uniqueness. Note that similar to false positive and negative,

these two numbers, i.e., cross-browser stability and uniqueness, are two sides of a coin:
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When the cross-browser stability increases, uniqueness decrease, and vice versa. Let us

think about two extreme examples. If we use single-browser features, the cross-browser

stability is zero but the uniqueness is the highest. At contrast, if we use only one

feature, e.g., platform, the cross-browser stability is 100% but the uniqueness is very

low.

Algorithm 1 shows the training procedure of the mask for every browser pair. We

adopt a brute-force search: though not the most efficient but the most effective and

complete. Due to the small size of the training data, we realize that brute force is

possible and produces the best result. Specifically, we first enumerate every browser

pair (Line 1), and then every possible mask (Line 4). For each mask, we go through

the training data (Line 7), and make sure to select the mask that maximizes the

cross-browser stability multiplying the uniqueness (Line 8–11 and 14–17).

4.4 Implementation

Our open-source implementation, excluding all the open-source libraries (e.g., three.js,

a JavaScript 3D library, and glMatrix, a JavaScript library for matrix operations),

has approximately 21K Lines of Code (LoC). Specifically, our approach involves

approximately 14K lines of JavaScript, 1K lines of HTML, 2.4K lines of Coffeescript,

500 lines of C code, and 3.7K lines of Python code.

We now divide our code into client and server, and describe below. The client-side

code has a manager in JavaScript that is generated from Coffeescript. The manager

performs three jobs: (1) loading all the rendering tasks, (2) collecting all the results

from the rendering tasks as well as browser information, and (3) sending the results

to a snippet of JavaScript that performs hashes and then communicates with the

server-side code. Tasks (n) and (o) are written in C and converted to JavaScript

via Emscripten. All other rendering tasks are written in JavaScript directly: Tasks

97



(k)–(m) are written with the help of three.js, and the rest tasks are directly using

either WebGL or JavaScript APIs. All rendering tasks have used glMatrix for vector

and matrix operations.

The server side of our implementation is written in Python, serving as a module of

an Apache server. Our server-side code can be further divided into two parts: the first

with 1.2K LoC for communicating with the client-side code and storing hashes into

a database and images into a folder, and the second with 2.5K LoC for the analysis

such as generating and applying masks on the collected fingerprints.

4.5 Data Collection

We collect data from two crowdsourcing websites, namely Amazon Mechanical Turks

and MacroWorkers. Specifically, we instruct crowdsourcing workers to visit our website

via two different browsers at their own choice, and if they visit the website via three

browsers, they will get paid by a bonus. After visiting, our website will provide a

unique code for each worker so that she can input it back to the crowdsourcing website

to get paid and optional bonus. Note that in our data collection, in addition to hashes,

we also send all the images data to the server—such a step is not needed if deploying

our approach.

To ensure that we have the ground truth data, we insert a unique identifier as part

of the URL that each crowdsourcing worker visits, e.g., http://oururl.com/?id=ABC.

The unique identifier is stored at the client-side browser as a cookie so that if the user

visits our website again, she will get the same identifier. Additionally, we allow one

crowdsourcing worker to take the job only once. For example, the number of Human

Intelligence Tasks (HITs) in MTurks is one for each worker.

In total, we have collected 3,615 fingerprints from 1,903 users within three months.

Some users just visit our website with one browser and does not finish the two-browser
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Table 4-I. Normalized Entropy for Six Attributes of the Dataset Collected by Our Approach,
AmIUnique, and Panopticlick (The last two columns are copied from the AmIUnique paper)

Ours AmIUnique Panopticlick

User Agent 0.612 0.570 0.531

List of Plugins 0.526 0.578 0.817

List of Fonts (Flash) 0.219 0.446 0.738

Screen Resolution 0.285 0.277 0.256

Timezone 0.340 0.201 0.161

Cookie Enabled 0.001 0.042 0.019

task. We use all the fingerprints directly for single-browser fingerprinting. For cross-

browser fingerprinting, the dataset is divided equally into ten parts for each browser

pair if there is enough data: one for the generation of masks, and the other nine for

testing.

4.5.1 Comparing Our Dataset with AmIUnique and Panop-
ticlick

The purpose of this part of the section is to compare our dataset with AmIUnique

and Panopticlick in the metrics of normalized Shannon’s entropy invented in the

AmIUnique paper. Specifically, Equation 4.1 shows the definition according to their

paper:

NH =
H(X)

HM

=
−
∑︁

i P (xi)log2P (xi)

log2(N)
(4.1)

H(X) is the Shannon’s entropy where X is a variable with possible values {x1, xi, ..}

and P(X) a probability function. HM is the worse case scenario in which every

fingerprint has the same probability and we have the maximum entropy. N is the

total number of fingerprints.

Table 4-I shows the comparison result where the statistics for AmIUnique and

Panopticlick are obtained from Table III of the AmIUnique paper. We observe that

the normalized entropy values of our dataset are very similar to datasets used in past

approaches except for list of fonts and timezone.
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First, the normalized entropy of list of fonts drops 0.22 from AmIUnique and

0.52 from Panopticlick. The reason as explained by AmIUnique is that Flash is

disappearing. By the time that we collect data, the percentage of browsers with Flash

support decreases even more when compared with AmIUnique. To further validate

our dataset, we also calculate the normalized entropy for the list of fonts collected by

JavaScript. The value is 0.901, very close to the one from Panopticlick.

Second, the normalized entropy of timezone increases 0.139 from AmIUnique

and 0.179 from Panopticlick. The reason is that our crowdsourcing workers from

MicroWorkers are very international, spanning from Africa and Europe to Asia and

Latin America. Specifically, MicroWorkers allow us to create campaigns targeting

different regions all over the world, and we did create campaigns for each continental.

Another thing worth noting is that the normalized entropy of cookie enabled is

almost zero for our dataset. The reason is that we collect data from crowdsourcing

websites, where workers need to get paid with cookie enabled. If they disable cookies,

they cannot even log into the crowdsourcing website. At contrast, both AmIUnique

and Panopticlick attract general web users in which a small percentage may disable

cookies. In general, there are very few people disabling cookies, because cookies are

essential for many modern web functionalities.

4.6 Results

In this section, we first give an overview of our results, and then break down the

results by different browser pairs and features. Lastly, we present some interesting

observation.

4.6.1 Overview

We first give an overview of our results for both single- and cross-browser fingerprinting.

Specifically, we compare our single-browser fingerprinting with AmIUnique, state of
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Table 4-II. Overall Results Comparing AmIUnique, Boda et al. excluding IP Address, and
Our Approach (“Unique” means the percentage of unique fingerprints out of total, “Entropy”
the Shannon entropy, and “Stability” the percentage of fingerprints that are stable across
browsers. We do not list cross-browser number for AmIUnique and single-browser number
for Boda et al. in the table, because these number are very low and their approaches are
not designed for that purpose. )

Single-browser Cross-browser

Unique Entropy Unique Entropy Stability

AmIUnique [11] 90.84% 10.82

Boda et al. [94] 68.98% 6.88 84.64%

Ours 99.24% 10.95 83.24% 7.10 91.44%

Table 4-III. Cross-browser Fingerprinting Uniqueness and Stability Break-down by Browser
Pairs

Browser Chrome Firefox Edge IE Opera Safari Other

Chrome 99.2% (100%)
Firefox 89.1% (90.6%) 98.6% (100%)
Edge 87.5% (92.6%) 97.9% (95.9%) 100% (100%)
IE 85.1% (93.1%) 91.8% (90.7%) 100% (95.7%) 100% (100%)
Opera 90.9% (90.0%) 100% (89.7%) 100% (100%) 100% (60.0%) 100% (100%)
Safari 100% (89.7%) 100% (84.8%) N/A N/A 100% (100%) 100% (100%)
Other 100% (22.2%) 100% (33.3%) - - 100% (50%) - 100% (100%)

Note: The format of each cell is as follows – Uniqueness (Cross-browser Stability).

the art, and our cross-browser fingerprinting with Boda et al. excluding IP address.

Note that although many new features, e.g., these in AmIUnique, emerge after Boda

et al., these features are browser specific and we find that the features used in Boda

et al. are still the ones with the highest cross-browser stability.

We now introduce how we reproduce the results for these two works. AmIUnique

is open-source [106], and we can directly download the source code from github. Boda

et al. provides an open testing website (https://fingerprint.pet-portal.eu/),

and we can download the fingerprinting JavaScript directly. We believe that the direct

usage of their source code minimizes all the possible implementation biases.

The overall results of AmIUnique, Boda et al., and our approach are shown in

Table 4-II. Let us first take a look at single-browser fingerprinting. We compare our

approach with AmIUnique in terms of uniqueness and entropy. Uniqueness means the

percentage of unique fingerprints over the total number of fingerprints, and entropy is
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the Shannon entropy. The evaluation shows that our approach can uniquely identify

99.24% of users as opposed to 90.84% for AmIUnique, counting to 8.4% increase. For

the entropy, the maximum value is 10.96, and both approaches, especially ours, are

very close to the maximum. That is, non-unique fingerprints in both approaches are

scattered in small anonymous groups.

Then, let us look at the metrics for cross-browser fingerprinting. In addition to

uniqueness and entropy, we also calculate another metrics called cross-browser stability,

meaning the percentage of fingerprints that are stable across different browsers on

the same machine. Although we select features that are stable across browser most

of time, fingerprints from different browsers might still differ. For example, screen

resolutions could be different for Boda et al., if the user chooses different zoom levels

in two browsers. For another example, GPU rendering might be different for our

approach, if one browser adopts hardware rendering but another software rendering.

Now let us look at the cross-browser fingerprinting results for Boda et al. and

our approach. Table 4-II shows that our approach can identify 83.24% of users as

opposed to 68.98% for Boda et al. This is a huge increase with 14.26% difference.

The cross-browser stability also increases from 84.64% for Boda et al. to 91.44% for

our approach. One of the reasons is that we make existing features, such as screen

resolution and the list of fonts, more stable across different browsers. The entropy

also increases from 6.88 for Boda et al. to 7.10 for our approach.

4.6.2 Breakdown by Browser Pairs

In this part of the section, we break down our results by different browser pairs shown

in Table 4-III. There are six different types of browsers, and a category called others

including some uncommon browsers, such as Maxthon, Coconut, and UC browser.

The table is a lower triangular matrix due to its symmetric property: If we list all the

numbers, the upper triangle is exactly the same as the lower. The main diagonal of
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the table represents single-browser fingerprinting, and the other part cross-browser.

There are two N/A because Apple gives up the support of Safari on Windows, and

Microsoft never support Internet Explorer and Edge Browser on Mac OS, i.e., Safari

does not co-exist with IE and Edge. There are two dashes as well for others and

Edge/IE/Safari, because we do not observe any such pairs in our dataset.

Let us first look at the main diagonal. The stability for single browser is obviously

100% because we are comparing a browser to itself. The browser with lowest uniqueness

is Mozilla Firefox, because Firefox hides some information, e.g., the WebGL render

and vendor, for privacy reasons. The uniqueness for IE and Edge is 100%, showing

that both browsers are highly fingerprintable. The uniqueness for Opera, Safari, and

other browsers is also 100%, but due to the small number of samples in our dataset,

we cannot draw further conclusions for these browsers.

Then, we look at the lower triangle of the matrix except the main diagonal, which

shows the uniqueness and stability for cross-browser fingerprinting. First, the cross-

browser stability for all pairs is very hight (> 85%) except for other browsers and

Opera vs. IE. Because the number of such pairs is small, it is hard for us to generate

a mask with reasonable cross-browser stability.

Second, the uniqueness for IE and Edge vs. the rest is relatively low when compared

with other pairs. The reason is that both IE and Edge are independently implemented

by Microsoft with fewer open-source libraries. That is, the common part shared

between IE/Edge and the rest is much less than these among the rest browsers. At

contrast, the uniqueness between IE and Edge is very high: 100% uniqueness with

95.7% cross-browser stability, meaning that IE and Edge probably share a considerable

amount of code.

Third, it is interesting to compare IE and Edge. The uniqueness of Edge Browser

is higher than IE for all browser pairs. The reason is that Edge Browser introduces

more functionalities, such as a full implementation of WebGL obeying the standard,
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which exposes more fingerprinting aspects.

4.6.3 Breakdown by Features

In this part of the section, we break down our results by different features and show it

in Table 4-IV. Specifically, Table 4-IV can be divided into two parts: the first part

above AmIUnique row showing the features adopted by AmIUnique, the second part

below the first showing all the new features proposed by our approach. Now let us

look at different features.

4.6.3.1 Screen Resolution and Ratio

The single-browser entropy for screen resolution and ratio is 7.41, while the entropy

for the width and height ratio drops significantly to 1.40. The reason is that many

resolutions, e.g., 1024×768 and 1280×960, share the same ratio. The cross-browser

stability for screen resolution is very low (9.13%), because users often zoom in and

out the web page as mentioned before. The cross-browser stability for the width and

height ratio is high (97.57%) but lower than 100%, because some users adopt two

screens and put two browsers in separate ones.

4.6.3.2 List of Font

Due to the ongoing disappearance of Flash, the entropy for the list of fonts obtained

from Flash is as low as 2.40, and at contrast the entropy for the list from JavaScript is

as high as 10.40. That means the list of fonts is still a highly fingerprintable feature,

and we need to obtain the feature using JavaScript in the future.

Note that although the entropy for the font list from JavaScript is high, it does

not take a significant portion in our fingerprinting. When we remove this feature,

the single-browser uniqueness of our approach only drops from 99.24% to 99.09%,

less than 0.2% difference. That is, our approach can still fingerprint users with high
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Table 4-IV. Entropy and Cross-browser Stability by Features

Feature
Single-browser Cross-browser

Entropy Entropy Stability

User agent 6.71 0.00 1.39%

Accept 1.29 0.01 1.25%

Content encoding 0.33 0.03 87.83%

Content language 4.28 1.39 10.96%

List of plugins 5.77 0.25 1.65%

Cookies enabled 0.00 0.00 100.00%

Use of local/session storage 0.03 0.00 99.57%

Timezone 3.72 3.51 100.00%

Screen resolution and color depth 7.41 3.24 9.13%

List of fonts (Flash) 2.40 0.05 68.00%

List of HTTP headers 3.17 0.64 9.13%

Platform 2.22 1.25 97.91%

Do Not Track 0.47 0.18 82.00%

Canvas 5.71 2.73 8.17%

WebGL Vendor 2.22 0.70 16.09%

WebGL Renderer 5.70 3.92 15.39%

Use of an Ad blocker 0.67 0.28 70.78%

AmIUnique 10.82 0.00 1.39%

Screen Ratio 1.40 0.98 97.57%

List of fonts (JavaScript) 10.40 6.58 96.52%

AudioContext 1.87 1.02 97.48%

CPU Virtual cores 1.92 0.59 100.00%

Normalized WebGL Renderer 4.98 4.01 37.39%

Task (a) Texture 3.51 2.26 81.47%

Task (b) Varyings 2.59 1.76 88.25%

Task (b’) Varyings+anti-aliasing 3.24 1.66 73.95%

Task (c) Camera 2.29 1.58 88.07%

Task (d) Lines&Curves 1.09 0.42 90.77%

Task (d’) (d)+anti-aliasing 3.59 2.20 74.88%

Task (e) Multi-models 3.54 2.14 81.15%

Task (f) Light 3.52 2.27 81.23%

Task (g) Light&Model 3.55 2.14 80.94%

Task (h) Specular light 4.44 3.24 80.64%

Task (h’) (h)+anti-aliasing 5.24 3.71 70.35%

Task (h”) (h’)+rotation 4.01 2.68 75.09%

Task (i) Two textures 4.04 2.68 75.98%

Task (j) Alpha (0.09) 3.41 2.36 86.25%

Task (j) Alpha (0.10) 4.11 3.02 75.31%

Task (j) Alpha (0.11) 3.95 2.84 75.80%

Task (j) Alpha (0.39) 4.35 3.06 82.75%

Task (j) Alpha (0.40) 4.38 3.10 82.58%

Task (j) Alpha (0.41) 4.49 3.13 81.89%

Task (j) Alpha (0.79) 4.74 3.12 72.63%

Task (j) Alpha (1) 4.38 3.07 82.75%

Task (k) Complex lights 6.07 4.19 66.37%

Task (k’) (k)+anti-aliasing 5.79 3.96 74.45%

Task (l) Clipping plane 3.48 1.93 76.61%

Task (m) Cubemap texture 6.03 3.93 58.94%

Task (n) DDS textures 4.71 3.06 68.18%

Task (o) PVR textures 0.14 0.00 99.16%

Task (p) Float texture 5.11 3.63 74.41%

Task (q) Video 7.29 2.32 5.48%

Task (r) Writing scripts (support) 2.87 0.51 97.91%

Task (r) Writing scripts (images) 6.00 1.98 5.48%

All cross-browser features 10.92 7.10 91.44%

All features 10.95 0.00 1.39%
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accuracy without the font list feature.

4.6.3.3 Anti-aliasing

Tasks (b), (b’), (d), (d’), (h), (h’), (k) and (k’) are related to anti-aliasing. The entropy

for single-browser fingerprinting increases for (b), (d) and (h) when anti-aliasing is

added, but decreases for (k). The reason is that (b), (d) and (h) has fewer edges, and

anti-aliasing will add more fingerprintable contents; at contrast, (k) contains many

small edges on each of the beans, and anti-aliasing will occupy the contents of the

beans and diminish some fingerprintable contents inside of the beans.

Now let us look at cross-browser fingerprinting. The cross-browser stability is the

opposite of the single-browser entropy: it decreases for (b), (d) and (h), but increases

for (k). The reason is that anti-aliasing is not supported for all browsers on the

same machine, making the stability decrease for (b), (d) and (h). For similar reason,

because anti-aliasing diminishes some fingerprintable contents inside the bean, the

cross-browser stability increases for (k).

4.6.3.4 Line&Curves

Task (d) tests the effects of line and curves. The entropy is low (1.09) and the

cross-browser stability is high (90.77%), because both lines and curves are simple 2D

operations and do not differ too much across browsers and machines. We manually

compare those cases that are different across machines or browsers, and find that the

major difference lies in the starting and ending point where there are one or two pixels

shifting.

4.6.3.5 Camera

When comparing the single-browser entropy for Task (b) and (c), we find that the

entropy decreases when a camera is added. The reason is that the purpose of the added
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camera is to zoom out the cube, which diminishes subtle differences on the surface.

The cross-browser stabilities for (b) and (c) are very similar due to the similarity

between (b) and (c).

4.6.3.6 Texture

Let us first compare normal, DDS, PVR, cubemap and float textures. The entropies

for float and cubemap textures are higher than all other textures, because float and

cubemap textures have more information, e.g., the depth in float textures and a cube

mapping for cubemap textures. The entropy for PVR textures is very low (0.14),

because PVR textures are mostly supported on Apple mobile devices, such as iPhones

and iPads. As our dataset is collected from crowdsourcing workers, very few of them

will use Apple mobile devices to perform the crowdsourcing tasks. Another interesting

observation is that the cross-browser stability for DDS textures is low (68.18%). The

reason is that DDS, a Microsoft format, is unsupported on many browsers.

Second, let us look at two textures, i.e., Task (i). Compared with Task (h),

another layer of texture is added, but the entropy for both single- and cross-browser

fingerprinting decrease. The reason is that the texture used in our tasks is carefully

created so that it can contain more fingerprintable features. When we add two

textures together, some of these features are diminished, making two-texture task less

fingerprintable.

4.6.3.7 Model

Let us compare Tasks (a) and (e) as well as Tasks (f) and (g) for the effect of models.

Compared to (a) and (f), a sofa model is added to (e) and (g), and the entropy

increases a little bit, i.e., 0.03 for both tasks. The conclusion is that the Sofa model

does introduce more fingerprintable features but the increase is very limited.
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4.6.3.8 Light

Tasks (a), (e), (f), (h), and (k) are related to lights. Let us first look at Task (f) in

which a diffuse, point light is added to Task (a). The entropy only increases 0.01 for

both single- and cross-browser fingerprinting, showing that the diffuse, point light has

little impact in fingerprinting. As a comparison, the effect of a specular light is more

apparent because the entropy for Task (h) is an increase of >0.9 when compared to

Task (e) in both single- and cross-browser fingerprinting. Lastly, let us look at Task

(k), a complex light example. The entropy for Task (k) is the highest among all tasks

except for video, because there are 5,000 models and lights with different colors are

reflected among all the models and intermingled together.

4.6.3.9 Alpha

Task (j) tests alpha values from 0.09 to 1. It is interesting that different alpha values

have very different entropies. In general, the trend is that when the alpha value

increases, the entropy increases as well but with many fallbacks. We did not test

continuous alpha values in our large-scale experiment, but perform a small-scale one

among five machines. Specifically, we compare the differed pixels between each Alpha

value image and a standard one, and find that the fallbacks are mainly caused by

software rendering, which approximates alpha values. Additionally, we observe some

patterns in the fallbacks, which happens in an approximate 0.1 incremental step.

4.6.3.10 Clipping Planes

Task (l) is to test the effect of clipping planes, yielding 3.48 single-browser entropy

and 1.93 cross-browser entropy with 76.61% stability. The entropy is similar to the

one with pure texture, because clipping planes are implemented in JavaScript and do

not contribute to fingeprinting much.
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4.6.3.11 Rotation

Task (h”) is a rotation of Task (h’). The entropy decreases and the cross-browser

stability increases. The reason is that the front of the Suzanne model and the inside

of the sofa model has more details. When we rotate both models to another angle,

the fingerprintable details decreases and correspondingly the stability increases.

4.6.3.12 AudioContext

The AudioContext that we measure is the cross-browser stable one, i.e., the destination

audio device information and the converted waves. The entropy is 1.87, much smaller

than the entire entropy of the entire wave—which is 5.4 as measured by Englehardt et

al. [100].

4.6.3.13 Video

Task (q) is testing the video feature. The entropy for video is the highest (7.29) among

all of rendering tasks, because decoding video is a combination of the browser, the

driver, and sometimes the hardware as well. At contrast, the cross-browser stability

for video is very low (5.48%) and the entropy also drops to 2.32. The reason is that

similar to image encoding and decoding, both WebM and MP4 video formats are with

loss and decoded by the browser. We do not find a universal lossless format for videos

as we do for images.

4.6.3.14 Writing Scripts

Writing scripts are tested in Task (r). We further divide Task (r) into two parts

for the purpose of cross-browser fingerprinting. The first part, we call it writing

scripts (support), only contains the information of whether certain writing scripts are

supported, i.e., a list of zeros and ones where one means supported and zero not. As

mentioned, we obtain the information via box detection. The second part, we call it
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writing scripts (images), is the images rendered at the client-side. The single-browser

entropy for writing scripts (images) is 3.13 larger than the one for writing scripts

(support). That is, the images do contain more information than whether the writing

scripts are supported. The cross-browser stability for writing scripts (support) is

calculated based on the results after applying our mask, because some writing scripts

are shipped with the browser and not cross-browser stable. Correspondingly, the

cross-browser entropy for writing scripts (support) is lower than the single-browser

one.

4.6.3.15 CPU Virtual Cores

The number of CPU virtual cores, calculated from the HardwareConcurrency value only

(if not supported, the value is “undefined”), has an entropy of 1.92 for single-browser

fingerprinting. We expect that the entropy will increase in the future, because just

before our submission, Firefox 48 starts to support the new feature. The cross-browser

stability is 100%, because we can detect whether a browser supports HardwareCon-

currency and applies a customized mask. The cross-browser entropy is different from

the single-browser one due to the size of data, and the normalized entropies for both

are very similar.

4.6.3.16 Normalized WebGL Renderer

The WebGL renderer is not cross-browser fingerprintable, partly because different

browsers provide different levels of information. We extract the common information

from different browsers, and align the information in a standard format. Compared

with the original WebGL renderer with 5.70 entropy, the entropy for the normalized one

is 4.98. The reason for the drop is that the extraction will discard some information,

e.g., for Chrome, to align with other browsers, e.g., Edge browser. Correspondingly,

the cross-browser stability increases from 15.39% for the original WebGL renderer to
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37.39% for the normalized one.

There are two things worth noting here. First, the WebGL vendor does not provide

more information than the WebGL renderer. That is, when we combine both values

together, the entropy is the one for WebGL renderer. Second, our GPU tasks have

much more information than the one provided by WebGL vendor and renderer. Some

browsers, namely Firefox, do not provide WebGL vendor and renderer information,

which gives us much room to fill the gap. Furthermore, even when a browser provide

such information, the entropy for our GPU tasks when combined together is 7.10,

much larger than the 5.70 entropy provided by WebGL render. The reason is that

the rendering is a combination of software and hardware, and WebGL renderer only

provides the hardware information for hardware rendering.

4.6.4 Observations

During our experiments and implementations, we have observed several interesting

facts and shown them below in this subsection:

Observation 1: Our fingerprintable features are highly reliable, i.e., the removal of one

single feature has little impact on the fingerprinting results.

In this part, we show the impact of removing a single feature from both AmIUnique

and our approach, and then measure the uniqueness of both. The results show that

the uniqueness of our fingerprinting is still above 99% when removing any single

features in Table 4-IV including all the old ones from AmIUnique and our new ones.

At contrast, the uniqueness for AmIUnique drops below 84% if removing any single

one of the following six attributes, namely user agent, timezone, list of plugins, content

language, list of HTTP headers, and screen resolution and color depth. In sum, our

approach is more reliable than AmIUnique in terms of used features.

Observation 2: Software rendering can also be used for fingerprinting.
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One common understanding for WebGL is that software rendering may diminish

all the differences caused by the graphic cards. However, our experiment shows that

even software rendering can be used for fingerprinting. Specifically, we select all the

data where WebGL is rendered by SwiftShader, an open source software renderer

invented by Google and used by Chrome when hardware rendering is unavailable. We

calculate a special fingerprint only containing all our GPU rendering tasks, i.e., Task

(a)–(p) excluding writing scripts and video.

Due to the high adoption of hardware rendering, we only collect 88 cases using

SwiftShader and find 11 distinct GPU fingerprints with 7 unique ones. The uniqueness

of software rendering is definitely much lower than the one of hardware rendering but

still not zero. That is, we need to be careful when adopting software rendering to

mitigate WebGL-based fingerprinting.

Observation 3: WebGL rendering is a combination of software and hardware in which

the hardware contributes more than the software.

In this observation, we look at another extreme compared to software rendering,

which is Microsoft Basic Rendering. Microsoft Basic Rendering provides a universal

driver for all kinds of graphic cards, i.e., the use of Microsoft Basic Rendering will

minimize the effects of software driver and show the ones brought by the hardware.

Similar to the experiment for software rendering, we select these that use Microsoft

Basic Rendering and calculate the fingerprints.

For similar reasons in software rendering, we only collect 32 cases using Microsoft

Basic Rendering and find 18 distinct GPU fingerprints with 15 unique values. The

uniqueness of Microsoft Basic Rendering is lower than the one using normal graphic

card drivers, meaning that WebGL is rendered by both software and hardware.

Meanwhile, we consider hardware makes more contributions, because the uniqueness

for Microsoft Basic Rendering is higher than the one for the software renderer.
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Observation 4: DataURL is implemented differently across browsers.

In this observation, we look at DataURL, a common format used in prior finger-

printing to represent images. Surprisingly, we find that DataURL is implemented very

differently in browsers, i.e., if we convert an image into DataURL, the representation

varies a lot across browsers. This is a good news for single-browser fingerprinting but

bad for cross-browser. As shown in Table 4-IV, the cross-browser rate for Canvas is

very low (8.17%), because we adopt the code from AmIUnique where DataURL is

used to store images.

Observation 5: Some differences between rendering results are very subtle, i.e., with

one or two pixel variance.

In this last observation, we manually compare the differences between rendering

results, and find that while some of them are large, especially between software and

hardware rendering, some are very subtle, especially when two graphic cards are

similar to each other. For example, the Suzanne model rendered by an iMac and

another Mac Pro only differs one pixel on the texture, and if we rotate the model, the

difference will be gone.

4.7 Defense of the Proposed Fingerprinting

In this section, we discuss how to defend our proposed browser fingerprinting. We

will first start from existing defense, the famous Tor browser, and then come to some

visions of our defense.

Tor Browser normalizes many browser outputs to mitigate existing browser finger-

printing. That is, many features are unavailable in Tor Browsers—based on our test,

only the following features, notably our newly proposed, still exist, which include the

screen width and height ratio, and audio context information (e.g., sample rate and

max channel count). We believe that it is easy for Tor Browser to normalize these
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remaining outputs.

Another thing worth mentioning is that Tor Browser disables canvas by default,

and will ask users to allow the usage of canvas. If the user does allow canvas, she can

still be fingerprinted. The Tor Browser document also mentions a unimplemented

software rendering solution, however as noted in Section 4.6.4, the outputs of software

rendering also differ significantly in the same browser. We still believe that this is

the way to pursue, but more careful analysis is needed to include all the libraries of

software rendering.

Overall, the idea of defending browser fingerprinting can be generalized as vir-

tualization, and we need to find a correct virtualization layer. Think about one

extreme solution, which is a browser running inside a virtual machine—everything

is normalized in the virtual machine, and the browser outputs are the same across

different physical machines. However, the drawback is that machine virtualization is

heavyweight. Tor browser is another extreme—everything is virtualized as part of a

browser. This approach is lightweight, but we need to find all possible fingerprintable

places, such as canvas and audio context: If one place is missing, the browser can

still be somehow fingerprinted. We leave it as our future work to explore the correct

virtualization layer.

4.8 Discussions on Ethics Issues

We have discussed ethics issues with the institutional review board (IRB) of our

organization, and obtained the IRB approval. Specifically, although web tracking

can be used to acquire private information, the identifiers that we obtain from

crowdsourcing workers, e.g., the behaviors of computer graphics cards, are not private

themselves. Only when the identifiers are associated with private information, such as

browsing history, the combination is considered as private—however, this step is out of
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scope of the research. Our survey part, i.e., the study about the statistics of multiple

browser usage in the Appendix ??, contains users’ browsing habits. In order to ensure

privacy, the survey is anonymized and we do not store user ID from MicroWorkers.

4.9 Related Work

In this section, we discuss related work on existing web tracking and anti-tracking

techniques.

4.9.1 Web Tracking Techniques and Measurement

We first talk about the first generation tracking, i.e., cookie or super-cookie based,

and then the second generation, browser fingerprinting.

4.9.1.1 Cookie or Super-cookie based Tracking

There is much existing work focusing on the measurement or study of cookie or

super-cookie based web tracking techniques. Mayer et al. [107] and Sanchez et al. [108]

conduct comprehensive discussions about third-party tracking, including tracking

techniques, business models, defense choices and policy debates. Another important

measurement work from Roesner et al. proposes a comprehensive classification frame-

work for different web tracking deployed in real-world websites [89]. Lerner et al.

conduct an archaeological study of web tracking, including cookie and super-cookie

based as well as browser fingerprinting, from 1996 to 2016 [109]. Soltani et al. and

Ayenson et al. measure the prevalence of non-cookie based stateful tracking and

show how tracking companies use multiple client-side states to regenerate deleted

identifiers [110, 111]. Metwalley et al. [112] propose an unsupervised measurement of

web tracking. In addition to tracking behaviors and techniques, Krishnamurthy et

al. [113–116] focus on the risk of harm resulted from web tracking, showing that not

only user’s browsing history, but also other sensitive personal information, such as
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name and email, can be leaked out.

4.9.1.2 Browser Fingerprinting

Now let us discuss browser fingerprinting, the second-generation web tracking. We

first talk about existing measurement studies. Yen et al. and Nikiforakis et al. discuss

different second-generation tracking techniques used in existing fingerprinting tools and

their effectiveness in their works [10, 117]. Acar et al. [95] perform a large-scale study of

three advanced web tracking mechanisms, one on second-generation web tracking, i.e.,

canvas fingerprinting, and the other two staying on the first-generation web tracking,

i.e., evercookies and use of "cookie syncing" in conjunction with evercookies. Fifield

el al. [9] focus on a specific metric, i.e., the font, of second-generation web tracking.

FPDetective [8] conducts a large-scale study of millions of most popular websites

by focusing on the font detection with their framework. Englehardt et al. [100] also

conduct a large-scale study on 1 million websites and find many new fingerprinting

features, such as AudioContext. We have used their newly discovered fingerprinting

features as part of prior ones in Section 4.2 of our paper as well.

Now let us talk about browser fingerprinting works. Mowery et al. [12] are probably

one of the very early works in proposing canvas-based fingerprinting. Some other

works [118, 119] focus on fingerprinting browser JavaScript engine. Nakibly et al. [13],

a position paper, propose several hardware-based tracking including microphone,

motion sensor and GPU. Their GPU tracking only includes timing-based features,

less reliable than the technique in the paper. Laperdrix et al. [11], i.e., AmIUnique,

perform a most extensive study on browser fingerprinting with 17 attributes and we

have compared with them throughout our paper. Boda et al. [94] attempts to achieve

cross-browser tracking, but their features are old ones from single-browser tracking

including IP address. As discussed, IP addresses are unreliable when a machine is

using a DHCP, behind a NAT, or moved to a new location like a laptop.
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As a general comparison with existing works, our approach introduces many new

features on the OS and hardware levels. For example, we introduce many GPU

features such as textures, varyings, lights and models. For another example, we also

introduce a side channel to detect installed writing scripts and some new information in

AudioContext. All these new features contribute to our high fingerprinting uniqueness

and cross-browser stability.

4.9.2 Existing Anti-tracking Mechanisms

We first talk about existing anti-tracking for the first-generation tracking, and then

for the second.

4.9.2.1 Anti-tracking against Cookie or Super-cookie based Techniques

Roesner et al. [89] proposed a tool called ShareMeNot, defending social media button

tracking, such as Facebook Like button. Private browsing mode [120, 121] isolates

normal browsing from private ones with a separate user profile. Similarly, Track-

ingFree [122] adopts the profile-based isolation and proposes an indegree-bounded

graph for the profile creation. The Do Not Track (DNT) [123] header is a opt-out

approach, which requires tracker compliance. As shown by prior works [89, 107],

DNT cannot effectively protect users from tracking in real world. Users can also

disable third-party cookie, which is supported by most browsers to avoid cookie-based

tracking. Meng et al. [124] design a policy and empower users to control whether to

be tracked, but they have to rely on an existing anti-tracking technique.

All the aforementioned works focus on cookies or super-cookie based web tracking,

and can either fully or partially prevent such tracking. None of them can prevent the

proposed fingerprinting in this paper, because the proposed belongs to the second

generation, which does not require a server-side, stateful identifier.
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4.9.2.2 Anti-tracking against Browser Fingerprinting

Tor Browser [125] can successfully defend many browser fingerprinting techniques,

including features proposed in our paper. Please refer to Section 4.7 for more details.

Other than the normalization technique proposed in Tor Browser, PriVaricator [126]

adds randomized noise to fingerprint-able outputs. Because PriVaricator is not open

source, we could not test our fingerprinting against their defense.

4.10 Conclusion

In conclusion, we have proposed a novel browser fingerprinting that can identify not

only users behind one browser but also these that use different browsers on the same

machine. Our approach adopts OS and hardware levels features including graphic cards

exposed by WebGL, audio stack by AudioContext, and CPU by hardwareConcurrency.

Our evaluation shows that our approach can uniquely identify more users than

AmIUnique for single-browser fingerprinting, and than Boda et al. for cross-browser

fingerprinting. Our approach is highly reliable, i.e., the removal of any single feature

only decreases the accuracy by at most 0.3%.
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Chapter 5

A Large-scale Measurement Study and
Classification of Fingerprint Dynamics

5.1 Introduction

Browser fingerprinting, an alternative to browser cookies when being disabled or

cleared, is that a website extracts a list of browser features at the client side and

then constructs an identifier, called a fingerprint, based on these extracted features

to identify or authenticate the browser. Browser fingerprinting is first studied by

Eckerlsey [127] via his famous Panopticlick website [7] and now widely adopted by many

tracking companies and real-world Alexa websites according to a recent study [100].

Prior works have measured browser fingerprints in the wild. On one hand, large-

scale studies, such as Gómez-Boix et al. [128], have analyzed millions of browser

fingerprints in the wild via collecting fingerprints on a real-world website. However,

there are two major drawbacks. First, they only studied the effectiveness of fingerprints

in differentiating and identifying browser instances but not how fingerprints evolve over

time—which are called fingerprint dynamics in the paper. Second, prior works [128]

adopt cookies as the ground truth—which rely on an assumption that people clear

cookies but in a rare manner. This assumption is untrue as demonstrated in our

study: 32% of browser instances clear cookies—one major cause is intelligent tracking

prevention [129], which automatically deletes tracking cookies after a certain period.
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On the other hand, there exists small-scale datasets with only thousands of

fingerprints, such as Pugliese et al. [130] and the one used in FP-Stalker [131], an

evolution-aware fingerprinting tool that links evolved fingerprints together. Those work

usually adopt out-of-band identifiers, e.g., one provided via a browser extension, to

recognize users. However, the requirement of out-of-band identifiers restrict the study

scale: It is difficulty to let millions of users to install extensions for a measurement

purpose.

In this paper, we perform the first large-scale measurement study of millions of

fingerprints on a real-world website to analyze fingerprint dynamics, i.e., how browser

fingerprints change over time and why they do so. Specifically, we implemented

our version of fingerprinting tool and deployed it at a real-world European website

visited regularly by its users, which collected a dataset with 7,246,618 fingerprints

from 1,329,927 browser instances and 1,148,864 users. Our representation of browser

instance is via a new type of identifier, called Browser ID, a combination of an

anonymized username using hash values and some stable browser features. On one

hand, Browser ID is much more stable as compared with cookies: The false positive

of Browser ID of representing browser instances is estimated as 0.1% and the false

negative rate as 0.3%; on the other hand, Browser ID can differentiate multiple devices

of the same user: In our study, 14% users visit the deployment website using more

than one device.

Next, we measure fingerprint dynamics by calculating the difference between two

consecutive fingerprints of the same browser instance. The advantage of such diff

operation over a simple fingerprint pair representation is that if two browser instances

with different fingerprints (e.g., one instance with an additional font) get the same

update (e.g., from Chrome 56 to 57), the delta information will also be the same. We

produce a dataset of 960,853 dynamics—Our analysis of the dataset shows that all

the dynamics can be classified into three major categories based on their causes: (i)
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browser or OS updates, (ii) user actions and (iii) system environment updates. Our

further study of the dynamics dataset yields four insights:

• Insight 1: Browser fingerprints, particularly the dynamics, reveal privacy- or

security-related information. The reason is that the cause of a piece of dynamics

could contain privacy- or security-related information. For example, we find

that a certain emoji update at a mobile Chrome browser can reveal the fact

that a Samsung browser is co-installed with the Chrome browser because the

Samsung update introduces a new emoji. Similarly, for another example, the

font list and the changes of fonts in fingerprint dynamics can be used to infer

whether Microsoft Office is installed or even updated.

• Insight 2: The F1-score and matching speed of prior evolution-aware fingerprint

work degrade significantly in a large-scale setting. As stated, prior work,

particularly FP-Stalker [131], is evaluated using a relatively small dataset with

thousands of users and fingerprints to link evolved fingerprints. We find that

the F1-score of rule-based FP-Stalker degrades from 86.1% to 75.9% for top

ten candidates and the matching speed from around 100 ms to 1 second if the

number of fingerprints increases from 100K to one million; the learning-based

FP-Stalker cannot scale to a large-scale dataset with more than 300K fingerprints

(the scalability issue of learning-based FP-Stalker is acknowledged in the original

paper).

• Insight 3: The dynamics of some browser features are correlated although the

features themselves are not. For example, we have observed that the sample

rate of audio card in Chrome may change together with the GPU renderer. The

reason is that although some features are not directly related, the causes behind

the changes may be. Specifically, in the aforementioned example, Chrome adopts

DirectX to manage audio card on certain Windows machines: An update of

121



DirectX will influence both the GPU renderer and the audio sample rate.

• Insight 4: The timing of some fingerprint dynamics are correlated with real-world

events, such as the release of browser or OS updates. We believe that such an

insight might be used to improve the performance of existing works in linking

fingerprints. For example, if Firefox updates to a new version with an added

web font, a fingerprinting website can predict that all the fingerprints in the

database with the old Firefox version may change to the version, i.e., with a

updated user agent string and the newly-added web font.

5.2 Measurement Platform

In this section, we introduce our measurement platform used to collect and generate

two types of dataset: raw and dynamics. The raw dataset contains all the fingerprints

including anonymized usernames, cookies, and IP addresses from the deployment

websites; the dynamics dataset is processed by grouping fingerprints into browser

instances and calculating the deltas.

5.2.1 Terminology Definition

In this part, we describe several terminologies that are used throughout the paper for

those readers who are unfamiliar with them.

• Browser Instance and Browser ID. A browser instance is a piece of browser

software installed on a certain operating system and a hardware device. For

example, a Google Chrome Browser on a desktop is one browser instance

and Microsoft Edge on the same device is another. We assign each unique

browser instance an ID (called browser ID) and describe its makeup later in

Section 5.2.3.1.
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Figure 5-1. Architecture and deployment of our tool deployed at an European website
for eight months.

• User ID. A user ID is an identifier for distinguishing one user from another,

which is shared across different devices of the same user. In this paper, we adopt

a hash value of the username as the user ID.

• Browser Fingerprint and Anonymous Set. A browser fingerprint (or for short

fingerprint) is a set of features, such as user agent and font list, from a given

browser instance. An anonymous set, a term widely used in prior works [11], is a

set of browser instances with the same fingerprint. The smaller the anonymous

set size is, the better quality the browser fingerprint is.

• Fingerprint Dynamics. A piece of fingerprint dynamics represents the change

of one browser instance’s fingerprint due to various reasons, such as browser

updates and user actions.

5.2.2 Raw Dataset Collection

In this part, we describe our methodology in collecting a raw dataset with browser

fingerprints, IP addresses and user IDs. We start from describing our tool and then

present the tool’s deployment.
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5.2.2.1 Fingerprinting and Data Collection Tool

We implemented an open-source fingerprinting and data collection tool at a reposi-

tory [132]. Our tool, as shown in Figure 5-1, has two main components: one data

collection client and one data storage server. The client has a task manager that

launches different tasks in parallel to collect a variety of features as documented by

different prior works [11, 133, 134]. Then, the data transfer module of the client will

encode the collected information and send it to the data storage server. Note that

the data transfer module will check whether the information is already in the server’s

database—if yes, the module will just send a hash value to save the transmission

overhead.

There are two properties of our tool that is worth mentioning. First, our tool is

fast, which finishes collecting all the information within one second. Specifically, we

divide data collection stages into many modules and run them in parallel. Then, the

data collection module compresses the information transmitted between the client

for efficiency consideration. Second, our tool utilizes only one third-party JavaScript

library, i.e., three.js. The reason is that the website owner, citing their company

policy, specifically asks us to avoid using third-party libraries, such as jQuery. Their

concern is that the inclusion of third-party JavaScript library may introduce unknown

or under-controlled vulnerabilities. After many rounds of discussions, we mutually

agree to keep the necessary one, i.e., three.js.

5.2.2.2 Tool Deployment

We deploy our tool at an European website from July 2017 to July 2018 to collect

browser fingerprints. Our deployment can be divided into three stages and only the

data collected from December 2017 and July 2018 in the Deployment Stage 3 is used

in the study:
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Deployment Stage 1: Deployment on Exit Webpage (two months). In the first

stage, we install our tool on the least important webpage of our deployment website,

i.e., the exit webpage that the user sees after clicking the log-out button. During this

stage, we encounter and fix several bugs such as the use of old JavaScript features

leading to console errors.

Deployment Stage 2: Deployment on 30% of Webpages (two months). In the

second stage, we start to install our tool on 30% of webpages of our deployment

website, including the login page and several other content pages. During this stage,

we find that our server, deployed at Amazon, cannot handle the huge amount of traffic

introduced from our deployment website, and therefore we have to increase both the

memory and CPU capability of our server.

Deployment Stage 3: Deployment on All Webpages (eight months). In the last

stage, we deploy our tool on all the webpages of our target website—the data collected

during this stage is used in this study. The same as previous stage, we also increase

our server capability to accommodate more traffic. Note that due to technical glitches,

our data collection server was partially down during eight days in the first month. We

also make two hot patches during our deployment: one on the 7th day to include the

list of HTTP headers and the other on the 29th day to fix an error of “Accept” header

collection in HTTP requests. That said, any fingerprint or statistics involving these

two features only reflect data collected after these two days.

5.2.3 Dynamics Dataset Generation

In this part, we describe how to generate fingerprint dynamics from the raw dataset.

The generation of the dynamics dataset has two steps. First, we represent each browser

instance via browser ID and then group fingerprints based on browser instances.

Second, we calculate the delta, using a diff operation, between each pair of consecutive

fingerprints of the same browser instance: Those deltas are the dynamics dataset of
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our study.

5.2.3.1 Browser Instance Representation

We represent each browser instance with a special identifier, called browser ID. The

generation of browser ID has two steps: (i) initial construction and (ii) processing

of special cases. First, we construct an initial browser ID based on user ID and

stable browser features, e.g., hardware-related ones including CPU class, device and

OS, number of CPU cores, browser type and GPU information. Second, we link

two browser IDs together if these two browser IDs belong to some exceptional cases

observed by cookie instances. For example, if a mobile browser opens a webpage in

the desktop mode, the observed browser type changes from mobile to desktop—this is

one special case for such linking.

There are two things worth noting here. First, we adopt browser ID over cookies

and user IDs alone due to the following reasons. We do not use cookies because a

user may clear cookies and thus multiple cookie instances may map to one browser

ID. Over 30% of browser instances in our dataset have cleared cookies at least once.

Furthermore, we do not use user ID alone because a user may have multiple devices

or use more than one browser to visit our deployment website. Over 15% of users

in our dataset have used more than one browser for visits. Second, there are some

software features, such as the support of localStorage and cookie, are also stable

according to the cookie metrics but excluded from the browser ID. The reason is that

the changes of these features are controlled by the users, thus being unpredictable.

Furthermore, because we use cookies to gauge stability, the stability of such features

may be influenced.
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5.2.3.2 Diff Operation

In this part, we describe our diff operation that calculates the delta between two

fingerprints of the same browser instance. Depending on the feature type, e.g., string,

set and images, there are three different operations.

First, we will parse a string feature into ordered subfields and calculate the diff of

each field. For example, the user agent is broken down into many ordered subfields, such

as browser name, version, subversion, backslashes, parenthesis and even whitespaces.

Note that we requires that subfields to be ordered because sometimes the sequence

may also change, e.g., from “gzip, deflate, br” to “br, gzip, deflate”. Furthermore,

whitespaces may also be added or deleted, e.g., from “gzip,deflate” (no whitespace in

Maxthon Browser 4.9.5.1000) to “gzip, deflate” (with whitespace in 5.1.3.2000).

Second, we represent a set feature just as a set and calculate the diff via two

subtraction operations to obtain added and deleted elements. For example, the font

list is obtained via querying each font and forming a set. We will calculate two subset:

one for added fonts and the other for deleted fonts.

Third, we calculate the diff of two complex features, e.g., a canvas image, as a

pair of two hashes. Note that it is possible to compute the pixel differences for such

features. We did not adopt this approach because such delta does not contain much

information, i.e., the change of the same pixel might not indicate the same update, and

the computation involves heavyweight operation, slowing down the dataset generation.

5.2.3.3 False Negative and Positive Estimation

In this part of the section, we estimate the false negative and positive rates of our

browser instance representation via browser ID. From a high level, our estimation is

based on the appearance of cookies within or across different browser instances: Two

browser instances with the same cookies are falsely separated, being a false positive;

127



One browser instance with interleaved cookies should be separated into two instances,

being a false negative. Then, we use the distributions of false positives and negatives

among those browser instances that do not clear cookies to estimate those that do.

Our overall estimation is that the false negative rate is around 0.3% and the false

positive rate around 0.1%.

Now let us look at the details. First, we estimate false negative rate, i.e., two

browser IDs should be linked together but not. Our investigation using cookies shows

very few abnormal cases, i.e., 0.5% among all the browser instances in which two

browser IDs having the same cookie. Those cases, mostly due to a client providing

fake user agent strings, are fixed via cookies, but there are 32% of browser instances

that clear cookies (See Section 5.3.2.1). Therefore, we estimate that around 0.3% of

browser instances among 32% browser instances may also have such abnormal cookie

patterns.

It is worth noting that the cookie representation may sometimes also introduce

false positives. For example, we observe that two iPads with different hardware

features have the same cookie—this only happens once in our database. After some

investigation, we believe that the user of these two iPads performs an iTunes backup

so that our cookie is automatically transferred from the old iPad to the new one. In

other words, these are indeed two browser instances.

Second, we estimate false positive rate, i.e., two browser IDs should be not linked

together but actually are. Our methodology is based on the assumption that if

two cookies appear together and are interleaved with each other in the time axis,

this browser ID should be broken down into two. Note that this is different from a

cookie deletion case, where deleted cookies will never show up again, or a private

browsing, where one cookie persists but cookies in private browsing behave like deleted

ones. There are 0.1% of browser instances with this pattern, thus categorized as false

positives. We manually inspect these 0.1% of browser instances and think that it may

128



be because users visit our deployment website using computers with exactly the same

configurations, e.g., these in a computer lab.

5.3 Datasets

In this section, we introduce both the raw and dynamics datasets. Note that per our

agreement with the deployment website, we will share our dataset if other researchers

reach out to us and sign a non-disclosure agreement (NDA), which confirms that (i)

their use of our dataset is constrained in an academic setting, e.g., publishing academic

papers, (ii) they will not release any potential private information contained in our

dataset, and (iii) they will not give the dataset to any third-party.

5.3.1 Raw Dataset

We now introduce the raw data: it contains 7,246,618 fingerprints with 1,586,719

distinct values from 226 countries. Figure 5-2 shows the percentage of identifiable

browser fingerprint when the size of anonymous set for each fingerprint increases.

When the anonymous set size is 10, the identifiable browser percentage, including IP

city, region and country as features, for our raw dataset is over 90%. Note that the

identifiable browser percentage with the anonymous set size as one is relatively low

because many browser instances visit our deployment website more than once, and we

will show detailed breakdown regarding browser instances in later sections.

We also break down the identifiable fingerprint percentage based on different

platforms and browsers in Figure 5-2. One interesting finding is that on desktop

platform, Firefox is on par with other browsers in terms of fingerprintability, while

Firefox on mobile platform is the most fingerprintable browser. The reason is that

many mobile users will adopt the default browser, either Safari or Samsung Browser,

in their cellphones. Therefore, the installation of another browser like Firefox is itself

a fingerprintable feature. The same also applies to Chrome Mobile, which is less

129



=1 2~10 10~50 >50

Overall

 0  0.2  0.4  0.6  0.8  1

Overall

Chrome

Firefox

Safari

Edge

 0  0.2  0.4  0.6  0.8  1

Desktop

Mobile
(a) Desktop Browsers

 0  0.2  0.4  0.6  0.8  1

Overall

Chrome
Mobile

Firefox
Mobile

Mobile
Safari

Samsung
Internet

 0  0.2  0.4  0.6  0.8  1

Mobile

(b) Mobile Browsers

Figure 5-2. Percentage of identifiable browser fingerprints vs. the size of anonymous set
in our raw dataset

fingerprintable than Firefox Mobile but worse than Safari and Samsung Browser.

We further break down collected raw fingerprints by different features and show

the distinct and unique values in Table 5-I. The distinct number means all the possible

values for that feature, and the unique all the values that belong to only one fingerprint.

Here is a brief description of those features below.

• HTTP Headers. HTTP headers contain many fingerprintable features, such as

User-agent, Accept, Encoding and Language.

• Browser Features. Browser features include plugins, timezone, and support of

different new browser functions, such as WebGL, localStorage, addBehavior (an

IE feature), and openDatabase (a JavaScript-level database).

• OS Features. OS features include installed fonts like Arial, languages like

Japanese and Chinese, and emojis (i.e., part of Canvas Images in Table 5-I) like

a smiling face. We rely on two side channels documented by prior works [135] to

detect the list of fonts and installed languages.
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Table 5-I. Statistics of different features used in the dynamics dataset (“Distinct #” the
number of distinct values for fingerprint or dynamics and “Unique #” the number of values
that only appear once. A feature with an indent means that the feature is a subset of the
top-level one.)

Feature Names Static Values Dynamics
Distinct # Unique # Distinct # Unique #

HTTP Headers 195,845 136,256 18,180 12,725

User-agent 41,060 23,116 9,628 6,152
Browser 64 8 53 30
OS 20 3 23 5
Device 3,378 1,210 277 226

Accept 9 1 4 0
Encoding 26 3 26 8
Language 14,214 9,191 1,939 1,458
Timezone 38 0 314 112
HTTP Header List 344 126 126 66

Browser Features 17,036 14,362 1,037 795

Plugins 16,633 14,032 984 773
Cookie Support 2 0 2 0
WebGL Support 2 0 2 0
localStorage Support 2 0 2 0
addBehavior Support 1 0 0 0
openDatabase Support 1 0 0 0

OS Features 193,843 150,280 16,605 12,793

Language List 1,181 597 452 303
Font List 115,128 88,448 6,763 5,524
Canvas Images 14,006 8,654 7,989 5,524

Hardware Features 75,462 44,708 4,871 3,210

GPU Vendor 26 1 2 1
GPU Renderer 5,747 1,743 705 552

GPU type 4,943 1,436 214 130
CPU Cores 29 3 28 12
Audio Card Info 114 23 225 62
Screen Resolution 139 32 273 149
Color Depth 6 0 10 2
CPU Class 5 0 4 3
Pixel Ratio 1,930 1,207 3,030 1,936

IP Features 28,636 8,720 122,612 84,232

IP City 27,261 8,112 121,565 83,445
IP Region 2,446 239 16,376 9,947
IP Country 226 9 1,627 779

Consistency Features 13 1 19 4

Language 2 0 2 0
Resolution 2 0 2 0
OS 2 0 2 0
Browser 2 0 2 0

GPU Images 4,152 2,719 2,810 1,499

Overall (excluding IP) 960,135 852,987 89,397 66,857
Overall 1,586,719 1,447,004 359,374 306,554

• Hardware Features. Hardware features include information about GPU, audio

cards, screen and CPU. Modern browsers provide some APIs to access hardware

131



information, such as CPU class (e.g., x86), GPU vendor (e.g., NVIDIA), and

audio card information (e.g., number of channels).

• IP Features. IP addresses are not included in browser fingerprinting because a

user may move a device from places to places. For the reason of completeness,

we abstract some information from IP addresses, such as IP city, region and

country.

• Consistency Features. Consistency features [134] refer to whether our script

can obtain consistent information on a certain feature via different methods. For

example, we can obtain OS and browser information from both user agent and

JavaScript navigator, and then check the consistency between these two.

Note that the list of fonts collected by JavaScript via a side-channel is the most

fingerprintable among all the features in terms of distinct and unique values. After

that, both user agent and the list of plugins, especially the latter, also contribute a lot

to the overall fingerprint. The user agent contains many information, such as platform

and browser type, which makes itself a big fingerprintable vector. As for the plugin

list, if a user installs a plugin, it is more or less unique as compared to those who do

not have plugins. It is worth noting that IP information, such as city, region, and

country, also provides a considerable amount of information.

5.3.2 Dynamics Dataset

Our dynamics dataset contains 1,329,927 distinct browser instances: 661,827 of them

visit the deployment website for more than one time, which produces 960,853 pieces of

dynamics information. In the rest of the section, we first present statistics of browser

instances and then statistics of dynamics.
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5.3.2.1 Statistics of Browser Instance

We now show some statistics of browser instances in the dynamics dataset.

• User ID vs. Browser ID vs. Cookie. The top bar of Figure 5-3 shows that

approximately 86% user IDs (anonymized usernames) map to only one browser

ID while the rest maps to more than one because those users visit our deployment

website from more than one browser instance. The bottom bar of Figure 5-3

shows that 68% of browser instances have only one cookie; to the opposite, about

32% of browser instances have more than one cookie. As stated, our manual

investigation with controlled testing of Safari Browser shows that intelligent

tracking prevention and private browsing are the major reasons of clearing

cookies.
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• Browser instance visits over time. Figure 5-4 shows the number of browser

instances broken down by first-time and returning visitors across our measure-

ment period. A browser instance is marked as a returning visitor, if its browser

ID has been seen in our dataset before. The first thing worth noting is that the

number of total visits by browser instances in the first three months is higher

than the rest. The reason is that our deployment website in general has more

visitors during the holiday season, which leads to the visit number decline in

our dataset during the remaining months. Second, returning browser instances

make up almost half of all the visitors each day—this fact indicates that our

deployment website has a considerable amount of loyal users for us to collect

enough dynamics data.

• Browser instances broken down by browser and OS types. We also show the

number of browser instances broken down by browser types in Figure 5-5 and by

OS types in Figure 5-6. Figure 5-5 shows that our visitors are well distributed

into different browser types on both mobile and desktop platforms, i.e., being

a good representation of the Internet users; Figure 5-5 shows that Microsoft

Windows is still the mostly used OS in our dataset and the next comes with

iOS, which is used in both iPhones and Apple computers. Figure 5-6 shows that

the percentage of browser instances using Android OS is on par with iOS. The

number of Ubuntu and Windows Phones is too small to be shown in the graph.

• Fingerprint stability per browser instance. We break down browser instances

(browser IDs) based on the number of visits and the number of dynamics in

Figure 5-7. When a browser instance visits our deployment website for three or

four times, about half of browser instances remain stable without fingerprints

changed. The percentage keeps decreasing as the number of visits increases and

then stays at about one third.
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5.3.2.2 Classification of Fingerprint Dynamics

We classify fingerprint changes into three categories based on their causes and show

them in Table 5-II:

• Browser or OS Updates. Browser or OS updates, taking up to about 30% of

total changes, refer to the client browser or OS updates to a new version. Such

an update may lead to a change in the user agent string and other correlated

features, such as canvas rendering and the font list. We first look at OS updates:

iOS updates is the single largest portion, i.e., over 95%, of all the updates,

because all the subversions of iOS are included in the user agent string. As

a comparison, browser updates spread more evenly across different browsers

based on their use percentage. It is worth noting that the percentage of browser
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instances with OS and browser updates is relatively small, i.e., only 8.1% and

13.81% respectively. That is, many browsers or OSes are not constantly updated,

which may lead to corresponding security issues.

• User Actions. Some user actions may lead to fingerprint dynamics, e.g.,

zooming in/out of the current page changes the screen resolution provided by

the browser. It is interesting that only 13.4% of total browser instances have

user-action-related dynamics as opposed to 31.07% of total dynamics: Such a

big gap shows that a large portion of users do not perform actions that can

change fingerprint, but if a user does perform an action, it is very likely that

she may do it again in the future. One big portion of dynamics related to user

actions is timezone change, taking up 40.49% of total browser instances in this

category, which is caused by a user movement from one location to another.

The reason that timezone change happens often is that our deployment website

locates in Europe and many users travel from one country to another for work.

• Environment Updates. When other software co-located with the browser

instance is updated, browser fingerprints may change as well. First, some

software updates, such as Microsoft Office and Adobe Acrobat Readers, may

introduce new fonts to the OS—about 6.74% of environment updates belong to

such category. Second, one big subcategory of environment updates is due to

the change of emojis—87.6% of canvas rendering result updates are caused by

rendering emojis rather than texts. Lastly, other environment factors, such as

audio card information, system languages, and color depth may change as well.

It is also worth noting that the percentage of browser instances with environment

updates, i.e., 5.57%, is also the smallest compared with other causes, although

the percentage of dynamics with environment updates is similar to the one of OS

updates. The reason is that environment updates have to happen when certain
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environment, e.g., a specific type of software, co-exist with the browser. Take

Adobe Software for example—if someone does not use Adobe Acrobat Reader,

such environment updates will not exist for that browser instance.

We also listed composite changes that lead to fingerprint changes. The percentage

of such composite changes aligns with the percentage of each single category because

all the changes are independent. For example, user actions and browser updates are

two major categories and therefore the combination of these two is also the largest

category among all the possible combinations. It is worth noting that the combination

of browser and OS updates are not much, because many browser and OS updates,

especially on iOS platform for Safari, is related and counted as OS updates already.

5.3.2.3 Breakdown of Dynamics by Features

We break down the dynamics by different features and also show them in Table 5-I

under the dynamics column. In total, we have observed 359,374 pieces of distinct

dynamics information; interesting, 306,554 of them, i.e., 85%, are unique. Additionally,

there are several things worth noting, especially when comparing with the static values

of each feature.

First, the list of fonts, a highly fingerprintable feature with many distinct and

unique values, stays relatively stable in terms of dynamics. We only observe 6,763

distinct dynamic values as opposed to 115,128 distinct static ones. That is, the list of

fonts is a relatively good feature for browser fingerprinting. Interesting, even if the

list of fonts changes, it is highly likely that the changes are unique as well: 5,056 out

of 6,763, i.e., 74.8% of dynamics, is unique, which means that font update will also

reveal the client browser with high probability.

Second, these features that are influenced by user actions have more dynamic values

when compared with their static ones. Such features include IP features, timezone,

screen resolution, and pixel ratio. Take screen resolution—which is influenced by a
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Table 5-II. A Breakdown of Fingerprint Changes (The total percentage of fingerprint
changes adds up to 100%, and the union of all browser instances equals to the percentage
of browser instances with fingerprint changes).

Operation Category % of Changes % of Browser ID

OS Updates +11.26% 8.10%

iOS +11.26%×96.31% ×95.67%
Android 1.71% 2.20%
Mac OS X 1.37% 1.60%
Windows 0.54% 0.50%
Others 0.07% 0.03%

Browser Updates +19.69% 13.81%

Chrome ×39.01% ×34.67%
Firefox 16.95% 19.39%
Chrome Mobile 26.28% 26.25%
Samsung Internet 8.09% 9.40%
Opera 2.67% 2.45%
Edge 1.94% 2.53%
Firefox Mobile 1.76% 1.96%
Safari 1.20% 1.37%
Others 2.1% 1.98%

User Actions +31.07% 13.40%

Change timezone ×19.43% ×40.49%
Private browsing mode 41.01% 33.85%
Zoom in/out webpage 17.27% 11.37%
Enable/disable Flash 13.63% 7.02%
Fake supported languages 6.00% 8.10%
Fake screen resolution 2.62% 3.76%
Switch monitor/change resolution 2.45% 2.80%
Browser/OS inconsistency 1.14% 1.3%

Request desktop website 38.52% 47.18%
Others (e.g., fake agent string) 61.48% 52.82%

Install plugins 1.27% 1.12%
Enable/disable LocalStorage 0.64% 1.19%
Enable/disable Cookie 0.41% 0.71%

Environment Updates +11.91% 5.57%

Software Updates (fontlist) ×6.74% ×8.06%
MS Office 27.08% 36.91%
Adobe Software 33.39% 23.79%
Office and Adobe Software 1.04% 1.35%
Others 38.49% 37.95%

Update Canvas rendering 53.38% 53.20%
Emoji update 87.60% 87.15%
Text update 12.40% 12.85%

Audio update 39.83% 40.57%
HTTP Header Language update 1.77% 2.68%
System Language update 0.74% 0.69%
Screen color depth update 0.22% 0.40%
GPU Render update 0.20% 0.32%

Browser Updates + User Actions +10.19% 8.78%

OS Updates + User Actions +5.17% 4.64%

Browser + Environment Updates +1.83% 1.54%

Other Combinations +8.88% 6.48%

Total =100% 62.32%
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user zooming in or out the webpage—for example. It has 139 static values but 273

dynamics. Similarly, timezone has 38 static values but 314 dynamics. The reason is

that when a feature is influenced by users, the change is usually bi-directional and has

less restriction. That is, the value of that feature may change from one value to any

in the set. For instance, users are free to move from one location to any place in the

world, thus causing a possible dynamic value for timezone and IP-related locations.

As a comparison, the dynamics for screen resolution has more restrictions. Although

users are free to zoom in or out a web page, the screen ratio stays the same after such

operation. Therefore, the dynamic to static value ratio for screen resolution is also

smaller than that of timezone.

Third, hardware-related features, such as these used in browser ID, are relatively

stable, i.e., with very few dynamics. All the dynamics are special cases in which we

need to link two browser IDs together as we mentioned in the browser ID generation.

Lastly, the number of dynamics is usually a fraction of, or on par with, the static

values for the rest of features. The reasons are twofold. (i) Most features are stable,

i.e., many static values are not involved in a dynamic one. (ii) Some fingerprint

changes are restricted, e.g., an unidirectional one. Take an OS update for example,

which happens only from a lower version to a higher version. (We do not observe that

anyone downgrades their OS in our dataset.) That is, two static values map to only

one dynamic one.

5.4 Insights

In this section, we present several insights when observing our raw and dynamics

dataset, and then give some advices based on each insight to browser vendors, users

or fingerprinting tool developers.

Insight 1: Browser fingerprints, particularly the dynamics, reveal privacy-
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(a) Canvas Rendering Result on Samsung
Browser

(b) Pixel difference between version 5.4 and 6.2
(highlighted in red)

Figure 5-8. Samsung Browser version 6.2 introduces a new emoji that is also visible from
a Google Chrome Browser co-installed with the Samsung Browser (The difference between
those two emojis is the red-color part, i.e., a smiling face emoji shown in Subfigure (b))

or security-related information.

Insight 1.1: System-provided emojis may leak security patches involved in OS

updates.

We find that system-provided emojis may be used to infer security related patch,

such as those in OS updates. In particular, we list two cases in which browser or OS

updates lead to emoji changes—i.e., in other words, such emoji changes can be used

to infer corresponding software updates involving security patches.

• Emoji changes in Mobile Google Chrome caused by Samsung Browser Update.

A Samsung Browser update is observable in Google Chrome canvas rendering

results. Specifically, Samsung Browser 6.2 introduces a new emoji that has a

slight change of the smiling face as shown in the pixel-by-pixel difference of

Figure 5-8. Such update is also observable if Google Chrome renders the smiling

face emoji on a canvas. That is, to summarize it, if one observes a canvas

rendering update like Figure 5-8 in Google Chrome Mobile, we can infer that

the user updates his Samsung Browser installed on the same device to 6.2, and

otherwise not. We find 2,298 Chrome instances in our dataset, which leaks such

private information.

• Emoji changes in Desktop Google Chrome caused by Windows 7 Update. One

Microsoft Windows 7 update on April 22, 2014 installs a set of new emojis

to the OS by introducing IE 11, and such emoji updates are observable from

another browser, such as Chrome. We only observe 9 browser instances with
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such emoji updates, because the update was released back in 2014. Interestingly,

we also observe 6,968 browser instances with the old emoji, i.e., they have not

applied that specific old update, leading many potential security vulnerabilities,

i.e., those that are found after that update, unpatched. Note that browsers on

Windows platform only indicates the big version, i.e., 7, 8, or 10, of OS. That is,

such update information is supposed to hide from a website visited by the user.

Advice 1 [Browser Security]: Browsers should provide their own emojis
to avoid leaking whether security patches are applied.

Insight 1.2: System-provided fonts may leak updates and installations of software,

such as Microsoft Office.

System-provided fonts can be used to infer software updates and installations. If

knowing software updates and installation, an attacker can launch targeted attacks,

such as macro malware aiming at Microsoft Word. We now list several examples of

such font-related inference below:

• Font changes caused by Microsoft office update. Our reasoning results show that

one particular added font in any browser can reveal the information about a

Microsoft Office update. Specifically, the release of three versions of Microsoft

Office, i.e., Version 1711 (Build 8730.2175), Version 1708 (Build 8431.2153),

and Version 1705 (Build 8201.2217) on January 9, 2018, will add a new font

called “MT Extra”, which is observable in a browser fingerprint. Therefore, the

addition of an “MT Extra” in early 2018 is a strong indication that the device

has installed Microsoft Office and updated it accordingly. We find that 1,199

browser instances added the font “MT Extra”. Note that this is just a subset of

browser instances that applied the update because if the OS has already installed

“MT Extra”, e.g., by other software before the update, we will not observe the

change.

• Font changes caused by Microsoft Office. Apart from the previously mentioned
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Office update, the installation of Office itself also introduces new fonts. We find

7 browser instances that are related to the installation of Microsoft Office Pro

Plus 2013, i.e., reflected in a font list change. Additionally, we observe 50,869

browser instances installed with Microsoft Pro Plus 2013, because their font list

contains corresponding fonts installed by Microsoft Office.

• Font changes caused by WPS Office and LibreOffice. Both WPS Office, an office

suite developed by Kingsoft, and LibreOffice, a free and open-source office suite,

add a new list of fonts to the system that lead to a fingerprint change. Note

that WPS office also slightly changes the color of the emoji rendering.

Advice 2 [Browser Security]: Browsers should ship their own fonts, such
as Web fonts, like what Tor Browser does to avoid leaks of software
updates and installations.

Insight 1.3: The rendering effects of GPU images can be used to infer masked

hardware information.

The rendering behaviors of GPU can revealmasked GPU information. Specifically,

based on GPU images collected from other browsers, our correlation analysis finds

that 32% of distinct Firefox GPU images can be uniquely mapped to one renderer

and vendor, and 38% can be mapped to less than three renderers and vendors. It

is interesting that the inference accuracy for certain GPU types, especially these

dedicated GPU vendors, are very high, because these GPU rendering behaviors are

very different from others when they try to pursue a high rendering quality. For

example, the inference accuracy for NVIDIA GeForce series is usually larger than

90%, with GTX 970 as 95.5%. Mali and PowerVR GPUs are very unique as well,

with 96.2% and 92.4% inference accuracy respectively. On the contrary, the inference

accuracy for low-end, integrated GPUs, such as AMD and Intel ones, are relatively

low, which are 20.8% and 57.4% respectively.
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Advice 3 [Browser Privacy]: Browsers, such as Firefox, should change
canvas rendering results as what Wu et al. [wu2019rendered] do when
masking GPU information.

Insight 1.4: IP address change can be used to infer network status, e.g., the use

of VPNs or proxies.

Specifically, we can calculate the velocity of the browser instance based on the

IP information, such as the latitude and longitude provided by the public database,

between two consecutive visits. If the velocity is larger than a threshold, say 2,000

km/h, which is impossible even by plane, we can consider that the browser instance

adopts network services, such as proxy and VPN, to visit our deployment website

between these two visits. Our evaluation shows that the velocities of most browser

instances are small, i.e., less than 150 km/h. There are no browser instances in our

database moving between 150 km/h and 2,000 km/h—this is probably because usually

the proxy or VPN is located far from the user. We have observed 2,916 browser

instances moving over 2,000 km/h, which are considered as using VPN or proxy

service. We look at manually some cases and verify that they are indeed using network

service. For example, one user was using a Russian IP address at Kaluga; one day

later, her IP address was changed to one at Lagos, Nigeria, Africa; and then two hours

later, her IP address went back to the first one. The moving speed is way beyond

2,000 km and her second IP address, after manual verification, belongs to a public

VPN service.

Advice 4 [User Privacy]: Users may want to avoid visiting a website with
and without VPN/proxy service at the same time.

Insight 2: The F1-score and matching speed of prior evolution-aware

fingerprint work degrade significantly in a large-scale setting.

We evaluate state-of-the-art evolution-aware fingerprinting tool, FP-Stalker, using

the dataset collected in our measurement study. All the experiments are performed
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Figure 5-9. Matching Time of FP-Stalker against One Fingerprint (Note that matching
time greater than 100 ms is considered unacceptable because ads real-time bidding (RTB)
requires that an advertiser provides a decision under 100 ms [136, 137], a hard limit
enforced by many ad exchange networks like Google)

(a) F1-Score (b) Precision (c) Recall

Figure 5-10. F1-Score, Precision and Recall of FP-Stalker for Top 10 Prediction (Note
that we run both learning- and rule-based FP-Stalker for 240 hours, which is ten full days;
learning-based FP-Stalker is not scalable to a large dataset as acknowledged in the paper
as well).

on a powerful server with 192 GB RDIMM 2666MT/s Dual Rank memory and Intel®

Xeon® E5-2690 v4 2.6GHz CPU. There are two variations of FP-Stalker, rule-based

and learning-based. We adopt all the original rules from the paper and retrained the

learning-based FP-Stalker as the F1-Score of the original model is very low (smaller

than 50%) on our dataset.

We look at two important metrics of FP-Stalker:

(i) Matching Speed. Figure 5-9 shows the average matching time of FP-Stalker

against one fingerprint, which increases linearly as the number of fingerprints. We

would like to point out that the matching speed of FP-Stalker, no matter rule- or

learning-based, is unacceptable in this large-scale setting. The reason is that many ad

exchange networks like Google requires that an advertiser provides a decision under a
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Fingerprint 1:

User Agent: Mozilla/5.0 (Linux; Android 9; SM-N960U)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/77.0.3865.92 Mobile Safari/537.36
...

Fingerprint 2:

User Agent: Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/77.0.3865.92 Mobile Safari/537.36
...

(a) A desktop page on a mobile
browser

Fingerprint 1:

...
Support of Cookies: Yes
Support of localStorage: Yes
...

Fingerprint 2:

...
Support of Cookies: No
Support of localStorage: No
...

(b) Storages
Disabled on Chrome

Fingerprint
1:

...
CPU Cores: 4
...

Fingerprint
2:

...
CPU Cores: 2
...

(c)
Different
CPU
CoresFingerprint 1:

User Agent: Mozilla/5.0
(Linux; Android 7.0; SAMSUNG SM-J330F Build/NRD90M)
AppleWebKit/537.36 (KHTML, like Gecko)
SamsungBrowser/6.2 Chrome/56.0.2924.87
Mobile Safari/537.36

Fingerprint 2:

User Agent: Mozilla/5.0
(Linux; Android 7.0; SAMSUNG SM-G920F Build/NRD90M)
AppleWebKit/537.36 (KHTML, like Gecko)
SamsungBrowser/6.2 Chrome/56.0.2924.87
Mobile Safari/537.36
...

(d) Two Browser Instances on
Different Devices

Figure 5-11. False Positives and Negatives of both Rule- and Learning-based FP-Stalker
((a) and (b) are false negatives, as they belong to the same browser instance but are not
linked; (c) and (d) are false positives, as they are from different browser instances but are
linked together. We skip the same features between each 1 and 2 pair).

hard limit, which is 100 ms [136].

(ii) F1-Score, Precision and Recall. Figure 5-10 shows the precision, recall, and

F1-Score of FP-Stalker as the number of fingerprints increases: All three numbers

drop linearly. We now list some false positive (FP) and negative (FN) examples below:

• FN: A desktop page on a mobile device. FP-Stalker fails to link those two

fingerprints in Figure 5-11 (a), as the user agent changes drastically from a
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mobile Chrome (Fingerprint 1) to a Linux Desktop (Fingerprint 2).

• FN: Storage place disabled on Chrome. Figure 5-11 (b) shows an FN example

of storage places, such as cookies and localStorage, are disabled on Chrome,

which lead to a change from Fingerprint 1 to 2.

• FP: Two browser instances with different CPU cores. Figure 5-11 (c) shows an

FP example of two browser instances with almost exactly the same fingerprint

but different CPU cores. This change is very unlikely to our human being, but

will be considered as possible by FP-Stalker.

• FP: Two browser instances with different device types. Figure 5-11 (d) shows

an FP example of two browser instances with just different device types. Again,

this change is small, i.e., from J330 to G920, but very unlikely.

Advice 5 [Better Fingerprinting Tool]: Existing fingerprinting tools need
to consider semantics of browser dynamics to improve its precision, recall
and F1-Score.

Advice 6 [Better Fingerprinting Tool]: Existing fingerprinting tools may
consider caching to improve its matching speed and meet the real-time
requirement.

Insight 3: The dynamics of some browser features are correlated although

the features themselves are not.

We show that although some features are not correlated directly, the dynamics

of those features may be implicitly. Our methodology of finding such correlation is

as follows. We first rank all the dynamics based on their popularity, i.e., the total

number of appearance, and then find dynamics in which two features come together.

We consider these two feature dynamics are potentially correlated if these two features

either do not come separately in the dynamics database or appear less popular than the

combined one. We then manually inspect these two feature dynamics to understand

whether they are correlated. Here are some examples of such implicit correlations:
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Table 5-III. Case Studies on Feature Correlation with Browser or OS Updates (Emoji type
means a redesign of emoji, and emoji rendering is some subtle rendering detail changes;
text width means the width of text rendered in browser canvas, and text detail is some
subtle text rendering detail changes. )

Update Platform Correlated Feature: Changed Value

Browser Update on Mobile Phone

Mobile Safari 10→11 iOS Canvas (C): Emoji rendering
Mobile Safari 11→12 iOS Font (F): Remove two fonts
Samsung 5→6 Android C: Emoji rendering
Samsung 6→7 Android C: Text width and emoji rendering
Mobile Firefox 56→57 Android C: Text width

Browser Update on Desktop

Safari 10→11 Mac OS X F: Remove/add fonts
Safari 10→11 Mac OS X C: Emoji rendering
Firefox 60→61 Ubuntu C: Emoji type
Chromium 62→63 Ubuntu Plugin (P): Remove one plugin

OS Update on Mobile Phone (* means any version lower than the update target)

Android *→4.4.2 Android C: Samsung emoji rendering
Android *→8.0.0 Firefox C: Text width and emoji type
Android *→8.0.0 Samsung C: Text width and emoji rendering
Android *→8.0.0 Chrome C: Text detail
iOS *→10.3.3 Safari C: Emoji rendering
Blackberry OS *→10.3.3 Webkit C: Text detail

OS Update on Desktop

Windows *→10 Maxthon C: Text width and emoji type
Mac OS X *→10.10.4 Safari C: Emoji rendering
Mac OS X *→10.13 Firefox C: Text width

• Example 1: Cookie disabling/enabling is correlated with localStorage in Chrome

Browser. That is, when cookie is enabled or disabled in Chrome, localStorage

will change as well. In total, we have observed 347 Chrome instances that disable

cookie and localStorage together and 226 that enable them together. The reason

is that Chrome provides a single checkbox to disable or enable both cookie and

localStorage; interestingly, the disabling/enabling of cookie and localStorage is

not correlated in Firefox Browser, because there are two places to perform these

two actions.

• Example 2: The change of DirectX API levels in Firefox is correlated with Firefox

updates among 57–60 on certain devices. Specifically, we find the DirectX API

level is downgraded to 9EX when Firefox is updated to 58 or 59 on certain

devices, and then the level is back to 11 when Firefox is updated to 60. We
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suspect that Firefox 57, a relatively buggy version [138], has some problem using

DirectX 11 on certain devices and therefore it falls back to DirectX 9EX on

Firefox 58 and 59. Then, Firefox 60 fixes some bugs and therefore reuses DirectX

11.

• Example 3: The change of DirectX API levels in Chrome is correlated with Audio

Card Sample Rate. Specifically, we find that when Chrome’s GPU renderer is

updated from Direct3D 9EX to 11 on certain devices, the sample rate of its audio

card will also be updated from 44,100 to 48,000. The reason is that probably

Chrome adopts DirectX to manage audio card and therefore when DirectX is

updated, audio card information is as well.

Except for those implicit correlations, Table 5-III also shows correlations related

to browser or OS updates. There are three major types of correlated features: canvas

rendering results, font list and plugin list. The canvas rendering results is the most

common correlation, because many browser and OS updates include new emojis or

text rendering. Specifically, we classify the dynamics in canvas rendering results into

four subtypes: text width, text details, emoji types and emoji rendering. Text width

means the width of the text part of canvas rendering, which may changes if one letter

is rendered thinner or thicker; text details means some texture details of the letter

rendering; emoji types means the introduction of a new emoji type; emoji rendering

means some small changes, such as smoothing of emojis.

Advice 7 [Better Fingerprinting Tool]: Existing fingerprinting tools may
include implicit or explicit feature correlations to improve linking perfor-
mance.

Insight 4: The timing of some fingerprint dynamics are correlated with

real-world events, such as the release of browser or OS updates.

Specifically, we show such trends in Figure 5-12, where the x-axis is our deployment

period and y-axis is the percentage of browser instances with corresponding browser
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Figure 5-12. Percentage of browser instances with dynamics related to browser updates
over the entire period of our deployment

update related dynamics. For example, 66 in Chrome sub-figure refers to fingerprint

dynamics that are related to an update to Chrome version 66. We marked each

important real-world event during our deployment period, such as Chrome updates

between 63 and 67, Firefox updates between 58 and 61, and Safari updates between

10.1.2 and 11.1.

There are two things worth noting. First, after each browser release, there emerges

a peak of fingerprint dynamics that lead to an update to the latest version. This

trend is the same for all three browsers marked in the figure. Such updates are not

immediate, which usually take months to finish. Second, the updates for Safari is

usually slower than the ones for Firefox and Chrome. The reason is that Firefox and

Chrome updates are automatic—a user just needs to restart the browser and update

their browsers. As a comparison, Safari updates require a user to click several buttons

in app store and therefore some users are reluctant of doing so.

Advice 8 [Better Fingerprinting Tool]: Existing fingerprinting tools may
consider the timings of real-world events to improve linking performance.

5.5 Discussions

We discuss several commonly-raised issues, such as ethics and feature inconsistency,

in this paper. First, we obtained approval from our Institutional Review Board (IRB)
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prior to conducting the research. Our collected data via the deployment website may

contain human information. Specifically, the deployment website has an agreement,

i.e., a div element pointing to a legal document, stating that the website may collect

user information including browser fingerprints and asking the users for their consent.

During the sign-up stage, the users will also see an additional webpage asking for

their consent of collecting fingerprint information. Since all the fingerprinting data

are accompanied with an anonymized user ID, all the users in our study have at least

seen the agreement twice and agreed to be collected. That said, all the ethic issues are

handled through the deployment website via a standard procedure and the collection

process obeys the EU privacy legislation, e.g., GDPR, which states that websites need

to get visitors’ consent to store or retrieve information on a computer, smartphone or

tablet.

Second, feature inconsistencies have minimum impacts on our measurement study

due to their small numbers. Specifically, a browser may provide a piece of false, or

called inconsistent, information in our study and our tool actually adopts this type

of inconsistency as a feature in the fingerprint. The number of such inconsistencies

is very small (less than 1% of browser instances). Now let us look at some of these

reasons that lead to inconsistencies. First, the user may want to request a different

version of a web page on the device, e.g., a mobile device requesting for a desktop

page. This is the major reason in our measurement study that leads to inconsistency

and our analysis has already considered such scenarios. Second, a browser, such as Tor

Browser and Brave Browser, or a privacy-preserving browser extension may conceal

the browser’s identity due to privacy reasons. The number of users having these

browsers or extensions are relatively small, thus having minimum impacts on our

measurement results. We will leave a measurement of such privacy-preserving tools as

our future work.

Third, we discuss the limitations of adopting browser IDs as the ground truth.
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Although we consider it as a big improvement over user ID and cookies, the adoption

of browser ID leads to false positives and negatives. For example, if one user has two

identical devices, we will falsely assign the same browser ID to browsers on those two

devices. For another example, there might exist some rarely happened user agent

changes that are not captured during our study, leading to false negatives.

Fourth, we discuss attack traffic on the deployment website—This is an orthogonal

problem to the paper. Because the recorded traffic belongs to users that are logged

into the websites, the possibility of attack traffic, such as credential stuffing, is low.

Specifically, most traffic related to credential stuffing is trying to log in with account

credentials instead of visiting the website normally.

Lastly, we talk about the usage of browser fingerprints in the real-world. Although

it is well known that browser fingerprints can be used for web tracking, which may

violate user privacy, recent adoption of browser fingerprinting is sometimes to the

opposite in the realm of two factor authentication and bot detection [139]. The

intuition is simple: Browser fingerprints, just like cookies, have two sides: one for

tracking and the other for authentication. In this measurement paper, we took a

neutral view on how browser fingerprints are used, but focused on how fingerprints

may change over time. It is the responsibility of those who deploy fingerprinting to

decide its usage and we give advices on both sides in the paper.

5.6 Related Work

In this section, we discuss related work including the closest one discussing fingerprint

evolution/dynamics, web tracking and anti-tracking.

5.6.1 Fingerprint Evolution/Dynamics

FP-Stalker [131] is the first work that considers fingerprint evolution and designs an

approach to link different browser fingerprints even if they evolve over time. The
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major contribution of FP-Stalker is the design and implementation of novel fingerprint

linking algorithms, i.e., both rule-based and learning-based approaches. To validate

their algorithms, FP-Stalker involves a relatively small dataset with 1,905 browser

instances—as opposed to over 1 million in our paper and over 300,000 if we only count

users visiting the deployment website for more than seven times, i.e., following their

criteria—collected from a group of users who install their browser extension.

After that, Pugliese et al. [130] also conduct another small-scale study with 88,088

fingerprints belonging to 1,304 users to understand users’ trackability. Together with

the study, Pugliese et al. propose a method, called feature stemming, to improve

feature stability—which performs better than FP-Stalker on the FP-Stalker dataset.

There are two potential issues of feature stemming. First, we believe that although

feature stemming improves stability, there are still dynamics that need additional

linking. Consider the example of a user requesting a desktop page on a mobile device.

The user agents of two visits are drastically different, which cannot be captured by

feature stemming. Second, feature stemming, e.g., stripping off version substrings,

increases the anonymous set size of fingerprints, thus reducing fingerprintability in

general.

As a general comparison with prior works on fingerprint evolution, our measurement

study is in a much larger scale and also makes observations related to privacy and

security, e.g., the leaks of software updates. Furthermore, our measurement study

shows that both the learning- and rule-based FP-Stalker performs poorly in terms of

F1-Score and matching speed in our large-scale dataset.

5.6.2 Web Tracking

We present related work in web tracking from two perspectives: cookie or super cookie-

based and then browser fingerprinting. As a general comparison, our measurement

study is the first work that classifies and measures dynamics in browser fingerprinting,
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a special, second-generation web tracking, and then draws interesting observations,

such as dynamics-related privacy leaks.

5.6.2.1 Cookie or Super Cookie based Tracking

Many measurement studies have been proposed before on the effectiveness or severeness

of Web tracking in general, such as these based on cookies or other server-set identifiers.

For example, Roesner et al. [89] performs a comprehensive measurement study on

web tracking and proposes a classification framework. Lerner et al. [109] conduct an

archaeological study by measuring web tracking from 1996 to 2016 in Internet time

machine. Soltani et al. and Ayenson et al. measure how tracking companies can use

non-cookie based stateful tracking to regenerate deleted cookies [110, 111]. Metwalley

et al. [112] adopt an unsupervised method to detect user identifiers that could be

adopted for tracking purpose. Krishnamurthy et al. [113–116] gauge the harm of

web tracking and conclude that trackers may obtain personal information, such as

username and emails.

5.6.2.2 Browser Fingerprinting

Browser fingerprinting is the second generation of web tracking. Yen et al. and

Nikiforakis et al., as one of the few early studies, discuss and measure the effective-

ness of fingerprinting [10, 117]. Acar et al. [95] conduct a large-scale study canvas

fingerprinting, evercookies, and the use of “cookie syncing”. FPDetective [8] and

Fifield el al. [9] both focus on the list of font perspective in browser fingerprinting,

e.g., FPDetective performs a measurement study of millions of most popular websites

using fonts in the fingerprints. Similarly, Englehardt et al. [100] also conduct a very

large-scale study on one million websites about browser fingerprinting, which results in

many new features, such as AudioContext. Cao et al. [133] and Boda et al. [94] study

a different angle of browser fingerprinting, i.e., cross-browser fingerprinting. Vastel et
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al. [140] study the inconsistencies in browser fingerprints and shows such inconsistency

brings additional entropy for fingerprinting. There are also many works focusing on

different perspectives of browser fingerprinting, such as canvas-based [12], JavaScript

engine [118, 119], and hardware-based [13]. Particularly, Laperdrix et al. [11] designs

a website, called AmIUnique, and conduct a comprehensive study on 17 attributes of

browser fingerprinting.

In terms of measurement study, Gómez-Boix et al. [128], similar to our study,

deployed a fingerprinting tool on a real-world website and studied the effectiveness

of browser fingerprinting. Note that their study adopts cookies as identifiers to

differentiate browser instances. However, to the contrary, our study reveals that both

users and browsers, such as Safari powered by Intelligent Tracking Preventing, do

delete cookies very often and therefore cookies are unreliable in terms of serving

as a ground-truth identifier. In addition, their study focuses on the fingerprinting

effectiveness but not dynamics.

5.6.3 Anti-tracking

We also discuss existing anti-tracking from two aspects: defense against cookie-based

and anti-fingerprinting.

5.6.3.1 Defense against Cookie- or Supercookie-based Tracking

ShareMeNot [89] is a browser add-on to defend against social media button tracking,

such as Facebook Like button. Private browsing mode [120, 121] creates an isolated

browser profile from the normal ones so that the web user’s information, such as

cookies, are not preserved. Similarly, TrackingFree [122] proposes to isolate user’s

website visits via an indegree-bounded graph. The Do Not Track (DNT) [123] header,

an opt-out approach, allows a user to ask websites not to track. On the other hand,

Meng et al. [124] design a client-side policy that empowers users to control whether to
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be tracked. Intelligent Tracking Prevention [129] is an anti-tracking approach proposed

by WebKit to automatically purge out tracking cookies based on an ML-based detector.

5.6.3.2 Anti-fingerprinting

Tor Browser [125], a privacy-preserving browser, make many fingerprinting features

uniform so that they stay the same across browsers. In addition to Tor Browser, which

strictly pursue privacy over functionality, some other browsers often provide a privacy-

enhancing mode to protect users from browser fingerprinting. For example, Brave

Browser [141] provides a fingerprinting protection mode and Firefox provides Tracking

Protection in its private browsing mode. In addition to browsers, some browser

add-ons, such as Canvas Defender [142], also provide protections against fingerprinting

by adding noises. The research community also works on anti-fingerprinting works.

PriVaricator [126] adds randomized noise to fingerprinting results so that a tracker

cannot obtain an accurate fingerprint. Deterministic Browser [143], is similar to

Tor Browser, but mostly focuses on and defends against timing-based fingerprinting.

Recently, W3C also introduces a new group note [144] with several suggested practices

to browser vendors on the mitigation of browser fingerprinting.

5.7 Conclusion

Browser fingerprints are dynamic, i.e., they evolve over time when users update

browsers and OS, or even just interact with their browsers. Such fingerprint dynamics

will bring inaccuracies for existing fingerprinting tools to track web users. In this

paper, we perform the first large-scale measurement study on the dynamics of browser

fingerprints by deploying a customized fingerprinting tool at a real-world website and

collecting millions of data over an eight-month period. We then process the collected

raw data by generating a dynamics dataset with browser instances represented by

browser ID, i.e., a combination of an anonymized version of username provided by the
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deployment website and some stable browser features.

Our results show that fingerprint dynamics can be classified into three major

categories based on their root causes: browser or OS updates, user actions, and

environment updates. Our study further yield several new insights: (i) fingerprint

dynamics may leak security- or privacy-related information, (ii) prior evolution-aware

fingerprinting tools, e.g., FP-Stalker, perform poorly in a large-scale, real-world setting,

(iii) some unrelated fingerprint features may be correlated in a piece of dynamics,

and (iv) fingerprinting dynamics can be correlated with real-world events like browser

or OS updates. We also give several pieces of advices to browser vendors and users

on security and privacy as well as evolution-aware fingerprinting tool developers on

improving the linking accuracy and speed.

In the future, we believe that it would be interesting to study the trade-off between

uniqueness and linkability of browser fingerprints on our large-scale dataset. We would

like to design a better fingerprinting tool that balances these two important metrics in

browser fingerprinting because uniqueness defines to what extent the tool can track a

browser instance and linkability defines how long the tool can track a browser instance.
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Chapter 6

Conclusion and Future Work

In this dissertation, we propose a new graph structure – Object Property Graph (OPG)

to represent the object-level relationships of elements in JavaScript programs and a

novel method to detect Node.JS vulnerabilities by graph queries. Besides it, we also

introduce multiple features to fingerprint devices and do a large-scale measurement

study regarding the dynamics of browser fingerprints. We conclude the summary of

our contributions as:

• In Chapter 2, we propose a novel method – object lookup analysis to detect

prototype pollution vulnerability in Node.JS packages and introduce a new

graph structure – Object Property Graph (OPG) to support such an analysis.

We implemented the algorithm and the open-sourced tool found 61 exploitable

zero-day vulnerabilities and also detected seven indirectly-vulnerable ones due

to the inclusion of vulnerable packages.

• In Chapter 3, we propose an algorithm that can detect multiple Node.JS vulnera-

bilities such as OS command injection, path traversal, and cross-site scripting, by

graph queries on top of Object Property Graph. We implemented the algorithm

and the experimental results show that our tool outperforms all the state-of-the-

art tools in terms of false-negative rate and false-positive rate. We also found

180 zero-day vulnerabilities, and 70 of them received Common Vulnerabilities
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and Exposures (CVE) identifiers so far.

• In Chapter 4, we introduce multiple novel OS and hardware level features to

support cross-browser fingerprinting. We found that the rendering results of

WebGL tasks are different among different devices and may leak the GPU and OS

information. The evaluation shows that our approach can successfully identify

99.24% of users as opposed to 90.84% for the state-of-the-art single-browser

fingerprinting tools and fingerprint 83.24% of the users in the cross-browser

setting.

• In Chapter 5, we collect more than one million browser fingerprints and do

a large-scale measurement study to analyze the performance and dynamics

of browser fingerprints in the real-world setting. By analyzing the collected

fingerprints and categorizing the dynamics, we answer the question of how and

why the browser fingerprints change over time and how browser fingerprints can

leak the users’ private information.

6.1 Future Work

Though OPG significantly increases the detection accuracy of JavaScript vulnerabilities,

it still suffers from the scalability issue. One of the major reasons is the path explosion

problem – the number of possibilities grows exponentially as the number of conditional

expressions grows. To keep a similar detection accuracy and improve efficiency, we

need to find out methods that cover the vulnerable paths without being stuck by safe

paths. There are two possible solutions: 1) creating a new thread when encountering a

conditional statement, using multi-threading to analyze multiple paths together; and

2) using pre-generated information to predict possible vulnerable paths and analyze

them directly. For the second approach, we can go through the source code of the

target program and build the control-flow graph to get rid of the paths that can
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never reach the sink functions. Besides the control-flow approach, AI models are

good at predicting vulnerable paths. We can first train a model based on a group of

vulnerable codes and the corresponding control-/data-flows, and then use the model

to calculate the possibility of a path to be vulnerable during the analyzing process.

Based on the calculated possibility, we can prioritize the vulnerable paths and detect

the vulnerabilities efficiently.

There are programming languages that are similar to JavaScript and suffer from

different vulnerabilities. Blockchain is a good example. Blockchain is an epoch-making

technology that provides trustworthy agreed obligations between untrusted entities.

The obligations are described by smart contracts – which are programs written in

multiple programming languages like Solidity, and running on top of the blockchain.

Given the security and privacy nature of the blockchain, smart contracts should be

faithful. Unfortunately, the security of smart contracts is still a major concern. Like

JavaScript, many smart contract programming languages, for example, Solidity, suffer

from various vulnerabilities. We can migrate OPG to those languages easily to (1)

draw an overall big picture of the smart contract in the security domain, and (2) dig

the deep-rooted vulnerabilities in the open-sourced smart contracts. I believe such

approaches will help to prevent blockchain-based financial crimes and build a healthier

ecosystem.

On the browser side, browser fingerprinting is always a battlefield between users

and service providers. On the one hand, users do not want to leak their private

information, and on the other hand, service providers need users’ information to

provide targeted services. To create a healthy browser fingerprinting eco-system, we

need a platform to build a bridge between users and service providers. This platform

allows users and service providers to negotiate about what kind of information the

users are willing to release, who can use the released information, and what services

the providers can provide. I believe such a platform is crucial for fingerprinting users

159



legally and effectively, which will further push the browser fingerprinting technique

forward.
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