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Abstract 

Quantifying terabyte-scale multi-modal human and animal imaging data requires scalable 

analysis tools. We developed CloudReg, an open-source, automatic, terabyte-scale, cloud-based 

image analysis pipeline that pre-processes and registers cross-modal volumetric datasets with 

artifacts via spatially-varying polynomial intensity transform. CloudReg accurately registers the 

following datasets to their respective atlases: in vivo human and ex vivo macaque brain magnetic 

resonance imaging, ex vivo mouse brain micro-computed tomography, and cleared murine brain 

light-sheet microscopy. 
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1 Introduction 

Modern imaging methods can generate intact, whole brain data from a variety of 

modalities including magnetic resonance imaging (MRI), computed tomography (CT), and light-

sheet microscopy (LSM) of cleared tissue samples. Each of these methods provides specific 

information about an individual sample based on the physical principles of the technique, and also 

produces artifacts unique to each technique. MRI can provide detailed anatomic or functional 

information but can be limited by intensity inhomogeneity due to magnetic field bias.1 CT can 

provide detailed anatomic information but can be limited by radiodensity artifacts.2 LSM, in 

combination with tissue clearing methods, can provide anatomic, functional, and molecular 

information at subcellular resolution,3 but can be limited by intensity inhomogeneity due to 

microscope optics.  

Clearing methods including CLARITY (Clear Lipid-exchanged Anatomically Rigid 

Imaging/immunostaining-compatible Tissue Hydrogel),3 SHIELD (Stabilization to Harsh 

conditions via Intramolecular Epoxide Linkages to prevent Degradation),4 and iDISCO 

(immunolabeling-enabled three-Dimensional Imaging of Solvent-Cleared Organs)5 can generate 

terabytes of data per sample.6 High-resolution, multi-field-of-view (mFOV) datasets require pre-

processing to remove artifacts, stitching into a complete volume, registration to a reference atlas, 

and visualization in order to perform quantitative analyses.7,8 

Each of these image processing steps presents unique challenges. First, aligning and 

stitching every FOV acquired into a complete volume requires significant compute power and is 

time-intensive. Second, pre-processing imaging data requires correcting artifacts unique to each 

modality and sample such as intensity inhomogeneity in LSM and MRI. Third, registration 

methods are frequently intra-modal, have manual components, and are limited by artifacts 
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introduced by specimen preparation and imaging.9,10 Finally, visualization of these terabyte-scale 

datasets on a local machine is compute-intensive, slow, and expensive.11 

To address these challenges, we present CloudReg, an automatic, cross-modal, cloud-

based pipeline consisting of local and global intensity correction,12,13 alignment and stitching,8 

image registration with nonlinear methods,14,15 and interactive online visualization through 

Neuroglancer (https://github.com/google/neuroglancer).16 We specifically developed algorithms 

for distributed local intensity correction and cross-modal registration while leveraging existing 

state-of-the-art, open-source tools.12,13 We applied CloudReg to various datasets including in vivo 

human brain MRI,17 ex vivo macaque brain MRI,18,19 ex vivo in situ mouse brain micro-CT,20,21 and 

LSM-imaged cleared mouse and rat brains.3,4,5 
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2 Methods 

Cleared brain specimen preparation and image acquisition 

CloudReg was developed on multiple brain imaging modalities including a variety of 

clearing methods, all imaged with LSM. Whole mouse and rat brains were optically cleared using 

CLARITY, SHIELD, or iDISCO as previously described.3,4,5 Autofluorescence image volumes 

were acquired using either a CLARITY-Optimized Light-sheet Microscope (COLM)6 or a LaVision 

UltraMicroscope II (Miltenyi Biotec, Bergisch Gladbach, Germany). We used the autofluorescence 

channel to register, and then applied the resulting transformation to any additional channels, but 

any/all channels could be run through CloudReg. The autofluorescence channel of an LSM image 

is the background natural fluorescence present in the sample that is not associated with any 

artificially added fluorophores. The COLM imaged whole mouse and rat brains with voxel size 

0.585x0.585x5.0 µm3, 1.46x1.46x5.0 µm3, or 2.9x2.9x5.0 µm3 resulting in terabytes of data per 

brain for these higher resolution samples. The LaVision UltraMicroscope II was used to acquire a 

whole mouse brain in a single z-stack at 5.16 µm isotropic resolution.  

 

Ex vivo in situ mouse brain micro-computed tomography 

The intact mouse head was imaged via micro-CT following terminal vascular polymer 

perfusion as previously described.20 Soft tissue including brain was visualized by immersing the 

sample in phosphotungstic acid (PTA) before micro-CT as previously described.21 

 

In vivo human brain magnetic resonance imaging 

Human brain MRI data was obtained from the MRICloud atlas set as previously 

described.17  
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Upload raw data to cloud storage 

To run CloudReg, raw data is made web-accessible, for example, by uploading to cloud 

storage. We use Amazon Web Services (AWS) Simple Storage Service (S3) for our cloud storage 

services. The mFOV raw data was stored as a 2D TIFF (Tagged Image File Format) series for 

each column in the image volume. mFOV data was organized in the COLM acquisition format,6 

but any format can be used with minor modifications. The single-FOV (sFOV) raw data was stored 

as a 2D TIFF series where each slice in the image was saved in a separate TIFF. The raw data 

was uploaded to S3 using the awscli Python package (https://github.com/aws/aws-cli). 

 

Run CloudReg 

CloudReg consists of two user-facing Python scripts that we developed along with other 

utility functions (available here: https://cloudreg.neurodata.io). All scripts referred to herein are 

available in this repository. Our two user-facing scripts automatically start and stop a cloud server 

after running a series of computations on that server. The first script requires a cloud server with 

attached solid-state drives (SSD) and the second script requires a server with sufficient memory 

for the given data. The first script requires SSDs since the computation steps are input/output 

(I/O) bound, whereas the second script requires more memory since it needs to apply 

transformations to the high resolution data. An AWS cloud server is called an Elastic Compute 

Cloud (EC2) instance. The first script (run_colm_pipeline_ec2.py) automatically starts an r5d-type 

EC2 instance (an instance that contains attached SSD storage) and performs the following steps 

(Figure 2.1 A-B): 1) transfers raw data from cloud storage, 2) corrects local intensity, 3) stitches 

the data into a three-dimensional volume, 4) corrects global intensity, and 5) downsamples and 

uploads stitched and preprocessed data to cloud storage for visualization. The second script 
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(run_registration_ec2.py) automatically starts an r5-type EC2 instance (an instance with high ratio 

Figure 2.1: CloudReg pipeline schematic, example outputs at each step. A: Store raw data. Raw data can be either 
multi-field-of-view (mFOV) or single-field-of-view (sFOV). After raw data is generated, it is transferred to the cloud and 
CloudReg is launched. B: Pre-process. All of the following steps are performed on a cloud compute server that has 
access to the raw data. First, local intensity inhomogeneity is corrected per-FOV using an algorithm we developed. 
Next, mFOV data is aligned and stitched into a complete volume using Terastitcher; if the data is sFOV, this step is 
not performed. Then, global intensity inhomogeneity is corrected on the stitched whole brain by computing an 
intensity correction on the downsampled data, upsampling the result, and applying it at native resolution; this step 
applies to both mFOV and sFOV data. The pre-processed data is then downsampled and uploaded to cloud storage 
for visualization. C: Register. A downsampled version of the pre-processed data is registered to the ARA CCFv3 and 
the computed transformations are saved. These transformations are invertible so the atlas can be transformed to the 
data space and the data can be transformed to the atlas space. The transformations are upsampled and applied to 
the ARA anatomic parcellations, and input data and are uploaded to cloud storage for visualization through 
Neuroglancer. To maintain privacy of imaging data, visualization is restricted to authorized users by using a content 
delivery network and firewall. D: Explore content. Left column shows ARA parcellations transformed to the s- and 
mFOV data based on the computed transformations from the registration. Right column shows 2D axial slice from the 
pre-processed input data and 3D rendering of Caudoputamen and Hippocampal regions selected from the 
transformed ARA visualized in Neuroglancer. ARA CCFv3, Allen Reference Atlas Common Coordinate Framework 
version 3.  
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of memory to processing cores) and performs the following steps (Figure 2.1 C-D): 1) downloads 

downsampled, preprocessed data and the reference atlas data from cloud storage, 2) registers 

input data to the provided atlas, 3) transforms atlas anatomic parcellations to input data space 

and input data to atlas space, and 4) uploads transformed data to cloud storage for visualization. 

For example, for mouse brain data we use the Allen Reference Atlas (ARA) Common Coordinate 

Framework Version 3 (CCFv3), but any reference atlas or sample can be used. 

 

Transfer raw data from cloud storage 

After the cloud server is started, available SSDs must be formatted and mounted onto the 

server for use. We developed a bash script (mount_combined_ssds.sh) to do this automatically 

for any EC2 instance with SSD storage available. The raw data is then downloaded from cloud 

storage onto these SSDs. Data download is parallelized across all available cores to speed up 

the process via a Python script (download_raw_data.py). 

 

Correct local intensity 

Our local intensity correction can be applied to any mFOV samples with intensity 

inhomogeneity, though we developed our local intensity correction on LSM-imaged CLARITY 

data. For mFOV data, there are two intensity correction steps: 1) local correction per FOV and 2) 

global correction on the stitched image volume. A single intensity correction step is performed on 

on the whole image volume of sFOV data. To correct the per FOV intensity inhomogeneity, we 

developed an algorithm to estimate a multiplicative intensity correction directly from the data. Our 

algorithm begins with sub-sampling the mFOV raw data such that FOVs are uniformly sampled in 

voxel space in all three dimensions. Uniform sampling in voxel space uses the number of voxels 

in each dimension rather than their size in physical units. The amount of subsampling is a 
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configurable parameter; increased subsampling can speed up the rest of the computation but may 

provide a less accurate estimate of the intensity correction. We use a subsampling factor of two. 

Next, the mean is computed across these subsampled FOVs such that the resulting mean is a 

2D image. The multiplicative intensity correction is then estimated by applying the N4 (Nick’s 

Nonuniform Nonparametric intensity Normalization) bias correction algorithm to the computed 

mean image.12 This algorithm is available as a Python script (correct_raw_data.py). Example 

results from this local intensity correction are shown in Figure 2.2. 

 

Figure 2.2: Intensity correction on mFOV and sFOV data. A: Intensity correction per FOV. The left images show raw 
data from a mFOV dataset. The middle image shows the computed local multiplicative intensity correction that is applied 
across every FOV from the raw mFOV data. The right images show the FOVs after applying intensity correction. B: 
Effect of intensity correction on stitched mFOV data. The left column shows a single axial (top) and coronal (bottom) 
slice from the complete stitched volume from the raw data in A. The middle column shows the same axial (top) and 
coronal (bottom) slices after per-FOV correction. The right column shows the same slices after global intensity 
correction. C: Effect of intensity correction on sFOV data. Axial (top) and coronal (bottom) slices of the raw sFOV data 
before (left) and after (right) global intensity correction. FOV, field-of-view; mFOV, multi-field-of-view; sFOV, single-
field-of-view. 

Stitch mFOV data into a volume 

Stitching mFOV data into a volume was performed using Terastitcher,8 an open-source 

software for stitching terascale images. Terastitcher uses a maximum intensity projection, 

normalized cross correlation (MIP-NCC) method to align each of the individual 2D FOVs in the 
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3D volume. Generating accurate stitching results requires each 2D FOV to have some overlap 

with neighboring FOVs. The stitched image volume is saved as a 2D TIFF series on the SSDs of 

the r5d-type EC2 instance. To accelerate this process, we adapted Python scripts from 

Terastitcher to parallelize stitching across all available cores subject to memory constraints. To 

use these scripts with our pipeline, we had to first convert them to Python 3 (paraconverter.py 

and parastitcher.py). Functionality in these scripts is wrapped and available in a Python script 

(stitching.py). 

 

Upload 

Stitched data is uploaded to cloud storage, for example S3, in a highly parallelized fashion 

using cloud-volume (https://github.com/seung-lab/cloud-volume), an open-source Python 

package that can write Neuroglancer-compatible data to cloud storage. We have made 

contributions to cloud-volume to provide additional compression methods 

(https://github.com/seung-lab/cloud-volume/pull/291). The stitched data is concurrently 

downsampled using a package called tinybrain (https://github.com/seung-lab/tinybrain) for 

quicker visualization and uploaded to cloud storage. We implemented this parallelized upload 

procedure to leverage as many cores as are available subject to memory constraints 

(create_precomputed_volume.py). 

 

Correct global intensity 

To correct intensity inhomogeneity in the stitched image volume, we applied the N4 bias 

correction algorithm to a downsampled version of the whole volume in 3D.12 The downsampled 

intensity correction produced is then upsampled and applied to the native resolution data, which 

is then uploaded back to cloud storage in Neuroglancer precomputed format on a slice-by-slice 
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basis (correct_stitched_data.py). Example results from this global intensity correction are shown 

in Figure 2.2. 

 

Visualize with Neuroglancer 

Once the data is uploaded to cloud storage, we use Neuroglancer to view that data in a 

web browser. Neuroglancer stores the state of the visualizer in a JSON format which is appended 

to the URL. When visualizing many samples at once, this URL can exceed the maximum allowed 

length of URLs. To enable sharing of this URL, we implemented a URL shortener using a custom 

JSON-state (Javascript Object Notation) server with our Neuroglancer deployment 

(https://viz.neurodata.io). To enable visualization of multi-channel LSM data, we added differential 

channel coloring that has been merged into the Neuroglancer core code base.16 We also set up 

a Content Delivery Network through AWS called CloudFront on top of our S3 bucket to enable 

HTTP/2 to speed up visualization on Neuroglancer. We also added Internet Protocol (IP)-address-

based restriction to ensure limited access to private data using AWS Web Application Firewall 

(WAF). Example visualization is shown in Figure 2.3 

 

Figure 2.3 Interactive web-based visualization with Neuroglancer. A: CLARITY mouse brain with ARA parcellations 
overlaid. LSM-imaged CLARITY-cleared mouse brain with the ARA CCFv3 anatomic parcellations registered and 
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transformed to the input sample is shown. A 3D rendering of the resulting ARA brain nuclei segmentation based on our 
registration is shown in the bottom left quadrant. This data is being visualized in a web browser and is served from 
cloud storage. B: CLARITY mouse brain with selected ARA regions. The left side shows the sample from A with only 
Caudoputamen and Hippocampal regions selected from the ARA. The right side shows those regions rendered in 3D 
and overlaid on the raw data. CLARITY, Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible 
Tissue Hydrogel; ARA CCFv3, Allen Reference Atlas Common Coordinate Framework version 3; LSM, Light-Sheet 
Microscopy. 

Register to a reference atlas 

CloudReg computes affine and nonlinear transformations using a modified version of the 

Expectation-Maximization Large Deformation Diffeomorphic Metric Mapping (EM-LDDMM) 

registration algorithm.15 Our modified EM-LDDMM enables cross-modal registration by estimating 

spatially-varying polynomial transformations of the atlas intensity to match our input data 

intensities. Per-voxel error signals in our intensity transform allow detection of artifacts and 

missing tissue. These concepts are combined within an EM framework where deformation 

parameters and polynomial coefficients are updated iteratively.  

Below is a description of each variable necessary to specify an objective function to be optimized 

for image registration. 
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Name Definition To be optimized 
𝑥 A point in 3D space describing the location of a voxel.  
𝐽(𝑥) The input image which is a real-number-valued function of 𝑥 Input; Fixed parameter 
𝐼(𝑥) The atlas image which is a real-valued function of 𝑥 Input; Fixed parameter 
𝑣(𝑥) A velocity field which is a 3D vector-valued function of 𝑥 and time Yes 
φ(x) A position field which is a 3D vector-valued function of 𝑥. It includes 

a  
 
component found from integrating 𝑣(𝑥) over time and an affine 
component. 

Yes 

𝐼)(𝑥) (1, 𝐼, 𝐼!, 𝐼")# ∘ φ$%(𝑥) Yes 
𝑐(𝑥) A 4D vector-valued function of x representing the coefficients of a 3rd 

order polynomial contrast transform at each voxel in 𝐽(𝑥) 
Yes 

𝑤(𝑥) A real-number-valued function of 𝑥 taking values between 0 and 1 
representing the posterior probability that a voxel in 𝐽(𝑥) corresponds 
to some voxel in 𝐼 as opposed to missing tissue or artifact 

Yes 

σ& A positive real number representing the standard deviation of the 
noise in the image 𝐽 and a weighting of the matching term in our 
objective function. To calculate 𝑤 we assume background and 
artifact has twice and five times the standard deviation, respectively. 

Fixed parameter; 
unitless; default is 
standard deviation of 𝐽 

𝜎' A positive real number representing the weighting of the 
regularization of 𝑣 in our objective function. 

Fixed parameter; 
unitless; default is 
10,000 

𝜎( A positive real number representing the weighting of the 
regularization of 𝑐 in our objective function 

Fixed parameter; 
unitless; default is 5 

𝑎 A characteristic length scale for regularizing 𝑣 Fixed parameter; 
microns; default is 500 

𝑎) A characteristic length scale for regularizing 𝑐 Fixed parameter; 
microns; default is 750 

𝐿*/𝐿*! A highpass differential operator for encouraging spatial smoothness 
in regularization equal to (1 + 𝑎!Δ)! where Δ is the Laplacian. 

 

𝑖𝑑 Identity operator  
Table 2.1: Variables in our registration objective function defined along with default parameters and optimization conditions. 
 

 

The objective function we minimize is 
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Note that 𝑐!𝐼# is the atlas deformed and intensity-transformed to the input data. The 

highpass operator used in regularization of 𝑣 and 𝑐 were initially described in Beg et al.14 𝑤 is a 

set of weights estimated using the EM algorithm, designed to downweight voxels that contain 

missing tissue or large artifacts. For a given 𝑤, the cost is optimized over 𝑣, 𝑐, and affine 

parameters using gradient descent. This is the maximization step of the EM algorithm. For the 

expectation step, 𝑤 is updated using Gaussian mixture modeling (GMM) which depends on the 

value σ". The procedure is described in more detail in Tward et al.15 Our contribution in this work 

is twofold: (1) we introduce including 𝑐 as a function of space rather than a constant, and (2) we 

add a contrast regularization term in the objective function. 

CloudReg can be run on any two image volumes that have correspondence. We optimized 

aspects of the pipeline for mouse and rat, whole-brain, LSM-imaged CLARITY data. Specifically, 

registration is performed on a downsampled version of the input data, at 100 µm. The resulting 

transformations are upsampled and applied to the atlas to transform it to the input data coordinate 

space and the input data to the atlas space. The resulting transformations generated by EM-

LDDMM are smooth and can be upsampled with linear interpolation,15 enabling visualization of 

the registered atlas at the native resolution of our observed image. Transformations are stored on 

cloud storage with transformed images stored in Neuroglancer precomputed format for 

visualization. Our modified EM-LDDMM is available in CloudReg as a MATLAB script 

(map_multiscale_nonuniform_v02_mouse_gauss_newton.m) and exists in a fork of scikit-image, 

an open-source python image analysis toolkit (https://github.com/scikit-image/scikit-

image/pull/4390). The python script remains four-fold slower than the MATLAB script largely due 

to the relative computational efficiency of 3D interpolation. 

 

Spatially varying polynomial intensity transform 



 13 

Since the objective function we optimize (see equation above) is quadratic in 𝑐, we can 

solve for 𝑐 by solving a linear system of equations, given by 

1
σ#$
𝐿%!𝐿%!𝑐 +

1
σ"$

𝐼#𝐼#!𝑤𝑐 −
1
σ"$

𝐼#𝑤𝐽	 = 	0 

In the above expression we use the fact that 𝐿 is self-adjoint. Since the first two terms on 

the left correspond to positive semidefinite operations, we can rewrite the problem as:  

B =
I#&√w
σ"

          A =
𝐿%!
σ#

         b =
𝐼#𝑤𝐽
σ"$

 

𝐴𝐴𝑐 + 𝐵!𝐵𝑐 − 𝑏 = 0 

To improve conditioning, and using the fact that 𝐴 is easily inverted in the Fourier domain 

because it is diagonalized by the Fourier transform, we use an elimination approach, letting 𝑦	 =

	𝐴𝑐, and solving the system: 

(𝑖𝑑 + 𝐴"#𝐵!𝐵𝐴"#)𝑦 − 𝐴"#𝑏 = 0 

by subtracting a constant multiplied by the residual (the left-hand side of the above equation) at 

each step (i.e., gradient descent for the corresponding least squares problem). The code to solve 

this system and compute the coefficients 𝑐 is available in a MATLAB script 

(estimate_coeffs_3d.m). An example registration demonstrating the spatially-varying intensity 

transform is shown in Figure 2.4. 
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Figure 2.4: Registration and contrast-mapping tissue with artifacts. Top row shows an affine initialization aligning the 
ARA CCFv3 raw data to our input data generated from LSM-imaged CLARITY cleared whole mouse brain in the bottom 
row. The middle row shows the ARA transformed to match the input data with a spatially varying, cubic polynomial 
contrast transform applied. Arrowheads indicate regions of the input tissue that contained artifacts, missing data, or 
torn tissue that were mapped onto the atlas using our spatially varying, cubic contrast transform, despite these 
significant artifacts. The bottom row contains our input data with arrowheads corresponding to the middle row. ARA 
CCFv3, Allen Reference Atlas Common Coordinate Framework version 3. LSM, Light-Sheet Microscopy; CLARITY, 
Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue Hydrogel. 

Determine registration accuracy 

To determine registration accuracy, an expert placed 19 landmarks shown in Figure 2.5 

on both the ARA and three input LSM-imaged cleared tissue samples. In areas of significant 

deformation or damaged tissue, landmarks were not placed. The transformations computed in the 

registration are applied to the landmarks placed on the LSM-imaged cleared tissue data to 

transform them to the landmarks placed on ARA data. The Euclidean distance between the LSM-
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imaged cleared tissue transformed points and corresponding ARA points is computed and 

reported in microns in Table 2.1. We developed a Python script that computes registration 

accuracy given two Neuroglancer links with landmarks and computed transformations 

(registration_accuracy.py). 

 

Figure 2.5: Landmarks placed for registration accuracy assessment. Left Column: ARA landmarks. Locations of 
landmarks for assessment of accuracy shown in axial (1st row), sagittal (2nd row), and coronal (3rd row) views; 
landmarks are also shown in 3D space (4th row). Middle Column: LSM-imaged CLARTY input data landmarks. 
Locations of landmarks for accuracy shown in same views. Right Column: Input data landmarks transformed to ARA. 



 16 

Locations of CLARITY landmarks transformed to ARA shown in same views. CLARITY points are shown in magenta, 
ARA points are shown in green, and the overlap is grayscale. ARA, Allen Reference Atlas; CLARITY, Clear Lipid-
exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue Hydrogel; LSM, Light-Sheet Microscopy. 

Statistical analysis 

We computed the mean and standard deviation of landmark error across all landmarks for 

each of our three LSM-imaged cleared tissue samples and computed means across landmarks 

by region including cortex, midbrain, and cerebellum. 

 

Utility Functions 

We have also implemented a Python script to downsample and upload a 3D image stack 

to the cloud for visualization with Neuroglancer (ingest_image_stack.py). 
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3 Results 

Figure 2.1 shows an overview of the CloudReg pipeline. Data is uploaded to a web-

accessible cloud storage provider; CloudReg is launched from a local machine (Figure 2.1A). The 

pipeline is run automatically in the cloud. CloudReg starts a cloud computing instance with 

sufficient RAM to perform pre-processing and registration, downloads raw data onto that server, 

corrects local intensity, stitches, corrects global intensity, and uploads pre-processed data to 

cloud storage for online visualization and analysis with Neuroglancer (Figure 2.1B). Next, 

registration is started by providing an affine initialization to roughly align an atlas to the input data 

and is automatically updated to include non-linear deformation via an expectation-maximization 

optimization process. Then, the atlas anatomic parcellations are automatically transformed to the 

input data at high resolution for visualization (Figure 2.1C). All the data is stored in the cloud, and 

then routed through a content delivery network and firewall to facilitate efficient and secure 

visualization via Neuroglancer (Figure 2.1D). The resulting data can be shared by sending a 

Universal Resource Locator (URL) and visualized from anywhere with a web browser and internet 

connection. Our deployment of Neuroglancer enables instant visualization of multi-channel, 

terabyte-scale datasets and provision of a shortened URL with one-click to share data views and 

analysis results (Figure 2.3).16 

We initially developed CloudReg using high-resolution, LSM-imaged CLARITY mouse 

brain data6 and used the Allen Reference Atlas (ARA) Common Coordinate Framework Version 

3 (CCFv3) as the reference atlas (Figure 3.1, rows 1 and 2).22 

Tissue clearing procedures and optics of LSM introduce sample-specific artifacts and 

intensity inhomogeneity in the imaged samples, which we aimed to correct with our mFOV-
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based pre-processing algorithm. Intensity inhomogeneity manifests as a decay of intensity away 

from the center of each FOV and, for mFOV samples, the center of the stitched whole brain. 
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This makes automatic, intensity-based registration a significant challenge. To minimize this per-

Figure 3.1: CloudReg pipeline registration outputs from multiple species imaged with various modalities. Each row 
demonstrates registration of either mouse, rat, macaque, or human brain imaging data to the corresponding atlas 
using CloudReg. The leftmost column of images shows the input data; the data from the autofluorescence channel 
is used for samples imaged with a light-sheet microscope (LSM). The rightmost column shows the atlas 
parcellations overlaid on one hemisphere of the atlas image data. The second and third columns show the 
respective atlas parcellations transformed to and overlaid on the original samples and vice-versa, respectively. 
CLARITY, Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue Hydrogel; COLM, 
CLARITY-Optimized Light-sheet Microscopy; GB, Gigabyte; iDISCO, immunolabeling-enabled three-dimensional 
imaging of solvent-cleared organs; MB, Megabyte; Micro-CT, Micro-Computed Tomography; TB, Terabyte. 
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FOV artifact, we developed a parallelized intensity correction algorithm based on the hypothesis 

that the introduced intensity inhomogeneity is the same in each FOV. To efficiently compute this 

correction, we uniformly subsample the mFOV data in three dimensions, compute the mean 

across subsampled FOVs in parallel, and apply the N4 bias correction algorithm12 to the 

resulting mean FOV (Figure 2.2A). Our intensity correction algorithm accounts for differences in 

tissue scattering from different clearing methods by estimating the intensity correction directly 

from the data. This pre-processed data is then automatically aligned and stitched using 

Terasticher, an open-source tool for stitching teravoxel microscopy datasets.8 To minimize 

intensity inhomogeneity at the whole-brain scale, we apply the N4 bias correction algorithm to 

the whole stitched volume directly (Figure 2.2B-C). 

The fully pre-processed sample, which can be acquired from a variety of modalities in a 

number of species, is then registered to a corresponding reference atlas. To enable registration 

of LSM-imaged tissue samples, we developed a spatially-varying polynomial intensity transform, 

expanding the scope of samples that can be automatically registered (Figure 3.1; Figure 3.2;). 

CloudReg computes affine and nonlinear transformations by building on the Expectation-

Maximization Large Deformation Diffeomorphic Metric Mapping (EM-LDDMM) registration 

algorithm that we previously developed.15 Our extension of EM-LDDMM built into CloudReg 

enables cross-modal registration of a diversity of brain volume samples with artifacts, tears, and 

deformations (Figure 2.4). 

To assess registration accuracy, we used Target Registration Error (TRE) by computing 

the Euclidean distance between 19 landmarks (Figure 2.5) placed by experts on the ARA and our 

samples, where possible. TRE for samples 1, 2, and 3 was 2.27 ± 0.86 voxels, 2.42 ± 1.31 voxels, 

and 2.74 ± 0.88 voxels, respectively (Table 2.1). These voxels are 100 µm indicating the 

resolution at which the registration was performed. Measurements and summary statistics can be 

found in Table 2.1. Examining landmark error by brain region shows regional error differences, 
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reflecting gross regional deformations. Mean landmark error for midbrain, cortical, and cerebellar 

regions across all samples are 1.47, 2.32, and 2.65 voxels, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: iDISCO rat hemisphere registered to Waxholm atlas.23-25 A: Input data. iDISCO-cleared light-sheet 
microscopy-imaged rat brain region of interest. B: Waxholm atlas parcellations overlaid on input data. C: Input data 
transformed to Waxholm atlas. D: Waxholm atlas raw data with parcellations overlaid. iDISCO, immunolabeling-
enabled three-dimensional imaging of solvent-cleared organs. 
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Landmark names Sample 1 (µm) Sample 2 (µm) Sample 3 (µm) Category 

1 n/a 160 184 cortex 

2 172 142 458 cortex 

3 201 262 336 cortex 

4 236 279 280 cortex 

5 85 252 293 cortex 

6 183 320 312 cortex 

7 315 200 252 cortex 

8 358 244 146 cortex 

9 210 290 312 cortex 

10 207 153 304 cortex 

11 257 282 170 cortex 

12 267 321 237 cortex 

13 178 37 131 cortex 

14 192 135 165 cortex 

15 106 176 71 midbrain 

16 117 111 299 midbrain 

17 223 106 n/a cerebellum 

18 n/a 216 n/a cerebellum 

19 367 384 n/a cerebellum 

MEAN 227 242 274  

STDEV 74 64 85  

MEAN (cortex) 220 220 256 232 

STDEV 69 84 91 81 

MEAN (cerebellum) 295 235 N/A 265 

STDEV 102 140 N/A 121 

MEAN (midbrain) 111 144 185 147 

STDEV 8 46 161 71 
Table 3.1: Euclidean distance between corresponding pairs of manually placed landmarks in the LSM-imaged 
CLARITY and SHIELD cleared input data and ARA is given. Mean and standard deviation (STDEV) of the landmark 
error is given for each sample; the mean and standard deviation of landmark error by brain region is also given for 
each sample. LSM, Light-Sheet Microscopy; CLARITY, Clear Lipid-exchanged Anatomically Rigid 
Imaging/immunostaining-compatible Tissue Hydrogel; SHIELD, Stabilization to Harsh conditions via Intramolecular 
Epoxide Linkages to prevent Degradation; ARA, Allen Reference Atlas. 
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4 Discussion 

The region with the greatest error, the cerebellum, was most often subject to gross 

deformation including rotation and translation relative to the rest of the brain. By comparison, the 

midbrain, a relatively fixed structure in the brain and scan, had the lowest error. However, we 

found that the midbrain is most subject to the two artifacts typical of tissue clearing and LSM 

methods: intensity inhomogeneity and hydrogel-based deformation. Our TRE demonstrates that 

CloudReg handles artifacts typical of hydrogel-based tissue clearing methods including intensity 

inhomogeneity, hyperlocal structural deformation (nonuniform, micron-scale deviation from true 

anatomic position), and local missing tissue exceedingly well. CloudReg achieves this by relying 

on a rough affine initialization. Thus, in gross regions of the brain that have been displaced relative 

to the rest of the intact brain, the error will increase. 

Registration is a crucial first step in analyzing a single or cohort of samples but can be 

more informative if combined with additional downstream analysis methods including cell and 

axon detection. A potential extension of our current work will be to accelerate the registration 

component of the code by leveraging our existing C++ implementations 

(https://github.com/InsightSoftwareConsortium/ITKNDReg). 

CloudReg can correct intensity, align and stitch, register, and visualize terabyte-scale 

brain volumes with artifacts and tears. CloudReg is immediately applicable to brain volumes 

spanning a variety of species and imaging modalities including mouse, rat, monkey, and human 

brain imaging. 
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