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Abstract

Emotions play a vital role in our daily life as they help us convey information

impossible to express verbally to other parties. While humans can easily

perceive emotions, these are notoriously difficult to define and recognize

by machines. However, automatically detecting the emotion of a spoken

conversation can be useful for a diverse range of applications such as human-

machine interaction and conversation analysis. In this thesis, we present

several approaches based on machine learning to recognize emotion from

isolated utterances and long recordings.

Isolated utterances are usually shorter than 10s in duration and are as-

sumed to contain only one major emotion. One of the main obstacles in

achieving high emotion recognition accuracy is the lack of large annotated

data. We propose to mitigate this problem by using transfer learning and data

augmentation techniques. We show that x-vector representations extracted

from speaker recognition models (x-vector models) contain emotion predictive

information and adapting those models provide significant improvements in

emotion recognition performance. To further improve the performance, we

propose a novel perceptually motivated data augmentation method, Copy-

Paste on isolated utterances. This method is based on the assumption that the
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presence of emotions other than neutral dictates a speaker’s overall perceived

emotion in a recording.

As isolated utterances are assumed to contain only one emotion, the pro-

posed models make predictions on the utterance level. However, these models

can not be directly applied to conversations that can have multiple emotions

unless we know the locations of emotion boundaries. In this work, we propose

to recognize emotions in the conversations by doing frame-level classification

where predictions are made at regular intervals. We compare models trained

on isolated utterances and conversations. We propose a data augmentation

method, DiverseCatAugment based on attention operation to improve the

transformer models. To further improve the performance, we incorporate the

turn-taking structure of the conversations into our models.

Annotating utterances with emotions is not a simple task and it depends

on the number of emotions used for annotation. However, annotation schemes

can be changed to reduce annotation efforts based on application. We consider

one such application: predicting customer satisfaction (CSAT) in a call center

conversation where the goal is to predict the overall sentiment of the customer.

We conduct a comprehensive search for adequate acoustic and lexical rep-

resentations at different granular levels of conversations. We show that the

methods that use transfer learning (x-vectors and CSAT Tracker) perform best.

Our error analysis shows that the calls where customers accomplished their

goal but were still dissatisfied are the most difficult to predict correctly, and

the customer’s speech is more emotional compared to the agent’s speech.
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Chapter 1

Introduction

Speech is one of the most important mediums of communication for humans

while interacting with other humans. In general, human interaction using

speech contains two channels: verbal and non-verbal (Cowie and Douglas-

Cowie, 1995). The verbal channel transmits linguistic information – the

message we utter explicitly to the partner. Whereas non-verbal channel en-

codes more implicit information such as emotion, intent, speaker identity,

pauses, etc. There is significant evidence that non-verbal communication

plays a crucial role in human interactions (Bambaeeroo and Shokrpour, 2017;

Knapp, Hall, and Horgan, 2013; Mehrabian, 2017). Non-verbal communica-

tion helps to coordinate subjects and evoke appropriate responses (Cowie

et al., 2001). One of the important factors in non-verbal communication is emo-

tion. One’s emotions have the capability to alter the conversational partner’s

responses whether positively or negatively (Schoenewolf, 1990). Research

shows that people remember events with intense emotions more easily than

events with neutral emotions suggesting that emotions play a role in our

1



memory and learning processes (Tyng et al., 2017). Take an example of moti-

vational speeches. It is hard to imagine the audience connecting to the speaker

and getting anything meaningful out of the speech if it does not have any

emotions. Sometimes, our emotions (or other emotions in our life) can affect

our decision-making and judgment too (Lerner et al., 2015).

As emotions are key to almost every part of our daily life, automatically

recognizing them would help to improve the quality of human lives. In

human-human interactions, automatic emotion recognition could help us to

understand the mental state of the speakers. Building an emotional profile

of the patients could help doctors to diagnose better in the case of mental

health disorders. Authors in (Mäntylä et al., 2016) use emotion analysis to

predict employee burnout and productivity in the software engineering field.

In service-related applications, recognizing emotional segments (specifically

negative regions) could help the companies to nudge/train the agents for

better responses. Emotional profiles of customers/speakers could serve as a

guideline for machines in human-machine interactions. They can be useful

to provide personalized emotional responses from personal assistants like

Alexa and Google Home. Additionally, there are a number of applications

such as automatic analysis of emergency calls for quick response, providing

appropriate recommendations to car drivers based on their mental state,

synthesizing natural speech for a better experience, and so on. The main goal

of all these applications is to improve the quality of human life.

Emotion has been studied extensively in multiple disciplines with the

goal of understanding and recognizing it. The field of affective computing

2



deals with building automatic systems to recognize or synthesize emotions.

This field considers the speaker’s emotional display for recognition rather

than an emotional experience. Emotional experience is mainly dealt with

in psychology and neuroscience. The emotional display is what we observe

through physiological changes or more generally through signals emanating

from the subject.

Automatic speech emotion recognition (SER) concerns building automatic

systems to recognize speakers’ emotions from their speech. It can be broadly

classified into two types: SER for isolated utterances and SER for long record-

ings. Isolated utterances are usually shorter than 10s and are assumed to

contain single major emotion. Utterances longer than 10s can be considered

as long recordings and contain more than one emotion. These long recordings

can be monologues that contain only one speaker or dialogues between multi-

ple parties. Examples of monologues include broadcast news, classes taught

by teachers where the anchor/teacher speaks for a long time. In this thesis,

we present several machine learning approaches for SER on both isolated

utterances as well as long recordings. We considered three types of isolated

utterances: 1) recorded in isolation using actors with targeted emotions, 2) cut

from conversations that are meant to produce emotions in an induced manner,

and 3) cut from spontaneous podcast conversations. For long recordings, we

considered conversations between two speakers.
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1.1 Current challenges and proposed approaches

The majority of the research on SER using machine learning is supervised

i.e., it requires some data with emotion annotations. The important premise

of this research is that there exist some emotional cues in the input signal

which enable automatic recognition of emotion. For example, emotion corre-

lates/attributes for acoustic signals include pitch, speaking rate, signal power

among others, and for linguistic signals word meaning. Collecting data with

emotion annotations requires noting down the listener’s perception which

could depend on a lot of factors. There is significant evidence that emotion

perception can depend on the demographics of the speaker and listener, the

relation between speaker and listener, and the context of the emotion ex-

pression (Cauldwell, 2000; Campbell et al., 2014; Lindquist, MacCormack,

and Shablack, 2015). Due to this inherent lack of consistency in the annota-

tion, building automatic systems is difficult which mainly depends on the

consistent occurrence of emotional cues in the signal and the corresponding

emotional label. To improve annotation consistency, annotation with multiple

annotators is considered to build models. However, this process is very costly

and time-consuming. Sometimes the annotators need special training too. In

addition, current automatic systems which majorly use machine learning are

data-hungry i.e., they perform better with more data (Hestness et al., 2017).

Reliance on the annotations can be reduced if these automatic systems are

efficient. One way to overcome this problem is exploiting advances in related

tasks such as speech recognition (where annotated data is plenty) by trans-

ferring the learned knowledge to recognize emotions. The rationale behind
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this approach is that the source task (from which we transfer knowledge) and

the target task share some characteristics, and using that knowledge could

simplify the learning process for the target task. This approach of transfer-

ring knowledge is referred to as transfer learning in the machine learning

community. In this thesis, we propose to transfer knowledge from speaker

recognition technology to emotion recognition (Chapter 3, 4) and show im-

provement on both isolated utterances as well as long recordings. Another

machine learning technique that is commonly used in limited data scenarios

to improve performance is data augmentation. (Tóth, Sztahó, and Vicsi, 2008)

reports that the presence of emotion other than neutral in a speech utterance

has more influence on the perception of the speaker’s emotion. Based on

this idea, we propose an augmentation method, CopyPaste to improve emo-

tion recognition performance on isolated utterances (Chapter 3). The main

principle behind CopyPaste is based on an observation that human emotion

perception is mainly affected by the non-neutral parts of a speech signal. For

conversational emotion recognition (CER), we propose the DiverseCatAug-

ment (DCA) augmentation method motivated by the inner workings of the

attention mechanism in transformer models.

It is assumed that only one major emotion exists in the isolated utterances

and hence most systems operate in utterance-level classification framework

i.e., the systems are built to predict one emotion for the input utterance. How-

ever, as multiple emotions can exist in long recordings, an utterance-level

classification framework can not be applied unless we know locations of emo-

tion segments. In case we know those boundaries, we can cut the recordings
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into the segments and process each segment individually in utterance-level

classification framework. But, obtaining those boundaries is not an easy task

even with human annotators because often the emotion changes are grad-

ual. In scenarios like friendly conversations, we can make assumptions like

each speaker turn contains only one emotion as they are often shorter than

5s. But for other situations like broadcast news, there is no such assump-

tion we can make when using only audio (visual change can be used as a

heuristic if available). To overcome this limitation, we propose to achieve

CER using frame-level classification. By formulating SER from isolated ut-

terances as a frame-level classification task, we compare models trained on

isolated utterances and conversations. Then, we present models that can

exploit conversational structure (turn-taking patterns) when available.

As discussed above, emotion annotation is not a simple task – it is very

expensive, time-consuming, and the emotion perception is not unique. How-

ever, annotation schemes can be changed to reduce annotation efforts based

on application. For example, for some applications, the goal is to only know

the polarity of emotion for the whole conversation i.e., positive or negative

emotion instead of more detailed emotions like angry, happy, sad, and disgust.

One such application is predicting customer satisfaction (CSAT) towards their

interaction with an agent in customer care center calls. In this case, improve-

ments can be made to the service by just knowing whether the customer is

satisfied with the service. In this work, we address CSAT to answer questions

such as 1) How useful is information existing at different granular levels of

conversations to predict CSAT rating? 2) Agent’s speech is enough for CSAT?
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(useful when having privacy issues with storing customer’s speech) 3) How

well can we predict CSAT from just the last few seconds of the call? 4) Is it

enough to resolve the customer’s issue to keep the customer happy with the

service? We present experiments aiming to answer these questions using real

customer care center calls with self-reported satisfaction ratings.

1.2 Research contributions

• Exploring pre-trained models trained to discriminate speakers for emo-

tion tasks on three datasets collected with different elicitation methods

• Adaptation of speaker recognition models for emotion recognition

• A novel perceptually motivated augmentation procedure, CopyPaste

for emotion recognition

• A method for emotion recognition in conversations that do not require

segmentation information

• Several methods to incorporate interlocutor information into emotion

recognition models on segmented as well as unsegmented conversations

• A comprehensive analysis of feature representations at different granular

levels for customer satisfaction prediction

• Customer satisfaction prediction from acoustic and linguistic modalities

and their fusion
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1.3 Thesis outline

In Chapter 2, we present a brief background on emotion and its automatic

recognition from speech signals. First, we discuss different theories/perspectives

of emotions (discrete Vs. dimensional) and their relevance to automatic emo-

tion recognition. Then, we discuss several components of dataset preparation

such as stimulus types, emotion elicitation methods (acted/induced/spontaneous),

and evaluation of emotion. Then, we detail each part of the automatic emotion

recognition systems pipeline and relevant literature.

In Chapter 3, we present techniques for emotion recognition on isolated

utterances that contain single majority emotion. In particular, we explore

transfer learning from speaker recognition models for emotion recognition.

We show that speaker embeddings (x-vectors) (Snyder et al., 2018) do con-

tain emotion-relevant information followed by an adaptation of the speaker

recognition model for emotion recognition. To improve SER performance

further, we propose a perceptually motivated data augmentation technique,

referred to as CopyPaste. This technique operates on the idea that listeners

are receptive to non-neutral emotions even if they occur for a short duration

in an utterance. We present three CopyPaste schemes and show experiments

using them. We compare with a widely used noise augmentation technique

in both clean and noisy test conditions. one of the main limitations of the

models trained on isolated utterances is that they may not be applicable for

conversations or in general long recordings with multiple emotions.

Chapter 4 presents techniques for emotion recognition in conversations.

Instead of an utterance-level classification framework that is used to recognize
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emotion from isolated utterances, we perform frame-level classification to

achieve conversational emotion recognition (CER). We propose to use trans-

formers to achieve CER and compare with convolutional and LSTM based

models. Based on insight from the inner workings of the self-attention mecha-

nism, we propose an augmentation method, DiverseCatAugment (DCA), to

train better transformer models. We evaluate the models trained with isolated

utterances on conversations to quantify the importance of context and also to

evaluate their robustness in the presence of multiple emotions from multiple

speakers. As the speakers’ emotions depend on partners’ responses and their

emotions, we hypothesize that infusing speaker information into the models

improves CER performance. We present several techniques to infuse speaker

information with and without ground truth segmentation information.

In Chapter 5, we address customer satisfaction prediction. We present a

comprehensive analysis of feature representations at multiple granular levels

that maximize sentiment prediction accuracy. Our analysis consists of two

modalities – acoustic and linguistic. For acoustic modality, we evaluate fea-

tures extracted from frame-, turn- and call-level for sentiment prediction. For

linguistic modality, we evaluate features extracted from word-, turn-, segment-

and document-level. Apart from the acoustic and linguistic modalities, we

also present heuristic-based turn-taking features to predict sentiment. We

show that through the fusion of the modalities and the turn-taking features,

we can improve sentiment prediction accuracy. Then, we answer several

important questions such as "Whose (agent or customer) data is most corre-

lated with customer sentiment?", "Which part of the calls are more important
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for sentiment prediction?", and "The knowledge of task completion status is

useful to predict sentiment more accurately?".

Finally, in Chapter 6, we present conclusions of this thesis and future

directions.
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Chapter 2

Background

2.1 Emotion

Emotion is a complex phenomenon that happens in not only humans but also

in other living organisms (Darwin, 2015). Emotional instincts help us to assess

threats and react appropriately in order to survive and grow. Some argue

that emotion is crucial for our evolution (Izard, 1993). Emotional experience

and its display require coordination of several processes – cognitive, neural,

physiological – for a given stimulus (Schachter and Singer, 1962). The stim-

ulus can be a physical event, recalling past memories, or social interaction.

Experiencing emotion can be voluntary or involuntary and it varies from

person to person based on their own past experiences.

Different disciplines study emotion from different points of view. Emotion

is mainly viewed as an individual experience in psychology where they study

why emotion is experienced in a subject and what is its corresponding stimu-

lus (James, 1948; Cannon, 1927; Schachter and Singer, 1962). There are several

psychology theories – physiological, neurological, cognitive theories – each
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arguing with different order of events that are responsible for emotions. In

sociology, emotion is viewed as a social signal and studies its display mech-

anisms, their meanings, and effects on the observers in social life (Hatfield,

Cacioppo, and Rapson, 1993; Bericat, 2016). In other words, psychology inter-

prets emotion from a cause point of view and sociology from an effect point

of view (Cowie and Cornelius, 2003). Note that, the display may not be what

the person is actually experiencing. A common example is displaying happy

emotion (smiling) when experiencing anger. Affective computing deals with

developing mathematical models to recognize and synthesize emotions (Pi-

card, 2000). This field majorly considers emotion as a social signal to develop

models i.e., it attempts to deal with physiological/bodily reactions which are

on display (facial changes, vocal changes) caused by stimulus (an activating

event). It is impractical to consider the psychology (cause) point of view in

affective computing because generally, we do not have access to the processes

causing the emotions.

Below, we discuss the early conceptualization of emotion and its relevance

in automatic emotion prediction. We first review three prominent theories of

emotion – discrete model, dimensional model, and Plutchik’s emotion wheel.

Then, we discuss several types of emotions (acted/induced/spontaneous) and

how they can be produced and collected in order to build datasets. Finally,

we discuss automatic emotion recognition from the speech on the collected

datasets.
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2.1.1 Discrete model of emotions

The discrete model of emotions assumes there are a set of basic emotions

with which almost all emotions can be expressed. The most commonly con-

sidered emotions in this basic set are angry, happy, fear, disgust, sad, and

surprise (shown in Figure 2.1a). The classical theory of emotions, proposed

by Darwin (Darwin, 2015) in the 1890s is the main proponent of this model

and supported and extended by many psychological theorists later (Ekman,

2006). Renowned researcher Paul Ekman in his 1969’s work (Ekman, 1969)

even claims that these basic sets of emotions are universal. Support for these

basic sets of emotions is usually from two points of view: biological and

psychological. The biological point of view assumes that these basic sets of

emotions have biological fingerprints that cause these basic emotions with

triggers from outside world objects or events. Whereas the psychological

point of view assumes eliciting conditions are elementary for the basic set of

emotions and also that other emotions can be derived solely from them.

Even though the discrete model of emotions is simple and highly useful

for research, it has also drawn a lot of criticism mainly for its assumptions

such as biological fingerprints existence, and the elementary nature of the

basic emotions (Barrett, 2017). There has been a lot of disagreement about

what basic emotions set should contain and why (Ortony and Turner, 1990).

Several works use a wildly varying set of emotions from just 2 emotions to 7

emotions (Koolagudi and Rao, 2012). One argument often made against the

basic set of emotions is by showing that emotion depends on culture (Scherer,

Banse, and Wallbott, 2001). A culture can be defined as a set of concepts in
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agreement with the community of people. Hence, a different group of people

has different rules and new rules can be added with time leading to a variety of

emotional signals. It suggests that we can not have a basic set of emotions that

works across cultures. (Russell, 1991) argues that emotions are not categorized

similarly across cultures and their definitions and boundaries vary depending

on the culture. Some cultures might differentiate some emotions while others

group them into one class.

Relevance to automatic speech emotion recognition (SER): The basic set

of emotions are intuitive – uses everyday language – and hence easier for

annotation in that annotators may not need special training. However, this

type of simple annotation poses difficulties for automatic prediction. Each

emotion class encapsulates a lot of similar emotions and there is no way to

discriminate them when using basic set annotation. For example, angry can

be hot anger or cold anger. Hot anger is usually loud or high arousal; cold

anger sounds more like neutral. Similarly, sad can have several variants such

as quiet sorrow and crying despair. These variants may not have similar

vocal (or facial) characteristics making the automatic prediction challenging.

Moreover, the lack of clear boundaries between these emotions poses problems

for annotation. One study found that more classes for annotation lead to less

agreement (Aman and Szpakowicz, 2007a) supporting a lack of boundaries

between emotion classes. Even with 2-class and 3-class annotation (sentiment

task), the inter-annotator agreement is not higher than 80%. Note that the

agreement level can change depending on other factors such as spontaneity

of the data, instructions to the annotators. The level of disagreement and the
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(a) Ekman’s basic emo-
tion model

(b) Russel’s circumplex
model

(c) Plutchik’s emotion
wheel

Figure 2.1: Various ways of conceptualization of emotion. (Figures source: Wikicom-
mons)

depending factors to some extent explain why different works use a different

number of emotions for annotation and hence it is safe to say that annotation

of the emotions keeping the application in mind is important. For example,

consider a call center setting where the goal could be transferring to a human

agent from an automated system as soon as the customer shows signs of

dissatisfaction. In this application, we can group all the negative emotions

angry, sad, disgust into one class and, happy and neutral into another class.

Also, treating these basic emotions independently and classifying them into

one of the classes may not be ideal (especially when considering just basic

emotions because in many cases, these emotions occur together). From the

analysis of a text dataset, XED, authors in (Öhman, 2020) report that anger

and disgust occur together very often; anticipation, joy, and trust occur in

combinations.

Irrespective of the disagreements, a discrete model of emotions with a basic

set is widely used for automatic recognition mainly because of the annotation

difficulties with more classes of emotion.
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2.1.2 Dimensional model of emotions

The dimensional model proposes that there are abstract independent dimen-

sions that can be used effectively to describe almost all emotions (refer to

Figure 2.1b). Usage of the dimensional model can be traced back to the early

20th-century (Wundt and Judd, 1902). In this model, researchers formulate

a set of questions to probe what a person feels when a stimulus is presented.

These questions are aimed at revealing different aspects of the perception such

that complete feeling can be described. The responses to the questions are

usually the degree of experience/feeling. For example, a question could be

like this "on a scale of 1-10, rate your urge to hit or break something after hear-

ing/watching this stimulus". Then, using principal component analysis most

important components can be extracted from the responses vector. Most often,

researchers found that valence, arousal, and dominance correspond to the

directions with maximum variance. Valence denotes the positivity/negativity

level of perception for the given stimuli. For example, happy is a positive emo-

tion and sad is a negative emotion. Some works use different adjectives such

as pleasure/displeasure and happy/unhappy among others (Mehrabian and

Russell, 1974). Arousal (calm/active, passive/active) describes the tendency

to act. It signifies the level of activeness of the speaker. For example, anger has

higher arousal and sad has lower arousal while both have negative valence.

Dominance (weak/strong, control/power) describes the domination of the

stimuli. It signifies the degree of control a person has over the corresponding

situation.

One design choice in the dimension extraction process that could lead to
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different results is formulating the questions and the corresponding stimuli.

It requires thorough knowledge of emotions. If the stimuli or the questions

mainly concern one dimension, say arousal, then the result would be just one

dimension capturing nearly 100% data variation. (Russell, 1980) uses only

28 stimuli while (Morgan and Heise, 1988) uses 112 stimuli. Many studies

report just 2 dimensions ignoring dominance (Russell, 1980; Kuppens, 2008).

One limitation ignoring dominance is that anger and fear emotions overlap

in arousal-valence space – anger has higher dominance whereas fear is more

towards submissive (lower dominance). However, there are studies that

argue even three dimensions are not enough (Fontaine et al., 2007; Cochrane,

2009). Most of the works have arousal, valence, and dominance dimensions

in common in spite of the disagreements and we think that more research is

needed to determine the optimal number of dimensions.

Advantages of the dimensional model are relative easiness to cover a large

range of emotions compared to a discrete model with basic emotions and

also its suitability for continuous annotation of emotion. In practice, our

emotions vary continuously, and annotating with dimensions makes more

sense compared to discrete emotions. The dimensions are not as intuitive as

discrete emotions (uses everyday language for the class descriptions). Hence,

it requires a bit of training for the annotators.

2.1.3 Discrete Vs. Dimensional and Plutchik’s emotion wheel

The discrete model offers descriptions in everyday language and the dimen-

sional model offers descriptions in abstract dimensions. Both models provide
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ways to describe emotions but none of them may not be enough to completely

represent all emotions in reality. There is some evidence that shows the best

model of emotions for annotation could depend on individual annotators,

adding to the already long list of annotation challenges (Barrett, 1998). The

authors observed that individuals who focus mainly on valence when label-

ing their own emotional experiences are likely to group multiple discrete

emotions together i.e., they report multiple emotions together more often.

On the other hand, individuals who focus on both arousal and valence are

likely to report discrete emotions with less co-occurrence. The authors suggest

that it might be useful to view the dimensions (valence and arousal) as a

function of discrete emotions or the other way around. In other words, one

perspective can be expressed as a function of perspective, and the availability

of both perspectives could enhance our understanding of the speaker’s state.

However, we think that care needs to be taken in transforming from one

perspective to another. It is well known that the maximum level of loudness

could vary among speakers. And, as loudness is one of the acoustic correlates

of arousal, it creates disharmony among speakers when transformed from the

dimensional model. This problem can be avoided in two ways: one is having

access to the reference level of each speaker and another is using a different

function for each speaker.

The drawback of categorical emotion labels is that the intensity of the emo-

tion is not known from the label whereas dimensional labels describe intensity

to some extent. On the other hand, the dimensional model is not intuitive

and may need special training for annotators. Plutchik proposed an emotion
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wheel considering both discrete and dimensional perspectives (Plutchik, 1980).

In this wheel (shown in Figure 2.1c), emotions are arranged in a circumplex

like in Russel’s dimensional circumplex (Russell, 1980) based on the similarity

of emotions. There are several layers of emotion wheels in a concentric man-

ner to consider varying intensities (arousal dimension) and at the same time

treat the emotions as discrete categories. Emotions in the upper wheels are

represented as combinations of adjacent emotions in the inner wheels consid-

ering the basic emotion theory premise that new emotions can be formed by

combining basic emotions. However, one major criticism of this theory is that

emotions at the opposite ends of the wheel can not be combined. For example,

joy and sad can not be combined whereas in reality, people do experience

joy and sad at the same time (parents feeling when children leave them for

college). Even though Plutchik’s emotion wheel offers arguably better concep-

tualization compared to discrete- and dimensional-model of emotions, it is

hard to adapt for automatic systems for practical reasons such as annotation

difficulties. Next, we discuss several ways of building datasets using discrete

and dimensional models’ perspectives.

2.2 Building datasets

A number of parameters play an important role in building/collecting a

dataset. From a data collection point of view, some of the parameters that

need attention are emotion elicitation methods, recording conditions, the lan-

guage of the dataset, and the demographics of the speakers. From a data

19



annotation point of view, those parameters can be a type of annotation (contin-

uous/segmental, dimensional/categorical), set of emotion labels, annotator

demographics, availability of meta-information to the annotators such as con-

text and speaker profile. Choosing these parameters is mostly guided by the

targeted purpose of the dataset.

Emotion datasets can be broadly classified into three types depending on

the elicitation methods used to emotions in subjects: acted emotions, induced

emotions, and spontaneous emotions. Below, we explain each of these types

followed by evaluation/annotation of emotion and factors that influence the

perception. For each type of emotion, we discuss general data collection

procedures followed, suitable annotation mechanism (discrete-/dimensional-

model), and some important characteristics.

2.2.1 Acted emotions

In this setup, the data collection group recruits few actors to just act out

target emotions for a pre-defined set of phrases. Sometimes, actors are given

prototypical examples of how an emotion sounds. Examples of acted emotion

datasets are Crema-D dataset (Cao et al., 2014), EmoSpeech (Banga et al., 2019),

MASC dataset (Wu et al., 2006). Acted datasets are more commonly annotated

with discrete emotions because annotating with the dimensional model of

emotions produces data points along the arousal-valence circle as the acted

emotions are most often extreme. We can obtain higher agreement among

annotators for two reasons: actors attempt to clearly express the emotions and

most parameters such as context, stimuli are in our control.
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As acting out emotions involve intentional emotional display, their charac-

teristics may not match real-life spontaneous emotions. For example, raising

the pitch for anger, high signal power (louder) for anger, the slow speaking

rate for sad in acted emotions whereas their corresponding spontaneous emo-

tions may not have these characteristics. In other words, actors, many times,

overact the emotions. Hence, the conclusions drawn from the studies on acted

emotions may be entirely different from reality (Batliner et al., 2003). But, there

can be some situations acted emotions resemble real emotions. For example,

life-threatening situations like fire and violence do produce intense emotions

in humans.

The majority of the research on automatic emotion prediction focused on

acted emotions due to several reasons. One reason could be that automatic

prediction is a challenging task and acted emotions could simplify the task. It

also eliminates the context parameter which arguably is the most important

factor that influences emotion in real conditions. Another reason could be that

natural data is very difficult to obtain.

2.2.2 Induced emotions

Unlike acted emotions, researchers attempted to induce emotions by putting

the subjects through situations. This method produces emotions close to nat-

ural. Emotions in subjects can be evoked in several ways and they can be

broadly classified into 5 methods: playing music, visual stimuli, autobiograph-

ical recall, imagery, situational procedures (Siedlecka and Denson, 2019). The
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situational procedure often involves creating a social situation that often peo-

ple face in real-life. For example, questioning the subject’s self-worth, creating

an uncomfortable situation like playing loud music, giving feedback on their

performance, smelling odors. Visual stimuli include playing a video, showing

an image. Recalling personal memories involving emotions is considered

under autobiographic recall. Imagery includes imagining a scenario, reading

emotionally provocative scripts, and usually, in an interactive manner.

Each of these methods evokes emotions using different means and hence

they vary in terms of their effectiveness in evoking certain emotions. Authors

in (Siedlecka and Denson, 2019) recommend autobiographical recall and

imagery for anger elicitation; visual stimuli for disgust; situational procedures

and visual stimuli for surprise; all methods except situational procedures for

happy; situational procedure for fear; visual stimuli for sadness. However,

authors in (Zhang, Yu, and Barrett, 2014) suggest using a combination of these

methods would be more effective compared to any single procedure.

Datasets with induced emotions are annotated with both discrete emotions

and dimensional attributes. In general, agreement among annotators in la-

beling these utterances is lower than acted emotional utterances. One of the

example datasets for the induced emotions is IEMOCAP dataset (Busso et al.,

2008). Even though the emotional utterances are less acted, the consciousness

that subjects feel when they are being recorded could affect the way of expres-

sion (Labov, 1972). Also, the familiarity of the subjects involved could limit

the naturalness of the responses. Unfamiliar subjects tend to be more formal

and even if the subjects are familiar, the recording setup could influence them
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to be less friendly and more formal. Hence, this kind of data could be limited

to only a few scenarios.

2.2.3 Spontaneous emotions

Spontaneous emotions are what we experience in our daily life. Recognizing

these emotions is very hard compared to acted and induced emotions because

of the subtle variations humans use to express them. Also, many times what

we express and how we express could depend on a lot of factors that may not

be available at the time of recognition. For example, the comfort level of two

persons talking to each other could change the dynamics of the conversation.

And, this comfort level is difficult to measure/consider for automatic systems

or even for human evaluation.

Collecting natural data is highly difficult as the subjects are influenced if

they know that they are being monitored (Observer’s paradox) (Labov, 1972)

and doing without their knowledge raises ethical problems. One problem that

could arise in collecting datasets with spontaneous emotions is the skewed

distribution of emotions as humans majority of the time are neutral. This

problem is evident in the MSP-Podcast dataset (Lotfian and Busso, 2017) which

is inundated with many neutral examples and very few other emotions.

From the emotion annotation perspective, spontaneous emotions are very

hard compared to acted and induced emotions. One of the main reasons

is the lack of full context for spontaneous utterances annotation whereas

for acted and induced emotions context can be controlled to some extent.

Annotator agreement is usually less compared to induced and acted emotions.
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(a) Importance of context (b) Importance of speaker’s race

Figure 2.2: Examples of importance of (a) context and (b) speaker’s race to judge
speaker’s emotion. Example (b) is replicated from (Sap et al., 2019)

As many a time, the emotion in spontaneous recordings may not be full-

blown, annotating with secondary emotion too would help (Lotfian and

Busso, 2017; Sneddon et al., 2011). Even though secondary emotion may not

be entirely contrastive from primary emotion, it is often useful to describe

emotion adequately (Cowie and Cornelius, 2003). Spontaneous utterances are,

in general, annotated with both discrete and dimensional model of emotions.

2.2.4 Factors that influence emotion perception

Emotion perception plays a crucial role in social interactions. Inability to per-

ceive a partner’s emotions correctly could lead to misunderstanding. Emotion

perception depends on a lot of factors such as listener, the relation between

listener-speaker, demographics of the listener and speaker (Campbell et al.,

2014), context (Cauldwell, 2000), modality of emotion expression and lan-

guage (Lindquist, MacCormack, and Shablack, 2015). Examples presented in

Figure 2.2 demonstrate the importance of knowledge of context and speaker’s

race when judging the respective speakers’ emotions. As can be seen in Fig-

ure 2.2a, it is likely that sentences with and without full context are perceived
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differently. Similarly, Figure 2.2b demonstrates the importance of knowing

speaker’s race. (Paulmann, Pell, and Kotz, 2008) reports that emotion prosody

comprehension abilities may decline with age and hence perception of emo-

tion can be different with younger people.

Perception can also change based on the listener’s past experiences. Studies

show that individuals with post-traumatic stress disorder (PTSD) often process

emotions differently compared to healthy individuals especially negative

emotions (Buckley, Blanchard, and Neill, 2000) like anger, guilt, and shame.

Literature shows that emotional cues used for emotion assessment might

be different between different individuals (Barrett, 1998). Some individuals

mainly focus on valence while others focus on both valence and arousal.

All these factors of variability between individuals’ perceptions pose a big

challenge for building automatic systems.

2.2.5 Evaluation of emotion

As the original emotion of the speaker is usually difficult to obtain, most of the

research in affective computing uses the perception of listeners as a proxy to

the speaker’s emotion. As discussed in the above section, the perception could

change from person to person. It might affect the consistency of labels in the

data i.e., the presence of the same cues in multiple utterances leads to different

emotion labels. As a remedy, researchers usually use multiple annotators

for each utterance and use majority or average label for building automatic

systems. Even better, (Schuller and Batliner, 2013) uses a weighted average of

annotations instead of majority or average. Self-reported annotation can be
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used in the absence of annotators.

While annotating using a discrete model of emotions, the number of classes

could affect the annotation. Forcing a choice from a limited set of labels

may lead to inconsistency or unnecessary noise within each class. Also, it is

useful to provide an option of mentioning primary and secondary emotions,

especially when using discrete emotions because many times emotions co-

occur(Öhman, 2020).

Traditional discrete and dimensional model of emotions offers absolute

annotation in the sense that they do not offer any reference with which anno-

tation needs to be carried out. If someone annotates an utterance as angry it

is based on his/her own reference of what neutral emotion means. Similarly,

if an utterance is said to have high arousal then it is based on his/her own

reference of what low arousal means. Few studies (Wood and Ruder, 2016;

Wood et al., 2018; Louviere, Flynn, and Marley, 2015; Yannakakis, Cowie,

and Busso, 2018) explored using relative annotation with an intuition that we

always judge/assess emotions w.r.t. an anchor. While the study in (Wood and

Ruder, 2016) found annotation with relative values could be easier and pro-

vides consistent labels (Wood et al., 2018) found the opposite. Here, relative

annotation consists of pair-wise comparison of sentences whereas absolute

annotation consists of choosing a number on a 5-point scale.

Annotating certain modalities without inducing bias is quite difficult. In

speech signals, acoustic and linguistic modalities are intertwined. Hence,

during its annotation, the annotators do rely on both linguistic contents as

well as acoustic content. In this case, attempting to detect emotion from only
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speech signals may not be ideal. One way to avoid this problem could be

choosing the annotators foreign to the language of the recordings (Kramer,

1964).

2.3 Automatic emotion recognition

Automatic emotion recognition includes building some kind of mathematical

model that can process input speech recording to estimate the presence of

emotion and detect its category. It mainly involves two steps as shown in

Figure 2.3: signal representation and model building. Signal representation

includes encoding acoustic (and possibly linguistic) information into a format

suitable for the model. The model building includes prototyping and training

an appropriate mathematical model that can extract relevant patterns from

the signal representation. The ultimate goal would be to predict emotions on

new data using the trained model. The trained model is evaluated on test data

(that is not used for training) to get an understanding of the model efficacy. If

the model is well trained and provides good performance on the test data then

we can say that the model is optimally trained and generalizable. Usually,

the generalizability of a model depends on many factors: choice of feature

extraction algorithm, model, objective function, training procedure, and model

hyper-parameters. Apart from these factors which can be controlled from

an algorithm point of view, the choice of a dataset (size and its quality) can

also affect the generalization ability of the models. Most of the research in

affective computing focuses on extracting appropriate features and, building

robust and efficient models. Below, we first discuss the extraction of emotional
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Figure 2.3: General framework for automatic emotion recognition. Some of the
examples for feature representation and models are shown in bullet points

correlates in speech signals which simplifies the emotion recognition task.

Then, we present commonly used feature sets and machine learning models

to achieve automatic emotion recognition.

2.3.1 Correlates of emotions in speech signals

Several studies report that there are several acoustic and linguistic attributes

that correlate with emotions in speech signals (Lieberman and Michaels, 1962;

Burkhardt and Sendlmeier, 2000). Authors in (Lieberman and Michaels,

1962) experiment with isolating specific attributes (like fundamental fre-

quency) and presenting them to the listeners for evaluation of perception.

Whereas (Burkhardt and Sendlmeier, 2000) experiment with synthesizing

speech with modified parameters and presents to the listeners. The findings in

both studies are similar and provide a direction to perform automatic emotion

recognition. Some of the acoustic correlates of emotion include pitch contour,

pitch mean/range, speaking rate, phonation type (like breathy voice, tense

voice) and, intensity. Fear emotion seems to often have a higher pitch with

a wider range and also a faster-speaking rate. Wider pitch range or more

specifically irregular pitch patterns could be explained by the tremor that

happens when someone is feared. Anger does share similar characteristics as
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fear in some aspects such as higher mean pitch and wider range. However,

anger often has higher intensity and a slightly lesser speaking rate compared

to fear. Within anger, hot anger usually has higher intensity compared to cold

anger. Sad often has a narrow pitch range and a slower speaking rate. There

can be different types of sad – crying and quiet sorrow. Crying associates with

higher intensity compared to quiet sorrow type of sad. Also, articulation in

sad emotion might be different compared to other emotions – speech is often

slurry in sad. Utterances with happy seem to have both faster and slower

speaking rates indicating that there can be sub-classes within happy. These

sub-classes can be a loud laugh or a slight smile which is more close to neutral.

Pitch changes in happy are usually smooth and upward inflections compared

to sad.

In these studies, there is little to no emphasis on articulatory aspects of

emotional speech (Kohler, 1995; Kienast, Paeschke, and Sendlmeier, 1999).

(Kienast, Paeschke, and Sendlmeier, 1999) studies the effect of emotion on the

duration of syllables and their accuracy of articulation. The authors report an

articulatory reduction in sad and fear. Anger seems to have shorter consonants

and long vowels and is also likely to have stressed syllables.

2.3.2 Speech signal representation

In general, the goal of representing a speech signal is to retain as much in-

formation as possible. Some of the characteristics of speech signals include

spoken content, speaker characteristics, emotion, and noise. For a given

task, we must encode task-relevant characteristics and should try to leave
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out irrelevant information for the best results. What is relevant or irrelevant

depends on the application. For example, speaker identity is not relevant

for speech recognition (in most cases) and spoken content is not relevant for

speaker recognition (except for text-dependent applications). For emotion

recognition, spoken content is important and speaker characteristics are also

useful. Broadly, we can categorize feature representation efforts into 3 classes:

heuristic features, automatic feature learning, and pre-trained embeddings.

2.3.2.1 Heuristic features

Identifying relevant characteristics (vocal and linguistic) for emotion recog-

nition is not an easy task in itself and designing algorithms to extract them

is an added challenge. There are huge efforts in building emotion-specific

features (Eyben et al., 2013; Eyben et al., 2015). Many versions of prosodic

and spectral features are used in InterSpeech (IS) challenges (Schuller, Steidl,

and Batliner, 2009; Schuller et al., 2010; Schuller et al., 2013; Schuller et al.,

2020) which target either emotion recognition or some related tasks. Prosodic

features include frequency- and energy/amplitude-related parameters. Some

of the frequency-related parameters are pitch, jitter, formats center frequen-

cies, and their bandwidths; and some of the energy parameters are shimmer,

loudness, and harmonics-to-noise ratio. Spectral features include spectral

slope in different frequency bands, harmonic difference, the ratio of the energy

of spectral harmonic peak at formants to the energy of the spectral peak at

F0, Mel-frequency cepstral coefficients (MFCC), spectral flux. A set of these

features are usually referred to as low-level descriptors (LLDs) as they are

extracted from the signal directly. Over these parameters, several functionals
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such as average, max/min/median, and standard deviation are applied to

create new features. Each year (2009-13) the feature set size kept increasing:

IS2009 challenge feature set consists of 384 features (Schuller, Steidl, and

Batliner, 2009), for IS2010 challenge 1582 features (Schuller et al., 2010) and

for IS2013 6373 features (Schuller et al., 2013). Considering that the size of

the datasets is small increasing the feature set size may not be optimal (it is

an underdetermined system). To address this problem a group of scientists

worked together and attempted to pick the most important features through

experiments. This minimal set consisting of 58 features is referred to as Geneva

Minimalistic Acoustic Parameter Set (GeMAPS) (Eyben et al., 2015). And, an

extended version of it which contains 87 features is referred to as extended

GeMAPS (eGeMAPS). Apart from these feature sets, many works show that

using only MFCC features could also provide competitive performance for

emotion recognition (Schuller, Rigoll, and Lang, 2003; Batliner and Huber,

2007).

To improve further, (Schmitt, Ringeval, and Schuller, 2016) propose to use

bag-of-acoustic-words (BoAW) for emotion recognition inspired by its use

in audio event detection. BoAW feature extraction technique quantizes the

chosen feature set using clustering algorithms and replaces the features with

the nearest cluster mean (codewords). The advantage of this technique is that

it utilizes dataset global characteristics and also minimizes the variation in the

features. However, the generalizability of the features is one main concern as

it is extracted using the dataset global characteristics.
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2.3.2.2 Automatic feature learning

Although the heuristic features (presented above) provide satisfactory per-

formance, a lot of effort went into identifying them. They are designed to

discriminate only a limited set of emotions and also use mainly acted datasets

with prototypical emotional expression to identify acoustic cues and design

feature sets. Hence, they may not be sufficient to detect subtle nuances in

spontaneous speech. For example, authors in (Batliner et al., 2003) show that

prosodic features are more effective on acted speech than on spontaneous

speech. Authors suggest that it could be because actors emphasize and delib-

erately display emotions in their speech which is not the case in spontaneous

speech. In addition, this method of identifying specific cues may not be scal-

able to detect more variety of emotions that are not easy to produce through

acting. In this case, letting the model figure out the relevant cues could be the

best choice from the scalability point of view. Several new studies propose

techniques to automatically extract the features with the goal of maximizing

the performance (Tzirakis et al., 2017; Sarma et al., 2018; Trigeorgis et al.,

2016). They propose to use either raw-waveform or spectrogram as input to

the models and show good performance. However, these models could be

more sensitive to dataset-specific characteristics and impede generalizability

as with the BoAW features. But, this problem could probably be mitigated

with a lot of data, by building robust models, and/or by using augmentation

techniques.
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2.3.2.3 Pre-trained embeddings

Another set of approaches that aim to improve emotion recognition per-

formance use pre-trained models to extract features (Cummins et al., 2017;

Elshaer, Wisdom, and Mishra, 2019; Lakomkin et al., 2018a). (Cummins et al.,

2017) proposes to use pre-trained image models to represent spectrograms and

show that the representations can be used for emotion recognition. (Elshaer,

Wisdom, and Mishra, 2019) uses audio event detection models and (Lakomkin

et al., 2018a) uses speech recognition models. Generally, the extracted features

consist of only one vector summarizing the whole utterance.

2.3.3 Model design and training

General models: The early 2000s and before, only simple models such as lo-

gistic regression and SVMs were used to detect emotions (Koolagudi and Rao,

2012). They operate on just a vector representation of the input utterance ig-

noring sequence information. However, sequence information could be useful

for better performance. For example, raising pitch is one of the important

characteristics of anger emotion. Earlier, hidden Markov models (HMM) were

used for emotion recognition to exploit sequence information (Schuller, Rigoll,

and Lang, 2003). The resurgence of deep learning techniques enabled efficient

use of the sequence information. (Cho et al., 2018; Zhao, Mao, and Chen, 2019;

Huang et al., 2014; Lim, Jang, and Lee, 2016) explore CNN and LSTM based

models from feature representations such as MFCC and (e)GeMAPS features.

One common theme among these models is that the input representation is
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processed with several convolutional/LSTM layers to obtain more contex-

tual features and then some sort of pooling layers to summarize the entire

sequence. Then, the application of fully-connected layers on the summary

vector with appropriate activation function in the final layer produces the final

output. Most of these methods use either max pooling or average pooling

for summarization when using CNN-based models. Here, all the vectors in

the sequence have equal priority. But, some frames could be more important

containing more relevant information w.r.t. the corresponding class label. To

exploit different levels of importance, attention operation (Vaswani et al., 2017)

could be used which is similar to the weighted average. Studies (Zhang et al.,

2018; Mirsamadi, Barsoum, and Zhang, 2017) use the attention operation for

emotion recognition and show performance improvements. All these models

directly optimize the target loss function which is usually cross-entropy. Some

other paradigms such as adversarial learning have also been explored for

emotion recognition to improve the robustness of the models. (Latif, Rana,

and Qadir, 2018; Han et al., 2018; Parthasarathy et al., 2019; Sahu, Gupta, and

Espy-Wilson, 2018) propose to use adversarial learning.

In general, deep learning models perform better with more data (i.e., data-

hungry). However, emotion datasets are usually smaller, typically a few

hours. Collecting more data with emotion annotation is expensive and its

ambiguous nature makes it more difficult to collect. In such cases, three

methods are generally helpful: semi-supervised training, transfer learning,

and data augmentation. We review some of the past works that use these

techniques for emotion recognition below.
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Semi-supervised learning: Semi-supervised learning paradigm aims to

exploit unlabelled data along with labeled data to improve performance on

the labeled data. There are several works that show exploiting unlabelled data

is useful for speech emotion recognition (Liu et al., 2007; Deng et al., 2017;

Zhang et al., 2021; Latif et al., 2020). (Liu et al., 2007) explores co-training

procedure to exploit unlabelled data. In this procedure, two classifiers, trained

with different feature sets, are used to select unlabelled data based on their

predictions. Authors in (Deng et al., 2017) optimize unsupervised auxiliary

objective function (reconstruction loss) along with emotion loss. For the

unlabelled data, only the reconstruction loss is optimized and for the labeled

data both losses are optimized. Unlabelled video data is used in (Zhang et

al., 2021) to improve speech emotion recognition. Here, the authors enforce

similarity constraints between predictions on audio and video. (Latif et al.,

2020) uses several additional loss functions along with emotion loss such as

speaker/gender classification loss, adversarial loss, and reconstruction loss.

Transfer learning: Some of the past works that use transfer learning for

emotion recognition include (Latif et al., 2018; Lakomkin et al., 2018a; Williams

and King, 2019). It is shown in (Lakomkin et al., 2018a) that reusing an ASR

model trained to predict phonemes is helpful for the SER task. Authors

in (Williams and King, 2019) show that speaker-based utterance-level rep-

resentations i-vectors and x-vectors encode speaking-style information and

emotion. However, their experimental setup included overlapping speakers

between training and testing data splits. We believe that speaker overlap

35



should be avoided in SER tasks, especially when using speaker-specific repre-

sentations as input. Different from these two works, authors in (Latif et al.,

2018) perform transfer learning between multiple emotion datasets.

Data augmentation: Data augmentation techniques have been shown

to improve emotion recognition performance (Lakomkin et al., 2018b; Eti-

enne et al., 2018; Bao, Neumann, and Vu, 2019; Rizos et al., 2020). Authors

in (Lakomkin et al., 2018b) show that adding noise to the clean recordings

helps the model to better recognize emotions. Altering the speaking rate

of speech (Lakomkin et al., 2018b) and vocal tract length perturbation (Eti-

enne et al., 2018) is also shown to be useful for SER. Few recent studies (Bao,

Neumann, and Vu, 2019; Rizos et al., 2020) ventured into generating emo-

tional speech features using advanced techniques such as CycleGANs and

StarGANs.

2.3.4 Training and evaluation metrics

If the goal is to discriminate emotions then classification is performed and if

the goal is to predict emotion dimensions then regression is performed. For

both classification and regression, formulating an appropriate objective func-

tion is important for model training. Usually, categorical cross-entropy is used

for classification, and mean square error is used for regression. Optimization

of the loss function can be done using standard gradient descent or advanced

optimizers like Adam, Adadelta, RMSProp. We did not find studies related

to the efficiency of optimizers specific to emotion recognition. Most of the

studies use Adam optimizer to minimize the objective function.
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Usually, emotion models are evaluated and compared using metrics such

as precision, recall, and micro/macro-f1 score. The precision of an emotion

class measures the fraction of relevant predictions out of all the predictions

for that class. In other words, it is the ratio of true positives and the sum

of true positives and false positives. Whereas recall of an emotion class

measures the fraction of relevant predictions out of actual relevant (ground

truth) instances of that class (ratio of true positives and sum of true positives

and false negatives). F1-score is defined as the harmonic average of precision

and recall. Micro-f1 score is calculated as the weighted average of class-wise

f1-scores where the weight for a class is calculated as the ratio of the number of

samples for that class and the total number of samples in the dataset. Macro-f1

score is an unweighted average of class-wise f1-scores (it does not depend on

the size of the classes). However, we find no consistent metric that is reported

in the literature. Reporting only precision or recall does not usually give a full

picture of model ability as improving one often results in degradation of the

other. We think reporting micro/macro-f1 score too would reflect the model

efficacy more clearly.

2.3.5 Auxiliary tasks

Although optimizing the target task loss function is sufficient to realize the

target task, it is often shown that the use of certain auxiliary tasks yields

improvements (Bothe et al., 2020; Li et al., 2020a; Parthasarathy and Busso,

2018). The auxiliary task is optimized along with the target task often with less

weight. It serves as a regularization for the model and avoids overfitting to
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the target task. Some of the auxiliary tasks for emotion recognition are dialog

acts (Bothe et al., 2020), phoneme recognition (Lakomkin et al., 2018a), GRL-

based loss on speaker labels (Li et al., 2020a), autoencoding with reconstruction

loss (Parthasarathy and Busso, 2018). Auxiliary dialog acts task could help

in the disambiguation of some emotion classes. For example, forcing the

model to predict the appreciation dialog act could help the model to easily

disambiguate between happy and neutral. GRL-based losses force the model

to discard some attributes specifically by maximizing the loss on the chosen

auxiliary task (Ganin and Lempitsky, 2015). It is well known that the range of

emotions between speakers could be different and the emotion model could

form clusters of speakers. In this case, speaker identity could affect emotion

models. By forcing the model to discard speaker identity, the model can be

made more generalizable to new speakers. Whether to use GRL loss or not

depends on whether the auxiliary task helps or degrades the target task. For

example, usage of GRL loss on speaker labels makes sense when building

speaker-independent emotion models whereas if speaker-dependent emotion

models are desired (for example personal assistants) then it is better to not use

GRL.
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Chapter 3

Emotion recognition on isolated
utterances

3.1 Introduction

In this chapter, we discuss speech emotion recognition (SER) from isolated ut-

terances. Utterances containing only one emotion, generally shorter than 10s,

are considered isolated utterances. In general, they are collected for emotion

recognition in three methods: 1) recorded in isolation using actors with tar-

geted emotions, 2) cut from conversations that are meant to produce emotions

in an induced manner, and 3) cut from spontaneous podcast conversations. In

the first method, the utterances are already short and targeted to contain only

one emotion. Recordings collected in this manner, by design, contain only

one speaker and are shorter than 10s in most cases. Data collected using the

second and third methods i.e., using conversations between subjects do not

result in isolated utterances by default. Hence, they are derived by segmenting

conversations with respect to emotion.

In terms of the usefulness of the above mentioned data collection methods
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for research, each has its own advantages and disadvantages. Recruiting

actors to enact an emotion for a pre-defined set of phrases usually offer more

control over the experiments. Because of the control on the experimental

setup, this task could be a little simpler and more useful for analysis. For

example, the emotion of the speaker is not contextual and hence only utterance

characteristics impact a model’s behavior. However, it rarely reflects a reality

where context plays an important role in deciding the speaker’s emotion.

Also, this way of data collection is not scalable to large datasets as it is very

expensive to design a data collection setup and recruit subjects. On the other

hand, building isolated utterances datasets using conversations is a little

simpler and can be automated using advanced technologies. For example, the

MSP-Podcast dataset (Lotfian and Busso, 2017) is collected in this manner. The

datasets collected in this style simulate reality in terms of the naturalness of

emotion expression. However, both methods suffer from annotation costs. As

the emotion of the speaker is highly subjective to the listener, annotation with

multiple subjects is necessary to have a good estimate of the speaker’s emotion.

A single annotator for each utterance could result in a dataset with noisy labels

i.e., the labels may not reflect the actual emotion of the speaker in the utterance.

Fortunately, recent advancements in machine learning could enable us to build

accurate models even with smaller datasets thereby minimizing annotation

cost. In this chapter, we present two such machine learning methodologies to

recognize emotion from isolated utterances: transfer learning (Bozinovski and

Fulgosi, 1976) and data augmentation (Ramirez, Montalvo, and Calvo, 2019)

techniques.
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The transfer learning paradigm offers several benefits in terms of model

robustness, the number of training samples, and label scarcity. This paradigm

is usually associated with two domains, namely source and target. Source

domains usually contain a large amount of annotated data. In most cases,

source and target tasks share some common characteristics which help to

achieve the best performance in each of the tasks. However, there are cases

where both tasks/domains need not be related directly but are still useful for

transfer learning. For example, transfer learning from image-related tasks

to speech tasks. Our transfer learning approach for emotion recognition is

motivated by several previous works (Lakomkin et al., 2018a; Raj et al., 2019;

Williams and King, 2019). It is shown in (Lakomkin et al., 2018a) that reusing

an ASR model trained to predict phonemes is helpful for the SER task. In (Raj

et al., 2019), authors studied the applicability of speaker-based utterance

representations such as i-vectors and x-vectors for several downstream tasks

related to speech, speaker, and utterance meta information. However, they

did not study for emotion-related tasks. Authors in (Williams and King,

2019) show that speaker-based utterance-level representations i-vectors and

x-vectors encode speaking-style information and emotion. However, their

experimental setup included overlapping speakers between training and

testing data splits. We believe that speaker overlap should be avoided in SER

tasks, especially when using speaker-specific representations as input. In this

chapter, we present results using pre-trained as well as fine-tuned models

which are not studied in (Williams and King, 2019).

Data augmentation technique to some extent can help us build efficient
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models by artificially creating a lot of data from the available original data.

The additional data is usually a perturbed version of the available data which

often includes modifying selected acoustic characteristics. Data augmenta-

tion techniques have been shown to improve emotion recognition perfor-

mance (Lakomkin et al., 2018b; Etienne et al., 2018; Bao, Neumann, and Vu,

2019; Rizos et al., 2020). Authors in (Lakomkin et al., 2018b) show that adding

noise to the clean recordings helps the model to better recognize emotions.

Altering the speaking rate of speech (Lakomkin et al., 2018b) and vocal tract

length perturbation (Etienne et al., 2018) are also shown to help SER. Few

recent studies (Bao, Neumann, and Vu, 2019; Rizos et al., 2020) ventured

into generating emotional speech features using advanced techniques such as

CycleGANs and StarGANs.

In this chapter, we present a transfer learning approach from speaker recog-

nition models and a data augmentation procedure to improve SER perfor-

mance on isolated utterances. First, we show that emotion-related information

is encoded in x-vectors, and then we show that fine-tuning for emotion targets

further improves the performance. We compare two pre-trained models for

this study–one trained with augmentation and another without augmentation

to understand the correlation between pre-trained models’ performance in

source task and their re-usability for SER (target task). Then, we propose an

approach to adapt the pre-trained models to perform SER. To further improve

our models, we propose the CopyPaste augmentation method for SER. This

technique operates on the observation that the presence of emotions other

than neutral affects the listener’s perception. We propose three CopyPaste
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schemes and compare them with widely used noise augmentation in both

clean and noisy conditions.

The main contributions of this chapter are:

• Exploring pre-trained models trained to discriminate speakers for emo-

tion tasks on 3 different types of datasets

• Fine-tuned models for SER task

• CopyPaste, a novel perceptually motivated data augmentation proce-

dure for SER

The rest of the chapter is organized as follows: First, we present datasets

used for this study in Section 3.2. Then, we discuss transfer learning from

speaker recognition models in Section 3.3 followed by CopyPaste augmen-

tation in Section 3.4. Finally, we discuss the conclusions of this chapter in

Section 3.5.

3.2 Datasets

We validate our experiments on three different types of datasets: IEMOCAP

(acted, no restriction on spoken content, induced emotions), MSP-Podcast

(natural, no restriction on spoken content, spontaneous emotions), and Crema-

D (acted, restricted to 12 sentences, prototypical emotions). The details of each

dataset are as follows.
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3.2.1 IEMOCAP

IEMOCAP dataset is a multimodal dyadic conversational dataset recorded

with 5 female and 5 male actors Busso et al., 2008. It contains conversations

from 5 sessions wherein each session one male and female actor converse

about a pre-defined topic. Each session is segmented into utterances manually,

and each utterance is annotated by at least 3 annotators to categorize into one

of 8 emotion classes (angry, happy, neutral, sad, disgust, fear, excited). Conver-

sations are scripted and improvisational in nature. In this work, we followed

previous works in choosing data for our experiments. We combined happy

and excited emotions into one class. We choose a subset of data consisting of

4 emotions: angry, sad, neutral, happy. As the number of speakers and utter-

ances in this dataset is low, we opted for 5-fold cross-validation (CV) to obtain

reliable results. As it was shown in Raj et al., 2019 that speaker verification

models capture session variability along with speaker characteristics; we did

leave-one-session-out training for 5-fold CV to avoid overlapping of speakers

and sessions between training and testing. In each fold, we used the micro-f1

score (refer to Chapter 2 for definition) as our metric, and hence, we reported

an average of micro-f1 scores of 5-fold CV for each experiment.
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3.2.2 MSP-Podcast Dataset

MSP-Podcast corpus1 Lotfian and Busso, 2017 is collected from podcast record-

ings. The recordings are processed with several tools before including them

in the dataset. First, the speaker diarization tool is used to obtain segments

for each speaker and remove all the segments shorter than 2.75 seconds and

longer than 11 seconds. Then the segments with SNR less than 20dB, back-

ground music, telephone quality speech, and overlapping speech are removed.

The remaining clean segments are annotated by crowd-sourcing workers after

manual screening into one of 8 emotion classes (angry, happy, sad, surprise,

fear, disgust, contempt, neutral) or other. In this work, we used 5 emotions:

angry, happy, sad, neutral, disgust for classification as in Lotfian and Busso,

2019. We used the standard splits in Release 1.4 for training, development,

and testing. This dataset has 610 speakers in the training split, 30 in the

development, and 50 speakers in the test split.

3.2.3 Crema-D Dataset

Crema-D dataset2 is a multimodal dataset (audio and visual) with 91 profes-

sional actors enacting a target emotion for a pre-defined list of 12 sentences.

It includes 48 male and 48 female actors with a diverse ethnicity and age

distribution. In this work, we use 4 emotion categories: angry, happy, sad,

and neutral. We discarded disgust and fear to balance the dataset. We used 51

1Data provided by The University of Texas at Dallas through the Multimodal Signal Pro-
cessing Lab. This material is based upon work supported by the National Science Foundation
under Grants No. IIS-1453781 and CNS-1823166. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or the University of Texas at Dallas.

2https://github.com/CheyneyComputerScience/CREMA-D
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actors in training, 8 for development, and 32 for testing.

3.3 Transfer learning from speaker recognition mod-
els

In this section, we present details of the x-vector model reused for the SER

task. Then, we explain the transfer learning approach followed to transfer

knowledge to achieve the SER task. It is shown in the literature that i-vectors

and x-vectors perform well on speaker-related tasks such as speaker ver-

ification (Villalba et al., 2019), speaker diarization (Shum et al., 2013; Sell

and Garcia-Romero, 2014; Maciejewski et al., 2018; Sell et al., 2018). In this

work, we only exploit the x-vector model because of its superiority over i-

vectors (Snyder et al., 2018) and also because it is easy to adapt for downstream

tasks.

3.3.1 x-Vector Model

In this work, we perform transfer learning from a state-of-the-art ResNet

x-vector model reported in (Villalba et al., 2019). The network consisted of

three parts: frame-level representation learning network, pooling network,

and utterance-level classifier. Frame-level representation learning network

uses ResNet-34 (He et al., 2016) structure, which consists of several 2D con-

volutional layers with short-cut connections between them. After that, we

used a multi-head attention layer to summarize the whole utterance into a

large embedding. This layer takes ResNet outputs xt as input and computes
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Component Layer Output Size

Frame-level
Representation
Learning

7 × 7, 16 T × 23[︃
3 × 3, 16
3 × 3, 16

]︃
× 3 T × 23[︃

3 × 3, 32
3 × 3, 32

]︃
× 4, stride 2 T

2 × 12[︃
3 × 3, 64
3 × 3, 64

]︃
× 6, stride 2 T

4 × 6[︃
3 × 3, 128
3 × 3, 128

]︃
× 3, stride 2 T

8 × 3

average pool 1 × 3 T
8

Pooling 32 heads attention 32 × 128
Utterance-level
Classifier

FC 400
FC #spk:12,872

Table 3.1: ResNet architecture used in the x-vector model

its own attention scores wh,t for each head h:

wh,t =
exp(−sh ∥xt − µh∥)

∑T
t=1 exp(−sh ∥xt − µh∥)

. (3.1)

Attention scores wh,t are normalized along time axis.

Output embedding for head h is the weighted average over its inputs:

eh = ∑
t

wh,txt (3.2)

Different heads are designed to capture different aspects of the input signal.

Embedding from different heads is concatenated and projected by an affine

transformation into the final embedding. From the pooling layer to output,

there are two fully connected layers, and it predicts speaker identity in the

training set. Angular softmax (Liu et al., 2017) loss was used to train the

network. The whole network structure is illustrated in Table 3.1.

We trained the x-vector model using the following datasets:
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• Switchboard phase1-3 and cellular1-2.

• NIST SRE04-10

• NIST SRE12 telephone data

• NIST SRE12 phone calls recorded through a far-field microphone

• MIXER6 telephone phone calls

• MIXER6 microphone phone calls

• VoxCeleb 1+2: We concatenated all examples from the same video into

one file

• SITW-dev-core: single speaker segments from the Speakers in the Wild

development set

SRE12 microphone, MIXER6 microphone, VoxCeleb, and SITW-dev-core were

downsampled to 8 kHz. In total, there are 12, 872 speakers with 735, 018

utterances after removing utterances short than 8 seconds.

3.3.2 Speech Emotion Recognition (SER)

Generally, the performance of an x-vector model is a good indicator of its

ability to discard speaker irrelevant information. That is, the embeddings

extracted from a state-of-the-art x-vector model might have lesser emotion

information compared to the embeddings of a slightly worse model. In this

work, we perform transfer learning from two versions of pre-trained x-vector

models: one trained with augmentation and another without augmentation.
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Figure 3.1: Transfer learning from x-vector model for SER

Augmentation is applied using MUSAN corpus (Snyder, Chen, and Povey,

2015). We refer to the model trained with augmentation as ResNet-aug and

its speaker verification performance on the SITW dataset is 2.39. Similarly,

the model trained without augmentation is denoted with ResNet-clean which

stands at 3.89 EER on the SITW dataset. As expected, the speaker verification

performance of ResNet-aug is better than ResNet-clean as the former model is

trained with augmentation and hence more able to discard irrelevant informa-

tion. Based on this observation, we hypothesize that embeddings extracted

from ResNet-aug contain less emotion information compared to ResNet-clean.

From a pre-trained x-vector model, we can transfer knowledge to achieve

SER in two ways:

• Extract x-vectors and train a standard linear model like logistic regres-

sion (LR) for emotion classification.
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• Replace the speaker-discriminative output layer with the emotion-discriminative

layer and fine-tune. In other words, use the weights learned in pre-

training for all the layers except the last layer and then optimize all the

weights for emotion classification (refer Figure 3.1).

We show experiments with both methods using the above mentioned x-

vector models ResNet-aug and ResNet-clean. For emotion classification, we

minimize cross-entropy loss function using Adam optimizer with default

parameters in PyTorch. The epoch with the best micro-f1 score on the devel-

opment set is chosen for evaluation on the test set. We report an average of

micro-f1 scores from 3-runs on the test set for each emotion dataset considered.

3.3.3 Results

Table 3.2 presents the results of the SER task with ResNet architecture on all

three datasets. As noted in Section 3.3.1, ResNet-clean and ResNet-aug denotes

unaugmented and augmented x-vector models.

Comparison of columns marked with Baselines suggests that eGeMAPS

performed better than filter-bank features in most cases, but as our pre-trained

models were trained with filter-bank features, we did not consider eGeMAPS

for further experiments. Significant improvements were obtained on all the

datasets by using pre-trained models compared to random initialization sug-

gesting that pre-training is helpful. The performance of the LR model reflects

the linear separability of the x-vector embedding space for emotion classifica-

tion. X-vectors extracted from ResNet-clean provided better results compared

to the x-vectors from ResNet-Aug (columns marked with Frozen models).
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It suggests that x-vectors from ResNet-clean contain more emotion-related

information which further implies the model is unable to discard emotion

information as well as ResNet-Aug. This observation is in line with the cor-

responding EERs where ResNet-clean has a higher EER (3.89%) compared to

ResNet-Aug (2.39%). A similar conclusion was reported in (Raj et al., 2019) for

tasks such as prediction of the session, utterance length, gender, etc. Having

observed the good performance with x-vector embeddings (frozen x-vector

model), which are trained to discriminate speakers, we proceeded to fine-tune

the pre-trained models for emotion recognition. By fine-tuning, we obtained

improvements in all cases except when using ResNet-clean on MSP-Podcast

and IEMOCAP.

Overall, fine-tuned ResNet-aug model worked best with a micro-f1 score

of 56.79%, 77.86%, and 61.18% on MSP-Podcast, Crema-D, and IEMOCAP

respectively. Based on our experiments, we recommend using x-vector em-

beddings from ResNet-clean for SER if fine-tuning is not feasible otherwise

fine-tuning ResNet-Aug is recommended. It is difficult to compare our results

with previous works as there are no standard splits for IEMOCAP and Crema-

D. In the case of MSP-Podcast, the dataset collection is an ongoing effort, and

we did not find previous works on the current release yet.
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(a) X-vector embedding space w.r.t. speaker (b) X-vector embedding space w.r.t. emotion

(c) Fine-tuned x-vector embedding space w.r.t.
speaker

(d) Fine-tuned x-vector embedding space w.r.t.
emotion

Figure 3.2: Analysis of Crema-D embedding space before and after fine-tuning using
t-SNE plots
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(a) X-vector embedding space w.r.t. speaker (b) X-vector embedding space w.r.t. emotion

(c) Fine-tuned x-vector embedding space w.r.t.
speaker

(d) Fine-tuned x-vector embedding space w.r.t.
emotion

Figure 3.3: Analysis of MSP-Podcast embedding space before and after fine-tuning
using t-SNE plots
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Table 3.2: SER results on three datasets. In the first column, ResNet-clean and ResNet-
aug denotes unaugmented and augmented x-vector models. Text in the parenthesis
denotes the feature set we used to train.

Baselines Frozen models Fine-tuned models

Dataset Random Init.
(eGeMAPS)

Random Init.
(Filter Bank)

ResNet-Clean
(Filter Bank)

ResNet-Aug
(Filter Bank)

ResNet-Clean
(Filter Bank)

ResNet-Aug
(Filter Bank)

MSP-Podcast 49.85 47.36 56.75 52.58 55.71 56.79
Crema-D 73.52 71.46 76.00 74.35 76.54 77.86

IEMCOAP 46.20 43.03 57.40 55.40 54.57 61.18

3.3.4 Analysis

3.3.4.1 Embedding space analysis

Intuitively, the x-vector embeddings should have more speaker-discriminative

and less emotion-discriminative information as the model is trained to dis-

criminate speakers. Hence, we can expect to see clusters of speakers on

x-vector embedding space as opposed to clusters of emotions. However, after

fine-tuning/adapting for emotion classification, we expect to see clusters of

emotions instead of speaker clusters. Figure. 3.2 and 3.3 show t-SNE plots of

the embeddings for the Crema-D dataset and MSP-Podcast respectively. We

choose these two datasets as they stand at extreme ends on the spectrum of

acting to the naturalness of the spoken utterances. From Figure. 3.2a and 3.2b,

we can observe clusters of speakers and somewhat arbitrary arrangement

of embeddings w.r.t. emotion because the x-vectors are extracted from the

speaker recognition model and contain speaker-specific information. After

fine-tuning for emotion targets, the model successfully unlearned speaker

information and learned emotion discriminatory information as is evident

from Figure. 3.2c and 3.2d. We can observe clusters of emotions in Figure. 3.2d

and no such clusters w.r.t. speaker as seen in Figure. 3.2c.
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On the contrary, embedding space of a model fine-tuned on MSP-Podcast

does not show clear clusters of emotions (Figure. 3.3d) and moreover, we

can see visible clusters of speakers (Figure. 3.3c. Upon further investigation,

we found that many speakers have single emotions for the majority of the

time. This characteristic of the dataset could have affected model fine-tuning

as the model is pre-trained to discriminate speakers. In other words, the

model is unable to unlearn speaker information. Based on this experiment,

we recommend maintaining diverse emotions per speaker during model

training otherwise the model could potentially use speaker characteristics for

SER leading to worse SER results on unseen speakers. It also implies that

maintaining non-overlapped speakers in train and test sets is important for the

realistic estimation of model abilities to perform SER on unknown speakers.

3.3.4.2 Model errors Vs. inter-annotator agreement

As discussed in Chapter 1, emotion perception of a speaker depends on a

lot of factors. Hence, it is common to observe different emotion annotations

among annotators. Higher agreement between annotators is usually achieved

when the emotion of the speaker is very clear such as hot anger, crying.

Similarly, the lower agreement can be observed when emotion is ambiguous.

Figure 3.4 presents model correct classifications and misclassifications per each

agreement level for Crema-D and MSP-Podcast datasets. On the spectrum of

acted to naturalness, Crema-D stands very close to acted and MSP-Podcast

to natural. Inter-annotator agreement for an utterance is calculated by taking

the ratio of the maximum number of annotators agreed on emotion and the

number of annotators for that utterance. For example, a value of 0.8 means
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(a) Crema-D dataset (b) MSP-Podcast dataset

Figure 3.4: Model errors w.r.t. inter-annotator agreement

that 80% of the annotators agree on an emotion. MSP-Podcast recordings are

annotated with a minimum of 5 crowd-sourced workers and more than 95% of

the Crema-D utterances received a minimum of 7 crowd-sourced workers. For

Crema-D, we can observe that number of misclassifications is less compared

to correct classifications in every agreement level. Whereas for MSP-Podcast,

the number of misclassifications dominates at lower agreement levels and

gets better with a higher agreement. This experiment suggests a possible

disparity between acted and natural datasets where the former might contain

over-acted/over-emphasized emotions which most of the time, may not occur

in real life.
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3.4 CopyPaste data augmentation

In this section, we present a perceptually motivated data augmentation ap-

proach, CopyPaste, to improve SER performance. We compare the CopyPaste

method with a widely used noise augmentation method on clean test sets

(original recordings) and noisy test recordings as well.

3.4.1 CopyPaste approach

When trying to classify the emotion of an utterance, some segments might

have more emotional information than others. To this respect, some authors

observed that when an emotionally neutral speech segment and an emotional

segment with emotion E are played in sequence, the human listeners com-

monly classify the whole sequence as emotion E (Tóth, Sztahó, and Vicsi,

2008). Therefore, the emotional segments (non-neutral) in an utterance might

define the listener’s perception. For example, consider a 10 s recording where

the speaker is angry for the first 3 s and manifests a neutral emotion for the

remaining 7 s. We surmise that a human annotator might label the utterance

as angry even though the speaker expresses neutral emotion for the most

part of the recording. In these cases, the recognition of the angry emotion by

machine learning models might be difficult, as the neutral emotion dominates

the overall statistics of the utterance referred to in the previous example. In

this work, we address this problem by proposing the CopyPaste augmentation

technique. This technique considers that a speaker is perceived to be express-

ing an emotion E (non-neutral) even if that emotion is exhibited for a short

duration. Hence, we propose a data augmentation methodology consisting
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of the concatenation of an emotional utterance with emotion E and a neutral

utterance. The resulting concatenated utterance is then labeled with emotion

E for model training. As we copy one utterance and paste (concatenate) it

at the beginning or end of another utterance to produce a new one, we have

called this process CopyPaste augmentation. Under this method, we present

three data augmentation schemes for model training:

1. Concatenation of an emotional utterance (say emotion E) and a neutral

utterance to produce another utterance with emotion E. We refer to this

scheme as Neutral CopyPaste (N-CP)

2. Concatenation of two emotional utterances with same emotion E to

produce another utterance with emotion E. We refer to this scheme as

Same Emotion CopyPaste (SE-CP)

3. Using N-CP and SE-CP together during model training. We denote this

scheme with N+SE-CP

Through CopyPaste schemes, we can produce a greater variety in the train-

ing data which can help the model generalize better. We expect that the N-CP

scheme i.e., concatenating emotional utterances with neutral utterances forces

the model to focus more on emotional parts of an utterance. For example, if

the input is a concatenation of angry utterance and neutral utterance then the

N-CP scheme forces the model to focus more on the angry part of the utterance

compared to the neutral part of the utterance.
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3.4.2 CopyPaste schemes implementation

During training, we randomly sample a batch of 128 utterances and perform

CopyPaste based on the emotion class labels. For the SE-CP augmentation

scheme, we pick the utterances with the same emotion labels and randomly

pair them for concatenation. For the N-CP augmentation scheme, we pick

utterances with neutral emotion and randomly pair them with all utterances

in the batch including neutral utterances. In this scenario, there is a risk that

the resulting models are biased against the neutral emotion, as 50% of each

augmented utterance is of neutral emotion, and yet we force the model to

predict the emotion of the other 50% of the augmented utterance. To avoid that

danger, we perform CopyPaste augmentation only for 80% of the batches in

each epoch. With the same premises, in the N+SE-CP scheme, we follow each

of N-CP and SE-CP schemes for 40% of the batches in each epoch amounting

to 80% of batches with CopyPaste augmentation. To avoid overfitting, we

randomly pick 4 s from each recording for concatenation instead of the whole

recording. We note that the average length of the training recordings in our

datasets is less than 6 s. Hence, our hypothesis is affected only with negligible

likelihood by picking only 4 s of each recording for concatenation.

3.4.3 Comparison with noise augmentation

In this work, we augment the training data by adding noise and music from

MUSAN corpus (Snyder, Chen, and Povey, 2015). Our augmented data con-

tains six copies of the training set with SNRs of 10 dB, 5 dB, and 0 dB after
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Table 3.3: SER results (micro-f1 scores) with randomly initialized ResNet model.
Clean+Noise and Clean denote SER model training is on clean and noise augmented
data, and clean data respectively. In parenthesis, an absolute improvement compared
to the model trained without CopyPaste (No CP) is shown.

Dataset Emotion data No CP SE-CP N-CP N+SE-CP

MSP-Podcast Clean 47.36 48.34 49.14 49.69 (+2.33)
Clean+Noise 48.15 50.61 49.25 50.71 (+2.56)

Crema-D Clean 71.46 71.80 74.34 (+2.88) 73.79
Clean+Noise 70.59 72.83 75.87 (+5.28) 74.55

IEMOCAP Clean 43.03 45.84 44.19 45.88 (+2.85)
Clean+Noise 43.65 49.49 52.34 (+8.69) 51.41

Table 3.4: SER results (micro-f1 scores) with ResNet model pre-trained for speaker
classification. Clean+Noise and Clean denote SER model training is on clean and noise
augmented data, and clean data respectively. In parenthesis, an absolute improvement
compared to a model trained without CopyPaste (No CP) is shown.

Dataset Emotion data No CP SE-CP N-CP N+SE-CP

MSP-Podcast Clean 56.79 58.68 (+1.89) 57.71 58.22
Clean+Noise 57.91 58.62 (+0.71) 57.82 58.13

Crema-D Clean 77.86 78.54 80.18 (+2.32) 79.21
Clean+Noise 79.60 79.98 80.17 (+0.57) 79.88

IEMOCAP Clean 61.18 62.15 (+0.98) 61.21 61.90
Clean+Noise 62.57 63.08 63.48 63.78 (+1.21)

adding noise and music. We denote the models trained with clean and aug-

mented data as Clean+Noise. As researchers showed that the effectiveness of

adding noise to the training data is more evident on noisy test data compared

to clean test data (Hsiao et al., 2015), we compare noise augmentation with

CopyPaste in noisy test conditions. As emotion datasets are usually clean and

have higher SNR, adding noise to the test data is considered. We create two

sets of test data, one with an SNR level of 10 dB and another with 0 dB for

comparison with CopyPaste.
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Table 3.5: Class-wise f1-scores on Crema-D dataset with CopyPaste (CP) schemes. We
used the ResNet model pre-trained for speaker classification and trained on clean
data; No CP denotes model trained without CopyPaste

Emotion class No CP SE-CP N-CP N+SE-CP

Sad 20.48 20.59 21.11 22.37
Happy 37.17 46.19 54.47 46.7
Angry 70.53 71.4 75.85 73.61
Neutral 87.62 87.55 88.11 87.83

3.4.4 Results

We report the micro-f1 score as a metric (higher the better) to measure emotion

model classification performance. We first show the effectiveness of Copy-

Paste schemes on clean data and noise augmented data. Then, we present

results on artificially created noisy test data to compare CopyPaste and noise

augmentation.

General considerations: Tables 3.3 and 3.4 show the results of CopyPaste

schemes on randomly initialized ResNet model and speaker pre-trained

ResNet model respectively. Comparing both tables, we can observe that

pre-training improves the model performance significantly on all datasets.

Models trained with noise augmented data perform better compared to mod-

els trained only on clean data corroborating with previous research (Lakomkin

et al., 2018b). Comparison of models trained with and without CopyPaste

schemes (4th-6th columns vs. 3rd column) reveals that our models perform

better on all datasets with all schemes. Though the application of CopyPaste

schemes provides performance improvement in most cases, we do not observe
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a single best scheme across datasets and models except on Crema-D where N-

CP scheme consistently performs best. We can observe that CopyPaste schemes

are effective on both clean data as well as noise augmented data. We note

that the improvements obtained with CopyPaste schemes on the randomly

initialized ResNet model are relatively higher compared to the improvements

on the pre-trained ResNet model.

Per-class analysis: As noted in Section 3.3.2, there is a risk that the model

can get biased to not predict neutral when N-CP scheme is employed during

model training. Hence, we examined class-wise f1-scores of our models to

identify the main source of improvements and observed that in most cases

performance improved for all emotion classes. As an example, we show

in Table 3.5 class-wise f1-scores of emotion classes on the Crema-D dataset.

These scores are obtained with the ResNet model pre-trained for speaker

classification and trained on clean data. We can observe improvements for all

emotion classes with CopyPaste schemes during training. Among CopyPaste

schemes, N-CP is performing best for all classes except for sad emotion for

which N+SE-CP performs best.

Noise augmentation: Comparing the augmentation techniques, CopyPaste

and noise augmentation, we can observe from Tables 3.3 and 3.4 that Copy-

Paste schemes perform better in most cases suggesting that concatenating

utterances based on emotion helps the model generalize better compared to

adding noise to the training data. As noted in Section 3.4.3, we compare noise

augmentation and CopyPaste in noisy test conditions too. Tables 3.6 and 3.7

show the results on the noisy test data with SNR levels of 10 dB and 0 dB
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Table 3.6: SER results (micro-f1 scores) on noisy test data with SNR = 10dB with
ResNet model pre-trained for speaker classification. Clean+Noise and Clean denote
SER model training is on clean and augmented data, and clean data respectively; No
CP denotes model trained without CopyPaste

Dataset Emotion data No CP SE-CP N-CP N+SE-CP

MSP-Podcast Clean 55.25 57.39 55.54 56.61
Clean+Noise 57.09 57.52 56.63 57.52

Crema-D Clean 72.76 73.47 77.06 74.06
Clean+Noise 78.48 78.79 79.10 79.30

IEMOCAP Clean 58.82 59.30 58.93 59.01
Clean+Noise 61.47 61.80 62.03 62.63

respectively. We used the model pre-trained with speaker classification for

this experiment as it is performing the best on all the datasets. As expected,

SER performance degraded on the noisy test data suggesting that our models

are sensitive to noisy test conditions. Models trained with noise augmentation

are more robust compared to models trained with only clean data which

illustrates the benefits of augmenting training data with noise. We can also

observe that noise augmentation, in most cases, outperforms CopyPaste in

noisy conditions. However, our best models on all the datasets are when used

both augmentations together which showcases the effectiveness of proposed

CopyPaste schemes even in noisy test conditions.

3.5 Conclusion

In this chapter, we presented two approaches based on transfer learning

and data augmentation to improve emotion predictions from speech. From

transfer learning experiments, we found that embeddings extracted (x-vectors)

from pre-trained speaker recognition models do contain emotion predictive

63



Table 3.7: SER results (micro-f1 scores) on noisy test data with SNR = 0dB with
ResNet model pre-trained for speaker classification. Clean+Noise and Clean denote
SER model training is on clean and augmented data, and clean data respectively; No
CP denotes model trained without CopyPaste

Dataset Emotion data No CP SE-CP N-CP N+SE-CP

MSP-Podcast Clean 52.65 55.15 52.68 53.91
Clean+Noise 55.88 56.40 55.28 56.44

Crema-D Clean 64.95 66.21 71.40 65.53
Clean+Noise 76.44 76.38 76.83 76.60

IEMOCAP Clean 52.05 51.73 51.58 51.62
Clean+Noise 58.55 58.52 59.32 59.69

information. Further, adapting the entire pre-trained model boosted SER

performance on all three datasets considered. Our experiments suggested that

the SER performance on x-vectors is inversely proportional to the speaker

verification performance i.e., the better the x-vector model the less suitable

the embeddings are for SER task. However, fine-tuning experiments revealed

that fine-tuning the best x-vector model provides better results on SER task.

For data augmentation, we proposed three CopyPaste schemes to improve

SER performance. We found that CopyPaste schemes improve SER perfor-

mance and outperform noise augmentation in clean conditions. However, in

noisy conditions, noise augmentation performed better than CopyPaste. We

obtained best results when using both CopyPaste and noise augmentation on

all three datasets.
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Chapter 4

Beyond isolated utterances:
Conversational emotion
recognition

4.1 Introduction

In the previous chapter, we presented speech emotion recognition (SER) from

isolated utterances. The proposed approaches can be applied to conversational

speech, provided that an utterance-level emotion segmentation is available

either from another system or a human annotator. If the segmentation is

available we can pass each segment through the models built on isolated

utterances. However, in this case we might not be exploiting the context in

which the segment’s emotion is produced. In this chapter, we present multiple

techniques to recognize emotions in the conversations and also show that

accuracy can be improved using segmented recordings.

Most of the past work on conversational emotion recognition (CER) can

be broadly classified into two categories: the ones using segmented record-

ings (Hazarika et al., 2018; Majumder et al., 2019; Li et al., 2020b; Zhang et al.,
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2019; Grimm et al., 2007; Metallinou, Katsamanis, and Narayanan, 2013; Eyben

et al., 2010; Schmitt, Cummins, and Schuller, 2019) and the other without using

them (Grimm et al., 2007; Metallinou, Katsamanis, and Narayanan, 2013; Ey-

ben et al., 2010; Schmitt, Cummins, and Schuller, 2019). Authors in (Hazarika

et al., 2018) explore a fixed context (4 recent utterances) and speaker-specific

modeling using gated recurrent unit (GRU) architecture. Their model, referred

to as conversational memory network, uses attention mechanism and memory

hopping to combine information from multiple streams of representations and

to attend to history. The main limitation of this approach is its fixed context

and a lack of extensibility to multi-party conversations. Model proposed

in (Majumder et al., 2019), referred to as DialogueRNN, overcomes limitations

of the fixed context and also proposes to use separate GRUs to model speaker,

emotion and global context. Authors in (Zhang et al., 2019) propose to use

graph based neural net by defining utterances and speakers as nodes to ex-

ploit context and speaker dependencies. A transformer model with pairwise

speaker verification as auxiliary task is proposed in (Li et al., 2020b) to encode

context and speaker information into the model hidden representations. Even

though the above approaches provide good CER performance, all of them are

fundamentally limited by their reliance on the availability of a segmentation

of the recording/transcript, and their strong assumptions about each speaker

turn consisting of just a single emotion.

CER without requiring segmented recordings is explored in (Grimm et

al., 2007; Metallinou, Katsamanis, and Narayanan, 2013; Eyben et al., 2010;

Schmitt, Cummins, and Schuller, 2019) by predicting emotional attributes on
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a frame-level. Authors in (Grimm et al., 2007) use a fuzzy logic estimator

while (Metallinou, Katsamanis, and Narayanan, 2013) propose an optimal

statistical mapping between audiovisual features and emotion attributes using

Gaussian mixture model (GMM). Deep learning models such as CNN and

LSTM are used in (Eyben et al., 2010; Schmitt, Cummins, and Schuller, 2019)

for frame-level prediction.

In this work, we present transformer-based models for CER by treating it

as a sequence labeling task, where short duration frames of the speech signal

are assigned emotion labels by a model that looks at the broader context.

Based on self-attention operation, we proposed DiverseCatAugment (DCA), an

augmentation scheme to improve transformer model performance. We quan-

tified the effect of context by comparing models trained on isolated utterances

and conversations. We compared transformer architecture with several neu-

ral architectures: ResNet-34, which models context locally in each layer and

globally with stacked layers and; BiLSTM, which captures context sequential

manner. To leverage both the local and global context modeling strengths of

ResNet-34 and transformer architectures, we explore their joint training. The

resulting model is further enhanced by incorporating interlocutor information

to exploit speaker dependencies in the conversations. We present models

that can work even without segmentation information while most of the past

works require it to exploit interlocutor information. The proposed models can

deal with multi-party conversations and do not assume one emotion per turn.

The rest of the chapter is organized as follows. First, we present our
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models in Section 4.2 and the proposed DCA augmentation scheme in Sec-

tion 4.3. Then, the experimental setup and results are detailed in Section 4.4

and 4.5 respectively. Finally, conclusions and future directions are discussed

in Section 4.6.

4.2 Conversational emotion recognition

We present transformer-based models that predict emotion on a frame-level.

Our experiments include the use of a basic transformer architecture and also a

combination of transformer and a CNN architecture. For all the approaches in

this work, we employ filter-bank features as input, with 25 ms frame length

and 10 ms shift.

Baseline models: The proposed transformer models are compared with

two baseline models employed in previous studies: one using a BiLSTM

architecture (Lee and Tashev, 2015) and the other employing CNN (same as in

Chapter 3). We use BiLSTM and CNN models as the mechanism of exploiting

context is different in them compared to the transformer. BiLSTM learns

context information in a sequential manner; CNN exploits local context in

each layer and global context with a stack of layers; in contrast, the transformer

has access to the entire conversational context in every self-attention layer.

Also, self-attention operation in the transformer model allows attending other

frames with the same emotion in the sequence while convolutional operation

treats all frames inside a receptive field in a similar manner disregarding their

class label. Our BiLSTM architecture contains a sequence of 6 bi-directional

LSTM layers followed by a dropout layer and 2 fully connected layers to
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Figure 4.1: Transformer block diagram. Interlocutor index embeddings are used only
with ResNet embeddings input in ResNet+Transformer model

obtain logits. For CNN, we use ResNet-34 model architecture reported in

Chapter 3 without pooling layer.

4.2.1 Transformer model

As the employed frame length is very small to predict an emotion, the context

plays a crucial role in deciding the emotion of a frame. Hence, an architecture

that can use context efficiently is crucial. Recently, transformer architecture

has shown to outperform other neural architectures in several speech and NLP

tasks (Vaswani et al., 2017; Devlin et al., 2019; Wolf et al., 2020; Karita et al.,

2019). It contains a sequence of self-attention operations which are designed

to exploit long-range dependencies in the input sequence. Our architecture

contains a sequence of 12 self-attention layers as in the standard BERT base

model (Devlin et al., 2019). A schematic of the transformer model is shown in

Figure 4.1. For this model, we use filter-bank features as input. As the entire
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Figure 4.2: Proposed methods to interlocutor-net shown in Figure 4.1. Each of
these are referred to as (a) Embedding layer (b) Speaker-net+Smoothing (c) Speaker-
net+Grouping

input sequence is processed simultaneously in self-attention layers, the order

of the input sequence does not matter. However, the sequence information

could be useful for the CER task. We encode position information by learning

a set of positional embeddings during training and adding them to the input

sequence. For training, we use an input sequence length of 2048 hence we

learn 2048 positional embeddings during training.

4.2.2 ResNet+Transformer model

Several studies suggest that down-sampling input representation using con-

volutional layers before processing with transformer layers provides better

results for ASR (Lu et al., 2020; Mohamed, Okhonko, and Zettlemoyer, 2019).

Intuitively, convolutional layers use local context to produce better contextual

features. In this work, we used a pre-trained ResNet-34 to process input

filter-bank features and fed its output to the transformer layers. ResNet-34 is

pre-trained on the speaker classification task. We jointly trained ResNet-34 and

transformer to exploit the benefits of both transfer learning and transformer
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model capabilities.

4.2.3 Interlocutor-aware ResNet+Transformer model

A conversation is structured as a sequence of turns by all participating speak-

ers. The emotion of a speaker in each turn could depend on that speaker’s

emotions in previous turns and also on the interlocutor’s emotions (Hatfield,

Cacioppo, and Rapson, 1993; Smirnov et al., 2019). Hence, we expect the

model to perform better when the model knows who is speaking when in the

conversation. Authors in (Majumder et al., 2019) show that distinguishing

speaker and listener parties improves emotion prediction. However, they

predict emotion on a segment/turn-level and also requires speaker diarized

recording. In this work, we propose three methods to overcome these lim-

itations by making frame-level predictions and using pre-trained speaker

recognition model.

Our model schematic with interlocutor-net which produces interlocutor

index embeddings is shown in Figure 4.1. We propose three methods to design

interlocutor-net and they are shown in Figure 4.2. First method Figure 4.2(a)

assumes the availability of speaker segmented conversations. In this method,

we indexed the speakers in a conversation and represented them with one-hot

encoding. Indices are assigned following the order in which the interlocutors

appear in the conversation. We passed the one-hot encoding through an

embedding layer to get interlocutor index embedding. The embedding layer

learns a dictionary of embeddings which acts as a lookup table. The dictionary

size is set to the maximum number of speakers that can appear in a training
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sample. Then, we added interlocutor index embeddings to the ResNet output

to incorporate interlocutor information into the transformer layers. This

method can deal with multi-party conversations but during test time it is

limited by the maximum number of speakers seen in a training conversation.

As the main goal of incorporating interlocutor information is to be able

to distinguish speakers in the conversation, we propose to use a pre-trained

speaker recognition model (Speaker-net) to extract speaker-specific represen-

tations. Interlocutor-net using speaker-net is shown in Figure 4.2(b). As the

output of speaker-net is on frame-level, it could introduce more noise into the

transformer model. This noise could be reduced by performing smoothing

operation (moving average with a window of 0.8s duration). We experimented

with adding and concatenating the output of interlocutor-net to the ResNet

output in order to introduce interlocutor information.

Speaker-net represents different instances of a speaker in the conversa-

tion differently based on the spoken content in each instance. However, as

the primary task of interlocutor-net in the transformer model is to introduce

speaker-specific information, representing all instances of a given speaker us-

ing one vector would be more efficient. For this purpose, we use ground truth

speaker diarization information and pool all the instances of each speaker in

the conversation to represent with just one vector (refer Figure 4.2(c). Group-

ing in Figure 4.2(c) denotes picking all instances of each speaker and averaging.

Even though this method requires speaker diarization information, it does not

have any limitation on the number of speakers in unseen conversations like

the method in Figure 4.2(a).
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4.3 Diverse Category Augment Scheme

In this section, we present a data augmentation scheme, named as Diverse-

CatAugment (DCA), motivated by the inner workings of the self-attention

operation. Given an input sequence of vectors X = [x1, x2, ..., xN], we perform

self-attention operation and obtain a sequence of vectors Y = [y1, y2, ..., yN].

Self-attention operation (dot-product variation) as shown in (4.1) includes

finding dot-product between every vector in the sequence i.e., X · XT. On the

dot-product matrix, the softmax operation is employed to obtain normalized

similarities for each vector with other vectors in the sequence. Then, the dot

product matrix is multiplied with the input sequence X to obtain Y. In essence,

every vector in Y is a weighted sum of vectors in X, as shown in (4.2) with

weights being the normalized similarities with other vectors in the sequence

as shown in (4.3).

Let X = [x1, x2, ..., xN], Y = [y1, y2, ..., yN]

where xi, yi ∈ Rd, ∀i ∈ [1, N]

Y = softmax(
X · XT
√

d
)X (4.1)

yi =
N

∑
j=1

wijxj, ∀i ∈ [1, N] (4.2)

[wi1, wi2, ..., wiN] = softmax(
xi · x1√

d
,

xi · x2√
d

, ... ,
xi · xN√

d
) (4.3)

Attention operation allows us to attend relevant vectors in the sequence by
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assigning higher weights and discard irrelevant vectors using lower weights.

For a given vector, say xi, if all the weights/similarities ([wi1, wi2, ..., wiN]) are

in a narrow range, it implies that all the vectors in X are equally relevant to xi.

This could happen if all the vectors in the sequence belong to the same class.

In this case, the attention operation acts as, effectively, an averaging operation

instead of a weighted average. Consequently, we may not be exploiting trans-

former abilities to the maximum level. Based on this insight, we hypothesize

that input sequences with less categorical variety hinder transformer model

performance. Equivalently, training data with input sequences containing

diverse emotion classes provide better performance compared to sequences

with less emotional diversity.

We validate our hypothesis by proposing a data augmentation scheme,

referred to as DiverseCatAugment (DCA), which improves the diversity of

categories/emotions in the input sequences. We apply DCA on conversations

as well as isolated utterances. When applying DCA to conversations, we

choose two conversations and concatenate them for model training. For

example, assume one conversation is filled with angry for most of the time

and another with happy category. Concatenation of the two conversations

results in a sequence with both angry and happy. It is easy to see that the

concatenated conversations have a more diverse composition of emotions.

According to the DCA hypothesis, proposed transformer models perform

better if input sequences have diverse categories.
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4.4 Experimental setup

4.4.1 Dataset

We performed CER on the widely used IEMOCAP dataset, which contains

150 dyadic conversations between 5 female and 5 male speakers. Each conver-

sation is set up between one male and one female, and are approximately 5

min long. The scripts and topics for spontaneous conversations were selected

to elicit emotions. Even though only 5 emotions – Angry, Frustration, Happy,

Neutral, and Sad – are targeted for elicitation, more emotions albeit less fre-

quently are found in the annotation process. In this work, we used only the

most frequent emotions, – Angry, Frustration, Happy, Neutral, and Sad – for

classification. We merged Excitation emotion with Happy as is commonly done

for this dataset. The conversations are annotated in crowd-sourced manner

with 3 annotators. Even though only 5 emotions were under consideration

for the dataset, they found more emotions in the annotation process albeit

less frequently. To facilitate comparison between models trained with isolated

utterances and conversations, we discarded segments in the conversations

which have labels other than the considered emotions. Training data setup is

same as in Chapter 3, i.e., we use 3 sessions for training, 1 for development,

and 1 for testing; we perform a 5-fold cross-validation (leave-one-out-session);

report the micro-f1 score (refer to Chapter 2 for definition).
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4.4.2 DCA implementation

We implement DCA augmentation during the formation of the batch for model

training. We first choose a batch of 6 conversations and pick a sequence of

length 1024 from each of the conversations. Then, we randomly pair each con-

versation with one of the other 5 conversations to form a sequence of length

2048 for model training. We note that to maximize DCA utility, conversations

with distinct emotions should be selected for concatenation but as we train the

model for 100 epochs, the model sees a fairly high number of sequences with

diverse emotions. DCA on conversations produces sequences with conversa-

tional context preserved for most of the sequence and adds a bit of random

context. When applying DCA on isolated utterances, we concatenate multiple

isolated utterances until we obtain 2048 length sequences. We choose isolated

utterances for concatenation randomly to result in a sequence with diverse

emotions expressed by multiple speakers. DCA on isolated utterances results

in sequences similar to conversations but without conversational context.

4.4.3 Impact of the context

To gain insights into the model capabilities and importance of context, we

compare the transformer model with ResNet-34 and BiLSTM using 4 types of

training data:

1. Isolated utterances (no context)

2. Conversations (original conversational context)

3. DCA Isolated utterances (random context)

76



4. DCA Conversations (original conversational context + random context)

We evaluate all the models on conversations. We compare models trained

with Isolated utterances (no context) and Conversations to understand the impact

of conversational context on the CER performance. To further improve the

performance, we employ DCA on Isolated utterances and Conversations.

Based on the DCA method hypothesis, we expect DCA Conversations and

DCA Isolated utterances to perform better than Conversations and Isolated utter-

ances respectively. Also, as context could help to disambiguate emotions, we

expect models trained on conversational data (2nd and 4th types) to perform

better than models trained on isolated utterances data (1st and 3rd types). The

performance of models trained with isolated utterances enables us to answer

the question of “how well can we perform CER without access to the conver-

sational data?”. The answer to this question is important because most of the

current datasets have only isolated utterances and a lot of past research efforts

focused on them.

4.5 Results

4.5.1 Results with DCA augmentation and context

Table 4.1 shows the results with DCA augmentation and context. The first

and second rows, denoted with Isolated and Conversations, show the results of

models trained with isolated utterances and conversations. We can observe

that models trained on isolated utterances perform worse than the models

trained on conversations suggesting the importance of context. BiLSTM
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seems to predict just a little better than chance when trained on isolated

utterances. The impact of conversational context on the BiLSTM model is

comparatively higher than ResNet and transformer. Among the architectures,

the transformer model outperformed ResNet and BiLSTM in every case with

the best performance of 42% when trained on conversations.

Models trained with DCA augmentation are denoted with DCA Isolated

utterances and DCA Conversations. We can observe that along with the trans-

former model, ResNet and BiLSTM also perform better with DCA augmen-

tation on isolated utterances suggesting that emotional variety in the train-

ing sequences helps to discriminate emotions well. On isolated utterances,

ResNet and BiLSTM models perform 3.9% and 13.1% absolute better with

DCA augmentation. However, they perform worse in comparison to Conversa-

tions suggesting that original conversational context is more important than

categorical/emotional variety in the training sequences. Interestingly, the

transformer model trained with DCA Isolated utterances performs better than

Conversations. Upon further investigation into the conversations, we found

that many conversations are dominated by a single emotion. Figure 4.3 shows

proportions of emotions for a subset of 38 conversations (25% of the dataset)

in the IEMOCAP dataset. Each bar represents the proportion of emotions in a

single conversation. We can observe that these conversations have only one

emotion dominating for more than 75% of the conversation time. In litera-

ture, this phenomenon is referred to as emotional inertia (Kuppens, Allen,

and Sheeber, 2010) which states humans naturally tend to resist changing

emotions.
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Table 4.1: Effect of context on the CER performance (micro-f1). Conv. context means
the original conversational context; DCA Isolated utterances – DCA augmentation on
isolated utterances; DCA Conversations – DCA augmentation on conversations

Training data type Context type ResNet BiLSTM Transformer

Isolated utterances No 34.3 27.1 39.1
Conversations Conv. 39.2 41.6 42.0

DCA Isolated utterances Random 38.1 40.2 42.7
DCA Conversations Random+Conv. 37.5 41.6 45.3

Emotional inertia in the conversations explains the better performance

with DCA Isolated utterances compared to Conversations even though the lat-

ter has conversational context. It also implies that emotional variety in the

training sequences is important for the transformer model confirming the

DCA augmentation hypothesis. Better (3.3% absolute) performance with DCA

Conversations over Conversations further strengthens the DCA augmentation

hypothesis.

Overall, we observed that training the models with random context is

better than no context. Access to the conversational context further improved

our models’ performance. Transformer model trained with conversations and

DCA augmentation performed best with a micro-f1 of 45.3%.

4.5.2 Results with ResNet+Transformer and its analysis per
emotion

Table 4.2 compares the results of the ResNet+Tranformer model with only

the transformer model. We can observe 4.5% absolute improvement in CER

performance suggesting that processing with convolutional layers helps. For

this model, we employed DCA augmentation on conversations as it yielded
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Figure 4.3: Proportion of emotions in a subset of 38 IEMOCAP dataset conversations
(25% of the dataset). These conversations have one emotion occurring for more than
75% of the conversation. Each bar corresponds to one conversation

Table 4.2: Results of joint ResNet and transformer training. DCA on conversations is
employed for model training

Model micro-f1

Transformer 45.3
ResNet+Transformer 49.8

the best results. To understand our model errors, we show an analysis of

our model’s row-normalized confusion matrix in Figure 4.4. We can observe

that our model is confusing Angry with Frustration 37.6% of the frames and

Neutral with other emotions 67.9% of the frames. Angry and Frustration seem

much more similar to each other than to any other emotion in the label set,

hence we wondered whether there could be some confusion between them for

annotators too. Looking at inter-annotator agreement, we found that when the

annotation of each crowd-sourced worker is matched against their majority-

voted annotation, Angry is found to be confused with Frustration 17% and

Frustration with Angry 11% of total segments (Busso et al., 2008) which are
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significantly high compared to any other emotion. These confusion rates in

the ground-truth annotations would explain our model’s confusion to some

extent.

Figure 4.4: Confusion matrix of ResNet+Transformer model

To understand the confusion of Neutral emotion with others, we investi-

gated the trigram probabilities of emotions in the conversations. Figure 4.5

shows dataset statistics for a subset of trigrams of the form (neighbor-emotion,

central-emotion, neighbor-emotion). These statistics are computed from se-

quences of turn/segment emotions. Each row is normalized for analysis

purposes. If central-emotion is equal to neighbor-emotion then we call the

trigram as homogeneous, and heterogeneous otherwise. From Figure 4.5,

we can observe that the majority of trigrams are homogeneous (diagonal
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values) except when the central-emotion is Neutral. Approximately 54.3%

(100%-45.7%) of the trigrams are heterogeneous for Neutral emotion compared

to 38.5%, 37.5%, 7.5%, and 13.1% for Angry, Frustration, Happy, and Sad respec-

tively. We speculate that the heterogeneous nature of Neutral in this dataset

could be one reason why our model confuses with other emotions more often

– it simply "prefers" to recognize longer contiguous segments with a single

emotion, mislabeling Neutral in the process. This observation is consistent

with the hypothesis presented in previous chapter (Chapter 3) that neutral

utterances are perceived as emotional when presented in the context of an-

other emotional utterance. However, whether this behavior is because of

the dataset characteristics or the acoustic characteristics of Neutral emotion

warrants further analysis which we plan to address in future work.

4.5.3 Results with interlocutor-aware ResNet+Transformer

Table 4.3 presents the results of models trained with various types of interlocutor-

nets. We found that infusion of interlocutor information does improve CER

performance. Learning interlocutor index embeddings using only speaker

segmentation information (Figure. 4.2(a)) provided 2.98% improvement when

infusion is done by addition. In contrast, 3.8% degradation is observed with

infusion by concatenation. We suspect that the model could not learn to ex-

ploit concatenated information as it is easy to discard the extra dimensions

by assigning small weights whereas with infusion by addition the model

is forced to learn embeddings for interlocutors. Replacing the embedding

layer with speaker-net as in Figure. 4.2(b) does not degrade the performance
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Figure 4.5: Probabilities of trigrams of the form (neighbor-emotion, central-emotion,
neighbor-emotion). The labels ang, fru, hap, neu, and sad stand for Angry, Frustration,
Happy, Neutral, and Sad respectively.

with both infusion by addition and concatenation. Even though speaker-net

focuses on speaker-specific information, it also encodes other details such as

emotion, channel and noise specific to the input conversation. For this reason,

we think the model learned to exploit concatenated information as opposed

to discarding unlike the case of Figure. 4.2(a). We obtained 1.4% improvement

with infusion by concatenation where as no change in the performance with

infusion by addition. Using interlocutor-net shown in Figure 4.2(c) which com-

bines both Figure 4.2(a) and (b) provided improvements with both infusion

by addition as well as concatenation. We obtained best performance of 53.3%

with infusion by concatenation using interlocutor-net shown in Figure 4.2(c).
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Table 4.3: Influence of interlocutor information on the performance of
ResNet+Transformer model. Training without interlocutor-net is baseline for this
experiment which provided 49.8% micro-f1 as shown in Table. 4.2

Interlocutor-net Infuse by addition Infuse by Concatenation

Embedding layer (Figure. 4.2(a)) 53.0 46.0
Speaker-Net+Smoothing (Figure. 4.2(b)) 49.8 51.2
Speaker-Net+Grouping (Figure. 4.2(c)) 52.5 53.3

The interlocutor embeddings obtained with Figure 4.2(c) are more speaker

specific as they are obtained by averaging all segments of the speaker in the

conversation compared to the ones extracted using Figure 4.2(b) and hence

the better performance with the former. Lastly, we think interlocutor-net in

Figure 4.2(c) performed best because the interlocutor embeddings from it are

speaker-specific and also specific to the conversation.

4.6 Conclusions and future work

In this work, we presented transformer-based models for conversational emo-

tion recognition (CER). Our analysis on the impact of context showed that

models trained with random conversational context perform better on con-

versations than those trained without context from other speakers. We found

that less diversity of emotions/categories in the input sequences limits the

transformer model performance. Our proposed data augmentation scheme

which aims to improve diversity has helped to discriminate the emotions

better. Conversational context and diversity of emotions provided the best

results when using transformers. The proposed transformer-based approaches

always outperformed the baseline architectures ResNet-34 and BiLSTM. We
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presented a model combining ResNet-34 and transformer architecture to ex-

ploit local and global context, that provides better results than the model based

on transformer only. We proposed three methods to incorporate interlocutor

information to improve the CER performance. Two of which expect speaker

diarized recordings at the test time and the other one method does not require

them.

In this work, we evaluated the proposed methods on the IEMOCAP corpus.

Some of the shortcomings of this corpus are its limited number of speakers and

it is collected in controlled settings. We plan to evaluate our models on more

spontaneous conversations data with more speakers such as MELD (Poria

et al., 2019). Also, we look to investigate our model behaviour more closely

especially on Neutral emotion as it is confused with other emotions more often

compared to other emotions.
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Chapter 5

Customer Satisfaction Prediction

5.1 Introduction

Today’s markets often rely on customer feedback to improve their customer

support. However, very few customers rate their experience with the com-

pany services. Thus, automatically predicting customer satisfaction (CSAT)

plays a vital role in the company’s businesses. This task consists of predicting

the overall sentiment of the customer in a conversation with an agent. The

specific goal could be to predict the likelihood of customer being satisfied or

dissatisfied. Some of the applications of CSAT prediction include evaluating

the quality of spoken dialog systems (SDS) (Engelbrech et al., 2009), market

analysis, employee management, employee efficiency evaluation, customer re-

tention prediction (Sabbeh, 2018; Ranaweera and Prabhu, 2003) and customer

loyalty evaluation (Ansari and Riasi, 2016; Hallowell, 1996).

Evaluating the sentiment of conversations is challenging due to several

reasons and it is different from evaluating written text like movie reviews

or product reviews. Usually, sentiment in the call center conversations is
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dynamic, i.e., it varies from time to time as the conversation goes on because it

depends on how each person in the conversation responds. In contrast, movie

reviews are written with a clear intent of expressing a particular sentiment.

Vocal conversations involve multiple speakers talking to each other by taking

turns for smooth flow of information. In customer care center (CCC) calls,

one channel represents the agent who is trained and expected to speak in

a particular manner, limiting the variety of their vocabulary and phrasing.

The other channel represents the customer, whose speech is spontaneous and

varies in terms of accent, emotions and expressions.

Obtaining data for CSAT prediction task is challenging because very few

customers rate their experience. Alternative to customer’s self-reported rating

is annotating with expert annotators. However, sentiment/emotion of an

audio/text utterance is subjective to each individual based on demographics,

context, gender and culture. The work in (Aman and Szpakowicz, 2007b),

sentiment analysis on blog posts, reported that the average inter-annotator

agreement was only 0.76 in labeling a sentence as emotional or neutral, and

only 0.6 to 0.79 for labeling emotion categories using crowd-sourcing methods

which further illustrates the difficulty of data collection as well as building

machine learning models for this problem.

In this work, we focus on designing and investigating several acoustic

and lexical feature representations for CSAT prediction. Lexical features

are extracted from automatic speech recognition (ASR) transcriptions of the

speech signal. Acoustic cues are extracted from speech signal directly. We
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propose to extract features at three-levels from speech: frame-, turn-, and call-

level. Similarly, from transcript, we extract features at word-, turn-, segment-

and document-level. Each feature-level representation encodes information

available in the conversation at different levels of granularity. For each feature-

level, we present stand-alone models as well as models using transfer learning.

Along with the acoustic and lexical features, we experiment with turn-taking

features which are based on conversation cues such as speaking rate or call

duration. Then, we present systems for the fusion of all the information

sources namely, acoustic, lexical and turn-taking features. We experimented

with model-level fusion and score-level fusion to exploit complementary

information present in these sources. Then, analysis of our classification

results with respect to task completion metric (whether the task is completed),

importance of agent’s vs. customer’s data to the CSAT rating and the effect of

dataset size is presented.

The rest of the chapter is organized as follows. We present a review of liter-

ature related to CSAT prediction in Section 5.2. Then, we introduce the dataset

used in this work in Section 5.3 followed by feature extraction methods and

overview of our approaches on this dataset in Section 5.4 and 5.5 respectively.

We present our experimental setup in Section 5.3 and our experiments on ASR

transcripts, acoustic signal and turn-taking features in Section 5.7, 5.8 and 5.9

respectively. After presenting individual models and results on the transcripts,

acoustic signal and turn-taking features, we present fusion methods in Sec-

tion 5.10. Then, we discuss about the importance of each speaker’s data for

accurate CSAT prediction and the need for more data in Section 5.11. Finally,
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ethical considerations using the models discussed in this work are presented

in Section 5.12 followed by conclusion and future work in Section 5.13.

The main contributions of this work are:

• Extensive analysis using four-levels of document representation: word-,

turn-, segment- and document level.

• Extensive analysis using three levels of speech representations: frame-,

turn- and call level.

• Application of state-of-the-art pre-trained sentence encoder models

ELMo, USE, and BERT

• Proposing the application of pre-trained x-vector model for CSAT pre-

diction from speech signal

• Novel turn-taking features: Terse dialogue metrics

• Model-based and score-based fusion of acoustic, lexical and turn-taking

feature representations

• Task completion metric based analysis of our results

• Analysis of the importance of agent and customer through their spoken

content and acoustic cues
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5.2 Related work

CSAT prediction was one of the essential goals of the DARPA Communicator

program which targeted mainly travel planning human-machine conversa-

tions (Walker, Hirschman, and Aberdeen, 2000). Turn-taking features were

extensively used in this program (Walker, Hirschman, and Aberdeen, 2000;

Walker, Passonneau, and Boland, 2001). The authors in (Walker, Passonneau,

and Boland, 2001) evaluated customer satisfaction on human-machine conver-

sations using PARADISE (Walker et al., 1997) framework. Features extracted

from dialog act tagging along with turn-taking features were used in this

work. In (Yang, Levow, and Meng, 2012), authors used collaborative filtering

models to evaluate customer satisfaction in PARADISE framework. Currently,

machines involved in human-machine conversations usually can deal with

a limited set of dialogue topics and are incapable of conversing with the hu-

man in a natural way, which makes these conversations very different from

human-human conversations.

CSAT prediction on human-human conversations is explored in several

works (Chowdhury, Stepanov, Riccardi, et al., 2016; Luque et al., 2017; Park

and Gates, 2009; Meinzer et al., 2016). In (Chowdhury, Stepanov, Riccardi,

et al., 2016), turn segmentation and labelling system is used to extract more

accurate turn-taking features. The authors compare turn-taking features with

prosodic features and lexical features, using a support vector machine (SVM)

classifier. They use bag of words (BOW) representation and find that turn-

taking features outperform the other features. Authors in (Luque et al., 2017)

use principal component analysis (PCA) and CNN on lexical features and
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XGBoost (Chen and Guestrin, 2016) on prosodic features and observe that

lexical features have more relevant information compared to prosodic features.

Word level lexical features are fused only with corresponding fundamental

frequency and loudness in the audio signal at the feature level to process using

CNN which needs word level boundaries.

Authors in (Park and Gates, 2009), explored several fundamental machine

learning techniques such as decision trees, Naive Bayes, SVM, and logistic re-

gression for the CSAT task on a feature set derived from various sources. The

feature sets were categorized as structural, prosodic, lexical, and contextual

features. To extract structural and some of the contextual features, external

sources other than call transcripts were used and, prosodic and lexical fea-

tures were extracted from call transcripts. Note that authors only considered

talking speed, call dominance, long pause as a set of prosodic features and

did not consider acoustic related features as opposed to standard literature.

In (Meinzer et al., 2016), authors worked on the dataset collected from the

automotive industry with similar goals, but the representation was obtained

from discrete sources like warranty, vehicle type, problem type, etc. They

used SVM and Random Forest to find dissatisfied customers.

Some of the highly correlated metrics to CSAT include net promoter score

and task success rate. In (Auguste et al., 2019), a closely related label, net

promoter score, is used to study agents and customers behaviour. The au-

thors only use transcripts for their experiments. Task success was predicted

in (Reitter and Moore, 2007) on a dataset which involves interactions between

two subjects where one guides another to a destination using a pre-defined

91



route. Lexical and syntactic repetitions in the conversation were used on

specific structural phrases. For classification, logistic regression and SVM

was employed. In (Noseworthy, Cheung, and Pineau, 2017), task success is

evaluated on human-human text conversations extracted from stackoverflow,

an online forum, employing turn-based RNN models to predict success. In

this work, we analyze the use of task success metric for CSAT prediction.

In most of these works, either the features are derived from external sources

and/or employ only basic machine learning methods with simple input rep-

resentations. In contrast, we investigate several feature representations for

speech and text along with turn-taking features hand-curated from audio

segmentation information. Also, transfer learning mechanism is not explored

in the past works except for word embeddings. In this paper, we present

methods using features obtained from several pre-trained word, sentence and

speech utterance embedding models.

5.3 CSAT dataset

Our dataset comprises of US English telephone speech from call centers. Most

of the calls in the dataset are about technical support, customer complaints

and general inquiries. Dataset consists of 4331 audio calls with an average

call duration of 8 minutes. Each call recording contains two channels, one

for agent and another for customer. At the end of the call, customers are

asked to rate their experience on a scale of 1-9, 9 being extremely satisfied.

Figure 5.1 shows the histogram of customer ratings. We can observe that

most of the calls are rated either as extremely dissatisfying (rating 1) or fully
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satisfying (rating 9) as is the case with similar datasets (Schoenmüller, Netzer,

and Stahl, 2019). In this work, we quantize the ratings above 4.5 and below

4.5 to positive and negative calls, respectively to obtain an almost balanced

dataset for experiments and we present experiments to predict whether the

call is positive or negative. Customers are also asked to tell if their issue or

inquiry is resolved by pressing 1 for Yes or 2 for No. We denote these labels

with task completion in this work. Figure 5.2 shows the histogram of the task

completion responses for positive and negative rated calls. For ease of reading,

we mapped the customer responses 1 and 2 to Successful and Unsuccessful

respectively. We can observe that almost all positive calls have successful task

completion and, an almost equal number of negative calls with successful and

unsuccessful task completion.

For analysis of spoken content, we obtain ASR transcripts by employing

an ASR system trained on Fisher and Switchboard datasets with lattice-free

maximum mutual information criterion (Povey et al., 2016). The word error

rates using four-gram language models are 9.2% and 17.3% respectively on

Switchboard and CallHome portions of Eval2000 dataset1. The word error rate

on a held-out dataset of 20 conversations is 21.4%, which means approximately

one word in every five words is recognized incorrectly. The ASR transcript is

supplemented with the information regarding who is speaking (i.e., agent or

customer) at a given time instant.

As the length of the documents affect the choice of the machine learning

model, we present few statistics of our dataset w.r.t. word and turn count.

1https://catalog.ldc.upenn.edu/LDC2002T43
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Figure 5.1: Histogram of customer ratings. Rating 9 corresponds to extremely satisfied
and 1 to extremely dissatisfied

Table 5.1: Dataset statistics

mean median min max

words 821.9 582 15 10932
turns 90.1 62 6 1764

Table 5.1 shows the word and turn statistics and Figure 5.3 displays the

corresponding cumulative distributions. We can observe that more than half of

the dataset has calls longer than 582 words and 62 turns. Also, approximately

8-10% of the calls are very long (longer than 2000 words and 200 turns).

The number of unique words found in these ASR transcripts, i.e., dataset

vocabulary size is 23699.

In the next section, we present feature extraction methods we use in this

work followed by an overview of our methodology for CSAT prediction on

this dataset.
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Figure 5.3: Cumulative distribution of document (a) word count (b) turn count
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5.4 Feature extraction

In this section, we present the feature extraction methods used for our ex-

periments. First, we give a brief introduction of pre-trained models used in

this work to extract text features. Then, we explain acoustic feature extrac-

tion which includes the widely-used OpenSMILE features and the proposed

x-vector embeddings.

5.4.1 Text feature extraction

It is shown in the literature that using pre-trained models for encoding words

and sentences yields a significant improvement in the target task performance,

especially when the target task has a small training dataset (Zhang and Wal-

lace, 2015; Xu et al., 2016). In this work, we experimented with four types of

pre-trained embedding methods:

• GloVe embeddings (Pennington, Socher, and Manning, 2014): GloVe

(short form for Global Vector) is an algorithm based on the global word

co-occurrence statistics which obtains semantically and syntactically

meaningful representation for each word. We use GloVe vectors trained

on the Common Crawl dataset 2 in our experiments.

• ELMo (Embeddings from Language Models) (Peters et al., 2018): This

model obtains word embeddings based on context using two bidirec-

tional language models. We use ELMo model trained on 1 Billion Word

Benchmark 3.
2http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
3https://tfhub.dev/google/elmo/1
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• Google’s Universal Sentence Encoder (USE) (Cer et al., 2018): This model

uses a deep averaging network to obtain embeddings for sentences,

phrases, or even paragraphs. It is trained in multi-task style on a variety

of datasets like Wikipedia, web news, and discussion forums4.

• Bi-directional Encoder Representations from Transformers (BERT) (De-

vlin et al., 2018): This is a recently introduced state-of-the-art model for

sentence representations shown to work well in several downstream

tasks (Devlin et al., 2018). This model is based on a sequence of self-

attention layers trained to predict next sentence and also minimize

masked language model objective. It is trained on BooksCorpus and

English Wikipedia datasets. In this work, we experiment with BERT

model to improve the performance of CSAT prediction.

5.4.2 Acoustic Feature extraction

In this work, we explore two kinds of features: 1) OpenSMILE features from

the acoustic signal and 2) Embeddings extracted from a pre-trained x-vector

model which is trained to discriminate speaker identity (refer to Chapter 3 for

details).

5.4.2.1 OpenSMILE features

OpenSMILE features are well studied for sentiment and emotion related tasks

in the past (Chowdhury, Stepanov, Riccardi, et al., 2016; Luque et al., 2017; Cho

et al., 2019; Eyben et al., 2015). In this paper, we follow the recommendations

4https://tfhub.dev/google/universal-sentence-encoder-lite/1
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in (Eyben et al., 2015) to extract these features. First, we represent the entire

speech signal as a sequence of short windows called frames. We used 1 second

of speech as a frame length and we extract features for every 0.3 seconds. Then,

each frame is represented with an 88-dimensional minimal set of features.

These features quantify acoustic cues such as pitch, loudness and formant

energies, among others.

5.4.2.2 x-Vector Embeddings

x-Vector model is a neural network trained to recognize speaker of a spoken

utterance. Usually, this model contains a sequence of convolutional layers

followed by a pooling layer and feed-forward layers to recognize speaker.

Features extracted from the fully connected layers are called x-vectors. Since,

the model is trained to discriminate speakers, we expect them to contain only

speaker information. However, as shown in Chapter 3, x-vectors do encode

other information such as speaking rate, channel information, spoken content

and speaker emotion. In this work, we explore x-vectors for CSAT prediction.

In this paper, we use state-of-the-art ResNet x-vector model reported

in (Villalba et al., 2019) for utterance level speaker embedding extraction. The

network consisted of three parts: frame-level representation learning network,

pooling network, and utterance-level classifier. Frame-level representation

learning network uses ResNet-34 (He et al., 2016) structure, which consists

of several 2D convolutional layers with short-cut connections between them.

After that, we used a multi-head attention layer to summarize the whole

utterance into a large embedding. This layer takes ResNet outputs xt as input
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and computes its own attention scores wh,t for each head h:

wh,t =
exp(−sh ∥xt − µh∥)

∑T
t=1 exp(−sh ∥xt − µh∥)

. (5.1)

Attention scores wh,t are normalized along time axis.

Output embedding for head h is the weighted average over its inputs:

eh = ∑
t

wh,txt (5.2)

Different heads are designed to capture different aspects of input signal. Em-

bedding from different heads are concatenated and projected by an affine

transformation into the final embedding. From the pooling layer to output,

there are two fully connected layers, and it predicts speaker identity in the

training set. Angular softmax (Liu et al., 2017) loss was used to train the

network. The whole network structure is illustrated in Table 5.2.

Datasets used to train this model include VoxCeleb, Switchboard, NIST

SRE04-10, SRE12 and MIXER6. All the utterances were downsampled to 8 kHz.

Our model was trained on mel-frequency cepstral coefficient (MFCC) features

which are well-known in speech community. We extracted 23-dimensional

MFCC features for every 10ms on a 25ms speech window. For more details,

please refer to (Villalba et al., 2019). In this work, we extracted 400-dimensional

features from the pre-final layer.

5.5 Methodology overview

Having introduced the feature extraction methods in the previous section,

now we discuss how we use them to represent transcripts and acoustic signal
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Component Layer Output Size

Frame-level
Representation
Learning

7 × 7, 16 T × 23[︃
3 × 3, 16
3 × 3, 16

]︃
× 3 T × 23[︃

3 × 3, 32
3 × 3, 32

]︃
× 4, stride 2 T

2 × 12[︃
3 × 3, 64
3 × 3, 64

]︃
× 6, stride 2 T

4 × 6[︃
3 × 3, 128
3 × 3, 128

]︃
× 3, stride 2 T

8 × 3

average pool 1 × 3 T
8

Pooling 32 heads attention 32 × 128
Utterance-level
Classifier

FC 400
FC #spk:12,872

Table 5.2: ResNet architecture used in the x-vector model

for CSAT prediction. Overview of the feature representations investigated

in this work is presented in Figure 5.4. We extract the acoustic/transcript

features at multiple levels and turn-taking features from the segmentation

information. Features from various levels have different kinds of information

relevant to CSAT. For example, word-level features do not encode speaker

turn information. While turn-level features encode speaker turns but loses the

word-level granularity. In this section, we present the procedure to extract

features at various levels followed by a brief overview of neural net based

methods used in this work for CSAT prediction from the extracted features.

5.5.1 Transcript representations for CSAT models

ASR transcripts contain the information of who spoke when and what i.e.,

it contains the sequence of words spoken by speakers and their timing in-

formation. We considered representing a given document at four levels: a
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Figure 5.4: Overview of the feature representations

sequence of word vectors (word-level), a sequence of turn vectors (turn-level),

a sequence of segment vectors (segment-level) and a single document vector

(doc-level).

The word-level representation preserves the word order and ignores the

speaker turns information. While the turn-level representation preserves the

speaker turns order, it encodes only a summary of the words in that turn.

Segment-level representation does not preserve word and turn order but we

choose to explore it as it enables fine-tuning of the pre-trained models. The

doc-level representation too does not preserve word and turn order, and is

explored to understand if the sequence information is useful for the CSAT

prediction.

• At word level: We represent every word with a single vector, which is usu-

ally referred as word embedding, thereby the transcript as a sequence

of word embeddings. We can either learn the word embeddings for a

specific task or use pre-trained word embeddings and then adapt for

the task at hand. In this work, we use pre-trained word embeddings

from models GloVe, ELMo and USE as they were shown to work well
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for down-stream tasks. We compared the pre-trained word embeddings

with the embeddings learnt from scratch. Our methods and experiments

on the word level representations are presented in Section 5.7.1. Draw-

back of representing transcripts with word-level features is speaker turn

information is not used which could be important for our task.

• At turn level: We represent each turn of a speaker with a single vector,

thereby representing the transcript as a sequence of turns. In this rep-

resentation, speaker turn information is preserved as the speakers take

turns to converse each other. As with the word embeddings, we can

use sentence/turn embedding from models such as ELMo, USE and

BERT. As it was shown in (Adi et al., 2016), the turn embeddings can

encode information about spoken content as well as other meta informa-

tion such as word order and turn length which could be useful for our

task. We compare the pre-trained turn embeddings with a simple word

count based representation which does not involve pre-training. Our

methods and experiments on turn-level representations are presented in

Section 5.7.2.

• At segment level: We represent a small chunk of text, referred as a segment,

with a single vector thereby representing the transcript as a sequence

of segment vectors. In this work, we use pre-trained BERT model to

represent segments. We also adapt/fine-tune the BERT model to our

task by following a two-stage method to overcome limitations of BERT.

Our methods and experiments on the segment-level representation are

presented in Section 5.7.3.
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• At document level: We represent the whole document with just a single

vector as opposed to word-, turn-, segment-level representations. In this

work, we used a simple BOW representation, which is a sum of one-hot

encoding of words appeared in the document. It can be compared to

the other representations investigated in this work as to whether the

context is really important for a better CSAT prediction. Our methods

and experiments on the document-level representation are presented in

Section 5.7.4.

5.5.2 Acoustic representations for CSAT models

Acoustic signals contain the information of who spoke when and what along

with how they spoke which is not available in ASR transcripts. We considered

representing a given acoustic signal at three levels: a sequence of frame

vectors (frame-level), a sequence of turn vectors (turn-level), and a single call

vector (call-level). Similar to word-level representation of transcript, frame-

level representation ignores speaker turns order. Turn-level representation

preserves speaker turns order and it can encode only acoustic summary of

the turn. Call-level representation does not preserve speaker turns order

but we expect it to capture important events of the signal relevant to CSAT.

Description of each representation level is as follows:

• At frame level: We represent a short window of speech, referred as a frame,

with a single vector thereby representing the entire call as a sequence

of frame vectors. We used 1 second of speech as a frame length and we

extract features for every 0.3 seconds. Each frame is represented with an

103



88-dimensional minimal set of OpenSMILE features. Our methods and

experiments on the acoustic frame-level representation are presented in

Section 5.8.1. Similar to word-level representations, the main drawback

of using this representation is speaker turn information is not used which

could be important for our task.

• At turn level: Similar to the turn representations on text, we represent

each turn of a speaker with a single vector to represent the whole call as

a sequence of turn vectors. As with the frame-level representation, we

used OpenSMILE features to represent turns. In addition, we propose

to use x-vector embeddings to represent turns. We expect that emotion

information encoded in x-vectors is helpful to find the overall sentiment

of the call. Our methods and experiments on the acoustic turn-level

representation are presented in Section 5.8.2.

• At call level: We represent the whole call with just a single vector as

opposed to frame-, turn-level representations. Experiments with call-

level representations reveal if we can ignore granular emotional changes

along the call. In this work, we propose to use x-vector embeddings

to represent the whole call. We expect the x-vector embeddings to re-

tain the overall emotion in the call thereby predicting CSAT better. For

comparison, we experiment with OpenSMILE features. Our methods

and experiments on the call-level representation are presented in Sec-

tion 5.8.3.
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5.5.3 Turn-taking features for CSAT prediction

In addition to lexical/transcript and acoustic features, we explored using

turn-taking features to predict CSAT rating. These features are extracted from

the segmentation and speaker turns information in the ASR transcripts. They

encode information related to duration of the call, speaking rate, overlapped

speech duration etc.. Actual spoken content and acoustic cues are not used

in these features and hence, these features could be complimentary to lexical

and acoustic features. Our methods and results are presented in Section 5.9.

5.5.4 CSAT modeling from transcripts, acoustic signal, and
turn-taking features

In the previous subsections, we presented feature extraction procedures we

followed for CSAT. Now, we present a brief overview of machine learning

models used on the extracted features. To predict CSAT rating from transcript,

acoustic and turn-taking representations, we explored neural network based

methods along with linear classifiers such as logistic regression and XGBoost.

We used CNN based models on the sequential representations such as tran-

script word-, turn-level features and acoustic frame-, turn-level features. We

found that LSTM based models did not work well as the input sequences are

very long and hence we do not report them in this work. On document/call

level representations, we explored using DNN, linear classifiers such as logis-

tic regression and XGBoost.
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5.5.4.1 Channel-aware CSAT models

In CCC calls, usually an agent and customer converse each other and, both

of their speech/text may help us to predict CSAT. However, they may not

have equal role as their speaking characteristics are different. In other words,

agent is well-trained to speak to the customer while the latter is not trained at

all. For example, usually the agent speaks formally while the customer need

not be. Hence, we hypothesize that distinguishing agent’s and customer’s

stream/channel of speech during model training will help to predict the CSAT

better. In this work, we present the experiments showing the importance of

distinguishing the agent’s and customer’s channel.

5.6 Experimental Setup

In this work, we divided our dataset of 4331 calls into 3 sub-sets: 2866, 362 and

1103 calls for training, validation and testing respectively, retaining the class

balance in each set. We report the macro f1-score in all of our experiments.

F1-score is computed as the harmonic average of precision and recall. After

model training is finished, we chose an epoch with the best validation loss

to report results on the test set. Adam optimizer (Kingma and Ba, 2014)

was used to optimize the cross-entropy loss. Initial learning rate was set

to 0.001 and reduced by a factor of 0.95 if validation loss did not decrease

for 3-epochs. Randomness in neural network training causes some f1-score

variance between runs of the same model. To alleviate this effect and make a

better comparison between models, we report the f1-scores averaged over 5

runs.
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In the following sections, we present our methods and experiments on

lexical, acoustic and turn-talking features. We also show experiments on

fusing all these features to exploit complementary information. Then, we

present analysis experiments on the importance of each speaker (agent vs.

customer) and the need for more data.

5.7 CSAT on ASR transcriptions

Transcript representation plays a vital role in obtaining task-relevant informa-

tion from transcripts. As explained in Section 5.5.1, we represent the transcript

at four levels: word-, turn-, segment- and doc-level. In this section, we present

details of models used on the transcript representations and corresponding

results.

5.7.1 Modeling word-level transcript representations

Figure 5.5a shows the neural architecture of our model. We used one-hot

encoding representation to represent each word. We obtained word embed-

dings by passing each word one hot encoding through a linear layer, referred

to as the word embedding layer. We denoted this layer with WordEmbed in

Figure 5.5b. In this work, we experimented with initializing WordEmbed layer

with pre-trained embeddings and also compared with random initialization.

The complete list of embeddings used in this work are presented in Table 5.3.

The output of WordEmbed layer is passed through one convolutional layer

with 100 filter maps and a kernel size of 7 followed by a global temporal pool-

ing layer. The pooling layer’s output is a single 100-dim vector representing
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(a) High-level architecture

(b) Lexical Encoder

(c) Acoustic Encoder

Figure 5.5: Architecture of lexical and acoustic models. FC-ReLU and FC-Softmax:
fully connected layer with ReLU and softmax activation, WordEmbed: word embed-
ding, Conv-ReLU: convolution layer with ReLU activation, BatchNorm: batchnorm
layer, TempPooling: average temporal pooling

Figure 5.6: Channel-aware architecture for lexical and acoustic signals
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Representation Description

GloVe Word Embed pre-trained GloVe word embeddings (300-dim)
ELMo Word Embed pre-trained ELMo word embeddings (1024-dim)
USE Word Embed pre-trained USE word embeddings (512-dim)

Random Word Embed Random values sampled from uniform distribution (300-dim)

Table 5.3: Description of word embeddings

the whole document, which is referred as transcript embedding. We further

refer to the sub-module used to obtain the transcript embedding as the lexical

encoder (see Figure 5.5b). Then, the transcript embedding was processed with

30-dim and 2-dim fully connected layers with activation functions ReLU and

softmax respectively to obtain the CSAT prediction. We applied dropout with

30% rate on the document embedding and fully connected layer to regularize

the model.

Table 5.4 presents comparison of the results with different word embedding

initializations. It can be observed that pre-trained word embeddings provided

better performance compared to random initialization suggesting the impor-

tance of using pre-trained models. Among the pre-trained embeddings, GloVe

embeddings performed best with 77.52% f1-score.

Table 5.4: Comparison of various word embedding initializations in CNN architecture

Word embeddings type F1-score (%)

GloVe Word Embed 77.52
ELMo Word Embed 77.29
USE Word Embed 76.37

Random Word Embed 67.23

Channel-aware CSAT model: As discussed in Section 5.5.4.1, we experiment

with distinguishing agent and customer during training. Specifically, we
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Table 5.5: Comparison of channel-aware and channel-unaware models on ASR tran-
scription

Type of input F1-score

GloVe Word Embed (Figure 5.5a) 77.52
GloVe Word Embed Channel-Aware (Figure 5.6) 79.70

processed agent and customer transcript separately using lexical encoder to

obtain agent transcript embedding and customer transcript embedding. Then

we concatenate them to obtain one transcript embedding for the whole call,

which will then be processed with two fully connected layers as noted above.

Architecture for this experiment is shown in Figure 5.6. Table 5.5 compares the

model performance for the case where the input is a single stream of customer

and agent words (GloVe Word Embed); and the case where we separate the

customer and agent word streams (GloVe Word Embed Channel-Aware). We

noticed 2.18% absolute improvement in f1-score which could be attributed to

style differences between speakers in expressing their sentiment.

5.7.2 Modeling turn-level transcript representations

For turn-level representations, we treated each turn as a sentence and used

pre-trained sentence encoders to represent each turn. We experimented with

three types of pre-trained sentence encoders: USE, ELMo and BERT. Apart

from representations based on pre-trained sentence encoders, we used word

counts of each turn (sum of one-hot encodings) as another representation.

Table 5.6 presents the complete list of turn representations explored in this

work.

For modeling the turn-level transcript representations we adopted the

110



Representation Description

Turn-USE Turn representation using USE
Turn-ELMo Turn representation using ELMo
Turn-BERT Turn Representation using BERT

Turn-BOW Sum of one-hot encodings of words in the turn

Table 5.6: Description of Turn representations

same model architecture used in Section 5.7.1 (Figure 5.5a) but without the

WordEmbed layer in the lexical encoder Figure 5.5b.

Channel-aware CSAT model: Boundaries of agent speech and customer

speech are implicit in the turn representation. Hence, we did not perform

separate experiments distinguishing agent and customer to predict CSAT

rating.

Experiments with turn-level representations are shown in Table 5.7. Among

the pre-trained turn representations, we observed that Turn-USE performed

better than Turn-ELMo and Turn-BERT. Surprisingly, Turn-BOW outperformed

all other turn representations with an f1-score of 79.86%. It could be because

Turn-BOW representation encodes turn information in a simplistic manner

(i.e., word counts) which our model is able to exploit well. From the Ta-

ble 5.5 and 5.7, it can be observed that both the word-level and turn-level

representations perform similarly.

5.7.3 Modeling sequence of segment representations

A long document can be represented as a sequence of segments. Segment

representation can be seen as a compromise between turn representations and

using a single vector for the whole document. Call center transcripts, while
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Table 5.7: Comparison of sentence encoders for prediction based on turn level em-
beddings.

Input representation F1-score

Turn-USE 78.41
Turn-ELMo 73.88
Turn-BERT 75.80

Turn-BOW 79.86

usually quite short and to the point, often involve agents trying to solve very

complex issues that the customers experience, resulting in some calls taking

even an hour or more. These transcripts sometimes exceed the length of 5000

words.

For this task, we use our previously introduced method that builds upon

BERT’s architecture (Pappagari et al., 2019). One important limitation of BERT

model is it operates on only a limited context of symbols as their input (Dai

et al., 2019). Hence, we split the input text sequence into shorter segments in

order to obtain a representation for each of them using BERT. Then, we use

a recurrent LSTM (Hochreiter and Schmidhuber, 1997) network to perform

the actual classification. We call our technique as Recurrence over BERT

(RoBERT).

Given a pre-trained BERT model, we can obtain features for a segment in

several ways:

• Freeze the pre-trained BERT model and extract the features from the

pre-final layer. We denote this with BERT frozen features.

• Fine-tune the pre-trained BERT model to CSAT data on segment-level
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Table 5.8: Comparison of various BERT feature representations

Type of input
Model RoBERT

BERT frozen features 70.19
BERT fine-tuned features 83.33

BERT fine-tuned predictions 83.38

and extract the features for each segment from the pre-final layer. We

denote this with BERT fine-tuned features.

• Fine-tune the pre-trained BERT model to CSAT data on segment-level

and extract the predictions for each segment from the final layer. We

denote this with BERT fine-tuned predictions

Results with RoBERT model on the extracted segment-level features are

presented in Table 5.8. It can be observed that fine-tuned features/predictions

outperform frozen features suggesting the importance of adaptation to our

task. We obtained a best f1-score 83.38% using RoBERT model on fine-tuned

predictions.

It is also possible to predict CSAT rating from BERT fine-tuned predictions

by just taking their average or finding most-frequent class. In this work,

we compare efficacy of these simple methods with RoBERT model. Table 5.9

presents the comparison of RoBERT with simple operations like averaging and

most-frequent class. It can be observed that RoBERT performed better than

most-frequent and averaging operations suggesting that temporal information

is important for CSAT task. One example where temporal information useful

is sometimes the customer is angry at the beginning of the call but if the agent
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Table 5.9: Comparison of classification methods on the fine-tuned predictions

Average Most-Frequent RoBERT

82.18 80.25 83.38

addresses the customer’s problem successfully then customer is happy at the

end of the call.

5.7.4 Modeling document-level representation

BOW representation is obtained by taking summation over all one-hot en-

coding vectors in the temporal dimension, i.e., it is a vector with the counts

of each word in that transcript. We denote BOW representation for the tran-

script/document with Doc-BOW. Since we take the summation over the tem-

poral dimension, we lose relevant sequence information. Note that, the same

vector can be used to represent two transcripts with the same words but in a

different order. Instead of using the word counts to represent the document,

we can also average word embeddings. For example, we can average GloVe

embeddings of all words in the corresponding document – we denote this as

Avg-Doc-GloVe.

As there is no temporal information in Doc-BOW and Avg-Doc-GloVe rep-

resentations, it does not make sense to use CNN network models on them.

Thus, we just used standard feed-forward DNN to predict the CSAT rating.

We passed the Doc-BOW/Avg-Doc-GloVe vectors through a DNN with three

hidden layers with 1000, 300, and 30 neurons with ReLu activations. The

network configuration was selected empirically, though results were not very

sensitive to the number or width of the layers. We compare this model with
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shallow models such as logistic regression and XGBoost.

Channel-aware CSAT model: As discussed in Section 5.5.4.1, we hypothe-

size that distinguishing agent and customer during training helps to predict

CSAT better. Specifically, we obtain BOW vector for agent and customer sepa-

rately and then concatenate to represent the whole transcript. We denote this

representation with Doc-BOW channel-aware.

Results with document-level representations are presented in Table 5.10. It

can be observed that Doc-BOW performed better than Doc-BOW channel-aware

with DNN model. This result suggests that distinguishing the speakers is not

helpful which is opposite to our observation with word-level representation

( Table 5.5). But, with linear classifiers LR and XGBoost, they perform simi-

larly. Avg-Doc-GloVe performed significantly worse which could be because

sentiment-related attributes can not be emphasized in the averaging operation

of GloVe embeddings of words where the average is over all kinds of words.

In other words, the overall sentiment is not just the summation of sentiment

attribute of each word. From the comparison of Table 5.5 and 5.10, it can be

observed that Doc-BOW representation is better than GloVe Word Embed but

inferior compared to GloVe Word Embed Channel-Aware. It could be because

CNN could not exploit sequential information when speech from multiple

speakers is mixed. This result also suggests that semantics can be helpful for

this task.
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Table 5.10: Results with document-level representations. All numbers in this table
are f1-scores (%)

Type of input
Model LR XGBoost DNN

Doc-BOW 73.80 78.35 78.41
Doc-BOW channel-aware 73.72 78.35 77.00
Avg-Doc-GloVe 64.20 66.70 66.62

5.8 CSAT on Acoustic signal

Models using ASR transcription utilize mainly spoken content, while the

important acoustic cues such as change in tone, pitch and loudness of speech

are not available. Hence, modeling acoustic signal can provide complimentary

information to ASR transcriptions. In this section, we present methods based

on acoustic signal to predict CSAT rating.

5.8.1 Modeling frame-level acoustic representations

As word segmentation is very difficult in speech signal, we represent speech

signal using a sequence of short windows called as frames. In this work, we

extract frames with 1 second windows sequentially shifted by 0.3 second.

Each frame is represented with an 88-dimensional feature vector extracted

using OpenSMILE tool.

We process frame-level acoustic call representation using a dilated 1D

CNN model. Description of the model is as follows. Batch normalization layer

is used as the first layer in model, as it has the implicit effect of normalizing

the acoustic features in mean and variance. Then, the normalized input was

passed through a sequence of 3 convolutional layers with dilation rate 1, 2 and
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Table 5.11: Results with acoustic frame-based representation

Type of input F1-score

frame-OpenSMILE (Figure 5.5a) 73.63
frame-OpenSMILE channel-aware (Figure 5.6) 76.10

3 respectively. We used 50 filter maps and kernel size 7 in each convolutional

layer, leading to an effective context of 37 at the end of final convolutional

layer. The output of the final convolutional layer was averaged temporally

to obtain a single 50-dim vector representation for the whole call, referred to

as acoustic embedding. We further refer to the submodule used to obtain an

acoustic embedding from the acoustic features as the acoustic encoder (see

Figure 5.5c). Then, the acoustic embedding was passed through 100-dim and

2-dim fully connected layers with ReLU and softmax activation functions

respectively.

Channel-aware CSAT model: As discussed in Section 5.5.4.1, we hypothesize

that distinguishing agent’s and customer’s speech during training helps. To

validate our hypothesis, we process frame-level acoustic features for agent’s

and customer’s speech separately to obtain their corresponding acoustic em-

beddings. Then, we concatenate them to process further to obtain CSAT

prediction for the whole call. Architecture for this experiment is shown in

Figure 5.6. We denote this model with frame-OpenSMILE channel-aware.

Results with frame-level acoustic features are presented in Table 5.11. We

observed 2.47% absolute improvement in f1-score by distinguishing agent

and customer speech, which can be attributed to differences in speaker char-

acteristics related to expressing various emotions. Compared to word-level
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transcript representation (Table 5.5), it performed worse by 3.6% indicating

that spoken content has more information.

5.8.2 Modeling turn-level acoustic representations

Since, the goal of CSAT prediction task is predicting overall satisfaction of

the customer, it is important to understand if the local variations affect final

performance. In this section, we present experiments with acoustic turn

representations. For each turn, we extracted one 88-dim vector of OpenSMILE

features. We believe the overall acoustic turn statistics are important for this

task compared to frame-level statistics as we usually can expect only one

dominant emotion in each turn. In addition to OpenSMILE features, we

propose to use x-vector embedding for each turn which is 400 dimensional.

We believe the x-vector model attends to most informative parts of the turn.

For modeling the turn-level acoustic representations, we used same CNN

model explained in Section 5.8.1 and corresponding results are presented in

Table 5.12. It can be observed that OpenSMILE features and x-vectors perform

similarly but worse than frame-level representation (Table 5.11). This result

suggest that frame-level acoustic variations are important for this task.

Channel-aware CSAT model: Boundaries of agent speech and customer

speech are implicit in the turn representation. Hence, we did not perform

separate experiments distinguishing agent and customer to predict CSAT

rating.
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Table 5.12: Results with turn-based representations on acoustic signal

Type of input F1-score

Turn-OpenSMILE 67.43
Turn-x-vectors 67.42

5.8.3 Modeling call-level acoustic representation

Similar to doc-level representation for transcripts, we represent entire call with

a vector. In this work, we propose to use x-vector embedding to represent

long audio calls for better CSAT prediction performance. We expect that

the x-vector model does encode information relevant to sentiment of the

speakers. We compare x-vector embedding with call-level OpenSMILE feature

representation. Note that, it is not very common to use OpenSMILE tool to

represent long calls with a single vector, as it mainly extracts statistics of

acoustic features. Hence, we expect it to not work well compared to call-level

x-vector embedding and also frame-level OpenSMILE representation. We

used DNN for classification and compared with linear classifiers such as LR,

XGBoost.

Table 5.13 presents results on call-level representations. It can be observed

that x-vector representation perform significantly better than OpenSMILE

features. Also, as we expected, call-level OpenSMILE features perform worse

than frame-level features suggesting that important events are not emphasized

in the call-level representation. Also, DNN outperformed linear classifiers, LR

and XGBoost, in most cases.

Channel-aware CSAT model: As discussed in Section 5.5.4.1, we hypothesize

that distinguishing agent and customer speech during training helps. To

119



Table 5.13: Results with call-level representations on acoustic signal

Type of input
Model LR XGBoost DNN

Call-OpenSMILE 67.95 68.99 70.36
Call-x-vectors 72.78 76.04 76.87

Call-OpenSMILE channel-aware 73.04 74.4 71.87
Call-x-vectors channel-aware 74.73 74.98 78.21

validate this hypothesis, we extract call-level acoustic features for agent and

customer separately and concatenate them to represent the whole call. We

denote these representations with channel-aware. It can be observed from

Table 5.13 that in most cases channel-aware representations (rows 3 and 4)

perform better than the representations without channel information (rows

1 and 2) suggesting the validity of our hypothesis. From the comparison of

Table 5.11 and 5.13, it can be observed that call-level x-vectors with channel

information performed best with 78.21% f1-score.

5.9 CSAT using turn-taking features

We have shown how to construct a CSAT model based on the verbal con-

tent and acoustic cues of the CCC call. However, human conversations are

abundant with a variety of nonverbal cues, which are helpful to understand

the dynamics of the dialogue. In this work, we attempt to capture some of

these cues with turn-taking features to investigate their usefulness in CSAT

prediction. We extracted 18 features and classified them into four types: dia-

logue efficiency metrics, dialogue quality metrics, task success/completion

metrics (Chowdhury, Stepanov, Riccardi, et al., 2016; Park and Gates, 2009;
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Walker, Passonneau, and Boland, 2001; Walker, Hirschman, and Aberdeen,

2000), terse dialogue metrics.

The dialog efficiency metrics were the duration of the call, the average

number of speaker (agent and customer) words per turn, average speaker

(agent and customer) turn duration, average speaker (agent and customer)

talking rate and speaker (agent and customer) call dominance. Speaker call

dominance is measured as a fraction of the speaking time of the speaker. We

only considered customer call dominance as agent call dominance is derived

as one minus customer call dominance.

For dialogue quality metrics, we considered the number of overlaps be-

tween customer and agent turns. For task success metrics, we used the task

completion since satisfied customers often have their problem solved, as

shown in Figure 5.2. For our dataset, this metric is available.

In addition to these metrics, which are adapted from literature, we propose

eight other features in this work that are based on the number of words used in

each speaker’s turn. We call these features terse dialogue metrics, as they reflect

conciseness and sometimes forceful expressiveness of the responses. For a

smooth dialogue, cooperation between participants is essential, especially in

the context of CCC calls. Depending on other factors, high density of short

turns may suggest either conciseness and pragmatism of the dialog or lack

of engagement of one or both of the interlocutors. In this work, we used the

number of one-word, and two-word turns for each speaker and their average

time duration as features. We define one-word turns as the turns in which the

speaker utters only one word. Similarly, two-word turns are the turns with
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exactly two words.

We used logistic regression (LR) to predict the satisfaction level of the

customer using these features. We did not notice any significant improvement

over LR when using DNN, SVM, or gradient boosted decision tree classifiers;

hence, we preferred LR for its simplicity.

Results with with the turn-taking features are presented in Table 5.14. For

simplicity, we denoted dialogue efficiency metrics with E, dialogue quality

metrics with Q, terse dialogue metrics with T and task completion with TC. It

can be observed that the turn-taking features yielded some information about

the CSAT with an f1-score ranging between 66% and 67%. We also examined

the improvement obtained from using the proposed terse dialogue metrics,

based on the number of words used in each speaker’s turn. Using the terse

dialogue metrics, we obtained 1% improvement with and 0.5% without task

completion metric as shown in Table 5.14. However, we observed that the

improvements are not statistically significant.

It can be observed from the Table 5.14 that task completion metric alone

contributes to 76.79% f1-score suggesting that it is highly correlated to CSAT

rating. Figure 5.8(a) shows the distribution of positive and negative calls in

the test dataset with respect to task completion metric. Almost all the satisfied

customers/positive calls (599 calls) have successful task completion and there

is an almost equal split between successfully (234 calls) and unsuccessfully

(248 calls) completed calls when the customer was dissatisfied (negative calls).

It can be implied that the task is successfully finished whenever the call is

rated as positive. On the other hand, the converse is not valid, suggesting that
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Table 5.14: F1-scores obtained with turn-taking features. EQ stands for features with
only Efficiency(E) and Quality(Q) dialogue metrics and EQT is the same as EQ, but
extend with Terse dialogue(T) features. TC stands for Task Completion

EQ EQT

Without TC 66.45 66.99
With TC 77.79 78.78

Only TC 76.79

Figure 5.7: Architecture for fusion of lexical, acoustic and turn-taking features

the customer can be dissatisfied, even should the agent solve the customers’

problem.

5.10 Fusion of lexical, acoustic and turn-taking fea-
tures

As discussed in Section 5.5.1 and 5.7, text feature representations encode

mainly the spoken content and the models based on them performed fairly

well with a best f1-score of 83.38%. However, humans are capable of ex-

pressing multiple emotions such as angry, disgust, happiness etc.. for the
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same content which can be seen only from the acoustic signal. Hence, we

hypothesize that models based on transcripts and acoustic signal capture

complementary information, and fusing them would enable us for more im-

provements. Also, as discussed in Section 5.9, turn-taking features are shown

to work well for CSAT prediction albeit not as good as lexical and acoustic

features. However, they capture meta information such as speaking rate, du-

ration of the call etc.. which are not explicitly available in lexical and acoustic

features. Hence, we hypothesize fusion of turn-taking features with both

lexical and acoustic features helps us for better CSAT performance.

In this work, we present two methods of fusion: 1) model-based fusion and

2) score-based fusion. In model-based fusion, we train a single model which

exploits multiple representations of a given call (lexical, acoustic and turn-

taking features) and produces a single CSAT prediction. Figure 5.7 presents

the architecture for model-based fusion. First, we obtain transcript and acous-

tic embeddings for both agent and customer, and pass them through a 100-dim

fully connected layer separately. Alongside, turn-taking features are treated

with 100-dim fully connected layer. Now, we have five embeddings at this

point: 2 for agent (transcript and acoustic), 2 for customer (transcript and

acoustic) and 1 from turn-taking features. Then, we fuse these five embed-

dings using two fully connected layers with 50-dim and 2-dim with ReLU

and softmax activation functions respectively to obtain the CSAT prediction.

Parameters for the multi-modal system were set based on the best transcript

and acoustic models.

For score-based fusion, we follow a two-stage approach: we first extracted
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the log-likelihoods from already trained transcript, acoustic and turn-taking

features based models. Then, we concatenate the log-likelihoods to obtain a

6-dim vector and applied logistic regression to obtain CSAT prediction.

Table 5.15 presents results for model-based and score-based fusion. Fu-

sion of transcript (word-level) and acoustic (frame-level) sources gave 2.17%

improvement compared to transcript source alone (GloVe Word Embed Channel-

Aware). Adding turn-taking features to our multi-modal system as an extra

input degraded the result significantly. We observed that score fusion per-

formed 2.45% better than model-based fusion . We expected model-based

fusion to work better than score-based fusion as the former is trained to

optimize in an end-to-end manner. As score-fusion performed better than

model-fusion, we used score-fusion for further fusion experiments. Fusion

with Turn-BOW, Call-x-vectors channel-aware, RoBERT and EQT provided more

gains. We can observe that EQT features contribution is small in the score-

fusion suggesting no complementary information in turn-taking features. In

other words, the turn-taking features could have already been encoded in

transcript and acoustic representations. For example, duration of the call can

be roughly estimated from the number of words in the transcript and number

of frames in the acoustic signal as they are directly proportional. We obtained

the best f1-score of 88.35% with the score fusion of the data-driven features

i.e, transcript features at word-, turn-, segment-level (RoBERT), and acoustic

features at frame- and call-level. With the addition of hand-crafted features

(EQT) we obtained an f1-score of 88.46%. Also, adding TC metric provided

minimal gains suggesting we do not need it given data-driven models which

125



(a)

234 248

599

22

Successful Unsuccessful
0

200

400

600

#
c
a
lls

 i
n
 t
h
e
 t
e
s
t 
d
a
ta

Positive calls distribution

Negative calls distribution

(b)

168
219

559

16

Successful Unsuccessful

Task Completion Metric

0

200

400

600

#
c
o
rr

e
c
tl
y
 c

la
s
s
if
ie

d
 c

a
lls

Figure 5.8: (a) Histogram of number of calls in the test data w.r.t TC metric, (b)
Histogram of number of correctly classified calls in the score-fusion system (word-,
turn-, frame-, call-level, RoBERT, EQT)

is a good sign as it is self-reported by customers.

In this work, we attempted to analyze fusion model decisions with respect

to task completion metric. Figure 5.8(a) shows the histogram of positive

and negative calls in the test dataset with respect to TC metric where as

Figure 5.8(b) shows the histogram of only correctly classified calls in score-

fusion system. It can be observed that, our fusion model is able to correctly

classify most of the positive calls with successful task completion (6.7% error,

559 out of 599) and negative calls with unsuccessful task completion (11.7%

error, 219 out of 248). However, our model is having difficulty in correctly

classifying the negative calls with successful task completion (28.2% error, 168

out of 234). It is possible that these calls might have subtle cues compared

to the calls corresponding to other cases and we might need more efficient

models and more information to classify them correctly.
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Table 5.15: Comparison of stand alone systems and fusion systems. For model fusion,
word- and frame-level features are used and trained using Figure 5.7 architecture.

F1-score

GloVe Word Embed Channel-Aware 79.70
Turn-BOW 79.86
RoBERT (Segment-level) 83.38
frame-OpenSMILE channel-aware 76.10
Call-x-vectors channel-aware 78.21

EQT 66.99
TC 76.79
EQT + TC 78.78

Model Fusion (Word-, frame-level) 81.87
Model Fusion (Word-, frame-level, EQT) 77.24

Score Fusion (word-, frame-level) 84.32
Score Fusion (word-, turn-, frame-, call-level) 86.69
Score Fusion (word-, turn-, frame-, call-level, RoBERT) 88.35
Score Fusion (word-, turn-, frame-, call-level, RoBERT, EQT) 88.46
Score Fusion (word-, turn-, frame-, call-level, RoBERT, EQT+TC) 88.55
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5.11 Analysis

5.11.1 Learning Curves

Learning curves reveal the effect of dataset size used for training on the CSAT

performance. Since our dataset is relatively small compared to usual machine

learning tasks, these learning curves help us to assess the need for more data.

We experimented with dataset sizes starting from using 10% of the data in

increments of 10% up to full dataset. For this experiment, we used ASR tran-

scriptions. We randomly sample the corresponding proportion of the training

data from each class for these experiments while maintaining validation and

test data splits fixed. Dataset proportion is plotted in logarithmic scale w.r.t

test data f1-score in Figure 5.9. We used CNN on the sequence of word vectors

for this analysis. A rapid increase in performance up to 50% of the data can

be observed from Figure 5.9. With more than 50% of the data, the rate of

improvement in performance is relatively less, but it improved with more

data.

Also, we observed that for the dataset proportions 0-50%, the performance

differences between GloVe Word Embed, ELMo Word Embed and USE Word

Embed are not statistically significant at 90% significance level. We used

student’s one-sample t-test for statistical tests. The evidence from Figure 5.9

suggests that with more data for this kind of task, the technology can be more

accurate.
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Figure 5.9: Effect of dataset size with learning curves.

5.11.2 Whose data, agent’s or customer’s, is more important
for CSAT prediction?

As the customers were asked to rate their experience with the agents during

the call, the rating depends on how the agent speaks, which in turn (at least

partly) depends on the customer. Therefore, it is useful to quantify the impor-

tance of agent’s and customer’s speech to the satisfaction level of a customer.

It is also important for practical applications like employee management and

employee skill assessment. In order to assess each speaker importance, we

separated agent’s speech from the customer’s. Then, we considered different

training and testing scenarios with agent and customer acoustic features and

ASR transcripts.

Experiments with transcript and acoustic models are shown in Tables 5.16

and 5.17 respectively. Good performance can be observed with the transcripts

when training and testing scenarios match and diminished performance for

mismatched scenarios as shown in Table 5.16 suggesting that agents and

customers could be using a different set of expressions to express the same
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Table 5.16: Comparison of f1-scores in different training and testing scenarios. We
used ASR transcriptions for these experiments. GloVe Word Embed denotes original
transcript of the call which does not differentiate between agent and customer.

Train
Test Agent Customer GloVe Word Embed

Agent 76.48 40.65 75.68
Customer 62.52 76 70.92

GloVe Word Embed 75.83 62.25 77.52

Table 5.17: Comparison of f1-scores in different training and testing scenarios. We
used acoustic signal for these experiments. frame-OpenSMILE denotes original acous-
tic features of the call which do not differentiate between agent and customer.

Train
Test Agent Customer frame-OpenSMILE

Agent 66.26 51.54 55.38
Customer 48.39 75.76 61.36

frame-OpenSMILE 44.41 45.85 73.63

sentiment. Similar performance for agent vs. agent and customer vs. customer

implies that both agent and customer’s verbal content is equally important to

the satisfaction level of the customer. Best performance was observed when

we use both the agent and the customer transcripts (denoted with GloVe Word

Embed).

Experiments with acoustic features in Table 5.17 lead to a different set of

conclusions. We observed a good performance only when we are training and

testing with customers acoustic features. Poor performance when training and

testing with agent acoustic features suggest that the agents’ acoustic cues do

not have much information about CSAT score unlike their transcripts. Also,
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Table 5.18: Classifying agent vs customer from ASR transcription and acoustic signal

Type of input F1-score

ASR transcription 99.46
Acoustic signal 99

drop in the performance can be observed with frame-OpenSMILE suggesting

that model could not differentiate agent and customer styles automatically.

Conclusions drawn from Table 5.17 imply that differentiating between the

agent and the customer is important and can also be observed same from

Table 5.11 where we obtained 76.10% f1-score, denoted with frame-OpenSMILE

channel-aware, by fusing channels.

From the comparison of both, Table 5.16 and 5.17, we can say that on

average, a customer’s acoustic cues and spoken content yield similar infor-

mation regarding his own satisfaction. However, agents acoustic cues and

spoken content do not seem to have similar CSAT relevant information, which

could be because of their skill to not express too many emotions with the

customers. Based on these observations, we speculate that customer speech is

more emotional than agents speech.

Having observed the weak performance when the training and testing in

mis-matched scenarios, we speculated that distributions of agent and customer

data are different. Now, to strengthen this speculation, we provide evidence

by classifying agent and customer based on their transcript and speech using

XGBoost model. Table 5.18 presents results for classification of agent and

customer from transcript and acoustic signal. It can be observed that the

f1-score is more than 99% for both transcript and acoustic signals suggesting
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that distributions of agent and customer data are indeed different.

5.12 Ethical Considerations

The models described in this paper have been developed to automate the

customer satisfaction evaluation of a conversation with a call center agent.

Therefore, an application of this model results in an automated rating of hu-

man performance. It is important to keep in mind that the proposed methods

are based on statistical models and have a margin for error. Unsupervised

reliance on the output of such models would likely result in an unfair assess-

ment of call center agents performance. As these are black box models, the

interpretation, or explanation, of a particular model decision is a challenging

task, that is itself an active field of research. These issues would be further

exacerbated when such models are applied in a domain with different char-

acteristics than the training data set. One example is when the agents have a

different ethnicity, unknown to the model - their accent and speaking manner

might pose a confusing factor for the model. Another example is when the

kinds of problems discussed during the call are different (as in: calls about

refunds vs. calls about healthcare advice). In this scenario, the vocabulary

between these domains is different, as is the typical flow of the conversation

(or conversation etiquette).

To minimize these issues, we advise to use these models in a semi-automated

manner. An example of such use could be ranking the calls given the scores

from model predictions and pushing the calls predicted as unsatisfactory into

a queue for human review. Such an application is of high practical importance,
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as it enhances the process of manual review by identifying the calls with

highest risk factor, thus saving reviewers’ time. Should the model be used in

a fully automated process, we advise to implement a mechanism for the agent

to appeal to the models’ decision before he/she suffers any consequences.

5.13 Conclusion and Future Work

In this paper, we have investigated several lexical and acoustic feature rep-

resentations for CSAT prediction. We explored four-levels of representations

for transcript and three-levels for acoustic signal at word/frame-level, turn-

level, segment-level and call/document-level. In this work, we proposed

using x-vectors for CSAT task and obtained best results on the acoustic signal.

For transcript, word-, turn-level features performed competitively and for

acoustic features, call-level x-vector representation worked best. We found

that exploiting semantics is helpful for CSAT task. Features extracted from

pre-trained encoders ELMo, USE and BERT for transcripts did not provide

any improvements. However, fine-tuning BERT model provided significant

gains. We observed that models perform better by distinguishing agent and

customer channels. Overall, we observed best f1-score of 83.38% on ASR

transcription using BERT and 78.21% on acoustic signal using x-vector which

are both using pre-trained models. Turn-taking features performed worst with

an f1-score of 66.99%. With score-fusion of lexical, acoustic and turn-taking

features, we obtained 88.46% f1-score.

Analysis of model decisions with respect to task completion metric re-

vealed that negative calls with successful task completion are the primary
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source of errors. Our analysis on the importance of each speaker data to the

CSAT rating revealed that customers’ acoustic and lexical content have compa-

rable significance, whereas agents’ acoustic cues are less significant than their

lexical content. Also, we observed that agents’ and customers’ acoustic/lexical

content can be classified with more than 99% f1-score suggesting their distinct

distributions.

Limitation of the models presented in this work is lack of the ability to

exploit the temporal dependencies between speaker turns and also between

modalities. We plan to address this limitation in the future work. Also, our

models perform well in a single call center domain however, inter-domain

generalization remains to be investigated in the future work.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we proposed several machine learning models to address some

of the problems that the current automatic speech emotion recognition (SER)

field is facing. To ensure the generalizability of our methods/hypotheses,

we experimented on three datasets each collected with different emotion

elicitation methods: Crema-D (acted), IEMOCAP (induced), and MSP-Podcast

(spontaneous). All these datasets come with isolated utterances whereas only

IEMOCAP contains conversations too. We show experiments on both isolated

utterances and conversations.

The lack of large emotion datasets is one of the main problems that im-

pede accurate automatic emotion recognition. To mitigate this problem, we

proposed to transfer knowledge from the speaker recognition field where

annotated data is plenty and also relatively simple to collect. We showed that

representations/embeddings extracted from pre-trained speaker recognition

models (x-vector models) do contain emotion predictive information and they
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also outperform traditional representations such as eGeMAPS and MFCC.

Further, adapting the entire pre-trained model boosted SER performance on

all three datasets considering only isolated utterances. We found that the SER

performance on x-vector embeddings is inversely proportional to the speaker

verification performance i.e., the better the x-vector model the less suitable

the embeddings are for the SER task. However, adapting the best x-vector

model seems to provide the best results for the SER task. We also proposed a

perceptually motivated data augmentation method, CopyPaste, on isolated

utterances to further improve SER performance. The main idea of this tech-

nique is the observation that the presence of emotions other than neutral in a

recording alters the listeners’ perception. We found that the proposed three

CopyPaste schemes improve SER performance and outperform the standard

noise augmentation in clean conditions. Additionally, we obtained the best

results using both CopyPaste and noise augmentation on all three datasets.

Models built on isolated utterances make predictions on the utterance level

i.e., one prediction for the whole utterance. However, these models can not be

applied to conversations unless we segment them based on emotions which is

a very hard problem to solve even for humans. To avoid requiring segmenta-

tion, we proposed to build models that can make frame-level predictions. We

showed that models trained with conversations outperform those trained with

isolated utterances suggesting the importance of context. We compared sev-

eral architectures based on CNN, LSTM, and transformer to understand their

effectiveness to exploit context. We found that the transformer outperformed

CNN and LSTM and was also more robust to the mismatch in training and
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testing data. To further improve the performance, we proposed an augmenta-

tion scheme, DiverseCatAugment (DCA) based on the inner workings of the

attention operation. In this technique, we diversify input sequences w.r.t. class

labels to enable efficient use of attention operation. We found that diverse

input sequences w.r.t. class labels are more important than conversational

context for the best performance. With DCA, not only transformers but also

CNN and LSTM models are more robust to the mismatched training and

testing scenarios. However, these models do not have access to turn-taking

structure in conversations. We proposed interlocutor-aware models that can

exploit turn-taking structure even without speaker segmentation information.

The superior performance of interlocutor-aware models supports the evidence

from the literature that interlocutors do affect each other’s emotions.

Finally, we considered one real-world application, predicting customer sat-

isfaction (CSAT), with which we can still obtain insights on speakers’ emotions

but requires reduced annotation efforts. For this application, we considered

US English telephone speech from call centers and the goal is to predict

whether customers are satisfied after interacting with the agents. We pre-

sented an extensive analysis of the suitable feature representations extracted

at multiple granular levels for CSAT prediction. We explored four levels

of representations for transcript and three levels for the acoustic signal at

word/frame-level, turn-level, segment-level, and call/document-level. We

proposed using x-vectors for the CSAT task and obtained the best results on

the acoustic signal. For transcript, word-, turn-level features performed com-

petitively and for acoustic features, call-level x-vector representation worked
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best. We found that exploiting semantics is helpful for the CSAT task. Features

extracted from pre-trained encoders ELMo, USE, and BERT for transcripts

did not provide any improvements. However, fine-tuning the BERT model

provided significant gains. We observed that models perform better by distin-

guishing agent and customer channels. Overall, we observed the best F-score

of 83.38% on ASR transcription using BERT and 78.21% on the acoustic signal

using x-vector which are both using pre-trained models. Turn-taking features

performed worst with an F-score of 66.99%. With score-fusion of lexical, acous-

tic, and turn-taking features, we obtained an 88.46% F-score. Analysis on

the importance of agent Vs. customer to predict CSAT rating revealed that

customer’s transcripts, as well as agent’s transcripts, have similar importance

suggesting both of their transcripts have useful cues. However, the agent’s

acoustic signal seems to be less correlated with the CSAT rating compared to

the customer’s acoustic signal suggesting that the customer’s speech is more

emotional. This result is useful in cases where companies do not have the

authority to record customers’ speech. We also found that the last 10% of the

call is more important than other parts of the call. Task completion metric

seems to be well correlated with CSAT rating and found that resolving the

issue for the customer may not make the customer happy. Analysis of model

decisions with respect to task completion metric showed that negative calls

with successful task completion are the primary source of errors.
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6.2 Future directions

Our work can be extended in multiple directions. From the modeling point of

view, semi-supervised and unsupervised/self-supervised techniques can be

explored in addition to transfer learning and data augmentation techniques, to

mitigate the problem of limited annotated data. Especially, recent publications

with self-supervised approaches show a lot of improvements on several speech

tasks and look promising for emotion recognition too (Khare, Parthasarathy,

and Sundaram, 2021). For conversational emotion recognition, we have shown

experiments using the IEMOCAP corpus which contains induced emotions

with a limited number of speakers. Evaluating the proposed methods on

more spontaneous conversations with more speakers such as MELD (Poria

et al., 2019) can be an important step towards the analysis of spontaneous

conversations. Also, it was shown that detecting valence from the speech is

very difficult and relatively easier to detect from text modality (Sahu, 2019).

Hence, multi-modal approaches could significantly boost the performance

of conversations. Predicting customer satisfaction in customer care center

conversations can be extended to pointing out the problematic regions in the

conversations. We expect that advances in explainable machine learning could

help in this case where the models can potentially point out the parts of the

conversation that they are relying on to make the predictions.

The majority of the current research focuses on emotion recognition from

isolated utterances where the context in which the utterances are produced

does not exist. However, the interpretation of an utterance emotion depends

on the context and can vary from person to person. We believe that shifting the
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focus to conversations would enable us towards exploiting the context at least

to some extent. Also, the emotions in spontaneous speech are much subtler

than acted emotions and can be very hard to detect. Hence, moving away

from acted speech and towards spontaneous speech would open up emotion

recognition to many more applications in real-life. Categorizing spontaneous

emotions, especially when using only basic emotions is very difficult because

many a time they co-occur (Öhman, 2020). We believe uncertainty modeling

would be more helpful here from a modeling perspective. And from a data

collection perspective, it would help annotation of secondary emotions too

along with primary emotions to consider for the co-occurrence of emotions.
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