
ENABLING EFFICIENT AND
STREAMLINED ACCESS TO LARGE

SCALE GENOMIC EXPRESSION AND
SPLICING DATA

by

Christopher Wilks

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

October, 2020

© 2020 by Christopher Wilks

All rights reserved

Abstract

As more and larger genomics studies appear, there is a growing need for

comprehensive and queryable cross-study summaries. We focus primarily on

nearly 20,000 RNA-sequencing studies in human and mouse, consisting of

more than 750,000 sequencing runs, and the coverage summaries derived from

their alignment to their respective gnomes. In addition to the summarized

RNA-seq derived data itself we present tools (Snaptron, Monorail, Megadepth,

and recount3) that can be used by downstream researchers both to process

their own data into comparable summaries as well as access and query our

processed, publicly available data. Additionally we present a related study of

errors in the splicing of long read transcriptomic alignments, including com-

parison to the existing splicing summaries from short reads already described

(LongTron).

Primary Reader and Advisor: Ben Langmead

Secondary Reader: Michael C. Schatz

Secondary Reader: Liliana Florea

ii

Acknowledgments

I would like to thank my advisor, Ben, for all the advice, time, and effort put

into my training as a PhD student. In addition I’d like to thank both Mike

and Liliana for their willingness to serve both on my thesis committee as

well as on my GBO committee. Further, I’d like to thank Mike for his advice

and input on the LongTron project. Also, I want to acknowledge Leonardo

Collado-Torres, Abhi Nellore, Kasper Hansen, Rone Charles, Jonathan Ling,

Phani Gaddipati, Geo Pertea, and Leonard Goldstein for their help and/or

input on the various projects represented here.

My family and close friends have been a critical support for me during

this time and I couldn’t have endured without them.

More broadly, I’d like to acknowledge all the various input I’ve had from

multiple professors and fellow students over the years beginning in my un-

dergraduate days and extending until now.

Soli Deo Gloria

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Background . 5

1.1.1 Rail: a multi-sample aware spliced-aligner 5

1.1.2 recount2: bringing large scale transcriptomics coverage

data to Bioconductor . 7

1.1.3 Intropolis: splicing analysis across 20,000 sequencing runs 8

1.2 Outline . 10

1.2.1 Snaptron . 11

1.2.2 Monorail Ecosystem . 11

iv

1.2.3 LongTron . 12

2 Snaptron 13

2.1 Introduction . 13

2.2 Methods . 17

2.2.1 Crawling and summarizing 17

2.2.2 Data types . 19

2.2.3 Region query . 20

2.2.4 Filtering attributes . 21

2.2.5 Constraining metadata 22

2.2.6 Query planning . 24

2.2.7 Higher-level queries . 27

2.2.8 Interfaces . 28

2.3 Results . 29

2.3.1 Novel Exon Discovery and Evaluation 30

2.3.2 Exonization of Repetitive Elements 32

2.3.3 ALK and Junction Inclusion Ratio 34

2.3.4 Client Command-Line Interface 35

2.3.5 Graphical User Interface Application 36

2.4 Discussion . 37

2.5 Applications of Snaptron . 39

2.5.1 ASCOT . 39

v

2.5.2 Confirmation of novel splice junctions found in HUVEC

tissues alongside proteomics 41

3 Monorail Ecosystem 42

3.1 Introduction . 42

3.2 Background and Related Work 44

3.3 Results . 45

3.3.1 Improvements to the resource 45

3.3.2 Human and mouse splicing in SRA 47

3.3.3 Non-coding and unannotated transcription 49

3.4 Discussion . 51

3.5 Methods . 53

3.5.1 Design . 53

3.5.1.1 Grid design . 53

3.5.1.2 Quality control and Alignment 54

3.5.1.3 Transcript quantifications 54

3.5.2 Monorail Performance 56

3.5.3 Data Presentation . 62

3.5.3.1 Snaptron . 62

4 LongTron: Automated Analysis of Long Read Spliced Alignment

Accuracy 63

4.1 Introduction . 63

vi

4.2 Related Work . 66

4.3 Methods . 67

4.3.1 Long read failure modes 67

4.3.2 Long Read Transcriptome Simulation 67

4.4 Results . 70

4.4.1 Training and Application 70

4.5 Splice-junction and Isoform Comparison 71

4.5.1 Effects of Random Forest Classifier on Transcript Match-

ing against the Annotation 77

4.5.2 Novel Alignment Examples in NA1878 and SKBR3 . . 77

4.6 Discussion . 78

5 Discussion and Conclusion 81

Bibliography 94

Appendices 95

A Additional Details of the Monorail Ecosystem 96

A.1 Selection of SRA datasets . 96

A.2 Obtaining GTEx and TCGA data & metadata 97

A.3 Quality control . 98

A.4 Monorail workflow specifics . 99

A.4.1 Orchestration . 100

vii

A.4.2 Data Model . 100

A.4.3 Managers and runners 102

A.4.4 Workflow . 102

A.4.5 Aggregation . 102

A.5 Genome Reference Annotation Files 103

A.6 BigWig processing with Megadepth 105

A.7 recount3 data formatting . 106

B Additional Details of the LongTron Method 110

B.1 Additional information for random forest features 110

B.2 Details on junction matching 113

B.3 gffcompare run details . 114

B.4 Training simulation dataset pipeline 115

B.5 Counting results of predictions on NA12878 117

B.6 NA12878 & SKBR Custom Tracks in the UCSC Genome Browser118

B.7 Features used in the Random Forest training/prediction . . . 118

C Additional Details of Snaptron 124

C.1 Analyses . 124

viii

List of Tables

1.1 Example junction-by-sample matrix 9

1.2 Junction annotation sources. Descriptions are from the UCSC

Table Browser track detail page or the Gencode website 10

2.1 Description of basic and high-level queries supported by Snap-

tron. 17

3.1 Monorail Runs (*includes BAMs for brain tissues **unique jxs) 47

3.2 Monorail performance metrics run on TACC, AWS and MARCC

(approximate). Statistics for GTEx and TCGA were extrapolated

from a subset of each project (9277, 1567 samples respectively).

GTEx output was increased by keeping whole BAM files for a

subset of the samples. 59

4.1 Counts of alignments in each simulated training class 71

ix

4.2 Splice Junction Comparison (Snaptron represents a compendium

of short-read derived junctions, annotated and novel), fuzz=20

for bases on either side, percents do not add up to 100 as anno-

tated short-reads are a subset of all short-reads. Junctions are

compared by coordinates alone (strand not included). 74

4.3 Isoform comparison table, using gene models from Gencode

V29, plus the isoforms from all the union of annotations; both

exact and fuzz comparisons of the set of long-read derived iso-

forms which 1) match in number of introns or 2) are contained

or contain a reference isoform. 75

A.1 SRA Metadata Queried & Processed 96

A.2 Junction annotation sources. Descriptions are from the UCSC

Table Browser track detail page or the Gencode website 105

A.3 Supplemental Table Human Annotated Junction Percentages 106

A.4 Supplemental Table Mouse Annotated Junction Percentages . 107

B.1 Top 5 Most Important Features by Category. (FL=full length,

nFL= fragment) . 111

B.2 NA12878 Alignment Class Recall. Totals in the table are per-

category and based on the total number of alignments that

overlapped a transcript with that class label form the training

data. 122

x

B.3 NA12878 Alignment Class Precision. Totals in the table are

per-category and based on the total number of alignments that

were predicted to have that class label. Totals are the same

between precision and recall and are repeated for convenience. 122

B.4 Intron Chains in Annotation [exact (fuzz) percent matching] . 122

B.5 Improvement of intron-chain matches from problem free pre-

dictions . 123

xi

List of Figures

1.1 Sequence growth in the Sequence Read Archive measured by

number of petabases. From https://www.ncbi.nlm.nih.gov/

sra/docs/sragrowth/ . 2

1.2 Cartoon of a novel, alternatively spliced exon with split read

support . 4

1.3 Cartoon of the per-base coverage stored in a BigWig with an-

notation (not stored). Modified from https://github.com/

CRG-Barcelona/bwtool/wiki/aggregate 4

2.1 The Snaptron architecture consists of three layers (from the bot-

tom up) including data and associated indices (Tabix, SQLite,

and Lucene), webservices and processing (Python), and finally

the clients (NodeJS and Python). Queries issue from the clients

and are processed by web services (black arrows) while re-

sponses flow back from the indices through the webservices to

the clients (large, green arrows). In addition to junctions, gene,

exon and base level coverage is now indexed as well (not shown). 16

xii

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
https://github.com/CRG-Barcelona/bwtool/wiki/aggregate
https://github.com/CRG-Barcelona/bwtool/wiki/aggregate

2.2 The flow of each query through Snaptron and the type of output

it produces. Colors correspond to those used in Table 2.1. . . . 16

2.3 Snaptron query wall-clock times for R and R+F queries of

increasing size. The queries ask for all (for R) or some (for

R+F) junctions overlapping an increasingly large prefix of chro-

mosome 1. The region grows from a 2.5M-base prefix (left-

most) to 25M bases (rightmost) in 2.5M increments. The R+F

constraint additionally requires all junctions returned to have

samples_count>=100. The number of junctions returned by

the R query range from 350K for the smallest (leftmost) to 1.5M

for the largest (rightmost). The number of junctions returned

by the R+F query range from 7.3K for the smallest to 28K for

the largest. All data was uncompressed except where noted. . 23

2.4 Per-base coverage layout in recount (BigWigs) vs. Snaptron

(fully pasted and materialized matrices. In theory this high-

lights the main difference between the two approaches. In

practice the base-level coverage is large enough that even the

2nd (Snaptron) approach is stored as slices of the genome in

separate files on disk. The overall difference in approach is still

maintained. 27

xiii

2.5 Three mock up GUI screen captures corresponding to the three

analyses. Green horizontal lines indicate the genome. Arcs

indicate exon-exon splice junctions. Colors indicate the number

of samples having evidence for the junction, ranging from black

(least support) to red (most). Annotated junctions are repre-

sented by arcs above the green line, and unannotated junctions

by arcs below the line. Light blue rectangles are annotated ex-

ons. A) Splice junctions matching the Goldstein et al prediction

of a novel alternative exon in the ABCD3 gene. A1 is the 5’ junc-

tion, A2 is the novel exon, and A3 is the 3’ junction; B) KMT2E

gene and unannotated junctions supporting a REL exonization

event. B1 is the 5’ junction, B2 is the REL exon, and B3 is the 3’

junction; C) ALK spliceforms. C1 indicates the full length ALK

transcript, C2 is the truncated ALKATI transcript incorporating

only the last 10 exons (ALK is on the reverse strand, and so is

laid out right-to-left), C3 is the alternative transcription initia-

tion exon, and C4 is the upstream full transcription initiation

site. 31

2.6 Co-occurring sample counts distinguishing validated from non-

validating alternatively spliced exons. For GTEx, Wilcoxon

rank-sum p = 2e-04. For SRAv2, Wilcoxon rank-sum p = 1e-05. 33

2.7 IMPDH1 example gene containing a novel exon found in the

ASCOT analysis and shown in the ASCOT interface 40

xiv

2.8 Figures 2D and 2E from (Madugundu et al., 2019) showing the

breakdown of annotated vs. novel percent of junctions and

their split-read counts in Snaptron. 41

3.1 Intropolis junction fraction-annotated plots for 1) Human (left)

2) Mouse (right). 48

3.2 MESA cell-type specific enrichment of novel junctions 49

3.3 Smooth scatter plot showing tissue specificity and overall ex-

pression level of different classes of human coding and non-

coding mRNAs from the FANTOM-CAT annotation. Measure-

ments are using the GTEx8 compilation. Consistent with past

work, non-coding RNAs exhibit a more tissue-specific pattern

of expression, indicated by the points’ rightward shift relative

to the coding mRNAs. 50

3.4 SRAv3 with the intervals corresponding to the reannotated

ER intervals from (Zhang et al., 2020) and 99 sets of length &

chromosome matched random ERs. 51

3.5 Monorail as Grid Computing 57

3.6 Monorail Workflow Parallelism. 58

3.7 Monorail Workflow Details . 60

3.8 Monorail Aggregation Workflow 61

xv

3.9 Screen shot of the Monorail monitoring interface hosted on

Amazon Web Services. It uses the AWS CloudWatch Dash-

boards feature to allow us to monitor the performance of the

Monorail system in real time. Shown are just six of the many

metrics that we track. 62

4.1 Long-read versus short-reads. While short reads have much

lower error rates (1% vs. 10%) and higher coverage they

lack the general ability to connect multiple splicing interactions

across the transcript due to their extreme shortness (250 bases

vs. 10K’s bases). 64

xvi

4.2 1. Long read alignment failure modes. A) Spliced alignments

can shift in the presence of unannotated splice motifs in the

reference near annotated (real) splice sites. B) 5’ and 3’ ends of

isoforms are difficult to get right as sequencing the ends of long

reads is imprecise. C) Long reads can produce novel configura-

tions of annotated exons and/or novel exons. However, these

may be simply alignment artifacts due to splice motifs and/or

repeats in the region (e.g. the rightmost novel exon has no short

read support). D) Large numbers of exons (splice sites) can

result in multiple novel long read alignments, some of which

may be false. This is in part due to the non-full length nature

of many of the long reads (especially from PacBio). 2. Read

alignment error categories. A) Matching junction alignment

against at least one source transcript junction; B) Alignment

overlapping any transcripts’ junction; C) Alignment containing

any transcripts’ junctions; D) One or more transcripts’ junctions

containing aligned junction; E) Junction is completely novel . 68

4.3 1. Random forest classification. 2. Diagram of a selection of

features used in the random forest, including 1-10 and 17 from

the full category list in Appendix B 72

4.4 Novel transcript predicted region on NA12878 for both Oxford

and PacBio . 78

4.5 Novel transcript predicted region on SKBR3 PacBio 79

A.1 Human & Mouse Average per run density across studies . . . 97

xvii

A.2 The Monorail relational database model. Rectangles denote

tables and arcs denote the key relationships between tables. Im-

age was created using the sqlalchemy_schemadisplay package. 101

B.1 Kmer mappability. Mappability is based on k-mers, k=24 for

umap multi-tracking mappings and k=10 for local region map-

pings. This is for features used in the random forest: 11, and

21-23. 119

B.2 A. Oxford FL Binary Class ROC on Testing (held-out) data . . 120

B.3 B. Oxford non-FL Binary Class ROC on Testing (held-out) data 120

B.4 C. PacBio FL Binary Class ROC on Testing (held-out) data . . 121

B.5 D. PacBio Non-FL Binary Class ROC on Testing (held-out) data 121

xviii

Chapter 1

Introduction

The Sequence Read Archive (SRA) is a large and valuable repository of pub-

lic and controlled-access sequencing data, spanning over 44 petabases and

doubling in size every 18-20 months (Langmead and Nellore, 2018) (Figure

1.1). Such archives allow researchers to reproduce past studies, combine data

in new ways, and access unique datasets that would otherwise be too expen-

sive or difficult to obtain. But researchers struggle to take full advantage of

archived data. There is no convenient way to pose scientific questions against

the archives without first downloading and re-analyzing the data, which is

very time- and compute-intensive.

The situation is analogous to the early days of the World Wide Web, when

content was accessed at well known addresses via transport protocols (FTP,

HTTP). The web became vastly easier to use with the advent of search engines:

crawlers, indexes, and ranking algorithms made it possible for users to filter

the web for content relevant to their queries.

One primary source of this sequence data explosion is the high-throughput

short-read sequencing of DNA and RNA molecules. This type of sequencing

1

Figure 1.1: Sequence growth in the Sequence Read Archive measured by number of
petabases. From https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

via fragmented reads, typically 75-250 base pairs long, has been extensively

used for research for over 10 years (Dijk et al., 2014). The RNA-seq approach

specifically has been utilized for determining gene expression (Bray et al.,

2016a; Patro et al., 2017), alternative gene structure (Dobin et al., 2013; Gold-

stein et al., 2016a), and fusion constructs (Haas et al., 2019), as well as de novo

regions of expression throughout genomes of different species (Trapnell et al.,

2010; Pertea et al., 2015). Due to continued investment in improving these

sequencers over time, the error rates of short reads are relatively low (<1%)

while the throughput is high, with up to a terabase coming off a production

sequencer in less than 2 days.

In this thesis we describe tools to both efficiently harmonize the alignment

and coverage quantification of these RNA-derived short-read sequences, as

well as present the data through appropriate layout and indexing techniques

2

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

for the downstream biomedical researcher’s ease of use and efficient access.

As part of this work, we also report on the output of these tools run on more

than 750,000 RNA-seq sequencing runs present in the SRA and the Genomics

Data Commons (GDC). These sequencing runs are all the human and mouse

bulk and smartSeq-related sequencing projects at the time of the start of the

Monorail project (October 2019). Further, we address the recent advances in

the related field of long read transcriptomics sequencing and its error profiles

with specific regard to spliced alignments.

A focus of this work, is the annotation-free alignment of these RNA-seq

reads, enabling the discovery of novel transcribed regions. One specific type

of novel transcription we are interested in here is novel splice junctions, which

use both canonical and non-canonical splice site motifs (“canonical” defined as

most represented motifs: GT-AG: 96.5%, GC-AG: 2.6%, AT-AC: 1.0% Nellore

et al., 2016a). While the human and mouse annotation represents substantial

work and expertise, it is recognized to be incomplete (Zhang et al., 2020; Pertea

et al., 2018). Thus for research that looks to find novel biology, a reasonable

place to start is to do alignments without referencing any annotation to allow

for underlying, potentially unannotated transcription to be found. Figure 1.2

illustrates an alternatively spliced, potentially novel exon.

A second important idea, shared across much this work, is the align once,

quantify many times approach we advocate and practice in both recount2

(Collado-Torres et al., 2017b) in the Background section, and in recount3 in the

main body of this thesis in the Monorail chapter. This approach requires the

generation and persistent storage of per-base coverage BigWig files in lieu of

3

Alternative cassette exon

Spliced constitutive exons

9/40

25/40

Total split read count in one
sample: 40

6/40

Figure 1.2: Cartoon of a novel, alternatively spliced exon with split read support

Per-base
coverage

Annotation (exons)

Figure 1.3: Cartoon of the per-base coverage stored in a BigWig with annota-
tion (not stored). Modified from https://github.com/CRG-Barcelona/bwtool/wiki/
aggregate

the normal BAM files, which are too large to keep by most groups, outside of

the sequence repositories themselves. These per-base BigWig files, combined

with our Megadepth tool, allow for the rapid re-quantification over a new

or different annotation than what was present when the original alignments

were produced. This allows for the far more efficient update of the gene and

exon sums, without resorting to re-downloading and re-aligning all the same

data again. Figure 1.3 illustrates the data stored in a BigWig file.

4

https://github.com/CRG-Barcelona/bwtool/wiki/aggregate
https://github.com/CRG-Barcelona/bwtool/wiki/aggregate

1.1 Background

While not the primary focus of this thesis, I worked on multiple other projects

foundational to this thesis. Those projects include the Rail spliced-aligner

(Nellore et al., 2016a), the dbGaP extension to that project (Nellore et al., 2016c),

the analysis of splicing in SRA “Intropolis“ project (Nellore et al., 2016b), the

recount2 summarising of the coverage data produced by Rail (Collado-Torres

et al., 2017b), extensions to that project, recount-brain (Razmara et al., 2019)

and finally the FCR2 resource (Imada et al., 2020) which summarized the

coverage in recount2 again but over the FANTOM-CAT (v6) set of long non-

coding RNAs (lncRNAs). We will describe each of these efforts in slightly

more detail in the following subsections.

1.1.1 Rail: a multi-sample aware spliced-aligner

Much of this work builds on both the idea of large scale processing that was

pioneered in the Rail project as well as the types of data produced there.

Specifically the first version of the Snaptron project indexed and formatted the

junction, exon, gene, and ultimately base-level coverage that was generated

by the Rail aligner.

Rail had two key concepts which were unique to its alignment approach:

• Borrowing strength across samples

• Leveraging an existing, broadly used parallel architecture MapReduce

(Dean and Ghemawat, 2010) for computational efficiency

5

In the first case, the key innovation was the idea that if alignments were

run across multiple samples from the same tissue or cell-type at the same

time, the method could “look across” samples for repeated evidence of the

same lowly-covered exon-exon splice junctions that were tissue or cell-type

specific. This would require that the tissues/cell-types of samples be known

beforehand and that Rail would be run on groups of these samples in carefully

constructed (not-random) batches of related samples. We showed that this

yielded a level of junction-call accuracy comparable to those tools that used

an annotation.

The second innovation was a practical one in leveraging the MapReduce

architecture of Amazon’s Elastic Map Reduce service (EMR) for large scale

parallelism in the cloud (AWS). This allowed for the analysis of approximately

100,000 sequence runs, mostly from SRA for human and mouse, as well as

GTExV6 and TCGA cancer samples.

The associated project, Rail-dbGaP took the Rail workflow and extended it

to support running in a secure fashion in the cloud (specifically AWS EMR).

This was a critical component needed to allow for the processing of protected

datasets such as TCGA and GTEx. These datasets are directly derived from

human cases and are not consented for public release of the raw sequence

data. Therefore computing over the sequence required securing the compute

environment first. This entailed the use of encryption in both transfer and “at

rest” while the data was on the temporary filesystems of the cloud virtual ma-

chines. The overall point of this work is still relevant today for the processing

of protected data in public cloud environments.

6

Rail also went a step beyond the typical per-sample aligner in aggregating

splicing and other data types (e.g. sequence base indels, not covered here)

across samples into summarized matrices. These data were later incorporated

into the recount2 and Snaptron projects as well as the splicing analysis in the

Intropolis paper. Thus Rail was the source of all the data for these downstream

projects.

1.1.2 recount2: bringing large scale transcriptomics coverage
data to Bioconductor

The aggregated and per-base coverage data from Rail was an important first

step in providing simpler and more usable summaries to the downstream

biomedical researcher. However, researchers still needed summaries at the

level of gene and exon coverage. They also needed to be able to consume the

coverage summaries in smaller slices of the full set of approximately 70,000

sequencing runs from the Rail output. The recount2 project met these needs by

summarizing the per-base coverage into exon and gene level counts organized

by study and stored in RangedSummarizedExperiment (RSE) objects. Exon-

exon junction split read coverage was also organized by study and stored as

RSE objects. These RSE objects are widely used in the Bioconductor framework

in the R statistical computing platform. Recount2 also provided an interface

to access the per-base count BigWig files since this data was too large to be

stored as RSE objects.

recount2 has seen wide use by the community evidenced in its count of

more than 170 citations in four years and a number of questions asked with

the “recount” tag on the Bioconductor support forum. It has also been the

7

foundation for additional projects, primarily the “recount-brain” and FCR2

projects. In the former project, additional metadata was manually curated for

brain specific studies from the SRA and those studies were analyzed alongside

brain samples from the GTEx and TCGA projects, both of which had more

consistent and complete metadata. In the latter, FCR2 project, the per-base

BigWig files from Rail for all of recount2 (approximately 70,000 sequence runs)

were re-quantified using the “bwtool” BigWig summing program (Pohl and

Beato, 2014) to generate sums across the expanded set of genes (approximately

109,000) in the FANTOM-CAT (v6) annotation, including many lncRNAs.

Differential analysis was run across these sums in the various samples to get

tumor vs. normal comparisons across the TCGA sums in the FCR2 resource.

Additionally, tissue specificity in GTEx was looked at for three categories of

lncRNAs compared with a baseline category of mRNA genes.

1.1.3 Intropolis: splicing analysis across 20,000 sequencing
runs

Another important output of the Rail project was a vast number of exon-exon

splicing calls made by the aligner without reference to any annotation. As our

understanding increases about the complexities of the transcriptome and its

impact on health, exon-exon splicing emerges as one important correlate of

disease (Sveen et al., 2016) (Sibley, Blazquez, and Ule, 2016). Our approach to

storing and working with junctions is through a junction-by-sample matrix

where the values are raw split-read counts for a junction in a specific sample

as illustrated in Table 1.1.

8

Table 1.1: Example junction-by-sample matrix

Junction Sample 1 Sample 2 Sample 3
chr1:10-1000 5 0 10
chr3:20-250 1 20 4
chr20:110-300 0 17 8

The term “Intropolis” as a name was determined from the fact that exon-

exon splice junctions give rise to introns and the large set of junctions was

therefore considered a city of introns. The analysis demonstrated a number

of salient points about splice junctions in a large number of samples (approx-

imately 21,000) across multiple disparate studies. A primary result of the

Intropolis study was to show that there were still a large number (56,861 or

18.6%) of unannotated junctions which had substantial support (present in

>= 1000 run accessions) among sequencing runs in the SRA, many of which

were associated with tissue type (Figures 2 and 3 in Nellore et al., 2016b). A

junction was considered unannotated if one or both of its splice sites didn’t

occur together in an annotation. Annotated junctions were derived from a set

of nine sources including multiple versions of Gencode across both hg19 and

hg38 (lifted over to hg19) listed in Table 1.2.

Another key point of the analysis was showing when new junctions were

discovered, correlated with the date of the samples the junctions were dis-

covered in, being added to the SRA repository. Most of the splicing was

discovered before 2013, and there was a gradual diminishing of new junctions

being discovered by additional samples (Figure 5 in Nellore et al., 2016b).

This analysis continues to influence the work that is presented in the body

of this thesis. For both Snaptron and the junction-related analyses we perform,

9

our set of annotated junctions comes from an expanded version of what’s

described above. We are also still using the analysis that looks at the total set

of unannotated junctions with respect to the number of samples the junction

was found in.

1.2 Outline

In the main body of this thesis I will describe three primary projects I worked

on while studying for my PhD at Johns Hopkins University. They are as

follows

• Snaptron

• Monorail Ecosystem

• LongTron

Table 1.2: Junction annotation sources. Descriptions are from the UCSC Table Browser
track detail page or the Gencode website

Short Name Description Reference Build

Acembly
AceView gene models constructed from
cDNA by Danielle and Jean Thierry-Mieg at NCBI,
using their AceView program

hg19

ccdsGene Human genome high-confidence gene annotations from the
Consensus Coding Sequence (CCDS) project hg19, hg38

Gencode 19 (hg19), 24-26, 29, 33 (hg38) hg19, hg38

knownGene A set of UCSC gene predictions based on data from RefSeq,
GenBank, CCDS, Rfam, and the tRNA Genes track hg19, hg38

lincRNAsTranscripts Human Body Map lincRNAs (large intergenic non
coding RNAs) and TUCPs (transcripts of uncertain coding potential) hg19, hg38

mgcGenes The Mammalian Gene Collection
(MGC) of full-length open reading frames (ORFs) in the genome. hg19, hg38

refGene The NCBI RNA reference sequences
collection (RefSeq) hg19, hg38

sibGene Swiss Institute of Bioinformatics cDNA/EST-based gene predictions hg19, hg38

vegaGene Annotated genes from the Vertebrate Genome Annotation (VEGA)
database (Human chr14, 20, 22 only) hg19

10

The key idea that connects all three of these projects into one cohesive

thought is that of aiding the downstream research of exon-exon splicing from

RNA-seq short and long read data in human samples. In the first two cases,

Snaptron and Monorail, there is another key connection which is efficient

computation & summarization over large scale RNA-seq genomics data.

1.2.1 Snaptron

The second chapter extensively covers the custom webservices and query

engine, Snaptron, which we built on top of the coverage summaries generated

by Rail-RNA. Snaptron facilitates the rapid searching and filtering of millions

of exon-exon splice junctions called in 10,000’s of samples. This chapter also

briefly describes two examples (ASCOT, HUVEC) of multiple collaborations

that have involved Snaptron and/or its data in various ways.

1.2.2 Monorail Ecosystem

The third chapter gives a detailed overview of the follow-on projects to Rail, re-

count2, Intropolis (described briefly earlier) as well as Snaptron itself, together

labeled the “Monorail Ecosystem”. This work centers around the development

and use of the Monorail workflow to further populate and update the recount

and Snaptron resources with several hundred thousand more sequencing

runs from the SRA, including both human and mouse, bulk and smartSeq

single-cell RNA-seq, as well as the latest GTEx (v8) and a re-run of TCGA

data.

11

1.2.3 LongTron

The fourth chapter describes the LongTron project. In the LongTron project

we investigated the behavior of errors of spliced alignments of both Nanopore

DirectRNA and PacBio IsoSeq transcriptomic long reads aligned with Min-

imap2 (Li, 2018). This work involved the simulation of transcriptome-derived

long reads based on error profiles using the SURVIVOR (StructURal Variant

majorIty VOte) tool (Jeffares et al., 2017a). These simulated long reads were

then aligned back against the genome and the alignments used to train a

random forest model. This model can then be used to help categorize actual

long read alignments against the genome into either being “problem-free” or

one or more error categories. An additional part of this work was comparing

the spliced output of the Minimap2 alignments of both Nanopore and PacBio

long reads against short reads in the same or related samples and annotation.

This comparison is done at two levels, one with just the splice junctions them-

selves, and then also at the intron chain level, using a modified version of the

gffcompare tool (Pertea and Pertea, 2020). Relatively high concordance was

seen at the individual splice junction level, while much less concordance was

present at the intron chain level, necessitating the use of a “fuzz” factor (20

base pairs) +/- around the splice sites of the introns. Overall this work should

add to the growing body of knowledge of long read behavior in the splicing

context.

12

Chapter 2

Snaptron

2.1 Introduction

Snaptron is a search engine for querying splicing patterns in large, pre-

analyzed collections of human RNA sequencing (RNA-seq) samples. Snaptron

answers queries via a Representational State Transfer (RESTful) web service

interface. Driving Snaptron is a query planner that combines the strengths of

different indexing strategies — R-trees, B-trees and term-document inverted

indices — to rapidly address user queries.

The data used to service a given query can be a mix of genomic inter-

val data, numeric values associated with genomic intervals, and free- or

controlled-text from associated metadata. The REST interface can be queried

via HTTP with no software installation necessary. Alternately, Snaptron can

be queried via a client script that provides a richer set of queries. Users may

also download the (large) files used to populate Snaptron’s database as well

as the Snaptron server software to create a local Snaptron installation.

While past efforts address the problem of enabling cross-study queries,

13

most focus on genotype rather than expression or splicing data. GEMINI

(Paila et al., 2013) and Genome Query Tools (GQT) (Layer et al., 2016) are

complementary tools for indexing and querying genotypes from many in-

dividuals, facilitating computation of genomewide summaries over subsets

of individuals. BGT (Li, 2016) builds on the positional Burrows-Wheeler

Transform (PBWT) (Durbin, 2014) to provide similar functionality, including

region-specific queries. The ExAC browser and REST service allow querying

of genetic variant frequencies summarized over 90,000 re-analyzed exomes

(http://exac.broadinstitute.org).

Other past efforts sought to enable querying of expression data in particu-

lar. Solomon and Kingsford propose Sequence Bloom Trees (SBTs) (Solomon

and Kingsford, 2016) for indexing raw reads from many sequencing samples.

They indexed 2,652 human RNA-seq experiments and queried the index us-

ing known transcript sequences. The index reports which samples contain

the query string, but it is up to the user to build the index, and to reduce

a biological question into such presence/absence queries. The Expression

Atlas (Petryszak et al., 2016) summarizes a curated subset of ArrayExpress

(Kolesnikov et al., 2014) and enables querying of baseline expression and

differential expression. But it enables only gene-level queries, and differential

expression can only be assessed in certain archived studies.

Another focus of past work has been on computational problems that arise

when working with many genomic intervals. BEDTools (Quinlan and Hall,

2010) and GenomicRanges (Lawrence et al., 2013) are widely used tools for

working with intervals. The Genome Query Language (GQL) (Kozanitis et al.,

14

http://exac.broadinstitute.org

2014) is a SQL-like language for searching and joining aligned reads with

other genome-mapped data. GORPipe (Guðbjartsson et al., 2016) provides an

interface to genomic interval based data, where queries are accelerated via file

seeks on tabular genomic data files sorted by start-positions.

Our aim is to create a full suite of search-engine software for summarizing

expression and splicing data. The project began with a “crawling” effort,

described previously (Nellore et al., 2016a; Nellore et al., 2016d) that used

the Rail-RNA aligner to analyze tens of thousands of RNA-seq samples in

a uniform fashion. Snaptron, builds on this by rapidly answering sophisti-

cated queries with respect to splicing, expression data, and metadata. Snap-

tron makes it easier to leverage large public datasets in day-to-day research.

Snaptron is particularly useful for lending additional context and support to

hypotheses related to splicing.

In Methods we describe the design of Snaptron and results from the per-

formance profiling that inform the current design. In Results, we describe

analyses leveraging both the REST interface and the command-line client for

Snaptron. These are examples of analyses that users can perform using Snap-

tron queries. The Snaptron REST service and documentation are available

at: http://snaptron.cs.jhu.edu. The Snaptron software is freely available

under a Creative Commons Attribution-NonCommercial 4.0 license from:

https://github.com/ChristopherWilks/snaptron.

15

http://snaptron.cs.jhu.edu
https://github.com/ChristopherWilks/snaptron

Junctions
indexed by

interval
B-tree

(SQLite)

Sample
metadata

indexed by
term-document

(Lucene)

Sample
Metadata
Search
Service

Junctions
indexed

by interval
R-tree
(Tabix)

Mock GUI
Client

Command
Line Client

Clients

Webservices

Junction Search Service

Data Store
and Indices

Figure 2.1: The Snaptron architecture consists of three layers (from the bottom up)
including data and associated indices (Tabix, SQLite, and Lucene), webservices and
processing (Python), and finally the clients (NodeJS and Python). Queries issue from
the clients and are processed by web services (black arrows) while responses flow
back from the indices through the webservices to the clients (large, green arrows). In
addition to junctions, gene, exon and base level coverage is now indexed as well (not
shown).

Sample
Filter

8

Region

Limited
Region

Limited &
Filtered
Region

Junction
Records

Sample
Metadata
Records

Junction
Records

Filtered
Region

Filtered
Samples

Snaptron
Query

Planner

Query Data Store/Index Output

1
2

6 7
3

9
4 5

10 11 12 13

4 7

31 2 85 6

Sample
Metadata

Terms Samples

"Brain" 1,2,3,6

"Liver" 4,6,9,11

Sample
Filter

Tabix/R-tree
Index

Lucene/Inverted
Document

Index

SQLite/B-tree
Index

Figure 2.2: The flow of each query through Snaptron and the type of output it
produces. Colors correspond to those used in Table 2.1.

16

Table 2.1: Description of basic and high-level queries supported by Snaptron.

Basic Queries

Query Description
Examples in

command-line syntax

Region (R)

Retrieve all junctions lying within a specified genomic interval.
A gene name can be given in place of an interval, in which case
the interval is taken to be the annotated extents of the named
gene. For each returned junction, Snaptron reports a histogram
of coverage levels for that junction across all samples with non-
zero coverage.

chr1:1-100000

ALK

Region+Metadata (R+M) Like a Region query but with an additional metadata con-
straint that limits which samples are considered.

ALK&study_description:cancer

Region+Filter (R+F)

Retrieve all junctions lying within a specified genomic
interval but with an additional constraint that might
eliminate junctions. The filter can constrain (a) the to-
tal, median or average coverage of the junction across
samples where it occurs, (b) the number of samples
where the junction has occurred, (c) whether or not the
junction appears in the Snaptron annotation, (d) the
junction’s length, i.e. the number of bases spliced out,
(e) the junction’s strand.

ALK&sample_count>20
ALK&annotated=0
ALK&length>1000&length<2000

Region+Filter+Metadata (R+F+M) Combining elements of a Region+metadata query and a Re-
gion+filter query.

ALK&length>1000&
length <2000&
tissue:Brain

Metadata (M)
Returns full sample metadata for each sample matching the
metadata field query ranked by the Term Frequency - Inverse
Document Frequency (TF-IDF) score

library_layout:paired; RIN>8

High Level Queries

Junction Inclusion Ratio Rank (JIR)

Given two basic junction queries defining two groups of junc-
tions, this returns the list of sample records ranked according
to the Junction Inclusion Ratio (JIR) calculated between the
two groups. Each returned sample record includes the sam-
ple’s full set of metadata, total count for the junctions in the
first and second groups in that sample, and the JIR for that
sample.

See See Appendix C Section 1 for a JIR ex-
ample script and input

Shared Sample Count (SSC)
Given two groups of junctions, returns the number of samples
that have non-zero coverage for at least one junction in both
groups. Each group is defined by a basic junction query.

See See Appendix C Section 1 for an SSC
example script and input

Tissue Specificity (TS, GTEx only)

Given a group of junctions, returns a tissue specificity table for
the set. The group is defined using a basic junction query. The
table is N rows by 2 columns, where each row corresponds
to one of the 9,662 samples in the GTEx v6 compilation. The
first column contains a presence/absence indicator: 1 if every
junction in the group is covered in that sample, 0 if not. The
second column encodes which of the 32 tissue types the sample
comes from.

See Appendix C Section 1 for a TS example
script and input

2.2 Methods

2.2.1 Crawling and summarizing

To produce the splicing data served by Snaptron, we used Rail-RNA (Nellore et

al., 2016a) to analyze many archived human RNA-seq samples. As has already

been described, Rail-RNA is a scalable spliced aligner designed to analyze

many samples at once. Among Rail-RNA’s outputs is a table summarizing

17

evidence for exon-exon splice junctions across all samples.

Each row describes a junction, its strand and coordinates, and the number

of reads spanning the junction for each sample where it appears. We also

created tables detailing metadata for each sample. This is the source material

for Snaptron as well as for the intropolis resource (Nellore et al., 2016d).

Intropolis makes junction data available for bulk download but without

an indexing facility and without an interface for querying the data. Further

details on alignment of GTEx samples are contained in (Nellore et al., 2015),

while details on alignment of other SRA samples as well as TCGA samples

are contained in (Collado-Torres et al., 2016).

Snaptron further adds auxiliary information to each junction:

• Gene annotation status (discussed below)

• Count of samples with one or more reads covering the junction

• Sum, average, and median of the junction coverage across samples

where the junction occurred at least once

Snaptron allows the user to query any of these three compilations of human

RNA-seq samples:

• SRAv2: 81M junctions from 44,427 public samples from the SRA

• GTEx: 29M junctions from 9,662 samples from the v6 data freeze

• TCGA: 37M junctions from 11,284 samples from TCGA

18

SRAv2, GTEx and TCGA use the GRCh38 primary assembly and its coor-

dinates. While raw GTEx and TCGA data are dbGaP-protected, Snaptron’s

junction-level summaries are, like the SRAv2 compilation, publicly accessible.

We used a composite of several gene annotations (Table 1.2) to determine

annotation status of each junction and of each donor and acceptor splice site.

If the junction as a whole appears in an annotation, we mark the junction

and its splice sites as annotated. If the junction does not appear as a whole,

the donor is marked according to whether it is a donor in any annotated

junction, and likewise for the acceptor. We used UCSC’s liftOver tool to

convert annotations between genomic coordinate systems.

2.2.2 Data types

Snaptron uses a hybrid indexing approach that enables efficient querying and

retrieval. Queries can be concerned with these distinct but related data types:

• Genomic intervals, each consisting of a chromosome and beginning and

ending offsets. An interval might represent an exon-exon splice junction

or an exon as it appears in a gene annotation. A collection of intervals

might represent all exon-exon splice junctions in a sample. Intervals

within a collection might overlap, i.e. cover some of the same genomic

positions.

• Integer and floating-point numbers. For example, Snaptron uses non-

negative integers to encode the number of reads spanning an exon-exon

junction in a sample. Snaptron also stores pre-calculated summaries

19

such as the average coverage of a junction or the number of samples in

which a junction has non-zero coverage.

• Variable length strings of text, for sample metadata. Metadata is stored

in a combination of semi- and un-structured fields. We call a field

semi-structured if it is an accession number or a term from a controlled

vocabulary, e.g. sex or tissue type. Unstructured data are free-text fields

ranging from phrases to full paragraphs, e.g. a study’s abstract or a

description of how the sample was prepared for sequencing.

The particular query determines which index or combination of indices

Snaptron uses to compose its response.

2.2.3 Region query

A Region (R) query (Table 2.1) retrieves junction data situated in a given

genomic interval. It is handled using Tabix (Li, 2011) and its associated R-tree

index. Such a query might ask for a list of exon-exon junctions that occur in

any sample and that overlap a specified genomic interval. An R-tree index is

a tree of nested multi-dimensional bounding rectangles; a node corresponds

to the minimum bounding rectangle for points below in the tree. Since we are

working with one-dimensional intervals, the bounding rectangles are simply

line segments, and the R-tree is essentially an interval tree (Li, 2011) (Kent

et al., 2010). A junction and all associated data (including strand, splice motif,

annotation status, depth of coverate in each sample) is stored in the lowest

R-tree node fully containing the spliced interval.

20

Querying a human-scale Tabix index on the current Snaptron server takes

a few seconds, including the overhead added by Python and Snaptron (Figure

2.3). However, Tabix performance depends on whether the indexed dataset

is compressed. We compared the relative performance of the SQLite B-tree

and the Tabix R-tree, using Tabix in both compressed and uncompressed

modes, and found that uncompressed Tabix outperforms SQLite but SQLite

outperforms compressed Tabix (Figure 2.3). Thus, Snaptron uses the Tabix

R-tree in uncompressed mode.

When querying junctions that “match” a specified interval, Snaptron al-

lows the user to specify precisely what it means to “match”:

• contains: match any junction that falls entirely within the specified

interval

• exact: match any junction with exactly the specified chromosome, start

and end coordinates

• either: match when either the start or end coordinate falls inside the

interval

2.2.4 Filtering attributes

A Region + Filter (R+F) query additionally constrains junction attributes.

Attributes describe, for example, annotation status, strand, or prevalence.

Examples of attribute constraints are given in Table 2.1. Snaptron uses SQLite

and its B-tree index for these queries (https://www.sqlite.org). Probes into

the B-tree index are efficient — logarithmic in the size of the tree — and the

21

https://www.sqlite.org

tree data is organized in a blocked fashion that enables efficient transfers to

and from disk. In a Snaptron B-tree, a key represents a junction, including its

chromosome, start coordinate and end coordinate. The full record, including

the junction and all associated data (strand, annotation status, coverage in

each sample, etc) are stored in a related tree structure.

Some junctions in Snaptron’s compilations are false positives, due to align-

ment error and other factors (Nellore et al., 2016a). Consequently, we expect a

popular query type will be R+F queries requiring returned junctions to meet

a minimum level of prevalence. For instance, a user might request “only

junctions with coverage ≥ 50” or “only junctions with non-zero coverage in

≥ 1,000 samples.”

While Snaptron could re-use the Tabix R-tree for both R and R+F queries,

we found SQLite’s B-tree was faster for the R+F case (Figure 2.3). This is

because the junction attribute filter is not handled by Tabix; instead, the “F”

aspect of the constraint has to be handled separately by Snaptron, which

parses Tabix output and suppresses records not satisfying the constraint. This

adds overhead compared to SQLite, which naturally combines interval (R)

and attribute (F) constraints in a single action.

2.2.5 Constraining metadata

Metadata constraints narrow Snaptron’s focus to only those samples with

metadata matching or containing key phrases. If we think of the junction

evidence as forming a matrix with junctions as rows and samples as columns,

metadata constraints narrow the query’s focus to a subset of the columns.

22

●●
●

●

●●

●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

0

5

10

15

50 100 150 200 250
Query size (100KB)

T
im

e
(s

ec
on

ds
)

●

●

●

●

SQLite, B−tree

SQLite, no index

Tabix, R−tree

Tabix, R−tree, compressed

R query

R+F query

Figure 2.3: Snaptron query wall-clock times for R and R+F queries of increasing size.
The queries ask for all (for R) or some (for R+F) junctions overlapping an increasingly
large prefix of chromosome 1. The region grows from a 2.5M-base prefix (leftmost)
to 25M bases (rightmost) in 2.5M increments. The R+F constraint additionally re-
quires all junctions returned to have samples_count>=100. The number of junctions
returned by the R query range from 350K for the smallest (leftmost) to 1.5M for the
largest (rightmost). The number of junctions returned by the R+F query range from
7.3K for the smallest to 28K for the largest. All data was uncompressed except where
noted.

23

A metadata constraint can be used on its own in a Metadata (M) query, or

combined with a Region (R) query or Region + Filter (R+F) query. We call the

latter two combinations R+M and R+F+M queries (Table 2.1).

Snaptron uses the popular Lucene (Bialecki, Muri, and Ingersoll, 2012)

inverted indexing system to handle metadata constraints. Snaptron includes

Lucene indices for each data compilation: SRAv2, GTEx v6 and TCGA. An

index associates over fifty metadata fields with each sample. The exact fields

depend on the data source. Some fields contain unstructured (“free”) text

and describe, for example, how the sample was prepared and sequenced

or what was being studied. Others are semi-structured, using text labels to

describe categorical variables, such as whether the reads are paired-end or the

sample’s tissue type. For example, the GTEx compilation includes a controlled-

vocabulary field describing the tissue of origin, but the SRA compilations do

not; that information can often be gleaned from other free text-fields, though

sometimes with difficulty (Bernstein, Doan, and Dewey, 2016). The Lucene

index allows searching for key phrases in a metadata field.

2.2.6 Query planning

Snaptron’s query planner determines the combination of index probes needed

to service a query. Region (R), Region + Filtered (R+F), and Metadata (M)

queries are each answered from a different index; R queries use the Tabix

R-tree, R+F queries the SQLite B-tree, and M queries the Lucene inverted

index (Figure 2.1).

The situation is more complex when a query combines region and metadata

24

constraints, as in R+M and R+F+M queries. Again thinking of a junctions-

by-samples evidence matrix, queries combining R and M constraints are

concerned with a subset of columns (M constraint) and a subset of rows (R

constraint). Such a query might ask for all junctions in the KCNIP4 gene that

appear in at least 10 brain samples.

Handling this query decomposes into a few tasks. Column projection de-

termines which samples satisfy the metadata constraint. If C denotes the full

set of columns (samples), let C′ ⊂ C be the subset satisfying the constraint,

determined by querying the Lucene index. Row projection determines which

junctions (rows) satisfy the region constraint. If R denotes the full set of rows

(junctions), let R′ ⊂ R be the satisfying subset, determined by querying the

Tabix index. Once C′ and R′ are known, submatrix filtration determines the

subset of R′ satisfying the “at least 10” constraint. Submatrix filtration is con-

cerned only with the R′ × C′ submatrix. Consequently, summaries calculated

over the full rows or columns of the original matrix cannot be used here; new

summaries must be calculated with respect to the submatrix.

To perform submatrix filtration, sample IDs returned by the Lucene query

are converted to an Aho-Corasick automaton. The automaton performs set-

wise pattern matching on Snaptron’s internal string representation of the

matrix rows. Specifically, Snaptron stores a row as a comma-delimited string,

with each field containing the concatenation of the sample ID and the read

coverage of the junction in that sample. To save space, samples with 0 cov-

erage are not included as fields. The automaton analyzes a single row by

consuming the row string’s characters one-by-one and signaling when it has

25

encountered one of the selected columns by entering a special “match” state.

Each such match contributes a non-zero entry to the R′ × C′ submatrix. Once

the submatrix is formed, Snaptron re-calculates row-wise summaries (e.g.

sum, average, median). Finally, if an attribute filter (F) was specified, it is

evaluated with respect to the recalculated summaries to further narrow the

list of returned junctions, completing submatrix filtration.

While Snaptron was originally intended solely for exon-exon splice junc-

tion indexing, we eventually extended the interface and indexing to include

support for exon, gene, and base-level matrices. In the gene and exon cases,

they were formatted according the same set of fields as in the junction case

while re-purposing some of the ancillary fields which were splice junction

specific to instead contain the gene name and biotype. Both Tabix and SQLite

were used to index the genes and exon matrices as in the junction case. How-

ever, base-level coverage due to its vastly larger size was only indexed in

Tabix.

One reason for the substantially larger size for the base-level matrix, is it’s

fully materialized, unlike the other three coverage levels which are strictly

sparse matrices only tracking samples which had >= 1 read coverage counts.

The fully materialized matrix for base counts may be somewhat wasteful

(approximately 2x more space than the individual BigWigs), but allows for

ease of sample sub-selection (projection) for large numbers of samples and

bases in a query. A graphic detailing comparing the recount approach to

storing base coverage in BigWigs versus the approach used in Snaptron for

indexing base-level coverage is in Figure 2.4.

26

Sample header Region 1 count Region 2 count Region 3 countSample1.bw

......

Sample header Region 1 count Region 2 count Region 3 countSample2.bw

......

......

Sample header Region 1 count Region 2 count Region 3 countSampleN.bw

recount (BigWigs)

Snaptron2 (compressed & indexed TSV)

Region 1 Sample 1 count Sample 2 count Sample 3 count Sample N count

......Region 2 Sample 1 count Sample 2 count Sample 3 count Sample N count

......Region M Sample 1 count Sample 2 count Sample 3 count Sample N count

......

Region M count

...... Region M count

...... Region M count

all_samples.tsv.bgz

Data Store

Data Store

Figure 2.4: Per-base coverage layout in recount (BigWigs) vs. Snaptron (fully pasted
and materialized matrices. In theory this highlights the main difference between the
two approaches. In practice the base-level coverage is large enough that even the 2nd
(Snaptron) approach is stored as slices of the genome in separate files on disk. The
overall difference in approach is still maintained.

2.2.7 Higher-level queries

Snaptron supports three queries that we term “higher-level” (Table 2.1) be-

cause each involves junction sets defined using sub-queries. The shared sample

count (SSC) query returns the number of distinct samples with evidence for the

co-occurrence of two junctions. As we show later, this is useful for studying

prevalence of putative novel exons.

The tissue specificity (TS) high-level query uses the GTEx v6 compilation.

The user specifies one or more groups of junctions using one or more region

sub-queries, one sub-query per group. The TS query returns an N × 2 table,

where the N rows correspond to all 9.6K samples from the GTEx project

and the two columns correspond to (a) whether a junction from every group

occurred in that sample, and (b) which of the 32 GTEx v6 tissue types the

27

sample was derived from. This list can then be loaded into Python or R to

assess tissue specificity.

The junction-inclusion ratio (JIR) high-level query scores each sample

according to a particular overrepresented splicing pattern relative to another.

The user specifies two groups of junctions using two region sub-queries. Call

these groups A and B. The query calculates the normalized difference between

coverage counts of the two groups across all samples containing the junctions.

This is the “junction inclusion ratio" (JIR) suggested previously by Nellore et

al (Nellore et al., 2016d), but with one added to the denominator:

(B − A)

A + B + 1

A and B represent the total coverage for the two groups of junctions in the

sample. Ranking samples according to JIR reveals the degree to which a

splicing pattern is specific to a particular kind of sample.

2.2.8 Interfaces

Snaptron provides the following interfaces:

• RESTful web service interface (WSI): handles query requests made by a

user or by other Snaptron interfaces via HTTP 1.1. Results come in the

form of lists of junctions and associated junction data, or lists of samples

and associated sample metadata. Queries usually return within seconds.

• Client command-line interface (CCLI): a Python 2.7 program which

handles both basic queries and high-level queries. High-level queries

28

are decomposed and handled via one or more WSI queries.

• Complete server installation (Local): users can download the underly-

ing Snaptron data and software, build local indices and compilations,

and run a local Snaptron service for handling WSI queries. This is for

advanced users who require rapid processing of high query volumes.

This is also supported by a Docker container image.

• Snapcount: an R interface to the gene, exon, and junction level coverage

data in Snaptron as part of Bioconductor. Creates RangedSummarized-

Experiments dynamically based on the user’s query results.

Users experienced with command-line tools may prefer the direct WSI

interface, which has minimal software requirements and responds within

seconds in most cases. Users willing to install the lightweight Python CCLI

can additionally pose high-level queries. The CCLI can be called from wrapper

scripts to compose complex analyses, as shown in our example scripts.

2.3 Results

We describe four applications of Snaptron: three analyses and a simple “mock”

graphical user interface (GUI). The analyses leverage public data to pro-

vide context or support for a hypothesis about splicing. The simple GUI

demonstrates how calls to the Snaptron REST service can be used to facil-

itate exploratory data analyses and provide images in support of splicing

investigations.

29

Figure 2.5 shows screen captures from the GUI giving results of Snaptron

WSI queries relevant to the analyses.

2.3.1 Novel Exon Discovery and Evaluation

Snaptron can measure prevalence of candidate junctions and exons in public

RNA-seq data. The candidates need not be annotated; Snaptron’s junction calls

were made without the influence of a gene annotation, so it can give support

for either annotated or unannotated splicing patterns without favoring one

or the other. We demonstrate this by following the work of Goldstein et al

(Goldstein et al., 2016b), who searched for unannotated cassette exons in

Illumina Human Body Map 2.0 RNA-seq data from 16 normal tissues. A

cassette exon was called novel if neither edge coincided with an annotated

junction, but the entire exon was located within an annotated gene. Goldstein

et al discovered 249 novel exons and validated 216 in a separate cohort using

additional paired-end RNA-seq sequencing.

To find evidence for these 249 exons, we posed a high-level Snaptron query

that (a) gathered evidence for the exons in the SRAv2 and GTEx compilations,

and (b) scored the exons according to shared sample count (SSC), the number

of samples with evidence for the exon. The query constrained the reported

junction’s strand to match the strand of the enclosing annotated gene. Further,

the query included the “either” modifier to ensure one end of the queried

junctions would exactly match the flanking coordinate on either the 5’ or 3’

end. We found that out of 249 putative exons, 236 (94.8%) occurred in both

the SRAv2 and GTEx compilations.

30

A. ABCD3

B. KMT2E

3

1

2

1

2

3

C. ALKATI

1

2
3

4

Figure 2.5: Three mock up GUI screen captures corresponding to the three analyses.
Green horizontal lines indicate the genome. Arcs indicate exon-exon splice junctions.
Colors indicate the number of samples having evidence for the junction, ranging
from black (least support) to red (most). Annotated junctions are represented by
arcs above the green line, and unannotated junctions by arcs below the line. Light
blue rectangles are annotated exons. A) Splice junctions matching the Goldstein et al
prediction of a novel alternative exon in the ABCD3 gene. A1 is the 5’ junction, A2 is
the novel exon, and A3 is the 3’ junction; B) KMT2E gene and unannotated junctions
supporting a REL exonization event. B1 is the 5’ junction, B2 is the REL exon, and B3
is the 3’ junction; C) ALK spliceforms. C1 indicates the full length ALK transcript, C2
is the truncated ALKATI transcript incorporating only the last 10 exons (ALK is on
the reverse strand, and so is laid out right-to-left), C3 is the alternative transcription
initiation exon, and C4 is the upstream full transcription initiation site.

31

Of the 236, 204 (86.4%) were among the exons that Goldstein et al validated

in a separate cohort, while the remaining 32 were among the exons that failed

to validate. We further used the shared sample count (SSC) to score each of

the 236 exons and found that the exons that validated by Goldstein et al had

significantly higher SSC than those that failed 2.6. This was true regardless of

whether we used the SRAv2 or the GTEx compilation to calculate the score.

This elaborates Goldstein et al’s analysis in two key ways. First, Snaptron

used public data to score candidate novel exons according to the amount of

supporting evidence across tens of thousands of public RNA-seq samples.

The scores are valuable both for understanding the degree to which the exons

should be considered “novel,” and for prioritizing follow-ups such as PCR

experiments. Second, Snaptron’s comprehensive annotation shed further light

on the annotation status of the exons. While Goldstein et al determined that

the 249 putative novel exons were unannotated at the time, we found 132 were

fully annotated by one or more annotation sources used by Snaptron, with the

SIBgenes (SIBGenes Gene Prediction Track 2014) and ACEview (Thierry-Mieg

and Thierry-Mieg, 2006) tracks annotating most of the 132.

2.3.2 Exonization of Repetitive Elements

Snaptron can use public data to assess tissue specificity of a splicing pattern. A

repetitive element locus (REL) exonizaton event is an instance where a stretch

of repetitive sequence (e.g. a SINE or LINE) is spliced into a surrounding gene

as an exon. A study by Darby et al (Darby et al., 2016) reported numerous REL

exonization events in human protein-coding genes, including events specific

32

●
●

●
●

●

●

●

●
●

●

0

5000

10000

15000

20000

GTEx SRAv2

Data compilation

S
ha

re
d

sa
m

pl
e

co
un

t (
S

S
C

)

Validation
Failed

Passed

Figure 2.6: Co-occurring sample counts distinguishing validated from non-validating
alternatively spliced exons. For GTEx, Wilcoxon rank-sum p = 2e-04. For SRAv2,
Wilcoxon rank-sum p = 1e-05.

33

to brain or blood. We used Snaptron to study these events and to measure

tissue specificity with respect to the GTEx compilation.

We first obtained coordinates for 5 PCR-validated REL exonization events

in three genes (KCNIP4, KMT2E and GLRB). We then used the shared sample

count (SSC) high-level query to measure the prevalence of the events in the

SRAv2 and GTEx collections. We noted that the samples studied by Darby

et al, derived from the Stanley brain collection, were not present in these

compilations. For both the SRAv2 and GTEx compilations, we found that all

five events had a shared sample count of 39 or greater. We also found that

none of the junctions flanking the events were fully annotated, in agreement

with Darby et al. We also analyzed the tissue specificity of the 5 REL exons

using Snaptron’s high-level Tissue Specificity (TS) query (Table 2.1). We then

performed a Kruskal-Wallis rank sum test on the TS query result, using the

presence/absence results as the data and the tissue-annotation results as the

group labels. All rank sum tests yielded P < 1 · 10−9, indicating strong tissue

specificity. For example, the REL exon we refer to as GLRB_1 is present in 33%

of the 1,409 samples labeled “Brain” but only 3% of other samples. Similarly,

the REL exon KMT2E_1 is present in 56% of the 102 samples labeled “Bone

Marrow” but only 12% of other samples.

2.3.3 ALK and Junction Inclusion Ratio

Snaptron can also be used to study splicing patterns involving many junctions.

To demonstrate this, we performed an experiment modeled on Nellore et

al’s analysis of the anaplastic lymphoma kinase (ALK) gene’s ALKATI variant

34

isoform (Nellore et al., 2016d). ALK is mutated or aberrantly expressed

in some cancers, with its ALKATI variant, characterized by an alternative

transcription initiation (ATI) site, found to be expressed in 11% of melanomas

(Wiesner et al., 2015).

Following Nellore et al, we used Snaptron to demonstrate the ALKATI

variant and related EML4-ALK gene fusion can also be found in non-cancer

samples. Note that whereas Nellore et al distinguish between the ALKATI

variant and the EML4-ALK fusion by integrating other assays, we do not

make the distinction here.

We started by using Snaptron’s high-level JIR query to rank samples in

order according to the difference between the total coverage of ALK junctions

downstream of the ATI versus the junctions upstream. The sets of upstream

and downstream junctions are defined using R+F queries. We constrained the

strand to be the same as that of the ALK gene and required that junctions lie

within ALK’s annotated boundaries.

Also following Nellore et al, we postprocessed the JIR results to exclude

samples with fewer than 50 total reads covering the ALK junctions. We found

that the top 10 samples in our JIR-ranked list exactly match those they reported,

including the unexpected melanocyte and macrophage samples.

2.3.4 Client Command-Line Interface

The CCLI is the basis for the three analyses described above. In addition, the

CCLI offers two other functions, “psi” and “intersection” which users may

find useful in their queries. The first is the ability to provide results for certain

35

queries in terms of the percent spliced in (PSI) metric common in splicing

analyses. The CCLI will list samples ranked by the PSI of a cassette-exon anal-

ysis which uses two basic queries, one query defining the included junctions

(generating the PSI) and a second query defining the excluded junctions. The

second CCLI function supports the formation of general conjunctive queries

by grouping basic queries together. The intersection of the resulting junctions

from the basic queries is then taken by the CCLI presented as a single list to

the user.

2.3.5 Graphical User Interface Application

Finally, we demonstrate that the REST API is powerful enough to enable

exploration and visualization of splicing patterns across tens of thousands of

samples.

We developed a “mock” GUI with many of the features we expect are

needed by typical biological users. Though the GUI is not full-featured and

we do not consider it a primary interface for Snaptron, it does allow users to

(a) select a gene or region of interest, (b) filter and color-code the junctions

according to quantitative summaries like shared sample count and average

coverage, and (c) distinguish annotated from unannotated junctions.

Figure 2.5 shows how the GUI presents splicing data relevant to the previ-

ous three analyses.

36

2.4 Discussion

Curated summaries are now available for collections of over 70,000 human

RNA-seq samples (Collado-Torres et al., 2016). This motivates the compu-

tational question: how do we build systems that make it easy for typical

biological researchers to ask and answer questions using these resources?

Snaptron is a search engine that combines summarized output from splice-

aware RNA-seq alignment tools like Rail-RNA (Nellore et al., 2016a) and

Monorail—described elsewhere in this thesis, with a range of indexing strate-

gies and a sophisticated query planner. Snaptron allows researchers to query

the vast amount of splicing data now available in summaries like intropolis

(Nellore et al., 2016d). At no point are users required to download or process

raw sequencing data, or any other large files.

Snaptron’s design addresses the question of how to combine the best qual-

ities of multiple indexing and database systems in a way that allows rapid

queries, even when queries are concerned with a combination of both struc-

tured interval and numeric data, and much less structured textual metadata.

The design mixes genomics-oriented software like Tabix (Li, 2011) with more

generic database and indexing systems like SQLite and Lucene (Bialecki, Muri,

and Ingersoll, 2012). Generic systems like SQLite performed surprisingly well,

sometimes better than genomics-oriented tools when queries conjoined inter-

val constraints with other constraints.

We used Snaptron to assess: (a) prevalence of putative novel junctions

and exons, (b) tissue specificity of novel splicing events, and (c) which public

samples exhibit the most divergent splicing patterns for a particular gene.

37

With the growing popularity of RNA-seq analysis tools that quantify with

respect to a given gene annotation (Bray et al., 2016c; Patro, Mount, and Kings-

ford, 2014), thereby trusting the completeness and accuracy of the annotation,

questions about which annotated and unannotated splicing patterns are well

supported by public data are increasingly crucial. Snaptron makes it easy to

measure support for putative splicing patterns.

In the future it will be important to further optimize Snaptron queries

that impose complex constraints on both sample metadata and junction data.

While we proposed and implemented an Aho-Corasick-based method that

is efficient for some expected queries — with response times measured in

seconds or tens of seconds — it is not hard to construct more complex queries

that push response times to minutes. The main example of this kind of search

type is where thousands of samples are used to further filter a larger R+M or

R+F+M query where 100’s of thousands of junctions are returned. A specific

example would be querying for all junctions on chromosome 1 while also

requiring that all junctions appear in samples that have the keyword “tissue"

in their description metadata field in the GTEx compilation. The problem is

fundamentally difficult since it requires scanning, compiling and summarizing

a large fraction of the overall data compilation.

Another future goal is to generalize Snaptron’s current support for cov-

erage summaries like mean and SSC to additionally support user-defined

functions. There are many possible summaries users could define or that

have been proposed in previous studies, “percent spliced in” (PSI) (Venables

et al., 2008) being a well known example, which is supported in a limited

38

way in Snaptron’s current set of high-level functions. Allowing user-defined

functions would require major changes, but would also obviate the need for

Snaptron to individually support a large number of potential summaries.

Finally, it will be important to develop a more full-fledged GUI providing a

wider range of functions, such as sample browsing, support for all high-level

queries, and the ability to “export” splicing data to other browsers such as the

UCSC Genome Browser (Tyner et al., 2016).

2.5 Applications of Snaptron

In the previous sections of this chapter we presented the Snaptron tool and

a few examples of how it could be run. In this section we will briefly give

overviews of separate pieces of work (both published after Snaptron) that

successfully applied Snaptron to biological questions.

2.5.1 ASCOT

Snaptron in this case was applied to the question of alternative splicing leading

to tissue and cell-type specific exons, primarily in retinal development in

human and mouse (Ling et al., 2020). In the alternative splicing catalog of

the transcriptome (ASCOT) project we leveraged and expanded the set of

splicing data across Snaptron including hundreds of sequencing runs from

the ENCODE shRNA-seq knockdown sequencing project (Sloan et al., 2016;

Sundararaman et al., 2016) (1159 run accessions) as well as a set of purified

mouse tissue and cell-types sequenced via bulk RNA-seq which we labeled

“MESA” (732 run accessions from SRA). We further extended the features of

39

Figure 2.7: IMPDH1 example gene containing a novel exon found in the ASCOT
analysis and shown in the ASCOT interface

the Snaptron query engine with the following:

• Merge functionality allowing multiple different Snaptron compilations

(sharing the same reference, e.g. HG38) to be queried at the same time

with resulting junctions coalesced between the results so all junctions

returned would be unique but have the union of samples across compi-

lations they appeared in

• Batch processing of queries supporting a more efficient approach to

running thousands of queries against a remote Snaptron server

The ASCOT project then built upon the outputs of Snaptron queries to

produce lists of cassette exons (including putative novel ones) based on binary

splice events (two spliced in junctions vs. a single skipping junction). Further,

these novel exons then were scored using the Percent Spliced In (PSI) metric

for comparison across samples, resulting in the further summarized data

backing the ASCOT graphical user interface (Figure 2.7).

40

Figure 2.8: Figures 2D and 2E from (Madugundu et al., 2019) showing the breakdown
of annotated vs. novel percent of junctions and their split-read counts in Snaptron.

2.5.2 Confirmation of novel splice junctions found in HU-
VEC tissues alongside proteomics

Snaptron was also used to confirm the existence of a number of alternatively

spliced junctions in human umbilical vein endothelial cells (HUVEC) from

bulk RNA sequencing (Madugundu et al., 2019). This study performed an

integrated analysis of these cells across both RNA-seq and mass spectrometry

of proteins generating both splicing data at the mRNA transcript level as well

as associated proteomics data. Here all 3 compilations (SRAv2, GTEx, and

TCGA) in Snaptron were queried. Figure 2.8 taken from Figures 2D and 2E

from the paper show the percent breakdown of novel, partially novel, and

fully annotated junctions and their split-read counts found via Snaptron.

41

Chapter 3

Monorail Ecosystem

3.1 Introduction

We now turn to the full rebuild and regeneration of the recount3 and Snaptron2

resources via the entirely new Monorail workflow. The amount of human

RNA sequencing runs available in the sequence read archive (SRA) had more

than tripled in the 4 years since Rail was run. This was expected given the

high rate of growth the SRA undergoes (Langmead and Nellore, 2018). The

recount2 and Snaptron tools needed to be updated with the new human

RNA-seq data as well as expanded to include mouse RNA-seq information.

The new version of recount includes a total of 315,449 human and 416,903

mouse samples collected from the SRA, GTEx v8 release (19,214 samples from

972 individuals and 32 tissue types), The Cancer Genome Atlas (TCGA) (11,348

samples from 10,396 individuals and 33 cancer types) and the Cancer Cell Line

Encyclopedia (CCLE) (1009 sequence runs). This is substantially more than the

70,603 human RNA-seq samples included in our previous recount2 resource.

By extension, recount3 also includes improved queryability. By adding the

42

snapcount Bioconductor (Huber et al., 2015) package which integrates an

updated Snaptron (Wilks et al., 2018), users can perform rapid queries across

all summaries at once, e.g. across all the 315K human SRA samples. Such

queries enable projects with a specific regional focus — i.e. that study specific

genes or splicing patterns — or that are concerned with the prevalence or

specificity of an expression or splicing pattern over many studies (Ling et al.,

2020; Madugundu et al., 2019; Burke et al., 2020). Users can do this from the

command line or from the Python or R programming langauges.

To demonstrate recount3, in Section 3.3.2 we survey splicing patterns

across the resource and study the fraction of exon-exon splice junctions that

are present in widely used gene annotations for human and mouse.

Also in Section 3.3.2 we show the degree to which recount3 captures

cell-type specific splicing across several mouse cell types and find that cell-

type-specific junctions are less likely to be present in gene annotations than

junctions overall. Finally, in Section 3.3.3 we demonstrate how our base-level

coverage summaries reveal examples of non-coding and unannotated tissue-

and cell-type specific transcription.

In Section 3.5 we describe the new, Snakemake-based (Köster and Rah-

mann, 2018) analysis workflow, Monorail, used to produce the summaries

which is now much easier to use. It runs from a single Docker/Singularity

image and there is a prototype version under development for the popular

Galaxy (Afgan et al., 2018) system. We also made several improvements to

the design, enabling more regular updates of the resource.

43

3.2 Background and Related Work

For recount2, we previously analyzed 70,603 sequencing runs from the Se-

quence Read Archive (SRA), GTEx project (The GTEx Consortium, 2013), and

TCGA consortium (Network et al., 2013), compiling splice-junction, gene,

exon, and per-base coverages into the recount2 (Collado-Torres et al., 2017b)

and Snaptron (Wilks et al., 2018) resources. Other projects have worked to

summarize public RNA-seq datasets, with most providing only gene- and

transcript-level summaries. ARCHS4 (Lachmann et al., 2018) used the Ely-

sium web service (Lachmann, Xie, and Ma’ayan, 2018) – which in turn used

Kallisto (Bray et al., 2016b) – to quantify isoforms in 187,946 human and mouse

run accessions from GEO and SRA. ARCHS4 was later updated to include

over 520K accessions. The DEE2 project used STAR (Dobin and Gingeras,

2016) and Kallisto to produce gene- and transcript-level summaries for 580K

run accessions, later growing to over 1 million, spanning human, mouse and

seven other model organisms. Tatlow et al. (Tatlow and Piccolo, 2016) used

Kallisto to analyze approximately 12K TCGA and CCLE (Barretina et al., 2012)

samples, also producing gene- and transcript-level summaries.

Toil (Vivian et al., 2017) used STAR, Kallisto and RSEM (Li and Dewey,

2011) to generate both spliced alignments (BAM files) and information about

splice junctions detected (BedGraphs files). However, it was only run on ap-

proximately 20K samples, including TCGA, TARGET, and a previous version

of GTEx (about 7K samples).

Other projects have, like recount, produced larger and more multi-purpose

summaries from archived RNA-seq datasets. RNAseq-er (Petryszak et al.,

44

2017) uses the iRAP pipeline to continually analyze new RNA-seq datasets de-

posited in the European Nucleotide Archive. The effort has produced CRAM,

BigWig and bedGraph summaries for over 1 million run accessions to date,

which are accessible via a REST API. The Expression Atlas (Papatheodorou

et al., 2020) draws on datasets from Geo (Barrett et al., 2013) and Array Express

(Athar et al., 2019) to form a compilation of over 1M RNA assays – mostly

microarray-based but also many RNA-seq – from multiple species. RNA-seq

accessions are analyzed with iRAP. The Single Cell Expression Atlas (Pap-

atheodorou et al., 2020) extends the facility to include over 100 single-cell

RNA-seq studies from several species, using Alevin (Srivastava et al., 2019)

for analysis.

3.3 Results

3.3.1 Improvements to the resource

We developed a new distributed analysis system called Monorail (see Meth-

ods). Using Monorail, we analyzed and summarized over 763K human and

mouse sequencing runs, including GTEx V8, TCGA, and 732,352 runs from the

Sequence Read Archive (Table 3.1), 416,903 of those from mouse. Altogether,

recount3 contains 10 times more run accessions than recount2. In compiling

recount3, we processed almost 1 PB of compressed sequencing reads, used

approximately 25K node-hours of computation and produced over 150 TB of

summarized data (Tables 3.1 & 3.2).

We expanded the types of summaries provided compared to recount2.

Previously, we produced gene- and exon-level quantifications with respect to

45

the Gencode v25 annotation, a BigWig file encoding base-level coverage, and

a file describing all of the exon-exon splice junctions detected by the spliced

aligner and the number of spanning reads for each.

In recount3, we used STAR (Dobin and Gingeras, 2016) to detect and

report exon-exon splice junctions where the donor and acceptor motifs are

similar but not identical to a canonical motif. Further, we expanded the

gene annotations used to produce gene- and exon-level quantifications; we

now quantify each human run using each of four annotations: Gencode v26,

Gencode v29, FANTOM-CAT v6 and RefSeq v109, expanding users’ ability to

study both coding and non-coding RNAs in human. For mouse, we quantify

each run with Gencode M23. recount3 also now includes approximately

311,000 (97,000 human; 214,000 mouse) single-cell sequencing runs that used

whole-transcript protocols such as Smart-seq (Goetz and Trimarchi, 2012) and

Smart-seq2 (Picelli et al., 2013).

We also integrated the Snaptron (Wilks et al., 2018) system for indexing

and querying recount3 summaries. Further, we added a new R/Bioconductor

interface called snapcount, which uses Snaptron to query recount3 summaries.

With the addition of the snapcount package, it is now easier for users to

discover relevant datasets based on metadata, to download summary data

at the study or run level, and to obtain results within or across studies in

metadata-rich SummarizedExperiment objects.

The Monorail system is available to users both as an open source suite of

software, and as a self-contained public Docker image that produces identical

results.

46

Table 3.1: Monorail Runs (*includes BAMs for brain tissues **unique jxs)

Compilation
Input
Size
(TB)

Output
Size
(TB)

#
Sequence
Runs

#
Studies

#
Junctions # BigWigs (M)

Processing
Wall
Time (h)

SRA Human v3 474 72 316,443 8,677 228 1.2 1,728
SRA Mouse v1 362 62 416,803 10,088 148 1.7 1,608

TCGA 75 7 11,348 1 31.5 0.045 170
GTEx V6 35 6.7* 9,911 1 22 0.040 168

GTEx V7 & V8 46 4.9 9,303 1 10.6 (new) 0.037 M 123
Total 992 152.6 762,939 18,768 440.1 (396**) M 3.022 M 3,797

3.3.2 Human and mouse splicing in SRA

Using recount3 splice-junction summaries, we surveyed unannotated splicing

in the SRA. We previously measured this in human using about 20,000 run

accessions (Nellore et al., 2016b), but the expanded recount3 resource allows

us to use an order of magnitude more run accessions and to study both

human and mouse. Further, we now use an updated and expanded set of

gene annotations, including multiple versions of Gencode (e.g. V33) and

CHESS 2.2 (Pertea et al., 2018). We considered the subset of junctions that

appear in at least 5% of SRA run accessions (15,773 out of 315,449 samples

for human or 20,846 out of 416,903 for mouse). We found that about 16% of

human junctions and 12.5% of mouse junctions were not present in any tested

annotation (Figure 3.1). Of the junctions in this subset, about 5% (human) and

3.5% (mouse) had both donor and acceptor sites present in the annotation, but

not associated with each other, indicating an exon skipping or similar event.

About 8.5% (human) and 7% (mouse) had either the donor or the acceptor

present in the annotation, but not both. Remaining junctions (2.5% for human,

2% for mouse) had neither donor nor acceptor annotated. The 5% threshold

is chosen to obtain junctions that might be considered “common”; we tested

47

Figure 3.1: Intropolis junction fraction-annotated plots for 1) Human (left) 2) Mouse
(right).

other thresholds in Tables A.3 & A.4 in Appendix A.

We next asked whether cell-type-specific splicing patterns tend to be an-

notated or unannotated. In the ASCOT study (Ling et al., 2020), we asked a

similar question while focusing on cassette exons and on datasets where cell

type was purified using fluorescence-activated cell sorting (FACS) or affinity

purification.

With recount3, we adapted this analysis to consider all splice junctions

(not only cassette exons) and by additionally asking: what fraction of cell-

type-specific splice junctions are present in any annotation? We considered

the same purified datasets as the previous study, which included neuronal

cell types, pancreas, muscle stem cells, CD4+ T-cells, B-cells, as well as ovary,

testes, kidney, and stomach tissues among others.

For each junction that occurred in at least one sample, we tested its cell

type specificity using a Mann-Whitney U test comparing coverage within a

48

Figure 3.2: MESA cell-type specific enrichment of novel junctions

cell type to coverage in all other cell types (403 samples in 34 studies). We

binned the resulting -10 log p-values and calculated the percent of junctions in

each bin that appeared in any tested gene annotation (including GENCODE

versions M1 – M23 and others). We observed that more cell-type-specific

junctions (toward the right) are less likely to appear in annotation (redder

color) (Figure 3.2). This suggests that the more specific a splicing pattern is

to a particular cell type, the more likely it is to be ignored by the annotation-

quantification analyses used to compile other resources such as ARCHS4 and

DEE2.

3.3.3 Non-coding and unannotated transcription

Since recount3’s BigWig files can be inputs to software for compiling gene

and exon-level quantifications, we can quantify recount3 with respect to

a new gene annotation without re-aligning the reads. This facilitated our

49

Figure 3.3: Smooth scatter plot showing tissue specificity and overall expression level
of different classes of human coding and non-coding mRNAs from the FANTOM-CAT
annotation. Measurements are using the GTEx8 compilation. Consistent with past
work, non-coding RNAs exhibit a more tissue-specific pattern of expression, indicated
by the points’ rightward shift relative to the coding mRNAs.

generating the four quantifications included in recount3, range from smaller,

more stringent annotations (RefSeq, O’Leary et al., 2016), to more inclusive

annotations (GENCODE, Frankish et al., 2019), and to annotations focusing

on 5’ boundaries and non-coding RNAs (FANTOM-CAT, Hon et al., 2017).

The advantage of diverse annotations is illustrated by the FC-R2 study

(Imada et al., 2020), which quantified recount2’s bigWigs using the FANTOM-

CAT annotation, which includes a large number of non-coding RNAs (Hon et

al., 2017). The study reported the tissue specificity of different classes of RNA:

coding mRNA, divergent promoter lncRNA, intergenic promoter lncRNA,

and enhancer lncRNA. Using recount3’s FANTOM-CAT quantifications, we

updated that analysis to use the recount3 quantifications, including the addi-

tional runs present in GTEx V8 (FC-R2 used about half as many runs). These

results confirm those of the earlier study: while ncRNA expression is lower

than that of protein-coding genes, ncRNAs tend to have more tissue-specific

expression patterns.

To further show the utility of coverage-level summaries, we consider a

50

0

10

20

9,010,210 20,000,000 30,000,000 56,397,470
Mean(sum)

de
ns

ity

Means of Sums

0

10

20

30

68,211 200,000 400,000 639,080
Mean(interval_mean)

de
ns

ity

Means of Interval Means

0

10

20

30

4 24
Mean(# samples > 500) in Thousands log10 scale

de
ns

ity

Means of filtered count

Figure 3.4: SRAv3 with the intervals corresponding to the reannotated ER intervals
from (Zhang et al., 2020) and 99 sets of length & chromosome matched random ERs.

recount2-based study by Zhang et al., 2020. With the premise that cell-type

specific splicing patterns are less likely to be annotated, the authors used

derfinder (Collado-Torres et al., 2017a) to analyze 41 GTExV6 tissues and

identify genomic intervals that were not present in any gene annotation but

that were transcribed in a tissue-specific way. They found several such regions

and used other sources of evidence (conservation, genetic constraint, protein

coding ability) to argue that the discoveries are not artifacts. Here we further

use the BigWig files for the SRAv3 compilation to show that the intronic

ERs identified by Zhang et al have substantially more coverage in SRAv3

compared to length-matched, randomly chosen intronic intervals (Figure

3.4). The availability of coverage summaries thus provides a unique facility

for studying and validating transcribed regions of the genome that are not

necessarily annotated and that don’t necessarily involve splicing.

3.4 Discussion

recount3 is a large, easy-to-use resource for querying and obtaining summaries

of public RNA-seq datasets. It improves on recount2 in several ways; it

51

includes an order of magnitude more run accessions, including all of GTEx

V8, and approximately 311,000 single cells. It extends the resource to include

both mouse and human accessions. It provides powerful interfaces through

the Snapcount R package and the updated Snaptron web service. It includes

more data types, including comprehensive QC data, and gene- and exon-

level quantifications based on various annotations, including FANTOM-CAT.

Finally, it uses the new Monorail system for analysis, which is comparatively

easy for users to run, and which betters facilitates continual runs on new

datasets.

The analyses used to produce recount3’s spliced read alignments do not

use a gene annotation, and so lacks any bias against unannotated splicing

patterns. This makes recount3 an especially appropriate resource for studies

that cannot assume that the relevant splicing patterns are annotated (Nellore

et al., 2016b; Zhang et al., 2020; Ling et al., 2020). Building on the work of a

prior study (Ling et al., 2020), we found that highly cell-type-specific splicing

patterns are less likely to be annotated.

While we demonstrated the utility of the recount3 BigWig summaries, they

are not yet indexed, and so are not queryable in the same way that gene-, exon-

and junction-level summaries are queryable. In the future, it will be important

to find space-economical and efficient ways to index and query hundreds of

thousands of BigWig files.

Though recount3 includes hundreds of thousands of run accessions from

the SRA, the utility of these datasets is often hampered by unreliable or

missing metadata. This points to multiple directions for future work. First, it

52

will be important to continue to build better models for predicting missing

metadata and correcting mistakes in metadata (Ellis et al., 2018a). Second,

it will be important to enable users with more detailed knowledge of the

datasets to create their own collections of related datasets, possibly with their

own hand-curated metadata. Finally, since metadata can sometimes be an

unreliable way to find relevant datasets, we also think it will be important to

design methods that search for related datasets based on their contents rather

than their metadata, e.g. using genomic sketching (Baker and Langmead, 2019;

Ondov et al., 2016).

3.5 Methods

3.5.1 Design

3.5.1.1 Grid design

Monorail’s design follows the grid computing model. In this model, a large-

scale computational task is centrally scheduled and orchestrated, with units

of work being distributed to computers that might be spread across the world.

In our case, orchestration is handled by a collection of services that run con-

tinuously in the Amazon Web Services commercial cloud. The computing

work was conducted on a few different high-performance computing clusters:

the Stampede 2 cluster, is located at the Texas Advanced Computing Cen-

ter (TACC) and was accessed via the National Science Foundation’s XSEDE

network. One of the clusters consisted of compute instances rented from the

AWS cloud’s Elastic Compute Cloud service. And the third cluster was the

Maryland Advanced Compute Center located at Johns Hopkins University.

53

3.5.1.2 Quality control and Alignment

The Monorail analysis pipeline uses various standard tools for analyzing

RNA-seq data and compiling QC measures. In particular, Monorail uses the

STAR spliced aligner (Dobin and Gingeras, 2016) to align RNA-seq reads in a

spliced fashion to the reference genome.

Beside producing alignments, STAR also outputs copious summary statis-

tics that can be used as QC measures. For example,

We use seqtk (Li, 2020 (accessed August 18, 2020)) to compile QC statistics

relating to the base composition and base qualities

3.5.1.3 Transcript quantifications

In addition to our traditional alignment approach using STAR we also produce

a form of the popular pseudoalignment-based quantification via Salmon. This

is included primarily to provide an easy way to compare with other workflows

which only use pseudoalignment tools to produce their results for those who

want it. In a similar vein, we provide gene and transcripts counts from

featureCounts to support comparison with read-based counting workflows.

Monorail consists of three components:

(1) orchestration (Figure 3.5, left), (2) analysis (middle) and (3) aggregation

(right).

The orchestration component contains a database describing work to be

done along with pointers to inputs and indexes. It coordinates the work via

centralized services running in the AWS cloud, including a work queue and

54

log aggregator.

The analysis component is compute-intensive, involving sequence extrac-

tion/decryption, alignment, and quantification as well as other tasks. Our

grid-based design allows this step to run in many computing environments

at once, exploiting parallelism within and across clusters. Finally, the aggre-

gation component gathers summaries output by the individual analyses and

creates per-study (and higher level) tabular summaries for gene-, exon-, and

exon-exon junction-level expression.

When starting a new analysis project, each input dataset (e.g. run ac-

cession) is combined with information about which analysis workflow and

reference data to use, yielding a job descriptor. Descriptors are loaded into

the central database as well as a centralized job queue. Analysis nodes are

recruited and directed to enter a “job loop” wherein they repeatedly query

the queue for the next descriptor (Figure 3.5). Upon dequeuing a descriptor, a

parallel Snakemake workflow executes the analysis (Figure 3.6). An analysis

node processes jobs until the queue is exhausted or until the local lease ex-

pires; e.g. many clusters impose a 2- or 4-day time limit on jobs. Outputs from

successful jobs are stored temporarily in cluster-specific scratch storage, then

transferred in batches via Globus to the aggregation cluster. Individual Snake-

make processes can use multiple threads so there is a degree of parallelism in

the three levels of overall data flow—compute node, container process, and,

program thread (Figure 3.7).

The output of an analysis of an input dataset consists of gene-, exon-,

and junction-level summaries, QC statistics, as well as a BigWig coverage

55

track and other outputs. The aggregation component takes the gene-, exon-

and junction-level summaries from individual datasets and combines them

into study-level Tables 3.8. Gene and exon summaries are based on set of

human and mouse annotations (e.g. Gencode, listed in Appendix A). Final

output consists of gene, exon, and exon-exon splice junction coverage sums,

summarized over all samples in the project. Per-base coverage sums are

available as BigWig files per sample, due to size. These BigWig files enable

the rapid re-quantification of gene and exon sums against new annotations

and/or additional unannotated regions of the genome without necessitating

the full re-alignment of any sample. Summarized datasets are hosted on

SciServer for direct-file based access and separately indexed for region-level

querying in Snaptron.

Each of Monorail’s components send logging messages to the orchestration

component, where they are coalescesed into an AWS CloudWatch dashboard.

The dashboard (Figure 3.9) helps to identify performance issues, reducing

time spent on debugging and on running jobs when prevailing conditions

(e.g. contention for the internet uplink at the archival data source) are not

favorable.

3.5.2 Monorail Performance

We used Stampede2, AWS EC2, and an institutional cluster (MARCC) to

process approximately 760,000 human and mouse sequencing runs comprising

nearly 1 PB of data over six months starting October 2019 (Table 3.2). We used

about 25,000 node hours in total, or 0.066 node-hours per sequencing run. We

56

1) Load Project Metadata

1) Queue Job Messages

Amazon RDS

Amazon Simple Queue
Service

Amazon
CloudWatch

TACC HPC

AWS EC2 Final
Destination

Storage

Logs

1) Specify Genome Reference

 4) OUTPUT:
HTTP Data
Transfer

Client Control

Monorail: Grid Computing Layout

Job
Messages

Job
Messages

MARCC HPC
Amazon Simple
Storage Service

(S3)

Job
Messages

IDIES HPC

5) Protected data
is agregated via
Unifier locally

5) Unifier
aggregates
across all
samples

dbGaP/GDC

SRA

3) INPUT: SRA prefetch downloads

4) OUTPUT: S3 transfer

3) INPUT: Encrypted data via prefetch/GDC client

1) Client sets up run in AWS

2) Cluster nodes get jobs
from queue

3) Cluster downloads INPUT
data and processes it

4) OUTPUT data is
transferred manually
to final destination

5) OUTPUT
data is

aggregated
into

summar ized
tables

4) OUTPUT: Batch Globus data transfer

3) INPUT: SRA prefetch downloads

Figure 3.5: Monorail as Grid Computing

57

Text
Text

Text

Text

Project
Database

(AWS
RDS)

Sequence
Repository

(SRA)

Child Job
Processing

Worker

Parent
Worker
Runner

Job Queue
(AWS SQS)

HPC/EC2
Node

Monorail Node & Process Parallelism

Containerized
Snakemake

Process

Node-Level
Parallelism

Process-Level
Parallelism

Figure 3.6: Monorail Workflow Parallelism.

58

Table 3.2: Monorail performance metrics run on TACC, AWS and MARCC (approxi-
mate). Statistics for GTEx and TCGA were extrapolated from a subset of each project
(9277, 1567 samples respectively). GTEx output was increased by keeping whole
BAM files for a subset of the samples.

Metric
Human
SRA
TACC

Human
SRA
AWS

Mouse
SRA
TACC

Mouse
SRA
AWS

Human
GTEx
MARCC

Human
TCGA
MARCC

Totals

Sequencing Runs Processed 286,000 27,618 321,000 109,889 19,214 11,348 774,644
Compressed input size (TBs) 441.78 44.2 254.27 111.873 81 75 1,008.123

Compressed output size (TBs) 64.81 6.5 39.7 16.7 11.6 7.0 146.31
Node hours (NHs) 10,133 798 8,179 5,967 2421 1467 28,965

NHs per sequencing run 0.035 0.029 0.025 0.054 0.126 0.129 0.066
NHs per compressed input TB 22.9 18.1 32.2 53.3 29.9 19.6 29.3

Sequencing runs per NH 28 35 39 18 8 8 23
Compressed input TB per NH 0.044 0.055 0.031 0.019 0.033 0.051 0.039

estimate this would cost about $0.033 per accession using equivalent cloud

resources, improving substantially on the $0.93 per accession achieved by our

previous Rail-RNA system (Nellore et al., 2016a).

Roughly speaking, this cost is higher but within a factor of about four

times the per-accession costs of other large-scale analysis pipelines (Ziemann,

Kaspi, and El-Osta, 2019; Lachmann et al., 2018). The difference is due to the

fact that Monorail produces more outputs – e.g. unannotated splicing and

coverage-level summaries – and relies less on gene annotation. The other

systems can be more costly in the long run since a change of gene annotation

requires a full re-run of the workflow. Monorail, by contrast, can quantify a

new gene annotation directly from the per-base coverage files, bypassing the

costlier components of the full workflow.

59

Sequence
Repository

(SRA)

Download
Sequence

Run 4x

FASTQ
Check
(Seqtk)

1st Pass
Alignment
(STAR) 8x

Per-base
Quantification
(Megadepth)

4x

Gene
Quantification

(featureCounts)
8x

BAM sort &
index

(samtools)
8x

Exon
Quantification

(featureCounts)
8x

FASTQs

Sorted BAM/Index

Unsorted BAM

Containerized
Snakemake

Process

Job Queue
(AWS SQS)

Monorail Processing of a Single Run

BigWigs AUCs
 Bamcount Exon
Quantifications

 featureCounts
Gene & Exon

Quantifications

SeqTK FASTQ
Quality Report

TEMP
(scratch)

Outputs

Temorary
OUTPUT

Node Host

References &
Indexes

Mapping Statistics
(BAM index stats)*

Megadepth Outputs

Cluster
Filesystems

Coverage Summaries

Alignment Stats

Gene & Exon Quantifications

FASTQ Stats

Figure 3.7: Monorail Workflow Details

60

Link Output
from Multiple

Monorail Runs

Decompress
& Filter JXs

Merge JXs by
Study Suffix

Monorail Run
Aggregation

 Workflow

Add JX Motifs

Annotate JXs

Paste All
Disjoint

Exon Sums

Rejoin All
Disjoint
Exons

Sum Introns

Output from
Multiple
Monorail

Runs

Achive all
Single Run

Logs

Decompress
Exon Sums

Merge JXs
by Sample

Suffix

 Merge All
JXs

Decompress
Exon Sums
Decompress
Disjoint Exon

Sums

Paste
Disjoint

Exon Sums
by Sample

Suffix

Paste Disjoint
Exon Sums by
Study Suffix

Split Exons
into Studies

by Annotation

Decompress
Exon Sums
Decompress

& Format
JXs

Paste Exon
Sums by
Sample
Suffix

Merge JXs
by Sample

Suffix

Paste Exon
Sums by

Study Suffix
Merge JXs by
Study Suffix

Rejoin Genes
from All Disjoint

Exons

Paste
Disjoint

Exon Sums
by Sample

Suffix

Paste
Disjoint

Exon Sums
by Sample

Suffix

Paste Disjoint
Exon Sums by
Study Suffix

Paste Disjoint
Exon Sums by
Study Suffix

Split Exons
into Studies

by Annotation

Split Exons
into Studies

by Annotation

Split Exons
into Studies

by Annotation

Split Exons
into Studies

by Annotation

Split Genes
into Studies

by Annotation

Figure 3.8: Monorail Aggregation Workflow

61

Figure 3.9: Screen shot of the Monorail monitoring interface hosted on Amazon Web
Services. It uses the AWS CloudWatch Dashboards feature to allow us to monitor
the performance of the Monorail system in real time. Shown are just six of the many
metrics that we track.

3.5.3 Data Presentation

3.5.3.1 Snaptron

While recount offers the user a way of accessing gene, exon, and junction

coverage, it is limited to providing that only at the study level. Snaptron

(Wilks et al., 2018) and its newly added R interface, Snapcount, provide the

ability to query precise regions of the genome for the coverage generated

in Monorail. Queries can be made for a specific subset of samples (or all of

them) at the gene, exon, and junction level. Queries can be further filtered by

aggregate sample occurrence and read coverage. Additionally, these tools en-

able “higher-level" analyses to be carried out across region queries to support

operations such as percent spliced in (PSI) and tissue specificity (in the case

of GTEx). Snapcount specifically creates filtered RangedSummarizedExperi-

ments dynamically based on the user’s query in contrast to the fixed nature of

recount3’s study-level data objects.

62

Chapter 4

LongTron: Automated Analysis of
Long Read Spliced Alignment
Accuracy

4.1 Introduction

The last two chapters have dealt exclusively with the output of short-read

RNA sequencing. In contrast with short-read RNA sequencing, long read

RNA sequencing is comparatively recent and has the capacity to complement

or even surpass short read RNA-seq in its ability to span several exons and

splice junctions of an isoform. This capability can in principle aid the discovery

of novel isoforms and the expression of existing isoforms in specific tissues

and cell types (Figure 4.1). However, high error rates and other problems are

still very present in the nascent field of long-read RNA sequencing and the

tools that work on long reads. In this chapter we analyze the failure modes

of spliced alignment of both Oxford Nanopore and PacBio Single Molecule,

Real-Time (SMRT) long reads when aligned with the popular Minimap2

spliced-aligner (Li, 2018).

63

Transcripts

Gene

mRNAs

Spliced
Reads

Unspliced
Reads

Long Reads
(PacBio Isoseq,

Oxford Nanopore)

Short
Reads

(Illumina)

Figure 4.1: Long-read versus short-reads. While short reads have much lower error
rates (1% vs. 10%) and higher coverage they lack the general ability to connect
multiple splicing interactions across the transcript due to their extreme shortness (250
bases vs. 10K’s bases).

64

As promising as they may be for transcriptomics, long reads have a few

problems currently including higher error rate, higher cost per read, and

potential 3-prime end bias compared with short-reads (Mantere, Kersten, and

Hoischen, 2019; Amarasinghe et al., 2020). A fundamental challenge is that

long reads suffer from a much higher error rate (2-10%) that is less systematic

than the lower error rate of Illumina short reads (<1%, mostly toward the 3’

end of the read). Additionally, the likely lower throughput due to higher cost

per read of long reads, may make transcript quantification and differential

analyses more difficult across the transcriptome due to lower coverage at any

given locus if whole transcriptome analyses are desired (Kovaka et al., 2019).

These problems have negative effects on downstream efforts aimed at

understanding transcription, including the first step in most analyses, align-

ment. Recently, the multi-mode aligner, minimap2 (Li, 2018) was released

and is gaining popularity in long read related work, both in DNA and RNA

contexts. Minimap2 is fast and relatively accurate and these authors support

its continued use. However, no aligner is perfect, and minimap2 does make

mistakes, specifically in the areas of spliced-alignment and the mapping of

long reads’ ends.

Thus this work is an initial attempt at studying and elucidating the cases

where alignments of spliced long reads, both from PacBio IsoSeq and Ox-

ford Nanopore DirectRNA, break down.The rest of the paper is divided into

sections covering (1) the simulation of long reads and their alignments for

benchmarking, (2) the random forest approach we took to predicting error

categories of aligned long reads on both simulated and real datasets, and (3)

65

the concordance between long reads and short reads with respect to individual

splice junctions and whole transcripts, and (4) the results of our prediction

approach run on real datasets.

4.2 Related Work

This work extends the Qtip algorithm (Langmead, 2017) that also attempted

to profile alignment quality/errors using a Random Forest. Where LongTron

primarily differs is that we focus on the spliced alignment of long reads using

minimap2 whereas Qtip focused on unspliced alignment of DNA short reads

using Bowtie2 (Langmead and Salzberg, 2012), BWA-mem (Li, 2013), and

SNAP (Zaharia et al., 2011) aligners.

Another related work is the FLAIR pipeline (Tang et al., 2020) which

seeks to improve the spliced alignment of long reads. We utilized the FLAIR

pipeline in our comparisons with raw minimap2 alignments in the results

section of this paper. FLAIR uses known splice junctions from annotation

and short read sequencing to correct and filter the set of spliced alignments

for long reads. While FLAIR is a useful tool for correcting and refining the

set of alignments, its use of annotated splice junctions makes it potentially

problematic for studies looking for novel splicing in long read alignments.

A related pipeline similarly profiling long reads, specifically for the PacBio

platform is SQANTI (Tardaguila et al., 2018). SQUANTI and its successor

SQUANTI2 (https://github.com/Magdoll/SQANTI2/) are intended to clas-

sify PacBio long reads spliced alignments and also use a Random Forest to

classify artifactual results.

66

4.3 Methods

4.3.1 Long read failure modes

Typically RNA-seq aligners leverage heuristics to find a set of near-optimal

candidate locations in the genome for the placement of both short and long

reads. For RNA sequence analysis these heuristics are particularly relevant

for at least two phases of the alignment process, commonly called seed-and-

extend. In the first phase, the alignment search space is narrowed down

from being the full genome to a short list of candidate loci (using seeds).

These seeds are chosen in different ways by various aligners, although they

often use heuristics that don’t guarantee an optimal alignment will always be

identified (Darby et al., 2020). In the second phase, candidate loci are more

thoroughly checked for their compatibility with the query sequence which

includes splice-site determination. The Smith-Waterman optimal algorithm

(Smith and Waterman, 1981) for local sequence alignment can be used effi-

ciently at this stage to produce a gapped alignment. However, this is not

useful for spliced alignments which still require a heuristic to determine the

best splice-sites around which to split the query sequence.

4.3.2 Long Read Transcriptome Simulation

To assess the accuracy of a long read RNA-seq analysis pipeline, we first

used a simulation approach so that we could precisely measure the alignment

accuracy and splicing results of the simulated reads compared to their ground

truth. For this, we started with the Gencode version 28 annotation and the

67

annotated
exon

annotated
exon

annotated
exon

annotated
exon

annotated
exon

annotated
exon

Strictly Overlapping

Matching

Contains Annotated
Junction

annotated
exon

annotated
exon

Annotated Junction
Contains

Wiggle
region

Aligned long
read segment

Aligned long
read junction

2) Read alignment error categories

A)

B)

C)

D)

1) Long read alignment failure modes

B) Isoform end extension/contraction

Start of read alignment 5' TSS Exon
End of read alignment

3' TES Exon

C) Novel exons & isoforms

OR

Novel co-occurrence of
annotated exonsAnnotated Transcripts

Novel Transcript Supported Only By Long Read Evidence

Long Read

Short Reads

Annotated
Transcript 1

Annotated
Transcript 2

Annotated
Transcript 3

Novel Exons

D) Long annotated transcripts potentially containing many exons

GTNNGTNNAGNNNAGNNNNNNNGTNNN

5' SS

NNAGNNNNNNNN

Exon A Exon B

A) Shifted spliced alignments

Line Definitions

annotated
exon

annotated
exon

Novel Junction
E)

Figure 4.2: 1. Long read alignment failure modes. A) Spliced alignments can shift
in the presence of unannotated splice motifs in the reference near annotated (real)
splice sites. B) 5’ and 3’ ends of isoforms are difficult to get right as sequencing the
ends of long reads is imprecise. C) Long reads can produce novel configurations
of annotated exons and/or novel exons. However, these may be simply alignment
artifacts due to splice motifs and/or repeats in the region (e.g. the rightmost novel
exon has no short read support). D) Large numbers of exons (splice sites) can result
in multiple novel long read alignments, some of which may be false. This is in part
due to the non-full length nature of many of the long reads (especially from PacBio).
2. Read alignment error categories. A) Matching junction alignment against at least
one source transcript junction; B) Alignment overlapping any transcripts’ junction; C)
Alignment containing any transcripts’ junctions; D) One or more transcripts’ junctions
containing aligned junction; E) Junction is completely novel

68

error profile from SURVIVOR (Jeffares et al., 2017b) for both Oxford Nanopore

and PacBio IsoSeq derived from minimap2 alignments of NA12878 reads

to the Gencode transcriptome. The NA12878 sample is from a disease-free

human and has been used by many other research efforts. Using these we sim-

ulated long reads from the transcript sequences, both full-length and partial

length. We then aligned these simulated reads against the genome and ex-

tracted features from each alignment. These features were then evaluated by a

random forest for training and prediction. Our implementation used the Ran-

domForestClassifier in the scikit-learn Python machine learning framework.

We used 100 trees and eight parallel threads for training. For the purposes of

Receiver Operator Curve (ROC) plotting we used the predict_proba method

on the held-out test set. The genomic alignments of the simulated reads were

used to determine four correctness categories. We experimented with using

both these four categories as a multi-class prediction problem in the random

forest as well as a more simple binary model where the three non problem-free

categories in the list below were collapsed into one category.

Junction alignments were first categorized into five subcategories, allowing

a margin (“fuzz” or “wiggle”) of up to 20 nucleotides on each end, as described

in Figure 4.2-2. These five categories were then categorized into the four top-

level correctness classes:

• Problem-free (A)

• Any error (alignment in any of B-D but not all three)

• Recurrent error (alignments in all three B-D)

69

• Novel (E)

With the exception of splice motifs as the third most important feature

in the Oxford full-length run, exon length dominated the Oxford feature

importance rankings (Table B.1 in Appendix B). Similarly, both exon and

transcript length were among several of the top most important features for

PacBio. In addition GC content was the third most important feature for the

PacBio full-length run. A selection of these features are shown in Figure 4.3-2.

4.4 Results

4.4.1 Training and Application

We trained four distinct random forest models using the final set of features

described above:

• PacBio IsoSeq Full Length

• PacBio IsoSeq Fragment

• Oxford Nanopore Full Length

• Oxford Nanopore Fragment

Training accuracy was high on a held out test dataset (Figures B.2, B.3, B.4,

and B.5 in Appendix B).

We then applied both full- and fragment-length models to the minimap2

alignments of long reads from PacBio and Oxford sequencing of the NA12878

sample. We intersected the long reads alignments with transcripts of known

70

Table 4.1: Counts of alignments in each simulated training class

error categories to get the ground truth. This allows us to compute a form of

recall and precision of the predictions (Tables B.2 and B.3 in Appendix B).

These results show Oxford had more errors than PacBio and also full-

length alignments are more difficult to achieve than are fragments (Table 4.1).

The PacBio IsoSeq platform supports the ability to generate a set of higher

quality long reads by continuing to sequence the same molecule iteratively in

a process called Circular Consensus Sequencing (CCS) (Gordon et al., 2015).

The NA12878 PacBio dataset we are using is CCS corrected which likely

contributes to its higher problem-free percentages.

4.5 Splice-junction and Isoform Comparison

A significant portion of the work described here involved comparison of

splicing and isoforms across both long read sequencing approaches as well

as Illumina short read sequencing. In Table 4.2 we present a comparison of

splice junctions between the three long read sequencing samples we used and

a large compendium of putative splice junctions called from Illumina short

reads, used in the Snaptron tool (Wilks et al., 2018).

71

Additional Splice Motifs (17)

Exon 1

GTNNNTNNANNNNAGNNNNNNNNNGTNNGTNNGGCCCNNNANNTNAGNNGNNGTNNNNNNNNNNGCGCGCNNNNNAG

Intron Length (3)

NNNNNGTNNCNN NNNNNNNNNNNNNNAG

Exon 2 Exon 3
Exon Length

Read1 <<MQ (6) Read1 <<MQ
Read2 >>MQ

Exon Length (2)
Smallest Intron (5)

Smallest Exon (4)

RepeatRepeats (7,8)

GC Content (10)

Common SNPs (9)

1) Random forest architecture

2) Selection of features used in the random forest

X (long-read aligned to reference genome)

D

AB

B

C

Tree 1 Tree 2 Tree N B

winner winner winner

Overall winner
(by vote)

Problem-Free

Novel

Recurrent Error

Non-Recurrent Error

Classes

X is Problem-Free

D

C

A

A Minimum exon length of long read alingment
B Minimum exon length across all transcripts at nearest locus
C Average length across all transcripts? exons at nearest locus
D Count of canonical splice motifs in aligned region on same strand

Example Features

Figure 4.3: 1. Random forest classification. 2. Diagram of a selection of features used
in the random forest, including 1-10 and 17 from the full category list in Appendix B

72

As seen in the table requiring exact matches between the aligned long reads

and the short-read based splice sites results in a minority of splice junctions

matching in the two annotated categories. Allowing for a “fuzz” (20 nt) on

both ends of a match greatly increases concordance between long reads and

short reads. This discrepancy between exact and fuzz matching, specifically

with annotated junctions, highlights the difficulties in long read alignment

discussed in this paper.

In contrast, the “All short-read supported exact” and “Full novel exact”

categories fare considerably better in concordance. This is one benefit of

using a large group of short-read-derived splice junctions which include many

putative novel junctions. Most of these matches would have been missed if a

pseudo-alignment/quasi-mapping strategy had been used to derive the short

read junctions.

Overall, the results from splice-junction concordance is relatively positive.

While long read alignments fail to pick up many annotated junctions under

the strictures of exact matching, the majority of them are relatively close in

terms of genomic coordinates. Further, there is evidence here to suggest long

read alignments are supporting other, novel junctions previously found in

short reads.

Another area of importance is isoform level concordance. We’ve already

noted the potential benefit of long reads in finding novel isoforms where these

can either use novel exons/splice junctions, or more likely, novel groupings of

existing exons/splice junctions. Table 4.3 presents the isoform-level compari-

son results using intron-chains as a proxy for isoforms. Intron chains, as their

73

Table 4.2: Splice Junction Comparison (Snaptron represents a compendium of short-
read derived junctions, annotated and novel), fuzz=20 for bases on either side, per-
cents do not add up to 100 as annotated short-reads are a subset of all short-reads.
Junctions are compared by coordinates alone (strand not included).

name implies, restrict comparison to the order and identity of the genomic

coordinates which make up the donor/acceptor sites within the isoform. Thus

start/end coordinates of the isoform as a whole are ignored. This will miss dif-

ferences arising from alternative transcript start/end sites although these are

intrinsically the most difficult to sequence because of the protocols involved

(Workman et al., 2019) and (Roach et al., 2020).

The totals column in Table 4.3 represents deduplicated sets of intron chains

(additional details in section 2 and Table B.4 in Appendix B). The intron-chains

between samples show little concordance when exact matching is required.

This phenomenon is far worse than in the splice-junction level analysis (Table

4.2), even when compared with counts of exact matches of splice-junctions.

These initial results spurred us to involve an additional approach to use in

filtering, the FLAIR (Tang et al., 2020) pipeline. It also required us to modify

an existing tool, gffcompare (Pertea and Pertea, 2020), to allow for fuzz when

comparing intron chains.

74

Table 4.3: Isoform comparison table, using gene models from Gencode V29, plus
the isoforms from all the union of annotations; both exact and fuzz comparisons of
the set of long-read derived isoforms which 1) match in number of introns or 2) are
contained or contain a reference isoform.

One issue we encountered was the ambiguity of strand of origin for the

PacBio long reads. We noticed that a large number of mismatching PacBio

read alignments were classified as matching but on the opposite strand when

compared with the “union of annotations” transcript set. By considering the

PacBio alignments which were classified by gffcompare as opposite strand

matches (categories “o” and “s”) and swapping their strands, and then re-

comparing, a larger number of alignments were correctly re-classified for

PacBio. In contrast, changing the strand parameter (“-u”) in minimap2 had

little effect. This is an important issue to consider when aligning PacBio-

derived long reads with minimap2.

A key finding in Table 4.3 is that allowing for fuzz around junction bound-

aries makes a substantial contribution to raising the number of matching

75

intron chains across almost every category. This again underscores one of the

key problems in long read alignment, that is any difficulties computing the

exact coordinates of a single junction correct are magnified when chaining

together multiple of those junctions into isoforms.

However, even without fuzz, both Oxford (NA12878) and PacBio (SKBR3)

aligned samples are able to capture a larger amount of the annotated intron

chains than their short read assembled counterparts (Illumina NA12878/SKBR3).

The fact that the PacBio NA12878 sample falls behind here may be due to the

much lower numbers of reads present in that sample. This bodes well for

long read sequencing in the future in terms of finding coverage for annotated

isoforms. In addition, the FLAIR pipeline raises concordance dramatically but

at the cost of a substantial reduction in total isoforms.

Further, even when requiring exact junction coordinate matches, the con-

cordance between Oxford and PacBio is fairly high (61.4% and 87.6% respec-

tively), while with a fuzz of 20bp the numbers both jump to 94% of each

set. The lower percent of Oxford captured by PacBio is most likely due to the

much smaller size of the PacBio read set. This is also probably the explanation

for the lower percentage of Illumina-assembled intron chains captured by the

NA12878 PacBio (46.8%) even with fuzz, while the short read assembly is

capturing a majority of the PacBio long read intron chains (64.6%) with fuzz.

Oxford in comparison is both capturing and being captured at a high rate by

the Illumina assemblies (83.5% and 72.3% with fuzz, respectively).

76

4.5.1 Effects of Random Forest Classifier on Transcript Match-
ing against the Annotation

We further took the set of NA12878 (Pacbio and Nanopore) and SKBR3 align-

ments predicted to be in the “problem-free” category and used them in com-

parisons against the “union of annotation” transcript set to see if the number

of matching intron-chains improved (Table B.4). While this strategy improved

the precision—the percent of total query read alignments which matched

an annotated transcript (NA12878 or SKBR3)—it substantially lowered the

recall—the percent of annotated transcripts matching query read alignments.

This was in large part due to using the set requiring both the full-length and

the fragment models to predict a problem-free alignment. Recomputing the

comparison with the union of full-length and fragment models’ predictions

results in close to the original recall while only slightly lowering the improved

precision for Nanopore, but with less impact on PacBio.

4.5.2 Novel Alignment Examples in NA1878 and SKBR3

We next evaluated the use of long read RNA sequencing to discover novel

(unannotated) transcripts in the genome (Figures 4.4 and 4.5). In Figure 4.4,

both Oxford and PacBio long-reads from the NA12878 sample support some

additional transcription before the start of the NPIPB5 gene. This could be

a novel alternative transcription start site (TSS). The far reduced support

from PacBio reads could be a factor due to the much smaller total read set in

that sequencing experiment. Figure 4.5 displays a region of potential novel

transcription found primarily in the SKBR3 PacBio long-read sample. While

77

Figure 4.4: Novel transcript predicted region on NA12878 for both Oxford and
PacBio

a small subset of the region has minor support in the Oxford sequenced

NA12878 sample, the majority of the transcription appears to be exclusive to

SKBR3. There appears to be further evidence from human mRNA/ESTs that

this region is indeed transcribed and is not due to technical error

4.6 Discussion

Long reads are useful for finding new isoforms as combinations of splice

junctions that have already been found by short reads, but caution must be

exercised due to the failure modes described here. Our investigation will help

in assessing long read alignments to make more confident calls as to 1) errors

and 2) novel cases.

While there are a number of potential factors influencing how long reads

are aligned, based on our investigation and the results of our random forest

experiments, a few rise to the top in terms of importance. An important

78

Figure 4.5: Novel transcript predicted region on SKBR3 PacBio

factor is the number of exons present in a gene. If there are more exons

in an isoform, then that translates into a larger number of potential splice-

site determination errors the aligner can make when aligning long reads

which often are still fragments of the full length isoform. A related factor

is the number of alternative isoforms present in the gene. This also raises

the potential for splice-site finding errors in the aligner as many exons may

be shared, while others may overlap but with different starts/ends, while

still others are completely novel. This can lead to long reads missing certain

alternative splice sites while supporting others within the same gene.

Further, the significant decrease in coverage within the currently available

long-read sequencing datasets substantially reduces confidence in putative

novel regions. This is partly alleviated by short reads, at least for single exon

genes and combinations of a few splice junctions. However, long novel tran-

scripts combining many exons in new ways will be harder to substantiate. It’s

also important to consider that nucleotide sequence alignment in general is

79

almost always heuristic-based, and this is certainly true of spliced-alignment.

While better alignment heuristics, modeling, and short-read sequencing may

be able to fill in some of the gaps left in long-read spliced-alignments, ul-

timately there will need to be either a significant decrease in error rates or

a substantial increase in coverage to alleviate at least some of the problems

reported here.

80

Chapter 5

Discussion and Conclusion

We have presented several tools, and the RNA-seq data processed through

those tools, to aid the downstream biomedical researcher in the process of

discovering, ranking, and validating splicing-related hypotheses (Snaptron,

LongTron), as well as more general gene expression related questions (Mono-

rail, recount3, and Megadepth). As part of that presentation, we have demon-

strated a nascent genomic search engine specifically with the Monorail and

Snaptron projects serving the roles of the “sequence crawler” and query inter-

face, respectively. Further, we have analyzed the error types that can arise from

long-read spliced-alignments using Minimap2 and the overall concordance of

splicing calls in long reads compared against short reads and annotation, in

the LongTron project.

Much work remains in all of these areas. RNA-seq is simply the starting

place as researchers must be able to take advantage of the multiple sequencing

and related technologies available today beyond RNA-seq (bisulfite sequenc-

ing to capture methylation, ChIP-seq, proteomics, and DNA whole genome

sequencing). Even limiting the focus to just RNA-related technologies, there

81

still remains the ever growing compendium of single-cell RNA-seq outside of

the bulk and smart-seq samples captured here, much of which comes from

the 10x Chromium platform (Zheng et al., 2017). In the latter case the Mono-

rail workflow must be adapted to handle the variety of formatting used to

represent the additional information needed to appropriately process single-

cell RNA reads (cell-barcodes and universal molecular identifiers “UMIs”).

Ideally all the various technologies would be integrated into a single, uniform

resource harmonized as much as possible. This is likely an ambitious goal,

but the recount3 and Snaptron2 resources described in chapter 3 serve as an

excellent foundation to work from.

A second, but very related, direction for additional work is the area of

sequencing and sample metadata. The value of the existing primary data in

the public repositories could be increased through better metadata curation,

specifically in the areas of tissue, cell-type, and disease annotation for con-

sistency and completeness across the SRA. Without reliable and consistently

applied metadata of this type, the usefulness of the primary sequencing data

and the summaries derived from it, is severely limited. While manual curation

is one approach, it fails to scale to the 100,000’s of sequencing runs present in

the SRA and could also introduce additional inconsistencies. A potentially

better approach, both for its scalability and consistency, is to use the primary

data itself to inform the labeling of tissues, cell-types, and other important

fields. Such an approach has already seen some success (Ellis et al., 2018b)

but needs to be updated for human data and extended to other organisms

(e.g. mouse). Related to this, an immediately useful contribution would be

82

identifying one or a few high quality “reference” RNA-seq studies that could

serve as GTEx-like transcriptomics standards in mouse. These studies would

need to have both consistently processed primary sequencing data as well

relatively complete and consistent metadata.

Ultimately, resources such as recount3 and Snaptron are force-multipliers

that can take the efforts of a few and dramatically increase the potential output

of the many. This justifies the relative high initial cost of investment in large,

complex systems such as Rail and Monorail and the ongoing maintenance

they entail. However, it also highlights the still serious burden of what should

by now be trivial steps in the analysis pipeline, specifically the transfer and

alignment operations. This burden also highlights the complexities of biology,

a fact that these analyses must ever take into consideration. It remains to be

seen, especially in the current era of sophisticated machine learning, whether

the mysteries held in biological data will be as easily elucidated as other data

types have been.

83

Bibliography

Langmead, B. and A. Nellore (2018). “Cloud computing for genomic data
analysis and collaboration”. In: Nat. Rev. Genet. 19.4, pp. 208–219.

Dijk, E. L. van, H. Auger, Y. Jaszczyszyn, and C. Thermes (2014). “Ten years
of next-generation sequencing technology”. In: Trends Genet. 30.9, pp. 418–
426.

Bray, N. L., H. Pimentel, P. Melsted, and L. Pachter (2016a). “Near-optimal
probabilistic RNA-seq quantification”. In: Nat. Biotechnol. 34.5, pp. 525–527.

Patro, R., G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford (2017).
“Salmon provides fast and bias-aware quantification of transcript expres-
sion”. In: Nat. Methods 14.4, pp. 417–419.

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
Chaisson, and T. R. Gingeras (2013). “STAR: ultrafast universal RNA-seq
aligner”. In: Bioinformatics 29.1, pp. 15–21.

Goldstein, L. D., Y. Cao, G. Pau, M. Lawrence, T. D. Wu, S. Seshagiri, and R.
Gentleman (2016a). “Prediction and Quantification of Splice Events from
RNA-Seq Data”. In: PLoS ONE 11.5, e0156132.

Haas, B. J., A. Dobin, B. Li, N. Stransky, N. Pochet, and A. Regev (2019).
“Accuracy assessment of fusion transcript detection via read-mapping and
de novo fusion transcript assembly-based methods”. In: Genome Biol. 20.1,
p. 213.

Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren,
S. L. Salzberg, B. J. Wold, and L. Pachter (2010). “Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation”. In: Nat. Biotechnol. 28.5, pp. 511–515.

Pertea, M., G. M. Pertea, C. M. Antonescu, T. C. Chang, J. T. Mendell, and
S. L. Salzberg (2015). “StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads”. In: Nat. Biotechnol. 33.3, pp. 290–295.

84

Nellore, A., L. Collado-Torres, A. E. Jaffe, J. Alquicira-Hernandez, C. Wilks,
J. Pritt, J. Morton, J. T. Leek, and B. Langmead (2016a). “Rail-RNA: scalable
analysis of RNA-seq splicing and coverage”. In: Bioinformatics.

Zhang, D., S. Guelfi, S. Garcia-Ruiz, B. Costa, R.H. Reynolds, K. D’Sa, W. Liu,
T. Courtin, A. Peterson, A.E. Jaffe, et al. (2020). “Incomplete annotation
has a disproportionate impact on our understanding of Mendelian and
complex neurogenetic disorders”. In: Science Advances 6.24, eaay8299.

Pertea, M., A. Shumate, G. Pertea, A. Varabyou, F.P. Breitwieser, Y. Chang,
A.K. Madugundu, A. Pandey, and S.L. Salzberg (2018). “CHESS: a new hu-
man gene catalog curated from thousands of large-scale RNA sequencing
experiments reveals extensive transcriptional noise”. In: Genome biology
19.1, pp. 1–14.

Collado-Torres, L., A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub, K. D.
Hansen, A. E. Jaffe, B. Langmead, and J. T. Leek (2017b). “Reproducible
RNA-seq analysis using recount2”. In: Nat. Biotechnol. 35.4, pp. 319–321.

Nellore, A., C. Wilks, K. D. Hansen, J. T. Leek, and B. Langmead (2016c). “Rail-
dbGaP: analyzing dbGaP-protected data in the cloud with Amazon Elastic
MapReduce”. In: Bioinformatics 32.16, pp. 2551–2553.

Nellore, A., A. E. Jaffe, J. P. Fortin, J. Alquicira-Hernandez, L. Collado-Torres,
S. Wang, R. A. Phillips Iii, N. Karbhari, K. D. Hansen, B. Langmead, and
J. T. Leek (2016b). “Human splicing diversity and the extent of unannotated
splice junctions across human RNA-seq samples on the Sequence Read
Archive”. In: Genome Biology 17.1, p. 266.

Razmara, Ashkaun, Shannon E Ellis, Dustin J Sokolowski, Sean Davis, Michael
D Wilson, Jeffrey T Leek, Andrew E Jaffe, and Leonardo Collado-Torres
(2019). “recount-brain: a curated repository of human brain RNA-seq
datasets metadata”. In: BioRxiv, p. 618025.

Imada, E. L., D. F. Sanchez, L. Collado-Torres, C. Wilks, T. Matam, W. Di-
nalankara, A. Stupnikov, F. P. Pereira Lobo, C. W. Yip, K. Yasuzawa, N.
Kondo, M. Itoh, H. Suzuki, T. Kasukawa, C. C. Hon, M. J. de Hoon, J.
W. Shin, P. Carninci, A. E. Jaffe, J. T. Leek, A. Favorov, G. R. Franco, B.
Langmead, and L. Marchionni (2020). “Recounting the FANTOM CAGE-
Associated Transcriptome”. In: Genome Res.

Dean, Jeffrey and Sanjay Ghemawat (2010). “MapReduce: a flexible data
processing tool”. In: Communications of the ACM 53.1, pp. 72–77.

Pohl, A. and M. Beato (2014). “bwtool: a tool for bigWig files”. In: Bioinformatics
30.11, pp. 1618–1619.

85

Sveen, A., S. Kilpinen, A. Ruusulehto, R. A. Lothe, and R. I. Skotheim (2016).
“Aberrant RNA splicing in cancer; expression changes and driver mutations
of splicing factor genes”. In: Oncogene 35.19, pp. 2413–2427.

Sibley, C. R., L. Blazquez, and J. Ule (2016). “Lessons from non-canonical
splicing”. In: Nat. Rev. Genet. 17.7, pp. 407–421.

Li, H. (2018). “Minimap2: pairwise alignment for nucleotide sequences”. In:
Bioinformatics 34.18, pp. 3094–3100.

Jeffares, D. C., C. Jolly, M. Hoti, D. Speed, L. Shaw, C. Rallis, F. Balloux, C.
Dessimoz, J. B?hler, and F. J. Sedlazeck (2017a). “Transient structural varia-
tions have strong effects on quantitative traits and reproductive isolation
in fission yeast”. In: Nat Commun 8, p. 14061.

Pertea, G. and M. Pertea (2020). “GFF Utilities: GffRead and GffCompare”. In:
F1000Res 9, p. 304.

Paila, Umadevi, Brad A Chapman, Rory Kirchner, and Aaron R Quinlan
(2013). “GEMINI: integrative exploration of genetic variation and genome
annotations”. In: PLoS Comput Biol 9.7, e1003153.

Layer, Ryan M, Neil Kindlon, Konrad J Karczewski, Aaron R Quinlan, Exome
Aggregation Consortium, et al. (2016). “Efficient genotype compression
and analysis of large genetic-variation data sets”. In: Nature methods 13.1,
pp. 63–65.

Li, Heng (2016). “BGT: efficient and flexible genotype query across many
samples”. In: Bioinformatics 32.4, pp. 590–592.

Durbin, Richard (2014). “Efficient haplotype matching and storage using the
positional Burrows–Wheeler transform (PBWT)”. In: Bioinformatics 30.9,
pp. 1266–1272.

Solomon, Brad and Carl Kingsford (2016). “Fast search of thousands of short-
read sequencing experiments”. In: Nature biotechnology 34.3, pp. 300–302.

Petryszak, R., M. Keays, Y. A. Tang, N. A. Fonseca, E. Barrera, T. Burdett, A.
Fullgrabe, A. M. Fuentes, S. Jupp, S. Koskinen, O. Mannion, L. Huerta, K.
Megy, C. Snow, E. Williams, M. Barzine, E. Hastings, H. Weisser, J. Wright,
P. Jaiswal, W. Huber, J. Choudhary, H. E. Parkinson, and A. Brazma (2016).
“Expression Atlas update–an integrated database of gene and protein ex-
pression in humans, animals and plants”. In: Nucleic Acids Res. 44.D1,
pp. D746–752.

Kolesnikov, Nikolay, Emma Hastings, Maria Keays, Olga Melnichuk, Y Amy
Tang, Eleanor Williams, Miroslaw Dylag, Natalja Kurbatova, Marco Bran-
dizi, Tony Burdett, et al. (2014). “ArrayExpress update—simplifying data
submissions”. In: Nucleic acids research, gku1057.

86

Quinlan, Aaron R and Ira M Hall (2010). “BEDTools: a flexible suite of utilities
for comparing genomic features”. In: Bioinformatics 26.6, pp. 841–842.

Lawrence, Michael, Wolfgang Huber, Hervé Pages, Patrick Aboyoun, Marc
Carlson, Robert Gentleman, Martin T Morgan, and Vincent J Carey (2013).
“Software for computing and annotating genomic ranges”. In: PLoS Comput
Biol 9.8, e1003118.

Kozanitis, C., A. Heiberg, G. Varghese, and V. Bafna (2014). “Using Genome
Query Language to uncover genetic variation”. In: Bioinformatics 30.1,
pp. 1–8.

Guðbjartsson, Hákon, Guðmundur Fr Georgsson, Sigurjón A Guðjónsson,
Ragnar þór Valdimarsson, Jóhann H Sigurðsson, Sigmar K Stefánsson,
Gísli Másson, Gísli Magnússon, Vilmundur Pálmason, and Kári Stefánsson
(2016). “GORpipe: a query tool for working with sequence data based
on a Genomic Ordered Relational (GOR) architecture”. In: Bioinformatics,
btw199.

Nellore, Abhinav, Andrew E. Jaffe, Jean-Philippe Fortin, José Alquicira-Hernández,
Leonardo Collado-Torres, Siruo Wang, Robert A. Phillips III, Nishika Karb-
hari, Kasper D. Hansen, Ben Langmead, and Jeffrey T. Leek (2016d). “Hu-
man splicing diversity and the extent of unannotated splice junctions across
human RNA-seq samples on the Sequence Read Archive”. In: Genome Biol-
ogy 17.1, p. 266. ISSN: 1474-760X. DOI: 10.1186/s13059-016-1118-6. URL:
http://dx.doi.org/10.1186/s13059-016-1118-6.

Nellore, Abhinav, Christopher Wilks, Kasper D Hansen, Jeffrey T Leek, and
Ben Langmead (2015). “Rail-dbGaP: a protocol and tool for analyzing
protected genomic data in a commercial cloud”. In: bioRxiv, p. 035287.

Collado-Torres, Leonardo, Abhinav Nellore, Kai Kammers, Shannon E Ellis,
Margaret A Taub, Kasper D Hansen, Andrew E Jaffe, Ben Langmead,
and Jeffrey Leek (2016). “recount: A large-scale resource of analysis-ready
RNA-seq expression data”. In: bioRxiv, p. 068478.

Li, Heng (2011). “Tabix: fast retrieval of sequence features from generic TAB-
delimited files”. In: Bioinformatics 27.5, pp. 718–719.

Kent, W James, Ann S Zweig, G Barber, Angie S Hinrichs, and Donna Karolchik
(2010). “BigWig and BigBed: enabling browsing of large distributed datasets”.
In: Bioinformatics 26.17, pp. 2204–2207.

Bialecki, Andrzej, Robert Muri, and Grant Ingersoll (2012). “Apache Lucene
4”. In: Proceedings of the SIGIR 2012 Workshop on Open Source Information Re-
trieval, pp. 17–24. URL: http://www.cs.otago.ac.nz/homepages/andrew/
involvement/2012- SIGIR- OSIR.pdf?origin=publication_detail\

87

https://doi.org/10.1186/s13059-016-1118-6
http://dx.doi.org/10.1186/s13059-016-1118-6
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html

#page=22,http://lucene.apache.org/core/4_10_1/core/index.html,
http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/
search/similarities/DefaultSimilarity.html.

Bernstein, Matthew N, AnHai Doan, and Colin N Dewey (2016). “MetaSRA:
normalized sample-specific metadata for the Sequence Read Archive”. In:
bioRxiv, p. 090506.

Goldstein, Leonard D, Yi Cao, Gregoire Pau, Michael Lawrence, Thomas D
Wu, Somasekar Seshagiri, and Robert Gentleman (2016b). “Prediction and
Quantification of Splice Events from RNA-Seq Data”. In: PloS one 11.5,
e0156132.

SIBGenes Gene Prediction Track (2014). URL: https://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg38&g=sibGene.

Thierry-Mieg, D. and J. Thierry-Mieg (2006). “AceView: a comprehensive
cDNA-supported gene and transcripts annotation”. In: Genome Biol. 7
Suppl 1, pp. 1–14.

Darby, Miranda M, Jeffrey T Leek, Ben Langmead, Robert H Yolken, and Sar-
ven Sabunciyan (2016). “Widespread Splicing of Repetitive Element Loci
into Coding Regions of Gene Transcripts”. In: Human Molecular Genetics,
ddw321.

Wiesner, Thomas, William Lee, Anna C Obenauf, Leili Ran, Rajmohan Murali,
Qi Fan Zhang, Elissa WP Wong, Wenhuo Hu, Sasinya N Scott, Ronak H
Shah, et al. (2015). “Alternative transcription initiation leads to expression
of a novel ALK isoform in cancer”. In: Nature 526.7573, pp. 453–457.

Bray, Nicolas L, Harold Pimentel, Páll Melsted, and Lior Pachter (2016c).
“Near-optimal probabilistic RNA-seq quantification”. In: Nature biotechnol-
ogy 34.5, pp. 525–527.

Patro, Rob, Stephen M Mount, and Carl Kingsford (2014). “Sailfish enables
alignment-free isoform quantification from RNA-seq reads using lightweight
algorithms”. In: Nature biotechnology 32.5, pp. 462–464.

Venables, J. P., R. Klinck, A. Bramard, L. Inkel, G. Dufresne-Martin, C. Koh,
J. Gervais-Bird, E. Lapointe, U. Froehlich, M. Durand, D. Gendron, J. P.
Brosseau, P. Thibault, J. F. Lucier, K. Tremblay, P. Prinos, R. J. Wellinger,
B. Chabot, C. Rancourt, and S. A. Elela (2008). “Identification of alternative
splicing markers for breast cancer”. In: Cancer Res. 68.22, pp. 9525–9531.

Tyner, Cath, Galt P Barber, Jonathan Casper, Hiram Clawson, Mark Diekhans,
Christopher Eisenhart, Clayton M Fischer, David Gibson, Jairo Navarro
Gonzalez, Luvina Guruvadoo, et al. (2016). “The UCSC Genome Browser
database: 2017 update”. In: Nucleic Acids Research, gkw1134.

88

http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
http://www.cs.otago.ac.nz/homepages/andrew/involvement/2012-SIGIR-OSIR.pdf?origin=publication_detail\#page=22, http://lucene.apache.org/core/4_10_1/core/index.html, http://lucene.apache.org/core/4_10_1/core/org/apache/lucene/search/similarities/DefaultSimilarity.html
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=sibGene
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=sibGene

Ling, J. P., C. Wilks, R. Charles, P. J. Leavey, D. Ghosh, L. Jiang, C. P. Santiago,
B. Pang, A. Venkataraman, B. S. Clark, A. Nellore, B. Langmead, and S.
Blackshaw (2020). “ASCOT identifies key regulators of neuronal subtype-
specific splicing”. In: Nat Commun 11.1, p. 137.

Sloan, C. A., E. T. Chan, J. M. Davidson, V. S. Malladi, J. S. Strattan, B. C.
Hitz, I. Gabdank, A. K. Narayanan, M. Ho, B. T. Lee, L. D. Rowe, T. R.
Dreszer, G. Roe, N. R. Podduturi, F. Tanaka, E. L. Hong, and J. M. Cherry
(2016). “ENCODE data at the ENCODE portal”. In: Nucleic Acids Res. 44.D1,
pp. D726–732.

Sundararaman, B., L. Zhan, S. M. Blue, R. Stanton, K. Elkins, S. Olson, X.
Wei, E. L. Van Nostrand, G. A. Pratt, S. C. Huelga, B. M. Smalec, X. Wang,
E. L. Hong, J. M. Davidson, E. L?cuyer, B. R. Graveley, and G. W. Yeo
(2016). “Resources for the Comprehensive Discovery of Functional RNA
Elements”. In: Mol. Cell 61.6, pp. 903–913.

Madugundu, A. K., C. H. Na, R. S. Nirujogi, S. Renuse, K. P. Kim, K. H. Burns,
C. Wilks, B. Langmead, S. E. Ellis, L. Collado-Torres, M. K. Halushka,
M. S. Kim, and A. Pandey (2019). “Integrated Transcriptomic and Pro-
teomic Analysis of Primary Human Umbilical Vein Endothelial Cells”. In:
Proteomics, e1800315.

Huber, W., V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H.
C. Bravo, S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen,
R. A. Irizarry, M. Lawrence, M. I. Love, J. MacDonald, V. Obenchain, A.
K. Ole?, H. Pag?s, A. Reyes, P. Shannon, G. K. Smyth, D. Tenenbaum, L.
Waldron, and M. Morgan (2015). “Orchestrating high-throughput genomic
analysis with Bioconductor”. In: Nat. Methods 12.2, pp. 115–121.

Wilks, C., P. Gaddipati, A. Nellore, and B. Langmead (2018). “Snaptron: query-
ing splicing patterns across tens of thousands of RNA-seq samples”. In:
Bioinformatics 34.1, pp. 114–116.

Burke, E. E., J. G. Chenoweth, J. H. Shin, L. Collado-Torres, S. K. Kim, N.
Micali, Y. Wang, C. Colantuoni, R. E. Straub, D. J. Hoeppner, H. Y. Chen,
A. Sellers, K. Shibbani, G. R. Hamersky, M. Diaz Bustamante, B. N. Phan,
W. S. Ulrich, C. Valencia, A. Jaishankar, A. J. Price, A. Rajpurohit, S. A.
Semick, R. W. B?rli, J. C. Barrow, D. J. Hiler, S. C. Page, K. Martinowich,
T. M. Hyde, J. E. Kleinman, K. F. Berman, J. A. Apud, A. J. Cross, N. J.
Brandon, D. R. Weinberger, B. J. Maher, R. D. G. McKay, and A. E. Jaffe
(2020). “Dissecting transcriptomic signatures of neuronal differentiation
and maturation using iPSCs”. In: Nat Commun 11.1, p. 462.

89

Köster, J. and S. Rahmann (2018). “Snakemake-a scalable bioinformatics work-
flow engine”. In: Bioinformatics 34.20, p. 3600.

Afgan, E., D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Cech, J. Chilton,
D. Clements, N. Coraor, B. A. Gr?ning, A. Guerler, J. Hillman-Jackson,
S. Hiltemann, V. Jalili, H. Rasche, N. Soranzo, J. Goecks, J. Taylor, A.
Nekrutenko, and D. Blankenberg (2018). “The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses: 2018 update”.
In: Nucleic Acids Res. 46.W1, W537–W544.

The GTEx Consortium (2013). “The Genotype-Tissue Expression (GTEx) project”.
In: Nat. Genet. 45.6, pp. 580–585.

Network, Cancer Genome Atlas Research, John N Weinstein, Eric A Collisson,
Gordon B Mills, Kenna R Mills Shaw, Brad A Ozenberger, Kyle Ellrott,
Ilya Shmulevich, Chris Sander, and Joshua M Stuart (2013). “The Cancer
Genome Atlas Pan-Cancer analysis project.” English. In: Nature Genetics
45.10, pp. 1113–1120. DOI: 10.1038/ng.2764. URL: http://eutils.ncbi.
nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24071849&
retmode=ref&cmd=prlinks.

Lachmann, A., D. Torre, A. B. Keenan, K. M. Jagodnik, H. J. Lee, L. Wang, M. C.
Silverstein, and A. Ma’ayan (2018). “Massive mining of publicly available
RNA-seq data from human and mouse”. In: Nat Commun 9.1, p. 1366.

Lachmann, Alexander, Zhuorui Xie, and Avi Ma’ayan (2018). “Elysium: RNA-
seq Alignment in the Cloud”. In: bioRxiv, p. 382937.

Bray, N. L., H. Pimentel, P. Melsted, and L. Pachter (2016b). “Near-optimal
probabilistic RNA-seq quantification”. In: Nat. Biotechnol. 34.5, pp. 525–527.

Dobin, A. and T. R. Gingeras (2016). “Optimizing RNA-Seq Mapping with
STAR”. In: Methods Mol. Biol. 1415, pp. 245–262.

Tatlow, P. J. and S. R. Piccolo (2016). “A cloud-based workflow to quantify
transcript-expression levels in public cancer compendia”. In: Sci Rep 6,
p. 39259.

Barretina, J., G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S.
Kim, C. J. Wilson, J. Lehar, G. V. Kryukov, D. Sonkin, A. Reddy, M. Liu,
L. Murray, M. F. Berger, J. E. Monahan, P. Morais, J. Meltzer, A. Korejwa,
J. Jane-Valbuena, F. A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A.
Shipway, I. H. Engels, J. Cheng, G. K. Yu, J. Yu, P. Aspesi, M. de Silva,
K. Jagtap, M. D. Jones, L. Wang, C. Hatton, E. Palescandolo, S. Gupta, S.
Mahan, C. Sougnez, R. C. Onofrio, T. Liefeld, L. MacConaill, W. Winckler,
M. Reich, N. Li, J. P. Mesirov, S. B. Gabriel, G. Getz, K. Ardlie, V. Chan,
V. E. Myer, B. L. Weber, J. Porter, M. Warmuth, P. Finan, J. L. Harris, M.

90

https://doi.org/10.1038/ng.2764
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24071849&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24071849&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=24071849&retmode=ref&cmd=prlinks

Meyerson, T. R. Golub, M. P. Morrissey, W. R. Sellers, R. Schlegel, and L. A.
Garraway (2012). “The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity”. In: Nature 483.7391, pp. 603–607.

Vivian, J., A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong, A. Novak, J. Pfeil,
J. Narkizian, A. D. Deran, A. Musselman-Brown, H. Schmidt, P. Amstutz,
B. Craft, M. Goldman, K. Rosenbloom, M. Cline, B. O’Connor, M. Hanna,
C. Birger, W. J. Kent, D. A. Patterson, A. D. Joseph, J. Zhu, S. Zaranek, G.
Getz, D. Haussler, and B. Paten (2017). “Toil enables reproducible, open
source, big biomedical data analyses”. In: Nat. Biotechnol. 35.4, pp. 314–316.

Li, B. and C. N. Dewey (2011). “RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome”. In: BMC Bioinformatics
12, p. 323.

Petryszak, R., N. A. Fonseca, A. Füllgrabe, L. Huerta, M. Keays, Y. A. Tang, and
A. Brazma (2017). “The RNASeq-er API-a gateway to systematically up-
dated analysis of public RNA-seq data”. In: Bioinformatics 33.14, pp. 2218–
2220.

Papatheodorou, I., P. Moreno, J. Manning, A. M. Fuentes, N. George, S. Fexova,
N. A. Fonseca, A. F?llgrabe, M. Green, N. Huang, L. Huerta, H. Iqbal, M.
Jianu, S. Mohammed, L. Zhao, A. F. Jarnuczak, S. Jupp, J. Marioni, K. Meyer,
R. Petryszak, C. A. Prada Medina, C. Talavera-L?pez, S. Teichmann, J. A.
Vizcaino, and A. Brazma (2020). “Expression Atlas update: from tissues to
single cells”. In: Nucleic Acids Res. 48.D1, pp. D77–D83.

Barrett, T., S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky,
K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, A. Yefanov,
H. Lee, N. Zhang, C. L. Robertson, N. Serova, S. Davis, and A. Soboleva
(2013). “NCBI GEO: archive for functional genomics data sets–update”. In:
Nucleic Acids Res. 41.Database issue, pp. D991–995.

Athar, A., A. Fullgrabe, N. George, H. Iqbal, L. Huerta, A. Ali, C. Snow, N.
A. Fonseca, R. Petryszak, I. Papatheodorou, U. Sarkans, and A. Brazma
(2019). “ArrayExpress update - from bulk to single-cell expression data”.
In: Nucleic Acids Res. 47.D1, pp. D711–D715.

Srivastava, A., L. Malik, T. Smith, I. Sudbery, and R. Patro (2019). “Alevin
efficiently estimates accurate gene abundances from dscRNA-seq data”.
In: Genome Biol. 20.1, p. 65.

Goetz, J.J. and J.M. Trimarchi (2012). “Transcriptome sequencing of single cells
with Smart-Seq”. In: Nature biotechnology 30.8, pp. 763–765.

91

Picelli, S., Å.K. Björklund, O.R. Faridani, S. Sagasser, G. Winberg, and R. Sand-
berg (2013). “Smart-seq2 for sensitive full-length transcriptome profiling
in single cells”. In: Nature methods 10.11, pp. 1096–1098.

O’Leary, N. A., M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh,
B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn, A.
Badretdin, Y. Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi, E. Cox,
O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, D. Haft, E. Hatcher,
W. Hlavina, V. S. Joardar, V. K. Kodali, W. Li, D. Maglott, P. Masterson,
K. M. McGarvey, M. R. Murphy, K. O’Neill, S. Pujar, S. H. Rangwala, D.
Rausch, L. D. Riddick, C. Schoch, A. Shkeda, S. S. Storz, H. Sun, F. Thibaud-
Nissen, I. Tolstoy, R. E. Tully, A. R. Vatsan, C. Wallin, D. Webb, W. Wu, M. J.
Landrum, A. Kimchi, T. Tatusova, M. DiCuccio, P. Kitts, T. D. Murphy, and
K. D. Pruitt (2016). “Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation”. In: Nucleic Acids
Res. 44.D1, pp. D733–745.

Frankish, A., M. Diekhans, A. M. Ferreira, R. Johnson, I. Jungreis, J. Loveland, J.
M. Mudge, C. Sisu, J. Wright, J. Armstrong, I. Barnes, A. Berry, A. Bignell, S.
Carbonell Sala, J. Chrast, F. Cunningham, T. Di Domenico, S. Donaldson, I.
T. Fiddes, C. Garc?a Gir?n, J. M. Gonzalez, T. Grego, M. Hardy, T. Hourlier,
T. Hunt, O. G. Izuogu, J. Lagarde, F. J. Martin, L. Mart?nez, S. Mohanan, P.
Muir, F. C. P. Navarro, A. Parker, B. Pei, F. Pozo, M. Ruffier, B. M. Schmitt,
E. Stapleton, M. M. Suner, I. Sycheva, B. Uszczynska-Ratajczak, J. Xu, A.
Yates, D. Zerbino, Y. Zhang, B. Aken, J. S. Choudhary, M. Gerstein, R.
Guig?, T. J. P. Hubbard, M. Kellis, B. Paten, A. Reymond, M. L. Tress, and P.
Flicek (2019). “GENCODE reference annotation for the human and mouse
genomes”. In: Nucleic Acids Res. 47.D1, pp. D766–D773.

Hon, C., J.A. Ramilowski, J. Harshbarger, N. Bertin, O.J.L. Rackham, J. Gough,
E. Denisenko, S. Schmeier, T.M. Poulsen, J. Severin, et al. (2017). “An
atlas of human long non-coding RNAs with accurate 5’ ends”. In: Nature
543.7644, pp. 199–204.

Collado-Torres, L., A. Nellore, A.C. Frazee, C. Wilks, M.I. Love, B. Langmead,
R.A. Irizarry, J.T. Leek, and A.E. Jaffe (2017a). “Flexible expressed region
analysis for RNA-seq with derfinder”. In: Nucleic acids research 45.2, e9–e9.

Ellis, S. E., L. Collado-Torres, A. Jaffe, and J. T. Leek (2018a). “Improving the
value of public RNA-seq expression data by phenotype prediction”. In:
Nucleic Acids Res. 46.9, e54.

Baker, D. N. and B. Langmead (2019). “Dashing: fast and accurate genomic
distances with HyperLogLog”. In: Genome Biol. 20.1, p. 265.

92

Ondov, B. D., T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S.
Koren, and A. M. Phillippy (2016). “Mash: fast genome and metagenome
distance estimation using MinHash”. In: Genome Biol. 17.1, p. 132.

Li, H. (2020 (accessed August 18, 2020)). seqtk: Toolkit for processing sequences in
FASTA/Q formats. URL: https://github.com/lh3/seqtk.

Ziemann, M., A. Kaspi, and A. El-Osta (2019). “Digital expression explorer 2:
a repository of uniformly processed RNA sequencing data”. In: Gigascience
8.4.

Mantere, T., S. Kersten, and A. Hoischen (2019). “Long-Read Sequencing
Emerging in Medical Genetics”. In: Front Genet 10, p. 426.

Amarasinghe, S. L., S. Su, X. Dong, L. Zappia, M. E. Ritchie, and Q. Gouil (2020).
“Opportunities and challenges in long-read sequencing data analysis”. In:
Genome Biol. 21.1, p. 30.

Kovaka, S., A. V. Zimin, G. M. Pertea, R. Razaghi, S. L. Salzberg, and M. Pertea
(2019). “Transcriptome assembly from long-read RNA-seq alignments with
StringTie2”. In: Genome Biol. 20.1, p. 278.

Langmead, B. (2017). “A tandem simulation framework for predicting map-
ping quality”. In: Genome Biol. 18.1, p. 152.

Langmead, B. and S. L. Salzberg (2012). “Fast gapped-read alignment with
Bowtie 2”. In: Nat. Methods 9.4, pp. 357–359.

Li, Heng (2013). “Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM”. In: arXiv preprint arXiv:1303.3997.

Zaharia, Matei, William J Bolosky, Kristal Curtis, Armando Fox, David Patter-
son, Scott Shenker, Ion Stoica, Richard M Karp, and Taylor Sittler (2011).
“Faster and more accurate sequence alignment with SNAP”. In: arXiv
preprint arXiv:1111.5572.

Tang, A. D., C. M. Soulette, M. J. van Baren, K. Hart, E. Hrabeta-Robinson, C. J.
Wu, and A. N. Brooks (2020). “Full-length transcript characterization of
SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation
of retained introns”. In: Nat Commun 11.1, p. 1438.

Tardaguila, M., L. de la Fuente, C. Marti, C. Pereira, F. J. Pardo-Palacios, H. Del
Risco, M. Ferrell, M. Mellado, M. Macchietto, K. Verheggen, M. Edelmann,
I. Ezkurdia, J. Vazquez, M. Tress, A. Mortazavi, L. Martens, S. Rodriguez-
Navarro, V. Moreno-Manzano, and A. Conesa (2018). “SQANTI: extensive
characterization of long-read transcript sequences for quality control in
full-length transcriptome identification and quantification”. In: Genome
Res.

93

https://github.com/lh3/seqtk

Darby, C. A., R. Gaddipati, M. C. Schatz, and B. Langmead (2020). “Vargas:
heuristic-free alignment for assessing linear and graph read aligners”. In:
Bioinformatics 36.12, pp. 3712–3718.

Smith, T. F. and M. S. Waterman (1981). “Identification of common molecular
subsequences”. In: J. Mol. Biol. 147.1, pp. 195–197.

Jeffares, D. C., C. Jolly, M. Hoti, D. Speed, L. Shaw, C. Rallis, F. Balloux, C.
Dessimoz, J. B?hler, and F. J. Sedlazeck (2017b). “Transient structural varia-
tions have strong effects on quantitative traits and reproductive isolation
in fission yeast”. In: Nat Commun 8, p. 14061.

Gordon, S. P., E. Tseng, A. Salamov, J. Zhang, X. Meng, Z. Zhao, D. Kang,
J. Underwood, I. V. Grigoriev, M. Figueroa, J. S. Schilling, F. Chen, and
Z. Wang (2015). “Widespread Polycistronic Transcripts in Fungi Revealed
by Single-Molecule mRNA Sequencing”. In: PLoS ONE 10.7, e0132628.

Workman, R. E., A. D. Tang, P. S. Tang, M. Jain, J. R. Tyson, R. Razaghi, P. C.
Zuzarte, T. Gilpatrick, A. Payne, J. Quick, N. Sadowski, N. Holmes, J. G. de
Jesus, K. L. Jones, C. M. Soulette, T. P. Snutch, N. Loman, B. Paten, M. Loose,
J. T. Simpson, H. E. Olsen, A. N. Brooks, M. Akeson, and W. Timp (2019).
“Nanopore native RNA sequencing of a human poly(A) transcriptome”. In:
Nat. Methods 16.12, pp. 1297–1305.

Roach, N. P., N. Sadowski, A. F. Alessi, W. Timp, J. Taylor, and J. K. Kim (2020).
“The full-length transcriptome of C. elegans using direct RNA sequencing”.
In: Genome Res. 30.2, pp. 299–312.

Zheng, G. X., J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B.
Ziraldo, T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga,
L. Montesclaros, J. G. Underwood, D. A. Masquelier, S. Y. Nishimura, M.
Schnall-Levin, P. W. Wyatt, C. M. Hindson, R. Bharadwaj, A. Wong, K. D.
Ness, L. W. Beppu, H. J. Deeg, C. McFarland, K. R. Loeb, W. J. Valente,
N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen, B. J. Hindson,
and J. H. Bielas (2017). “Massively parallel digital transcriptional profiling
of single cells”. In: Nat Commun 8, p. 14049.

Ellis, S. E., L. Collado-Torres, A. Jaffe, and J. T. Leek (2018b). “Improving the
value of public RNA-seq expression data by phenotype prediction”. In:
Nucleic Acids Res. 46.9, e54.

94

Appendices

95

Appendix A

Additional Details of the Monorail
Ecosystem

A.1 Selection of SRA datasets

For the SRA human and mouse compilations, we downloaded and filtered a

set of sequencing runs from the SRA summarized in Table A.1 and visualized

in Figure A.1.

Table A.1: SRA Metadata Queried & Processed

Runs Studies TeraBases TeraBytes (compressed)
Pre-scRNA filtered Human 493374 9401 1082 569
Pre-scRNA filtered Mouse 676653 11512 935 465
Filtered Bulk Human 218982 8357 868 451
Filtered smartSeq Human 97467 320 60 30
Filtered Bulk Mouse 203170 9407 657 329
Filtered smartSeq Mouse 213733 681 75 34

96

0.0000

0.0002

0.0004

0.0006

0 2500 5000 7500 10000
Avg. # of bases per run per study (Millions)

de
ns

ity class
bulk
smartseq

SRAv3 Human Bulk vs. smartSeq bases per run

0.0000

0.0001

0.0002

0.0003

0.0004

0 2500 5000 7500 10000
Avg. # of bases per run per study (Millions)

de
ns

ity class
bulk
smartseq

SRAv1 Mouse Bulk vs. smartSeq bases per run

Figure A.1: Human & Mouse Average per run density across studies

A.2 Obtaining GTEx and TCGA data & metadata

We obtained GTEx metadata from the “Annotations” section of the GTEx

portal: https://storage.googleapis.com/gtex_analysis_v8/annotations/

GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt

Since GTEx includes multiple runs per aliquot, we extended the GTEx aliquot
barcode with a “.#” to indicate which run the barcode is referring to. This is
called “rail_barcode” in our files.

At the time of data collections, samples from all GTEx releases up to and
including V7 were accessioned by the SRA and visible in the SRA Run Browser.
Samples in GTExV8 (excluding V6 & V7) were not accessioned in the SRA,
and are not present on the SRA Run Browser. Sequence data for GTExV7 & V8
samples (excluding V6) were available only in the AWS (V7 only) or Google
Cloud Platform (GCP, V7 & V8) commercial clouds. We retrieved GTEx V7
and V8 sequence data from GCP as BAM files (9,303 files), and retrieved all
the sample sequence data up to and including V6 from the SRA directly in the
normal format (9,911 files). We used the “gsutil cp” tool to download from
GCP, and the “prefetch” tool from the SRA-Toolkit (together with “parallel-
fastq-dump”) to obtain FASTQ data from the SRA. The SRA retrieval tools
are part of the Monorail Docker image; we do not include “gsutil” as we

97

https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt
https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt

considered its use to be a one-time event.
Metadata for TCGA was inherited directly from recount2 (Collado-Torres

et al., 2017). TCGA sample sequence data was downloaded from the Genome
Data Commons (GDC) using the GDC Download Client tool, version 1.4, also
included in the Monorail Docker image.

A.3 Quality control

We used a number of tools to collect potentially useful quality-control mea-
sures. Specifically, we used seqtk (Li, 2020 (accessed August 18, 2020)), the
idxstats subcommand of samtools, the output of STAR, our own megadepth
tool, and featureCounts. We examine each in turn, listing the specific QC
measures calculated be each.

Monorail runs the seqtk fqchk command on input FASTQ files to collect
base-quality and base-composition summaries for all sequencing cycles. We
distill these into a few QC measures included with every summarized run in
recount3.

Monorail uses STAR to align RNA-seq reads in a spliced fashion to a refer-
ence genome, without using any annotation. Files output by STAR, particularly
the Log.out and Log.final.out, report a number of measures that can be
used for QC. We compile these into a number of QC measures included with
every summarized run in recount3.

From the STAR manual (version 2.7.2b): “Log.final.out: summary mapping
statistics after mapping job is complete, very useful for quality control. The
statistics are calculated for each read (single- or paired-end) and then summed
or averaged over all reads. Note that STAR counts a paired-end read as one
read, (unlike the samtools flagstat/idxstats, which count each mate separately).
Most of the information is collected about the UNIQUE mappers (unlike
samtools flagstat/idxstats which does not separate unique or multi-mappers).
Each splicing is counted in the numbers of splices, which would correspond
to summing the counts in SJ.out.tab. The mismatch/indel error rates are
calculated on a per base basis, i.e. as total number of mismatches/indels in
all unique mappers divided by the total number of mapped bases.” Some of
the following definitions include text from the STAR manual/source code,
reprinted here for convenience. Please see the STAR manual for more in depth
information.

98

Monorail runs the samtools idxstats on the BAM file output by STAR
to collect statistics about how many reads aligned to each chromosome in
the genome assembly. This can be helpful in, for instance, confirming the
sex of the individual sequenced based on alignments to sex chromosomes,
or measuring effectiveness of ribosomal RNA depletion by considering the
fraction of reads aligned to the mitochondrial genome. We compile these into
a number of QC measures included with every summarized run in recount3.

Monorail runs our megadepth tool on the BAM files output by STAR. The
chief function is to convert BAM files to bigWig files that are then added to the
recount3 archive. As megadepth performs this conversion, it also summarizes
the amount of sequencing coverage within the intervals of a provided BED
file representing a gene annotation. These quantifications can be useful for
quality control, tell us, for example, what fraction of the coverage is within
annotated genes.

Fragment length distribution is based on a special read filter only ap-
plied for this purpose to be compatible with CSAW’s fragment counting
approach (Lun and Smyth, 2016), paired reads in a passing fragment must not
be secondary, supplementary, have conflicting read order, be unmapped or be
mapped on more than one chromosome.

Finally, Monorail runs featureCounts on the BAM files output by STAR.
This provides a “second opinion” on the quantifications produced by megadepth.
While we have not yet found compelling examples where the megadepth and
featureCounts outputs disagree, we keep summaries of the featureCounts
quantifications as potential QC measures.

A.4 Monorail workflow specifics

Here we describe the design and implementation of Monorail in detail. We
focus on portions of the system that are relevant to the outputs needed for
recount3 and Snaptron. The system has additional tools and features that are
not described here, but these are experimental and/or not required to produce
the standard RNA-seq summaries needed for recount3.

99

A.4.1 Orchestration

Monorail follows a grid computing design, meaning that computational tasks
can take place on various systems at various times, with all computation coor-
dinated over the Internet by a few centralized services. Monorail’s centralized
components run on Amazon Web Services. A database server hosts a database
containing the overall data model, discussed later. This is a db.t2.medium
instance from the Amazon Relational Database Service (RDS) running Post-
greSQL version 10. A job queue provides a centralized, synchronized way
for various analysis nodes to obtain the next available unit of work. Since
it is synchronized, there is no chance of a “race condition” in the event that
many analysis nodes ask for the next unit of work at the same time. This
facility uses AWS’s Simple Queue Service (SQS), which also provides a degree
of fault tolerance via timeout and job-visibility mechanisms. A reference file
repository stores the reference files — e.g. genome assembly FASTA files,
index files, gene annotation files — used across the project. This uses AWS’s
Simple Storage Service (S3). Finally, a centralized logging service provides a
single place for all the components of the system to keep logs. Analysis nodes,
orchestration services, and client software all archive messages in this central
repository. We use the AWS CloudWatch service for this facility. CloudWatch
additionally allows us to visually follow the state of the system by viewing a
CloudWatch Dashboard. This is pictured in Figure 3.9.

A.4.2 Data Model

The Monorail data model, pictured in Figure A.2, defines the kinds of infor-
mation can be tracked by the orchestration layer. For instance, the input table
describes all the sequencing-read input files for all the computations. For
some files, these might “point to” the dataset via an SRA accession; for others,
this might use a URL to locate the file. The annotation and source tables
contain information about the origin of all the reference files used, including
genome indexes and gene annotations. The analysis table describes all the
Docker and/or Singularity images that might be used to analyze an input
dataset. The data model can be created and modified using Python scripts in
the orchestration software, available at https://github.com/langmead-lab/
recount-pump. This software uses the SQLAlchemy object-relational model to
map tables in the PostgreSQL database to objects in the Python infrastructure.

100

https://github.com/langmead-lab/recount-pump
https://github.com/langmead-lab/recount-pump

annotation_set_association

- annotation_id
- annotation_set_id

annotation_set

- id

+ id

+ annotation_set_id

annotation

- id
- tax_id
- url
- checksum
- retrieval_method

+ id
+ annotation_id

task_failure

- id
- project_id
- input_id
- time
- node_name
- worker_name

project

- id
- name
- input_set_id
- analysis_id
- reference_id+ id

+ project_id
input

- id
- acc_r
- acc_s
- url_1
- url_2
- url_3
- checksum_1
- checksum_2
- checksum_3
- retrieval_method

+ id

+ input_id

input_set

- id
- name

reference

- id
- tax_id
- name
- longname
- conventions
- comment
- source_set_id
- annotation_set_id

source_set

- id
+ id

+ source_set_id

+ id

+ annotation_set_id

source_set_association

- source_id
- source_set_id

+ id

+ source_set_id

source

- id
- url_1
- url_2
- url_3
- checksum_1
- checksum_2
- checksum_3
- retrieval_method

+ id
+ source_id

analysis

- id
- name
- image_url

+ id

+ input_set_id

+ id
+ reference_id

+ id

+ analysis_id

task_attempt

- id
- project_id
- input_id
- time
- node_name
- worker_name

+ id

+ project_id
+ id

+ input_id

input_set_association

- input_id
- input_set_id

+ id

+ input_set_id

+ id

+ input_id

task_success

- id
- project_id
- input_id
- time
- node_name
- worker_name

+ id

+ project_id

+ id

+ input_id

failed_tasks

- id
- project_id
- input_id
- time
- node_name
- worker_name
- job_string

+ id

+ project_id

+ id

+ input_id

Figure A.2: The Monorail relational database model. Rectangles denote tables and
arcs denote the key relationships between tables. Image was created using the
sqlalchemy_schemadisplay package.

101

A.4.3 Managers and runners

Now we describe the software that runs on the compute clusters that obtain
jobs from the orchestration layer, perform the analysis, and store the outputs.
The the highest level, an analysis node runs a node manager, which launches
a number of individual “job runners,” each allocated a fraction of available
memory and hardware threads. The bottom layer is the runner which runs
on the compute-node “slice” allocated to it by the node manager. A runner
enters a “job loop,” where it repeatedly checks a queue of all pending tasks for
the project. A task is a single dataset to be analyzed. This design is illustrated
at two levels of granularity in Figures 3.5 and 3.7. Once it has obtained a job, a
runner launches a Singularity container that in turn runs the corresponding
workflow.

A.4.4 Workflow

The Monorail analysis workflow is driven by a Snakemake workflow that
runs inside a Singularity container. The use of a container system allows us to
package all of the constituent software tools and all their dependencies in a
single image. We use singularity in particular (rather than Docker, for example)
because Singularity is designed to be able to run with non-root privileges on
multi-user cluster computing systems. We find that Singularity is commonly
available on scientific clusters including our local MARCC cluster and the
XSEDE supercomputers.

A.4.5 Aggregation

The runners produce output files that are either transferred immediately to the
aggregation node via Globus, or stored locally in preparation for a periodic
bulk transfer. At this point, we run the aggregator software in order to combine
the output files into the tables and indexes required for recount3/Snaptron.

We initially started with every file being transferred by Globus to the
aggregation filesystem after a specific sequence run job had finished. However,
this put undue load on the Globus API service which allowed for a limited
number of pending transfer requests and concurrent API connections, thus
causing workflow failures for specific jobs. We then switched to keeping all
finished jobs on storage local to the compute environment run on (e.g. scratch
storage in TACC Stampede2). Then after a full tranche of jobs was finished,

102

we’d batch transfer the whole output via a single Globus job, this worked
mostly without issue.

Once all output files for a specific batch were Globus transferred to the
aggregation filesystem, we started a run of the “recount-unifier” which did
the following steps (also illustrated in Figure 3.8):

• Decompress Exon & Junction coverage files

• Paste exon sums together

• Rejoin disjoint exon sums into originally annotated gene and exon sum
matrices, split by study

• Merge junctions and their split read counts into a sparse matrix only
including samples which had > 0 splits reads for a junction

• Add junction annotation abbreviations for Snaptron

• Split junction coverage into per-study sparse matrices in the Matrix
Market format for recount

The same output from the recount-unifier feeds both the Snaptron and
recount projects, though formatted differently. Further, QC statistics are
aggregated across sequence runs for the tranche. In addition to Snakemake,
we also use the GNU parallel utility (Tange et al., 2011) heavily in the recount-
unifier part of the workflow.

A.5 Genome Reference Annotation Files

The human gene annotations were chosen to represent a reasonably extensive
representation of the state of the field at the time (February 2019).

The following GRCh38 (HG38) annotations were used:

• Gencode V26 (G026)

• Gencode V29 (G029)

• RefSeq (R109)

• FANTOM-CAT V6 (F006)

103

We included Gencode V26 as our main annotation reference due to its use
in the GTExV8 project. The link downloaded from was ftp://ftp.ebi.ac.uk/
pub/databases/gencode/Gencode_human/release_26/gencode.v26.chr_patch_
hapl_scaff.annotation.gtf.gz.

Gencode V29 and RefSeq 109 were chosen to be recent versions that
matched with the genome assembly we used. We also included FANTOM-CAT
(v6) (Hon et al., 2017) as an annotation that is more inclusive of non-coding
RNA. For QC & controls we included the synthetic genes from the ERCC
(listed, 2005) project and the synthetic exons from the SIRV transcriptome
project (Byrne et al., 2017).

We chose a single, recent Gencode version for our mouse annotation (M23)
based on GRCm38 (mm10) in addition to the ERCC and SIRV sets mentioned
above. We also checked the genomic sequence between GRCm38 and mm10
for any differences for the chromosomes and contigs we used in alignment
and there were none, so we consider them equivalent for the purposes of
this project. The link used to download M23 was: ftp://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_mouse/release_M23/gencode.vM23.primary_assembly.
annotation.gtf.gz.

For both organisms, we converted a GTF of the combined set of anno-
tations above to the GFF3 format via the makeTxDbFromGFF function in
the GenomicFeatures package. We then passed that GFF3-formatted data
to the exonicParts function also from the GenomicFeatures package setting
“linked.to.single.gene.only" to FALSE. This produced a set of disjoint exons
across genes across all the annotations.

Sums were generated over this disjoint set of exons via the Megapdeth tool
for every BAM temporary produced in the Monorail workflow. These exon
sums were then pasted together across all samples in a dataset (e.g. SRAv3)
and then “rejoined” into their original annotated exon and gene sums. These
latter steps occur in the aggregation portion of the Monorail workflow.

For junctions, we expand the set of annotations we use for both human
and mouse to more broadly cover as much annotated splicing as possible. The
approach that produced the following list (Table A.2) was based directly on
(Nellore et al., 2016) which in turn was influenced by (Farkas et al., 2013).

104

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/gencode.v26.chr_patch_hapl_scaff.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/gencode.v26.chr_patch_hapl_scaff.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/gencode.v26.chr_patch_hapl_scaff.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M23/gencode.vM23.primary_assembly.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M23/gencode.vM23.primary_assembly.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M23/gencode.vM23.primary_assembly.annotation.gtf.gz

A.6 BigWig processing with Megadepth

Megadepth is a custom tool we built primarily to serve two main purposes in
this project:

• Efficiently extract coverage summaries from the temporary BAM files
produced in Monorail and write them out as BigWigs

• Efficiently re-quantify coverage over the BigWig files produced in the
previous step for a new annotation/set of intervals, avoiding the re-
downloading of the original sequence + alignment steps

While there are tools available to perform both of these functions (e.g.
pyBigWig, wiggletools), no one tool does them all. Additionally, no other tool,
to our knowledge, does direct conversion of coverage in a BAM file into a
BigWig file, Megadepth does this among other functions.

For the first purpose above, using off the shelf tools would’ve required at
least 2 separate applications—and likely more—to accomplish what is being
done in Megadepth. Additionally, not only would the dependencies of the
Monorail workflow be more complex without Megadepth, it would be less
efficient, because each tool would need to make a separate pass through the
BAM file, for every sample process through Monorail.

Table A.2: Junction annotation sources. Descriptions are from the UCSC Table
Browser track detail page or the Gencode website

Short Name Description Reference Build

Acembly
AceView gene models constructed from
cDNA by Danielle and Jean Thierry-Mieg at NCBI,
using their AceView program

hg19, mm9

Chess 2.2 Chess transcripts assembled using StringTie based on GTEx (Pertea et al., 2018) hg38

ccdsGene Human genome high-confidence gene annotations from the
Consensus Coding Sequence (CCDS) project hg19, hg38, mm9, mm10

Gencode 19 (hg19), 24-26, 29, 33 (hg38)
1 (mm9), 2-24 (mm10) hg19, hg38, mm9, mm10

GSE72311_lncrna long non-coding RNA transcripts from the GSE72311 study mm10

knownGene A set of UCSC gene predictions based on data from RefSeq,
GenBank, CCDS, Rfam, and the tRNA Genes track hg19, hg38, mm9, mm10

lincRNAsTranscripts Human Body Map lincRNAs (large intergenic non
coding RNAs) and TUCPs (transcripts of uncertain coding potential) hg19, hg38

mgcGenes The Mammalian Gene Collection
(MGC) of full-length open reading frames (ORFs) in the genome. hg19, hg38, mm9, mm10

refGene The NCBI RNA reference sequences
collection (RefSeq) hg19, hg38, mm9, mm10

sibGene Swiss Institute of Bioinformatics cDNA/EST-based gene predictions hg19, hg38

vegaGene Annotated genes from the Vertebrate Genome Annotation (VEGA)
database (Human chr14, 20, 22 only) hg19, mm9

105

Table A.3: Supplemental Table Human Annotated Junction Percentages

PercentOfSamples Annotated ExonSkip OneAnnotated NeitherAnnotated
1 54.4 10.7 24.8 10.0
2 67.7 8.7 17.7 5.9
5 84.0 5.0 8.5 2.5

10 93.4 2.4 3.2 1.0
20 98.3 0.8 0.6 0.3

Megapdeth produces several coverage summaries from its single pass
through a BAM file, but the ones used in the recount3/Snaptron2 datasets are
the following:

• Area Under Coverage (AUC)—related to mapping depth and used ex-
tensively in recount2

• Per-base coverage as a BigWig

• Coverage across the disjoined exons from the annotations described
elsewhere in this Supplement

For all coverage summaries listed above, Megadepth reports the number(s)
for all reads mapping and those reads which mapped with minimum quality
>= 10 separately (6 different reports).

A.7 recount3 data formatting

The coverage summaries provided in recount3 are stored as tab delimited
matrices in GZip compressed flat files. Rows are genes or exons, and columns
are samples. Coverage is stored as raw per-base counts summed over the
relevant annotation interval (gene or exon). Junction files follow the Market
Matrix format which represents the junction coverage matrix as a sparse list of
matrix coordinates for those cells which are non-0. The non-0 values represent
the raw count of split reads supporting a given junction. Per-base coverage
values are stored in BigWigs, one BigWig file per sample.

106

Table A.4: Supplemental Table Mouse Annotated Junction Percentages

PercentOfSamples Annotated ExonSkip OneAnnotated NeitherAnnotated
1 55.7 8.7 23.9 11.6
2 70.6 6.8 16.5 6.2
5 87.5 3.5 7.0 2.0

10 95.4 1.5 2.4 0.7
20 98.8 0.5 0.4 0.2

107

References

Collado-Torres, L., A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub, K. D.
Hansen, A. E. Jaffe, B. Langmead, and J. T. Leek (2017). “Reproducible
RNA-seq analysis using recount2”. In: Nat. Biotechnol. 35.4, pp. 319–321.

Li, H. (2020 (accessed August 18, 2020)). seqtk: Toolkit for processing sequences in
FASTA/Q formats. URL: https://github.com/lh3/seqtk.

Lun, A. T. and G. K. Smyth (2016). “csaw: a Bioconductor package for differen-
tial binding analysis of ChIP-seq data using sliding windows”. In: Nucleic
Acids Res. 44.5, e45.

Tange, Ole et al. (2011). “Gnu parallel-the command-line power tool”. In: The
USENIX Magazine 36.1, pp. 42–47.

Hon, C., J.A. Ramilowski, J. Harshbarger, N. Bertin, O.J.L. Rackham, J. Gough,
E. Denisenko, S. Schmeier, T.M. Poulsen, J. Severin, et al. (2017). “An
atlas of human long non-coding RNAs with accurate 5’ ends”. In: Nature
543.7644, pp. 199–204.

listed, No authors (2005). “Proposed methods for testing and selecting the
ERCC external RNA controls”. In: BMC Genomics 6, p. 150.

Byrne, A., A. E. Beaudin, H. E. Olsen, M. Jain, C. Cole, T. Palmer, R. M. DuBois,
E. C. Forsberg, M. Akeson, and C. Vollmers (2017). “Nanopore long-read
RNAseq reveals widespread transcriptional variation among the surface
receptors of individual B cells”. In: Nat Commun 8, p. 16027.

Nellore, A., A. E. Jaffe, J. P. Fortin, J. Alquicira-Hernandez, L. Collado-Torres,
S. Wang, R. A. Phillips Iii, N. Karbhari, K. D. Hansen, B. Langmead, and
J. T. Leek (2016). “Human splicing diversity and the extent of unannotated
splice junctions across human RNA-seq samples on the Sequence Read
Archive”. In: Genome Biology 17.1, p. 266.

Farkas, M. H., G. R. Grant, J. A. White, M. E. Sousa, M. B. Consugar, and E. A.
Pierce (2013). “Transcriptome analyses of the human retina identify un-
precedented transcript diversity and 3.5 Mb of novel transcribed sequence

108

https://github.com/lh3/seqtk

via significant alternative splicing and novel genes”. In: BMC Genomics 14,
p. 486.

Pertea, M., A. Shumate, G. Pertea, A. Varabyou, F.P. Breitwieser, Y. Chang,
A.K. Madugundu, A. Pandey, and S.L. Salzberg (2018). “CHESS: a new hu-
man gene catalog curated from thousands of large-scale RNA sequencing
experiments reveals extensive transcriptional noise”. In: Genome biology
19.1, pp. 1–14.

109

Appendix B

Additional Details of the LongTron
Method

B.1 Additional information for random forest fea-
tures

The following is a complete list of features used in the random forest:

1. Sequence read length including softclipping

2. # of exons

3. Aggregate exon length

4. Aggregate intron length

5. Smallest aligned segment size (exon)

6. Smallest intron size

7. Mapping quality

8. # bases overlapping with RepeatMasker annotation

110

Table B.1: Top 5 Most Important Features by Category. (FL=full length, nFL= frag-
ment)

111

9. # bases overlapping with simple repeats

10. Count of overlapping common 150 SNPs

11. Count of overlapping transcripts/reads on the same strand, always has

at least 1 (itself)

12. Per-base average of GC content score in region

13. Per-base average of Multi-track Mappability score k=24, umap in region

14. Per-base average of overlapping exons “exon density”

15. Per-base average of overlapping exons “transcript density”

16. Log of # of exons #1

17. Log of aggregate exon length #2

18. Log of aggregate intron length #3

19. Count of canonical splice motifs in region on the same strand

20. Count of overlapping segmental duplicates

21. Ratio of the region that overlaps segmental duplicates by base

22. Average of overlapping transcripts’ base pair length

23. Average # of unique k-mers within transcripts which overlap target

region

24. Average # of non-unique k-mers within transcripts which overlap target

region

112

25. Average ratio of non-unique k-mers per transcript base pair within

transcripts which overlap target region

26. # of transcripts at gene locus

27. Sum of all transcript lengths, transcript length=sum of exon lengths in

transcript, this could be redundant across transcripts

28. Minimum transcript length across all transcripts at gene locus

29. Maximum transcript length across all transcripts at gene locus

30. Average transcript length across all transcript at gene locus

31. Total number of exons across all transcript at gene locus

32. Minimum exon length across all transcripts at gene locus

33. Maximum exon length across all transcripts at gene locus

34. Average length across all transcripts’ exons at gene locus

35. Distance to closest gene locus in base pairs, can be 0 or negative if closest

locus is upstream

B.2 Details on junction matching

Novel: read junctions have no overlap even within a fuzz of any annotated

junction (no overlap either, so these aren’t within any annotated junction).

These are removed from consideration in the error categories below.

Matching: Junction matching criteria:

113

• each end must be within the window of its annotated end

• at least one of the aligned jx’s read IDs must match the annotated tran-

script ID it’s overlapping

• the exon/jx idx must match within the overlapping transcript

The non-match from above are further split into categories:

Overlapping: a read junction which strictly overlaps an annotated junction

(no containment for either).

Contained (read junction): read’s junction is either fully within an anno-

tated junction OR its ends extend beyond the annotated junction’s ends, but

not beyond fuzz distance of the annotated junction’s ends.

Contained (annotated junction): read’s junction ends are beyond the an-

notated junction’s ends and both beyond fuzz distance of the annotated junc-

tion’s ends.

B.3 gffcompare run details

In order to perform an accurate comparison at the isoform level we determined

that we needed to modify an existing tool, gffcompare, part of the well known

suite of isoform assembly and analysis tools Cufflinks. gffcompare at one time

supported the notion of a “fuzz” parameter wherein intron boundaries with

isoforms were allowed to be off by a certain length. This mode was disabled in

more recent versions. To our knowledge no other tool does this. We re-enabled

this mode specifically for this paper’s work. This allowed us to apply the

fuzz approach we took with individual splice junctions to the isoform level.

114

Specifically, we focused on comparing intron-chains between two isoforms.

That is we ignored the start/end exons and restricted the comparison to only

the coordinates of the introns.

In addition, we added a parameter which forces gffcompare to load its

“reference” and “query” sets of isoforms in exactly the same way, applying

the same deduplication approach to both. This ensured that the same pair of

samples run in one order would be the same in the reverse. The sensitivity

and precision numbers are derived from intron-chain comparison.

All comparisons are made via gffCompare (updated version of cuffCom-

pare from Cufflinks) and are exact matches. Union of Annotations is made

up of: Gencode V29, Gencode V26 (GTEx), RefSeq HG38 (as of early 2019),

FANTOM-CAT 6 (lncRNA + Gencode).

B.4 Training simulation dataset pipeline

Each of the four datasets (Oxford FL, Oxford non-FL, PacBio FL, PacBio

non-FL) were simulated by taking the error profile generated by SURVIVOR

and using SURVIVOR’s “simreads” command from the original Minimap2

alignments and using this with the set of transcript sequences from Gencode

V28 to produce synthetic reads which were then aligned back to the genome

using Minimap2. This process was run five separate times. Per-simulated

run error categories are defined in the main text as A-E at the start of the

Simulation section.

115

1. Original NA12878 Oxford/PacBio long reads aligned against Gencode

V28 transcript sequences

2. SURVIVOR “scanreads” extracts technology specific error profile from

alignments in 1. Using a read length cutoff of >= 100

3. SURVIVOR “simreads” then simulates new reads based on steps 1. & 2.

4. Synthetic long reads from step 3. are then mapped back to HG38 using

Minimap2 using the same parameters across all runs

Steps 3-4 were run 5 times per technology for both full-length and frag-

ments producing a total of 20 runs.

Any transcript that was consistently novel across all simulation runs was

assigned to the novel class. Any transcript that was consistently in all of the

error classes, but not consistently novel, was assigned to the recurrent-error

class. Any transcript that was not in either the consistently novel or recurrent

error classes was but had been in at least one or more error categories in one or

more of the runs was assigned into the non-recurrent error class. Finally any

transcript not previously filtered for was assigned a problem-free category.

The flow of decision for categorizing a single simulated transcript is as

follows:

1. Consistently novel across all simulations runs? Novel (end)

2. Not in Novel and consistently in all 3 error categories across all simula-

tion runs? Recurrent-error (end)

116

3. Not in Novel/Recurrent-error but was categorized in >= 1 error category

in >= 1 simulation run? Any-error (end)

4. Must be Problem-free (end)

This logic is defined in the ‘compare_matching.sh‘ script in the associated

Github repository.

The original alignment of the Oxford NA12878 sample was using this

command line:

minimap2 -ax splice -uf -k14 -t 16

./referenceFastaFiles/dna/GRCh38_full_analysis_set_plus_decoy_hla.fa

./NA12878-DirectRNA.pass.dedup.NoU.fastq

All simulations were run with the same parameters and the same reference.

B.5 Counting results of predictions on NA12878

Once models were trained for the four cases, these were used to predict the

labels of the original Minimap2 alignments of the same samples. The Ran-

domForest probabilities for each class for each alignment were then tabulated

and a match was recorded if the class with the highest probability matched

the training label or the probability the matching class was within 0.02 of the

class with the highest probability.

117

B.6 NA12878 & SKBR Custom Tracks in the UCSC
Genome Browser

NA12878 Oxford:

http://snaptron.cs.jhu.edu/data/longtron/oxford.NA12878-DirectRNA.

bam.bed.sorted.bb

NA12878 PacBio:

http://snaptron.cs.jhu.edu/data/longtron/pacbo.SRR1163655.sorted.

bam.noHLA.bed.bb

SKBR3 PacBio:

http://snaptron.cs.jhu.edu/data/longtron/SRR7346977_subreads.bam.

nohla.bed.bb

B.7 Features used in the Random Forest training/prediction

Feature Files:

• Repeat Masker overlap: hg38_repeatmasker_rmsk

• Tandem Repeat Finder (TRF) overlap (subset of 1): simple_repeats_hg38

• Splice motif count: hg38_splice_motifs.all.bed.bgz

• Exon/intron statistics: gencode.v28.basic.annotation.exons.stats.bed (lo-

cus stats), gencode.v28.basic.annotation.exons.perbase.counts.bgz

• # of overlapping reads/transcripts:

gencode.v28.basic.annotation.transcripts.perbase.counts.bgz

118

http://snaptron.cs.jhu.edu/data/longtron/oxford.NA12878-DirectRNA.bam.bed.sorted.bb
http://snaptron.cs.jhu.edu/data/longtron/oxford.NA12878-DirectRNA.bam.bed.sorted.bb
http://snaptron.cs.jhu.edu/data/longtron/pacbo.SRR1163655.sorted.bam.noHLA.bed.bb
http://snaptron.cs.jhu.edu/data/longtron/pacbo.SRR1163655.sorted.bam.noHLA.bed.bb
http://snaptron.cs.jhu.edu/data/longtron/SRR7346977_subreads.bam.nohla.bed.bb
http://snaptron.cs.jhu.edu/data/longtron/SRR7346977_subreads.bam.nohla.bed.bb

GTACGTAGGTACG......
GTAC
 TACG
 ACGT
 CGTA
 GTAG
 TAGG
 AGGT
 GGTA
 GTAC
 TACG

k-mer based mappability [k=4] (11, 21-23)

Non-unique k-mers

Figure B.1: Kmer mappability. Mappability is based on k-mers, k=24 for umap multi-
tracking mappings and k=10 for local region mappings. This is for features used in
the random forest: 11, and 21-23.

• # of common 150 SNPs overlapping:

snp150Common.combined.sorted.bed.no_bad_chrs

• GC content: gc5Base.bg.clean

• General Mappability: k24.Umap.MultiTrackMappability.sorted.bg

• Local Mappability: gv28.local_mappability.coords.bed

• Segmental Duplications: segmental_dups_hg38.sorted

119

Figure B.2: A. Oxford FL Binary Class ROC on Testing (held-out) data

Figure B.3: B. Oxford non-FL Binary Class ROC on Testing (held-out) data

120

Figure B.4: C. PacBio FL Binary Class ROC on Testing (held-out) data

Figure B.5: D. PacBio Non-FL Binary Class ROC on Testing (held-out) data

121

Table B.2: NA12878 Alignment Class Recall. Totals in the table are per-category and
based on the total number of alignments that overlapped a transcript with that class
label form the training data.

Table B.3: NA12878 Alignment Class Precision. Totals in the table are per-category
and based on the total number of alignments that were predicted to have that class
label. Totals are the same between precision and recall and are repeated for conve-
nience.

Table B.4: Intron Chains in Annotation [exact (fuzz) percent matching]

122

Table B.5: Improvement of intron-chain matches from problem free predictions

123

Appendix C

Additional Details of Snaptron

C.1 Analyses

For the SSC analysis the exon from the SRGAP2B gene was not able to be

lifted over from GRCh37 to GRCh38 and was therefore not analyzed. Scripts

and data needed to reproduce the three analyses presented in this study are

available at:

• https://github.com/ChristopherWilks/snaptron-experiments/tree/feb2017_manu_
rc1

The exact version of Snaptron used for the analyses presented in the paper

are available at:

• https://github.com/ChristopherWilks/snaptron/tree/feb2017_manu_rc1

124

https://github.com/ChristopherWilks/snaptron-experiments/tree/feb2017_manu_rc1
https://github.com/ChristopherWilks/snaptron-experiments/tree/feb2017_manu_rc1
https://github.com/ChristopherWilks/snaptron/tree/feb2017_manu_rc1

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Rail: a multi-sample aware spliced-aligner
	recount2: bringing large scale transcriptomics coverage data to Bioconductor
	Intropolis: splicing analysis across 20,000 sequencing runs

	Outline
	Snaptron
	Monorail Ecosystem
	LongTron

	Snaptron
	Introduction
	Methods
	Crawling and summarizing
	Data types
	Region query
	Filtering attributes
	Constraining metadata
	Query planning
	Higher-level queries
	Interfaces

	Results
	Novel Exon Discovery and Evaluation
	Exonization of Repetitive Elements
	ALK and Junction Inclusion Ratio
	Client Command-Line Interface
	Graphical User Interface Application

	Discussion
	Applications of Snaptron
	ASCOT
	Confirmation of novel splice junctions found in HUVEC tissues alongside proteomics

	Monorail Ecosystem
	Introduction
	Background and Related Work
	Results
	Improvements to the resource
	Human and mouse splicing in SRA
	Non-coding and unannotated transcription

	Discussion
	Methods
	Design
	Grid design
	Quality control and Alignment
	Transcript quantifications

	Monorail Performance
	Data Presentation
	Snaptron

	LongTron: Automated Analysis of Long Read Spliced Alignment Accuracy
	Introduction
	Related Work
	Methods
	Long read failure modes
	Long Read Transcriptome Simulation

	Results
	Training and Application

	Splice-junction and Isoform Comparison
	Effects of Random Forest Classifier on Transcript Matching against the Annotation
	Novel Alignment Examples in NA1878 and SKBR3

	Discussion

	Discussion and Conclusion
	Bibliography
	Appendices
	Additional Details of the Monorail Ecosystem
	Selection of SRA datasets
	Obtaining GTEx and TCGA data & metadata
	Quality control
	Monorail workflow specifics
	Orchestration
	Data Model
	Managers and runners
	Workflow
	Aggregation

	Genome Reference Annotation Files
	BigWig processing with Megadepth
	recount3 data formatting

	Additional Details of the LongTron Method
	Additional information for random forest features
	Details on junction matching
	gffcompare run details
	Training simulation dataset pipeline
	Counting results of predictions on NA12878
	NA12878 & SKBR Custom Tracks in the UCSC Genome Browser
	Features used in the Random Forest training/prediction

	Additional Details of Snaptron
	Analyses

