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ABSTRACT

The Theory of Functional Connections (TFC) is a functional interpolation framework

founded upon the so-called constrained expression: a functional that expresses the family of

all possible functions that satisfy some user-specified, linear constraints. These constrained

expressions can be utilized to transform constrained problems into unconstrained ones. The

benefits of doing so include faster solution times, more accurate solutions, and more robust

convergence. This dissertation contains a comprehensive, self-contained presentation of the

TFC theory beginning with simple univariate point constraints and ending with general

linear constraints in n-dimensions; relevant mathematical theorems and clarifying examples

are included throughout the presentation to expand and solidify the reader’s understanding.

Furthermore, this dissertation describes how TFC can be applied to estimate differential

equations’ solutions, its primary application to date. In addition, comparisons with other

state-of-the-art algorithms that estimate differential equations’ solutions are included to

showcase the advantages and disadvantages of the TFC approach. Lastly, the aforementioned

concepts are leveraged to estimate solutions of differential equations from the field of flexible

body dynamics.
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g(x) Free function Rn 7→ R. Note that a superscript may be used
to denote the free function for a specific dependent variable, e.g.,
gu(x) is the free function for the dependent variable u.

J Jacobian matrix

L Loss function Rm 7→ Rn

L1 Space of Lebesgue-integrable functions, i.e.,
∫

Ω
|f | dµ <∞

L2 Space of square-Lebesgue-integrable functions, i.e.,
∫

Ω
|f |2 dµ <∞

R Set of real numbers

Sij Support matrix

x A vector of the independent variables, i.e., x = {x1, x2, · · · , xn},
where n is the number of independent variables.

xk The k-th independent variable

Z Set of integers

Z+ Set of positive integers

Z/nZ Set of integers modulo n

zk Basis function domain variable for the k-th independent variable

δij Kronecker delta

(k)κi(x) Portion of the i-th constraint on the k-th independent variable that
does not contain the dependent variable. Note the pre-superscript
is dropped in the univariate formulation as there is only one inde-
pendent variable.

µ(z) Measure function R 7→ R

(k)ρi(x, g(x)) Projection functional for the i-th constraint of the k-th indepen-
dent variable. Note that in the univariate formulation, the pre-
superscript is dropped as there is only one independent variable.

(k)φi(xk) Switching function for the i-th constraint on the k-th indepen-
dent variable. Note that in the univariate formulation, the pre-
superscript is dropped as there is only one independent variable.

Ω Domain

1(x, x1) Heaviside function, R 7→ R

10(x) Heaviside function where x1 = 0

dxe Rounds x to the next largest integer

vii



bxe Rounds x to the nearest integer

viii



TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1. INTRODUCTION AND MOTIVATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Original Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview of the Remaining Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. THEORY OF FUNCTIONAL CONNECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Univariate Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Anatomy of a Linear Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Component Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Univariate Constrained Expression Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Multivariate Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Recursive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1.1 Integral Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1.2 Component Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1.3 Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Multivariate Constrained Expression Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Tensor Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3. APPLICATIONS IN DIFFERENTIAL EQUATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



3.1 Useful Free Function Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.1 Linear Combination of Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.4 Extreme Learning Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Useful Optimization Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.4 Constrained Least-Squares Support Vector Machines. . . . . . . . . . . . . . . . . . . . . 72

3.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Simple PDE Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 A Juxtaposition of TFC, CSVM, X-TFC, and Deep-TFC. . . . . . . . . . . . . . . . . . . . . . . . 90

4. APPLICATIONS IN FLEXIBLE BODY PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 Natural Tandem Balloon Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.1 One-Dimensional Wave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.2 Two-Dimensional Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Biharmonic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX A. GRAPH THEORY.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

APPENDIX B. EXTENSION TO NONLINEAR CONSTRAINTS . . . . . . . . . . . . . . . . . . . . . . 133

B.1 Simple Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Parameterized Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

APPENDIX C. ADDING INEQUALITY CONSTRAINTS TO CONSTRAINED EX-
PRESSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

APPENDIX D. SPLITTING THE DOMAIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

APPENDIX E. ORTHONORMAL BASIS FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

E.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
E.2 Chebyshev Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
E.3 Legendre Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

x



E.4 Laguerre Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
E.5 Hermite Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
E.6 Fourier Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
E.7 Extension to Multivariate Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

APPENDIX F. LINEAR LEAST-SQUARES METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

APPENDIX G. TFC NUMERICAL IMPLEMENTATION IN JAX .. . . . . . . . . . . . . . . . . . . . . 165

G.1 Basis Function Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
G.2 Univariate TFC Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
G.3 Multivariate TFC Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
G.4 Elementwise Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
G.5 Extending Ordered Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
G.6 Nonlinear Least-Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

APPENDIX H. NONLINEAR SVM DERIVATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

APPENDIX I. VARIOUS TFC EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

I.1 Extension to Parallelotopes via Affine Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 177
I.2 Lower-Dimensional Constraints in n-Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
I.3 Conjecture: TFC Extends to any Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xi



LIST OF FIGURES

Figure Page

2.1 Graphical representation of injective and surjective functionals. . . . . . . . . . . . . . . . . . 7

2.2 Valid component constraint graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Constrained expression evaluated using g(x, y) = x2 cos y+ sin(2x). The blue
line signifies the constraint on u(0, y), the black lines signify the derivative
constraint on uy(x, 0), and the magenta lines signify the relative constraint
u(x, 0) = u(x, 1). The linear constraint u(1, y) + u(2, y) = y sin(πy) is not
easily visualized but is nonetheless satisfied by the constrained expression. . . . . . 37

2.4 Constrained expressions evaluated using gu(x, y) = xy + sin(x) + y2 and
gv(x, y) = x2y cos(y)ex. The value constraints on u(x, 0) and v(x, 0) are
shown as black lines. The remaining constraints are not easily visualized
and are therefore not shown but are satisfied nonetheless. . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Differential equation solution estimation using TFC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Analytical solution of the simple PDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Histogram of the Deep-TFC maximum solution error on the test set for 100
Monte Carlo trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Histogram of X-TFC maximum solution error where n = 30 and m = 347 on
the test set for 100 Monte Carlo trials.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Histogram of X-TFC maximum solution error where n = 30 and m = 17 on
the test set for 100 Monte Carlo trials.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 TFC solution at t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7 TFC solution at t = 0.1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.8 TFC solution at t = 3.0.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.9 X-TFC solution at t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.10 X-TFC solution at t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11 X-TFC solution at t = 3.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.12 Deep-TFC solution at t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xii



3.13 Deep-TFC solution at t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.14 Deep-TFC solution at t = 3.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Tandem balloon diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Natural balloon shapes on Venus for a range of altitudes from 52 km to 62 km.104

4.3 Constant circumferential stress balloon shapes with `d = 18 meters on Venus
for a range of altitudes from 52 km to 62 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Analytical solution for the one-dimensional wave equation. . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Two-dimensional wave equation analytical solution at t = 0.5. . . . . . . . . . . . . . . . . . . . 108

4.6 Biharmonic equation analytical solution in Cartesian coordinates. . . . . . . . . . . . . . . 111

4.7 Biharmonic equation analytical solution in polar coordinates. Note, this figure
contains an embedded, standalone HMTL version of the plot that can be
viewed/downloaded by clicking on it. Doing so may require a dedicated PDF
viewer such as Adobe Acrobat or Okular.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Example graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1 Squared constraint example for randomly chosen g(x) and n.. . . . . . . . . . . . . . . . . . . . 135

B.2 Polynomial constraint example for randomly chosen g(x) and n. . . . . . . . . . . . . . . . . 136

B.3 Sine constraint example for randomly chosen g(x) and n. . . . . . . . . . . . . . . . . . . . . . . . . 137

B.4 Parameterized nonlinear constraints on conics. Note, this figure contains an
embedded, standalone HMTL version of the plot that can be viewed/down-
loaded by clicking on it. Doing so may require a dedicated PDF viewer such
as Adobe Acrobat or Okular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.1 Inequality constraints only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.2 Inequality and value-level equality constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.1 Analytical solutions of the convection-diffusion equation with different Peclet
numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

E.1 First five Chebyshev orthogonal polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E.2 First five Legendre orthogonal polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.3 First five Laguerre orthogonal polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

E.4 First five Hermite orthogonal polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xiii



E.5 First five Fourier basis functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

G.1 Basis function class hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

I.1 Parallelotope constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

I.2 Parallelotope constrained expression example. Note, this figure contains an
embedded, standalone HMTL version of the plot that can be viewed/down-
loaded by clicking on it. Doing so may require a dedicated PDF viewer such
as Adobe Acrobat or Okular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

I.3 Complex constrained expression, real portion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

I.4 Complex constrained expression, imaginary portion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xiv



LIST OF TABLES

Table Page

3.1 Tabulated values for the degree of basis expansion and equivalent number of
basis functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Maximum test set solution error using TFC with Chebyshev orthogonal poly-
nomials.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Maximum test set solution error using spectral method with Chebyshev or-
thogonal polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Maximum test set solution error using X-TFC with the tanh activation function. 87

3.5 Comparison of maximum training set and test set errors between TFC meth-
ods and current state-of-the-art techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Comparison of maximum and mean test set errors between TFC, X-TFC, and
Deep-TFC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Tandem balloon nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Tandem balloon atmospheric data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Tandem balloon constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 TFC and X-TFC solution errors for various numbers of basis functions when
solving the two-dimensional wave equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D.1 Convection-diffusion equation error: whole vs. split domain. . . . . . . . . . . . . . . . . . . . . 148

E.1 Univariate orthogonal basis functions summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

I.1 Addition table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

I.2 Multiplication table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

I.3 Finite field constrained expression output for g(x, y) = Ax+ xy + y. . . . . . . . . . . . 191

xv



LIST OF EXAMPLES

Example Page

2.1 Constraints at a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Integral constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Component constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Component constraint graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Multivariate non-integral constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Multivariate integral constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Multivariate component constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Multivariate linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Integral constraint linear dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.11 Non-integral constraints in tensor form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.12 Integral constraints in tensor form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 Linear constraints in tensor form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 CSVM applied to a linear, first-order ODE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Simple PDE solved using basis functions [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Simple PDE solved using CSVM [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Simple PDE solved using Deep-TFC [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Simple PDE solved using X-TFC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B.1 Constraints with solutions that contain ± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.2 Constraints with a finite number of solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.3 Constraints with a countably infinite number of solutions. . . . . . . . . . . . . . . . . . . . . . . . 137

xvi



B.4 Simple parameterized nonlinear constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.5 Parameterized nonlinear constraints on conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

I.1 Parallelotope example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

I.2 Single point constraint in two dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

I.3 Lower-dimensional constraints in three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

I.4 TFC on a finite field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

I.5 TFC using complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xvii



1. INTRODUCTION AND MOTIVATION

Interpolation is a concept that many use every day—for example, to extract an esti-

mated value between experimental data points or between data points of tabulated values

for a computationally expensive function—but pay little attention to. This is not surpris-

ing given that most imagine a discrete set of points when considering interpolation, a fairly

simplistic problem, and the age of the algorithms used to solve them dates as far back as

Waring polynomial interpolation, which was published in 1779 [4]. Yet, if the interpolation

complexity is increased, it quickly becomes difficult or impossible to point to an algorithm

that can easily perform the interpolation.

Consider the advantages of satisfying properties at points other than their value, for

example, their derivatives or a linear combination of derivatives and values between points.

Rather than thinking of properties at points, it may be easier to imagine them as constraints,

for example, ux(x0) + πu(x1) = v(x2), where x is an independent variable, x0, x1, and x2

are some specific values in the domain, u and v are dependent variables, and ux denotes a

derivative of u with respect to x. Dream bigger. What if one could do this in n-dimensional

domains or write all possible functions that satisfy the constraints rather than just one

function that satisfies the constraints? At this point, one is describing something much

more complicated than simple point-wise interpolation; rather, they are describing a sort of

function-based interpolation.

A rich framework for function-based interpolation could transform problems with linear

constraints into unconstrained problems. In terms of optimization-type problems, this would

mean one could use simpler optimizers, as an optimizer that handles constraints would no

longer be needed, and/or the function to be minimized would not need to be augmented

to include the constraints. Indeed, such a framework would enhance one’s ability to solve

such problems and is the driving motivation behind the Theory of Functional Connections

(TFC): a general framework for function-based interpolation.
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The concept of function-based interpolation itself is not new, and numerous methods

exist [5, 6, 7, 8, 9, 10]; however, these previous techniques only work for a class or sub-class

of functions and cannot be used to describe all functions that satisfy a set of constraints.

Therefore, their scope of applications is limited; TFC does not have this restriction.

1.1 Original Idea

The idea that sparked the Theory of Functional Connections (TFC) was conceived by

Daniele Mortari while teaching the Waring, better known as Lagrange, polynomial in-

terpolation method [4], which is used to generate an interpolating function that passes

through a set of points. For example, the Lagrange polynomial, y(x), for a set of n points,

(x1, y1), . . . , (xk, yk), . . . , (xn, yn), can be written as,

y(x) =
n∑
k=1

yk
∏
i 6=k

x− xi
xk − xi

.

The Lagrange polynomial represents one function that passes through the n points. In other

words, the Lagrange polynomial is an interpolating function for these points: a function that

satisfies the constraints y(xk) = yk.

Mortari’s original insight was that by replacing x with an arbitrary function g(x), xk

with g(xk), and so on, one could write the the family of all possible functions that passes

through the set of points. That is,

y(x) =
n∑
k=1

yk
∏
i 6=k

x− xi
xk − xi

→ y(x, g(x)) =
n∑
k=1

yk
∏
i 6=k

g(x)− g(xi)

g(xk)− g(xi)
.

From this seed of an idea sprouted Mortari’s 2016 seminal article [11] that demonstrated

how to embed univariate value and derivative constraints, and constraints consisting of lin-

ear combinations of values and derivatives at points, into the TFC framework. Since then,

the TFC framework has grown to encompass a larger variety of increasingly exotic con-

straints, including integral [12], component [13], and inequality [14] constraints. Moreover,
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the original univariate framework has been extended to multiple variables [1, 15] and some

non-rectangular domains [16, 17].

1.2 Overview of the Remaining Chapters

In lieu of a large literature review concentrated at the beginning of the dissertation, most

chapters contain their own smaller literature review whose contents pertain specifically to

that chapter. The rest of this dissertation is structured as follows.

Chapter 2. Theory of Functional Connections

This chapter describes the theory behind the TFC functional interpolation framework.

It is split into two major sections: the univariate theory and the multivariate theory. The

univariate theory is introduced first and describes how to construct constrained expressions

for value, derivative, integral, and component constraints, and linear combinations thereof.

In addition, it includes mathematical theorems that pertain to the univariate constrained

expression. The multivariate theory section generalizes this to n-dimensions. Examples are

included throughout to help solidify the reader’s understanding.

Chapter 3. Applications in Differential Equations

This chapter utilizes the TFC framework introduced in the previous chapter to solve

differential equations by embedding the differential equation constraints into the constrained

expression and using the free function to minimize the differential equation’s residual at a

discrete set of points. In addition, the chapter discusses useful free function choices and

optimization methods and includes a summary of the TFC numerical implementation. To

strengthen the reader’s understanding, a simple PDE is numerically estimated using each

of the common free function choices; additional examples are provided that highlight the

strengths and weaknesses of each free function choice.
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Chapter 4. Applications in Flexible Body Problems

Building on the foundations of the previous chapters, this chapter utilizes the TFC frame-

work introduced in Chapter 2 and its application to differential equations introduced in

Chapter 3 to apply the method to differential equations that appear in flexible body prob-

lems. In other words, this chapter contains flexible-body-related ODEs and PDEs that are

solved via TFC.

Chapter 5. Summary and Conclusions

This chapter summarizes the major ideas covered in the dissertation and draws conclu-

sions based on the content discussed throughout. In addition, this chapter presents ideas for

future study.

Appendices

The appendices include more detailed explanations of some of the topics covered in

the main body of the text. In addition, they also include the following extensions of the

TFC framework: nonlinear constraints, inequality constraints, parallelotope domains, lower-

dimensional constraints in n-dimensions, and an extension to general fields, i.e., beyond the

field of real numbers.
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2. THEORY OF FUNCTIONAL CONNECTIONS

The seminal article on the Theory of Functional Connections1 (TFC) introduced the

notion of a constrained expression [11]: a mathematical expression that utilizes a function

that can be chosen by the user, the so-called free function, that can describe all possible

functions satisfying a given set of linear constraints. At the time the article was written,

this statement was merely a conjecture but has since been proven mathematically. Since

their conception, the process for deriving constrained expressions and the language used to

discuss them has changed, but what they are in mathematical terms has remained constant:

constrained expressions are functionals.2 Therefore, it is useful to define a functional and

investigate some of its properties before delving further into TFC constrained expressions.

2.1 Functionals

To begin, consider the following definition of a functional.

Definition 1

A functional, e.g., f(x, g(x)), has independent variable(s) and function(s) as inputs

and produces a function as an output.

Note that a functional as defined here coincides with the computer science definition of a

functional. One can think of a functional as a map for functions. That is, the functional

takes a variable or variables and a function or functions as inputs and produces a function as

its output, e.g., f ∗(x) = f(x, g(x)). This dissertation is focused on constraint embedding, or

in other words, functional interpolation; hence, for now, there is no need to concern oneself

with the domains and ranges of the input and output functions. Rather, functionals can be
1This theory was originally published under the name “Theory of Connections.” However, this name

conflicted with a specific theory in differential geometry and was not the most accurate description of the
functional interpolation method. Therefore, in 2019, this name was changed to the “Theory of Functional
Connections” to highlight the tie to functional interpolation and the fact that it provides all functions
satisfying a set of linear constraints in n-dimensional space.

2In other literature, functionals are also referred to as “functions of functions” or “higher-order functions.”
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discussed in the context of their potential input functions, hereon referred to as the domain

of the functional, and potential output functions, hereon referred to as the codomain of the

functional.

Next, the definitions of injective, surjective, and bijective are extended from functions to

functionals.

Definition 2

A functional is injective if every function in its codomain is the image of at most one

function in its domain.

Definition 3

A functional, f(x, g(x)), is surjective if for every function in the codomain, f ∗(x), there

exists at least one function, g(x), in the domain such that f ∗(x) = f(x, g(x)).

Definition 4

A functional is bijective if it is both injective and surjective.

To elaborate, Figure 2.1 gives a graphical representation of each of these functionals, and

examples of each of these functionals follow. Note that the phrase “smooth functions” is used

here to denote continuous, infinitely differentiable, real-valued functions.

Consider the functional f(x, g(x)) = e−g(x) whose domain is all smooth functions and

whose codomain is all smooth functions. The functional is injective because for every f ∗(x)

in the codomain there is at most one g(x) that maps f(x, g(x)) to f ∗(x). However, the

functional is not surjective, because the functional does not span the codomain. For example,

consider the desired output function f ∗(x) = −2: there is no g(x) that produces this output.

Next, consider the functional f(x, g(x)) = g(x)− g(0) whose domain is all smooth func-

tions and whose codomain is all smooth functions f ∗(x) such that f ∗(0) = 0. This functional

is surjective, because it spans the set of all smooth functions that are 0 when x = 0, but it

is not injective. For example, the functions g(x) = x and g(x) = x + 3 produce the same
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f⇤(x)

<latexit sha1_base64="qwl4D/hZ6mOVr179q7L5jHNTHMk="></latexit>

f⇤(x)
<latexit sha1_base64="qwl4D/hZ6mOVr179q7L5jHNTHMk="></latexit>

f⇤(x)

Figure 2.1: Graphical representation of injective and surjective functionals.

result, i.e., f(x, x) = f(x, x+ 3) = x.

Finally, consider the functional f(x, g(x)) = g(x) whose domain is all smooth functions

and whose codomain is all smooth functions. This functional is bijective, because it is both

injective and surjective.

In addition, the notion of projection is extended to functionals. Consider an analogy to

vector projection wherein a projection matrix, i.e., an idempotent matrix P n = P ∀n ∈ Z+,

projects a vector from one vector space to another. In other words, the properties of P

are (1) it transports vectors from one vector space to another, and (2) when it operates on

itself (the operator being matrix multiplication), it produces itself (P n = P ). A projection

property for functionals can be defined similarly. Functionals already have the first property:

they transport functions from one set, their domain, to another set, their codomain, e.g.,

the constrained expression transports functions from the set of all real-valued functions
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defined at the constraints to the set of functions that satisfy the constraints. Following the

analogy, if a functional produces itself when operating on itself, where the operator is using

the functional’s output as its input function, then that functional is said to be a projection

functional.

Definition 5

A functional is said to be a projection functional if it produces itself when operating

on itself.

For example, consider a functional operating on itself, f(x, f(x, g(x))). If

f(x, f(x, g(x))) = f(x, g(x)), then the functional is a projection functional. Note that prov-

ing f(x, f(x, g(x))) = f(x, g(x)) automatically extends to a functional operating on itself n

times where n ∈ Z+: for example, f(x, f(x, f(x, g(x))) = f(x, f(x, g(x))) = f(x, g(x)), and

so on.

2.2 Univariate Theory

The majority of this dissertation focuses on multivariate TFC; however, the multivariate

TFC framework is built by recursively applying univariate TFC. Hence, it is paramount

the reader understands univariate TFC before moving to the multivariate case. First, the

original form of the univariate constrained expression from Reference [11] will be presented

via Example 2.1. Then, the constrained expression will be manipulated to expose an un-

derlying structure made up of so-called projection functionals and switching functions [1].

Throughout the remainder of this section, that structure will be utilized to create constrained

expressions for various types of linear constraints and prove mathematical theorems related

to univariate constrained expressions.
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Example 2.1: Constraints at a point

Constraints at a point consist of constraints on the value and derivatives at the

point. Consider the follow constraints,

y(0) = 1, yx(1) = 2, and y(2) = 3.

Given a set of k point constraints, the univariate constrained expression takes the

following form [11],

y(x, g(x)) = g(x) +
k∑
j=1

sj(x) ηj(x, g(x)), (2.1)

where g(x) is a free function, sj(x) are k linearly independent functions called support

functions, and ηj(x, g(x)) are k coefficient functionals that are solved by imposing the

constraints. The free function g(x) can be chosen to be any function provided that it

is defined at the constraints’ locations.

For this example, the support functions are chosen to be s1(x) = 1, s2(x) = x2,

and s3(x) = x3. Following Equation (2.1) and imposing the three constraints leads to

the simultaneous set of equations

y(0) = 1 = g(0) + η1(x, g(x))

yx(1) = 2 = gx(1) + 2η2(x, g(x)) + 3η3(x, g(x))

y(2) = 3 = g(2) + η1(x, g(x)) + 4η2(x, g(x)) + 8η3(x, g(x)).

Solving this set of equations for the unknowns ηj(x, g(x)) leads to the solution,

η1(x, g(x)) = 1− g(0)

η2(x, g(x)) =
10− 3g(0) + 3g(2)− 8gx(1)

4
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η3(x, g(x)) =
g(0)− g(2) + 2gx(1)

2
.

Substituting the coefficient functionals back into Equation (2.1) and simplifying yields,

y(x, g(x)) = g(x) +
−2x3 + 3x2 + 4

4

(
1− g(0)

)
+
(
− x3 + 2x2

)(
2− gx(1)

)
+

2x3 − 3x2

4

(
3− g(2)

)
.

(2.2)

It is simple to verify that regardless of how g(x) is chosen, provided g(x) exists at the

constraint points, Equation (2.2) always satisfies the given constraints.

The support functions in the previous example were selected as s1(x) = 1, s2(x) =

x2, and s3(x) = x3. However, these support functions could have been any linearly

independent set of functions that permits a solution for the coefficient functionals

ηj(x, g(x)); to clarify the latter of these requirements, consider the same constraints

with support functions s1(x) = 1, s2(x) = x, and s3(x) = x2. Then, the set of

equations with unknowns ηj(x, g(x)) is,


1 0 0

0 1 2

1 2 4



η1(x, g(x))

η2(x, g(x))

η3(x, g(x))

 =


1− g(0)

2− gx(1)

3− g(2)

 .

Notice that when using these support functions, the matrix that multiplies the co-

efficient functionals is singular. Thus, no solution exists, and therefore, the support

functions s1(x) = 1, s2(x) = x, and s3(x) = x2 are an invalid set for these constraints.

Note that the matrix singularity does not depend on the free function. This means

that the singularity arises when a linear combination of the selected support functions

cannot be used to interpolate the constraints. Therefore, the support function matrix’s

singularity depends on both the support functions chosen and the specific constraints
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to be embedded. This raises another important restriction on the expression of the

support functions: not only must they be linearly independent, but they must consti-

tute an interpolation model that is consistent with the specified constraints.

Notice that each term, except the term containing only the free function, in the

constrained expression is associated with a specific constraint and has a particular

structure. To illustrate, examine the first constraint term from Equation (2.2),

−2x3 + 3x2 + 4

4︸ ︷︷ ︸
φ1(x)

(1− g(0))︸ ︷︷ ︸
ρ1(x,g(x))

.

The first term in the product, φ1(x), is called a switching functiona and is a function

that is equal to 1 when evaluated at the constraint it is referencing and equal to 0 when

evaluated at all the other constraints. For example, when evaluating the switching

function φ1(x) at the constraint it is referencing it is equal to 1, i.e., φ1(0) = 1,

and when it is evaluated at the other constraints it is equal to 0, i.e., ∂φ1
∂x

(1) = 0 and

φ1(2) = 0. The second term of the product, ρ1(x, g(x)), is called a projection functional,

and is derived by setting the constraint function equal to zero and replacing y(x) with

g(x). In the case of constraints at a point, this is simply the difference between the

constraint value and the free function evaluated at the constraint point. It is called

the projection functional because it projects the free function to the set of functions

that vanish at the constraint.

The switching-projection structure is important because it shows up in other con-

straint types too. Based on this structure, an alternate way to define the constrained

expression can be derived,

y(x, g(x)) = g(x) +
k∑
j=1

φj(x) ρj(x, g(x)). (2.3)

11



For this case, the projection functionals are simple to derive, but the switching

functions require some attention. From their definition, these functions must go to

1 at their associated constraint and 0 at all other constraints. Hence, the following

algorithm for deriving the switching functions is proposed:

1. Choose k support functions, sk(x).

2. Write each switching function as a linear combination of the support functions

with unknown coefficients.

3. Based on the switching function definition, write a system of equations to solve

for the unknown coefficients.

To validate that this algorithm works, consider the same constraints and support

functions and rederive the constrained expression shown in Equation (2.2). Hence,

φ1(x) = si(x)αi1, φ2(x) = si(x)αi2, and φ3(x) = si(x)αi3, for some as yet unknown

coefficients αij. Note that in the previous mathematical expressions and throughout

the remainder of the dissertation, the Einstein summation convention is used to im-

prove readability. Now, the definition of the switching function is used to come up with

a set of equations. For example, the first switching function has the three equations,

φ1(0) = 1,
∂φ1

∂x
(1) = 0, and φ1(2) = 0.

These equations are expanded in terms of the support functions,

φ1(0) = (1) · α11 + (0) · α21 + (0) · α31 = 1

∂φ1

∂x
(1) = (0) · α11 + (2) · α21 + (3) · α31 = 0

φ1(2) = (1) · α11 + (4) · α21 + (8) · α31 = 0,

12



which can be compactly written as,


1 0 0

0 2 3

1 4 8



α11

α21

α31

 =


1

0

0

 .

The same is done for the other two switching functions to produce a set of equations

that can be solved by matrix inversion.


1 0 0

0 2 3

1 4 8



α11 α12 α13

α21 α22 α23

α31 α32 α33

 =


1 0 0

0 1 0

0 0 1



α11 α12 α13

α21 α22 α23

α31 α32 α33

 =


1 0 0

0 2 3

1 4 8


−1

=


1 0 0

3
4

2 −3
4

−1
2
−1 1

2

 .

Substituting the constants back into the switching functions and simplifying yields,

φ1(x) =
−2x3 + 3x2 + 4

4
, φ2(x) = −x3 + 2x2, and φ3(x) =

2x3 − 3x2

4
.

Substituting the projection functionals and switching functions back into the con-

strained expression shown in Equation (2.3) yields,

y(x, g(x)) = g(x) +
−2x3 + 3x2 + 4

4

(
1− g(0)

)
+
(
− x3 + 2x2

)(
2− gx(1)

)
+

2x3 − 3x2

4

(
3− g(2)

)
,

which is identical to Equation (2.2).
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aReference [11] introduced these switching functions as “coefficient” functions, βk, but they were
not used in the same way the switching-projection form uses them.

As demonstrated in Example 2.1, the switching-projection approach, Equation (2.3), is

a valid method for deriving constrained expressions; although it was only demonstrated for

one set of constraints here, this constrained expression derivation technique will be proven

mathematically in Section 2.2.4. Similar to the original approach, Equation (2.1), there is

a risk of obtaining a singular matrix when solving for αij if the support functions selected

are not able to interpolate the constraints. However, as will be demonstrated in the sections

that follow, the switching-projection approach can be used for many constraint types, easily

extended to multivariate domains via recursive applications of the univariate theory, and

lends itself nicely to mathematical proofs. Before moving to these other topics, it is useful to

first examine the anatomy of a constraint and define the so-called constraint operator. This

analysis will prove invaluable as it provides a method to unify the way linear constraints are

written. Consequently, mathematical analyses can be done on this unified form and thereby

applied to all linear constraints: without this method, one would need to conduct the same

mathematical analysis for each constraint type separately.

2.2.1 Anatomy of a Linear Constraint

Linear constraints can be conveniently dissected into two portions: (1) an operator that

operates on a dependent variable and (2) the remaining constants and functions of the

constraint. Let the former be called the constraint operator and denoted by the symbol

C and the latter denoted by the symbol κ. Using this nomenclature, a constraint on the

dependent variable y would typically be written in the form,

κ = C[y].
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For example, the constraint 3 = 2y(2)−πyxx(0) consists of κ = 3 and C[y] = 2y(x)−πyxx(0).

Definition 6 defines the constraint operator more rigorously.

Definition 6

The constraint operator, Ci, is a linear operator that operates on a function and returns

the function evaluated at the i-th specified constraint.

The word evaluation in the previous definition requires some elaboration; evaluation means to

evaluate the operand function in the same way as the dependent variable in the constraint.

Notice that this means the constraint operator is not affected by terms in the constraint

that do not contain the dependent variable. As an example, again consider the constraint

3 = 2y(2) + πyxx(0), and suppose it is the first constraint in the set (i = 1). For this

constraint, the constraint operator operates as follows,

C1[f(x)] = 2f(2) + πfxx(0).

In addition, notice that the constraint operator satisfies the two properties of a linear

operator:

1. Ci[f(x) + g(x)] = Ci[f(x)] + Ci[g(x)]

2. Ci[ag(x)] = aCi[g(x)]

For example, again consider the linear constraint 3 = 2y(2) + πyxx(0),

C1[f(x) + g(x)] = C1[f(x)] + C1[g(x)] = 2f(2) + πfxx(0) + 2g(2) + πgxx(0)

C1[af(x)] = aC1[f(x)] = a
(

2f(2) + πfxx(0)
)
.

Naturally, the constraint operator has specific properties when operating on the support

functions, switching functions, and projection functionals.
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Property 1

The constraint operator acting on the support functions sj(x) produces the support

matrix

Sij = Ci[sj(x)].

Consider the example given in Example 2.1 where the support functions were s1(x) = 1,

s2(x) = x2, and s3(x) = x3. By applying the constraint operator,

Sij = Ci[sj(x)] =


C1[s1(x)] C1[s2(x)] C1[s3(x)]

C2[s1(x)] C2[s2(x)] C2[s3(x)]

C3[s1(x)] C3[s2(x)] C3[s3(x)]



=


s1(0) s2(0) s3(0)

∂s1
∂x

(1) ∂s2
∂x

(1) ∂s3
∂x

(1)

s1(2) s2(2) s3(2)

 =


1 0 0

0 2 3

1 4 8

 ,

which is identical to the support matrix from Example 2.1. It follows that Sij αjk = αij Sjk =

δik, where δik is the Kroneker delta, and the solution of the αij coefficients can be determined

by simply inverting the support matrix.

Property 2

The constraint operator acting on the switching functions φj(x) produces the Kro-

necker delta.

Ci[φj(x)] = Ci[sk(x)αkj] = Ci[sk(x)]αkj = Sikαkj = δij

This property is just a mathematical restatement of the linguistic definition of the switching

function given earlier. One can intuit this property from the switching function definition,

since they evaluate to 1 at their specified constraint condition, i.e., i = j, and to 0 at all

other constraint conditions, i.e., i 6= j.
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Using the constraint operator definition, one can define the projection functional in a

compact and precise manner.

Definition 7

The projection functional is the difference between the numerical portion of the con-

straint and the constraint operator acting on the free function. Mathematically,

ρi(x, g(x)) = κi − Ci[g(x)].

Definition 8

The univariate free function is any function g(x) : R 7→ R such that Ci[g] is defined.

Again, consider the constraint 3 = 2y(2) + πyxx(0),

ρ1(x, g(x)) = κ1 − C1[g(x)] = 3− 2g(2)− πgxx(0).

Note that in the univariate case, κi is a scalar value, i.e., κi ∈ R, but in the multivariate

case, κi can be a function. In addition, notice what happens if g(x) is a function that already

satisfies the constraints.

Property 3

If g(x) is a function that satisfies the constraints, then the projection functional is

equal to zero.

Property 3 follows from the definition of the projection functional; if g(x) satisfies the

constraints, then,

ρi(x, g(x)) = κi − Ci[g(x)]

= κi − κi

= 0.
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Now that the constraint operator has been defined, and consequently, rigorous definitions

for the projection functionals and switching functions have been provided, other constraint

types become easy to embed into univariate constrained expressions: For example, integral

constraints.

Example 2.2: Integral constraints

Consider the following set of constraints,

∫ 3

−2

y(x) dx = 5 and
∫ 2

0

3y(x) dx = 2.

Based on Definition 7, the projection functionals for these constraints can be written

as,

ρ1(x, g(x)) = 5−
∫ 3

−2

g(τ) dτ

ρ2(x, g(x)) = 2−
∫ 2

0

3g(τ) dτ.

Notice that the integrals in the projection functionals use a dummy variable, τ , rather

than x. Furthermore, based on Property 2, the switching function equations can be

written as,

∫ 3

−2

φ1(x) dx = 1,

∫ 2

0

3φ1(x) dx = 0,∫ 3

−2

φ2(x) dx = 0,

∫ 2

0

3φ2(x) dx = 1.

Setting φ1(x) and φ2(x) to be a linear combination of the support functions s1(x) = 1

and s2(x) = x with unknown coefficients αij yields,

5 5
2

6 6


α11 α12

α21 α22

 =

1 0

0 1
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α11 α12

α21 α22

 =

 2
5
−1

2

−1
6

1
3

 .
Hence,

φ1(x) =
2− 2x

5
and φ2(x) =

2x− 1

6
.

Thus, following Equation (2.3), the constrained expression for these constraints is,

y(x, g(x)) = g(x) +
2− 2x

5

(
5−

∫ 3

−2

g(τ) dτ
)

+
2x− 1

6

(
2−

∫ 2

0

3g(τ) dτ
)
.

The previous constrained expression will always satisfy the constraints regardless of

how the free function, g(x), is chosen.

2.2.2 Component Constraints

When handling component constraints, one must decide which dependent variable’s con-

strained expression the component constraint will be embedded into. This dependent variable

will define the constraint operator, and all other dependent variables will become part of the

constraint’s κ term. Regardless of which dependent variable is chosen, a valid constrained

expression will be produced.

Example 2.3: Component constraints

Consider the following set of constraints,

u(0) + v(0) = 5 and ux(2) + v(3) = 4.

Two different sets of constrained expressions will be produced: one where the compo-

nent constraints are embedded into the constrained expression for u, and the second

where the component constraints are embedded into the constrained expression for v.
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If the constraints are embedded into u, then the projection functionals are,

ρ1(x, gu(x), gv(x)) = 5− gu(0)− v(0, gv(x))

ρ2(x, gu(x), gv(x)) = 4− gux(2)− v(3, gv(x)),

where gu(x) is the free function used in the u constrained expression; similarly, gv(x)

will be the free function used in the v constrained expression. The equations for the

switching function are,

φ1(0) = 1,
∂φ1

∂x
(2) = 0

φ2(0) = 0,
∂φ2

∂x
(2) = 1.

Let the support functions be s1(x) = 1 and s2(x) = x, then

1 0

0 1


α11 α12

α21 α22

 =

1 0

0 1


α11 α12

α21 α22

 =

1 0

0 1

 .
Thus, the switching functions are,

φ1(x) = 1 and φ2(x) = x,
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and the first set of constrained expressions, where the component constrains are em-

bedded into u is,

u(x, gu(x), gv(x)) = gu(x) + 5− gu(0)− v(0, gv(x))

+ x
(

4− gux(2)− v(3, gv(x))
)

v(x, gv(x)) = gv(x).

(2.4)

A similar derivation yields the second set of constrained expressions, where the com-

ponent constraints are embedded into v,

u(x, gu(x)) = gu(x)

v(x, gv(x), gu(x)) = gv(x) +
3− x

3

(
5− u(0, gu(x))− gv(0)

)
+
x

3

(
4− ux(2, gu(x))− gv(3)

)
.

(2.5)

Notice that regardless of how gu(x) and gv(x) are chosen, Equations (2.4) and (2.5)

will always satisfy the constraints.

Example 2.3 shows that component constraints can be placed on either dependent vari-

able. However, notice that in the previous example, one could not put one component

constraint on one dependent variable and the other component constraint on the other; do-

ing so would result in an infinite recursion whenever trying to evaluate either constrained

expression because each constrained expression would require an evaluation of the other. For

example, suppose one tried to embed the first component constraint in u and the second in

v, then, the constrained expressions would be,

u(x, gu(x)) = gu(x) + 5− gu(0)− v(0, gv(x))

v(x, gv(x), gu(x)) = gv(x) + 4− gv(3)− ux(2, gu(x)).
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Notice that evaluating either constrained expression requires an evaluation of the other;

hence, an infinite recursion is encountered.

The aforementioned infinite recursions can be avoided, in general, by choosing to embed

as many component constraints as possible into one dependent variable, then embed as many

component constraints that remain as possible into the second dependent variable, and so

on, until all component constraints are accounted for. However, there may be instances

when one is interested in all ways in which a set of component constraints can be embedded.

Fortunately, graph theory provides a succinct method to do just that. For readers unfamiliar

with the basics of graph theory, see Appendix A.

For a given set of constraints, consider a directed graph whose nodes are composed of

all dependent variables that contain component constraints and whose edges connect nodes

if there is a constraint between them. The direction of the edges will denote dependency

in the processing order, i.e., for every edge, the target must be processed before its source

is processed. Thus, to determine the order in which to create the constrained expressions,

one need only trace the graph backwards, starting at the leaf node(s) and working towards

the root node(s). Infinite recursions can be avoided by checking that the resultant graph is

acyclic. As mentioned in Appendix A, if a directed graph’s adjacency matrix is nilpotent,

then the graph is acyclic [18]. Hence, one can create all possible graphs for a given set of

constraints by considering all permutations of all source/target pairs—2n possibilities where

n denotes the number of source/target pairs—and then reduce the set to those that do not

contain infinite recursions by using the adjacency matrix.

Example 2.4: Component constraint graphs

Consider the follow set of component constraints,

u(0) + v(0) + w(0) = 5, ux(1) + v(2) = π

ux(3) + vx(4) = e, and v(1) + w(2) = 1.
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Figure 2.2: Valid component constraint graphs.

Let c1 denote the first component constraint, c2 the second component constraint,

and so on. Using the graph theory method just described, a set of directed, acyclic
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graphs can be created that show all possible ways in which the component constraints

can be embedded; these graphs are shown in Figure 2.2. For example, the first graph

in Figure 2.2 is associated with embedding the first, second, and third component

constraints into the constrained expression for u, and the fourth component constraint

into the constrained expression for v. Moreover, based on the same graph, when

constructing the constrained expressions, one must build the constrained expression

for w first, the constrained expression for v second, and the constrained expression for

u last: this order was determined by traversing the graph backwards from leaf node

to root node.

2.2.3 Linear Constraints

The term linear constraints refers to constraints that consist of linear combinations of

the constraint types shown earlier. These constraints can be embedded by simply applying

the techniques introduced previously.

Example 2.5: Linear constraints

Consider the following set of constraints,

u(0) + ux(0) = π, u(1) + v(1) = 5,∫ 1

−1

v(x) dx+ v(1) = 6, and v(2) = e,

and suppose the choice is made to embed the component constraint inside the u con-

strained expression: although in this case, it would be equally valid to choose to embed

it inside the constrained expression for v. Thus, for u, the projection functionals are,

ρ1(x, gu(x)) = π − gu(0)− gux(0) and ρ2(x, gu(x), gv(x)) = 5− gu(1)− v(1, gv(x)),
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and for v they are,

ρ1(x, gv(x)) = 6−
∫ 1

−1

gv(τ) dτ − gv(1) and ρ2(x, gv(x)) = e− gv(2).

For u, the switching function equations are,

φ1(0) +
∂φ1

∂x
(0) = 1, φ1(1) = 0,

φ2(0) +
∂φ2

∂x
(0) = 0, φ2(1) = 1,

and for v they are,

∫ 1

−1

φ1(x) dx+ φ1(1) = 1, φ1(2) = 0,∫ 1

−1

φ2(x) dx+ φ2(1) = 0, φ2(2) = 1.

For u, let the support functions be s1(x) = x and s2(x) = x2. Then,

1 0

1 1


α11 α12

α21 α22

 =

1 0

0 1


α11 α12

α21 α22

 =

 1 0

−1 1

 ,
and the switching functions are,

φ1(x) = x− x2 and φ2(x) = x2.
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For v, let the support functions be s1(x) = 1 and s2(x) = x. Then,

3 1

1 2


α11 α12

α21 α22

 =

1 0

0 1


α11 α12

α21 α22

 =

 2
5
−1

5

−1
5

3
5

 ,
and the switching functions are,

φ1(x) =
2− x

5
and φ2(x) =

3x− 1

5
.

Putting the projection functionals and switching functions together yields the con-

strained expressions,

u(x, gu(x), gv(x)) = gu(x) + (x− x2)
(
π − gu(0)− gux(0)

)
+ x2

(
5− gu(1)− v(1, gv(x))

)
v(x, gv(x)) = gv(x) +

2− x
5

(
6−

∫ 1

−1

gv(τ) dτ − gv(1)
)

+
3x− 1

5

(
e− gv(2)

)
.

As before, regardless of how gu(x) and gv(x) are chosen, these two constrained expres-

sions will always satisfy the constraints.

In addition to actual linear constraints, this technique can be applied to constraints that

can be rewritten as linear constraints. For example, consider the nonlinear constraints shown

in Appendix B; these nonlinear constraints can be rewritten as a set of linear constraints,

which ultimately means they can be embedded into constrained expressions.
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2.2.4 Univariate Constrained Expression Theorems

This section presents important theorems related to univariate TFC constrained expres-

sions. Theorem 1 shows that the constrained expression form given in the previous section

satisfies the constraints regardless of how the free function is chosen. This theorem is critical,

as this is the objective of constrained expressions.

Theorem 1

The switching-projection form of the univariate constrained expression,

y(x, g(x)) = g(x) + φj(x)ρj(x, g(x)),

satisfies the user-specified constraints for any free function.

Proof: One must show that Ci[y(x, g(x))] = κi. Apply Ci to y(x, g(x)) and drop the

x and g(x) arguments for clarity.

Ci[y] = Ci[g] + Ci[φjρj]

Expand ρj and simplify,

Ci[y] = Ci[g] + Ci

[
φj(κj − Cj[g])

]
Ci[y] = Ci[g] + Ci[φj](κj − Cj[g])

Ci[y] = Ci[g] + δij(κj − Cj[g])

Ci[y] = Ci[g] + κi − Ci[g]

Ci[y] = κi.

Therefore, Ci[y(x, g(x))] = κi for an any free function g(x). �
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The natural question that arises after learning that the constrained expression satisfies

the constraints for any free function is, can the constrained expression represent any function

that satisfies the constraints? In other words, does the constrained expression represent the

family of all possible functions that satisfy the constraints? Theorem 2 shows that indeed it

does.

Theorem 2

For any function satisfying the constraints, f(x) : R 7→ R, there exists at least one free

function, g(x), such that the constrained expression y(x, g(x)) = f(x). In other words,

constrained expressions are surjective functionals whose domain is all free functions

and whose codomain is all functions that satisfy the constraints.

Proof: As highlighted in Property 3, the projection functionals are equal to zero

whenever g(x) satisfies the constraints. Thus, if g(x) is a function that satisfies the

constraints, then the constrained expression becomes,

y(x, g(x)) = g(x) + ρi(x, g(x))φi(x)

= g(x) + 0

= g(x).

Hence, by choosing g(x) = f(x), the constrained expression becomes y(x, f(x)) = f(x).

Therefore, for any function satisfying the constraints, f(x), there exists at least one

free function, g(x) = f(x), such that the constrained expression is equal to the function

satisfying the constraints, i.e., y(x, f(x)) = f(x). �

Given that the codomain of the constrained expression functional is the set of all functions

satisfying the constraints, but the domain is the set of all functions, one might hypothesize

that there may be multiple free function choices that produce the same output: Theorem 3
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shows that there are.

Theorem 3

For a given function satisfying the constraints, f(x) : R 7→ R, the free function, g(x),

such that the constrained expression y(x, g(x)) = f(x) is not unique. In other words,

constrained expressions are not injective functionals over the domain of all free func-

tions and codomain of all functions that satisfy the constraints.

Proof: Consider the free function g(x) = f(x) + βj sj(x) where βj are scalar values

on R and sj(x) are the support functions used to construct the switching functions.

Substituting this free function into the constrained expression,

y(x, g(x)) = g(x) + φi(x) ρi(x, g(x)),

and dropping the x and g(x) arguments for clarity yields,

y = f + βjsj + φiρi.

Now, expand the projection functionals and simplify,

y = f + βj sj + φi

(
κi − Ci[f + βj sj]

)
y = f + βjsj + φi

(
κi − Ci[f ]− Ci[sj]βj

)
y = f + βjsj − φiCi[sj]βj.

Next, decompose the switching functions and simplify,

y = f + βjsj − αkiskSijβj

y = f + βj

(
δjk − αkiSij

)
sk
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y = f + βj

(
δjk − δjk

)
sk

y = f.

The result obtained is independent of the βjsj(x) terms in the free function. Therefore,

for any function, f(x), satisfying the constraints, the free function, g(x), that produces

f(x) via the constrained expression, i.e., y(x, g(x)) = f(x), is not unique. �

Notice that the non-uniqueness of g(x) depends on the support functions used in the con-

strained expression, which has an immediate consequence when using constrained expressions

in optimization. If any terms in g(x) are linearly dependent to the support functions used

to construct the constrained expression, their contribution is negated and thus arbitrary.

For some optimization techniques, it is critical that the linearly dependent terms that do

not contribute to the final solution be removed; else, the optimization technique becomes

impaired. For example, when solving differential equations using a linear combination of

basis functions as the free function and least-squares as the optimization process [1, 19, 20],

the basis functions that are linearly dependent to the support functions have to be omitted

from the free function to maintain full rank matrices in the least-squares.

Based on the previous results, one convenient way to think of the constrained expression is

a functional that projects the free function to the set of functions that satisfy the constraints.

As Theorem 4 shows, thinking of the constrained expression as a projection functional is a

valid perspective.

Theorem 4

The constrained expression is a projection functional.

Proof: One must show that y(x, y(x, g(x))) = y(x, g(x)). Theorem 1 states that

the constrained expression returns a function that satisfies the constraints. In other
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words, for any g(x) that is defined at the constraints, y(x, g(x)) is a function that

satisfies the constraints. From Theorem 2, if the free function used in the constrained

expression satisfies the constraints, then the constrained expression returns that free

function exactly. Hence, if the constrained expression functional is given itself as the

free function, it will simply return itself. �

The previous proofs coupled with the functional-related definitions given earlier provide a

more rigorous definition for the univariate constrained expression: the univariate constrained

expression is a surjective, projection functional whose domain is the set of all free functions

and whose codomain is the set of all functions that satisfy the constraints. It is surjective

because it spans the set of all functions that satisfy the constraints, its codomain, based on

Theorem 2, but it is not injective because Theorem 3 shows that functions in the codomain

are the image of more than one function in the domain; constrained expressions are thus

not bijective either because they are not injective. Moreover, the constrained expression is

a projection functional as shown in Theorem 4.

2.3 Multivariate Theory

This section utilizes the univariate theory introduced in the previous section to extend

TFC to the multivariate case. As such, one should ensure they have a firm grasp of the

concepts introduced in the univariate section before moving on. The section begins by

introducing the recursive method: a method for generating multivariate constrained expres-

sions by using the univariate constrained expression for one independent variable as the

free function in the univariate constrained expression for a different independent variable.

Afterward, the mathematical theorems presented for univariate constrained expressions are

also extended to the multivariate case. Finally, a compact tensor form of the multivariate

constrained expression is presented.
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2.3.1 Recursive Method

Oftentimes, the constraints of a problem do not include integral constraints. In these

cases, one independent variable’s constraints will not interfere with another independent

variable’s constraints. Consequently, using the univariate constrained expression for one

independent variable as the free function in the univariate constrained expression of an-

other independent variable produces a function that satisfies both independent variables’

constraints. To prove this, one must first understand how the constraint operator of one

independent variable affects the constrained expression of another independent variable; the

following discussion and properties will help achieve this understanding. A pre-superscript

will be used to distinguish the operators, functions, and functionals of one independent vari-

able from another. For example, C
(k)

j denotes the constraint operator for the j-th constraint

of the k-th independent variable.

Property 4

For non-integral constraints, the constraint operator for the k-th independent variable

operating on a product of functions wherein one function is not a function of the k-th

independent variable and the other is leads to,

C
(k)

j[f(x1, . . . , xk−1, xk+1, . . . , xn)h(x1, . . . , xk, . . . , xn)] =

f(x1, . . . , xk−1, xk+1, . . . , xn) C
(k)

j[h(x1, . . . , xk, . . . , xn)],

where f is not a function of the k-th independent variable, xk, but h is.

Property 4 holds for non-integral constraints because C
(k)

j operates on the k-th independent

variable only, and f is not a function of the k-th independent variable, i.e., it is effectively a

constant. In particular, this property is useful in multivariate expressions, which oftentimes

contain such products. For example, C
(k)

i[
(k)φj

(k)κj] = C
(k)

i[
(k)φj]

(k)κi.
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Property 5

A set of non-integral constraints is consistent if and only if C
(k)

j[
(l)κi] = C

(l)
i[

(k)κj].

Property 5 is easiest to understand via an example of inconsistent constraints:

z(x, 0) = 5 and z(0, y) = 4.

Clearly, these constraints cannot simultaneously be satisfied at the intersection point z(0, 0).

In addition, for multivariate constraints, the free function must be locally Cm in the

neighborhood of the geometric intersection of constraints, where m is the sum of the orders

of derivatives of the intersecting constraints. This restriction on the free function is necessary

for generating constrained expressions using recursive applications of univariate expressions,

as it ensures that Clairaut’s theorem holds for the free function, and thus, C
(l)

i

[
C

(k)
j[g]
]

=

C
(k)

j

[
C

(l)
i[g]
]
.

Definition 9

The multivariate free function is any function g(x) : Rn 7→ R such that C
(ij)

k[g] is

defined and C
(ij)

m

[
· · ·
[

C
(ik)

n[g]
]
· · ·
]
is defined, where the latter consists of at most

one constraint operator from each dimension; the latter must be freely permutable, e.g.,

C
(ij)

m

[
· · ·
[

C
(ik)

n[g]
]
· · ·
]

= C
(ik)

n

[
· · ·
[

C
(ij)

m[g]
]
· · ·
]
, for any non-integral constraints.

These properties and restriction on the free function are utilized in Theorem 5 to show that

the recursive method produces a valid multivariate constrained expression for non-integral

constraints.

Theorem 5

For non-integral constraints, a valid multivariate constrained expression can be con-

structed by recursively applying the univariate constrained expression from one in-
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dependent variable as the free function in the constrained expression for another in-

dependent variable. In this recursion, all univariate constrained expressions must be

used once and only once, and the first univariate constrained expression is built using

a regular free function.

Proof: First, show that (k)u(x, (l)u(x, g(x))) is a valid bivariate constrained expression

that satisfies both sets of constraints, where x represents a vector of the independent

variables, i.e., x = {x1, x2, · · · , xn}. Then, apply it n times recursively to produce an

n-dimensional, multivariate constrained expression that satisfies the constraints on all

n dimensions. Consider two univariate constrained expressions:

(k)u(x, g(x)) = g(x) + (k)φj(xk)
(k)ρj(x, g(x)),

(l)u(x, g(x)) = g(x) + (l)φi(xl)
(l)ρi(x, g(x)).

Substitute the univariate constrained expression for the l-th independent variable as

the free function in the univariate constrained expression for the k-th independent

variable,

(k)u(x, (l)u(x, g(x))) = (l)u(x, g(x)) + (k)φj(xk)
(k)ρj(x,

(l)u(x, g(x))).

Clearly, from Theorem 1, which shows that a univariate constrained expression satisfies

the constraints for any free function that is defined at the constraints, the constraints of

the k-th independent variable must be satisfied, as (l)u(x, g(x)) is a valid free function.

Next, expand (l)u(x, g(x)) and (k)ρj(x, g(x)) and drop the x and g(x) arguments for
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clarity.

(k)u = g + (l)φi
(l)ρi + (k)φj

(
(k)κj − C

(k)
j[g]− C

(k)
j

[
(l)φi

(l)ρi

])
= g + (l)φi

(
(l)κi − C

(l)
i[g]
)

+ (k)φj

(
(k)κj − C

(k)
j[g]

− (l)φi

(
C

(k)
j[

(l)κi]− C
(k)

j

[
C

(l)
i[g]
]))

,

where Property 4 has been used to simplify the expression. Now, evaluate (k)u at the

m-th constraint for the l-th independent variable,

C(l)
m[(k)u] = C(l)

m[g] + δmi

(
(l)κi − C

(l)
i[g]
)

+ (k)φj

(
C(l)
m[(k)κj]− C(l)

m

[
C

(k)
j[g]
]

− δmi
(

C
(k)

j[
(l)κi]− C

(k)
j

[
C

(l)
i[g]
]))

= (l)κm

+ (k)φj

(
C(l)
m[(k)κj]− C

(k)
j[

(l)κm]− C(l)
m

[
C

(k)
j[g]
]

+ C
(k)

j

[
C(l)
m[g]

])
= (l)κm.

Therefore, C
(l)

m[(k)u] = (l)κm as required, and the expression (k)u satisfies both sets of

original univariate constraints. �

Example 2.6 demonstrates Theorem 5.

Example 2.6: Multivariate non-integral constraints

Consider the following set of constraints,

u(0, y) = y2 sin(πy), u(1, y) + u(2, y) = y sin(πy),

uy(x, 0) = 0, and u(x, 0) = u(x, 1).
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The univariate constrained expressions for the constraints on x and y are,

(1)u(x, y, g(x, y)) = g(x, y) +
3− 2x

3

(
y2 sin(πy)− g(0, y)

)
+
x

3

(
cos(πy)− g(2, y)− g(1, y)

)
(2)u(x, y, g(x, y)) = g(x, y)− (y − y2)gy(x, 0)− y2

(
g(x, 1)− g(x, 0)

)
.

Then, (1)u is used as the free function in (2)u,

(2)u(x, y, (1)u(x, y, g(x, y))) = (1)u(x, y, g(x, y))− (y − y2) (1)uy(x, 0, g(x, y))

− y2
(

(1)u(x, 1, g(x, y))− (1)u(x, 0, g(x, y))
)
.

Substituting in (1)u and simplifying yields,

u(x, y,g(x, y)) = g(x, y) +
(
y − y2

) (3− 2x

3
gy(0, 0)− x

3
(−gy(1, 0)− gy(2, 0))

− gy(x, 0)
)
− y2

(3− 2x

3
g(0, 0)− 3− 2x

3
g(0, 1)− x

3
(−g(1, 0)− g(2, 0))

+
x

3
(−g(1, 1)− g(2, 1))− g(x, 0) + g(x, 1)

)
+

3− 2x

3

(
y2 sin(πy)− g(0, y)

)
+
x

3

(
− g(1, y)− g(2, y) + y sin(πy)

)
.

(2.6)

Note that substituting (2)u as the free function in (1)u, after simplifying, yields

the same result given in Equation (2.6). Equation (2.6) satisfies the constraints

for any g(x, y) satisfying Definition 9. Figure 2.3 shows the constrained expres-

sion when g(x, y) = x2 cos y + sin(2x), where the blue line signifies the constraint

on u(0, y), the black lines signify the derivative constraint on uy(x, 0), and the ma-

genta lines signify the relative constraint u(x, 0) = u(x, 1). The linear constraint

u(1, y) + u(2, y) = y sin(πy) is not easily visualized but is nonetheless satisfied by the

constrained expression.
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Figure 2.3: Constrained expression evaluated using g(x, y) = x2 cos y + sin(2x).
The blue line signifies the constraint on u(0, y), the black lines signify the deriva-
tive constraint on uy(x, 0), and the magenta lines signify the relative constraint
u(x, 0) = u(x, 1). The linear constraint u(1, y) + u(2, y) = y sin(πy) is not easily
visualized but is nonetheless satisfied by the constrained expression.

2.3.1.1 Integral Constraints

Theorem 5 is proven using Property 4 applied to expressions such as C
(l)

i

[
(k)φj C

(k)
j[g]
]

=

(k)φj C
(l)

i

[
C

(k)
j[g]
]
. These expressions are true so long as the constraint operator of the l-th

independent variable does not affect functions that do not contain l. This is true for all

constraint types introduced thus far, except integral constraints. Integral constraints may
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have constraint operators like,

C
(l)

i[f(x1, . . . , xl, . . . , xn)] =

∫ b

a

f(x1, . . . , c, . . . , xn) dxk,

where a, b, c ∈ R, which affect functions of the k-th independent variable, even though the

constraint operator is for the l-th independent variable. Although this type of constraint is

rare in PDEs, in the interest of introducing a general function interpolation technique, the

next section presents a method to embed integral constraints into multivariate constrained

expressions.

The interference between independent variables introduced by integral constraints can

be avoided by modifying the switching functions and processing order of the univariate

constrained expressions.

Theorem 6

Processing the independent variables that appear as integration variables in integral

constraints after the independent variables associated with the integral constraints

and modifying the switching functions of all constraints of the variables of integration

such that they yield zero when operated on by the constraint operators of said inte-

gral constraints is a valid method for embedding integral constraints into multivariate

constrained expressions.

Proof: Let the constraints of the l-th independent variable contain an integral con-

straint whose variable of integration is the k-th independent variable. Moreover, as per

the theorem statement, let the switching functions of the k-th independent variable

be defined such that C
(l)

m[(k)φj] = 0 if the m-th constraint is the integral constraint.

Now, following the recursive method, the bivariate constrained expression for the k-th
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and l-th independent variables is,

(k)u(x, (l)u(x, g(x))) = (l)u(x, g(x)) + (k)φj(xk)
(k)ρj(x,

(l)u(x, g(x))).

From Theorem 5, the constraints of the k-th independent variable and non-integral

constraints of the l-th independent variable are satisfied. As in Theorem 5, expand

the expression for (k)u and drop the x and g(x) arguments for clarity,

(k)u = g + (l)φi

(
(l)κi − C

(l)
i[g]
)

+ (k)φj

(
(k)κj − C

(k)
j[g]− (l)φi

(
C

(k)
j[

(l)κi]− C
(k)

j

[
C

(l)
i[g]
]))

.

Apply the constraint operator for the integral constraint,

C(l)
m[(k)u] = C(l)

m[g] + δmi

(
(l)κi − C

(l)
i[g]
)

+ C(l)
m

[
(k)φj

(
(k)κj − C

(k)
j[g]− (l)φi

(
C

(k)
j[

(l)κi]− C
(k)

j

[
C

(l)
i[g]
]))

︸ ︷︷ ︸
Not a function of the k-th independent variable

]
.

As noted in the above expression, the function highlighted by the underbrace is not

a function of the k-independent variable; hence, the integration portion of the C
(l)

m

constraint operator only acts on (k)φj. Moreover, recall that this method redefines the

switching functions such that C
(l)

m[(k)φj] = 0. Thus,

C(l)
m[(k)u] = C(l)

m[g] + δmi

(
(l)κi − C

(l)
i[g]
)

= C(l)
m[g] + (l)κm − C(l)

m[g]

= κm,

as desired. Therefore, all constraints, integral and non-integral, on both the k-th and
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l-th independent variables are satisfied. Applying this proof recursively shows that this

is a valid method for constructing multivariate constrained expressions that contain

integral constraints. �

Example 2.7 provides a concrete demonstration of Theorem 6.

Example 2.7: Multivariate integral constraints

Consider the following set of constraints,

u(x, 0) = 2uy(x, 1), u(x, 2) = sin(x), and
∫ 1

−1

u(2, y) dy = 5.

Based on the previous discussion, the x independent variable will be processed first,

because it has an integral constraint with integration variable y, and the switching

functions for the constraints in y must be created such that they are equal to zero

when evaluated with the constraint operator for the integral constraint. That is, the

equations for the y switching functions are,

(2)φ1(0)− 2
∂ (2)φ1

∂y
(1) = 1, (2)φ1(2) = 0,

∫ 1

−1

(2)φ1(y) dy = 0,

(2)φ2(0)− 2
∂ (2)φ2

∂y
(1) = 0, (2)φ2(2) = 1,

∫ 1

−1

(2)φ2(y) dy = 0.

Even though there are only two constraints in the y-dimension, each switching function

must satisfy three sets of equations. Therefore, each switching function should be

a linear combination of three linearly independent support functions with unknown

coefficients, (2)φi(y) = αijsj(y) where i ∈ {1, 2} and j ∈ {1, 2, 3}. As before, the
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equations can be written in a compact matrix form and solved via matrix inversion.


1 −2 −4

1 2 4

2 0 2
3



α11 α12

α21 α22

α31 α32

 =


1 0

0 1

0 0



α11 α12

α21 α22

α31 α32

 =


1
2

1
2

11
4

13
4

−3
2
−3

2


Next, the univariate constrained expressions for each of the independent variables can

be written as,

(1)u(x, y, g(x, y)) = g(x, y) +
1

2

(
5−

∫ 1

−1

g(2, τ) dτ
)
,

(2)u(x, y, g(x, y)) = g(x, y) +
2 + 11y − 6y2

4

(
2gy(x, 1)− g(x, 0)

)
+

2 + 13y − 6y2

4

(
sin(x)− g(x, 2)

)
,

and following the method outlined earlier, the full multivariate constrained expression

can be written as,

u(x, y,g(x, y)) = (2)u(x, y, (1)u(x, y, g(x, y)))

= g(x, y) +
1

4

[
2(2− y)

(
(6y + 1)gy(x, 1) + 3y

(∫ 1

−1

g(2, τ) dτ − 5

))
+ (y − 2)(6y + 1)g(x, 0) +

(
y(6y − 13)− 2

)
g(x, 2)

+ (y(13− 6y) + 2) sin(x)
]
.

(2.7)

As expected, Equation (2.7) satisfies the constraints for any valid free function g(x, y).

It is important to note that this method cannot embed sets of integral constraints whose
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independent variables refer to one another, such as,

∫ 1

0

u(x, 0) dx = 1 and
∫ 1

0

u(0, y) dy = 1.

The reason is that the first integral constraint requires that the y independent variable be pro-

cessed before x, but the second integral constraint requires that the x independent variable

be processed before y: obviously, these two requirements cannot be satisfied simultaneously.

Therefore, this method cannot embed such constraints.

2.3.1.2 Component Constraints

As in the univariate case, one must choose which dependent variable a component con-

straint will be assigned to. Again, graph theory can be used in the same manner as before

to determine all possible ways in which a set of component constraints can be embedded, see

Example 2.4. However, when moving to the multivariate case, one must be cautious of the

intersections between component constraints and other constraints: Example 2.8 highlights

this nuance.

Example 2.8: Multivariate component constraints

Consider the following set of constraints,

u(x, 0) = 5 and u(0, y) + v(0, y) = 3.

If one chose to embed the component constraint into u and process the constraints on

x first, then the constrained expressions would be,

u(x, y, gu(x, y), gv(x, y)) = gu(x, y) + 5− gu(x, 0)− gu(0, y)− v(0, y, gv(x, y))

+ v(0, 0, gv(x, y)) + gu(0, 0)

v(x, y, gv(x, y)) = gv(x, y).
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Clearly, the constrained expression for u does not satisfy the two constraints for any

valid free function, e.g., choosing gu(x, y) = 3 and gv(x, y) = 2 yields u(0, y, 3) +

v(0, y, 2) = 7 6= 3; the reason stems from the intersection between the two con-

straints.a At the intersection, u must be equal to 5, but simultaneously be equal

to 3−v(0, y, gv(0, y)). If gv(x, y) was chosen in such a way that gv(0, 0) = −2, then all

constraints would be satisfied, but of course the objective of constrained expressions is

to provide a functional that satisfies the constraints wherein the free function can be

chosen without restriction. In other words, since at the intersection of the constraints,

(x, y) = (0, 0), u = 5 as specified by the first constraint, the only way to simultaneously

satisfy the component constraint is to change v; hence, the component constraint must

be placed on v. Doing so results in the constrained expressions,

u(x, y, gu(x, y)) = gu(x, y) + 5− gu(x, 0)

v(x, y, gv(x, y), gu(x, y)) = gv(x, y) + 3− gv(0, y)− u(0, y, gu(x, y)).

which satisfy the constraints for any valid gu(x, y) and gv(x, y).
aAlthough this example only shows the intersection issue when processing the constraints on x

first, the same issue arises even if the constraints on y are processed first.

As demonstrated in Example 2.8, component constraints must only be placed on de-

pendent variables that do not have other constraints that intersect with the component

constraint. Of course, if each variable in the component constraint has a constraint at the

intersection point, then the component constraint can be placed on either variable. For

example, if the constraints in Example 2.8 were,

u(x, 0) = 5, v(x, 0) = −2, and u(0, y) + v(0, y) = 3,

then the component constraint could have been embedded into either u or v. Therefore,
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while the graph theory introduced in the univariate section can be used to determine com-

ponent constraint embeddings that avoid infinite recursions when evaluating the constrained

expressions, it is up to the user to further reduce this set of graphs to those that avoid the

intersection issues described above.

After considering the previous restrictions on component constraints, one may contrive a

set of equations where it is impossible to meet the aforementioned conditions. For example,

consider the following constraints,

u(0, y) = 5, v(1, y) = 2, and u(x, 0) + v(x, 0) = 3.

The component constraint cannot be placed on u because of the intersection at (0, 0), but

it also cannot be placed on v because of the intersection at (1, 0). The only option here is

to split the domain along the x-axis for some xsplit ∈ (0, 1). Then, in the left sub-domain,

x < xsplit, the component constraint will be embedded into v, and in the right sub-domain,

x > xsplit, the component constraint will be embedded into u. At the intersection of these two

sub-domains, x = xsplit, one can enforce Cn continuity—n is chosen by the user or dictated

by the problem—by adding constraints at the intersection that can ultimately be embedded

into the constrained expressions. For more information and an example on splitting the

domain, see Appendix D.

2.3.1.3 Linear Constraints

Multivariate linear constraints consist of linear combinations of the previously introduced

constraint types. Thus, one must be conscientious of the nuances of both integral and

component constraints if they appear in the linear constraints. The following step-by-step

procedure can be used to construct multivariate constrained expressions:

1. Generate the directed, acyclic graphs that show all the valid ways that the component

constraints can be embedded. Of these graphs, either choose one that satisfies the

intersection restriction discussed in the previous section or choose one and split the
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domain as needed. The chosen graph will dictate the order in which the dependent

variables’ constrained expressions are created.

2. For each dependent variable, choose the order in which the univariate constrained

expressions will be processed. This order is dictated in part by the presence of integral

constraints.

3. Build the multivariate constrained expressions.

This step-by-step procedure can be used for any embeddable set of constraints. Of course,

steps in this procedure may be omitted depending on the types of constraints present. For

example, if the set does not contain any component constraints, then there is no need to

perform step 1, and the dependent variables’ constrained expressions can be created in any

order. Example 2.9 demonstrates this process.

Example 2.9: Multivariate linear constraints

Consider the following set of constraints,

u(0, y) = cos(πy),

∫ 2

−1

u(1, y) dy = e, u(x, 1)− u(x, 2) = −2,

u(x, 0) + v(x, 0) = 5, and v(0, y) = 5− cos(πy).

As per the procedure outlined above, step 1 is to generate the directed graphs that

dictate the valid ways in which the component constraint can be embedded. In this

example, those graphs are trivial: the single component constraint can be embedded

into either u or v without producing a set of constrained expressions that require an

infinite recursion upon evaluation. However, u contains an integral constraint along

the x = 1 line, and there is no corresponding constraint at x = 1 in v. Hence,

the component constraint is embedded into the v constrained expression, and the

intersection issue is avoided. It follows that the u constrained expression will be
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created before the v constrained expression.

Next, the processing order for the independent variables must be decided. For v,

the order does not matter as no integral constraints are present. In contrast, for u, the

constraints on x must be processed before those on y, as the constraints on x contain

an integral constraint wherein y is an integration variable.

Now the constrained expressions can be created. First the u constrained expression

is created. The univariate constrained expressions for the constraints on x and y are,

(1)u(x, y, gu(x, y)) = gu(x, y)) + (1− x)
(

cos(πy)− gu(0, y)
)

+
x

3

(
e−

∫ 2

−1

gu(1, τ) dτ
)

(2)u(x, y, gu(x, y)) = gu(x, y) +
1− 2y

2

(
gu(x, 2)− gu(x, 1)− 2

)
,

where monomials have been used as the support functions. These two constrained

expressions are used in the processing order defined above to produce the multivariate

constrained expression for u,

u(x, y,gu(x, y)) = gu(x, y) +
1

3
x

(
e−

∫ 2

−1

gu(1, τ) dτ
)

+
1− 2y

2

(
(1− x)(1 + gu(0, 1))

+ (1− x)(1− gu(0, 2))− gu(x, 1) + gu(x, 2)− 2
)

+ (1− x)(cos(πy)− gu(0, y)).

For v, the univariate constrained expressions for the constraints on x and y are,

(1)v(x, y, gv(x, y)) = gv(x, y) + 5− cos(πy)− gv(0, y)

(2)v(x, y, gv(x, y), gu(x, y)) = gv(x, y) + 5− gv(x, 0)− u(x, 0, gu(x, y)),

where monomials have been used as the support functions. The full multivariate
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constrained expression for v is,

v(x, y,gv(x, y), gu(x, y)) = gv(x, y)− gv(x, 0)− gv(0, y) + gv(0, 0)− u(x, 0, gu(x, y))

+ u(0, 0, gu(x, y))− cos(πy) + 5.

The constrained expressions satisfy the constraints for any valid gu(x, y) and

gv(x, y). Figure 2.4 shows the constrained expressions for u and v evaluated using

gu(x, y) = xy+ sin(x) + y2 and gv(x, y) = x2y cos(y)ex. The value constraints that are

easily visualized, the constraints on u(x, 0) and v(x, 0), are shown as black lines. The

remaining constraints are not easily visualized and are therefore not shown, but they

are satisfied nonetheless.

(a) u(x, y, gu(x, y)) (b) v(x, y, gv(x, y), gu(x, y))

Figure 2.4: Constrained expressions evaluated using gu(x, y) = xy + sin(x) + y2 and
gv(x, y) = x2y cos(y)ex. The value constraints on u(x, 0) and v(x, 0) are shown as
black lines. The remaining constraints are not easily visualized and are therefore not
shown but are satisfied nonetheless.
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2.3.2 Multivariate Constrained Expression Theorems

This section introduces theorems for multivariate constrained expressions that parallel the

theorems for univariate constrained expressions given in Section 2.2.4. Note that Theorems 5

and 6 for multivariate constrained expressions given earlier parallel Theorem 1 for univariate

constrained expressions, and will not be repeated here.

Theorem 7 shows that the constrained expression functional represents the family of all

possible functions that satisfy the constraints.

Theorem 7

For any function satisfying the constraints, f(x) : Rn 7→ R, there exists at least one free

function, g(x), such that the constrained expression u(x, g(x)) = f(x). In other words,

constrained expressions are surjective functionals whose domain is all free functions

and whose codomain is all functions that satisfy the constraints.

Proof: Note that the processing order used in this proof is chosen arbitrarily, and

could be modified to use the processing order required for any set of constraints

and still produce the same final result. Based on Theorem 2, the univariate con-

strained expression will return the free function if the free function satisfies the con-

straints. Let (1)u(x, g(x)) represent the univariate constrained expression for the

independent variable x1 that uses the free function g(x), (2)u(x, (1)u(x, g(x))) rep-

resent the univariate constrained expression for the independent variable x2 that

uses the free function (1)u(x, g(x)), and so on up to (n)u(x, (n−1)u(x, g(x))), which

is simply the constrained expression u(x, g(x)). If one chooses g(x) = f(x), then

based on Theorem 2 (1)u(x, f(x)) = f(x). Applying Theorem 2 recursively leads to

(2)u(x, (1)u(x, g(x))) = f(x) and so on until u(x, f(x)) = f(x). Hence, for any func-

tion satisfying the constraints, f(x), there exists a free function, g(x) = f(x), such

that the multivariate constrained expression is equal to the function satisfying the
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constraints, i.e., u(x, f(x)) = f(x). �

Based on the univariate constrained expression theorems, one is inclined to guess that

the free function obtained in the previous theorem is not unique. As Theorem 8 shows, this

inclination is correct.

Theorem 8

For a given function satisfying the constraints, f(x) : Rn 7→ R, the free function, g(x),

in the constrained expression u(x, g(x)) = f(x) is not unique. In other words, con-

strained expressions are not injective functionals over the domain of all free functions

and codomain of all functions that satisfy the constraints.

Proof: Since each expression (i)u(x, g(x)) used in deriving the multivariate con-

strained expression is derived through the univariate formulation, the results of the

proof of Theorem 3 apply for each each (i)u(x, g(x)), and therefore, the free function

g(x) is not unique. �

Like in the univariate case, this proof has immediate implications when using the con-

strained expression for optimization. Through the recursive application of the univariate

TFC approach, for cases with no integral constraints, any terms in g(x) that are lin-

early dependent to the the support functions, si(x1), sj(x2), ... , sk(xn), will not con-

tribute to the solution. In the multivariate case, this also includes products of the sup-

port functions that include one and exactly one support function from each independent

variable, e.g., si(x1)sj(x2)...sk(xn). For example, suppose the support functions si(x) =

{1, x, x2} and sj(y) = {y, y2} were used when deriving a multivariate constrained expression.

Then, any terms in the free function linearly dependent to any of the following functions

{1, x, x2, y, y2, xy, x2y, xy2, x2y2} can be removed, as they do not affect the output of the

constrained expression.
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Integral constraints may add a slight complication, as they change the number of support

functions used. In general, when using integral constraints in the multivariate case, the

expression,

αkiSij = δjk,

is no longer true. Thus, some functions that are linearly dependent to the support functions

may still be significant when included in the free function. Example 2.10 shows how to

determine which functions linearly dependent to the support functions still have a significant

contribution when included in the free function using the constraints from Example 2.7.

Example 2.10: Integral constraint linear dependence

Consider the constraints from Example 2.7, copied below for the reader’s conve-

nience:

u(x, 0) = 2uy(x, 1), u(x, 2) = sin(x), and
∫ 1

−1

u(2, y) dy = 5.

In Example 2.7, the two constrained expressions were derived as,

(1)u(x, y, g(x, y)) = g(x, y) +
2 + 11y − 6y2

4

(
2gy(x, 1)− g(x, 0)

)
+

2 + 13y − 6y2

4

(
sin(x)− g(x, 2)

)
(2)u(x, y, g(x, y)) = g(x, y) +

1

2

(
5−

∫ 1

−1

g(2, τ) dτ
)
,

using the support functions s1(x) = 1 for x and s1(y) = 1, s2(y) = y, and s3(y) = y2

for y. Theorem 3 applies without modification to (2)u, as (2)u was created using the

regular univariate theory. In contrast, the switching functions of (1)u were modified

to include
∫ 1

−1
(y)φk(y) dy = 0 for k ∈ {1, 2}. As mentioned earlier, this means that

Theorem 3 must be modified slightly as αkiSij 6= δjk in this case.

For the reader’s convenience, the last few lines of Theorem 3 have been copied
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below:

y(x) = f(x) + βj

(
δjk − αki Sij

)
sk(x)

y(x) = f(x) + βj

(
δjk − δjk

)
sk(x)

y(x) = f(x).

For the constraints given in this example, the last few lines are re-derived. Let Bjk

be defined by

Bjk = αkiSij =


1 1

−2 2

−4 4


1

2
11
4
−3

2

1
2

13
4
−3

2

 =


1 6 −3

0 1 0

0 2 0

 .

Suppose that βj =

{
a, b, c

}
, then,

βj

(
δjk − αkiSij

)
sk(x) = βj

(
δjk −Bjk

)
sk(x)

=

{
a, b, c

}(
1 0 0

0 1 0

0 0 1

−


1 6 −3

0 1 0

0 2 0


)

1

y

y2


=

{
a, b, c

}(
0 −6 3

0 0 0

0 −2 1


)

1

y

y2


= 3ay2 − 6ay + cy2 − 2cy.

Hence, only the constants a and c affect the final results. However, notice that the

first and third row of δjk − Bjk are linearly dependent. Consequently, the effect of a
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and c on the final solution differs only by a constant. Therefore, one concludes that

in this case, any functions linearly dependent to y do not affect the final solution,

and the effect of any functions linearly dependent to 1 on the final solution will be

linearly dependent with the effect of any functions linearly dependent to y2 on the

final solution.

Consequently, one can remove any functions linearly dependent to two different

functions, either 1 and y, or y and y2, from the free function g(x, y) without changing

the final result. This can be interpreted intuitively, as the number of functions to be

removed from g(x, y) due to constraints on y matches the number of constraints on y:

two. Moreover, because this is a multivariate case, one can also remove any products

of the support functions that include one and exactly one support function from each

independent variable. However, in this case, the only support function used for the

x constrained expression is 1. Therefore, this does not contribute to the terms to be

removed from g(x, y).

As Example 2.10 shows, one must examine the matrix δjk − αkiSij to calculate which

terms linearly dependent to the support functions contribute to the non-uniqueness of the

free function. In this matrix, a row of all zeros indicates that the corresponding support

function does not contribute to the final result; for the optimization process, this corresponds

to removing terms linearly dependent to that support function from the free function. Linear

dependence between rows of the matrix indicates that the effect of the corresponding support

functions on the final result differs only by a constant; for the optimization process, this

corresponds to removing the terms in the free function linearly dependent to one of the

support functions associated with the linearly dependent rows in the matrix.

As in the univariate case, the multivariate constrained expressions can be shown to be

projection functionals: this is done in Theorem 9.
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Theorem 9

The multivariate constrained expression is a projection functional.

Proof: To prove Theorem 9, one must show that u(x, u(x, g(x))) = u(x, g(x)). The-

orems 5 and 6 show that constrained expression returns a function that satisfies the

constraints. In other words, for any g(x), u(x, g(x)) is a function that satisfies the

constraints. From Theorem 7, if the free function used in the constrained expression

satisfies the constraints, then the constrained expression returns that free function ex-

actly. Hence, if the constrained expression function is given itself as the free function,

it will simply return itself. �

In addition, just as in the univariate case, Theorems 7, 8, and 9 allow for a more rigorous

definition of the multivariate constrained expression. The multivariate constrained expres-

sion is a surjective, projection functional whose domain is the set of all free functions and

whose codomain is the set of all functions that satisfy the constraints.

2.3.3 Tensor Form

Recursive applications of univariate TFC lead to constrained expressions that lend them-

selves nicely to mathematical proofs, such as those in the previous section. However, at

times it may be more convenient to express the constrained expression in a more compact

form. Conveniently, multivariate constrained expressions that are formed from recursive

applications of univariate TFC can be succinctly expressed in the following tensor form,

u(x) = g(x) +M(ρ(x, g(x))i1i2...inΦi1(x1)Φi2(x2) . . .Φin(xn)

where i1, i2, . . . , in are n indices associated with the n-dimensions that have constraints,M is

an n-dimensional tensor whose elements are based on the projection functionals, ρ(x, g(x)),

and the n vectors Φik are vectors whose elements are based on the switching functions for
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the associated dimension.

TheM tensor can be constructed using a simple two-step process. Note that the argu-

ments of functionals are dropped in this explanation for clarity.

1. The elements of the first order sub-tensors of M acquired by setting all but one in-

dex equal to one are a zero followed by the projection functionals for the dimension

associated with that index. Mathematically,

M1...ik...1 =

{
0, (k)ρ1, · · · , (k)ρ`k

}
,

where (k)ρj indicates the j-th projection functional of the k-independent variable and

`k is the number of constraints associated with the k-th independent variable.

2. The remaining elements of the M tensor, those that have more than one index not

equal to one, are the geometric intersection of the associated projection functionals

multiplied by a sign (− or +). Mathematically, this can be written as,

Mi1i2...in = C
(j)

ij−1

[
C

(k)
ik−1

[
· · ·
[

(h)ρih−1

]
· · ·
]]

(−1)m+1, (2.8)

where ij, ik, . . . , ih are the indices of Mi1i2...in that are not equal to one and m is

equal to the number of non-one indices. If no integral constraints are present, i.e.,

the processing order of the independent variables does not matter, then by multiple

applications of Clairaut’s Theorem the variables associated with the constraint oper-

ators and projection functional in Equation (2.8) can be freely permuted [1, 15]. For

example, if no integral constraints are present, then Equation (2.8) could be re-written

as,

Mi1i2...in = C
(h)

ih−1

[
C

(j)
ij−1

[
· · ·
[

(k)ρik−1

]
· · ·
]]

(−1)m+1.

If integral constraints are present, then the processing order of the associated elements

of theM tensor must match the processing order used in the recursive formulation.
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The elements of the vectors Φik are composed of a 1 followed by the switching functions

associated with the k-th independent variable. Mathematically,

Φik =

{
1, (k)φ1, · · · , (k)φ`k

}
,

where (k)φj denotes the j-th switching function of the k-th independent variable.

To solidify the reader’s understanding of the tensor form explained above, some of the

previous examples’ constrained expressions are re-derived below in Examples 2.11, 2.12, and

2.13.

Example 2.11: Non-integral constraints in tensor form

Consider the constraints from Example 2.6

u(0, y) = y2 sin(πy), u(1, y) + u(2, y) = y sin(πy),

uy(x, 0) = 0, and u(x, 0) = u(x, 1).

The first step of the two-step process yields the first order sub-tensors ofM.

Mij(x, y, g(x, y)) =


0 −gy(x, 0) g(x, 1)− g(x, 0)

y2 sin(πy)− g(0, y) - -

y sin(πy)− g(2, y)− g(1, y) - -


Then, the elements ofM associated with more than one, non-one index can be found

using step two. For example,

M22 = (−1)3 C
(1)

1[(2)ρ1] = −[−gy(x, 0)]
∣∣∣
x=0

= gy(0, 0)

= (−1)3 C
(2)

1[(1)ρ1] = −∂[y2 sin(πy)− g(0, y)]

∂y

∣∣∣
y=0

= gy(0, 0).
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Hence, the fullM tensor can be written as,

Mij(x, y, g(x, y)) =
0 −gy(x, 0) g(x, 1)− g(x, 0)

y2 sin(πy)− g(0, y) gy(0, 0) g(0, 0)− g(0, 1)

y sin(πy)− g(2, y)− g(1, y) gy(2, 0) + gy(1, 0) g(2, 0) + g(1, 0)− g(2, 1)− g(1, 1)

 .

The Φ vectors are built using the switching functions from the univariate cases,

Φi(x) =

{
1, 3−2x

3
, x

3

}
and Φj(y) =

{
1, y − y2, −y2

}
.

Using theM tensor and the Φ vectors, the full constrained expression is,

u(x, y, g(x, y)) = g(x, y) +Mij(x, y, g(x, y))Φi(x)Φj(y).

Expanding this expression and simplifying yields,

u(x, y,g(x, y)) = g(x, y) +
(
y − y2

) (3− 2x

3
gy(0, 0)− x

3
(−gy(1, 0)− gy(2, 0))

− gy(x, 0)
)
− y2

(3− 2x

3
g(0, 0)− 3− 2x

3
g(0, 1)− x

3
(−g(1, 0)− g(2, 0))

+
x

3
(−g(1, 1)− g(2, 1))− g(x, 0) + g(x, 1)

)
+

3− 2x

3

(
y2 sin(πy)− g(0, y)

)
+
x

3

(
− g(1, y)− g(2, y) + y sin(πy)

)
,

the same result as in Example 2.6.

Example 2.12: Integral constraints in tensor form

Consider the constraints from Example 2.7

u(x, 0) = 2uy(x, 1), u(x, 2) = sin(x), and
∫ 1

−1

u(2, y) dy = 5.
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Using the same two step process theM tensor is constructed,

Mij(x, y, g(x, y)) =

 0 2gy(x, 1)− g(x, 0) sin(x)− g(x, 2)

5−
∫ 1

−1
g(2, τ) dτ

∫ 1

−1
g(2, τ) dτ − 5

∫ 1

−1
g(2, τ) dτ − 5

 .
Since all the elements of the M tensor with more than one, non-one index contain

intersections including integral constraints, they must be processed in a specific order.

For example,

M22 = (−1)3 C
(2)

1[(1)ρ1] = 2
∂
(

5−
∫ 1

−1
g(2, τ) dτ

)
∂y

∣∣∣
y=1
−
(

5−
∫ 1

−1

g(2, τ) dτ
)∣∣∣

y=0

=

∫ 1

−1

g(2, τ) dτ − 5,

produces the correct result that leads to a valid constrained expression, whereas,

(−1)3 C
(1)

1[(2)ρ1] =

∫ 1

−1

(
g(2, 0)− 2gy(x, 1)

)
dτ,

does not.

The Φ vectors are built using the switching functions from the univariate cases,

Φi(x) =

{
1, 1

2

}
and Φj(y) =

{
1, 2+11y−6y2

4
, 2+13y−6y2

4

}
.

Using theM tensor and the Φ vectors, the full constrained expression is,

u(x, y, g(x, y)) = g(x, y) +Mij(x, y, g(x, y))Φi(x)Φj(y).
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Expanding this expression and simplifying yields,

u(x, y,g(x, y)) = g(x, y) +
1

4

(
2(2− y)

(
(6y + 1)gy(x, 1) + 3y

(∫ 1

−1

g(2, τ) dτ − 5

))
+ (y − 2)(6y + 1)g(x, 0) + (y(6y − 13)− 2)g(x, 2) + (y(13− 6y) + 2) sin(x)

)
,

the same result as in Example 2.7.

Example 2.13: Linear constraints in tensor form

Consider the constraints from Example 2.9,

u(0, y) = cos(πy),

∫ 2

−1

u(1, y) dy = e, u(x, 1)− u(x, 2) = −2,

u(x, 0) + v(x, 0) = 5, and v(0, y) = 5− cos(πy).

Using the two step process theM tensors for u and v are constructed,

Mu
ij(x, y,g

u(x, y), gv(x, y)) =


0 −2− gu(x, 1) + gu(x, 2)

cos(πy)− gu(0, y) 2 + gu(0, 1)− gu(0, 2)

e−
∫ 2

−1
gu(1, τ) dτ 0

 ,
Mv

ij(x, y,g
u(x, y), gv(x, y)) = 0 5− gv(x, 0)− u(x, 0, gu(x, y))

5− cos(πy)− gv(0, y) −5 + gv(0, 0) + u(0, 0, gu(x, y))

 .
The Φ vectors are built using the switching functions from the univariate cases,

Φu
i (x) =

{
1, 1− x, x

3

}
, Φu

j (y) =

{
1, 1−2y

2

}
,

Φv
i (x) =

{
1, 1

}
, and Φv

j (y) =

{
1, 1

}
.
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Using theM tensors and the Φ vectors, the full constrained expressions are,

u(x, y, gu(x, y)) = gu(x, y) +Mij(x, y, g
u(x, y))Φu

i (x)Φu
j (y),

v(x, y, gv(x, y), gu(x, y)) = gv(x, y) +Mij(x, y, g
v(x, y), gu(x, y))Φv

i (x)Φv
j (y).

Expanding these expressions and simplifying yields,

u(x, y,gu(x, y)) = gu(x, y) +
1

3
x

(
e−

∫ 2

−1

gu(1, τ) dτ
)

+
1− 2y

2

(
(1− x)(1 + gu(0, 1))

+ (1− x)(1− gu(0, 2))− gu(x, 1) + gu(x, 2)− 2
)

+ (1− x)(cos(πy)− gu(0, y)),

v(x, y,gv(x, y), gu(x, y)) = gv(x, y)− gv(x, 0)− gv(0, y) + gv(0, 0)− u(x, 0, gu(x, y))

+ u(0, 0, gu(x, y))− cos(πy) + 5,

the same result as in Example 2.9.
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3. APPLICATIONS IN DIFFERENTIAL EQUATIONS

The constrained expressions introduced in the previous chapter provide a way to analyti-

cally embed linear constraints in n-dimensions, which has a wide variety of applications, such

as Computer-Aided Design (CAD) [21, 22], image warping [23], and security pattern design

[24]. However, this dissertation focuses on the application of TFC to differential equations.

Differential equations are used to model and simulate physics as well as design and refine

ideas, objects, systems of objects, and systems of systems. Consequently, due to their general

scope, differential equations are used across a diverse range of fields, such as engineering,

finance, medicine, biology, and chemistry. Although ordinary differential equations (ODEs)

will be discussed, this section’s primary focus will be on partial differential equations (PDEs).

Due to their wide applicability, a variety of methods exist to approximate the solutions of

PDEs: chief among them is the finite element method (FEM) [25, 26, 27, 28]. Although

FEM has been incredibly successful in solving PDEs, it does have some drawbacks.

FEM discretizes the domain into elements. This works well for low-dimensional cases,

but the number of elements grows exponentially with the number of dimensions. Therefore,

the discretization becomes prohibitive as the number of dimensions increases. Another issue

is that FEM solves the PDE at discrete nodes, but if the solution is needed at locations

other than these nodes, an interpolation scheme must be used. Moreover, extra numerical

techniques are needed to perform further manipulation of the FEM solution.

Spectral methods [29, 30, 31], pseudo-spectral methods [32], and many of their variants

avoid some of these issues by proposing an analytical solution form with unknown terms

that can ultimately be used to reduce the residual of the PDE at a discrete set of training

points1 and simultaneously to reduce the error in the constraints. Since these techniques use

an analytical solution form, they do not require an interpolation scheme for obtaining the
1Here, and throughout the dissertation, “training points” refers to the points used by the algorithm to

estimate the solution of the differential equation.
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solution at points not seen during training, and the PDE solution can be further manipulated

afterward without any special techniques. However, these methods still rely on a set of basis

functions, and as will be shown later, the number of basis functions required to obtain an

accurate solution can become prohibitive, e.g., see the Navier-Stokes example in Section 3.4.

Using neural networks (NNs) to estimate the solution of PDEs can help circumvent this

issue [33, 34, 35], as NNs have been proven to be extremely useful when approximating

high-dimensional, nonlinear functions: for example, consider computer vision problems that

contain thousands of dimensions or the 200 dimensional PDE estimated via NNs in Reference

[35]. Similar to the spectral and pseudo-spectral methods, the NN techniques represent a

closed-form, analytical estimation of the PDE, and therefore, do not require an interpolation

scheme or other special techniques to further manipulate the estimated PDE solution. In

most of these techniques, the constraints and minimization of the PDE residual are handled

via the loss function that is minimized when training the NN. Although some of them do use a

functional solution form that automatically satisfies the constraints, these functionals do not

have the same mathematical guarantees as the TFC constrained expressions, see the theorems

in Chapter 2, and cannot satisfy certain sets of constraints, such as the constraints in the

Navier-Stokes problem in Section 3.4. In addition, the functionals of the other algorithms

are multiplicative in nature, whereas TFC constrained expressions are additive in nature.

One property that all of these techniques lack is a mechanized way to satisfy the PDE

constraints analytically. Such a technique is particularly important in physics-informed

problems and/or when constraint information is known with a high degree of confidence

[3, 36]. Fortunately, as shown in previous chapters, TFC provides a mechanized method to

analytically satisfy constraints while maintaining a free function. Furthermore, with a little

imagination, many of the concepts from the previously introduced PDE solution methods

can be adopted and combined with the constrained expression to form useful PDE estimation

methods. The benefits of these methods are:

• The constraints are analytically satisfied by the constrained expression, and therefore,
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do not need to be handled in a separate way, such as augmenting the loss function,

using an optimizer that handles constraints, or appending the constraints to the system

of equations to be solved.

• A consequence of the previous benefit is that the TFC methods are typically faster

than the competing algorithms.

• Improved convergence, especially when the initial guess is poor [37].

The methods that utilize the TFC constrained expression differ only in their choice of

free function. Hence, a general methodology can be introduced that can be used for any

differential equation with linear constraints, and one can switch between the PDE estimation

methods simply by varying the free function. The general methodology can be summarized

in five steps:

1. Derive the constrained expression associated with the differential equation’s

constraints.

2. Define the free function, g(x).

3. Discretize the domain.

4. Formulate the loss function based on the residual of the differential equation.

5. Minimize the loss function in the previous step using the free function defined in step

two.

Figure 3.1 visually depicts these steps via a flowchart.

In general, a differential equation can be represented by some function F of the indepen-

dent variables, x, the dependent variable u, and its derivatives, i.e.,

F

(
x;u;

∂u

∂x1

, . . .
∂u

∂xn
;

∂2u

∂x1∂x1

, . . .
∂2u

∂x1∂xn
; . . .

)
= 0.
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k constraints TFC

D iscret ize dom ain

D efine free funct ion

D er ive constrained expression

 

Support functions

D ifferential equation subject to k constraints

Figure 3.1: Differential equation solution estimation using TFC.

The constraints of this differential equation can be used to create a TFC constrained expres-

sion. Then, this constrained expression can be substituted into the differential equation to

form a differential equation with no constraints, F̃ , that is a function of the free function

rather than the dependent variable.

Next, the free function is defined and substituted into the differential equation. In Figure

3.1, the unknown parameters in g(x) are represented by the symbol ξ, e.g., ξ represents θ

if g(x) is selected as a neural network, ξ represents w if g(x) is selected as a LS-SVM, etc.,

see below for more details on each of these free function choices. Once the free function is

substituted, the differential equation, F̃ , becomes an algebraic equation that is a function of

the independent variables x and the unknown parameters ξ only.

The dependence on the independent variables is removed by discretizing the domain. In
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general, the domain of the free function may not coincide with the domain of the problem.

For example, suppose the free function is selected as a linear combination of Chebyshev

orthogonal polynomials which are defined on [−1, 1]. Let the free function be defined on

z ∈ [z0, zf ] and the problem be defined on xk ∈ [xk0 , xkf ] where k corresponds to the

dimension. In order to use the free function, a map between the basis function domain

and problem domain must be created. The simplest map is a linear one,

z = z0 +
zf − z0

xkf − xk0
(x− xk0) ←→ xk = xk0 +

xkf − xk0
zf − z0

(z − z0). (3.1)

After discretizing the domain, the resultant set of algebraic equations is now only a

function of the unknown parameters ξ: this algebraic set of equations, also known as the

loss function, is denoted by L(ξ). Thus, ξ are used to minimize the difference between L(ξ)

and 0. Once the parameters that minimize the difference are found, they can be substituted

back into the constrained expression to estimate the solution of the differential equation.

Note that because the constrained expression is an analytical expression, it can be easily

manipulated afterward, e.g., differentiated, integrated, etc.

3.1 Useful Free Function Choices

This section explains in detail some useful free function choices that are used in examples

in later sections to solidify the reader’s understanding of how TFC is applied to differential

equations. Note that while it is included in this section for completeness and historical

significance, as it paved the way for other machine learning algorithms, the Constrained

Support Vector Machine (CSVM) methodology is no longer actively used as a free function

choice, because it requires a complex analytical analysis for each new differential equation,

and the resultant payoff in terms of solution error is overshadowed by the other free function

choices.
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3.1.1 Linear Combination of Basis Functions

A natural choice for the free function is a linear combination of basis functions, as this

choice is capable of spanning the entire function space that the basis spans as the number of

basis functions approaches infinity. For readers unfamiliar with univariate and multivariate

basis functions, Appendix E provides a cursory overview.

Mathematically, a linear combination of m basis functions can be expressed as,

g(x) = hTξ,

where h ∈ Rm is a vector of the m basis functions evaluated at x, and ξ ∈ Rm is a vector of

the unknown coefficients. The subsequent derivatives of the free function can be computed,

∂ng

∂xnk
=

(
dz
dxk

)n
∂nhT

∂zn
ξ.

By defining,

ck :=
dz
dxk

=
zf − z0

xkf − xk0
,

the derivative computations can be written more succinctly as,

∂ng

∂xnk
= cnk

∂nhT

∂zn
ξ.

It follows that a partial derivative with respect to multiple independent variables, e.g., x1

and x2, can be written as,
∂2g

∂x1∂x2

= c1c2
∂hT

∂x1∂x2

ξ.

This process applies to any derivative of the free function.

Throughout this dissertation, whenever the free function is taken to be a linear combina-

tion of basis functions, either the Chebyshev or Legendre orthogonal polynomials are used.
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Thus, it is useful to mention that their optimal2 discretization scheme is the Chebyshev-

Gauss-Lobatto nodes [38, 39]. For N points, the Chebyshev-Gauss-Lobatto nodes are calcu-

lated using,

zj = − cos

(
jπ

N − 1

)
for j = 0, 1, 2, · · · , N − 1.

If least-squares is used as the optimization scheme, then the collocation point distribution

results in a much slower increase, relative to the uniform distribution, of the condition number

of the matrix to be inverted as the number of basis functions increases. The collocation points

can be realized in the problem domain through the relationship provided in Equation (3.1).

A linear expansion of basis functions was the first free function used for solving differential

equations using TFC and has been used extensively to solve ODEs [12, 16, 19, 20, 40, 41]

and PDEs [1, 42]. However, one drawback of this free function choice is that it will become

computationally prohibitive as the dimension increases. Compelling alternatives can be

found in the machine learning community.

3.1.2 Support Vector Machines

Support vector machines (SVMs) were originally introduced to solve classification prob-

lems [43] like determining which class a given input x belongs to, where there are two possible

classes x may belong to. The proposed solution was to find a decision boundary surface that

separates the two classes. The equation of the separating boundary depended only on a few

input vectors called the support vectors.

The training data is assumed to be separable by a linear decision boundary. Hence,

a separating hyperplane, H, with equation wTϕ(x) + b = 0, is sought. The parameters

are rescaled such that the closest training point to the hyperplane H, (xk, uk), is on a

parallel hyperplane H1 with equation wTϕ(x) + b = 1. By using the formula for orthogonal

projection, if x satisfies the equation of one of the hyperplanes, then the signed distance from

the origin of the space to the corresponding hyperplane is given by wTϕ(x)/wTw. Since
2Optimal here refers to minimizing the condition number of the matrix to invert when minimizing the

residual of the differential equation via least-squares.
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wTϕ(x) equals −b for H, and 1 − b for H1, it follows that the distance between the two

hyperplanes, called the “separating margin,” is 1/wTw. Thus, to find the largest separating

margin, one needs to minimize wTw. The optimization problem becomes,

min
1

2
(wTw) subject to ui(w

Tϕ(xi) + b) ≥ 1, i = 1, . . . , n.

If a separable hyperplane does not exist, the problem is reformulated by taking into

account the classification errors, or slack variables, Γi, and a linear or quadratic expression

is added to the cost function. The optimization problem in the non-separable case is,

min
1

2
(wTw) + C

(∑
Γi

)
subject to ui(w

Tϕ(Γi) + b) ≥ 1− Γi.

When solving the optimization problem by using Lagrange multipliers, the function ϕ(x)

always shows up as a dot product with itself; thus, the kernel trick [44] can be applied. In this

dissertation, the kernel function chosen is the radial basis function (RBF) kernel proposed

in [45]. Hence, the function ϕ(x) can be written using the kernel [44],

K(xi,xj) = ϕ(xi)
Tϕ(xj) = exp

(
−(xj − xi)2

σ2

)
,

and its partial derivatives [45, 46],

K(xi,xj) = ϕ(xi)
Tϕ(xj) = exp

(
−(xi − xj)2

σ2

)
K1(xi,xj) = ϕ′(xi)

Tϕ(xj) = −2(xi − xj)
σ2

exp

(
−(xi − xj)2

σ2

)
KT

1 (xi,xj) = ϕ(xi)
Tϕ′(xj) =

2(xi − xj)
σ2

exp

(
−(xi − xj)2

σ2

)
K11(xi,xj) = ϕ′(xi)

Tϕ′(xj) =
2

σ2
− 4(xi − xj)2

σ4
exp

(
−(xi − xj)2

σ2

)
.

The SVM free function choice was inspired by least-squares SVMs (LS-SVMs) and their
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success in solving differential equations [45]. They can be written mathematically as,

g(x) = wTϕ(x),

where w is a vector of weights used in the optimization process to reduce the residual of the

differential equation and ϕ(x) is defined in terms of the kernel function. This free function

choice was used in Reference [2] to solve ODEs and PDEs.

3.1.3 Neural Networks

The architecture of neural networks is a rich topic, and one could spend a lot of time

analyzing how different architecture choices ultimately affect the accuracy of the differential

equation solution. The author has chosen to leave this research effort to future work and

instead focus on just one of the simpler architectures, a fully connected neural network.

Each layer of a fully connected neural network consists of a nonlinear activation function

composed with a linear transformation of the form A = W · x + b, where W is a matrix

of the neuron weights, b is a vector of the neuron biases, and x is a vector of inputs from

the previous layer (or the inputs to the neural network if it is the first layer). Then, each

layer is composed to form the entire network. For the fully connected neural networks used

in this dissertation, the last layer is simply a linear output layer. For example, a neural

network with three hidden layers that each use the nonlinear activation function ψ and a

linear output layer can be written mathematically as,

N (x; θ) = W4 · ψ
(
W3 · ψ

(
W2 · ψ

(
W1 · x+ b1

)
+ b2

)
+ b3

)
+ b4,

whereN is the neural network function, x is the vector of inputs,Wk are the weight matrices,

bk are the bias vectors, and θ is a symbol that represents all trainable parameters of the neural

network: the weights and biases of each layer constitute the trainable parameters. Note

that the notation N (x, y, . . . ; θ) is also used in this dissertation for independent variables
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x, y, . . . and trainable parameters θ. In this dissertation, all neural networks’ weights are

initialized using the Glorot uniform initialization [47], and the biases are initialized as zeros.

Whenever a neural network is used as the free function in a constrained expression to solve

a differential equation, the overall technique is referred to as Deep-TFC. This technique was

used in Reference [3] to solve a variety of PDEs.

3.1.4 Extreme Learning Machines

Extreme learning machines (ELMs) are a learning algorithm for single-hidden layer neural

networks that randomly selects the hidden layer’s input weights and biases and computes

the output weights via least-squares [48]. Since the weights and biases of the hidden layer

are not tuned during the training, i.e., they are not trainable parameters, the neural network

is linear with respect to the trainable parameters; thus, they can be computed via least-

squares. In terms of the neural network description given in the previous section, an ELM

can be expressed mathematically as,

N (x; θ) = W2 · ψ
(
W1 · x+ b1

)
(3.2)

where θ consists of W2 only. In this dissertation, the hidden layer’s weights and biases, W1

and b1, respectively, are initialized using the uniform distribution U(−10, 10) when solving

ODEs and the uniform distribution on U(−1, 1) when solving PDEs. Whenever an ELM is

used as the free function in a constrained expression, the overall technique is referred to as

X-TFC. X-TFC was used in Reference [49] to solve various ODEs and PDEs.

3.2 Useful Optimization Options

The optimization/minimization methods introduced in this section do not constitute an

exhaustive list of optimizers that can be used with TFC. Rather, they form a short list of

the optimization/minimization methods used for the problems and examples given in this

dissertation. Many other optimization/minimization schemes could be used in conjunction

with TFC to estimate the solutions of differential equations, and exploring them is a topic
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of future work.

3.2.1 Least-Squares

When using basis functions, SVMs, or ELMs as the free function, the resultant minimiza-

tion problem, L(ξ) = 0, can be solved via least-squares. For linear differential equations, the

loss function can be written as,

L(ξ) = Aξ − b = 0,

and a linear least-squares technique can be employed to solve,

Aξ = b.

Appendix F describes some common methods to solve the linear least-squares problem. Of

the approaches presented in Appendix F, the scaled QR method tends to have the lowest

condition number and is thus the most numerically stable. In the specific case of ELMs,

the A matrix tends to be ill-conditioned as the number of basis functions increases: as the

number of basis functions increases, the probability of selecting nearly identical values for

the weights and biases of two different neurons increases, which results in linearly dependent

or nearly linearly dependent columns in A. In this case, taking the pseudo-inverse using

one of the previous techniques typically results in an inaccurate solution. To remedy this, a

least-squares technique designed for ill-conditioned matrices is employed, such as the lstsq

function in the NumPy package available for Python or the lsqminnorm function available

in MATLAB.

If the differential equation is nonlinear, then a nonlinear least-squares, also known as

iterative least-squares, method can be used. In this case, the loss function for the j-th

iteration is approximated using the first two terms of the Taylor series,

L(ξ) ≈ L(ξj) + J∆ξ,
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where ∆ξ = ξ − ξj and

J (ξj) =
∂L(ξ)

∂ξ

∣∣∣
ξj
,

is the Jacobian matrix of L(ξ). The goal is to drive the loss function to zero, i.e., set ξ = ξj+1

in the truncated Taylor series and set it equal to zero. The result is,

ξj+1 = ξj + ∆ξ,

where

L(ξj) + J (ξj)∆ξ = 0

is used to determine the value of ∆ξ. Notice that the solution for ∆ξ can be re-written as

J (ξj)∆ξ = −L(ξj),

which can be solved using the previously described linear least-squares techniques. This

method is repeated until the user-specified termination condition(s) are met. For a descrip-

tion of the termination conditions used in this dissertation, see Section G.6 of Appendix

G.

3.2.2 Quasi-Newton Methods

Quasi-Newton methods approximate the Jacobian matrix—some also approximate the

Hessian—of a given function and use them to minimize the given function. To use them with

TFC, the loss function is first converted to a scalar by taking its norm: in this dissertation,

that norm is either the L1 or L2 norm. Then, the new loss function is minimized using

the Quasi-Newton method. In this dissertation, the only Quasi-Newton method used is the

limited-memory Broyden-Fletcher-Goldfarb-Shanno [50] (L-BFGS) algorithm.
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3.2.3 Gradient Descent

Gradient descent algorithms are an iterative method used to minimize a scalar loss

function—as with Quasi-Newton methods, the TFC loss functions are converted to scalar

functions by taking either their L1 or L2 norm—via its Jacobian matrix. In its simplest

form,

ξj+1 = ξj + ∆ξ

where

∆ξ = −λJ (ξj)

and λ is some positive constant frequently referred to as the learning rate. However, the

gradient descent can become more complex by, for example, randomly sampling a subset

of the training points for each iteration as is done in stochastic gradient descent [51, 52],

adapting the learning rate based on data from previous iterations as is done in AdaGrad

[53], or using a concept analogous to linear momentum to inform the update along with

gradient descent [54]. Variants of these techniques are utilized by the Adaptive Momentum

Estimation (Adam) algorithm [55], which is the gradient descent algorithm used in this

dissertation.

3.2.4 Constrained Least-Squares Support Vector Machines

The inspiration to use Least-Squares Support Vector Machines (LS-SVMs) stems from

References [45] and [56], which used LS-SVMs to solve ODEs and PDEs, respectively. Es-

sentially, this technique uses an LS-SVM to reduce the residual of the differential equation

via least-squares, where Lagrange multipliers are used to enforce the differential equation

constraints. When TFC is used with an SVM as the free function to solve the differential

equation using the LS-SVM optimization technique, the overall methodology is referred to as

a Constrained Support Vector Machine (CSVM) [2]. This methodology is best understood

via an example.
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Example 3.1: CSVM applied to a linear, first-order ODE

Consider a first-order, linear ODE,

ẏ − p(t)y = r(t), subject to y(t0) = y0,

where ẏ = dy
dt . The TFC constrained expression for the constraint is,

y(t, g(t)) = g(t) + y0 − g(0).

Further, let the free function be defined as an SVM,

g(t) = wTϕ(t),

so the constrained expression becomes,

y(t,w) = wT
(
ϕ(t)−ϕ(t0)

)
+ y0. (3.3)

Notice that a least-squares technique cannot be formed directly from the residual of

the differential equation because ϕ(t) is only defined via the kernel trick, i.e., only dot

products with itself are defined. Hence, a loss function is constructed,

min
1

2
(wTw + γeTe)

where γ is a positive, user-specified constant and

e = ei = ẏ(ti,w)− p(ti)yi(ti,w)− r(ti).

This loss function contains the original term used to find the largest separating margin,

wTw, as well as a term to reduce the residual of the ODE, γeTe. Since the constrained
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expression embeds the differential equation constraint, the only constraint that remains

is the one associated with the error term, e. Hence, the optimization problem is,

min
1

2
(wTw + γeTe)

subject to wTϕ̇(ti)− p(ti)
(
wTϕ(ti)−wTϕ(t0) + y0

)
− r(ti)− ei = 0.

Using the method of Lagrange multipliers a term is introduced for the constraint

on the residuals, which leads to the expression,

L(w, e,α) =
1

2
(wTw + γeTe)

−
N∑
i=1

αi
[
wTϕ̇(ti)− p(ti) (wTϕ(ti)−wTϕ(t0) + y0)− r(ti)− ei

]
,

where αi are the Lagrange multipliers. The values that force the gradients of L to be

equal to zero give candidates for the minimum,

∂L
∂w

= 0 → w =
N∑
i=1

αi [ϕ̇(ti)− p(ti) (ϕ(ti)− ϕ(t0))]

∂L
∂ei

= 0 → ei = −αi
γ

∂L
∂αi

= 0 → 0 = wTϕ̇(ti)− p(ti) (wT (ϕ(ti)−ϕ(t0)) + y0)− r(ti)− ei.

Using,

w =
N∑
j=1

αj [ϕ̇(tj)− p(tj) (ϕ(tj)− ϕ(t0))] ,

one obtains a new formulation of the approximate solution given by Equation (3.3)

that can be expressed in terms of the kernel and its derivatives. One can combine the

three equations obtained by setting the gradients of L equal to zero together to create
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a linear system with unknowns αj,

Mijαj = r(ti) + p(ti)y0.

The coefficient matrix, Mij, is given by,

Mij = K11(ti, tj)− p(tj) [K1(ti, tj)−K1(ti, t0)]− p(ti)Ky(ti, tj) + δij/γ,

where,

K4(ti, tj) = K(ti, tj)−K(tj, t0)−K(ti, t0) + 1,

Ky(ti, tj) = K1(tj, ti)−K1(tj, t0)− p(tj)K4(ti, tj).

Finally, in terms of the kernel matrix, the approximate solution at the training points,

ti, is given by,

y(ti) =
N∑
j=1

αjKy(ti, tj) + y0,

and a formula for the approximate solution at an arbitrary point t is given by,

y(t) =
N∑
j=1

αjKy(t, tj) + y0.

The CSVM technique creates a loss function based on the residual of the differential

equation that can ultimately be solved via least-squares. Moreover, the least-squares system

and the constrained expression can be rewritten in terms of the kernel function and its

derivatives. Although not utilized in this dissertation, a similar derivation for first-order,

nonlinear ODEs is included in Appendix H for completeness.

3.3 Numerical Implementation

Even for simple PDEs, taking the derivatives necessary to implement TFC analytically

is tedious and error-prone. The errors in taking the derivatives can be reduced by using a
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symbolic programming paradigm, but the results must still be copied into another frame-

work, Python, MATLAB, etc., which is time-consuming and error-prone as well. Of course,

TFC could be implemented directly in a symbolic program, but the computation speed

would suffer: one of TFC’s main benefits. If these were the only options, applying TFC to

differential equations would be cumbersome, frustrating, and slow, and users would most

likely choose other differential equation solution methods due to this pitfall. Fortunately,

automatic differentiation alleviates the issues that plague the other implementation options.

Automatic differentiation utilizes the chain rule of differential calculus and modifies the

variable types to calculate derivatives [57]. As such, automatic differentiation can be applied

to code with minimal changes and can evaluate “derivatives at machine-level precision with

only a small constant factor of overhead and ideal asymptotic efficiency” [57]. For exam-

ple, Reference [58] utilizes a nilpotent algebra to calculate arbitrary order derivatives; this

technique is an example of forward-mode automatic differentiation, where the derivative is

calculated alongside the primary value. A second type is reverse-mode automatic differenti-

ation [59], where the chain rule is traversed from the output backwards towards the input to

calculate the derivative: also known as back-propagation. In general, a good rule of thumb

is that reverse mode differentiation should be used for functions f : Rn 7→ Rm where n� m;

otherwise, forward mode differentiation should be used. Hence, forward mode automatic

differentiation will typically be used when implementing TFC. An in-depth understanding

of automatic differentiation is not required to understand TFC’s numerical implementation,

so it will not be discussed here. However, if the reader is interested in learning more, they

should consult Reference [57].

JAX [60, 61] is a framework for Python that combines the automatic differentiation power

of Autograd [62] with XLA (Accelerated Linear Algebra) [63] to produce fast, composable

transformations of NumPy/Python code. Moreover, a just-in-time compiler (JIT) allows

one to easily convert their code into XLA-optimized kernels. Ultimately, this allows the

user to easily compute the derivatives necessary to apply TFC to differential equations, and
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JIT-ing the resultant code makes the run time fast: many of the differential equations in

this dissertation were estimated via TFC in less than a second. Numerically implementing

TFC in a JIT-able way via JAX was not a simple plug-and-play. Rather, the author wrote

over 8,000 lines of C++ and Python code that interface with JAX to produce the final

product. This code forms some general-use classes that can be used to apply TFC to a large

variety of differential equations. The intricacies of this code are not germane to the topics

covered in the body of this dissertation, and therefore are not included here; a more detailed

description of the codebase can be found in Appendix G, and the reference documentation

contains a complete description. Furthermore, this general-use code is publicly available on

the TFC GitHub and includes the scripts used to generate many of the examples and results

found in this dissertation [64].

The computations for all examples and results in this dissertation were performed in

Python on a desktop computer running Ubuntu 20.04 with an Intel R© CoreTM i5-2400 and

16 GB of RAM. All run times were calculated using the process_timer function from the

Python time package.

3.4 Simple PDE Example

To better understand each of the previously introduced free functions, this section applies

each one to the same linear PDE:

uxx(x, y) + uyy(x, y) = e−x(x− 2 + y3 + 6y)

where x, y ∈ [0, 1] and subject to,

u(0, y) = y3

u(1, y) = (1 + y3)e−1

u(x, 0) = xe−x

u(x, 1) = e−x(x+ 1),
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which has the true solution u(x, y) = e−x(x+ y3). The true solution is shown in Figure 3.2.

Following the step-by-step method given earlier, the PDE can be re-written as,

Figure 3.2: Analytical solution of the simple PDE.

F (x, y, u, uxx, uyy) = uxx(x, y) + uyy(x, y)− e−x(x− 2 + y3 + 6y) = 0.

The constraints can be embedded into a constrained expression,

(1)u(x, y, g(x, y)) = g(x, y) + (1− x)
(
y3 − g(0, y)

)
+ x
(

(1 + y3)e−1 − g(1, y)
)

(2)u(x, y, g(x, y)) = g(x, y) + (1− y)
(
xe−x − g(x, 0)

)
+ y
(
e−x(x+ 1)− g(x, 1)

)
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where (1)u can be used as the free function in (2)u or (2)u can be used as the free function in

(1)u to create the full constrained expression. The constrained expression written in tensor

form is,

u(x, y) = g(x, y, g(x, y)) +M(x, y, g(x, y))ijΦi(x)Φj(y)

where

M(x, y, g(x, y))ij =


0 xe−x − g(x, 0) e−x(x+ 1)− g(x, 1)

y3 − g(0, y) g(0, 0) g(0, 1)− 1

(1 + y3)e−1 − g(1, y) g(1, 0)− e−1 g(1, 1)− 2e−1

 ,

Φi(x) =

{
1, 1− x, x

}
, and Φj(y) =

{
1, 1− y, y

}
.

Substituting the constrained expression into F yields F̃ (x, y, g(x, y)), which does not have

any constraints. Now, the various free function choices introduced earlier will be used to

minimize F̃ .

Example 3.2: Simple PDE solved using basis functions [1]

Let g(x, y) be a linear expansion of Chebyshev orthogonal polynomials, and let m

be the maximum degree of said polynomials. Remember, as shown in Appendix E,

that the two-dimensional basis set is just a tensor product of the univariate Cheby-

shev orthogonal polynomials. Further, recall from the result of Theorem 8 that the

basis functions linearly dependent to the support functions must be removed from

the expansion: in the multivariate case, this also includes products of the support

functions that include exactly one support function from each independent variable,

e.g., si(x1)sj(x2)...sk(xn). To expound, suppose instead that the linear expansion for

g(x, y) was simply the set of monomials.

g(x, y) = ξ1 + ξ2x+ ξ3y + ξ4x
2 + ξ5xy + ξ6y

2 + . . .
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In this case, the terms 1, x, y, and xy need to be removed from the expansion, as 1,

x, and y are used as support functions in the constrained expression. The same needs

to be done for the Chebyshev orthogonal expansion used in this example.

Since the linear expansion is a tensor product and the terms linearly dependent

to the support functions have to be removed, the degree of the expansion, m, and

the number of basis functions in the expansion do not have a simple relationship.

Therefore, the degree of the expansion, m, and the number of basis functions in the

expansion are tabulated for this example in Table 3.1.

Table 3.1: Tabulated values for the degree of basis expansion and equivalent number
of basis functions.

m Number of Functions

5 17

10 62

15 132

20 227

25 347

Once the free function is substituted into the differential equation, F̃ = F̃ (x, y, ξ) =

0. Next, the domain is discretized. Since Chebyshev orthogonal polynomials are used,

the domain is discretized using Chebyshev-Gauss-Lobatto nodes. Let the number of

points per independent variable be given by n. For example, a value of n = 5 would

imply a 5×5 grid or 25 total training points. After the domain is discretized F̃ becomes

L(ξ) = 0. The PDE in this example is linear, so L is linear in ξ, and therefore, linear

least-squares can be used to minimize L.
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Let the test set be a 100 × 100 grid of uniformly spaced points. Table 3.2 shows

the maximum test set solution error,

e = max
(x,y)∈test set

|u(x, y)− utrue(x, y)|,

where utrue(x, y) is the true solution given earlier, for different values of n and m.

Table 3.2 shows that in general as the number of basis functions and training points

increases, the maximum test set solution error decreases.

Table 3.2: Maximum test set solution error using TFC with Chebyshev orthogonal
polynomials.

n
m 5 10 15 20 25

5 6.26× 10−4 - - - -

10 5.53× 10−4 1.20× 10−10 - - -

15 5.30× 10−4 1.17× 10−10 4.44× 10−16 - -

20 5.20× 10−4 1.16× 10−10 5.00× 10−16 4.44× 10−16 -

25 5.13× 10−4 1.15× 10−10 7.22× 10−16 2.61× 10−15 5.55× 10−16

30 5.09× 10−4 1.14× 10−10 6.66× 10−16 8.88× 10−16 3.22× 10−15

Since the TFC method of solving differential equations is closely related to the

spectral method—the only real difference is how the constraints are handled—it is

worth comparing the two methods. To this end, Table 3.3 shows the same results as

Table 3.2 but using the spectral method.
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Table 3.3: Maximum test set solution error using spectral method with Chebyshev
orthogonal polynomials.

n
m 5 10 15 20 25

5 4.25× 10−4 - - - -

10 3.40× 10−4 7.11× 10−11 - - -

15 3.16× 10−4 7.95× 10−11 1.41× 10−12 - -

20 3.04× 10−4 7.77× 10−11 4.85× 10−12 5.75× 10−12 -

25 2.97× 10−4 7.69× 10−11 3.45× 10−12 9.91× 10−12 2.71× 10−11

30 2.92× 10−4 7.59× 10−11 3.12× 10−12 1.19× 10−11 1.79× 10−11

Comparing Tables 3.2 and 3.3 reveals that the spectral method is slightly more

accurate—less than an order of magnitude—than TFC when the number of basis

functions is low. However, as the number of basis functions increases, TFC becomes

as many as five orders of magnitude more accurate than the spectral method. The

accuracy difference between the two methods for a low number of basis functions

stems from the fact that the spectral method can relax the error on the constraints

in order to reduce the average error over the domain, whereas TFC is constrained to

satisfy the constraints exactly, and so does not have the same freedom. The accuracy

difference between the two methods for a high number of basis functions stems from

the fact that TFC effectively has more information than spectral method, as it has the

exact constraint information over the entire boundary, whereas spectral method only

has information about the constraints at discrete points on the associated boundaries.

Moreover, TFC is faster than the spectral method, as the matrix that is inverted

during the least-squares process is smaller; it is smaller because it does not contain

the extra equations that the spectral method needs to satisfy the constraints.
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Example 3.3: Simple PDE solved using CSVM [2]

Let g(x, y) be a SVM, so F̃ becomes F̃ (x, y,w). Then, the CSVM technique must

be applied to rewrite the constrained expression and the optimization process in the

dual form. For this example only, let superscripts denote a derivative with respect

to the superscript variable and a subscript be a normal tensor index: this is done for

clarity and compactness. For example, the symbol Axxij would denote a second-order

derivative of the second-order tensor Aij with respect to the variable x, i.e., ∂2Aij
∂x2

. In

the same spirit, for this example only, the arguments of most functions and functionals

will be dropped.

The constrained expression shown earlier can be re-written as,

u = AijΦiΦj + wjϕj(x, y)− wkBijkΦiΦj, where

Aij =


0 xe−x e−x(x+ 1)

y3 0 −1

(1 + y3)e−1 g(1, 0)− e−1 −2e−1



Bijk =


0 ϕk(x, 0) ϕk(x, 1)

ϕk(0, y) −ϕk(0, 0) −ϕk(0, 1)

ϕk(1, y) −ϕk(1, 0) −ϕk(1, 1)


Φi =

{
1, 1− x, x

}
, and Φj =

{
1, 1− y, y

}
.

Now, discretize the domain and use Lagrange multiplies to form L,

L(w,α, e) =
1

2
wiwi +

γ

2
eIeI − αI(uxxI + uyyI − fI − eI),
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where uI is a vector whose elements are u(xI , yI ,w) where (xI , yI) is the I-th training

point. The gradients of L give candidates for the minimum,

∂L
∂wk

= wk − αI(ϕxxIk −Bxx
IijkΦiΦj + ϕyyIk −B

yy
IijkΦiΦj) = 0

∂L
αI

= ẑxxI + ẑyyI − fI − eI = 0

∂L
eI

=
γ

2
eI − αI = 0,

where ϕIk is the second-order tensor composed of the vectors ϕk(xI , yI) and BIijk is

the fourth-order tensor composed of the third-order tensors B(xI , yI)ijk. The gradients

of L can be used to form a system of simultaneous linear equations to solve for the

unknowns and write u in the dual form. The system of simultaneous linear equations

is,

AIJαJ = BI ,

where

AIJ = ϕxxIkϕ
xx
Jk − ϕxxIkBxx

JijkΦiΦj + ϕxxIkϕ
yy
Jk − ϕ

xx
IkB

yy
JijkΦiΦj −Bxx

IijkΦiΦjϕ
xx
Jk

+Bxx
IijkΦiΦjB

xx
JmnkΦmΦn −Bxx

IijkΦiΦjϕ
yy
Jk +Bxx

IijkΦiΦjB
yy
JmnkΦmΦn + ϕyyIkϕ

xx
Jk

− ϕyyIkB
xx
JijkΦiΦj + ϕyyIkϕ

yy
Jk − ϕ

yy
IkB

yy
JijkΦiΦj −Byy

IijkΦiΦjϕ
xx
Jk

+Byy
IijkΦiΦjB

xx
JmnkΦmΦn −Byy

IijkΦiΦjϕ
yy
Jk +Byy

IijkΦiΦjB
yy
JmnkΦmΦn +

1

γ
δIJ

BI = fI − AxxIijΦiΦj − AyyIijΦiΦj

where Φm = Φi, Φn = Φj, and AIijk is the fourth order tensor composed of the third

order tensors A(xI , yI)ijk. The dual-form of the solution is,

u(x, y,α) = AijΦiΦj
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+ αI

[
ϕxxIkϕ(x, y)k −Bxx

IijkΦiΦjϕk(x, y) + ϕyyIkϕk(x, y)−Byy
IijkΦiΦjϕk(x, y)

]
− αI

[
ϕxxIkBijkΦiΦj −Bxx

IijkΦiΦjBmnkΦmΦn + ϕyyIkBijkΦiΦj −Byy
IijkΦiΦjBmnkΦmΦn

]
.

The system of simultaneous linear equations and the dual form of the solution can be

written and were solved using the kernel matrix and its partial derivatives.

The attentive reader will notice two user-specified hyperparameters remain to be

selected: σ, the user-specified parameter that modifies the kernel matrix, and γ, the

parameter that appears in the loss function. In Reference [2], a grid search was used

to find the pair of hyperparameters that minimized the residual of the differential

equation on a set of validation points. Using that set of hyperparameters and 100

training points, the test set’s maximum error was 5.561× 10−8.

Example 3.4: Simple PDE solved using Deep-TFC [3]

Let g(x, y) be a neural network as defined earlier with nonlinear activation function

ψ = tanh. Further, let this neural network have six hidden layers with 15 neurons per

layer and a linear output layer. Substituting the neural network as the free function

into the constrained expression, then substituting the constrained expression into the

differential equation, and finally discretizing the domain leads to a loss function, L(θ),

where θ are the trainable parameters of the neural network as defined earlier; the

domain was discretized using a 10× 10 grid of uniformly spaced points.

Neural networks are typically trained using gradient descent algorithms, but the

author has found that for solving PDEs using Deep-TFC, the Quasi-Newton algorithms

typically perform better. In this example, the L-BFGS algorithm was used to train

the network.
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Due to the inherent stochasticity of the Deep-TFC method, the problem was solved

ten times, and the best solution was retained; that solution had a maximum error of

2.780×10−7 on the test set, a uniformly distributed 100×100 grid. The aforementioned

stochasticity is easily visualized as a histogram: Figure 3.3 shows such a histogram for

100 Monte Carlo trials.
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Figure 3.3: Histogram of the Deep-TFC maximum solution error on the test set for
100 Monte Carlo trials.

Figure 3.3 shows that Deep-TFC produces a solution at least as accurate as the

solution reported earlier approximately 10% of the time; this aligns well with one’s

intuition, as the reported solution was the best of ten trials. The remaining 90% of the
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time the solution error is larger, but Figure 3.3 shows that the Deep-TFC method is

consistent: the maximum solution error in the 100 Monte Carlo trials was 3.891×10−6,

only an order of magnitude larger than the maximum solution error reported earlier

[3].

Example 3.5: Simple PDE solved using X-TFC

Let g(x, y) be an ELM as defined earlier with nonlinear activation function ψ =

tanh. Similar to the solution that used basis functions, Example 3.2, selecting g(x, y)

in this way ultimately results in a loss function, L(W2), that can be solved via linear

least-squares. As in the previous examples, let the test set of points be a 100 × 100

uniform grid. Table 3.4 shows the maximum test set solution error using X-TFC,

where m corresponds to the number of neurons in the hidden layer of the ELM: note

that the number of neurons in each column of Table 3.4 coincides with the number of

basis functions in the corresponding columns of Table 3.2 from Example 3.2.

Table 3.4: Maximum test set solution error using X-TFC with the tanh activation
function.

n
m 17 62 132 227 347

5 1.74× 10−5 - - - -

10 4.44× 10−6 1.49× 10−10 - - -

15 4.12× 10−6 1.11× 10−10 1.21× 10−12 - -

20 3.95× 10−6 5.80× 10−11 4.40× 10−13 2.37× 10−13 -

25 3.84× 10−6 5.96× 10−11 5.46× 10−13 2.10× 10−13 2.14× 10−13

30 3.77× 10−6 5.50× 10−11 5.55× 10−13 1.66× 10−13 1.83× 10−13
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Comparing Tables 3.2 and 3.4 reveals that when the number of basis functions is low,

X-TFC outperforms TFC by as much as two orders of magnitude; however, as the

number of basis functions increases, TFC outperforms X-TFC by as much as three

orders of magnitude.
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Figure 3.4: Histogram of X-TFC maximum solution error where n = 30 and m = 347
on the test set for 100 Monte Carlo trials.

Similar to Deep-TFC, X-TFC is inherently stochastic. Hence, Figure 3.4 shows a

histogram of 100 Monte Carlo trials of the final case: n = 30, m = 347. Figure 3.4

shows that the corresponding value given in Table 3.4 is actually at the higher end of

the distribution; however, it should be noted here that the deviation between Monte
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Carlo trials when using X-TFC is only as large as approximately 2 × 10−13. This

relative deviation is much smaller than when using Deep-TFC, where cases varied by

as much as an order of magnitude.

The small relative difference between X-TFC cases can be attributed to the large

number of neurons relative to the initial distribution. In each of the Monte Carlo

trials, the weights and biases are chosen using U(−1, 1). Since there are 347 neurons,

the sample space is well represented each time. If fewer neurons were used, the rel-

ative difference between test cases would be larger. To illustrate, Figure 3.5 shows a

histogram of 100 Monte Carlo trials when n = 30 and m = 17.
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Figure 3.5: Histogram of X-TFC maximum solution error where n = 30 and m = 17
on the test set for 100 Monte Carlo trials.
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In Figure 3.4, the maximum test set error in the worst case was approximately

twice as large as the maximum test set error in the best case, whereas in Figure 3.5,

the worst case is approximately ten times as large as the best case. Of course, other

factors—such as the nonlinear relationship between the trainable parameters of Deep-

TFC versus the linear relationship between the trainable parameters of X-TFC—play

a role in the differences between the histograms of Figures 3.3 and 3.4 as well.

3.5 A Juxtaposition of TFC, CSVM, X-TFC, and Deep-TFC

The previous simple PDE examples—Examples 3.2 through 3.5—highlight some of the

strengths and weaknesses of the four free function options discussed earlier; this section

analyzes those strengths and weaknesses further. To aid in that analysis, Table 3.5 shows

the maximum training and test set errors when using TFC and each of the four free func-

tion choices to solve the simple PDE. In addition, the solution errors of other state-of-the-

art algorithms are included for reference: these algorithms include the well-known FEM, a

neural-network-based method that analytically satisfies the constraints via a functional3 [34],

a Bernstein neural-network-based approach [65], and a Chebyshev neural-network-based ap-

proach [66]. Table 3.5 shows that the TFC methodology outperforms all the others in terms

of accuracy on the training and test sets, followed by X-TFC. In terms of the test set error,

these two methods are followed by CSVM, Deep-TFC, and then the other state-of-the-art

algorithms. As for the training set error, FEM outperforms both Deep-TFC and CSVM, but

the other state-of-the-art algorithms do not.

As mentioned earlier, the CSVM technique is no longer actively being used as a free

function choice because it requires a complex analytical analysis for each new differential

equation, and the resultant payoff in terms of solution error is overshadowed by the other

free function choices. Example 3.3 demonstrates well the aforementioned complex analytical
3This functional is multiplicative in nature whereas the TFC constrained expression is additive in na-

ture. Moreover, the multiplicative functional cannot satisfy certain sets of constraints, nor does it have the
mathematical guarantees that TFC constrained expressions do.
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Table 3.5: Comparison of maximum training set and test set errors between TFC methods
and current state-of-the-art techniques.

Method Training Set
Maximum Error

Test Set
Maximum Error

TFC [1] 2.22× 10−16 4.44× 10−16

X-TFC [49] 3.8× 10−13 5.1× 10−13

CSVM [2] 4.4× 10−8 5.6× 10−8

Deep-TFC [3] 2.7× 10−7 2.8× 10−7

FEM [34] 2× 10−8 1.5× 10−5

NN [34] 5× 10−7 5× 10−7

Bernstein NN [65] - 2.4× 10−4

Chebyshev NN [66] - 3.2× 10−2

analysis: the long expressions containing multiple 4-th and 5-th order tensors in the example

are daunting enough, but the author reminds readers that these expressions are compact

and simple compared to the five or so pages of work it took to derive them. Furthermore,

Table 3.5 clearly shows the accuracy gained when using TFC or X-TFC rather than CSVM.

In addition, because CSVM requires a grid search to find the two hyperparameters, the

training time is longer than when using TFC or X-TFC. Although this free function choice

has become antiquated, it laid the foundation for the synergy between TFC and machine

learning algorithms and is therefore historically significant.

Looking at the error values alone in Table 3.5, the reader may wonder why Deep-TFC

is useful. After all, one of the arguments against CSVM was the error relative to TFC and

X-TFC; however, on more complex problems, Deep-TFC actually does better than X-TFC

and TFC. Moreover, Deep-TFC does not require the same complex analytical analysis that

CSVM did. To highlight Deep-TFC’s performance on complex problems, consider low-speed,

two-dimensional, developing channel flow governed by the Navier-Stokes equations and the
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following boundary conditions:

∂u

∂x
+
∂v

∂y
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= µ

(
∂2v

∂x2
+
∂2v

∂y2

)

subject to



u(0, y, t) = ∂u
∂x

(L, y, t) = u(x, y, 0) = 0

u(x, H
2
, t) = u(x,−H

2
, t) = 0

v(0, y, t) = ∂v
∂x

(L, y, t) = v(x, y, 0) = 0

v(x, H
2
, t) = v(x,−H

2
, t) = 0,

where u and v are velocities in the x and y directions respectively, H is the height of the

channel, P is the pressure, ρ is the density, and µ is the viscosity. For this problem, the

values H = 1 m, ρ = 1 kg/m3, µ = 1 Pa·s, and ∂P
∂x

= −5 N/m3 were chosen.

The u and v dependent variables each have the same constraints; therefore, their con-

strained expressions are the same. Hence, just the constrained expression for u will be shown.

In recursive form, the constrained expression for u is,

(1)u(x,y, t, gu(x, y, t)) = gu(x, y, t)− gu(0, y, t)− xgux(L, y, t)

(2)u(x,y, t, gu(x, y, t)) = gu(x, y, t)− H − 2y

2H
gu
(
x,−H

2
, t
)
− H + 2y

2H
gu
(
x,
H

2
, t
)

(3)u(x,y, t, gu(x, y, t)) = gu(x, y, t)− gu(x, y, 0),

where (1)u, (2)u, and (3)u can be processed in any order to produce the full constrained

expression. In tensor form, the constrained expression is,

u(x, y, t, gu(x, y, t)) = gu(x, y, t) +M(x, y, t, gu(x, y, t))ijkΦi(x)Φj(y)Φk(t)
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where,

Mij1(x, y, t, gu(x, y, t)) =


0 −gu(x,−H

2
, t) −gu(x, H

2
, t)

−gu(0, y, t) gu(0,−H
2
, t) gu(0, H

2
, t)

−gux(L, y, t) gux(L,−H
2
, t) gux(L, H

2
, t)



Mij2(x, y, t, gu(x, y, t)) =


−gu(x, y, 0) gu(x,−H

2
, 0) gu(x, H

2
, 0)

gu(0, y, 0) −gu(0,−H
2
, 0) −gu(0, H

2
, 0)

gux(L, y, 0) −gux(L,−H
2
, 0) −gux(L, H

2
, 0)


and

Φi(x) =

{
1, 1, x

}
, Φj(y) =

{
1, H−2y

2H
, H+2y

2H

}
, Φk(t) =

{
1, 1

}
.

For Deep-TFC, the training set used was 2, 000 independently and identically distributed

(i.i.d.) points sampled from x ∈ U(0, 15), y ∈ U(−H/2, H/2), and t ∈ U(0, 3). For X-TFC

and TFC, the training set was a grid of 10 × 10 × 10 uniformly spaced points. For each

method, the test set consisted of a grid of 100×100 evenly spaced points in x and y at three

different times: t = 0.01, t = 0.1 and t = 3. The test set can be analyzed in two different

ways:

1. Qualitatively - The solution should be symmetric about the line y = 0, and the solution

should develop spatially and temporally such that after a sufficient amount of time has

passed and sufficiently far from the inlet, x = 0, the u-velocity will be equal, or very

nearly equal, to the steady-state Poiseuille flow solution.

2. Quantitatively - The solution at x = 15 and t = 3 can be compared to the steady-state

Poiseuille flow solution.

The neural network used for the Deep-TFC solution had four hidden layers and 30 neurons

per layer, and the nonlinear activation function used was the hyperbolic tangent [3]. The

X-TFC solution used 200 neurons and the hyperbolic tangent as the nonlinear activation

function; adding additional neurons, up to 300, did not improve the solution over the case
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with 200 neurons. The TFC solution used Chebyshev orthogonal polynomials up to degree

ten; adding additional polynomials, up to degree 15, did not improve the solution over the

case with polynomials up to degree ten.

A quantitative comparison of the three methods’ errors with respect to the steady-state

Poiseuille flow solution at x = 15 and t = 3 is shown in Table 3.6. In addition, a qualitative

comparison is illustrated via Figures 3.6 through 3.14: Figures 3.6 through 3.8 correspond to

the TFC solution, Figures 3.9 through 3.11 correspond to the X-TFC solution, and Figures

3.12 through 3.14 correspond to the Deep-TFC solution.

Table 3.6: Comparison of maximum and mean test set errors between TFC, X-TFC, and
Deep-TFC.

Method Test Set
Maximum Error

Test Set
Average Error

TFC 5.59× 10−3 3.68× 10−3

X-TFC 4.02× 10−3 1.89× 10−3

Deep-TFC [3] 5.38× 10−4 3.12× 10−4

Table 3.6 shows that the X-TFC solution does marginally better than the TFC solution

in terms of error, and the Deep-TFC solution is approximately an order of magnitude better

than X-TFC and TFC. This is reflected qualitatively in the figures as well.

The Deep-TFC figures, Figures 3.12 through 3.14, match the qualitative expectation

given earlier. In contrast, the TFC and X-TFC solutions’ figures do not: this difference is

highlighted most in figures for t = 3.0.

In summation, this Navier-Stokes example demonstrates the utility of Deep-TFC as prob-

lems become sufficiently complex. These results coupled with those of Table 3.5 make good

arguments for using Deep-TFC for complex problems and TFC for simpler problems. What

about X-TFC?

For certain problems, X-TFC outperforms TFC: the two-dimensional wave equation in
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Figure 3.6: TFC solution at t = 0.01. Figure 3.7: TFC solution at t = 0.1.

Figure 3.8: TFC solution at t = 3.0.

Figure 3.9: X-TFC solution at t = 0.01. Figure 3.10: X-TFC solution at t = 0.1.

Figure 3.11: X-TFC solution at t = 3.0.
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Figure 3.12: Deep-TFC solution at t = 0.01. Figure 3.13: Deep-TFC solution at t = 0.1.

Figure 3.14: Deep-TFC solution at t = 3.0.

Section 4.2.2 is one example. Moreover, comparing the solution errors of the two methods—

see Table 4.4 or compare the first two columns of Tables 3.2 and 3.4—shows that the dif-

ference between the two methods is the most significant for a low number of trainable pa-

rameters. This is another benefit of the X-TFC framework: lower solution error than other

methods when a lower number of parameters is used.

Hence, for multidimensional problems in general, if a problem has a complex residual, use

Deep-TFC; if the problem is simple, use X-TFC or TFC, and if the application is memory

restrictive, i.e., a lower number of trainable parameters is required, use X-TFC. Oftentimes

X-TFC or TFC is sufficient to estimate the solution, and the user is encouraged to try out

both frameworks for their specific problem. In fact, the numerical implementation makes it

extremely simple to switch between these two methods.
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4. APPLICATIONS IN FLEXIBLE BODY PROBLEMS

The previous chapter explained how to apply TFC to differential equations. Conse-

quently, TFC can be applied to a wide variety of problems spanning multiple fields and

multiple disciplines within those fields. However, the author is particularly interested in

some of the differential equations appearing in flexible body problems, and therefore, this

chapter is dedicated to them exclusively. The flexible body problems solved in this chapter

include:

• Natural tandem balloon shape - A set of four, coupled, first-order, nonlinear ODEs

wherein both ends of the domain are themselves unknowns that must be solved simul-

taneously alongside the ODEs.

• One-dimensional wave equation - A two-dimensional (one space, one time), second-

order, linear PDE.

• Two-dimensional wave equation - A three-dimensional (two space, one time), second-

order, linear PDE.

• Biharmonic equation, Cartesian coordinates - A two-dimensional, fourth-order, linear

PDE.

• Biharmonic equation, polar coordinates - A two-dimensional, fourth-order, linear PDE.

4.1 Natural Tandem Balloon Shape

Tandem balloons are useful scientific vessels for collecting terrestrial atmospheric data

and are being considered for the same task on other planets and moons [67]. Naturally, the

shape of these balloons is a critical component involved in simulating their trajectories. This

section will provide a general overview of the problem [68]; a more detailed description can

be found in References [69] and [70]. Figure 4.1 is a diagram of the tandem balloon and the
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coordinate system used to describe its shape. Table 4.1 provides the nomenclature used to

describe the tandem balloon.

  

s

y (s0)

y (s)

R s

r (s)

β

Figure 4.1: Tandem balloon diagram.

The differential equations that govern the balloon are summarized in Equation (4.1)
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Table 4.1: Tandem balloon nomenclature.

Symbol Description
As Surface area of the super-pressure balloon
Matm Molecular weight of the atmosphere
Mg Molecular weight of the lifting gas
Rs Radius of the super-pressure balloon
T0 Total vertical load felt at s0

Vs Volume of the super-pressure balloon
b Specific density of the lifting gas
g Acceleration due to gravity
msg Total mass of the gas in the super pressure balloon
r Coordinate that describes position perpendicular to axisymmetric line
s Coordinate that describes position along the balloon film
s0 Point where the zero-pressure balloon and super-pressure balloon come into

contact
w Zero-pressure balloon film mass per unit area
ws Super-pressure balloon film mass per unit area
y Coordinate that describes position parallel to axisymmetric line
β Angle measured from the center of the super-pressure balloon between the ver-

tical and the point where the zero-pressure balloon and super-pressure balloon
surfaces diverge

`d Length of the balloon film
ρ Atmospheric density
σc Circumferential stress
σm Meridional stress
θ Angle in [−π

2
, π

2
] between the vertical and a line tangent to the balloon’s surface

[69, 70].
dθ
ds

=
1

σm

(σc
r

cos(θ)− w sin(θ)− b
(
y − y(s0)

))
dσm
ds

=
σc
r

sin(θ) + w cos(θ)− σm
r

sin(θ)

dr
ds

= sin(θ)

dy
ds

= cos(θ),

(4.1)

subject to the boundary constraints,

s0 = Rsβ
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θ(s0) =
π

2
− β

σm(s0) =
T0

2πr sin(θ)

r(s0) = Rs sin(β)

y(s0) = Rs(1− cos(β))

θ(`d) = −π
2

r(`d) = 0,

where

T0 = L+ g(w + ws)As0 + g
(Vs0
Vs
msg − ρVs0

)

if β <
π

2
→


As0 = 2πRsy(s0)

Vs0 = π
3
z2(s0)

(
3Rs − y(s0)

)

if β ≥ π

2
→


h0 = 2Rs − y(s0)

As0 = As − 2πRsh0

Vs0 = Vs − π
3
h0

(
3Rs − h0

)
As = 4πR2

s

Vs =
4

3
πR3

s

and

b = gρ
(

1− Mg

Matm

)
.

The simplest version of these differential equations is the natural balloon shape, which

has zero circumferential stress, i.e., σc = 0. Even with this simplification, the set of coupled,

nonlinear differential equations is challenging to solve as the problem domain, s ∈ [s0, `d], is
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variable on both ends: β and `d are variables to be solved alongside the differential equations,

i.e., s0 and `d are unknown. However, since TFC must map the free function domain to the

problem domain anyway, the mapping parameter can be used in the least-squares when

reducing the residual.

The meridional stress generates another complication, as r(`d) = 0 and ± dσm
ds → ∞

as r → 0 for non-zero σm, where the sign, ±, depends on the sign of σm. Of course,

this singularity does not exist in real life, as an infinite stress would rip the balloon apart,

rather, it is due to the coordinate system chosen and assumptions made when deriving the

differential equations. Fortunately, there is a change of variables that prevents a singularity

in the dependent variables [69]. Let q = 1
σmr

, then, Equation (4.1) can be rewritten as,

dθ
ds

= qσc cos(θ)− qrw sin(θ)− qrb(y − y(s0))

dq
ds

= −q2
(
σc sin(θ) + wr cos(θ)

)
dr
ds

= sin(θ)

dy
ds

= cos(θ).

The constrained expressions that embed the boundary constraints given previously are

shown in Equation (4.2). Note that theses constrained expressions are written for the domain

of the free function, because as mentioned earlier, the differential equations will ultimately

be written in terms of the free function domain, z, so the mapping parameter can be used

to solve for β and `d. For this problem, Chebyshev orthogonal polynomials are used, which

have a domain of z ∈ [−1, 1]. Further, note that the domain is the only part of the problem

being modified, so the right-hand side of the boundary conditions remains unchanged, e.g.,
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θ(z = −1) = θ(s0).

θ(z, gθ(z)) = gθ(z) +
1− z

2

(
θ(s0)− gθ(−1)

)
+
z + 1

2

(
θ(`d)− gθ(1)

)
r(z, gr(z)) = gr(z) +

1− z
2

(
r(s0)− gr(−1)

)
+
z + 1

2

(
r(`d)− gr(1)

)
q(z, gq(z)) = gq(z) + q(s0)− gq(−1)

y(z, gy(z)) = gy(z) + y(s0)− gy(−1)

(4.2)

The differential equations written on this domain are,

c
dθ
dz

= qσc cos(θ)− qrw sin(θ)− qrb(y − y(s0))

c
dq
dz

= −q2
(
σc sin(θ) + wr cos(θ)

)
c
dr
dz

= sin(θ)

c
dy
dz

= cos(θ),

where c(β, `d) = 2/
(
`d − s0(β)

)
is the mapping parameter. In this form, the residuals of the

differential equations include β and `d as well as the ξ vectors for each of the independent

variables. Therefore, the equations are in a form such that an optimization technique can

be used to minimize the residuals: in this case, nonlinear least-squares was used.

Consider the Venus atmospheric data in Table 4.2, which was collected as part of the

Venus Variable Altitude Aerobot project at JPL, and let the balloon constants be those

given in Table 4.3. Using this data and the differential equations above, TFC was used to

solve the natural balloon shapes: the results are shown in Figure 4.2. The average solution

time for the natural balloon shapes in Figure 4.2 was 0.65 seconds, and the residual of the

differential equation at all points was O(10−15). To compare, solving the same problem in

Octave via a shooting method that uses fzero and ode45 takes an average of 9.85 seconds

per case. Of course, this comparison is not exactly one-to-one, because as mentioned earlier,

TFC is implemented in JAX, and many of the functions have been JIT-ed.
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Table 4.2: Tandem balloon atmospheric data.

Altitude (km)
Atmospheric
Density ( kg

m3 )
Super Pressure

Balloon Gas Mass (kg) Gravity (m
s2
)

52 1.28 11.62 8.719
53 1.15 10.74 8.716
54 1.03 9.97 8.713
55 0.921 9.29 8.71
56 0.818 8.67 8.707
57 0.721 8.12 8.704
58 0.629 7.58 8.702
59 0.545 7.14 8.699
60 0.469 6.812 8.696
61 0.41 6.675 8.693
62 0.341 6.2675 8.69

Table 4.3: Tandem balloon constants.

Parameter Value and Units
w
(
kg
m2

)
0.095

ws

(
kg
m2

)
0.215

Mg

(
kg
mol

)
4× 10−3

Matm

(
kg
mol

)
4.34× 10−2

L (N) 208g

Another classic balloon shape scenario is one wherein the circumferential stress is con-

stant. In this case, one can trade the unknown `d for σc if desired, i.e., the balloon has

a fixed material length, and the circumferential stress is some unknown constant. Let the

fixed material length `d = 18 meters; Figure 4.3 shows the balloon shapes for this case. The

average solution time for each case in Figure 4.3 was 0.75 seconds, and the residual of the

differential equation at all points was O(10−15). Solving the same problem in Octave via a

shooting method that uses fsolve and ode45 takes an average of 45.7 seconds per case.
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Figure 4.2: Natural balloon shapes on Venus for a range of altitudes from 52 km to 62 km.
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Figure 4.3: Constant circumferential stress balloon shapes with `d = 18 meters on Venus for
a range of altitudes from 52 km to 62 km.
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4.2 Wave Equation

The wave equation is a well-known PDE that describes the propagation of waves, such

as those found in a vibrating string or n-dimensional membrane. This section applies TFC

to the one-dimensional (one spatial dimension and one time dimension) wave equation and

the two-dimensional (two spatial dimensions and one time dimension) wave equation.

4.2.1 One-Dimensional Wave Equation

Consider the wave equation for a one-dimensional object,

uxx = k2utt,

for some constant k on the domain (x, t) ∈ [0, 1]× [0, 1] with the following boundary condi-

tions,

u(0, t) = 0, u(1, t) = 0, u(x, 0) = sin(πx), and ut(x, 0) = 0.

One can physically imagine these boundary conditions as describing the string on a musical

instrument that is fixed at both ends and free to vibrate with initial displacement u(x, 0) =

sin(πx). Let the constant k = 1; then, the analytical solution is,

u(x, t) = sin(πx) cos(πt).

The analytical solution is shown in Figure 4.4.

The constrained expression written in recursive form is,

(1)u(x, t, g(x, t)) = g(x, t)− (1− x)g(0, t)− xg(1, t)

(2)u(x, t, g(x, t)) = g(x, t) + sin(πx)− g(x, 0)− tgt(x, 0)

where (1)u can be used as the free function in (2)u or (2)u can be used as the free function in

(1)u to create the full constrained expression. The constrained expression written in tensor
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Figure 4.4: Analytical solution for the one-dimensional wave equation.

form is,

u(x, t, g(x, t)) = g(x, t) +Mij(x, t, g(x, t))Φi(x)Φj(t),

where

Mij(x, t, g(x, t)) =


0 sin(πx)− g(x, 0) −gt(x, 0)

−g(0, t) g(0, 0) gt(0, 0)

−g(1, t) g(1, 0) gt(1, 0)

 ,

Φi(x) =

{
1, 1− x, x

}
and Φj(t) =

{
1, 1, t

}
.

Using Legendre orthogonal polynomials up to degree 20 as the free function and a grid

of 30 × 30 training points, the PDE solution was estimated using the TFC method. The
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solution was obtained in 0.49 seconds, and the average error on a test set of 100×100 evenly

spaced training points was 1.044× 10−15.

4.2.2 Two-Dimensional Wave Equation

The two-dimensional wave equation can be used to describe objects such as a flexible

two-dimensional membrane. Consider such a membrane clamped at all sides with an initial

deformation u(x, y, 0) = sin(πx) sin(πy). Then, the governing PDE can be written as,

uxx + uyy = k2utt,

on the domain (x, t) ∈ [0, 1]× [0, 1]× [0, 1] with the following boundary conditions,

u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0,

u(x, y, 0) = sin(πx) sin(πy), and ut(x, y, 0) = 0.

Let k = 8, then the analytical solution is,

u(x, y, t) = sin(πx) sin(πy) cos

(
π
√

2

8
t

)
.

The analytical solution at t = 0.5 is shown in Figure 4.5.

The constrained expression written in recursive form is,

(1)u(x, y, t, g(x, y, t)) = g(x, y, t)− (1− x)g(0, y, t)− xg(1, y, t)

(2)u(x, y, t, g(x, y, t)) = g(x, y, t)− (1− y)g(x, 0, t)− yg(x, 1, t)

(3)u(x, y, t, g(x, y, t)) = g(x, y, t) + sin(πx) sin(πy)− g(x, y, 0)− tgt(x, y, 0)

where (1)u, (2)u, and (3)u can be processed in any order to produce the full constrained
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Figure 4.5: Two-dimensional wave equation analytical solution at t = 0.5.

expression. The tensor form of the constrained expression is,

u(x, y, t, g(x, y, t)) = g(x, y, t) +Mijk(x, y, t, g(x, y, t))Φi(x)Φj(y)Φj(t),

where

Mij1(x, y, t, g(x, y, t)) =


0 −g(x, 0, t) −g(x, 1, t)

−g(0, y, t) g(0, 0, t) g(0, 1, t)

−g(1, y, t) g(1, 0, t) g(1, 1, t)
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Mij2(x, y, t, g(x, y, t)) =


sin(πx) sin(πy)− g(x, y, 0) g(x, 0, 0) g(x, 1, 0)

g(0, y, 0) −g(0, 0, 0) −g(0, 1, 0)

g(1, y, 0) −g(1, 0, 0) −g(1, 1, 0)



Mij3(x, y, t, g(x, y, t)) =


−gt(x, y, 0) gt(x, 0, 0) gt(x, 1, 0)

gt(0, y, 0) −gt(0, 0, 0) −gt(0, 1, 0)

gt(1, y, 0) −gt(1, 0, 0) −gt(1, 1, 0)



and

Φi(x) =

{
1, 1− x, x

}
,

Φj(y) =

{
1, 1− y, y

}
,

Φk(t) =

{
1, 1, t

}
.

For the two-dimensional wave equation, choosing ELMs as the free function led to a better

estimate of the solution than Chebyshev or Legendre orthogonal polynomials on average:

although the two were similar. To illustrate, Table 4.4 shows the maximum and mean errors

when using the two methods for different numbers of basis functions: the number of basis

functions corresponds to the number of Chebyshev polynomials there are on this problem

when keeping all polynomials up to degree 3, 6, 9, 12, 15, and 18. The TFC method used

Chebyshev orthogonal polynomials, and the X-TFC method used the hyperbolic tangent as

the activation function. Each method used a grid of 11× 11× 11 training points and a test

set of 15× 15× 15 uniformly spaced points.

Table 4.4 shows that while the two methods are similar, the X-TFC method performs

slightly better. The differences between the two methods are the most pronounced when

a lower number of basis functions is used. Consequently, ELMs were used to estimate the
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Table 4.4: TFC and X-TFC solution errors for various numbers of basis functions when
solving the two-dimensional wave equation.

m TFC X-TFC
Maximum Error Mean Error Maximum Error Mean Error

12 5.32 5.16× 10−1 6.24× 10−3 6.98× 10−4

76 8.07× 10−3 1.04× 10−3 4.89× 10−3 4.56× 10−4

212 1.64× 10−1 1.55× 10−2 2.42× 10−3 2.29× 10−4

447 2.22× 10−2 2.09× 10−3 9.34× 10−3 8.79× 10−4

808 3.91× 10−3 3.67× 10−4 3.32× 10−3 3.12× 10−4

1322 3.90× 10−3 3.67× 10−4 3.34× 10−3 3.02× 10−4

solution of this differential equation. For one particular run using 650 neurons, the solution

was obtained in 18.4 seconds, and the average solution error on the test set was 2.124×10−5.

4.3 Biharmonic Equation

The biharmonic equation is a fourth-order linear PDE that appears in linear elasticity

theory [71]. The PDE is given by,

∇4u(x) = ∇2(∇2u(x)) = f(x),

where u is the dependent variable of interest, f is a forcing term, and ∇2 is the Laplacian op-

erator. In two-dimensional plate problems, the variable u is related to the stress experienced

by the plate, and f(x) is related to the body forces acting on the plate.

4.3.1 Cartesian Coordinates

Consider the following forcing function,

∇4u(x, y) = 4π2 sin(πx) sin(πy),

on the domain (x, y) ∈ [0, 1]× [0, 1] with the following boundary conditions,

u(0, y) = u(1, y) = u(x, 0) = u(y, 0) = 0
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uxx(0, y) = uxx(1, y) = uyy(x, 0) = uyy(y, 0) = 0

The analytical solution to this problem is [72, 73],

u(x, y) =
1

π2
sin(πx) sin(πy),

and is shown in Figure 4.6.

Figure 4.6: Biharmonic equation analytical solution in Cartesian coordinates.
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The constrained expression for this problem in recursive form is,

(1)u(x, y, g(x, y)) = g(x, y)− (1− x)g(0, y)− xg(1, y)

− −x
3 + 3x2 − 2x

6
gxx(0, y)− x3 − x

6
gxx(1, y),

(2)u(x, y, g(x, y)) = g(x, y)− (1− y)g(x, 0)− yg(x, 1)

− y3 − y
6

gyy(x, 1)− −y
3 + 3y2 − 2y

6
gyy(x, 0),

where (1)u can be used as the free function in (2)u or (2)u can be used as the free function in

(1)u to create the full constrained expression. In tensor form the constrained expression is,

u(x, y, g(x, t)) = g(x, y) +Mij(x, y, g(x, y))Φi(x)Φj(y),

where

Mij(x, y, g(x, y)) =



0 −g(x, 0) −g(x, 1) −gyy(x, 0) −gyy(x, 1)

−g(0, y) g(0, 0) g(0, 1) gyy(0, 0) gyy(0, 1)

−g(1, y) g(1, 0) g(1, 1) gyy(1, 0) gyy(1, 1)

−gxx(0, y) gxx(0, 0) gxx(0, 1) gxxyy(0, 0) gxxyy(0, 1)

−gxx(1, y) gxx(1, 0) gxx(1, 1) gxxyy(1, 0) gxxyy(1, 1)


and

Φi(x) =

{
1, 1− x, x, −x3+3x2−2x

6
, x3−x

6

}
,

Φi(y) =

{
1, 1− y, y, −y3+3y2−2y

6
, y3−y

6

}
.

Using Chebyshev orthogonal polynomials up to degree 26 as the free function and a grid

of 20 × 20 training points, the PDE solution was estimated using the TFC method. The

solution was obtained in 0.94 seconds, and the average error on a test set of 100 × 100
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uniformly spaced points was 1.661× 10−16.

4.3.2 Polar Coordinates

Consider the following forcing function,

∇4u(r, θ) = 0,

on the domain (r, θ) ∈ [1, 4]× [0, 2π] with the following boundary conditions,

u(1, θ) =
1

4
sin(2θ) +

1

16
sin(3θ) + π cos(θ) +

1

8

u(4, θ) = 4 sin(2θ) + 4 sin(3θ) +
1

4
π cos(θ) + 2

urr(1, θ) =
1

2
sin(2θ) +

3

8
sin(3θ) + 2π cos(θ) +

1

4

urr(4, θ) =
1

2
sin(2θ) +

3

2
sin(3θ) +

1

32
π cos(θ) +

1

4

u(r, 0) = u(r, 2π)

uθ(r, 0) = uθ(r, 2π)

uθθ(r, 0) = uθθ(r, 2π)

uθθθ(r, 0) = uθθθ(r, 2π).

The analytical solution to this problem is [74],

u(r, θ) =
r3

16
sin(3θ) +

r2

4
sin(2θ) +

r2

8
+
π cos(θ)

r
,

and is shown in Figure 4.7. Note that the Laplacian in polar coordinates is,

∇2u(r, θ) = urr +
1

r
ur +

1

r2
uθθ,
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Figure 4.7: Biharmonic equation analytical solution in polar coordinates. Note, this figure
contains an embedded, standalone HMTL version of the plot that can be viewed/downloaded
by clicking on it. Doing so may require a dedicated PDF viewer such as Adobe Acrobat or
Okular.

so the biharmonic operator in polar coordinates is [75],

∇4u(r, θ) = urrrr +
2

r2
urrθθ +

1

r4
uθθθθ +

2

r
urrr −

2

r3
urθθ −

1

r2
urr +

4

r4
uθθ +

1

r3
ur.

The constrained expression for this problem given in recursive form is,

(1)u(r,θ, g(r, θ)) = g(r, θ)

+
1

3
(r − 1)

(
4 sin(2θ) + 4 sin(3θ) +

1

4
π cos(θ) + 2− g(4, θ)

)
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+
1

3
(4− r)

(
1

4
sin(2θ) +

1

16
sin(3θ) + π cos(θ) +

1

8
− g(1, θ)

)
+

1

18

(
−r3 + 12r2 − 39r + 28

)(
−grr(1, θ) +

1

2
sin(2θ) +

3

8
sin(3θ) + 2π cos(θ) +

1

4

)
+

1

18

(
r3 − 3r2 − 6r + 8

)(1

2
sin(2θ) +

3

2
sin(3θ) +

1

32
π cos(θ) +

1

4
− grr(4, θ)

)
,

(2)u(r,θ, g(r, θ)) = g(r, θ)− θ

2π

(
g(r, 2π)− g(r, 0)

)
+

2πθ − θ2

4π

(
gr(r, 2π)− gr(r, 0)

)
+
−θ3 + 3πθ2 − 2π2θ

12π

(
grr(r, 2π)− grr(r, 0))

)
+
−θ4 + 4πθ3 − 4π2θ2

48π

(
grrr(r, 2π)− grrr(r, 0)

)
,

where (1)u can be used as the free function in (2)u or (2)u can be used as the free function in

(1)u to create the full constrained expression. In tensor form the constrained expression is,

u(r, θ, g(r, θ)) = g(r, θ) +Mij(r, θ, g(r, θ))Φi(r)Φj(θ),

where

Mij(r, θ, g(r, θ)) =



0

−g(1, θ) + 1
4

sin(2θ) + 1
16

sin(3θ) + π cos(θ) + 1
8

−g(4, θ) + 4 sin(2θ) + 4 sin(3θ) + 1
4
π cos(θ) + 2

−grr(1, θ) + 1
2

sin(2θ) + 3
8

sin(3θ) + 2π cos(θ) + 1
4

−grr(4, θ) + 1
2

sin(2θ) + 3
2

sin(3θ) + 1
32
π cos(θ) + 1

4


, i = 1

Mij(r, θ, g(r, θ)) =



g(r, 2π)− g(r, 0) gθ(r, 2π)− gθ(r, 0)

g(1, 0)− g(1, 2π) gθ(1, 0)− gθ(1, 2π)

g(4, 0)− g(4, 2π) gθ(4, 0)− gθ(4, 2π)

grr(1, 0)− grr(1, 2π) grrθ(1, 0)− grrθ(1, 2π)

grr(4, 0)− grr(4, 2π) grrθ(4, 0)− grrθ(4, 2π)


, i ∈ {2, 3}
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Mij(r, θ, g(r, θ)) =



gθθ(r, 2π)− gθθ(r, 0) gθθθ(r, 2π)− gθθθ(r, 0)

gθθ(1, 0)− gθθ(1, 2π) gθθθ(1, 0)− gθθθ(1, 2π)

gθθ(4, 0)− gθθ(4, 2π) gθθθ(4, 0)− gθθθ(4, 2π)

grrθθ(1, 0)− grrθθ(1, 2π) grrθθθ(1, 0)− grrθθθ(1, 2π)

grrθθ(4, 0)− grrθθ(4, 2π) grrθθθ(4, 0)− grrθθθ(4, 2π)


, i ∈ {4, 5}

and

Φi(r) =

{
1, 4−r

3
, r−1

3
, −r

3+12r2−39r+28
18

, r
3−3r2−6r+8

18

}
,

Φi(θ) =

{
1,− θ

2π
, 2πθ−θ2

4π
, −θ

3+3πθ2−2π2θ
12π

, −θ
4+4πθ3−4π2θ2

48π

}
.

Using Chebyshev orthogonal polynomials up to degree 30 as the free function and a grid

of 30 × 30 training points, the PDE solution was estimated using the TFC method. The

solution was obtained in 10.67 seconds, and the average error on a test set of 100 × 100

uniformly spaced points was 1.535× 10−8.
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5. SUMMARY AND CONCLUSIONS

This dissertation is titled “The Multivariate Theory of Functional Connections: An n-

Dimensional Constraint Embedding Technique Applied to Partial Differential Equations”

because it presents two main ideas: (1) the derivation and analysis of multivariate TFC

constrained expressions (2) the estimation of PDE solutions using TFC.

The first of these main ideas is conveyed in Chapter 2, which is a self-contained presenta-

tion of multivariate TFC. It includes the derivation of multivariate constrained expressions

starting from the univariate theory and all the associated mathematical theorems that have

been proven to date. Although most readers will likely only be interested in using constrained

expressions for value constraints, derivative constraints, and linear combinations thereof, as

these are the most common types of constraints found in differential equations, integral and

component constraints are included as well. Because the chapter is comprehensive, it serves

as a convenient and useful reference for any reader interested in TFC, regardless of their

familiarity with the subject. In addition, extensions of the theory to inequality constraints,

nonlinear constraints, parallelotope domains, lower-dimensional constraints in n-dimensions,

and to any field, i.e., beyond real numbers to other fields such as complex numbers, are

covered in Appendices B, C, and I.

The second idea is conveyed in Chapter 3, which describes how to apply TFC to DEs,

in particular, PDEs. In addition to describing the general methodology for solving DEs

via TFC, this chapter discusses the common free function and optimization choices as well

as their strengths and weaknesses. Similar to Chapter 2, Chapter 3 is also self-contained;

consequently, it is a convenient and useful reference for any reader interested in solving DEs

via TFC.

Although Chapters 2 and 3 contain all the information necessary to apply TFC to DEs,

they show few complicated examples: such examples are useful, as they highlight and clarify

some of the nuances of TFC discussed in these chapters. To that end, Chapter 4 contains
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some complex problems in a field of particular interest to the author: flexible body dynamics.

Furthermore, these complex problems showcase the power and convenience of the numerical

implementation. As examples:

1. The natural tandem balloon shape problem is a complex system of four ODEs wherein

both ends of the domain are themselves unknowns. The code for this problem is simple

to read and write due to automatic differentiation—none of the derivatives have to be

written out explicitly, which would clutter the code significantly—and the optimization

of the free functions is simple too, despite the number of unknowns—a ξ vector for

each of the four dependent variables and the two unknowns associated with the ends

of the domain.

2. The polar biharmonic equation is a linear, fourth-order PDE with relative constraints

up to the third derivative in one of the two independent variables. The numerical

implementation allows the constrained expression to be written using the recursive

format, which is short and easy to read. Furthermore, automatic differentiation makes

creating the residual easy and straightforward even though it contains ninth-order

partial derivatives (fifth-order partial derivatives in the constrained expression plus

the fourth-order partial derivatives appearing in the residual itself).

The code for both of these problems and most of the problems and examples in this disser-

tation can be found for free on the TFC GitHub [64].

This dissertation showed that TFC is useful for solving differential equations. In many

of the examples shown, the solution error found using TFC is multiple orders of magnitude

lower than competing state-of-the-art methods. Moreover, most of the TFC solutions are

found in seconds or fractions of a second, except for those found using Deep-TFC, which

typically solves problems on the order of minutes. However, in its current state, TFC can

only be applied to rectangular domains1 and a limited number of non-rectangular domains
1Rectangular domains here means with respect to the coordinates being used, e.g., problems using polar

coordinates such as the polar bi-harmonic problem appear to be on a cylindrical domain when viewed on a
Cartesian grid, but are rectangular from the perspective of the polar coordinates.
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[16, 17]: this restriction is not present in many of the competing state-of-the-art methods.

5.1 Future Work

In terms of constraints, TFC can currently embed value, derivative, integral, component,

and linear constraints, and it can embed any number of these constraints on any number of

dimensions. However, it cannot embed sets of integral constraints whose integration variables

refer to one another, such as,

∫ 1

0

u(x, 0) dx = 1 and
∫ 1

0

u(0, y) dy = 1.

Finding a way to embed these constraints is a topic of future work. In addition, inequality

constraints can currently be used in conjunction with value constraints only, see Appendix

C. Integrating inequality constraints fully into the theory, i.e., finding a way to combine

inequality constraints and the remaining types of linear constraints, remains a topic of further

study. Also, as noted in the comparison with other methods, TFC is restricted to rectangular

domains and a handful of irregular domains: extending TFC to all irregular domains is a

topic of future research.

This dissertation focused on applying TFC to differential equations. However, there

are a plethora of other applications that have yet to be explored, such as Computer-Aided

Design (CAD) [21, 22], image warping [23], and security pattern design [24]. Yet, even in

the application of differential equations, there are numerous directions future research can

pursue:

• Hybrid basis functions - Combining two or more sets of basis functions and using

the result as the free function, e.g., Fourier basis functions and Legendre orthogonal

polynomials. Note that one could even combine X-TFC and basis functions in this way

because both are simply a linear combination of functions.

• Optimizers - Only four optimizers are utilized in this dissertation: least-squares, L-

BFGS, Adam, and CSVM. However, many optimizers could have been used instead,
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some of which may outperform those used here.

• NN architecture - Deep-TFC has only used fully connected NNs up to this point. Like

the optimizers, there are a variety of NN architectures that could be used, some of

which may outperform the fully connected NNs used here.

This list is by no means exhaustive, and there are almost certainly research directions that

have been excluded. Hence, the reader is encouraged to consider and pursue the research

ideas that appear here as well as those that the author has not considered.
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APPENDIX A

GRAPH THEORY

This appendix provides a cursory overview of the graph theory concepts germane to

determining the processing order of constrained expressions; readers who would like a more

in-depth presentation of these topics should consult Reference [18]. First, a few different

types of graphs are defined.

Definition A.1

A graph is a set of nodes connected by edges.

Figure A.1(a) shows an example of a graph.

Definition A.2

A multigraph is a graph wherein at least one pair of nodes is connected by more than

one edge.

Figure A.1(b) shows an example of a multigraph.

Definition A.3

A directed graph is a graph wherein the edges have direction.

Figure A.1(c) shows an example of a directed graph: more specifically, a directed multigraph.

Arrows denote the directions of the edges. For a directed edge, the target node is the node

at the head of the arrow, and the source node is the node at the tail of the arrow.

Definition A.4

A cyclic graph is a graph that contains at least one cycle.
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Definition A.5

An acyclic graph is a graph that contains no cycles.

Definition A.6

A cycle is a path on the graph wherein the only repeated nodes are the first and last

nodes.

Figure A.1(d) shows an example of a cyclic graph: more specifically, a directed cyclic multi-

graph.

(a) Graph (b) Multigraph

(c) Directed acyclic multigraph (d) Directed cyclic multigraph

Figure A.1: Example graphs.

It is also convenient to define some node types.

Definition A.7

A root node is a node in a directed graph that is not the target of any edges.
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Definition A.8

A leaf node is a node in a directed graph that is not the source of any edges.

In Fig. A.1, node a is a root node in (c) and (d), and node c is a leaf node in (c) but not in

(d).

Definition A.9

A parent node of node i is any node j in a directed graph such that an edge exists

where i is the target and j is the source.

Definition A.10

A child node of node i is any node j in a directed graph such that an edge exists where

i is the source and j is the target.

In Fig. A.1, node a is a parent of node b and node b is a child of a in (c) and (d).

Lastly, the concept of the adjacency matrix, Aij, for a directed graph is introduced. The

adjacency matrix can be constructed using,

Aij =


1, if node i is a parent of node j

0, otherwise.

The adjacency matrix has many uses, but in the context of TFC, the adjacency matrix is

used to determine if a graph is acyclic or not. If Aij is nilpotent, then the graph is acyclic

[18].
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APPENDIX B

EXTENSION TO NONLINEAR CONSTRAINTS

This appendix extends TFC to simple nonlinear constraints and parameterized nonlinear

constraints. The extension is accomplished by transforming the nonlinear constraints into

linear constraints by introducing extra variables into the constrained expression, which are

found in the κ terms. These extra variables are constants from the perspective of the

constraint operators. Hence, the rest of the theory—derivation of switching functions and

projection functionals, extension to n-dimensions, and associated mathematical theorems—

remains unchanged and still applies as presented in Chapter 2.

This is one of the critical aspects of abstracting the constrained expression into the

symbols associated with the switching-projection form: if one can rewrite constraints as

C[y] = κ and maintain the relevant mathematical properties, the rest of the theory still

applies. This core idea is used in many of the extensions to the TFC theory, e.g., extending

beyond the field of real numbers to all mathematical fields, as shown in Appendix I.

B.1 Simple Nonlinear Constraints

Definition B.1

Simple nonlinear constraints are those that can be written as,

ψ
[
C[y]

]
= κ̂

for some nonlinear function or operator ψ that has a well-defined inverse, i.e., ψ−1

exists and can be calculated.

Notice that these types of constraints can be rewritten as linear constraints by applying
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ψ−1 to each side:

C[y] = ψ−1[κ̂] = κ,

where κ = ψ−1[κ̂]. However, doing so may result in multiple solutions. That is, there may

be be multiple κ values that satisfy κ = ψ−1[κ̂] or even an infinite number of κ values.

One option is to write a constrained expression for each κ solution. However, this is

impossible for an infinite number of κ solutions and quickly becomes burdensome when

there are multiple simple nonlinear constraints; the total number of constrained expressions

required for multiple nonlinear constraints is
∏

i num(κi) where num(κi) is the number of κ

solutions for the i-th nonlinear constraint.

Fortunately, by introducing new variables into the constrained expression, one can com-

bine the set of constrained expressions into one constrained expression. The following ex-

amples highlight some common cases: solutions with ±, a finite number of solutions, and a

countably infinite number of solutions.

Example B.1: Constraints with solutions that contain ±

Consider the constraint y2(0) = 3. For this constraint, the nonlinear operator

raises the function to the power of two, e.g., ψ[f(x)] = f 2(x). Inverting the nonlinear

operator results in the solutions y(0) = ±
√

3. One could write the set of constrained

expressions that satisfy these constraints,

y(x, g(x)) = g(x) +
√

3− g(0) (B.1)

y(x, g(x)) = g(x)−
√

3− g(0). (B.2)

However, by including a variable n in the constrained expression, these two constrained

expressions can be combined into one,

y(x, n, g(x)) = g(x) + (−1)10(n)
√

3− g(0),
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where 10(x) is the unit step function where the step occurs at x = 0. If n < 0, then

Equation (B.2) is recovered, and if n > 0, then Equation (B.1) is recovered. Hence,

n ∈ R is now just a variable, and its value dictates which constrained expression branch

is used.

Figure B.1 shows the constrained expression plotted with randomly chosen values

of n and free functions chosen as polynomials with random coefficients. The solutions

of y(0) that satisfy the constraint are shown as black points.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y(
x,

n,
g(

x)
)

Figure B.1: Squared constraint example for randomly chosen g(x) and n.

Example B.2: Constraints with a finite number of solutions

Consider the constraint

y3(0)− 6y2(0) + 11y(0) = 6.
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Applying ψ−1
1 [κ̂] yields κ = {1, 2, 3}, a finite set. The set of constrained expressions

that satisfy these solutions can be written compactly as,

y(x, n, g(x)) = g(x)− κ[n]− g(0),

where n ∈ Z/3Z and κ[n] is the n-th solution in the set of κ that satisfies the

constraints—one may think of κ[n] as the indexing operation of a zero-indexed ar-

ray κ that contains the solutions of ψ−1
1 [κ̂]. Alternatively, if one prefers to keep n ∈ R,

then this constrained expression can be rewritten as,

y(x, n, g(x)) = g(x)− κ
[
bmod(n, 2)e

]
− g(0).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x
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5.0

2.5

0.0
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10.0
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y(
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n,
g(

x)
)

Figure B.2: Polynomial constraint example for randomly chosen g(x) and n.
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The term b(mod(n, 2)e, where bxe rounds x to the nearest integer, forces n ∈ R to lie

on Z/3Z.

Figure B.2 shows the constrained expression plotted with randomly chosen values

of n and free functions chosen as polynomials with random coefficients. The solutions

of y(0) that satisfy the constraint are shown as black points.

Example B.3: Constraints with a countably infinite number of solutions

Consider the constraint,

sin
(
y(1)

)
= 0.

Applying ψ−1
1 [κ̂] yields κ = nπ where n ∈ Z: a countably infinite number of solutions.

Similar to the previous example, one can write the constrained expression as,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x
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x)
)

Figure B.3: Sine constraint example for randomly chosen g(x) and n.

137



y(x, n, g(x)) = g(x)− nπ − g(1),

where n ∈ Z or as,

y(x, n, g(x)) = g(x)− bneπ − g(1),

where n ∈ R.

Figure B.3 shows the constrained expression plotted with randomly chosen values

of n and free functions chosen as polynomials with random coefficients. A subset of

the solutions of y(1) that satisfy the constraint is shown via black points.

B.2 Parameterized Nonlinear Constraints

Oftentimes, one can parameterize the solution space of the nonlinear constraints and

rewrite them as a set of linear constraints. Examples B.4 and B.5 demonstrate the idea.

Example B.4: Simple parameterized nonlinear constraint

Consider the nonlinear constraint,

y2(0) + (yx(0)− 4)2 = 9.

The solutions to this nonlinear constraint lie on a circle that can be parameterized in

terms of an unknown, θ:

y(0) = 3 sin(θ) and yx(0) = 3 cos(θ) + 4.

Then, these linear constraints can be embedded into a constrained expression using

the usual method,

y(x, θ, g(x)) = g(x) + 3 sin(θ)− g(0) + x
(

3 cos(θ) + 4− gx(0)
)
,
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where θ ∈ R.

Example B.5: Parameterized nonlinear constraints on conics

Consider the following nonlinear constraints,

x2(0) +
16

9
y2(0) +

1

4
z2(0) = 1 and 100

(
x(3)− 3

)2
+ 100y2(3)− 100

9
z2(3) = −1.

The solutions of these nonlinear constraints form an ellipsoid at t = 0 and a hyperboloid

of two sheets at t = 3. Hence, theses nonlinear constraints can be parameterized as,

x(0) = sin(φ) cos(θ) x(3) =
1

10
sinh(|v|) cos(ψ) + 3

y(0) =
3

4
sin(φ) sin(θ) y(3) =

1

10
sinh(|v|) sin(ψ)

z(0) = 2 cos(φ) z(3) = (−1)10(n) 3

10
cosh(|v|),

where φ, θ, v, ψ, n ∈ R. These parameterized constraints can be embedded into con-

strained expressions:

x(t, φ, θ, v, ψ, g(t)) = g(t) +
3− t

3

(
sin(φ) cos(θ)− g(0)

)
+
t

3

( 1

10
sinh(|v|) cos(ψ) + 3− g(3)

)
y(t, φ, θ, v, ψ, g(t)) = g(t) +

3− t
3

(3

4
sin(φ) sin(θ)− g(0)

)
+
t

3

( 1

10
sinh(|v|) sin(ψ)− g(3)

)
z(t, φ, θ, v, ψ, g(t)) = g(t) +

3− t
3

(
2 cos(φ)− g(0)

)
+
t

3

(
(−1)10(n) 3

10
cosh(|v|)− g(3)

)
.

Figure B.4 shows the constrained expressions plotted with randomly chosen values

of φ, θ, v, ψ, and n and free functions that were chosen as polynomials with random
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coefficients. The nonlinear constraint surfaces are shown as a black ellipse and purple

hyperboloid.

Figure B.4: Parameterized nonlinear constraints on conics. Note, this figure contains
an embedded, standalone HMTL version of the plot that can be viewed/downloaded
by clicking on it. Doing so may require a dedicated PDF viewer such as Adobe Acrobat
or Okular.
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APPENDIX C

ADDING INEQUALITY CONSTRAINTS TO CONSTRAINED EXPRESSIONS

Inequality constraints such as y(x) < fu(x) ∀x ∈ Ω where y is the dependent variable,

fu(x) is some function that specifies an upper bound, and Ω is the domain of interest, can

also be added to TFC constrained expressions. However, at the time this dissertation is

written, the method for incorporating inequality constraints cannot be used in combination

with all other constraint types introduced previously, nor have all the mathematical theorems

related to the constrained expression been extended to include inequality constraints; thus,

they are included here as an appendix, rather than in the main body of the text.

Early attempts to incorporate inequality constraints utilized the sigmoid function to

satisfy the inequality constraints approximately [14], but the introduction of an automatic

differentiation framework allows them to be incorporated exactly. The enabling component

of the automatic differentiation framework is the concept of primitives, which allow a user

to specify both a function and its derivative as black boxes: meaning that the derivative

specified does not have to be the actual mathematical derivative of the original function.

The Heaviside function is a prime example [61]; the function value is encoded as,

1(x, x1) =


0, x < x1

x1, x = 0

1, x > x1

but the derivative is encoded as,
d1
dx

= 0.

Mathematically this is not correct as the derivative is really the Dirac delta function [76],

but encoding it in this way allows one to incorporate inequality constraints into constrained
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expressions.

Let 10(x) = 1(x, 0), which is equivalent to the unit step function where the step occurs

at x = 0. One can think of this function as the mathematical equivalent of a switch or gate

when it is composed with multiplication. For example,

f(x) = g(x)1(x, 0) = g(x)10,

will return g(x) when x > 0 and 0 otherwise. This switching behavior is exactly the desired

behavior needed to implement inequality constraints.

Consider the following two inequality constraints,

y(x) > f`(x) and y(x) < fu(x),

where f`(x) and fu(x) are the lower and upper bound functions respectively. Using the

switch-like behavior of 10, it is straightforward to write a functional that maintains a free

function, i.e., a constrained expression, and obeys these two inequality constraints,

y(x, g(x)) = g(x)+
(
fu(x)−g(x)

)
10

(
g(x)−fu(x)

)
+
(
f`(x)−g(x)

)
10

(
f`(x)−g(x)

)
. (C.1)

One can prove that this form satisfies the two inequality constraints via brute-force by

checking the three possible cases:

1. g(x) < f`(x)→ y(x, g(x)) = g(x) +
(
fu(x)− g(x)

)
(0) +

(
f`(x)− g(x)

)
(1) = f`(x)

2. f`(x) ≤ g(x) ≤ fu(x)→ y(x, g(x)) = g(x) +
(
fu(x)− g(x)

)
(0) +

(
f`(x)− g(x)

)
(0)

= g(x)

3. fu(x) < g(x)→ y(x, g(x)) = g(x) +
(
fu(x)− g(x)

)
(1) +

(
f`(x)− g(x)

)
(0) = fu(x)

Furthermore, the Heaviside derivative overridden by the automatic differentiation program
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produces the desired behavior in the derivative of the bounded constrained expression,

yx(x, g(x)) =



df`
dx (x), g(x) < f`(x)

gx(x), f`(x) ≤ g(x) ≤ fu(x)

dfu
dx (x), fu(x) < g(x);

that is, the derivative of the constrained expression is equal to the derivatives of the lower and

upper bound functions when they are active and equal to the derivative of g(x) otherwise.

Although inequality constraints cannot yet be combined with all the constraint types

introduced earlier, they can be combined with the most commonly occurring constraint:

point constraints. Let ŷ(x, g(x)) be a constrained expression satisfying some set of point

constraints that are consistent with the inequality constraints,

y(x) > f`(x) and y(x) < fu(x).

Then, ŷ(x, g(x)) can be substituted as the free function into the inequality constrained

expression given earlier,

y(x, g(x)) = ŷ(x, g(x)) +
(
fu(x)− ŷ(x, g(x))

)
10

(
ŷ(x, g(x))− fu(x)

)
+
(
f`(x)− ŷ(x, g(x))

)
10

(
f`(x)− ŷ(x, g(x))

)
,

(C.2)

and the result satisfies both the equality and inequality constraints. The inequality con-

straints are satisfied because Equation (C.1) satisfies them for any free function, including

ŷ(x, g(x)), and the equality constraints can be shown to be satisfied by simply applying the

constraint operator to the constrained expression (similar to the proof of Theorem 1),

Ci[y(x, g(x))] = Ci[ŷ(x, g(x))] + Ci

[(
fu(x)− g(x)

)
(0)
]

+ Ci

[(
f`(x)− g(x)

)
(0)
]

= κi + 0 + 0 = κi.
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Note that for any consistent set of constraints, the 10 functions must yield zero at the

equality constraint locations. The theorem on the existence of g(x) (Theorem 2) can easily

be extended as well. Let f(x) be some function that satisfies the constraints, then,

y(x, f(x)) = ŷ(x, f(x)) +
(
fu(x)− f(x)

)
(0) +

(
f`(x)− f(x)

)
(0)

= f(x) + 0 + 0

= f(x).

Thus, for any function satisfying the constraints, f(x), there exists at least one free function

g(x) = f(x), such that the constrained expression is equal to the function satisfying the

constraints, i.e., y(x, f(x)) = f(x).

Figures C.1 and C.2 visually show that Equations C.1 and C.2 work, respectively. Each

figure contains randomly generated upper and lower bounds, shown as black, dashed lines,

and randomly generated free functions, shown as solid, colored lines. In addition, Figure C.2

contains randomly generated point constraints shown via black dots.

0 2 4 6 8
x

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

y(
x,

g(
x)

)

Figure C.1: Inequality constraints only.
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Figure C.2: Inequality and value-level
equality constraints.
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APPENDIX D

SPLITTING THE DOMAIN

When the solution of a differential equation has steep gradients, it is oftentimes difficult to

describe the solution over the whole domain using one constrained expression. In these cases,

it is convenient to split the domain into sections and enforce continuity at the intersections

via the constrained expressions. For example, consider the following differential equation

that describes convection and diffusion processes:

yxx − Peyx = 0

subject to,

y(0) = 1 and y(1) = 0,

where x ∈ [0, 1], Pe is the Peclet number, and the analytical solution is,

y =
1− ePe(x−1)

1− e−Pe
.

As the Peclet number increases, the solution’s gradients become larger. To illustrate,

Figure D.1 shows the analytical solutions to the convection-diffusion equation with two

different Peclet numbers, Pe = 1 and Pe = 106. When the Peclet number is low enough, one

can estimate the solution well using only one constrained expression for the entire domain,

y(x, g(x)) = g(x) + (1− x)(1− g(0))− xg(1).

However, as the Peclet number increases, a better estimation is obtained with two constrained

expressions. These two constrained expressions are for the subdomains x1 ∈ [0, xp] and

x2 ∈ [xp, 1], where xp is the point of intersection between the two. For this differential
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Figure D.1: Analytical solutions of the convection-diffusion equation with different Peclet
numbers.

equation, choosing the point xp arbitrarily does not increase the accuracy noticeably; hence,

the point xp is an unknown that will be solved as part of the solution process.

Since the domains of the two constrained expressions are dependent on xp, it is simplest

to write them on the basis function domain,

(1)y(z, g(z)) = (1)g(z) +
1− 2z + z2

4

(
1− (1)g(z0)

)
+

3 + 2z − z3

4

(
yp − (1)g(zf )

)
+
z2 − 1

2

(
dyp/c1 −

d (1)g

dz
(zf )

)
(2)y(z, g(z)) = (2)g(z) +

3− 2z − z2

4

(
yp − (2)g(z0)

)
− 1 + 2z + z2

4
(2)g(zf )

+
1− z2

2

(
dyp/c2 −

d (2)g

dz
(z0)

)

where (1)g(z) is the free function for the first constrained expression, (2)g(z) is the free

function for the second constrained expression, yp and dyp are the value and derivative of
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the intersection point, z ∈ [z0, zf ] is the free function domain, and c1 and c2 are the constants

in the linear maps from the problem domain to the basis function domain; for this problem,

Legendre orthogonal polynomials are used, so z ∈ [−1, 1]. In addition, the constants in the

mapping function can be expressed as,

c1 =
2

xp
and c2 =

2

1− xp
.

Since the two constrained expressions are written on the basis function domain, the differ-

ential equation must be modified,

c2
kyzz − ckPeyz = 0,

where k = 1 if z < zp and k = 2 if z > zp: zp can be calculated based on xp using the linear

map between the problem domain and the basis function domain.

Now, the unknown coefficients in the two free functions, (1)ξ and (2)ξ, and the intersection

point and derivative values, xp, yp, and dyp, can be used to reduce the residual of the

differential equation at each point in the discretized domain: the domain here is broken up

into 200 points per constrained expression, for a total of 400 points. However, there is one

more nuance to this problem: solving the problem as-is with nonlinear least-squares tends to

diverge unless a good initial guess is provided. This divergent behavior is related to trying

to solve for xp, which frequently takes on values outside the domain if left unchecked. The

author has identified two options that fix this divergent behavior:

1. Remove xp from the nonlinear least-squares optimizer and estimate it using a separate,

exterior optimization scheme such as a genetic algorithm.

2. Modify the nonlinear least squares to bound the values that xp can take.

In this section, the second option is used, but the author has verified that the first method

also works. When using the second option, it is tempting to simply perform an update after
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each iteration of the nonlinear least-squares that bounds xp to values within the domain.

However, this simple change still results in divergent behavior much of the time. In terms

of convergence, a better option is to use concepts from inequality constraint embedding (see

appendix C for more details) to bound xp. For this differential equation, xp was chosen to

be,

xp = x̂p + (fu − x̂p)10(x̂p − fu) + (f` − x̂p)10(f` − x̂p),

where xp is the value used in the constrained expression and x̂p is the unknown used in the

nonlinear least squares; f` = 1×10−3 and fu = 1−1×10−3 are the lower and upper bounds,

respectively, on xp. This simple change results in a nonlinear least-squares that converges.

To demonstrate the benefits of the domain splitting technique, Table D.1 shows the

maximum and mean error on a test set of 1, 000 evenly spaced data points per constrained

expression when using a single constrained expression for the whole domain and when using

two constrained expression and a split domain as described above. The results are shown

for Pe = 1 and Pe = 106. Each case used 200 training points per constrained expression, and

Legendre polynomials up to degree 190 as the free function. Table D.1 shows that the split

Table D.1: Convection-diffusion equation error: whole vs. split domain.

Pe Whole Domain Split Domain
Maximum Error Mean Error Maximum Error Mean Error

1 2.22× 10−16 5.62× 10−17 4.44× 10−16 8.33× 10−17

106 1.00 4.99× 10−1 8.61× 10−12 1.10× 10−14

domain and whole domain approaches produce similar error values for the Pe = 1 case when

the solution’s gradients are relatively small. However, when Pe = 106 and the gradients are

larger, the split domain’s errors are orders of magnitude lower than when using the whole

domain: the maximum error is 12 orders of magnitude lower, and the average error is 13

orders of magnitude lower.
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APPENDIX E

ORTHONORMAL BASIS FUNCTIONS

This appendix provides the reader with an elementary understanding of orthogonal basis

functions. Any reader interested in this subject may refer to Reference [77] for a more in-

depth understanding. In essence, basis functions are for a function space what vectors are

for a vector space. In other words, a linear combination of basis functions spans the function

space, just as a linear combination of basis vectors spans the vector space. Thus, a linear

combination of basis functions is a useful free function choice for optimization problems.

E.1 Mathematical Preliminaries

This section introduces some mathematical preliminaries needed to understand the prop-

erties of basis functions, and in particular, the properties of orthogonal basis functions. The

content introduced here is designed to give the reader a basic understanding and will only

scratch the surface of this field of mathematics. As such, when appropriate, references will

be provided so that the reader can delve deeper into these topics if desired. Moreover, this

section assumes the reader is familiar with the properties of vector spaces. If the reader

is unfamiliar with these topics, then they may consider reading Reference [78] for function

spaces and reviewing the portion of Reference [79] dedicated to vector spaces.

This dissertation is primarily concerned with function spaces that can be used to describe

continuous, non-infinite functions, as these will be particularly useful for describing the

solutions of differential equations: the extended Lebesgue spaces, also known as Lpe spaces,

are the function spaces that contain these functions. The extended Lebesgue spaces are

defined based on a generalization of the p-norm used to describe vector spaces. Recall that

the p-norm for a vector is

||x||p =

( n∑
k=1

|xk|p
)1/p

,
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where x ∈ Rn is an arbitrary vector, xk are the components of x, and p ≥ 1. The p-norm of

functions is,

||f(z)||p =

(∫
Ω

|f(z)|p dz
)1/p

,

for some arbitrary function f(z) defined on the domain Ω. Note that this p-norm can also

be defined with a measure dµ(z), in which case the p-norm is written as

||f(z)||p =

(∫
Ω

|f(z)|p dµ(z)

)1/p

.

The rigorous mathematical definition of a measure will not be discussed here; the interested

reader can refer to Reference [80] for more information. For the material in this dissertation,

it is sufficient to note that the measure dµ(z) = W (z) dz where W (z) ≥ 0∀ z ∈ Ω. The

measure for a function is analogous to the weights in a weighted vector norm. An arbitrary

function, f(z), defined over the domain Ω is part of the Lpe(Ω, µ) space if

||f(z)||p =

(∫
Ω

|f(z)|p dµ(z)

)1/p

<∞.

This appendix will focus on basis functions in the L2e space, i.e., for p = 2.

The generalization of the p-norm is sufficient for describing which functions are in the Lpe

space. However, the p-norm gives no information about the orthogonality of two functions.

For this, an inner product is needed. Fortunately, the L2e(Ω, µ) space already comes equipped

with an inner product,

〈f, g〉 =

∫
Ω

f(z) g(z) dµ(z),

where f(z) and g(z) are arbitrary functions in the L2e(Ω, µ) space, and 〈f, g〉 is used to

denote an inner product between these functions. The functions f and g are considered

orthogonal if 〈f, g〉 = 0. Just as orthogonal basis vectors can be convenient for describing

an arbitrary vector in a vector space, so too are orthogonal basis functions for describing an
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arbitrary function in a function space1.

Of course, spanning the entirety of L2e space would require an infinite number of basis

functions, as the dimension of the L2e space is infinite. Thus, to make problems computa-

tionally tractable, a finite number, m, of basis functions is used. In general, as the number

m increases, the error between the estimated and actual solution will decrease. Finally, note

that the basis set domain need not coincide with the domain of the problem. If a bijec-

tive map exists that transforms the basis function domain into the problem domain, then

that basis may be used to describe the problem’s solution. This notion is used frequently

throughout this dissertation.

Based on the description of orthogonal basis function sets thus far, one has two parameters

that can be used to describe a basis set for L2e:

1. The domain on which the basis is defined, Ω.

2. The measure used for the basis, µ.

In the following sections, some frequently used orthogonal basis sets will be presented. The

presentation will include the domain and measure for each set and recursive generating

functions for the set if they exist. The section that follows explains how to extend these

basis sets to the multivariate case and concludes with a table that summarizes all the basis

functions presented.

E.2 Chebyshev Orthogonal Polynomials

Chebyshev orthogonal polynomials are two sets of basis functions, the first and the second

kind. They are usually indicated as Tk(z) and Uk(z), respectively. This section summarizes

the main properties of the first kind, Tk(z), only, which are defined on the domain z ∈

[−1,+1] and with the measure dµ(z) =
1√

1− z2
dz. These polynomials can be generated

1In addition, choosing orthogonal basis functions can also guarantee certain solution properties.
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using the following useful recursive function,2

Tk+1 = 2 z Tk − Tk−1 starting from:


T0 = 1,

T1 = z.

Also, all the derivatives of Chebyshev orthogonal polynomials can be computed recursively,

starting from

dT0

dz
= 0,

dT1

dz
= 1 or

ddT0

dzd
=

ddT1

dzd
= 0 ∀ d > 1,

and then using,

dTk+1

dz
= 2

(
Tk + z

dTk
dz

)
− dTk−1

dz
d2Tk+1

dz2
= 2

(
2

dTk
dz

+ z
d2Tk
dz2

)
− d2Tk−1

dz2

...

ddTk+1

dzd
= 2

(
d

dd−1Tk
dzd−1

+ z
ddTk
dzd

)
− ddTk−1

dzd
∀ d ≥ 1.

for k ≥ 1. The integral of Tk(z) has the following useful property,

∫ +1

−1

Tk(z) dz =


= 0 if k = 1

=
(−1)k + 1

1− k2
if k 6= 1

2Note that in this recursive formulation and those that follow, the z argument is dropped for clarity, i.e.,
Tk(z)→ Tk.
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while the inner product of two Chebyshev orthogonal polynomials satisfies the orthogonality

property,

〈Ti(z), Tj(z)〉 =

∫ +1

−1

Ti(z)Tj(z)
1√

1− z2
dz =


= 0 if i 6= j

= π if i = j = 0

= π/2 if i = j 6= 0

.

Figure E.1 shows the first five Chebyshev orthogonal polynomials.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

T k
(z

)

T0(z) T1(z) T2(z) T3(z) T4(z)

Figure E.1: First five Chebyshev orthogonal polynomials.
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E.3 Legendre Orthogonal Polynomials

The Legendre orthogonal polynomials, Lk(z), are defined on the domain z ∈ [−1,+1]

with measure dµ(z) = dz. These polynomials can also be generated recursively by,

Lk+1 =
2k + 1

k + 1
z Lk −

k

k + 1
Lk−1 starting with:


L0 = 1

L1 = z.

All derivatives of Legendre orthogonal polynomials can be computed in a recursive way,

starting from,

dL0

dz
= 0,

dL1

dz
= 1 or

ddL0

dzd
=

ddL1

dzd
= 0 ∀ d > 1,

and continuing with,

dLk+1

dz
=

2k + 1

k + 1

(
Lk + z

dLk
dz

)
− k

k + 1

dLk−1

dz
d2Lk+1

dz2
=

2k + 1

k + 1

(
2
dLk
dz

+ z
d2Lk
dz2

)
− k

k + 1

d2Lk−1

dz2

...

ddLk+1

dzd
=

2k + 1

k + 1

(
d
dd−1Lk
dzd−1

+ z
ddLk
dzd

)
− k

k + 1

ddLk−1

dzd
∀ d ≥ 1,

for k ≥ 1. In addition, the inner products of the Legendre polynomials highlight their

orthogonality,

〈Li(z), Lj(z)〉 =

∫ +1

−1

Li(z)Lj(z) dz =
2

2i+ 1
δij.

Figure E.2 shows the first five Legendre orthogonal Polynomials.
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Figure E.2: First five Legendre orthogonal polynomials.

E.4 Laguerre Orthogonal Polynomials

Laguerre orthogonal polynomials, Lk(z), are defined on the domain [0,∞) and by the

measure dµ(z) = e−z dz. They are generated using the recursive function,

Lk+1 =
2k + 1− z
k + 1

Lk −
k

k + 1
Lk−1 starting with:


L0 = 1,

L1 = 1− z.

All derivatives of Laguerre orthogonal polynomials can be computed recursively, starting

from
dL0

dz
= 0,

dL1

dz
= −1 or

ddL0

dzd
=

ddL1

dzd
= 0 ∀ d > 1,

155



then using

dLk+1

dz
=

2k + 1− z
k + 1

dLk
dz
− 1

k + 1
Lk −

k

k + 1

dLk−1

dz
d2Lk+1

dz2
=

2k + 1− z
k + 1

d2Lk
dz2

− 2

k + 1

dLk
dz
− k

k + 1

d2Lk−1

dz2

...

ddLk+1

dzd
=

2k + 1− z
k + 1

ddLk
dzd

− d

k + 1

dd−1Lk
dzd−1

− k

k + 1

ddLk−1

dzd
∀ d ≥ 1,

for k ≥ 1.

Figure E.3 shows the first five Laguerre orthogonal Polynomials.

1 0 1 2 3 4 5
z

4

2

0

2

4

6

8

L k
(z

)

L0(z) L1(z) L2(z) L3(z) L4(z)

Figure E.3: First five Laguerre orthogonal polynomials.
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E.5 Hermite Orthogonal Polynomials

There are two Hermite orthogonal polynomials, the probabilists, indicated by Ek(z), and

the physicists, indicated by Hk(z). The probabilists are defined on the domain z ∈ (−∞,∞)

and with the measure dµ(z) = e−(z2/2) dz, and the physicists are defined on the domain

z ∈ (−∞,∞) and with the measure dµ(z) = e−z
2 dz. They are both generated using

recursive functions.

The probabilists’ polynomials can be defined recursively by,

Ek+1 = z Ek − kEk−1 starting with:


E0 = 1

E1 = z.

All derivatives can be computed recursively, starting from

dE0

dz
= 0,

dE1

dz
= 1 or

ddE0

dzd
=

ddE1

dzd
= 0 ∀ d > 1,

then using,

dEk+1

dz
= Ek + z

dEk
dz
− k dEk−1

dz
d2Ek+1

dz2
= 2

dEk
dz

+ z
d2Ek
dz2

− k d2Ek−1

dz2

...

ddEk+1

dzd
= d

dd−1Ek
dzd−1

+ z
ddEk
dzd

− k ddEk−1

dzd
∀ d ≥ 1,

for k ≥ 1.

The physicists’ polynomials can be defined by the recursive relationship,

Hk+1 = 2z Hk − 2k Hk−1 starting with:


H0 = 1

H1 = 2z.
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All derivatives can be computed recursively, starting from

dH0

dz
= 0,

dH1

dz
= 2 or

ddH0

dzd
=

ddH1

dzd
= 0 ∀ d > 1,

then using,

dHk+1

dz
= 2Hk + 2z

dHk

dz
− 2k

dHk−1

dz
d2Hk+1

dz2
= 4

dHk

dz
+ 2z

d2Hk

dz2
− 2k

d2Hk−1

dz2

...

ddHk+1

dzd
= 2d

dd−1Hk

dzd−1
+ 2z

ddHk

dzd
− 2k

ddHk−1

dzd
∀ d ≥ 1,

for k ≥ 1.

Figure E.4 shows the first five probabilists’ and physicists’ Hermite orthogonal polyno-

mials.
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Figure E.4: First five Hermite orthogonal polynomials.
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E.6 Fourier Basis

The Fourier basis is defined on the domain z ∈ [−π, π] and with the measure dµ(z) =

dz. The basis does not have a recursive generating function. Rather, the basis can be

mathematically written as,

gk(z) =


1, k = 0

cos(dk/2ez), k is even

sin(dk/2ez), k is odd

where dxe rounds x to the next largest integer and k = 0, . . . ,m. There is no recursive

relationship to compute the subsequent derivatives of Fourier bases. However, the n-th

derivative can be computed using,

ddg(z)

dzd
=




0, k = 0

dk/2ed cos(dk/2ez), k is even

dk/2ed sin(dk/2ez), k is odd

mod (d, 4) = 0


0, k = 0

−dk/2ed sin(dk/2ez), k is even

dk/2ed cos(dk/2ez), k is odd

mod (d, 4) = 1


0, k = 0

−dk/2ed cos(dk/2ez), k is even

−dk/2ed sin(dk/2ez), k is odd

mod (d, 4) = 2


0, k = 0

dk/2ed sin(dk/2ez), k is even

−dk/2ed cos(dk/2ez), k is odd

mod (d, 4) = 3
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whenever d > 0. Figure E.5 shows the first five Fourier basis functions.
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Figure E.5: First five Fourier basis functions.

E.7 Extension to Multivariate Domains

In general, multivariate orthogonal basis sets can be created by taking all possible prod-

ucts of functions in the basis sets that make up the individual variables. The measure that

makes up this new basis set will be the product of measures of the individual basis sets, and

the domain of the multivariate basis set will be the union of the domains that make up the

individual basis sets. More details and insights on the 2-dimensional and n-dimensional or-

thogonal basis functions are contained in Reference [81] and References [77, 82], respectively.

Consider n independent variables in the vector x = {x1, x2, · · · , xn}T. Moreover, let
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the orthogonal basis set for each of these independent variables be denoted by (k)Bj, where

the subscript j denotes the j-th basis function and the pre-superscript k denotes the k-th

independent variable. For example, the third basis function for x2 would be (2)B3. The

measure of the multivariate basis set will be denoted by µ(x) =
n∏
k=1

(k)µ(xk) where (k)µ(xk)

is the measure for the k-th independent variable. The domain of the multivariate basis will

be denoted by Ω = (1)Ω× (2)Ω×· · ·× (n)Ω, where the generic (k)Ω denotes the domain of the

k-th basis set. Then, an arbitrary basis function for the multivariate domain can be written

as,

Bi1i2...in = (1)Bi1
(2)Bi2 · · · (n)Bin , (E.1)

where i1, · · · , in ∈ Z+. In other words, Equation (E.1) generates a multivariate basis via

a tensor product of univariate basis functions [83]. If one were to use all possible products

of the functions in the individual basis sets which span L2e((k)Ω, (k)µ), i.e., use all possible

combinations of i1, · · · , in ∈ Z+, an infinite set, then the resulting multivariate basis would

span the multivariate function space L2e(Ω, µ). Of course, in practice this is not possible, so

a finite number of basis functions from the set is used.

Consider the inner product of two different basis functions Bi1...in and Bj1...jn where at

least one ik 6= jk,

〈Bi1...in ,Bj1...jn〉 =

∫
Ω

Bi1...in Bj1...jn dµ =
n∏
k=1

∫
Ωk

(k)Bik
(k)Bjk dµk. (E.2)

Since these are different basis functions, there must be some k = κ such that iκ 6= jκ. For

k = κ, the integral ∫
Ωκ

(κ)Biκ
(k)Bjκ dµκ = 0,

and thus, the product of integrals in Equation (E.2) is equal to zero. It follows that,

〈Bi1...in ,Bj1...jn〉 = 0 if ∃ κ | iκ 6= jκ.
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Hence, the resulting multivariate basis set is orthogonal.

Just as in the univariate case, the problem being solved must be made tractable by

choosing basis functions up to some finite degree m. All the multivariate basis functions of

order m are defined by choosing i1, · · · , in to be on the set,

{i | ik ∈ Z+,
n∑
k=1

(ik − 1) = m},

where ik denotes the elements of i.

Table E.1 summarizes the orthogonal basis sets described in this section.

Table E.1: Univariate orthogonal basis functions summary.

Basis function name Domain, Ω Measure, dµ(z)

Chebyshev polynomials [−1, 1]
1

1− z2
dz

Legendre polynomials [−1, 1] dz
Laguerre polynomials [0,∞) e−z dz
Hermite probabilists polynomials (−∞,∞) e−(z2/2) dz
Hermite physicists polynomials (−∞,∞) e−z

2 dz
Fourier series [−π, π] dz
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APPENDIX F

LINEAR LEAST-SQUARES METHODS

There are different numerical techniques to compute the linear least-squares (LS) solution

of A ξ = b. These are:

• The Moore–Penrose inverse,

ξ = (AT A)−1 AT b.

• QR decomposition,

A = QR → ξ = R−1QT b,

where Q is an orthogonal matrix and R an upper triangular matrix.

• SVD decomposition,

A = U ΣV T → ξ = A+ b = V Σ+ UT b

where U and V are two orthogonal matrices and Σ+ is the pseudo-inverse of Σ, which

is formed by replacing every non-zero diagonal entry by its reciprocal and transposing

the resulting matrix.

• Cholesky decomposition,

ATA ξ = UTUξ = AT b → ξ = U−1
(
U−TAT b

)
,

where U is an upper triangular matrix, and consequently, U−1 and U−T are easy to

compute.

One can reduce the condition number of the matrix to be inverted by scaling the columns
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of A,

A
(
SS−1

)
ξ = (AS)

(
S−1ξ

)
= Bη = b → ξ = S η = S (BTB)−1BTb,

where S is the m × m scaling diagonal matrix whose diagonal elements are the inverse of

the norms of the corresponding columns of A: skk = |ak|−1 or the maximum absolute value,

skk = max
i
|aki|.

In this dissertation, the least-squares problem is solved using two methods: (1) the SVD

decomposition introduced above (2) a combination of QR decomposition and the previously

mentioned scaling, called the scaled QR approach. This approach performs the QR decom-

position of the scaled matrix,

B = AS = QR → ξ = S R−1QT b.
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APPENDIX G

TFC NUMERICAL IMPLEMENTATION IN JAX

This appendix provides a more detailed description of the code package used to imple-

ment TFC in JAX than was given in the main body of the text and some of the major

challenges in doing so. In addition, a summary of the main classes available in the package

is provided. For a more detailed explanation and tutorials on how to use them see either the

code documentation or the TFC GitHub [64]. Note that while not discussed in detail here,

this package also contains some convenience classes and functions that the reader may find

useful; for example, the MakePlot class assists the user in creating journal-ready plots, and

the Latex class can be used to export NumPy arrays to LaTeX tables.

G.1 Basis Function Classes

When applying TFC to a differential equation, the free function is used to minimize the

differential equation’s residual. As described in Section 3.1, two popular choices for the free

function are a linear combination of n-dimensional basis functions and ELMs. Notice that

these two free function choices can both be written as,

g(x) = hTξ,

where the calculation for h evaluated at x is dictated by the basis function set chosen, if

using basis functions, or by the activation function, if using an ELM. Hence, these two free

function choices have a lot in common, and in the code are derived from the same abstract,

parent class called BasisFunc. Figure G.1 shows the inheritance diagram for the basis func-

tion classes. From this base class, the univariate basis function classes are derived—CP

for Chebyshev polynomials, LeP for Legendre polynomials, FS for Fourier series, LaP for

Laguerre polynomials, HoPphy for the physicists’ Hermite polynomials, and HoPpro for the
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Figure G.1: Basis function class hierarchy.

probabilists’ Hermite polynomials. In addition, an n-dimensional abstract class is derived

from the base class, from which n-dimensional versions of Chebyshev polynomial, Legendre

polynomial, and Fourier series classes are derived, called nCP, nLeP, and nFS respectively.

Furthermore, an ELM abstract base class is derived from BasisFunc, from which five con-

crete univariate ELM classes are derived; each of these five classes implements a different

activation function: ELMSin implements the sine activation function, ELMSwish implements

the swish activation function, ELMTanh implements the hyperbolic tangent activation func-

tion, ELMSigmoid implements the sigmoid activation function, and ELMReLU implements the

rectified linear activation function. The n-dimensional versions of the five univariate ELM
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classes are derived from an abstract parent class called nELM, which is derived from the ab-

stract n-dimensional basis function class mentioned earlier. The only real difference between

the ELM classes and the basis function classes, besides the functions they are implementing,

is the addition of randomly generated weights and biases for the hidden layer, i.e., W1 and

b1 in Equation (3.2).

All of the classes shown in Figure G.1 are programmed in C++. The attentive reader

may wonder why not just write them in Python, as the scripts that use this core code are

ultimately compiled via a JIT anyway? The underlying reasons lie within the restrictions

JAX has on JIT. To best understand, the reader must first recall what these basis function

classes need to do:

• Calculate the basis functions and their derivatives. Recall that this requires using the

linear map from x → z, as the problem domain, x, and the basis function domain,

z, do not generally coincide. Furthermore, recall that many of the basis functions are

created via a recursion, see Appendix E.

• While the default behavior is to neglect the terms linearly independent to the support

functions when calculating the basis function matrix and its derivatives, there may

be times when the user wants to ignore this default behavior. This functionality is

accomplished through the argument full that shows up as a required input argument

in the C++ API and an optional keyword argument in the Python API.

Naturally, the argument full requires an if statement to be implemented. Unfortunately,

the JIT does not allow tracing through if statements; hence, the basis function classes must be

implemented as primitives. Furthermore, if built using JAX directly, the primitive recursions

used by many of the basis functions would require using lax operations, as one cannot modify

JAX arrays in-place. These lax operations are pure functions; rather than modifying arrays

in-place, they return a new array with the updated indices. Hence, the basis function array

would be copied to a new array on each iteration of the recursion: not an efficient solution.
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One may be tempted to implement these using the original NumPy library, but doing so

would not provide a function to XLA, which is needed for the JIT. Therefore, to make the

final result JIT-able, one must write the basis functions in a lower-level language: the author

chose C++.

Writing the basis functions in C++ is a fairly straightforward task, but integrating the

result with the JAX JIT compiler, which is XLA, was non-trivial. Since JAX uses XLA,

there is a convenient register_custom_call_target function that can be used to integrate

C++ functions with XLA and ultimately allow them to be JIT-able. However, using this

custom call function requires wrapping the C++ function into a PyCapsule object, which

means the object being placed in the PyCapsule must be of type void*; hence, the C++

function must be cast as a void*. However, the C++ functions to be wrapped are methods

of classes, which means they are not regular functions. Therefore, they do not have standard

function pointers that can be easily cast to a void*.

Fortunately, this predicament can be overcome through the use of polymorphism. Notice

that all the TFC free function classes are derived from BasisFunc, see Figure G.1. Hence,

all basis function classes can be referenced using a BasisFunc pointer. Therefore, a static

std::vector was added to the BasisFunc class that contains a pointer to each BasisFunc

class as it is created. Furthermore, each class contains a unique integer identifier that

corresponds to its pointer’s position in said std::vector. That means that given this

integer, one could access the correct element of the aforementioned std::vector and call

the correct member function. Thus, a simple C++ wrapper function was created with

the correct function signature that takes in said integer and the required inputs for the

member function, calls the member function, and returns the result. Moreover, this simple

wrapper function has a standard function pointer that can easily be cast to a void*, which

subsequently can be added to a PyCapsule, and finally added to the set of JIT-able functions

via register_custom_call_target.
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G.2 Univariate TFC Class

The univariate TFC class, called utfc, is used to create univariate TFC expressions and

solve ODEs. The class’s inputs are:

• N - Number of points to use when discretizing the domain.

• nC - Number of basis functions to remove from the linear expansion. This variable is

used to account for basis functions that are linearly dependent to the support func-

tions used in the construction of the constrained expression. The constraints for each

dimension can be expressed in one of two ways. Note that a value of -1 is used to

indicate that no constraints exist for a particular dimension.

1. As an integer. When expressed as an integer, the first nC basis functions are

removed from the free function.

2. As a set of integers. The basis functions corresponding to the numbers given in

the set are removed from the free function.

• m - Degree of the basis function expansion. This number is one less than the number

of basis functions used.

• basis - This optional string argument specifies the basis functions that will be used

as the free function. The default is Chebyshev orthogonal polynomials.

• x0 - This optional argument specifies the beginning of the DE domain. The default

value of 0 will result in a DE domain that begins at 0.

• xf - This required keyword argument specifies the end of the DE domain.

The class creates a set of N discretized points in the domains x ∈ [x0, xf ] and z ∈ [z0, zf ],

where the values of z0 and zf are automatically chosen based on the user-specified value of

the optional keyword argument basis. The problem domain values, x, and basis domain

values, z, are both made available to the user as public variables associated with the class.
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In addition, the TFC class creates an instance of the basis function class specified by basis

and creates the required JAX primitives to take gradients, Jacobians, and JIT the basis

functions. The basis function values and their derivatives are made available to the user via

methods associated with the TFC class. These methods contain the optional keyword full

discussed earlier, see section G.1.

G.3 Multivariate TFC Class

The multivariate TFC class is the multidimensional extension of the univariate TFC

class. The input arguments to the class are the same, but they must be specified for each

dimension, e.g., N specifies the number of discretization points per dimension via a list or

array of the proper size. Furthermore, one additional keyword argument, dim, is used to

specify the number of dimensions: the default is two.

G.4 Elementwise Gradients

The Autograd package contains a function called egrad, which stands for elementwise

gradient. This function does not exist explicitly in JAX, but can easily be recreated using

the same methodology as the original egrad function available in Autograd [62]: extract the

diagonal elements of the Jacobian via a Jacobian-vector product or vector-Jacobian product.

Using the tree utilities available in JAX, this function can easily be extended to pytrees, i.e.,

one can take elementwise gradients with respect to nested sets of Python containers.

Typically, one can use vmap to transform calls to the gradient function, grad, in JAX

into elementwise gradients. However, since the basis function class must output a vector for

each input, the grad JAX transform cannot be used. Hence, the necessity for a separate

elementwise gradient function.

G.5 Extending Ordered Dictionaries

As mentioned earlier, JAX allows one to take gradients and Jacobians with respect to

pytrees. This is particularly useful for coupled systems of differential equations or when

splitting the domain into sub-domains, as all the unknowns can be combined into one pytree,
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and the gradient and/or Jacobian of the loss function with respect to all unknowns can be

written in one line.

However, if one is using an iterative least-squares optimization technique, a complication

arises. Ideally, one wants to perform the following iteration,

ξj+1 = ξj + ∆ξ,

where

L(ξj) + J (ξj)∆ξ = 0,

but the Jacobian in JAX computed from a dictionary actually returns a dictionary of Jaco-

bians. This can be easily overcome using list comprehension, such as,

j = jacfwd (L , 0 )

J = np . hstack ( [ k for k in j . va lue s ( ) ] ) .

This allows one to calculate ∆ξ; however, this action will not be repeatable unless an ordered

dictionary is used: without an ordered dictionary, the concatenation of the Jacobians might

happen in a different order each time. While an ordered dictionary solves the Jacobian

creation problem, it still does not allow for ξj + ∆ξ to be performed, as ∆ξ is a NumPy array

and ξj is an ordered dictionary. Therefore, the ordered dictionary is extended via operator

overloading to include methods that allow for this in the TFCDict class.

The TFCDict class is designed for ordered dictionaries that have flat arrays as values.

However, when dealing with vector differential equations, it is often convenient to express

the free functions’ unknown values associated with each component of the vector in one

matrix [37]. For these types of situations, a second class, TFCDictRobust, has been created

that is similar to TFCDict, but works for both flat and non-flat arrays.
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G.6 Nonlinear Least-Squares

Nonlinear least squares is used throughout this dissertation to minimize the residuals

of differential equations via the unknowns in the free functions. Since this method is used

so often, a function called NLLS is included that runs the nonlinear least squares. A class

called NllsClass exists as well for cases where the nonlinear least-squares needs to be called

multiple times; the inputs to these two are similar, so only the NLLS function will be covered

here.

The inputs to the function are:

• xiInit - Initial guess for the unknown parameters, ξ.

• res - Loss function, L.

• *args - Any additional arguments taken by L..

In addition, the following are optional keyword arguments,

• J - User-specified Jacobian. The default value is the Jacobian of L with respect to ξ.

• tol - Tolerance for stopping the while loop. Default is 1× 10−13.

• maxIter - Maximum number of nonlinear least-squares iterations. Default is 50.

• method - Method used to invert the matrix at each iteration. The default is pinv. The

two options are:

1. pinv - Uses np.linalg.pinv to perform the inversion.

2. lstsq - Uses np.linalg.lstsq to perform the inversion.

• User specified condition function. Default is None, which results in a condition that

checks the three stopping conditions described below.
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• body - User specified body function. Default is None, which results in a body function

that performs least-squares using the method provided and updates ξ, ∆ξ and it, the

current number of iterations.

• timer - Setting this to True will time the non-linear least squares using Python’s

time.process_time timer. Note that doing so adds a slight increase in run time, as

one iteration of the non-linear least squares is run first to avoid timing the JAX trace.

The default is False.

• printOut - Setting this to true prints out the iteration number and value of max(|L|∞)

at each iteration.

• printOutEnd - This string argument is passed to the end keyword argument of the

print function used in printOut. The default value is “\n” (newline).

The outputs of the function are

1. ξ - The value of ξ at the end of the nonlinear least squares.

2. it - The number of iterations.

3. time - If the keyword argument timer = True, then the third output is the time

required to run the nonlinear least-squares as measured by the timer; otherwise, there

is no third output.

When using the default condition function NLLS checks the following conditions; if any

of the conditions are true, then the nonlinear least-squares stops iterating:

1. |L|∞ < tol

2. |∆ξ|∞ < tol

3. Number of iterations > maxIter
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APPENDIX H

NONLINEAR SVM DERIVATION

This appendix shows how the CSVM method can be used to solve a first-order, nonlinear

ODE. Consider the first-order nonlinear ODE with an initial value boundary condition,

ẏ(t) = f(t, y), y(t0) = y0, t ∈ [t0, tf ].

Similar to the linear case, the constrained expression is,

y(t) = wT [ϕ(t)−ϕ(t0)] + y0,

and the domain is discretized into N training points t0, t1, . . . , tN . Again, let ei be the

residual at ti,

ei = ẏ(ti)− f(ti, y(ti)).

To minimize the error, the sum of the squares of the residuals is minimized. As in the

linear case, the regularization term wTw is added to the expression to be minimized. Now,

the problem can be formulated as an optimization problem, where the Lagrange multipliers

L(w, b, e,y,α, β,η) =
1

2
(wTw + γeTe)−

N∑
i=1

αi [w
Tϕ′(ti)− f(ti, yi)− ei]

− β[wTϕ(t0) + b− y0]−
N∑
i=1

ηi [w
Tϕ(ti) + b− yi] ,

(H.1)

α, β, and η are used to enforce the constraints: see Equation (H.1). The variables yi are

introduced into the optimization problem to keep track of the nonlinear function f at the
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values corresponding to the training points.

The values where L are zero give candidates for the minimum.

∂L
∂w

= 0 → w =
N∑
i=1

αiϕ
′(ti) +

N∑
i=1

ηiϕ(ti) + βϕ(t0)

∂L
∂ei

= 0 → γei = −αi

∂L
∂αi

= 0 → wTϕ′(ti) = f(ti, yi) + ei

∂L
∂ηi

= 0 → yi = wTϕ(ti) + b

∂L
∂β

= 0 → wTϕ(t0) + b = y0

∂L
∂b

= 0 → β +
N∑
i=1

ηi = 0

∂L
∂yi

= 0 → αify(ti, yi) + ηi = 0

A system of equations can be constructed by substituting the results found by differentiating

L with respect to w and ei into the remaining five equations. This leads to a set of 3N + 2

equations and 3N + 2 unknowns, which are αi, ηi, yi, β, and b: this system of equations is

shown in Equation (H.2).

N∑
j=1

αjϕ
′(tj)

Tϕ′(ti) +
N∑
j=1

ηjϕ(tj)
Tϕ′(ti) + βϕ(t0)Tϕ′(ti) +

αi
γ

= f(ti, yi)

N∑
j=1

αjϕ
′(tj)

Tϕ(ti) +
N∑
j=1

ηjϕ(tj)
Tϕ(ti) + βϕ(t0)Tϕ(ti) + b− yi = 0

N∑
j=1

αjϕ
′(tj)

Tϕ(t0) +
N∑
j=1

ηjϕ(tj)
Tϕ(t0) + βϕ(t0)Tϕ(t0) + b = y0

β +
N∑
i=j

ηj = 0

αify(ti, yi) + ηi = 0

(H.2)

where i = 1, ..., N . This system of equations can be written in the dual form, in terms of
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the Kernel matrix and is derivatives, and can be solved using least-squares. Once the set of

equations has been solved, the model solution is given in the dual form by,

ŷ(t) =
N∑
i=1

αiϕ
′(ti)

Tϕ(t) +
N∑
i=1

ηiϕ(ti)
Tϕ(t) + βϕ(t0)Tϕ(t) + b.
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APPENDIX I

VARIOUS TFC EXTENSIONS

This appendix consists of various TFC concepts and extensions that did not fit elsewhere

in the dissertation. Naturally, these concepts and extensions are encountered less frequently

than those in the main body of the text.

I.1 Extension to Parallelotopes via Affine Transformations

Theorem 12.7 of Reference [84] shows that affine transformations map parallelotopes

(n-dimensional parallelograms) to parallelotopes. This affine transformation can serve as a

bijective map between a general parallelotope and an n-dimensional unit hypercube: where

multivariate TFC can be applied.

Consider a general n-dimensional parallelotope with n sides emanating from each vertex.

Pick a vertex arbitrarily and label it p0. Then, for each of the n sides emanating from p0, label

the vertices at the opposite ends p1 through pn; again, the order in which they are labeled is

arbitrary. Now, an affine transformation from the unit hypercube to the parallelotope can

be defined as,



x1

x2

...

xn


=

[
p1 − p0 p2 − p0 · · · pn − p0

]
︸ ︷︷ ︸

A



X1

X2

...

XN


+ p0,

where p0, . . . , pn are written as column vectors, x1, . . . , xn are the coordinates in the paral-

lelotope space, and X1, . . . , Xn are the familiar Cartesian coordinates of the unit hypercube.

The matrix that appears in the affine transformation will appear later and has thus been

given the symbol, A. Let the entire affine transformation be denoted by A, i.e., x = A(X).

Additionally, let A(Xk) denote the xk portion of x = A(X).
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The affine transformation can be used to map functions from the parallelotope to the

unit hypercube. For example, suppose there is some function f(x) on the parallelotope,

then, the function on the unit hypercube, F (X), is

F (X) = (f ◦ A)(X) = f(A(X)).

Similarly, the inverse of the affine transformation can be used to map functions from the

unit hypercube to the parallelotope,

f(x) = (F ◦ A−1)(x) = F (A−1(x)).

Of significance to TFC are the directions in which constraints can be specified in the

parallelotope space that correspond to TFC-embeddable constraints in the unit hypercube

space. Recall that the constraint operators in multivariate TFC can only operate on one

independent variable— except integral constraints, see Section 2.3.1.1—else, the structure

of the recursive form breaks down. For value-level constraints, a constraint that operates

on Xi corresponds to the direction in parallelotope space parallel to the side containing pi

and p0, which corresponds to the coordinate xi; this comes merely from observing the i-th

column of the affine transformation. Similarly, the allowed constraint derivative directions

in the parallelotope space are those parallel to one of the parallelotope’s sides:

∂F

∂Xi

=
∂f

∂xj

∂xj
∂Xi

=
∂f

∂xj
Aji.

(I.1)

Notice that the right-hand side is just the gradient of f dotted with one of the columns of

A; this is precisely a directional derivative in the parallelotope space where the direction

corresponds to the side containing pi and p0. Similarly, integral constraints must integrate

in a direction parallel to one of the parallelotope’s sides. It follows that general linear
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constraints must correspond with directions parallel to one of the parallelotope’s sides.

In addition, Equation I.1 has important ramifications with regards to scaling the deriva-

tives and integrals. Let ni = pi − p0, ni = ||ni||, and n̂i = ni
ni
, then, Equation I.1 can be

rewritten as,
∂F

∂Xi

= ∇f · ni

and after some algebraic simplification,

∇f · n̂i =
1

ni

∂F

∂Xi

.

Hence, a directional derivative in the n̂i direction of the parallelotope space corresponds to

a derivative in the unit hypercube space in the direction of Xi and scaled by 1
ni
. Similarly,

integrating in the parallelotope space will require scaling the corresponding integral by ni,

∫
f dn̂i = ni

∫
F dXi.

This knowledge allows one to rewrite all the constraints on the dependent variables in the

parallelotope space as constraints in the unit hypercube space. The constrained expression

can be developed for the unit hypercube and then transformed back into the parallelotope

space via the affine transform.

Example I.1: Parallelotope example

Throughout this example, capital letters will be used to denote quantities in the

unit hypercube space, and lowercase letters will be used to denote quantities in the

parallelotope space, e.g., U is the constrained expression in the unit hypercube space

while u = U ◦ A−1 is the constrained expression in the parallelotope space. Consider

the parallelotope and constraints shown in Figure I.1.
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  p0=(2 ,3)

p1=(4 ,4)

p3=(5 ,5)

p2=(3 ,4)

n1

n2

Derivative equal to 
0.5 along this side in 
the     direction

Integral equal to -2  
along this side in 
the     direction

n1

n2

Values of these two 
sides is the same

Figure I.1: Parallelotope constraints.

Using the affine transformation previously described, the parallelotope’s constraints

in the unit hypercube space can be written as,

1

n1

UX(0, Y ) = 0.5, n2

∫ 1

0

U(1, Y ) dY = −2, and U(X, 0) = U(X, 1).

Using S1(X) = 1 and S2(X) = X as the support functions, the univariate constrained

expression for the constraints on X is,

(1)U(X, Y,G(X, Y )) = G(X, Y ) + n1(X − 1)
(

0.5− 1

n1

GX(0, Y )
)

+
1

n2

(
− 2− n2

∫ 1

0

G(1, τ) dτ
)
.
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Utilizing the affine transformation, this constrained expression can be transformed

back into the parallelotope space,

(1)u(x, y, g(x, y)) = ((1)U ◦ A−1)(x, y, g(x, y))

= g(x, y) + n1(A−1(x)− 1)
(

0.5− gn̂1(A(0,A−1(y)))
)

+
1

n2

(
− 2−

∫ 1

0

g(A(1,A−1(τ))) dn̂2

)

Figure I.2: Parallelotope constrained expression example. Note, this figure contains an
embedded, standalone HMTL version of the plot that can be viewed/downloaded by
clicking on it. Doing so may require a dedicated PDF viewer such as Adobe Acrobat
or Okular.
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where gn̂1 represents the derivative of g with respect to n̂1, dn̂2 in the integral con-

straint is given in terms of the dummy variable τ (this dummy variable takes the place

of y), and affine transformations have been simplified where possible, e.g., G ◦ A−1 =

g ◦ A ◦ A−1 = g.

Similarly, the univariate constrained expression for the constraints on Y can be

transformed into the parallelotope space,

(2)u(x, y, g(x, y)) = (
1

2
−A−1(y))

(
g(A(A−1(x), 1))− g(A(A−1(x), 0))

)
,

and the two can be combined using the recursive method to form a multivariate con-

strained expression that satisfies all of the constraints.

Figure I.2 shows the multivariate constrained expression evaluated using g(x, y) =

sin(x) cos(y). The constraint on y is shown in red, and the derivative constraint on x

is shown via green lines; the integral constraint is not easily visualized but is satisfied

nonetheless. The details of the surface can be a bit difficult to distinguish, so the

surface’s contours have been projected onto the x-y plane, and the boundaries of the

surface projected onto the x-y plane are shown in black. In addition, an interactive

HTML version of the plot has been embedded into the PDF and can be opened using

a dedicated PDF viewer such as Adobe Acrobat or Okular.

I.2 Lower-Dimensional Constraints in n-Dimensions

There are times in n-dimensions when the constraints are not written as n-1 dimensional

manifolds. For example, consider this point constraint in two-dimensional space: u(0, 0) = 5.

Notice that these types of constraints can be written using a series of constraint operators,

Ck i

[
· · ·
[
Cj i[u]

]
· · ·
]

= κi
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where the pre-subscript in front of the constraint operator represents that variable’s contri-

bution to the constraint, e.g., Ck i is xk’s contribution to the i-th constraint. For example,

again consider the constraint u(0, 0) = 5 and suppose it is the i-th constraint, then,

Ci[u(x1, x2)] = C1 i

[
C2 i[u(x1, x2)]

]
= C1 i

[
u(x1, 0)

]
= u(0, 0).

Utilizing lower-dimensional constrained expressions, these lower-dimensional constraints can

be embedded into n-dimensional constrained expressions by modifying the projection func-

tionals.

Recall that the projection functional for the i-th constraint on the k-th dimension is

written as,

(k)ρi(x, g(x)) = (k)κi − C
(k)

i[g(x)].

For lower-dimensional constraints, the projection functionals are written as,

(k)ρi(x, g(x)) =
(k)
jφi(xj)

(k)
jρi(x, C

(k)
k i[g(x)])

where (k)
jφi(xj) and (k)

jρi(x, g(x)) are the switching function and projection functional of a

lower-dimensional constrained expression—there is no implied sum over i or j on the right-

hand side of this equation as i and j are used here as identifying symbols rather than as

indices. This lower-dimensional constrained expression is built using all of the constraint

operators associated with the constraint that do not operate on xk, i.e., C
(k)
j i such that

j 6= k. Suppose that the constraint is just one dimension lower than the n-dimensional

constrained expression. Then, expanding the projection functional gives a form similar to

the original,

(k)ρi(x, g(x)) =
(k)
jφi(xj)κi −

(k)
jφi(xj) C

(k)
j i

[
C

(k)
k i[g(x)]

]
=

(k)
jφi(xj)

(
κi − C

(k)
i[g]
)
,

but κ and C
(k)

i[g(x)] are multiplied by (k)
jφi—again, no sum is implied over i or j.
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Notice that if the lower-dimensional constraint is multiple dimensions lower than the n-

dimensional constrained expression, then the projection functional of the lower-dimensional

constrained expression will itself contain an even lower-dimensional constrained expression.

Working out the algebra and simplifying results in the following form for the projection

functional,

(k)ρi(x, g(x)) = (k)ρi(x, g(x)) =
(

(k)
jφ(xj) · · · (k)

hφ(xh)
)(
κi − C

(k)
i[g]
)
, (I.2)

where j, . . . , h are the dimensions associated with the constraint operators C
(k)
j i, . . . , C

(k)
h i

that make up the constraint excluding the k-th dimension. Furthermore, the reader should

note that if one has multiple lower-dimensional constraints that share the same operator,

C
(k)
k i, then these constraints can be written into the same projection functional, i.e., they

can be collected into the same lower-dimensional constrained expression that the projection

functional projects g(x) to. This will modify Equation (I.2) by adding an additional two

terms for each constraint: a term for the lower-dimensional switching functions and a term

for the lower-dimensional projection function.

In the end, these modifications to the projection functional project g(x) to the set of

functions that satisfy the constraint value while maintaining two critical properties of the

projection functional: (1) the projection functional is constant with respect to xk, i.e.,

C
(k)
k i[

(k)φi(xk)
(k)ρi(x, g(x))] = C

(k)
k i[

(k)φi(xk)]
(k)ρi(x, g(x))

and (2) if g(x) satisfies the constraints, then (k)ρi(x, g(x)) = 0, i.e., Property 3 still holds.

These properties are crucial, as they are necessary and sufficient conditions for the proofs of

the constrained expression theorems shown in Chapter 2 to hold. Hence, all of the constrained

expression theorems shown in Chapter 2 still apply to these lower-dimensional constraints.

To help solidify these concepts, the following two examples are provided.
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Example I.2: Single point constraint in two dimensions

Consider the point constraint proposed earlier: u(0, 0) = 5. Suppose the constraint

is chosen, arbitrarily, to be embedded into the constraints on x. Using the support

function s1(x) = 1, the switching function for x is (1)φ1(x) = 1, and the resulting

constrained expression is,

u(x, y, g(x, y)) = (1)u(x, y, g(x, y)) = g(x, y) + (1)ρ1(x, y, g(x, y)).

Since the constraint is embedded into x, (1)ρ1 needs to project g(x, y) to the univariate

constrained expression on y. That is,

(1)ρ1(x, y, g(x, y)) =
(1)

2φ1(y)
(1)

2ρ1(x, y, C
(1)

1 1[g(x, y)]).

Let the support function for this lower-dimensional constrained expression be s1(y) =

1., then, (1)
2φ1(y) = 1. The lower-dimensional projection functional is,

(1)
2ρ1(x, y, C

(1)
1 1[g(x, y)]) = 5− C

(1)
2 1

[
C

(1)
1 1[g(x, y)]

]
= 5− C

(1)
1[g(x, y)] = 5− g(0, 0).

Putting everything together yields the multivariate constrained expression,

u(x, y, g(x, y)) = g(x, y) + 5− g(0, 0).

For this example, it is simple to verify that the constrained expression satisfies the

constraints for any free function.
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Example I.3: Lower-dimensional constraints in three dimensions

Consider the following constraints in three-dimensional space,

u(x, y, 1) = sin(x) cos(y), u(0, y, 0) = ey, u(1, 0, 0) = 3, and u(1, 1, 0) = 5.

Notice that the last three lower-dimensional constraints all share the same constraint

operator C
(3)

3 i, where i = {2, 3, 4}. Therefore, they can be embedded into the same

lower dimensional constraint. Utilizing multivariate TFC, the constrained expression

for u can be written as,

u(x, y, z, g(x, y, z)) = g(x, y, 1) + z
(

sin(x) cos(y)− g(x, y, z)
)

+ (1− z) (3)ρ2(x, y, z, g(x, y, 0))

where s1(z) = 1 and s2(z) = z were chosen for the support functions and

(3)ρ2(x, y, z, g(x, y, z)) is the projection functional for the lower-dimensional con-

straints.

The lower-dimensional constrained expression is,

u(x, y, 0, g(x, y, z)) = g(x, y, 0) + (1− x)
(
ey − g(0, y, 0)

)
+ x

(3)
1ρ2(x, y, 0, g(x, y, z))

where s1(x) = 1 and s2(x) = x were chosen for the support functions and
(3)

1ρ2(x, y, 0, g(x, y, 0)) is the projection functional for the two point constraints. The

univariate constrained expression for the two point constraints is,

u(1, y, 0, g(x, y, z)) = g(1, y, 0) + (1− y)
(

3− g(1, 0, 0)
)

+ y
(

5− g(1, 1, 0)
)
.

Utilizing the switching functions and projection functionals from the univariate con-

strained expression, the projection functional for the two-dimensional constrained ex-
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pression can be derived,

(3)
1ρ2(x, y, 0, g(x, y, 0)) = (1− y)

(
3− g(1, 0, 0)

)
+ y
(

5− g(1, 1, 0)
)
.

Likewise, the now complete two-dimensional constrained expression can be used to

create the projection functional for the full constrained expression,

(3)ρ2(x, y, z, g(x, y, z)) = (1− x)
(
ey − g(0, y, 0)

)
+ x
(

(1− y)
(
3− g(1, 0, 0)

)
+ y
(
5− g(1, 1, 0)

))
,

so the full constrained expression is,

u(x, y, z, g(x, y, z)) = g(x, y, z) + z
(

sin(x) cos(y)− g(x, y, 1)
)

+ (1− z)

(
(1− x)

(
ey − g(0, y, 0)

)
+ x
(

(1− y)
(
3− g(1, 0, 0)

)
+ y
(
5− g(1, 1, 0)

)))
.

I.3 Conjecture: TFC Extends to any Field

The author of this dissertation believes that TFC constrained expressions as presented

here are not restricted to the field of real numbers and extend to any mathematical field.

However, the author does not feel confident enough in their abstract algebra knowledge to

say this for certain, i.e., to write it as a formal theorem. Hence, rather than presenting this as

a theorem in the main body of the text, it is presented here as a conjecture with supporting

evidence.

The steps to write a univariate constrained expression can be succinctly summarized for

a given set of constraints κi = Ci[y(x)] as:

1. αij =
(
Ci[sj]

)−1
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2. φi(x) = sj(x)αji

3. ρi(x, g(x)) = κi − Ci[g(x)]

4. y(x, g(x)) = g(x) + φi(x)ρi(x, g(x))

These steps and those used to prove the theorems related to the univariate constrained ex-

pression shown in Section 2.2.4 only use operations defined for a field and matrices consisting

of elements of that field. Throughout the body of this dissertation, the field of real numbers

was used, i.e., x ∈ R, but the algebra remains the same for x ∈ F where F is any math-

ematical field. Of course, the types of constraints that can be embedded for a given field

are restricted to the types of constraints that can be calculated on that field. For example,

one cannot embed integral constraints into a TFC constrained expression for a finite field

because one cannot calculate integrals on finite fields. Furthermore, multivariate constrained

expressions are constructed via recursive application of the univariate theory, and the associ-

ated proofs also only utilize mathematical operations defined for a field. Hence, multivariate

constrained expressions and their associated theorems extend to all mathematical fields as

well.

To further provide evidence for this conjecture, the following two examples are provided.

Example I.4: TFC on a finite field

Consider the finite field containing the four elements {0, 1, A,B} with the addi-

tion and multiplication tables shown in Tables I.1 and I.2.a Consider the following

constraints,

u(0, y) = A, u(B, y) = 1, and u(x, 0) = u(x,B).

Utilizing the theory as described in Chapter 2, the multivariate constrained expression

that satisfies these constraints can be derived. In this example, the univariate con-

strained expression that satisfies the constraints on x is derived step by step; notice
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that the steps have not been modified from those used to derive constrained expres-

sions for real numbers. Let the support functions be s1(x) = 1 and s2(x) = 2, then,

Table I.1: Addition table

+ 0 1 A B

0 0 1 A B

1 1 0 B A

A A B 0 1

B B A 1 0

Table I.2: Multiplication table

∗ 0 1 A B

0 0 0 0 0

1 0 1 A B

A 0 A B 1

B 0 B 1 A

αij =
(

C
(1)

i[sj(x)]
)−1

=

1 0

1 B


−1
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αij =

1 0

A A

 .
The switching functions are defined as,

(1)φi = si(x)αij;

thus,
(1)φ1(x) = Ax+ 1 and (1)φ2(x) = Ax.

The projection functionals are defined as

(1)ρi(x, g(x) = κi − C
(1)

i[g(x)];

thus,

(1)ρ1(x, y, g(x, y)) = A− g(0, y) and (1)ρ2(x, y, g(x, y)) = 1− g(B, y).

Combining the pieces yields the univariate constrained expression,

(1)u(x, y, g(x, y)) = g(x, y) + (Ax+ 1)(A− g(0, y)) + Ax(1− g(B, y)).

The univariate constrained expression for the constraints on y is derived in a similar

fashion,

(2)u(x, y, g(x, y)) = g(x, y) + Ay
(
g(x,B)− g(x, 0)

)
.

Just as with the real numbers, these two univariate constrained expressions are com-
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bined recursively to yield the multivariate constrained expression:

u(x, y, g(x, y)) = (2)u(x, y, (1)u(x, y, g(x, y)))

= g(x, y) + Ax(1− g(B, y)) + (Ax+ 1)(A− g(0, y))

+ Ay
(

(Ax+ 1)(A− g(0, B)) + Ax(1− g(B, 0)) + Ax(1− g(B,B))

− (Ax+ 1)(A− g(0, 0)) + g(x,B)− g(x, 0)
)
.

Table I.3 shows the output of this constrained expression for g(x, y) = Ax+xy+y.

The bottom row of the table gives the x value, and the left-most column gives the y

value. The remaining table entries give the output, i.e., u(x, y, g(x, y)). As expected,

the constraints are satisfied.

Table I.3: Finite field constrained expression output for g(x, y) = Ax+ xy + y.

B A B 0 1

A A B 0 1

1 A B 0 1

0 A B 0 1

y
x

0 1 A B

aIf the reader is familiar with finite fields, they will recognize this field as GF (2)[x]/(x2 + x+ 1).

Example I.5: TFC using complex numbers

Consider the following constraints,

y

(
i

2

)
= 1 + πi, y(1) = y(i), and y(2 + i) + yx(1) = 2i.
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Let the support functions be s1(x) = 1, s2(x) = x, and s3(x) = x2. Then,

αij =
(

C
(1)

i[sj(x)]
)−1

=


1 i

2
−1

4

0 −1 + i −2

1 3 + i 5 + 4i


−1

αij =


132
125
− 24i

125
− 82

125
+ 49i

125
− 7

125
+ 24i

125

52
125

+ 36i
125

−129
250
− 397i

250
− 52

125
− 36i

125

− 44
125

+ 8i
125

69
125

+ 67i
125

44
125
− 8i

125

 ,

and

φ1(x) =

(
− 44

125
+

8i

125

)
x2 +

(
52

125
+

36i

125

)
x+

(
132

125
− 24i

125

)
φ2(x) =

(
69

125
+

67i

125

)
x2 −

(
129

250
+

397i

250

)
x+

(
− 82

125
+

49i

125

)
φ3(x) =

(
44

125
− 8i

125

)
x2 −

(
52

125
+

36i

125

)
x+

(
− 7

125
+

24i

125

)
.

The projection functionals are,

ρ1(x) = 1 + πi− g
(
i

2

)
ρ2(x) = g(1)− g(i)

ρ3(x) = 2i− g(2 + i)− gx(1).

Using the switching functions and projection functionals, the full constrained expres-

sion is,

y(x, g(x)) = g(x)

192



+

((
− 44

125
+

8i

125

)
x2 +

(
52

125
+

36i

125

)
x+

(
132

125
− 24i

125

))(
1 + πi− g

(
i

2

))
+
(( 69

125
+

67i

125

)
x2 −

(
129

250
+

397i

250

)
x+

(
− 82

125
+

49i

125

))(
g(1)− g(i)

)
+
(( 44

125
− 8i

125

)
x2 −

(
52

125
+

36i

125

)
x+

(
− 7

125
+

24i

125

))(
2i− g(2 + i)− gx(1)

)
.

Figures I.3 and I.4 show the real and imaginary portions of the constrained expres-

sion respectively for g(x) = 1
4
x+ 0.3i cos(x/4). In these figures, Re[·] is used to denote

the real portion, and Im[·] is used to denote the imaginary portion. The first constraint

is plotted as a red point, and the second constraint is plotted as green points. The

third constraint is harder to visualize but is satisfied nonetheless.

Figure I.3: Complex constrained
expression, real portion.

Figure I.4: Complex constrained
expression, imaginary portion.
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