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Abstract

• Background: A cell exhibits a variety of responses to internal and external

cues. These responses are possible, in part, due to the presence of an elabo-

rate gene regulatory network (GRN) in every single cell. In the past twenty

years, many groups worked on reconstructing the topological structure of GRNs

from large-scale gene expression data using a variety of inference algorithms.

Insights gained about participating players in GRNs may ultimately lead to

therapeutic benefits. Mutual information (MI) is a widely used metric within

this inference/reconstruction pipeline as it can detect any correlation (linear

and non-linear) between any number of variables (n-dimensions). However, the

use of MI with continuous data (for example, normalized fluorescence intensity

measurement of gene expression levels) is sensitive to data size, correlation

strength and underlying distributions, and often requires laborious and, at times,

ad hoc optimization.

• Results: In this work, we first show that estimating MI of a bi- and tri-variate

Gaussian distribution using k-nearest neighbor (kNN) MI estimation results

in significant error reduction as compared to commonly used methods based

on fixed binning. Second, we demonstrate that implementing the MI-based

kNN Kraskov-Stoögbauer-Grassberger (KSG) algorithm leads to a significant

improvement in GRN reconstruction for popular inference algorithms, such as

Context Likelihood of Relatedness (CLR). Third, through extensive in-silico

benchmarking we show that a new inference algorithm CMIA (Conditional
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Mutual Information Augmentation), inspired by CLR, in combination with the

KSG-MI estimator, outperforms commonly used methods. Finally, we compare

our three newly developed methods to classify three-node motifs: (i) MI and

Z-score profiles, (ii) Dimensionality reduction by PCA and clustering using

K-means, (iii) Supervised machine learning algorithms using MI input data. We

show that at least 22 different 3-node motifs in-silico and 16 motifs on E.coli

experimental data can be distinguished by using all 2d and 3d MI quantities

and without any a priori knowledge of the regulator (source) genes.

• Conclusions: Using three canonical datasets containing 15 synthetic networks,

the newly developed method for GRN reconstruction - which combines CMIA,

and the KSG-MI estimator - achieves an improvement of 20-35% in precision-

recall measures over the current gold standard in the field. Validated on E. coli

gene expression data, our method for three-node motifs classification achieves

more than 60% overall accuracy, with 9 network motifs reaching as high as

80-100% precision. This new methods will enable researchers to discover new

gene interactions or choose gene candidates for experimental validations.
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Chapter 1

Gene regulation network inference
using k-nearest neighbor-based
mutual information estimation

Background

Most cells in a multicellular organism contain the same genome, yet they can

differentiate into different cell types and adapt to different environmental conditions

[1]. These responses to internal and external cues are possible due to the presence of

an elaborate gene regulatory network (GRN). A GRN is the genome’s “flowchart“ for

various biological processes such as sensing, development, and metabolism, enabling

the cell to follow specific instructions upon an internal or external stimulation. Un-

derstanding how genomic flowcharts are organized brings the potential to remediate

dysfunctional ones [2] and design new ones for synthetic biology [3].

Advances in large-scale gene expression data collected from omic-level microarrays

and RNA-seq experiments allow the construction of basic networks by clustering co-

expressed genes using statistical correlation metrics such as covariance and threshold

to determine the statistical significance [4]. Another common practice is to monitor

the expression of multiple genes in response to perturbations and then infer the

relationship between these genes [5]. Currently, there are several classes of methods
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to infer GRNs from expression data, such as the Bayesian networks method, the

statistical/information theory method, and ordinary differential equations (ODEs)

(see excellent reviews [6–8]).

Originally introduced for communication systems by Shannon in the late 40s [9, 10],

mutual information (MI) was quickly adopted by other disciplines as a statistical tool

to evaluate the dependence between variables. Unlike the abovementioned traditional

correlation methods like covariance, MI can detect linear and non-linear relationship

between variables and can be applied to test the dependence between any number of

variables (n-dimensions).

Over the last twenty years, researchers have implemented many methods employing

MI to reconstruct GRNs, such as Relevance Networks [11]; ARACNE (Algorithm for

the Reconstruction of Accurate Cellular Networks, [12]); and CLR (Context Likelihood

of Relatedness, [13]). Using MI with two variables (i.e. genes) is straightforward,

but due to the positive and symmetric nature of two-way MI [14], MI with only two

variables cannot distinguish between direct and indirect regulation, coregulation, or

logical gate-type interactions [15, 16]. To overcome these issues, a few groups have

used different three-dimensional MI measures in inference algorithms [15, 17, 18] (for

a comprehensive list of methods, see Mousavian et al. [19]). Importantly, in most

methods using MI, continuous input (i.e., normalized fluorescence intensity data for

gene expression) needs to be discretized first to build probability density functions

(PDF). This practice is known to be sensitive to data size, correlation strength and

underlying distributions [20].

In general, the simplest and most computationally inexpensive method to discretize

continuous data is fixed (width) binning (FB) (Fig. 1-1A), where a histogram with

a fixed number of bins (or bin width) determined by certain statistical rules is used

to model the PDF. For finite data size, FB generally under- or over-estimates MI

(Fig. S1A). Over the years, researchers developed different methods to mitigate bin
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number sensitivity and to better estimate (or correct the bias in) MI, especially

for data of small sizes. These methods correct either the entropies (Miller-Madow

[21]) or the probability distribution by adaptive partitioning (AP) [22], k-Nearest

Neighbor (kNN) [23] (Fig. 1-1B), kernel density estimator (KDE) [15] and/or B-spline

functions, in which data points are divided into fractions between a predefined number

of adjacent bins [24]. Unfortunately, all these methods make assumptions on the

density distribution and require adjustment of parameters by the user for different

scenarios except for kNN, which is shown to be accurate and robust across different

values of k [20, 23]. However, kNN is rarely used due to the higher computational

costs it entailed [25] or the limited improvement for two variables (2d) in downstream

analysis.

Fixed width binning (#bins=8) k-Nearest Neighbor (k=1)A B

Figure 1-1. Illustration of two methods to evaluate distribution
(A) Fixed width binning, and (B) k-Nearest-Neighbor (k=1). Data points are shown
as blue circles, bin edges are shown in black, and distances to k=1 neighbor as the

radius of dashed red circles.

The problem of accurately estimating the correlation between genes has only

worsened in this new era of single cell transcriptome studies, as data is larger yet

sparser, often with non-Gaussian distributions. In this work, we focus on two subjects:
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(a) Improving MI estimation – we present an implementation of a three-way MI

estimator based on kNN, which addresses large errors in estimating MI measures for

three variables (3d). (b) Improving GRN inference – we present CMIA (Conditional

Mutual Information Augmentation), a novel inference algorithm inspired by Synergy-

Augmented CLR (SA-CLR) [18]. By testing various mutual information estimators

against the ground truth solved from an analytical solution and comparing their

performance using in-silico GRN benchmarking data, we find that kNN-based three-

way MI estimator Kraskov-Stoögbauer-Grassberger (KSG) improves the performance

of common GRN inference methods. Together with the inference algorithm, CMIA, it

outperforms other commonly used GRN reconstruction methods in the field.

Materials and Methods

Calculate mutual information of multiple variables

In Table 1-1, we summarize the formalism for calculating MI (for detailed overview

please see Appendix I). Shannon’s entropy is the basic building block of MI and

represents the randomness of a variable: the more random it is, the more uniformly

it is distributed, which gives a higher entropy. For our purposes, X, Y , or Z is a

vector (x1, x2, . . . , xn), (y1, y2, . . . , yn) or (z1, z2, . . . , zn) representing a specific gene’s

expression profile (data x, y or z) under different conditions/perturbations (n steady-

states) or as a function of time (n time points). Two-way MI is defined as the shared

(or redundant) information between the two variables X and Y (Table 1-1) and can be

visualized by a Venn diagram (Table 1-1 right column).

While MI for two variables (genes or dimensions) is readily understood, for three

variables or more, new measures arise including Total correlation (TC), Three-way

MI (MI3), Interaction Information (II) and Conditional MI (CMI) (Table 1-1). Unfor-

tunately, the term ‘three-way MI’ has been used loosely in the literature to refer to

4
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all four of these measures, and because they represent distinct aspects of statistical

dependence, in the context of GRN reconstruction, this can lead to different realiza-

tions. Unlike other MI quantities, Interaction-Information is hard to visualize using

a Venn diagram, as it can have both positive and negative values. It is common to

regard negative II as “Redundancy”, the shared information between all variables, and

positive II as “Synergy”. Synergy can be interpreted as new information gained on the

dependence between two variables {X,Y} when considering the contribution of a third

variable {Z} on either {X} or {Y} v.s. without considering it, or mathematically:

II = CMI(X; Y |Z) − MI(X; Y ).

To calculate the marginal and joint entropies of two variables (X and Y), we first

need to know the probability of each data point. For discrete data, we can approach

the underlying probability p(x) by calculating the frequency (fx = Nx/NT ot) where Nx

is the number of data points with value x, and NT ot is the total sample size. For the

continuous data case, the calculation is more complex. Although Shannon extended

his theory for continuous data by replacing the summation with integrals [10], it is

common practice in the field to discretize the data first so one can work with the

discrete formalism (Table 1-1). The simplest discretization method is to use fixed

(width) binning (FB) (Fig. 1-1A), but the optimal binning choice depends on the

shape of the distribution and data size. For normally distributed data, the rule of

thumb is to use the square-root of the data size as the number of bins.

k-nearest-neighbor (kNN)

Other than evaluating the probability densities to calculate mutual information,

Kozachenko and Leonenko (KL) calculated the marginal and joint entropies (and the MI

by summation) from the mean distance to the kth-nearest neighbor [26]. To minimize

errors when combining entropies of different dimensions, Kraskov et al. calculate the

MI directly [23]. KSG developed two algorithms, I(1) and I(2) (hereafter, KSG-1 and

6



KSG-2), to minimize errors when estimating MI compared to previous methods. We

chose KSG-1 (defined below as MIKSG) as it gives slightly smaller statistical error

(dispersion). Note that although KSG-1 gives relatively larger systematic errors than

KSG-2, these systematic errors do not change the ranking of the output values (from

high to low), which is what we use in downstream analysis. An additional note is

that using kNN can lead to negative values for mutual information, which contradicts

Shannon’s theorem. Negative values are caused by statistic fluctuations when there is

no correlation between variables. Therefore, in such a situation, we set negative values

to zero (except for Interaction Information, where it is meaningful). To calculate MI

using the KSG method, we use the following formulas:

MIKSG(X; Y ) = Ψ(k) − ⟨Ψ(nx + 1) + Ψ(ny + 1)⟩ + Ψ(N) (1.1)

TCKSG(X; Y ; Z) = Ψ(k) + 2 · Ψ(N) − ⟨Ψ(nx) + Ψ(ny) + Ψ(nz)⟩ (1.2)

Where Ψ(x) is the digamma function, N is the number of data points, ni is the number

of points xj whose distance from xi is less than ϵ(i)/2, and ϵ(i)/2 is the distance from

ui = (xi, yi, zi) to its kth neighbor, as illustrated in Fig. 1(a) of [23].

in-silico GRN Inference comparison:

MI calculations are used to infer interactions between genes to reconstruct the under-

lying GRN structure. To test the performance of different methods, we followed the

methodology of the in-silico network inference challenges of the Dialogue for Reverse

Engineering Assessments and Methods (DREAM) competitions DREAM3-4 [27] as

depicted in Fig. 1-2.

Figure 1-2. The different steps for evaluating GRN inference performance.
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Simulating gene expression data

We used GeneNetWeaver [28] to generate steady-state and time-series gene expression

datasets for realistic in-silico networks of sizes of 50, and 100 genes containing various

experimental conditions (knockouts, knockdowns, multifactorial perturbation, etc.).

GeneNetWeaver uses a thermodynamic model to quantify mRNA transcription and

regulation with added molecular and experimental noise.

Discretizing/density estimation

To handle the continuous expression data, we chose either:

(a) Density estimation by fixed bin. We used the common practice sqrt(n), where n

= number of data points (in our case, different experimental conditions), as the

number of bins.

(b) Density estimation by k-Nearest Neighbor (kNN). Unless stated otherwise, we

chose k=3 as a good compromise between precision and computation cost as

discussed in [23].

Mutual Information estimation

Depending on our previous selection, we chose between several MI estimators:

(a) For the fixed-bin discretizing method, we used either Shannon’s formula (also

referred to as Maximum Likelihood, ML) or Miller-Madow (MM) estimator

(Appendix B.).

(b) For kNN we used either KL or KSG formulas for MI.

GRN inference algorithms

We used popular algorithms in the field that use either only two-way MI or both

two- and three-way MI to infer undirected network structure by sorting predicted

8



interacting gene pairs from most probable to least probable. Each algorithm starts

with a MI matrix containing calculation for all possible pairs (some use all possible

triplets) and applies different rules to filter results and sort the gene pairs (see summary

below). We used the same MI matrices for a fair comparison between the inference

algorithms. The following algorithms were used in our comparison:

(a) Relevance Network (RL) – Gene pairs are sorted according to their MI(X;Y)

value from highest to lowest, and a threshold applied to truncate non-significant

results [11]. We didn’t set a threshold to maximize AUPR (see below).

(b) Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE)

– Same as RL with the addition of Data Processing Inequality (DPI), which

means for every three genes MI is calculated for each pair and the pair with the

lowest MI is removed if the difference is larger than some threshold [12]. In our

implementation, we set the threshold to zero, so we always removed the lowest

interacting pair (same implementation as Minet [29]). On the other extreme,

where we kept all the pairs, ARACNE is the same as RL.

(c) Context Likelihood of Relatedness (CLR) – Background correction is performed

by calculating Z-score for the MI of each gene interacting with all other genes, and

then gene pairs are sorted by their mutual Z-score [13]. We didn’t use B-spline

smoothing in the density estimation step in accordance with the implementation

in the R-package Minet [29].

(d) Synergy Augmented CLR (SA-CLR) – Same as CLR, with the difference that

now the highest Interaction-Information term is added to MI prior to performing

the background correction [18].

(e) Conditional Mutual Information Augmentation (CMIA) – Similar to SA-CLR

but we used conditional mutual information instead of interaction-information.
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(f) Luo et al. MI3 (hereafter CMI2rt) – Two regulators are assumed for each

target gene, and for each target gene we searched for the best R1,R2 pair that

maximizes: CMI(T;R1|R2)+CMI(T;R2|R1) [15].

GRN performance evaluation

To evaluate the performance of common algorithms in the field, we used known (true)

synthetic networks and counted the number of true and false positives (TP and FP

respectively) predictions as well as true and false negative (TN and FN respectively)

(Fig. 1-3). This allowed us to plot precision (Precision = TP/(TP + FP )) v. s.

recall (Recall = TP/(TP + FN)) and calculate the area under precision-recall curve

(AUPR). As biological networks are sparse on edges (interactions), AUPR is considered

a better metric than AUROC (area under the receiver operating characteristic curve,

which is the false positive rate FPR = FP/(FP + TN) v.s. recall) as mentioned

elsewhere [30].

Figure 1-3. A schematic GRN inference example.
The true network contains 10 genes (a.k.a. nodes), and 11 interactions (or edges). The
prediction algorithm correctly predicted 6 times (True positive), missed 5 interactions

(False negative), and predicted 2 interactions that did not exist (False positive).
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Results

Benchmark MI estimations of a Gaussian distribution

To evaluate the performance of different mutual information (MI) estimators on

continuous data, we calculated their deviations from the true underlying value by

defining a percent error:

percent_error = |Analytical_MI − Estimated_MI|
Analytical_MI

× 100% (1.3)

In most biologically relevant cases, one does not know what the true MI value

is, because one does not know the probability distributions of the variables we are

concerned with. Nevertheless, the true underlying value of MI of a few distributions

such as Gaussian distribution can be analytically calculated. Therefore, to allow quan-

titative comparisons between different MI estimators, we used the analytical solution

of Shannon’s entropy for a Gaussian distribution (see Appendix A.) to calculate the MI

by entropy summation (Table 1-1). We then compared all methods of different data

sizes (100, 1K, 10K, referring to the number of different conditions/perturbations/time

points of individual genes) and different correlation strengths (0.3, 0.6, 0.9) between

two or three variables (number of genes, 2d or 3d) drawn from a Gaussian distribution

with a mean at zero and a variance of one (the absolute values of mean and variance

are not important in the calculation as the final solution only contains correlation,

see Appendix A.). For two-way MI (two variables, or 2d) (Fig. 1-4A), we compared

the following MI estimators: (i) Maximum Likelihood (ML, given by Shannon, Table

1-1), (ii) Miller-Madow correction (MM, see Appendix B.), (iii) Kozachenko-Leonenko

(KL) [26], and (iv) KSG. The first two methods use FB to discretize the continuous

data, and in general the best number of bins changes depending on the data size

and correlation between variables (Appendix Fig. II-1A). As a priori the correlation

strength is unknown, for the number of bins we used the common practice
√

N , where

N equals the number of data points, and the result was rounded down to align with
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methods in the next section. The latter two methods both use kNN, and we found

that any selection of k resulted in good alignment with the analytical solution (see

Appendix Fig. II-1B). We chose the third nearest-neighbor (k=3) as recommended

by Kraskov et al [23] because a k value of 3 resulted in a good trade-off between

precision and computational cost. As shown in Fig. 1-4, in all cases the two kNN-based

MI estimators performed well similarly and outperformed the fixed-binning methods

judged by the percentage error.

While two-way MI estimators were studied extensively [23, 31], to our knowledge,

no benchmark was done on MI with three or more variables. We repeated the same

methodology described above but this time for the 3d Total Correlation (TC) (Fig.

1-4B, Appendix Fig. II-1C-D). Similar to the 2d case, kNN-based MI estimators KL3

and KSG3 outperformed the other methods. We also examined the other three-way

MI quantities, three-way MI (MI3), Interaction Information (II), Conditional Mutual

Information (CMI) (see Appendix Fig. II-2,II-3,II-4) and obtained similar results.

We also explored whether a higher kNN value, for example k=10, further improved

accuracy. We found that a higher k value (k=10) does not improve the accuracy

dramatically compared to that in k=3 (Appendix Fig. II-5,II-6), but it did reduce the

variance for small correlations (r=0.3).

in-silico GRN Inference performance enhancement

Next, we aim to investigate whether the high precision of MI estimation based on kNN

for bi- and tri-variate Gaussian distributions also translates to a high performance in

inferring GRN structure compared to other MI estimation methods described above.

To compare the performance of different MI estimators and inference algorithms,

we used a total of 15 different synthetic networks: ten synthetic networks from the

DREAM3 (Dialogue for Reverse Engineering Assessments and Methods) competition

[27] with 50 and 100 genes, respectively, and five networks from DREAM4 with 100
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Figure 1-4. Percent error of different mutual information estimators for multivariate gaussian distribution.
Each boxplot represents 100 replicates, with columns representing sample size = {100,1K,10K}, and rows the correlation
= {0.3,0.6,0.9}. (A) Percent error (y-axis) for two-way mutual information (MI2) was compared for 3 different methods:
ML_Sq=Maximum Likelihood (Shannon’s MI) with fixed width binning (number of bins is determined by square-root),
MM_Sq=Miller-Madow formula for MI with square-root for the number of bins, KSG3 =KSG formula for kNN-MI with k=3;
(B) same methods compared for total correlation (TC).
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genes. The networks were extracted from documented regulation databases of E. coli

and S. cerevisiaei [32]. We used the software GeneNetWeaver 3.1.2b [28] with default

settings to generate simulated expression data for each network and performed ten

replicates to include the variance in expression data due to experimental and stochastic

molecular noise. Furthermore, to comply with the majority of available experimental

data, we only used the simulated steady state data (Wild type, knockouts, dual-

knockouts, knockdowns, multifactorial perturbation) accumulating to 170, 169 and 201

conditions in the 50 gene synthetic networks for E. coli 1, E. coli 2 and Yeast1/2/3

respectively, 341, 322 and 401 conditions in the DREAM3 100 gene synthetic networks

for E. coli 1, E. coli 2 and Yeast1/2/3 respectively, and 393, 401 conditions in the

DREAM4 100 gene networks. We then ran the expression data through our custom

Python 3.8 code pipeline to calculate the area under precision-recall curve (AUPR)

for each replicate. In Fig. 1-5 we show sorted boxplots of the AUPR values (y-

axis) comparing six combinations of three inference algorithms (Relevance Networks,

RL; Context-Likelihood-Relatedness, CLR; and our Conditional-Mutual-Information-

Augmentation, CMIA) and two MI estimators (ML, fixed bin-based; KSG, kNN-based),

for five networks with 50 genes (Fig. 1-5A), five networks of 100 genes from DREAM3

(Fig. 1-5B), and five networks of 100 genes from DREAM4 (Fig. 1-5C). In all cases,

the kNN-based KSG as the MI estimator improves the performance of the inference

algorithms. The improvement is more significant for CMIA, which uses three-way MI

calculations, and corroborate the higher percent error we found when estimating TC

(Fig. 1-4B).

in-silico GRN Inference performance comparison

To verify whether the performance enhancement introduced by kNN-based MI estima-

tors is general for other GRN inference algorithms, we further extended our benchmark

to twenty-four different combinations of the four MI estimators (discrete bin-based ML
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Figure 1-5. AUPR values for different combinations of MI estimator (ML or KSG) and
GRN inference algorithm (RL, CLR or CMIA).
(A): Sorted boxplots showing networks of size 50 from DREAM3, (B): Networks of
size 100 from DREAM3, (C): Networks of size 100 from DREAM4. For the different

network sizes each boxplot represents 50 networks (5 different networks X 10
replicates).

and MM, and kNN-based KL, and KSG) with six inference algorithms described in

the Methods section (RL, CLR, ARACNE, SA-CLR, CMIA, CMI2rt) and compared

them to the field gold standard combination {ML, CLR} (Fig. 1-6).
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Figure 1-6. AUPR difference of combinations of MI estimators and inference algorithms
relative to the gold standard [ML,CLR].
(A): Sorted boxplots showing comparison for Network size of 50 from DREAM3, (B):

and size of 100 from DREAM3, (C): size of 100 from DREAM4. Each boxplot
represents 50 networks (5 different networks X 10 replicates). A complete list of

tested GRN inference algo & MI estimators can be found in Appendix Table II-1
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To compare the performance differences quantitatively, we calculated the change

in AUPR for each replicate relative to the field’s gold standard combination of CLR

inference algorithm with ML for MI calculations. In Fig. 1-6 we show the top nine

combinations, omitting ARACNE and CMI2rt among the inference algorithms, and

KL from the MI estimators because of their poor performance. We also omitted

SA-CLR due to its similarity to CLR and CMIA (see full data in Appendix Table

II-1). The combination of {KSG,CMIA} gave the best median score in the combined

networks inspected under each category. It showed a median improvement of 16%

and 24% for networks of 50 and 100 genes from DREAM3, respectively (Fig. 1-6A,

B), and 34% improvements for networks of 100 genes from DREAM4 (Fig. 1-6C).

Furthermore, replacing the MI estimator from ML to KSG in the case of the gold

standard {ML,CLR} can lead to significant improvement in GRN reconstruction

performance, with median increase in AUPR of 8-18%.

in-silico GRN Inference performance of different organisms

Next, we examined the performance of these different algorithms with regards to

different biological organisms, as E. coli and S. cerevisiaei have distinct distributions

of different network motifs (Fig. 1-7), which may lead to different performance in

network inference. For example, the fan-out motif, where one gene regulates two (or

more) target genes, is more abundant in E. coli, while the cascade motif, where a gene

regulates a second gene that in turn regulates a third gene, is more abundant in S.

cerevisiaei [7, 33]. In both cases, the three participating genes exhibit some degree of

correlation, yet not all are directly connected. The 10 networks from DREAM3 were

divided into four E. coli networks (Fig. 1-8A, C-F) and six S. cerevisiaei networks

(Fig. 1-8B, Appendix Fig. II-7).

For the combined E. coli networks (Fig. 1-8A), KSG greatly improved the perfor-

mance of both RL and CMIA algorithms but showed only a modest 6% improvement
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Figure 1-7. Common 3-node network motifs
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Figure 1-8. Performance comparison of GRN reconstruction for different in-silico networks
modeled from E. coli & Yeast.
x-axis shows different combinations of [MI estimator, inference algo], y-axis shows
percentage AUPR difference (increase or decrease) relative to the gold standard

combination [ML,CLR]. (A): Sorted boxplots of the combined four E. coli networks
from DREAM3. Each boxplot represents 40 networks (4 different networks X 10

replicates). (B) same as (A) but for the six Yeast networks. (C)-(F): Sorted boxplots
of the 4 different E. coli networks from DREAM3. Each boxplot represents 10

replicates. A complete list of tested MI estimators & GRN inference algo can be
found in Appendix Table II-2

in performance for CLR. For the combined E. coli networks, {KSG,CMIA} achieved

a median improvement of 20%, but was second best to {MM,CLR}, with a small
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0.2% difference. The performance comparison of the individual E. coli networks

(Fig. 1-8C-F) showed that {KSG,CMIA} was the best performer on three out of four

networks. Furthermore, replacing ML with KSG when combined with CLR improved

the performance by 10-15% except in the case of DREAM3 Ecoli2-Size100 (Fig. 1-

8F). In the S. cerevisiaei networks, again KSG improved all algorithms, and most

significantly CMIA, and showed a median improvement of 18%. Several replicates did

not show any performance improvement, indicating the significance of stochasticity

even though all kinetic parameters for each network were identical. In summary,

out of 24 combinations of MI estimators and inference algorithms, the combination

{KSG,CMIA} yielded the best median score in 13 out of the 15 networks inspected

(except networks DREAM3 Yeast1-Size50 & Ecoli2-Size100, Fig. 1-8C-F, Appendix

Fig. II-7 and II-8). Therefore, we conclude that using kNN-based KSG to calculate

MI improved the performances of the inference algorithms evaluated in most cases.

Computational cost

Computational cost is a major concern when applying kNN-based methods. We

measured the time required to calculate all the two- and three-way interactions in a

50 gene network (1125 pairs and 19600 triplets, respectively, after taking symmetry

into account) with different data size [100, 250, 500, 1000] for three MI estimation

methods: FB-ML, kNN-KL and kNN-KSG. The code for the three estimators was

written in Python 3.8, used built-in functions from Numpy v1.19 and Scipy v1.5, and

was run on a single core of a desktop [Intel Xeon E5-1620 @ 3.6 GHz]. As seen in Fig.

1-9 FB-ML was the fastest, as histogram-type calculations have been optimized in

Python over the years.

FB-ML was also insensitive to data size (in the tested range). While the python-

based KSG implementation was most computationally heavy, the time was tractable

(under 400 s even for the largest data size (1000) and 3d calculation). The speed
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Figure 1-9. Computation time vs. different data sizes for a network of 50 genes.
(A) The calculation is performed over 1125 pairs for data sizes of [100, 250, 500, 1000].
(B) The calculation is performed over 19600 triplets for data sizes as in the left panel

could be further boosted by rewriting the code in C/C++, similar to what was

done by Meyer et al. [29] and Sales et al. [25]. Furthermore, the KD-Tree class of

algorithms [34], which was in the main core of this work’s implementation, could

greatly benefit from multiple cores or parallel processing. After building the initial

tree, distance calculation between neighbors can proceed in parallel, offering 4-to-16

fold improvement in speed on a current personal computer, depending on the number

of available cores.

Discussion

To date, a plethora of discretization methods, MI estimators, and inference algorithms

exist in the literature to reconstruct GRNs. Some common methods are available

in the R/Bioconductor package Minet [29] and in Julia language [35]. In fact, as

different methods have certain advantages depending on the investigated scenario and

constraints, it is advantageous to consider and compare the performance of different

combinations of multiple methods [36].
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kNN-based MI estimator for data discretization/density esti-
mation outperforms fixed-bin-based estimations

Here, we demonstrate that the MI estimator KSG based on kNN yields smaller errors

compared to other MI estimation methods using discretized fixed bins in the case of a

bi- and tri-variate Gaussian distribution. KSG proves to be robust against different

data sizes and correlations as well as the k parameter used, unlike FB methods where

the parameter used (number of bins) has a large effect on accuracy of the MI estimator.

In principle, one can achieve smaller errors using MI based on discretized bins by

choosing a different bin number other than the rule of thumb
√

N , for correlations

smaller than 0.9. However, a priori one does not know the correlation strength. In

fact, estimating the correlation strength is what one tries to achieve when using

MI. We also note that the gene expression profiles of different synthetic networks

and real experimental systems could be better described by distributions other than

Gaussian. Fortunately, the analytical solution to the mutual information of a few of

these distributions can be calculated [37] and will be explored in future work.

Note that in this work we did not compare the performance of another frequently

used binning method, adaptive partitioning, which is computationally faster than

kNN for large data sets. In brief, adaptive partitioning is a general term referring to

three methods that divide the data uniformly between the bins. The first method is

equal frequency in which the bin size varies to allow for equal number of data points

in each bin. The second method is equiprobable partitioning [22], in which data is

ranked and partitioned in the middle, and Pearson chi-square test is used to determine

the number of sub-partitions, where the significance level of the chi-square test can

be tuned (1%-5%) according to the size of the data. This method works well for 1d

data, but it has some ambiguity when implemented in higher dimensions in that data

points must be ranked according to one of the axes (or more in >2d), and there are no

appropriate rules to rank multidimensional data points. The third method is Bayesian
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blocks [38], which uses a Bayesian statistics approach to attempt to find the optimal

number of bins and their sizes by maximizing a fitness function that depends on those

two parameters. While this is a seemingly promising approach, it is unclear how to

implement such a method beyond 1D. Because of these reasons, we did not include

this binning method in the comparison.

Another previously used method in the literature is KDE [15], but it is the

most computationally costly and requires large data sets. It approximates the data

distribution using a predefined known distribution (i.e., a Gaussian) with user-defined

smoothing parameters. This practice can be problematic because in most cases the

underlying data distribution is unknown, and experimental data is much sparser than

required to achieve results similar to other, simpler methods, such as FB.

kNN-based MI estimator KSG in combination with CMIA
achieves the highest accuracy but may subject to data stochas-
ticity

It is clear from Fig. 1-5 and 1-6 that the combination of kSG-based MI estimation

and inference algorithm CMIA achieved the highest precision and recall when recon-

structing an unknown network. Yet, this combination also showed a large variation

in the performance enhancement. As shown in Fig. 1-6,1-8A-B, we observed that

when KSG was combined with CLR or CMIA, a few replicates did not show any

performance improvement, or even had a decreased performance indicated by the

negative %∆AUPR value, as indicated by the outliers and bottom whisker of the

boxplot.

To investigate the source of this variation in the ensemble network plots we

inspected different combinations of MI estimators, inference algorithms, data size used,

and individual networks (Fig. 1-8C-F, Appendix Fig. II-7). We found that higher k

values (up to k – 15) did not affect the variability in the AUPR results (Fig. 1-10).
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However, MI calculation done by KSG exhibited large variations in performance when

smaller data size was used as that in the case of 50 gene networks. For example, in Fig.

1-8C,E, KSG showed a performance enhancement in the range of ∼25-35% for the three

different inference algorithms, but the variability was reduced by half when ML instead

of KSG was used. This was also shown in the large variance calculated for KSG for a

Gaussian distribution (Appendix Fig. II-1D, left column). This observation indicates

that KSG is more sensitive to stochasticity (intrinsic noise) when data size is smaller

than a few hundred points. Our choice of algorithm KSG-1 over KSG-2 (see Materials

and Methods) was intended to keep a low statistical error and thus, low variability.

However, using total correlation and two-way mutual information to calculate other

measures, such as interaction information (Table 1-1), can lead to higher errors as

the systematic errors might not cancel out as we have demonstrated in this work.

Additionally, when using KSG, we set negative values of total correlation and two-way

mutual information to zero (due to statistical fluctuations at low correlation values)

prior to calculating the other 3d MI quantities. This practice does not change the

results for pairs or triplets with highly positive MI values, but in some cases could

lead to increased errors as gene pairs with low MI would be ranked differently.

We note that two networks (DREAM3 Yeast1-Size50 & E. coli2-Size100) out

of the 15 networks investigated showed no performance enhancement when using

{KSG, CMIA} compared to the Gold Standard {ML, CLR} (Fig. 1-8F, Appendix Fig.

II-7). It is unclear why the performance did not improve in these two cases based on

the largely similar statistics of different motifs of the ten networks from DREAM3

(Appendix Table II-3). It could be due to a specific sub-structure of this network, but

further analysis is needed.

Another important result we observed (Fig. 1-6, 1-8) is that the combination

{MM,CLR} achieved higher AUPR for all replicates over {ML,CLR}. This is probably

due to the size of the data used, as MM was developed to correct the bias in MI
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Figure 1-10. Area Under Precision-Recall curve (AUPR) vs. different number of bins or
k-neighbors.
For the five 50 gene networks from DREAM3, with 10 replicates each, we calculated
the AUPR for two inference algorithm and MI estimator {CLR,ML} with blue dots
and {CMIA,KSG} with purple dots for different number of bins for ML, and different
number of k-neighbors for KSG. The black dashed vertical line represents k=3 and

the solid black line represents #bins = floor(sqrt(data_pts)).

estimation for small data sets. We thus suggest using this combination as the new

gold standard of the field when working with similar data sizes and when fixed-binning

for data discretization is preferred.
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Chapter 2

Classifying three-node network
motifs of Transcription Factor
(TF)-based regulation

Introduction

In addition to the canonical regulation based on transcription factors (TFs) [1], in

recent decades, researchers hypothesize that there is a global gene regulatory network

based on supercoiling (SC) [39]. To decouple the two types of regulation, we need

to investigate whether they give rise to distinguishable “signatures” in the gene

expression profiles of the regulated genes. The complex nature of gene regulation

shown in nature [40] and our in-silco SC based transcription model [41, 42] requires

a non-linear and high dimensional statistical toolset. Therefore, we expect that by

analyzing the two- and three-way mutual information (MI), an advance dependency

metric, between triplets of genes with an exhaustive simulation benchmark using

in-silico models, we can find the similarities and differences between the two types

of regulation, which may allow us to ultimately construct a topologically regulated

gene network for E. coli. There are multiple methods to estimate two- and three-way

MI (where three-way MI refers to Total Correlation (TC), Three-Way MI (MI3),

Interaction Information (II), and Conditional MI (CMI)) for continuous variables

(i.e. normalized gene expression) [43]. Following an extensive benchmark on two-
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and three-dimensional MI estimators (as described in chapter 1), we have selected

the k-Nearest-Neighbor (MI-KNN) developed by Kraskov-Stoögbauer-Grassberger

(KSG) [23] to conduct the investigation based on its high accuracy and unsupervised

robustness to correlation value and sample size. In this chapter, we are going to take a

systems biology approach using network motifs [33], to qualitatively and quantitatively

investigate various realizations of TF based regulation, with the final goal of correctly

classifying different network motifs based on their gene expression profiles.

Materials and Methods

Datasets

In this study, we have used four datasets, three in-silico, and one real experimental

dataset for E. coli.

Simulating gene expression data for three-node network motifs

Here we generated 100 replicates of simulated gene expression data for 56 three-

components motifs with repressing and inducing interactions (see Table 2-1).

For each network motif:

1. Write network topology file (TSV) with 10 genes containing a single motif.

2. Generate new kinetic model in GeneNetWeaver (GNW) [28] for each replicate –

this draws new propensities to the mRNA and protein production equations:

F RNA
i (x, y) = dxi

dt
= mi · fi(y) − λRNA

i · xi (2.1)

F P rot
i (x, y) = dyi

dt
= ri · xi − λP rot

i · yi (2.2)

Where mi = maximum transcription rate, ri = translation rate, λi = mRNA

and protein degradation rate, x and y = mRNA and protein concentration. fi(y)

= activation function of gene i.
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Figure 2-1. Illustration of common network motifs and topology used in GNW
(A) Six common network motifs, from top-left (clowckwise): No-interaction,

Two-genes, Fan-out, Feedforward loop (FFL), Cascade, Fan-in, (B) Network topology
example used in GNW, where the arrowheads represents the direction of regulation.

Blue and red color represents inducing or repressing regulation, respectively.

3. Use perturbation file (same file for all motifs and replicates) – random.uniform(-

1,1) => this specify the amount by which the basal transcription rate is perturbed

for every gene => 1000 different perturbations

4. Generate datasets based on stochastic differential equation (SDE) for steady-state

(S.S.) levels of multifactorial perturbations of the network.

DREAM 3 & 4 challenge datasets

The generated networks in the Dialogue for Reverse Engineering Assessments and

Methods (DREAM) challenge are inspired by real network structures discovered in E.

coli and S. cerevisiae [32] and are widely used for benchmarking inference methods.

We used 10 in-silico networks of size 50 and 100 from the DREAM-3 benchmark, where

networks do not include self-interaction, bidirectional interaction between genes (only

single edge) and feedback loops. And 5 networks of 100 genes from DREAM-4, where

cycles and two-way interactions are allowed. We used the software GeneNetWeaver

v3.1.2b [28] with default settings to simulate 10 replicates of each network steady-state

gene expression data (wild-type, knockouts, knockdowns, multifactorial perturbations)

based on SDE. From those networks we extracted most three-node motifs based on
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Table 2-1. Simulated Motifs

Motif name Interactions Sign Inducing (I), Tot. motifs Simulated
(edges) motifs Repressing (R) wPermute

No Interaction 0 1 - 1 1
Two genes 1 2 I,R 12 2
Two genes 2 3 II,IR,RR 12 5
Fan-out 2 3 II,IR,RR 12 5
Fan-in 2 3 II,IR,RR 12 7
Cascade 2 4 II,IR,RI,RR 24 9
Coherent 3 4 III,IRR 24 9
feedforward loop RIR,RRI
Incoherent 3 4 IIR,IRI, 24 4
feedforward loop RII,RRR
Feedback loop 3 4 III,RRR,IIR,RRI 16 2
. . . . . . . . . . . . . . .
Motif13 6 16 Partial list: 64 8

IIIRII, IIIRRR,
IIRIII, IIRIRR,
RRIRII, RRIRRR,
RRRIII,RRRIRR

Co-reg* 0 11 II,IR,RR,III,IRR,RIR, 60 4
RRI,IIR,IRI,RII,RRR

the true structure and removed triplets that are participating in two or more motifs

simultaneously, which bias the expression profiles and potentially makes machine

learning models training on the data less accurate.

Escherichia Coli experimental data

We use the publicly available compendium of E. coli genomic steady-state expression

data (http://m3d.mssm.edu/) containing 907 experimental conditions for 4297 genes,

collected from multiple labs [44]. To evaluate the prediction of our method, we have

extracted three-node motifs from the 3969 strongly evident regulatory interactions

(after removing self-interaction) between 206 transcription factor (TF) and among

1642 genes, documented in RegulonDB v10.9 [45]. Furthermore, we removed triplets

where a target gene was co-regulated by a source outside the triplet (a fourth gene) and

added motifs with permutated axis (to increase sample size for low occuring motifs).
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We finally obtained {18,29} samples for Cascade motifs, {25,69} for FFL, 220 for

Fan-in, 7565 for Fan-out, and sampled 5000 for Two-genes and 100k for No-Interaction

motif.

Calculating mutual information and Z-score

We calculated all 2d and 3d mutual information quantities (MI, TC, II, MI3, CMI)

using KSG with k=3 (as described in chapter 1). As KSG calculates two-way MI

and TC directly, we use these quantities to calculate II, MI3, and CMI (Table 1-1).

A small caveat to using kNN based MI is that we can get small negative values due

to statistical fluctuations when there is no (or very low) correlation between genes.

We set negative MI and TC values to zero (by definition they are positive) prior to

calculating II, MI3, and CMI, and afterwards set negative values to zero for MI3 and

CMI if any exist. We calculate Z-score for each quantity following the implementation

in Minet [29]

ZscoreX = max

(︄
0,

MI(X; Y ) − Mean(MIX)
STD(MIX)

)︄
(2.3)

ZscoreXY =
√︂

(ZscoreX)2 + (ZscoreY )2 (2.4)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [46] is a dimensionality reduction method, by

which we transform our data to a new coordinate system which emphasizes variance

between variables (dimensions). Where the first principal component contains the

most variance the second contains variance not captured by the first component and

so on. The new components are orthogonal to each other and thus are uncorrelated.

This allows us to accomplish few objectives:

1. Visualizing high-dimensional space by using only 2-3 principal components

dimensions to recognize clusters or patterns by the naked eye.
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2. Classification (inference) – We can use the new principal components as input

to a clustering algorithm, i.e. K-means which can assists in classification.

3. Data compression - as some variables are almost completely redundant, we

can rank the new principal coordinates according to their contribution to the

variance and omit the ones that contribute the least according to our accuracy

requirements.

We use PCA, clustering and scaling functions in python from scikit-learn v0.24.1 [47].

Clustering algorithm

K-means [48] is an unsupervised clustering algorithm that gets the number of clusters

as input (in our case, the number of network motifs investigated that we want to

classify) and tries to separate the data to K groups of equal variance. It starts by

choosing K random data points, named “centroids” and calculate the distance (some

metric) from each point to each centroid. Next, it calculate the mean (position) for

each cluster based on the points that are closest to that centroid and update the

centroid position according to the newly calculated mean. It repeats this process

iteratively until there are no more updates to the clusters centers (or a small number

below a threshold) and within-cluster sum-of-squares is minimized. We use 10 random

initializations to avoid converging to a local minimum.

within-cluster sum-of-squares =
n∑︂

i=0
min
µj∈C

(||xi − µj||2) (2.5)

Machine Learning models

Conventional machine learning methods for inferring gene regulatory networks, that use

only gene expression data as input, usually split the problem into multiple regression

analysis problems. In this way, for a network of N genes, for each gene j, in the

network, we consider it as a target and all other N − 1 genes as sources which
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determine its expression profile by some unknown function f(x1, .., xj−1, xj+1, .., xN).

Each individual problem than become an optimization for some merit (loss/gain)

function. Furthermore, this allows us to estimate the relationship between each source,

i, and the target gene j, with some weight, wij. The algorithm then try to rank

the weights for each target gene, and combine the ranking from the N regression

problems to generate a global ranking for the interactions between genes [49]. We

compare the classification performance using four commonly used Machine Learning

(ML) algorithms: Support Vector Machine (SVM) [50], Multilayer Perceptron (MLP,

also known as, artificial neural network) [51], Random Forest (RF) [52], and Gradient

Boosted Trees (GBT) [53, 54]. We use machine learning functions in python from

scikit-learn v0.24.1 [47] and scan a subset of available parameters for each method

(Table 2-2) to find the best model in each machine learning type under our training

data (60% of samples). As this significantly reduces our training data, we use 5-fold

cross-validation on our training data, meaning we split the training data by 5 and

train the model on 4/5 of it, saving the last 1/5 to test the model. We then repeat

this process 4 more times and average the precision and recall results (see definitions

below). We choose the best model from each machine learning family and proceed to

the evaluation step. We use our evaluation data (20% of samples) to choose a single

model out of the 4 family types. Finally, we use the remaining 20% testing data to

confirm that our best model is indeed performing similarly to what we got on the

training and evaluation data.

Performance evaluation

To evaluate the performance of the various machine learning models investigated, we

use the known (true) network motif and count the number of true and false positives

(TP and FP respectively) predictions as well as false negative (FN). This allowed us

to calculate for each model the precision and recall for each individual motif and the
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Table 2-2. Machine Learning models and parameters

Model Parameter Range Description
SVM Kernel linear, rbf Used for decision func.
SVM C 0.1, 1, 10 Inverse regularization parameter.

Simplicity and overfitting trade-off
MLP Hidden layer size 10, 50, 100 Neurons in the hidden layer
MLP Activation relu, tanh, logistic Function for the hidden layer
MLP Learning rate constant, adaptive, Schedule for weight updates.

invscaling
RF # estimators 5, 50, 250 Number of trees in the forest
RF Max depth 2, 4, 8, 16, 32, Tree size (# of splits). None = tree

None grows until split criteria reached
GBT # estimators 5, 50, 250, 500 Boosting stages to perform
GBT Max depth 1, 3, 5, 7, 9 Max depth limits the number

of nodes in the tree.
GBT Learning rate 0.01, 0.1, 1, Learning rate shrinks the

10, 100 contribution of each tree

total accuracy:

Precision(motif) = TP (motif)
TP (motif) + FP (motif) (2.6)

Recall(motif) = TP (motif)
TP (motif) + FN(motif) (2.7)

Accuracy = 1
N

N∑︂
i=1

⎧⎨⎩1, if prediction is true
0, if prediction is false

(2.8)

Where N is the total number of samples.

Results

Using unique Mutual Information profiles to identify network
topologies

Simulated Two-genes motifs

We first examined the MI values of 100 replicates of seven two-genes motifs using

a boxplot (Fig. 2-2). Where the x-axis represents each of the 2d and 3d mutual
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information quantities (11 in total, see Table 1-1) and the y-axis is the MI value in

units of nats. Each subplot shows the “MI profile” of a different motif (where we use

the name convention, {motif name}-{direction}_{inducing/repressing edges}). It is

clear from the MI values (y-axis) that we can distinguish which pair is interacting

(XY , XZ or Y Z), but as two-way MI is symmetric (MI(X; Y ) = MI(Y ; X)), we can

not tell the direction of interaction (X− > Y or Y − > X). Another observation is

that positive interaction (the two edges are either all inducing or repressing) between

two nodes gives a higher median value than one edge. Next, we looked at inducing (I)

versus repressing (R) regulation (Fig. 2-2). In principle, due to the positive nature of

all 2d and 3d MI quantities, except for Interaction Information (II), it is not possible

to differentiate between inducing and repressing interaction, unlike correlation. It is

interesting to observe that negative feedback (inducing + repressing interaction) gives

the lowest median MI value among the two-genes-two-edges motifs and closer to single

edge interaction.
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Figure 2-2. Mutual Information profiles for Two-genes motifs
Each subplot (boxplot) represents a unique nework motif. We show 7 Two-genes

motifs and the No-interaction motif, where, the x-axis shows all the 2d and 3d MI
measures (11 in total), y-axis is the MI value in nats (information bits in e base).

Following the increased accuracy obtained by CLR [13] method in inferring gene

regulatory networks by using Z-score statistics compared to other methods relying
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solely on MI values, we applied this methodology (see Materials and Methods) and

plot the Z-score profiles (SI-Fig. III-1). Except for the unique pattern of the profiles,

for the Two-genes motifs this does not give us any additional information compared

to the MI profiles based on MI values.

Simulated Three-genes motifs

There are 729 three-genes motifs (also includes two-genes motifs) if we account for

inducing, repressing or no interaction among the genes and all possible permutations

of X,Y & Z [55]. We chose to investigate a subset (Table 2-1) and present in Fig.

2-3 the MI profiles of all three-genes with two edges (omitting two-genes motifs

shown previously) and only inducing interaction (for those motifs, repressing or mixed

interactions effect MI values globally and does not alter the relationship between

quantities, see SI-Fig. III-2).
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Figure 2-3. Mutual Information profiles for two-edge motifs
Each subplot (boxplot) represents a unique nework motif. We show 12 motifs with
two-edges, namely, Fan-in, Fan-out and Cascade, where, the x-axis shows all the 2d
and 3d MI measures (11 in total), y-axis is the MI value in nats (information bits in e

base).

It is clear from the MI profiles that all 12 motifs investigated can be distinguished

from one another, including the direction of regulation (which genes are the source

(regulator) and target (regulated)). A few notable examples are: (i) Fan-out-SX
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versus Fan-in-SYZ, where we have the same edges (XY and XZ), but, while for Fan-

out we measure two-way MI between the targets as both are control by the same source,

for Fan-in, there is no two-way MI between the sources. This also leads to redundant

II (II < 0) for Fan-out and synergistic II (II > 0) for Fan-in. Where synergy is the

information gain when considering the effect of a third variable (gene) on the shared

information between two variables v.s. the shared information between two variables

without considering the third variable (see Appendix I). (ii) Cascade-SXY versus

Cascade-SXZ, can be distinguished thanks to Data Processing Inequality (DPI) [14].

In the Cascade-SXY motif, DPI states that if X and Z are connected directly through

an intermediate gene Y , then MI(X; Z) < min[MI(X; Y ), MI(Y ; Z)] as for a linear

network structure, information can only decrease when passed through multiple nodes

(genes).

For motifs with three edges, we found that each feedforward-loop (FFL) motif has a

similar Cascade motif but with opposite direction for the leading interaction (Fig. 2-4)

(here we consider only inducing interactions for FFL). The only meaningful difference,

although small is in conditional MI (CMI) for the indirect interaction in the Cascade

motif (Z-score ∼ 0) versus the long interaction in the FFL motif (Z − score < 1) (see

Z-score profiles for all simulated motifs in Appendix III-3). CMI(Z; X|Y ) means

that given that we know variable Y , what is the two-way MI between Z & X? In the

Cascade-SXY case, if we know Y , there is no information to be gained by measuring

MI(X; Z), and so CMI ∼ 0, while for FFL-SXY, CMI > 0, as knowing Y doesn’t

incorporate the information in the direct interaction X − Z.

Another issue with three-edge motifs is that unlike 1-2 edge motifs, FFL’s MI

profiles depends on the nature of interaction (repressing or inducing) (Fig. 2-5).

Furthermore, we can not distinguish between a coherent FFL (where both long and

short regulation path have the same sign) and incoherent FFL (where the long and

short regulation path have opposite signs) and thus only the direction of the 2nd and
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Figure 2-4. Mutual Information profiles of Cascade vs FFL motifs
Each subplot (boxplot) represents a unique nework motif. We show 6 Cascade motifs
(top row) with their equivalent FFL motifs (bottom row), where, the x-axis shows all
the 2d and 3d MI measures (11 in total), y-axis is the MI value in nats (information

bits in e base).

3rd interactions is certain, allowing us to distinguish between three pairs of motifs

{{S-XY,S-YX},{S-XZ,S-ZX},{S-YZ,S-ZY}, where we use the name convension S-{first

source}{second source}}.

Finally, we investigated the MI profiles of two feedback loops (all inducing or

repressing) Fig. 2-6, as well as eight realizations of Motif13 [33] which has 6 edges.

Loop_III has a unique MI profile where II is highly redundant and all CMI are

close to zero, but Loop_RRR, shows significant CMI and almost no redundancy.

Intuitively, in the positive loop, looking at a single pair is enough to know the behavior

of the other pairs but for the negative loop as shown by Elowitz et. al. [56], you need

another gene to explain the oscillatory behavior. Motif13 poses similar complexity

as FFL with different combinations of inducing/repressing interactions, as discussed

above, and is beyond the scope of this semi-quantitative methodology.
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Figure 2-5. Mutual Information profiles of FFL coherent vs incoherent motifs
Each subplot (boxplot) represents a unique nework motif, for FFL-SXY with different

inducing (I) and repressing (R) interactions. Top row are 4 coherent FFL, and
bottom row are 4 incoherent FFL, where, the x-axis shows all the 2d and 3d MI
measures (11 in total), y-axis is the MI value in nats (information bits in e base).
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Figure 2-6. Mutual Information profiles of Loop and Motif13
Each subplot (boxplot) represents a unique nework motif. We show 2 feedback loop

motifs and 8 Motif13 (6 edges), where, the x-axis shows all the 2d and 3d MI
measures (11 in total), y-axis is the MI value in nats (information bits in e base).

Results of simulated motifs vs. motifs extracted from DREAM3-
4 networks

Next, we explored the MI profiles of various motifs extracted from 15 in-silico networks

of size 50 and 100, used in the DREAM-3 & 4 benchmarks. In Fig. 2-7 we show the
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mean MI values of the following DREAM-3 motifs: No-Interaction, two-genes, Fan-in,

Fan-out, Cascade and FFL. In general, the MI values are ∼ ×4 smaller than the

simulated motif examples, giving noisier MI profiles which reduces the signal-to-noise

ratio. This makes it more difficult to divide each MI value into separable discrete

levels as can be done in the simulated motifs examples. It is interesting to see how

the profiles for Cascade has changed compared to our simulated motif toy-model.

Now, the highest mean MI value is measured between the second direct interaction

instead of the first direct interaction, as was seen in the previous section. FFL has

also changed significantly in its MI profile, making the interaction from first source

to second the strongest, and from first source to target (short regulation path) the

weakest. This makes it almost impossible to determine the direction of regulation in

Cascade and FFL motifs by solely inspecting thier mean MI profiles.

For completeness, we added two- and three co-regulated motifs (XY ,XZ,Y Z,XY Z),

which means that a fourth gene regulates two or three genes but it (the source) is

not included in the MI triplet calculation. This gives rise to MI between the genes

in a way similar to the MI measured between two-genes (co-reg-XY / XZ / Y Z) or

targets of a Fan-out motif (co-reg-XY Z), as can be seen in Fig. 2-7.

In Fig. 2-8 we show DREAM-4 extracted motifs. For this dataset we are missing

3 Cascade and 3 FFL motifs, as we discarded samples where a fourth gene regulated

a member of the triplet extracted). As seen in the DREAM-3 dataset the MI values

are smaller and noisier compared to our simulated motif dataset.

As distinguishing the motifs became more difficult, in the next section we examined

whether a method like PCA can assist by emphasizing variance between samples and

reducing the dimensionality of this high dimensional space (22 variables if we include

both MI values and their Z-scores).
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Figure 2-7. Mutual Information profiles of DREAM3 motifs
Each subplot represents a unique nework motif. We show 26 motifs extracted from 10
DREAM-3 networks of 50 and 100 genes, where, the x-axis shows all the 2d and 3d
MI measures (11 in total), y-axis is the mean MI value in nats (information bits in e

base).

Using dimensionality reduction by Principal Components Anal-
ysis (PCA) to classify different three-node network motifs

PCA for simulated 3-node motifs

After we calculated all the two- and three-way MI measures (22 quantities in total, with

their Z-score counterparts Fig. 2-3,2-4,III-3) we use Principal Component Analysis

(PCA) [46] to reduce this high dimensional space to only 3-5 dimensions that capture

together ∼ 85 − 99.5% of the variance in the original data (Fig. 2-9B). With fewer

dimension we can now plot the different principal components against each other

and investigate whether we could distinguish qualitatively between different network

motifs, such as 3 Fan-in vs. 3 Fan-out (Fig. 2-9A). By inspecting the two subplots
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Figure 2-8. Mutual Information profiles of DREAM4 motifs
Each subplot represents a unique nework motif. We show 20 motifs extracted from 5

DREAM-4 networks of 100 genes, where, the x-axis shows all the 2d and 3d MI
measures (11 in total), y-axis is the mean MI value in nats (information bits in e base).

PC-1 vs PC-2 and PC-2 vs. PC-3, we can easily cluster by the naked eye the 6 motifs.

To translate the qualitative clustering visualized when using PCA to a prediction

tool for classifying motifs for new data, we need to combine PCA with a clustering

algorithm such as K-means (see Materials and Methods). We applied K-means to the

6 motifs (3xFan-in + 3xFan-out) and used k=6 and the first 4 principal components

(PC-1,PC-2,PC-3,PC-4) as input data. K-means determined the location of the 6

centroids (big black circles in Fig. 2-9A overlaying the data points). We then assigned

the corect label (motif) to each centroid (as this is an unsupervised method) and

tested the cluster prediction for each data point to calculate the accuracy. We used

the same data to “train” the K-means algorithm and test the predictions, and got an

overall accuracy of 0.612.
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Figure 2-9. Principal Component Analysis and K-means clustering for Fan-in/out motifs
(A) 2D plots of different principal components vs. each other for 6 network motifs

(small colored markers), and the centroid location of 6 clusters (black markers)
calculated by K-means, (B) PCA analysis showing that 4 principal components

capture close to 99% of the variability in the data. y-axis is the percentage of variance
explained by a principal component, x-axis is the six components used in the analysis.

We have repeated the same PCA and K-mena methodology with the 6 Cascade

motifs (Fig. 2-10), but it was significantly harder to manualy assign the correct motif

label to each cluster (big black circles in Fig. 2-10A), and the accuracy achieved was
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only 0.465. K-means is known to work poorly on elongated or irregular shape data,

and as data becomes more interwound the clusttering accuracy decreases.
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Figure 2-10. Principal Component Analysis and K-means clustering for Cascade motifs
(A) 2D plots of different principal components vs. each other for 6 network motifs

(small colored markers), and the centroid location of 6 clusters (black markers)
calculated by K-means, (B) PCA analysis showing that 4 principal components

capture close to 96% of the variability in the data. y-axis is the percentage of variance
explained by a principal component, x-axis is the six components used in the analysis.

Furthermore, adding motifs beyond 6 makes it impractical to visually assign most
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motifs to their corresponding centroids (Fig. 2-11). This led us to try a supervised

machine learning approach to classify the various network motifs.
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Figure 2-11. Principal Component Analysis and K-means clustering for 16 motifs
(A) 2D plots of different principal components vs. each other for 16 network motifs

(small colored markers), and the centroid location of 16 clusters (black markers)
calculated by K-means, (B) PCA analysis showing that 4 principal components

capture close to 98% of the variability in the data. y-axis is the percentage of variance
explained by a principal component, x-axis is the six components used in the analysis.

42



Network motif classification by Machine Learning (ML) algo-
rithms

We compared the performance of four types of machine learning algorithms, namely,

SVM, MLP, RF and GBT, under various network motif subsets (No-Interaction,

3xTwo-genes, 3xFan-in, 3x-Fan-out, 3-6xCascade, 3-6xFFL) with different training

data size (15,30,60 samples for each motif) for the three datasets (Simulated 3-node

motifs, extracted motifs from DREAM-3 & 4). For each algorithm we performed

parameter scan and cross-validation (see Materials and Methods) on the training

data and picked the best model (algorithm with specific parameter). For our current

purpose, the details of specific parameters are less important, and we only focus on

the parameter set that yields the highest accuracy, but one might prefer a different

parameter set that emphasizes i.e. model simplicity against overfitting or shallower

layers or steps for faster computation. We then compared the accuracy of the 4 top

models (one for each algorithm type) on the evaluation data and finally on the testing

data. We summarize our findings in Table 2-3, where we recorded the accuracy of

the best model. A representative example of the evaluation comparison together

with precision and recall values for each motif can be found in the supplementary

information section.

It is clear from the table, that the tree-based method GBT outperforms the other

methods 2/3 of the times. Its main disadvantage is its significantly slower training, as

it learns sequential (hours vs. seconds or minutes for the other models). Overall, the

accuracy of predictions is very high (∼ 89 − 98%) for a relatively small training set

and 16 labels, except for the DREAM-3 dataset, where we only got ∼ 60% accuracy.

For our 3-node simulated motifs we had 100 replicates for each motif, but in the case

of DREAM-3/4 in-silico networks, some motifs were missing or had relatively small

number (30-50). As we sampled at least 100 realizations from each motif, this might

introduce a bias. Yet, it is unclear why models that trained on DREAM-3 preformed

43



Table 2-3. Machine Learning classification accuracy on in-silico data

Train simulated DREAM3 DREAM4
Motifs samples 3 node data extracted extracted
16 (No FFL) 15 SVM & MLP: GBT: GBT:

Accu.=0.912 Accu.=0.6 Accuracy=0.912
*missing 3 cascades

16 (No FFL) 30 SVM & MLP: GBT: GBT:
Accu.=0.925 Accu.=0.59 Accuracy=0.906

*missing 3 cascades
16 (No FFL) 60 MLP GBT: GBT & RF:

Accu.=0.903 Accu.=0.594 Accuracy=0.894
*missing 3 cascades

DREAM4 extracted 15 RF: GBT: GBT:
(16 with 3xCascade Accu.=0.8 Accu.=0.602 Accuracy=0.911
and 3xFFL)
DREAM4 extracted 30 RF: GBT: GBT:
(16 with 3xCascade Accu.=0.975 Accu.=0.609 Accuracy=0.912
and 3xFFL)

poorly compared to the same models that trained on DREAM-4 data, as both were

simulated with the same software using default settings and have similar network

characteristics (Appendix Table II-3). Further analysis will be needed to reconcile

this discrepancy.

Next, we repeated the same methodology, but this time used only the first 5

principal components (which explains ∼99% of the variance in the data) as input to

the models instead of the 22 variables used previously. Interestingly all the models

preformed significantly poorer compared to the untransformed data (Table 2-4), with

reduction of ∼ 25 − 30% in accuracy.

We have also tried to normalize the principal components data between [0,1], but

got similar results to the unnormalized data.
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Table 2-4. Machine Learning classification accuracy on PCA data

Train simulated
Motifs samples 3 node data
DREAM4 extracted (16, no Co-reg) 15 SVM: Accuracy=0.612
DREAM4 extracted (16, no Co-reg) 30 GBT: Accuracy=0.681

Identify network motifs on Escherichia Coli expression data

To test our classification method on real experimental data, we have run our algorithm

on a publicly available compendium of E. coli genomic expression data at steady-state

[44] (see Materials & Methods). In Figure 2-12, we show mean Mi profiles (among 200

samples) of the various 3-node motifs extracted from E. coli. Qualitatively, there is

larger background noise indicated by non-zero MI measure between pairs that are not

correlated, i.e. the two source genes of a Fan-in motif, or two-genes pairs that are not

directly connected. This makes the task of distinguishing the various motifs based on

their MI profile more difficult and will probably lead to lower accuracy using machine

learning classification models (see below). We did not perform any data curation other

than choosing target genes that are not regulated by more than one motif based on

documented interaction in RegulonDB [45].

Next, we randomly sampled the motifs (50 samples per motif) and further split

samples into 30-10-10 for machine learning models training, evaluation and testing,

respectively. In Table 2-5 we summarize the precision per motif and overall accuracy

results for the testing data (160 samples that the model did not see before).

Where the parameters for each best model for each trained dataset are:

• E. coli - ’GBT’: (max_depth=5, n_estimators=250)

• Simulated 3-node: ’RF’: (max_depth=32, n_estimators=50)

• DREAM4 - ’GBT’:(max_depth=7, n_estimators=500)
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Figure 2-12. Mutual Information profiles of E. coli motifs
Each subplot represents a unique nework motif. We show 22 motifs extracted from E.
coli based on RegulonDB documented strong interactions, where, the x-axis shows all

the 2d and 3d MI measures (11 in total), y-axis is the mean MI value in nats
(information bits in e base).

Table 2-5. Machine Learning precision and accuracy for different network motifs

E. coli E. coli simulated
Dataset without Z-score with Z-score 3 node DREAM4
Best model GBT GBT RF GBT
3x Cascade 0.943-1 1 1 0.935-1
3x FFL 0.886-0.949 0.868-0.974 0.75-1 0.946-0.981
3x Fan-in 0.643-0.676 0.784-0.929 0.889-1 0.981-1
3x Fan-out 0.128-0.333 0.192-0.395 1 0.75-0.967
1x NoInteraction - 0.16 0.833 0.673
3x Two-genes 0.139-0.184 0.122-0.297 1 0.774-0.9
Overall accuracy 0.577 0.631 0.975 0.912

Although the overall accuracy of classification in E. coli is significantly smaller than

in the simulated 3-node or the DREAM-4 extracted motifs (0.631 v.s. 0.975 or 0.912,
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respectively), there is a large variation in the classification precision of individual

motifs. While Cascade, FFL and Fan-in show precision of ∼80-100%, which is in

accordance with the precision obtained from in-silico data. Fan-out, No-interaction,

and Two-genes motifs show precision of ∼10-40%, considerably lower than ∼70-100%

achieved with in-silico data. There could be a number of factors which contribute to

this low precision. Qualitatively, this can be visualized by the mean MI profiles for

individual motifs of the three datasets. For example, one factor could be experimental

noise, as the two-genes motif in in-silico data (Fig. 2-2) shows close to zero MI levels

for pairs that are not directly interacting (although we add experimental noise to the

simulations), while in the real E. coli data (Fig. 2-12), there is a high background

level and relatively small difference in MI between interacting and non-interacting

genes (small signal-to-noise ratio). Another possible explanation is that the true

network structure of E. coli is unknown, and our current view of existing interactions

is certainly smaller than reality. We do not know for certain whether an extracted

motif is “pure” or one of its component genes is being regulated by a source outside

the triplet (a fourth gene). If this additional regulation is strong, it will bias the MI

profile, making it more difficult to identify the correct motif.

Next, we checked whether using our models (SVM,MLP,RF,GBT) trained on

DREAM-4 extracted motifs will improve the precision of classifying network motifs

in real E. coli experimental data. To our surprise, all the models performed poorly,

achieving accuracy in the range 0.044-0.078 on the same testing data used to test the

models trained on real E. coli. data.

Discussion

In general, majority of GRN inference algorithms do not focus on identifying small

network motifs to build the global network from them, but rather rank pairwise

interactions according to a single MI quantity (or statistics measure) with an arbitrary
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threshold. This practice is known to suffer from systematic errors when reconstructing

network motifs with steady-state gene expression data only [7].

Simulated motifs vs. motifs extracted from DREAM3-4 net-
works

As shown in Fig. 2-3,2-7,2-8, and Table 2-3 our MI profile method qualitatively enables

classification of several 3-node motifs, but there are a few differences between the

input data used in the simulated three-node motifs and the ones extracted from the

15 DREAM-3 & 4 networks, summarized in Table 2-6.

Table 2-6. Characteristics of in-silico input data

Simulated Motifs extracted from
3 node motifs DREAM networks

Network size 10 50-100
Replicates 100 10
Input data size 1000 169-401
(conditions)
Steady-state- Multifactorial wildtype, knockout, dual-knockouts,
expression data type perturbations knockdown, multifactorial
Multifactorial- Uniform[-1,1] Gaussian[mean=0,std.=0.25]
perturbation distribution

Saturation of accuracy

For our 3-node simulated motifs we used 1000 perturbations for the gene expression

data, as this is in the ballpark of publicly available E. coli data [44]. Yet, it is worth

testing whether the accuracy saturates with a smaller data size, which will make our

method more applicable to other organisms with less available data. Future work can

calculate MI with 100, 250, 500 and 1000 perturbation respectively, and follow the

pipeline outlined in this work.
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Using more types of expression data

For our 3-node simulated motifs we only used multifactorial perturbation S.S. data in

our study, omitting knockouts, knockdowns and time-series (T.S.), but this needs to

be further explored as using more data types should improve the accuracy [28].

Z-score statistics

There are two ways to calculate Z-score, the standard score method,

ZscoreX =
(︄

MI(X; Y ) − Mean(MIX)
STD(MIX)

)︄
(2.9)

and the method implemented in Mrnet [29] and in Chapter 1,

ZscoreX = max

(︄
0,

MI(X; Y ) − Mean(MIX)
STD(MIX)

)︄
(2.10)

We don’t use the Z-score calculation directly, but rather through the likelihood estimate

used by Faith et al. [13] (see Materials & Methods). For MI values larger than the

mean the two methods give identical results, but Meyer et al. [29] method suppress

the Z-score contribution from MI values smaller than the mean as it set them to

zero. This gives slightly better overall results when reconstructing large GRN using

Z-scores for positive MI values, as in CLR [13] and our method depicted in Chapter 1.

Unfortunately, Interaction-Information can have both positive (synergy) or negative

(redundancy) values, and using the later method results in bias when calculating Z-

score for it. This means that motifs that have highly redundant interactions (II < 0)

will show non-significant Z-score value for II. We need more analysis to determine

the full extent of this bias on downstream processes.

Dimensionality reduction

Our PCA analysis shows that ∼98% of the variance in the data can be captured by 4

principal components or ∼99.5% with 5 components out of the 22 features (variables).
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This shows high redundancy, and probably many variables can be omitted. To discover

the most important real variables, we can repeat the PCA with different subsets of

variables, until there is a considerable change in the explained variation per principal

component.

There are two other common methods for visualizing high-dimensional space,

namely, t-SNE [57] and UMAP [58]. Their main advantage over PCA is that they

are not limited to only linear relationships and PCA’s emphasize on inter-variable

differences. While PCA’s advantage is in its simplicity and the interpretability of the

principal components. Comparing our results using t-SNE and UAMP is the subject

of future work.

Classification by machine learning

To date, machine learning methods perform poorly (<6% precision) when infering

true two-way interactions using real E. coli experiemntal data [49, 59]. Here we

are not trying to build a complete large network but rather classify small three-

node motifs. We use mutual information quantities as a compact representation of

the relationship between genes, instead of their full expression profiles under various

conditions. Furthermore, we add the statistical significant of each 2d and 3d interaction

by calculating their Z-score. For a network of 100 genes this allows for a significant

reduction (∼ ×5) in the number of variables (number of features, in ML language)

for the machine learning algorithm and another ×3 reduction in computation load

as our observation unit is a triplet of genes vs. a single gene for conventional ML

methods for GRN. This has two main advantages, first, a reduced model complexity

which translates into faster training, second, this mitigate the problems arising when

the number of features is larger than the number of observations which can lead to

overfitting. Although we can further reduce the input data size by using five principal

components (instead of 22) with minimal loss of variance information (<1% as shown
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in the previous section), this had a large negative effect.

Surprisingly, using the principal components as input to train the machine learning

models resulted in poor accuracy. This could be explained by the linear transformation

done by PCA, which ignores the non-linear relationship between the various MI

quantities. Perhaps, using the non-linear dimensionality reduction methods t-SNE or

UAMP can lead to better performances when using reduced input data to train the

models. But this will considerably increase computation costs in the data preparation

step and might negate the benefit of training a machine learning model on reduced

data.

We didn’t test the widely used Linear Regression method, as it only gives a binary

result, and for our purposes will require splitting the problem to multiple schemes of

one-vs-all (as the number of motifs we want to classify) and combining the results to

resolve any conflicts, which could be cumbersome. For MLP we only used a single

hidden layer with different amount of neurons, and using more layers (deep learning)

should improve accuracy, but further analysis is needed.

For the models trained on real E. coli data, we can try to improve the precision

for Fan-out, Two-genes and No-interaction, by curating the input data. We can either

use our MI profile method with different thresholds or alternatively, use our model to

curate the existing database of documented motifs, as it might contain errors (missing

interactions that can alter the motif identity). The idea is first to use the trained

model to reclassify the poorly performing motifs and use only true-positives as inputs

for second round of training. Luckily, there are thousands to millions of Fan-out,

Two-genes and No-interaction motifs in E. coli, that we can filter down for a more

curated training dataset.
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Conclusions and general discussion

Gene regulation network inference using k-nearest
neighbor-based mutual information estimation

We have shown that the kNN-based KSG MI estimator improves the performance of

inference algorithms, especially ones that use three-way MI calculations. This result

corroborates our observations in comparing MI calculations against the analytical

solution of two-way MI of a bi-variate Gaussian distribution and the total correlation of

a tri-variate Gaussian distribution. Furthermore, the combination of CMIA and KSG

give the overall best performance, and hence should be preferred when precision and

recall are more important than speed when reconstructing a GRN. Looking forward,

the goal of complete reconstruction of GRNs may require new inference algorithms

and probably MI in more than three dimensions.

Classifying three-node network motifs of Transcrip-
tion Factor (TF)-based regulation

We have developed and compared three methods to classify three-node motifs:

1. MI and Z-score profiles

2. Dimensionality reduction by PCA and clustering using K-means

3. Supervised machine learning algorithms using MI input data

We have shown that at least 24 different 3-node motifs in-silico and 16 motifs on

52



E.coli experimental data can be distinguished by using all 2d and 3d MI quantities

together of only steady-state expression data and without any a priori knowledge of

the regulator (source) genes. This unprecedent resolution can assist in a more accurate

large GRN reconstruction of any model organism by assembling the entire network

from the bottom up and mitigate the problem of false positives in co-regulated genes

with no direct interaction (Fan-out) or for indirect interaction (Cascade). It will be

interesting to run our pipeline on the millions of triplets that has no documented

interactions in E. coli or other model organisms, or even on triplets with existing

documented interactions to check if the model can detect more regulators.

Our MI based method can also be used as a fast first-order approach, incorporating

cases of ambiguity about the direction of regulation, such as the FFL motif, into

separate entire network topologies. The ensemble of different network topologies can

then be further tuned by adding more “expensive” experimental data (knockouts, time-

series) or using it as input to other methods to rank the different network realizations

from most probable to least probable.

Another possible application is to use all two- and three-way MI quantities (total

of 22 with their Z-score counterparts) together with a Hidden Markov Model (HMM)

to divide MI values to few discrete states which will allow us to generate a digital

signature (or “barcode”) to most common 3-node network topologies.
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Appendix I

Mutual Information overview

Introduction to Information Theory
In present days, Information Theory is being widely used in many fields very far from what its
originator Claude Shannon had probably conceived when he published his work in the late 40s as a
complete theory for digital communication [9, 10]. Its main use outside the world of communication
is to determine the "similarity" between different sets of variables and help determine if there is any
correlation between them whether it is linear or non-linear. Before diving into its full mathematical
representation, let us start with building our intution about information theory using some simple
terms and a Venn diagram.

Shannon’s Entropy
We begin with a discrete random variable X (i.e. X ≡ {x1, x2, ..., xn}), this could be the outcomes
of flipping a coin multiple times or rolling a dice. Shannon [9] defined the "uncertainty" of X as
the Entropy of X, H(X). Entropy is a non-negative quantity (H(X) ≥ 0), it is maximal where all
possible outcomes (more than one) have the same probability (in other words, a uniform probability
distribution function). For example, flipping a fair coin or rolling a dice (the entropy is maximal
but not equal for those two cases, and we will calculate it in a later section). On the other hand,
if our variable X has only one possible value than there is no uncertainty and the entropy equals
zero. In some places, entropy is also referred to as "self-information" (see below section on Mutual
Information).

Conditional and Joint Entropy
Following the same logic, the joint entropy H(X, Y ), is defined as the uncertainty of the pair X,
Y. And the conditional entropy H(X|Y ), is the uncertainty of X given Y . We can represent their
relationship in the following formula (mathematical proofs can be found in [14]):

H(X, Y ) = H(X) + H(Y |X)
= H(Y ) + H(X|Y )

(I.1)

We can extend the above relationsship to 3 variables:

H(X, Y, Z) = H(X) + H(Y, Z|X)
= H(X) + H(Y |X) + H(Z|Y, X)

(I.2)
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For n variables (Chain rule for entropy) [14]:

H(X1, X2, ..., Xn) =
n∑︂

i=1
H(Xi|Xi−1, ..., X1) (I.3)

Mutual Information
We can now define the Mutual Information (MI) shared by X and Y as:

I(X; Y ) = H(X) − H(X|Y )
= H(Y ) − H(Y |X)
= H(X) + H(Y ) − H(X, Y )

(I.4)

This is also referred to as "information redundancy" or "Reduction of uncertainty" of X thanks
to Y (or vice versa). MI is a symmetric (I(X; Y ) = I(Y ; X)) and non-negative (I(X; Y ) ≥ 0)
quantity. It is zero only if X and Y are independent (H(X, Y ) = H(X) + H(Y )). We also get that
self-information equals the entropy (I(X; X) = H(X)). Summarizing the above, we get a range for
MI: 0 ≤ I(X; Y ) ≤ max{H(X), H(Y )}.

Three-Dimensional Mutual Information
In 1954, McGill [60] extended Shannon’s work to the case of two sources {X1, X2} and one receiver
Y (or vice versa), by simply changing X in Eq. (I.4) with {X1, X2}:

I(X1, X2; Y ) = H(X1, X2) − H(X1, X2|Y )
= H(X1, X2) + H(Y ) − H(X1, X2, Y )

(I.5)

Naturally, this can be extended to n variables, where we can measure the mutual information
between a group of n − 1 variables (treated as a single vector) and a target. This however, doesn’t
allow us to evaluate the individual gain (or loss) of information by each individual source, but this
can be solved by comparing calculations with different number of sources.

Interaction Information

McGill also defined the Interaction-Information (II), which is a symmetric quantity:

II(X1 · X2 · Y ) = I(X1; Y |X2) − I(X1; Y )
= I(X2; Y |X1) − I(X2; Y )
= I(X1; X2|Y ) − I(X1; X2)

(I.6)

Where the Conditional Mutual Information (CMI) of X1 and X2 given Y is defined by:

I(X1; X2|Y ) = H(X1|Y ) − H(X1|X2, Y )
= −H(Y ) + (H(X1, Y ) + H(X2, Y )) − H(X1, X2, Y )

(I.7)

It is important to note, that the RHS of Eq.(I.7) represent only two out of many possible
combinations of entropy terms. We can also write the interaction information as an expansion of
entropy terms:

II(X1 · X2 · Y ) = − H(X1) − H(X2) − H(Y )
+ H(X1, X2) + H(X1, Y ) + H(X2, Y )
− H(X1, X2, Y )

(I.8)
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We can now write the three-dimensional mutual information using the two-dimensional MI and
the interaction-information:

I(X1, X2; Y ) = I(X1; Y ) + I(X2; Y ) + II(X1 · X2 · Y ) (I.9)
I(X1, X2; Y ) = I(X1; Y |X2) + I(X2; Y |X1) − II(X1 · X2 · Y ) (I.10)

We can plug Eq.(I.6) into the three-dimensional MI equation above Eq.(I.9), to get:

I(X1, X2; Y ) = I(X2; Y ) + I(X1; Y |X2)
= I(X1; Y ) + I(X2; Y |X1)
= I(X1; Y ) + I(X2; Y ) + I(X1; X2|Y ) − I(X1; X2)

(I.11)

We can expand the MI to n sources (Chain rule for information [14]):

I(X1, X2, ..., Xn; Y ) = H(X1, X2, ..., Xn) − H(X1, X2, ..., Xn|Y )

=
n∑︂

i=1
I(Xi; Y |Xi−1, ..., X1)

(I.12)

Total Correlation

Total Correlation (TC) is another frequently used term (also referrd sometime as redundancy or MI1)
that was first shown by McGill [60], but was coined and further developed by Watanabe in 1960 [61].

TC(X1, X2, ..., Xn) =
∑︂

i

H(Xi) − H(X1, X2, ..., Xn) (I.13)

By adding and subtracting the same joint entropy terms, we can rewrite the TC using MI terms (see
Apendix A of [16]):

TC(X1, X2, ..., Xn) = I(X1; X2) + I(X1, X2; X3) + ... + I(X1, ..., Xn−1; Xn) (I.14)

Uniqueness, Redundancy and Synergy
"Redundancy" and "Synergy" are common terms in the field of information theory, yet they lack
common definition, and so create a lot of confusion as different definitions exists. We can start
discussing their meaning when looking into the relationship between three variables or more (i.e.
two sources X1, X2 and a target Y ). In the most intuitve way, we can define redundancy as the
portion of information both X1 and X2 share in common about Y , and synergy as information we
gain (or emerges) about Y from inspecting X1 and X2 together, rather than separately. Following
the same line of thought "Uniqueness" can be viewed as the information only X1 brings about Y
or only what X2 brings about Y . Using the terms we defined in the previous section, we can write:
CMI = Uniqueness, II = Redundancy if II < 0, and Synergy if II > 0.

Formalism for Discrete Variables
Probability definitions

For variables X and Y , we can construct a space X − Y where each point corresponds to each pair
{x, y}. We can generate any ensamble X − Y by assigning a joint probability P (x, y). Where∑︂

X

∑︂
Y

P (x, y) = 1 (I.15)

1This confusion is mainly due to the fact than in 2D they are all expressed the same but for
higher dimensions (n > 2) they are different
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The probability disribution P (x) (also called "marginal") can be defined in terms of P (x, y) by

P (x) ≡
∑︂

Y

P (x, y) (I.16)

The conditional probability distribution p(y|x) is define as

P (y|x) ≡ P (x, y)
P (x) (I.17)

For three variables, we can define the conditional probability distribution P (x|y, z) as

P (x|y, z) ≡ P (x, y, z)
P (p, z) (I.18)

If P (x|y, z) is independent of any pair y, z (P (x|y, z) = P (x)) than X is independent of Y Z and we
can write

P (x, y, z) = P (x)P (y, z) (I.19)

Entropy

Shannon’s Entropy:
H(X) = −

∑︂
x

p(x) log p(x)

Joint Entropy:
H(X, Y ) = −

∑︂
x

∑︂
y

p(x, y) log p(x, y)

Conditional Entropy:
H(X|Y = y) = −

∑︂
x

p(x|y) log p(x|y)

H(X|Y ) =
∑︂

y

p(y)H(X|Y = y) =
∑︂

y

p(y)
∑︂

x

p(x|y) log 1
p(x|y)

Information

Infomration provided by yi about xk is defined by:

I(xk; yi) ≡ log P (xk|yi)
P (xk) = log P (xk|yi)P (yi)

P (xk)P (yi
= log P (xk, yi)

P (xk)P (yi)
(I.20)

This can be positive or negative, depending on the probability of occuring together vs. separately.
Mutual Information (MI):

I(X; Y ) =
∑︂

x

∑︂
y

p(x, y) log p(x, y)
p(x)p(y)

Conditional Mutual Information (CMI):

I(X; Y |Z) =
∑︂

z

p(z)
∑︂

x

∑︂
y

p(x, y|z) log p(x, y|z)
p(x|z)p(y|z)
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Appendix II

Supplementary information for
chapter on gene regulation network
inference

A. Analytical solution for a multivariate Gaussian
distribution

Shannon [9] showed that the entropy term of a multivariate Gaussian distribution is given by:

H(X) = 1
2 log[(2πe)n|COV |] (II.1)

Where |COV | represents the covariance matrix. For simplicity we set all the correlations between
variables to be equal to ρ. As all MI quantities can be calculated by their entropy components, we
have:

MI(X; Y ) = H(X) + H(Y ) − H(X, Y ) = −1
2 log(1 − ρ2) (II.2)

TC(X, Y, Z) = H(X) + H(Y ) + H(Z) − H(X, Y, Z) = −1
2 log(1 − 3 · ρ2 + 2 · ρ3) (II.3)

B. Miller-Madow correction to Shannon’s entropy
Due to the logarithmic nature of Shannon’s entropy:

HShan = −
∑︂

x

p(x) log p(x) (II.4)

Under or overestimating p(x) by the same value gives different errors on the entropy calculation,
leading to bias (downwards). Miller and Madow proposed to correct the bias in Shannon’s entropy
by adding the asymptotic bias term [21]:

HMM = HShan + {non_empty_bins} − 1
2N

(II.5)

Where N is equal to the data size.
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Two-way mutual information and higher dimension measures can be calculated by summation of
entropies, for example in the case of two-way MI:

MIMM (X; Y ) = HMM (X) + HMM (Y ) − HMM (X, Y ) (II.6)

C. Supplementary tables

Table II-1. Median AUPR values for different combinations of MI estimator and GRN
inference algorithm for different network sizes.

Data set Network Size Infalgo MIest median_AUPR AUPR_relative
DREAM3 50 ARACNE KL 0.013 -95.7
DREAM3 50 ARACNE KSG 0.136 -46.6
DREAM3 50 ARACNE ML 0.068 -72.9
DREAM3 50 ARACNE MM 0.088 -64.0
DREAM3 50 CLR KL 0.092 -64.4
DREAM3 50 CLR KSG 0.264 7.7
DREAM3 50 CLR ML 0.239 0.0
DREAM3 50 CLR MM 0.253 7.4
DREAM3 50 CMI2rt KL 0.008 -97.1
DREAM3 50 CMI2rt KSG 0.068 -72.6
DREAM3 50 CMI2rt ML 0.010 -96.2
DREAM3 50 CMI2rt MM 0.013 -95.0
DREAM3 50 CMIA KL 0.092 -62.8
DREAM3 50 CMIA KSG 0.285 16.0
DREAM3 50 CMIA ML 0.221 -17.5
DREAM3 50 CMIA MM 0.225 -10.3
DREAM3 50 RL KL 0.021 -93.7
DREAM3 50 RL KSG 0.246 -2.0
DREAM3 50 RL ML 0.206 -23.5
DREAM3 50 RL MM 0.232 -10.7
DREAM3 50 SA_CLR KL 0.084 -65.0
DREAM3 50 SA_CLR KSG 0.290 15.9
DREAM3 50 SA_CLR ML 0.188 -36.8
DREAM3 50 SA_CLR MM 0.189 -33.6
DREAM3 100 ARACNE KL 0.018 -89.4
DREAM3 100 ARACNE KSG 0.103 -50.5
DREAM3 100 ARACNE ML 0.051 -75.2
DREAM3 100 ARACNE MM 0.068 -64.5
DREAM3 100 CLR KL 0.062 -71.6
DREAM3 100 CLR KSG 0.246 10.4
DREAM3 100 CLR ML 0.215 0.0
DREAM3 100 CLR MM 0.231 17.3
DREAM3 100 CMI2rt KL 0.014 -94.0
DREAM3 100 CMI2rt KSG 0.051 -76.0
DREAM3 100 CMI2rt ML 0.002 -99.2
DREAM3 100 CMI2rt MM 0.004 -97.9
DREAM3 100 CMIA KL 0.073 -66.5
DREAM3 100 CMIA KSG 0.261 22.6

Continued on next page
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Table II-1 – Continued from previous page
Data set Network Size Infalgo MIest median_AUPR AUPR_relative

DREAM3 100 CMIA ML 0.142 -35.3
DREAM3 100 CMIA MM 0.157 -28.8
DREAM3 100 RL KL 0.030 -84.6
DREAM3 100 RL KSG 0.220 0.6
DREAM3 100 RL ML 0.105 -46.8
DREAM3 100 RL MM 0.138 -29.1
DREAM3 100 SA_CLR KL 0.070 -66.2
DREAM3 100 SA_CLR KSG 0.259 20.1
DREAM3 100 SA_CLR ML 0.073 -57.0
DREAM3 100 SA_CLR MM 0.077 -56.5
DREAM4 100 ARACNE KL 0.002 -99.1
DREAM4 100 ARACNE KSG 0.129 -43.1
DREAM4 100 ARACNE ML 0.080 -68.3
DREAM4 100 ARACNE MM 0.103 -58.5
DREAM4 100 CLR KL 0.030 -87.9
DREAM4 100 CLR KSG 0.260 17.8
DREAM4 100 CLR ML 0.232 0.0
DREAM4 100 CLR MM 0.262 15.5
DREAM4 100 CMI2rt KL 0.001 -99.4
DREAM4 100 CMI2rt KSG 0.086 -64.4
DREAM4 100 CMI2rt ML 0.001 -99.5
DREAM4 100 CMI2rt MM 0.002 -99.1
DREAM4 100 CMIA KL 0.031 -87.3
DREAM4 100 CMIA KSG 0.302 33.6
DREAM4 100 CMIA ML 0.144 -40.1
DREAM4 100 CMIA MM 0.169 -30.5
DREAM4 100 RL KL 0.002 -99.0
DREAM4 100 RL KSG 0.226 -10.0
DREAM4 100 RL ML 0.159 -38.7
DREAM4 100 RL MM 0.191 -24.0
DREAM4 100 SA_CLR KL 0.031 -87.3
DREAM4 100 SA_CLR KSG 0.301 30.2
DREAM4 100 SA_CLR ML 0.076 -67.0
DREAM4 100 SA_CLR MM 0.082 -65.2

Table II-2. Median AUPR values for different combinations of MI estimator and GRN
inference algorithm for different organisms.

Organism Infalgo MIest median_AUPR AUPR_relative
Ecoli ARACNE KL 0.017 -88.8
Ecoli ARACNE KSG 0.077 -52.5
Ecoli ARACNE ML 0.033 -79.8
Ecoli ARACNE MM 0.054 -66.5
Ecoli CLR KL 0.043 -70.0
Ecoli CLR KSG 0.159 5.9
Ecoli CLR ML 0.168 0.0
Ecoli CLR MM 0.197 19.9
Ecoli CMI2rt KL 0.008 -94.3
Ecoli CMI2rt KSG 0.032 -79.6
Ecoli CMI2rt ML 0.003 -98.6

Continued on next page
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Table II-2 – Continued from previous page
Organism Infalgo MIest median_AUPR AUPR_relative
Ecoli CMI2rt MM 0.003 -98.0
Ecoli CMIA KL 0.051 -66.5
Ecoli CMIA KSG 0.191 19.7
Ecoli CMIA ML 0.115 -33.4
Ecoli CMIA MM 0.133 -21.9
Ecoli RL KL 0.034 -76.5
Ecoli RL KSG 0.157 -2.0
Ecoli RL ML 0.096 -38.4
Ecoli RL MM 0.124 -21.7
Ecoli SA_CLR KL 0.055 -66.5
Ecoli SA_CLR KSG 0.193 19.7
Ecoli SA_CLR ML 0.081 -53.1
Ecoli SA_CLR MM 0.086 -51.5
Yeast ARACNE KL 0.016 -94.7
Yeast ARACNE KSG 0.154 -46.6
Yeast ARACNE ML 0.077 -72.2
Yeast ARACNE MM 0.101 -63.9
Yeast CLR KL 0.096 -63.6
Yeast CLR KSG 0.291 10.5
Yeast CLR ML 0.269 0.0
Yeast CLR MM 0.286 8.7
Yeast CMI2rt KL 0.012 -95.5
Yeast CMI2rt KSG 0.095 -68.5
Yeast CMI2rt ML 0.010 -96.2
Yeast CMI2rt MM 0.013 -95.0
Yeast CMIA KL 0.101 -63.0
Yeast CMIA KSG 0.328 18.4
Yeast CMIA ML 0.224 -18.1
Yeast CMIA MM 0.236 -14.5
Yeast RL KL 0.024 -92.4
Yeast RL KSG 0.252 0.0
Yeast RL ML 0.196 -27.8
Yeast RL MM 0.219 -14.1
Yeast SA_CLR KL 0.098 -64.1
Yeast SA_CLR KSG 0.323 18.0
Yeast SA_CLR ML 0.174 -37.9
Yeast SA_CLR MM 0.177 -36.5
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Table II-3. Characteristics of the 10 synthetic networks from DREAM3 and statistics of the different 3-node network motifs extracted.

Network SS Edges Triplets No Interaction Two-genes Fan-in Cascade Fan-out FFL Sum of Sum of
data 2 edges 2&3 edges

InSilicoSize100-Ecoli1 341 125 161700 150051 11059 47 55 477 11 579 590
InSilicoSize100-Ecoli2 322 119 161700 150759 10228 24 51 630 8 705 713
InSilicoSize100-Yeast1 401 166 161700 146042 15113 75 212 193 65 480 545
InSilicoSize100-Yeast2 401 389 161700 127499 30631 627 1231 1361 351 3219 3570
InSilicoSize100-Yeast3 401 551 161700 115759 39003 1385 2052 2382 1119 5819 6938
InSilicoSize50-Ecoli1 170 62 19600 16936 2361 21 41 232 9 294 303
InSilicoSize50-Ecoli2 169 82 19600 16230 2816 47 20 475 12 542 554
InSilicoSize50-Yeast1 201 77 19600 16204 3126 43 103 94 30 240 270
InSilicoSize50-Yeast2 201 160 19600 13056 5536 241 306 333 128 880 1008
InSilicoSize50-Yeast3 201 173 19600 12629 5812 195 303 487 174 985 1159
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D. Supplementary figures
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Figure II-1. Two-way mutual information (MI2) & total correlation (TC) for multivariate
gaussian dist. with varying bins and neighbors
100 replicates for each sample size = {100,1K,10K}, correlation = {0.3,0.6,0.9}. (A)
MI2 with natural log base calculated using Maximum Likelihood with fixed width
binning (FB), where the shaded area represents mean +/- 2std. (B) MI2 based on
KSG k-nearest-neighbor (KNN). (C) TC based on FB. (D) TC based on kNN
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Figure II-2. Boxplots of percent error for Interaction Information (II) of three different
mutual information estimators
With columns representing sample size = {100,1K,10K}, and rows the correlation =
{0.3,0.6,0.9}. 9 subplots showing percent error for Interaction Information (II) for 3
different methods: ML_Sq=Shannon’s MI with fixed width binning (number of bins is
determined by square-root), MM_Sq=Miller-Madow formula for MI with square-root
for the number of bins, kNN3=KSG formula for MI with k=3.
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Figure II-3. Boxplots of percent error for Conditional Mutual Information (CMI)of three
different mutual information estimators
With columns representing sample size = {100,1K,10K}, and rows the correlation =
{0.3,0.6,0.9}. 9 subplots showing percent error for Conditional Mutual Information
(CMI) for 3 different methods: ML_Sq=Shannon’s MI with fixed width binning
(number of bins is determined by square-root), MM_Sq=Miller-Madow formula for
MI with square-root for the number of bins, kNN3=KSG formula for MI with k=3.
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Figure II-4. Boxplots of percent error for Three-way Mutual Information (MI3) of three
different mutual information estimators
With columns representing sample size = {100,1K,10K}, and rows the correlation =
{0.3,0.6,0.9}. 9 subplots showing percent error for three-way mutual information (MI3)
for 3 different methods: ML_Sq=Shannon’s MI with fixed width binning (number
of bins is determined by square-root), MM_Sq=Miller-Madow formula for MI with
square-root for the number of bins, kNN3=KSG formula for MI with k=3.

70



0
150
300
450
600
750
900

1050
1200
1350

Pe
rc

en
t e

rro
r [

%
] f

or
 M

I

100 data pts

0
80

160
240
320
400
480
560

1000 data pts

0
15
30
45
60
75
90

105
120

10000 data pts

0
40
80

120
160
200
240
280

Pe
rc

en
t e

rro
r [

%
] f

or
 M

I

0
15
30
45
60
75
90

105
120
135

0
5

10
15
20
25
30
35

KS
G1

KL
1

KS
G3

KL
3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
0
8

16
24
32
40
48
56

Pe
rc

en
t e

rro
r [

%
] f

or
 M

I

KS
G1

KL
1

KS
G3

KL
3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
0
4
8

12
16
20
24
28
32

KS
G1

KL
1

KS
G3

KL
3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
KS

G1
KL

1
KS

G3
KL

3
KS

G10
KL

10
0
2
4
6
8

10
12

co
rr.

=0
.3

co
rr.

=0
.6

co
rr.

=0
.9

Figure II-5. Boxplots of percent error of Two-way Mutual Information calculated based
on kNN methods.
100 replicates of bi-variate gaussian dist. With sample size = {100,1K,10K}, correlation
= {0.3,0.6,0.9}. We compare KL and KSG methods for k=1,3,10.
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Figure II-6. Boxplots of percent error of Total Correlation calculated based on kNN
methods.
100 replicates of tri-variate gaussian dist. With sample size = {100,1K,10K}, correla-
tion = {0.3,0.6,0.9}. We compare KL and KSG methods for k=1,3,10.
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Figure II-7. AUPR difference relative to the gold standard combination [ML,CLR] for
different Yeast networks from DREAM3
Sorted boxplots of percentage AUPR difference (increase or decrease) relative to the
gold standard combination [ML,CLR] for different combinations of MI estimator and
GRN inference algorithm for the 6 different Yeast networks from DREAM3. Each
boxplot represents 10 replicates.
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Figure II-8. AUPR difference relative to the gold standard combination [ML,CLR] for
different networks of 100 genes from DREAM4
Sorted boxplots of percentage AUPR difference (increase or decrease) relative to the
gold standard combination [ML,CLR] for different combinations of MI estimator and
GRN inference algorithm for the 5 different networks of 100 genes from DREAM4.
Each boxplot represents 10 replicates.
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Appendix III

Supplementary information for
chapter on network motifs
classification

A. Supplementary text
Simulated 3-node motifs -16 motifs, no FFL
Labels = [’Cascade-SXY_II’, ’Cascade-SXZ_II’, ’Cascade-SYX_II’, ’Cascade-SYZ_II’, ’Cascade-
SZX_II’, ’Cascade-SZY_II’, ’Fan-in-SXY_II’, ’Fan-in-SXZ_II’, ’Fan-in-SYZ_II’, ’Fan-out-SX_II’,
’Fan-out-SY_II’, ’Fan-out-SZ_II’, ’NoInteract’, ’Two-genes-XY_II’, ’Two-genes-XZ_II’, ’Two-genes-
YZ_II’]
Models
’SVM’: SVC(C=10, kernel=’linear’), ’MLP’: MLPClassifier(activation=’tanh’, learning_rate=’invscaling’),
’RF’: RandomForestClassifier(max_depth=8, n_estimators=50), ’GBT’: GradientBoostingClassi-
fier(max_depth=7, n_estimators=500)
Evaluate models on the validation set
SVM – Accuracy: 0.912 / Precision: [0.86666667 1. 0.95652174 0.95652174 1. 0.95454545 0.75
0.9047619 0.83333333 1. 1. 0.94444444 0.66666667 1. 0.92592593 1. ] / Recall: [0.8125 0.82352941
0.95652174 1. 0.89473684 1. 0.85714286 0.73076923 0.9375 0.95238095 0.94117647 1. 1. 0.83333333
0.92592593 1. ] / Latency: 7.9ms
MLP – Accuracy: 0.938 / Precision: [1. 0.9375 0.95652174 0.95652174 1. 1. 0.9047619 1. 0.83333333
1. 1. 0.94444444 0.64285714 1. 0.96428571 1. ] / Recall: [0.875 0.88235294 0.95652174 1. 0.89473684
1. 0.9047619 0.88461538 0.9375 0.9047619 0.94117647 1. 1. 0.83333333 1. 1. ] / Latency: 9.0ms
RF – Accuracy: 0.912 / Precision: [1. 0.83333333 0.88 0.86956522 1. 0.95454545 0.95 0.96 0.83333333
0.94736842 0.92307692 0.94117647 0.69230769 1. 0.96428571 0.9375 ] / Recall: [0.8125 0.88235294
0.95652174 0.90909091 0.89473684 1. 0.9047619 0.92307692 0.9375 0.85714286 0.70588235 0.94117647
1. 0.83333333 1. 1. ] / Latency: 18.5ms
GBT – Accuracy: 0.888 / Precision: [0.83333333 1. 0.875 0.86956522 1. 1. 0.9 1. 0.72727273 1.
0.85714286 1. 0.57692308 0.8 0.96296296 1. ] / Recall: [0.9375 0.88235294 0.91304348 0.90909091
0.89473684 1. 0.85714286 0.76923077 1. 0.85714286 0.70588235 1. 0.83333333 0.83333333 0.96296296
0.86666667] / Latency: 101.5ms
Evaluate best model on test set
MLP – Accuracy: 0.903 / Precision: [0.88888889 0.86956522 0.95 1. 1. 0.95454545 0.83333333
0.89473684 0.85714286 1. 1. 0.94736842 0.79310345 0.88235294 0.77272727 0.96 ] / Recall: [0.94117647
0.95238095 1. 0.9 0.73913043 0.95454545 0.95238095 0.73913043 0.81818182 0.82608696 0.94117647 1.
1. 0.75 1. 1. ] / Latency: 7.6ms
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Figure III-1. Z-score profiles for Two-genes motifs
Each subplot represents a unique nework motif. We show 7 Two-gene motifs and the
No-interaction motif, where, the x-axis shows all the 2d and 3d MI measures (11 in
total), y-axis is the Z-score value.
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Figure III-2. MI profiles for two edge motifs with different repressing and inducing
interactions
Each subplot represents a unique nework motif. We show 10 motifs with two-edges,
namely, Fan-in, Fan-out and Cascade with different combinations of repressing and
inducing interactions, where, the x-axis shows all the 2d and 3d MI measures (11 in
total), y-axis is the mean MI value in nats (information bits in e base).
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Figure III-3. Z-score profiles for all simulated three-node motifs
Each subplot represents a unique nework motif. We show all three-node simulated
motifs, where, the x-axis shows all the 2d and 3d MI measures (11 in total), y-axis is
the Z-score value. 77
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