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Abstract

The presence of universal phenomena both hints towards deep underlying principles
and can also serve as a tool to uncover them. Often, the scaling behavior of systems
shows such universality. An example of this is artificial neural networks (ANNs), which are
ubiquitously employed in artificial intelligence (AI) technology today. The performance of
an ANN, measured by the loss L, scales with the size of the network N and with the quantity
of training data D as simple power laws in N or D. We explain these laws theoretically.
Additionally, our theory also explains the persistence over many orders of magnitude of the

scaling with model size.

When both the amount of data D and the model size N are finite, the loss scales as
L x D' and L x N=/2. The scaling in the regime where either N or D is effectively
infinite is more non-trivial, being tied to the intrinsic dimension d of the training dataset
by the simple relations L o« N~%¢ and L o« D~%/%. We test our theoretical predictions in a
teacher/student framework, and on several datasets and with GPT-type language models.
These measurements yield intrinsic dimensions for several image datasets and set bounds

on the dimension of the English language that these were trained on.

Scaling behaviors also act as a tool to probe fundamental phenomena in nature—in this
case the theory of quantum gravity. We use holography to probe spacetime by using the
physics on its boundary. Specifically, previous work has employed the scaling properties of
operators on the boundary to construct a scalar field in the bulk. Our construction extends
this procedure to allow for arbitrary choice of gravitational dressing of the field. Apart
from yielding a more comprehensive understanding of the quantum properties of gravity,

our construction is suitable to test the non-locality of quantum gravity.

Advisor: Professor Jared Kaplan
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Chapter 1

Introduction

Human civilization has shown rapid and almost monotonic growth since 10,000 BCE, as
measured by the economic output of the world. This is seen in figure 1.1. Usually, we
understand fast growth as being exponential. For example, for a while during 2020 the
number of people carrying the coronavirus doubled every fixed number of days. The growth
I’'m talking about is not that. Economic and population estimates from the last many
millenia suggest that they have been growing super-exponentially, meaning that they keep
doubling faster and faster.

This kind of growth predicts something alarming—that the economic output of the
world will become infinite at a finite time in the future. Open Philanthropy’s models
estimate this to happen before the turn of the century, and possibly even by 2050 [134].
This prediction is, of course, not literally true. As the human population or economic
output gets unsustainably large, some factors will put breaks on it, such as climate change,
depletion of natural resources, or human conflict originating from the previous two.

One of the main drivers of economic and social transformation today is Artificial Intelli-
gence (AI). The World Economic Forum calls the AT revolution the 4" industrial revolution
[139]. Some communities are facing its impact before others, and not always positive. A
joint study done in 2017 by four prominent European transport groups estimated that au-
tomated trucks could reduce the demand for drivers by 50-70% in the US and Europe by
2030 [51].

Clearly, there is an urgent need for critical changes to our social and economic institu-
tions to account for the Al revolution. The next few decades could be a great opportunity
to bring about large-scale human well-being, but without proper steps it could just as easily
implode human society. An essential ingredient to making sociopolitical changes is to have
a timeline for the development of AI. Therefore, it is imperative to have a more compre-
hensive understanding of how fast Al is improving, and which directions will persist into
socioeconomically significant developments.



CHAPTER 1. INTRODUCTION
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Figure 1.1: The economic growth of human civilization from 10,000 BCE to 2019 CE, as
measured by the gross world product (GWP). According to this trend, the GWP would
become infinite in the year 2047. Source: [134]

The brains of Al technology today are mathematical models called artificial neural
networks (ANNs)!. Artificial neural networks are inspired by the human brain, which
somehow interconnects billions of neuron cells to process information. Correspondingly, an
artificial neural network is composed of a web of artificial “neurons”. Similar to how human
beings learn from their mistakes, ANNs learn by repeated trial and error. For example,
the autopilot neural network that self-drives a car will be trained by letting it drive for
thousands of hours. The longer it drives the less likely it is, for instance, to misidentify a
stop sign or fail to brake in time.

ANNS are getting bigger (in terms of the number of neurons) every year and are training
on more and more data. Typically, we expect an ANN with more neurons to perform better
on complicated tasks. Likewise, an ANN that is trained for longer is expected to perform
better.? Thus, it should be possible to predict the rate of improvement in Al performance
for the foreseeable future.

And yet, a comprehensive quantitative understanding of how performance scales with
the above factors was missing until now. Our work bridges this gap. We find which factors
govern how fast Al performance improves with the size of the network and with the amount
of training data. I describe this in more detail in section 1.1 below, as well as in chapters 2
and 3. Our scaling laws are stated mathematically in relations 1.1.2 and 1.1.3, and relation
1.14.

!Most modern deep learning models are based on ANNs. The McKinsey Global Institute expects ANNs
to be even more dominant in the near future [30]

2The performance of neural networks may not always get better with size or longer training time, par-
ticularly for simpler tasks, due to a phenomenon called overfitting. Most real world tasks, e.g. language
modelling, are complicated enough to prevent this from happening. See also footnote 6.
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Our theory also explains a fundamental result—the scaling of the performance of an
ANN with its size, or with the amount of training data, is often largely independent of
the choice of architecture [81]. An architecture is the way the neurons are interconnected
together to form the network. It is true that the performance of a network on a task depends
on the choice of architecture. Yet, it turns out that how the performance improves with
the above mentioned parameters is independent of this choice. Moreover, the scaling of
performance is dependent on the nature of the training data. For example, Alexa’s voice
recognition AT [83] would have a different scaling than Facebook’s face recognition AI [147],
since one trains on the English language while the other trains on photographs.

The universality in the scaling of Al performance indicates that it is governed by the
intrinsic properties of the training data, while the microscopic details of the architecture
get washed out. Specifically, we have found that the scaling is governed by the intrinsic
dimension of the data, which can be thought of as a measure of complexity of that dataset.
Thus, by observing the scaling behaviour of ANNs on various datasets, we can infer the
intrinsic dimensions of those datasets. In particular, we have found the dimension of CI-
FAR100, which is a collection of images of airplanes, cars, cats, dogs etc., and have also put
bounds on the dimension of the English language. I elaborate more on this in section 1.1.2
below and in chapters 2 and 3.

The existence of universal scaling behaviors and their utility in revealing deep phe-
nomena extend beyond the realm of Al. Fundamental processes in nature often result in
universal scalings. When water is subjected to a temperature of about 374°C and about 218
atm pressure [153], it acquires unusual properties. Near this critical point, its heat capacity
blows up. Specifically the numerical exponent of this divergence is about 0.11008 [87, 150].

Remarkably, the same numerical exponent is observed for almost any material’s liquid-
gas phase transition at the critical point, not just water. This intriguing universality doesn’t
end there—even magnets when heated show the same exponent. A piece of metallic iron is
ferromagnetic below 770°C [19], but paramagnetic above. In other words, when a piece of
iron is cold enough, it can be made into a permanent magnet, but if it is sufficiently heated,
it loses its magnetism altogether. In the vicinity of the critical point, we again observe
that the heat capacity diverges, and diverges with that same exponent. The microscopic
details of the material’s makeup don’t seem to matter when it comes to the behavior near
the critical point.

To understand the universal nature of the critical point, let’s look at the example of
a magnet in more detail. We can imagine a magnetic material, such as a piece of iron,
as being a lattice of tiny molecular magnets 3. The nature of these molecular magnets is
such that they want to align in the same direction as their neighbors, whether it be up or
down. When the molecules are all aligned in the same direction, the piece of iron becomes a
strong magnet. However when the iron is heated, the added heat energy tends to scramble

3In literature, this model is referred to as the Ising model. For details see [150]
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any alignments and patterns that are formed by the molecules. Thus, at high enough
temperatures—more precisely at 17" above the critical temperature T.—we observe that on
an average there is no net magnetization of the iron, since nearby molecules are aligned
randomly rather than uniformly. On the other hand, at low temperatures, molecules align
uniformly to form large regions where their magnetizations points in the same direction.
Consequently, the piece of iron then acts as a magnet. The behavior of a hot magnetic
material is demonstrated by the top two figures in figure 1.2, while the behavior of cold
magnetic material is shown in the bottom two figures. In these figures blue and yellow
colors denote upward and downward pointing molecular magnetizations respectively.

As can be observed visually in figure 1.2 below, if we zoom out of the T" > T, picture,
it gets even more randomly scrambled. Similarly, if we zoom out of the T' < T, picture, it
gets more uniformly aligned. But, as demonstrated by figure 1.3 below, if T' = T, then
zooming out does nothing, meaning that it is impossible to tell what length scale of the
material one is looking at. Hence, at the critical point, the system becomes independent of
the length scale [159, 160].

Figure 1.2: These pictures depict a (Ising) magnetic lattice. Zooming out of the system
when T' > T, (top) leads to more randomly aligned regions, i.e. the size of yellow and blue
patches becomes even smaller. Zooming out of the system when 7' < T, (bottom) leads to
more yellow regions. Source: [150]
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Figure 1.3: These pictures depict a (Ising) magnetic lattice at critical point "= T,. Since
the system is at the critical point, it is scale invariant. Consequently, there is no difference
in the geometrical properties of the two figures. Source: [150]

Scale invariance explains the universality of phase transitions near the critical point.
There exist only a handful of scale invariant mathematical models.* Thus, a large number
of systems need to be described by relatively few mathematical models. Consequently, every
mathematical model ends up describing a plurality of systems [159, 160]. This is why almost
all materials that undergo liquid-gas phase transitions at the critical point have the same
heat capacity exponent of 0.11008 [87, 150].

These mathematical models that describe the critical point are called conformal field
theories, or CFTs in short.>. Remarkably, it has been found that CFTs are also useful
in making progress in one of the biggest unsolved problems in fundamental physics today:
the problem of quantum gravity. The four fundamental forces in nature—gravitational,
electromagnetic, strong nuclear, and weak nuclear—are not all described by the same theory.
The latter three are described by a quantum theory called the Standard Model, while gravity
is described by Einstein’s general theory of relativity. This separate treatment works well in
most everyday scenarios, but it falls short when it comes to understanding the fundamental
properties of nature, for example the events at the birth of the universe. Quantum gravity
is an attempt to unify our understanding of all four fundamental forces of nature under one
theory. Unfortunately, previous approaches have had limited success with this problem. In
section 1.2 and chapter 4, we will see that the scaling behaviors of CFTs allow us to gain
insight into this difficult problem.

This introduction is organized as follows. I elaborate on the scaling behaviors of arti-
ficial neural networks in section 1.1. There, I explain the mathematical formulation of an

4The system also has locality, which restricts the class of allowed models. I'm also assuming that scale
invariant models are conformal field theories. See footnote 5 below

Technically scale invariant models don’t have to be CFTs, since CFTs have extra symmetries as well. In
practice scale invariant models are almost always CFTs [114]. I will use the two terms interchangeably.
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ANN, as well as our results and their significance in more detail. More information on this
can be found in chapters 2 and 3. Next, I describe in more detail the problem of quantum
gravity, its brief history, as well as our contributions in section 1.2. Remaining details and
a technical treatment can be found in chapter 4. Lastly, I end with a discussion of further
interesting universal scaling phenomena in other disciplines.

1.1 Universal Scaling Behavior of Neural Networks

Almost exclusively, the brain of any artificial intelligence (AI) technology today is an object
called artificial neural network (ANN) or neural network in short. ANNs, which are inspired
by the human brain, are a complex interconnected web of artificial neurons. Artificial
neurons are described by simple mathematical functions, but together they can perform a
staggering range of tasks.

In the next subsection I will describe the types of tasks that ANNs need to perform.
Then we will see concretely what an artificial neuron is, and the structure of a simple ANN.
I will then describe what it means to train a network. In later subsections I will describe
mathematically the scaling behavior of ANNs, followed by our results.

1.1.1 Background
Artificial neurons

An artificial neuron is a mathematical function that takes a bunch of numbers as input,
and churns out one number as the output. To be precise, the churning involves taking a
weighted sum of the inputs followed by a non linear operation on the weighted sum

y=9 <§:wz’1‘i+b> (1.1.1)
=1

where z;’s are a collection of m inputs, and y is the output. The w;’s and b are the weights
and bias that act on the inputs. The function ¢ is a nonlinear function that makes the
operation non-trivial.

By tweaking any individual weight w;, we can control how much the input x; contributes
to the output. For example, if wy is much larger than the other w’s then x; contributes
more to the output.

The function ¢ can be chosen from a wide variety of nonlinear functions, a very common
one being the piecewise linear function ReLU (Rectified Linear Unit) activation defined by

o(z) = {x if x>0

0 otherwise
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In chapters 2 and 3, we will almost exclusively use ReLUs.

Artificial neural networks

It is indeed remarkable that neurons, the building blocks of complex AI systems, are such
simple mathematical functions. The power of Al comes from having neurons work together.
Now, I will describe arguably the simplest ANN architecture—the fully connected network.

Fully connected networks consist of layers of neurons. The input is fed into the first
layer. The neurons in the first layer process the input according to the mathematical
function described above. The output of the first layer is then fed into the second layer,
and so on. We pull the final output from the last layer. The layers between the input and
the output layers are called hidden layers, because their outputs are normally hidden from
the outside. This process can be visualized as in figure 1.4.

H'lddon
VR

\

Tnput

Figure 1.4: A fully connected artificial neural network with one hidden layer. There are 3
inputs, 2 outputs, and the hidden layer has 4 artificial neurons. The inputs are fed to the
hidden layer, where the neurons process it and then feed it forward. In general there can be
any number of hidden layers, any number of neurons in each hidden layer, and any number
of inputs and outputs. Source: [34]

Different architectures are suited to different problems. For example, convolutional
neural networks are more suited to tasks related to images, while recurrent neural networks
work better on time series data, like human languages etc. Despite their differences, typically
these architectures can be visualized as having a layered structure.
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Training

Since each neuron has w; and b, an ANN has a whole collection of weights and biases
coming from the different neurons that comprise the network. By tuning each weight, we
can modify how the neurons process the input. This process of adjusting the weights to get
a desired result is called training. Of course, this is not done manually. There are several
algorithms to do this, but we shall not get into the details of those algorithms.

Supervised, unsupervised and reinforcement learning

Machine learning tasks can be of many varieties. I will describe three common types.

Imagine you want to train an ANN to recognize handwritten digits. A straightforward
way to do this is to write a bunch of digits by hand on a piece of paper and then take
pictures of them. This forms our training data. Now, we can feed these images into the
network and tweak the weights of the network until it outputs the correct answer indicating
which digit is on the picture. In practice this is done automatically by having a set of
training data, along with a set of labels that indicate the correct answer, like the correct
digit on each image. We feed the neural network with the training data and training labels
and train it until it achieves a desired accuracy. This is called supervised learning.

Some other tasks do not need explicit labels. For example, let’s say that most of the
customers of a product are either in their twenties or fifties. To find this pattern we just
need to feed the customer information into a network and let it cluster them into categories.
Since there is a natural classification, the ANN would hopefully pick up on that. This is a
trivial example, but in general non-trivial patterns can be uncovered through this process,
called unsupervised learning.

ANNS can also be trained to play games. One method to do that is to let the network
play the game, and then reward it for a correct move and punish it for wrong ones. This is
called reinforcement learning.

1.1.2 Intrinsic dimension of data and universal scaling of performance

We saw above that an ANN has a bunch of parameters that need to be trained to yield the
desired outcome. The size of a neural network is measured in terms of the number of these
trainable parameters. As of 2021, ANNs typically have millions of parameters. Some big
ones have tens of billions of parameters. Open AI’s GPT-3 has 175 billion parameters [20)].

The sizes of ANNs are growing every year. Similarly, the amount of training data
available is also increasing. In general a network that is bigger, or more trained, does better
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at complicated tasks.%

When we try to study how ANN performance improves (i.e. scales) with their size,
an intriguing observation emerges. Even though there exist a plethora of vastly different
neural network architectures, the scaling of performance of most of these architectures is
the same. This is not to say that they perform the same. Some are still better than others,
but how quickly the performance gets better with increasing size is largely independent of
which architecture is chosen.

Moreover, the scaling behavior changes when the task is changed, e.g. recognizing faces
in photographs will scale differently than playing the game of Go. This suggests that scaling
behaviors have something to do with the intrinsic properties of the task that the ANN needs
to perform. I describe this next, while more details are contained in chapter 2.

Intrinsic dimension of data

The data that is fed to a neural network is in the form of arrays of numbers. For example,
imagine a black and white picture. Each pixel of the image can be assigned a number, based
on how bright it is. Let’s say that the color white is 1, black is 0, and every shade of grey
in between is a number between 0 and 1. Thus, every such image can be fully described by
an array or numbers, each denoting one pixel.

Suppose the image that we started with was 10 pixels high and 10 pixels wide. Then,
there are 10 x 10 = 100 pixels in the image, and so the image will be described by an array
of 100 numbers. Now, imagine starting out with a whole set of such images for the purpose
of training the network.

This description of the images is likely to be redundant. Imagine a bunch of pho-
tographs of landscapes. In almost all these photographs, the top half is the image of the
sky, which is blue. Thus, the numbers corresponding to those pixels hardly change between
different images. One can drop these redundant numbers and still be able to fully describe
each image. Let’s say that after getting rid of all the redundancies, we are left with 25
numbers to describe each image. Then we say that the intrinsic dimension of the set of
images is 25. As the name suggests, this is an intrinsic property of the set of images. We
can also look at the intrinsic dimension of the data as being a measure of complexity. Small
dimensional data is typically less complex compared to large dimensional data.

More technically, we're viewing data as a being on a manifold. The data naively lies in a
large manifold, but truly occupies only a submanifold within the larger space. In the above
example, each image is a point in a 100 dimensional manifold. But, the image dataset really

SWhen an ANN has too many parameters, it essentially memorizes the training dataset, resulting in poor
performance outside the training dataset. Most real world tasks, e.g. language modelling, are complicated
enough to prevent this from happening. In chapters 2 and 3 we take measures where needed to avoid
overfitting.
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lies on a 25 dimensional submanifold embedded within the bigger manifold. The dimension
of the submanifold is related to the inherent information content and compressibility of the
dataset. The dimension of this submanifold is the intrinsic dimension of the data.

The scaling law, mathematically

We have found that the intrinsic dimension of the data is the driving force behind the uni-
versal scaling behavior. Essentially, when the data is large dimensional the performance
improves only slowly as we increase the size of the neural network, and vice versa. Math-
ematically, neural network performance is measured by loss. Larger loss means worse
performance. When the amount of training data is plentiful, i.e. when the network size is
the bottleneck, then we can write down the scaling relation between loss and model size-

1
Loss (1.1.2)

(Network Size)*/?

where d is the intrinsic dimension of the data, that we talked about above.

Thus, for any data and network choice, a bigger network means better performance
(smaller loss), but how fast the performance improves depends on d, the dimensionality of
data. For large d, we need a much bigger network to get an improvement in the performance.

Figure 2.1 in chapter 2 demonstrates this law. We measure the scaling exponents, and
independently measure the intrinsic dimension of various datasets. The plot between the
two establishes relation 1.1.2. More details, including a simple theory behind relation 1.1.2
can be found in section 2.2 in chapter 2.

1.1.3 Computing the dimension of the English language and other data

We saw above that the intrinsic dimension of the data governs the scaling of performance
of ANNs. So, by looking at the scaling behavior of neural networks on various datasets, we

can infer their intrinsic dimensions.”

In particular, we have found that the MNIST [91], fashion MNIST [162] and SVHN
[120] datasets, which consist of 10 classes of images, have a dimension of around 10. More
non-trivially, the dataset CIFAR100, which consists of images from 100 classes like trucks,
airplanes, cats, dogs etc., has a dimension around 25. The details of these measurements
can be found in chapters 2 and 3.

From the scaling of OpenAl’s language models [81], we have been able to bound the
dimension of the training data in English. Since the training data is both vast and chosen

"Technically, the scaling exponent only puts a bound on the intrinsic dimension. In many cases the bound
is tight, but exceptions do occur. For details about the inequality and exceptions see section 2.2.2.

10
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from a variety of sources, this can be interpreted as being a bound on the dimension of
the English language, as seen by neural networks. We expect the dimension to be about
d > 53 from measurement of the scaling exponent, and d > 90 from independent methods
of measurements. A detailed discussion can be found in chapter 2 in section 2.3.4 .

1.1.4 Scaling in other regimes

We discussed above the scaling of neural network performance with the size of the network.
The relation 1.1.2 holds when size is the limiting factor, i.e. when training data is plentiful.

On the other hand, if network size is very large (effectively infinite), but the amount
of training data is limited, we find a similar scaling behavior-

1
Loss o (1.1.3)

(Dataset Size)*/

This can be understood rigorously for the case of a linear network, as explained in section

3.2 of chapter 3. The top right plot in figure 3.1 supports this law. Relation 1.1.2 is also
verified by the bottom left plot in figure 3.1.

Apart from the two regimes that we have discussed so far, the top left and bottom
right plots in figure 3.1 demonstrate two other regimes. These show the scaling behavior
with network size and training data size, when neither of them is very large. In this case,
the scaling is very simple-

1

Model Width
1

Training Data Size

Loss
(1.1.4)

Loss

We refer to the first two regimes, where either data or model size is effectively infinite,
as resolution limited regimes. The remaining two regimes, where both model and data are
finite are referred to as variance limited regimes. A detailed analysis of all four regimes is
found in chapter 3.

1.1.5 Limitations and future directions

While our theory of scaling exponents described above has been formulated for supervised
learning, our superclassing experiments suggest that unsupervised learning behaves similar
to supervised learning (see section 3.4) in the way that it treats data. This could hint
towards a deeper theoretical understanding of scaling in unsupervised learning. It is less
clear how the theory extends to reinforcement learning. A theory of sample efficiency scaling
would be more likely to be relevant to reinforcement learning.

Each layer in a neural network is expected to see a different level of abstraction of the
data. Therefore, to test our theory we choose the minimum intrinsic dimension out of all

11
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hidden layers, since that represents the most compact representation of the data. In this
regard, it is less trivial to test our theory on architectures that have a residual (ResNet)
structure, for example OpenATI’s language models [128], since the input itself is added after
each layer. For these architectures, we still expect the inequality to hold (see section 2.2.2),
but the bound may not be saturated.

1.2 Scale Invariance and Quantum Gravity

1.2.1 Background: what is quantum gravity?
Is Einstein’s relativity wrong?

Albert Einstein discovered the general theory of relativity in 1915. His theory provided a
beautiful geometric description of gravity. Gravity is one of the four fundamental forces
in nature— the other three being electromagnetic, weak nuclear, and strong nuclear forces.
A unified description of the latter three, called the Standard Model, had to wait until
the second half of 20" century. The Standard Model is a quantum theory, while general
relativity is classical, meaning that it can be understood without quantum mechanics.

Around the same time that the Standard Model was taking its final form, Stephen
Hawking combined some properties of quantum mechanics with general relativity and dis-
covered that black holes aren’t so black, meaning that they can radiate [65]. Black holes
are objects that pack an incredibly high density of matter in a very small volume. They are
usually formed when a gas of matter collapses due to the strength of its own gravitational
field. According to general relativity, black holes are supposed to be black, meaning that
they absorb any matter or radiation that falls on them. Nothing can escape from a black
hole.

What Hawking found was startling—that even black holes can radiate. This is an
indication that general relativity may not be entirely correct. At least, quantum mechanics
and general relativity are at odds with one another.

The separation of quantum and gravity

General relativity is not a complete description of the universe because it explains only
gravity, while leaving the other three for the Standard Model. In most situations this
division of labor works. For example, to describe how the Earth affects flying birds, we can
consider separately the effects of gravitational and magnetic fields of the Earth. In other
words, electromagnetic and gravitational phenomena don’t usually mix with each other.

We can understand this separation from the scales of the forces. Gravity is a large scale
force, in the sense that its effects are relevant on the macroscopic scales. For example, the

12
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dynamics of planetary motion are governed by gravity. The other three forces in nature are
microscopic. Electromagnetic force holds atoms and molecules together, and gives solids
their rigidity. The two nuclear forces act at the scale of protons and neutrons. Similarly,
there is a separation of scale in terms of strength of the forces. The strong nuclear force is
about a hundred times stronger than electromagnetic force, about a million times stronger
than weak force, but about 10%® times stronger than gravity.

Black holes mix quantum and gravity

The neat separation of scales between quantum forces and gravity breaks down when too
much matter starts accumulating in a very small region of space. The gravitational field
produced by highly dense matter can no longer be ignored in comparison to the other three
forces. This happened at the beginning of the universe when all the matter and energy of
the universe was crunched up in a tiny volume. Since black holes have extremely dense
matter in a tiny volume, they also become a playground for the mixing of quantum theory
and gravity.

The information paradox

That quantum mechanics and general relativity are at odds with one another can also be seen
in a another related phenomenon—the information paradox. Quantum mechanics is unitary,
meaning that as a quantum system evolves in time, it cannot gain or lose information. Black
holes, on the other hand, lose information. Black holes are completely characterized by
a handful of quantities, namely their mass, momentum, angular momentum and electric
charge. For example, imagine two different black holes, both formed by crunching together
objects of different shapes and sizes. If we can make the total mass etc. of the falling matter
the same, then we get identical black holes, even though the starting objects were very
different in shapes and sizes. Thus, a large amount of information about the matter that
fell into the black hole is lost. This is called the no-hair theorem—that the surface of a
black hole is smooth, and contains no additional information [112, 71].

The resolution: a theory of quantum gravity

Hawking made his startling prediction of black hole radiation by combining some properties
of quantum theory with general relativity. But, his approach only scratched the surface (pun
intended) of a complete, unified quantum theory of gravity. The full theory of quantum
gravity would explain all four forces of nature. It would be the fruit of thousands of years
of progress towards a fundamental understanding of nature.

Unfortunately, our efforts so far have fallen short. Combining gravity with other forces
has presented both technical as well as conceptual difficulties. In fact, to even think about
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a unified theory of gravity, we're having to rethink what we took for granted, for example

what it even means for an experimental apparatus to make a measurement.

0" century, string theory was thought to be a contender for a theory

For a while in late 2
of quantum gravity. Gradually, it became clear that string theory was not just incredibly
hard to solve, but also that it is experimentally unverifiable. Essentially, whatever properties
of the universe we find through experiments, we can find a way in string theory to justify
them [161]. However, through string theory we found a property that turned out to be very
robust. Robust to the extent that we’re willing to forget about string theory and use this

instead as our fundamental principle. This property is called holography.

1.2.2 Background: holography

A photograph is a two dimensional representation of an object, but a hologram is the three
dimensional representation. Therefore, a hologram faithfully captures the entirety of the
object.

Einstein treats space and time as one combined object, called spacetime, and gravity
is just a geometrical property of spacetime. For technical reasons, we will deal with a
hypothetical spacetime that does not exactly resemble our universe, but nevertheless gives
important physical insight. This is called the anti-de Sitter (AdS) spacetime.®

A surprising relationship was discovered about AdS spacetime in the late 1990’s—that
the physics on the boundary is enough to tell us everything that’s happening in the entire
spacetime [103]. This is not at all obvious. Imagine a city where you can tell exactly what
is happening inside by just watching the events on the outskirts! This duality is called
holography. In particular, the complete quantum gravity in this spacetime is described in
terms of the physics on the boundary. To use this approach to study quantum gravity, we
need to understand the boundary physics better.

The boundary of AdS

Let’s say we have a (AdS-)spacetime. Now, say we travel infinitely far out towards the
boundary of space. We find something interesting about the spacetime close to the boundary—
depending on the details of how we approach the boundary, it looks either stretched or
compressed. Thus, the same physical phenomena happening at the boundary may appear
stretched or compressed from various points of view [80]. The phenomena themselves don’t
change. They just look different. This is tantalizingly pointing towards the fact that the
physics on the boundary is independent of stretching or compressing, i.e. it is scale invariant.

8 AdS is a spacetime of constant negative curvature. It is unlikely that our universe resembles AdS, but
our understanding of quantum gravity so far is is largely restricted to AdS.
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The physics on the boundary is thus described by a conformal field theory (CFT).?

Holography is a general principle, and the correspondence between AdS physics and
CFT on the boundary is a prime example. In this introduction, as well as in 4, we shall use
the terms holography and AdS/CFT correspondence interchangeably.

Promoting holography

The discovery of holography was done within the framework of string theory, but it was soon
realized that the duality seems to be much more robust. In fact, evidence from fundamental
principles in physics, e.g. thermodynamics, also points towards holography, without relying
on the heavily complicated machinery of string theory. Thus, we make a bold move—we
turn the problem on its head. We assume that holography is true, then we can use it to
find the properties of the yet undiscovered theory of quantum gravity.

1.2.3 Bulk reconstruction

In order to use holography to find the properties of quantum gravity, we start with a CFT
on the boundary and use that to reconstruct the events in the bulk. The procedure is called

bulk reconstruction.

Bulk reconstruction is relatively straightforward if we assume that the AdS space in
the bulk has no gravitational fluctuations, i.e. all gravity is just a static force that does not
mix with any other forces. This old-fashioned gravity takes the interesting physics out of
the picture. In particular, it takes away the quantum properties of gravity.

A more involved procedure for bulk reconstruction was recently implemented, where
explicit calculations can be done without stripping gravity of all its quantum properties
[8]. This ‘proto-field” approach makes interesting predictions, but, as we discuss next, one
problem with this approach is that it keeps some essential properties hidden under the rug.

1.2.4 Dressings in quantum theories

Forces are produced from fields, e.g. an electric field produces an attraction or repulsion be-
tween charged particles. In particular, the three quantum forces (electromagnetism, strong
nuclear, and weak nuclear) are mathematically described as quantum fields. This mathe-
matical description explains a host of phenomena that we take for granted. One of them
is of particular interest to us. An electron always has to come surrounded with an electric

°If we ignore the dynamics of gravity in the bulk then the boundary theory lacks a stress tensor, hence
is not a CFT [80]. See also footnote 5.
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field.!? Naked electrons don’t exist in nature. Naively, one could imagine that an electron
is its own particle, while electric fields are related to electromagnetic fields, and so they
should be allowed to exist independently. Indeed, the mathematics of field theory prohibits
that. An electron has to always come dressed in electric fields in order to keep the theory

consistent.

Gravity also has the same constraint. Therefore, a correct theory of quantum gravity
should yield dressed fields, rather than bare fields. Since the proto-field constructed in [8]
is interacting with gravity, it must be dressed. But, it is not clear what the nature of the
dressing is. Besides, the exact form of the dressing should be a choice, but the construction
of the proto-field seems to take the choice away from us.

In chapter 4, this problem is rectified by explicitly constructing a bulk field dressed
with a dressing of choice. This new construction is not pedantic. It allows an exploration of
some fundamental properties of quantum gravity, which was previously not possible. One
such property is locality.

1.2.5 Locality in quantum gravity

We expect quantum gravity to be non-local at very short length scales, meaning that the
position of any object cannot be specified precisely. This is because quantum observables
are fuzzy. Since in quantum gravity the geometry of spacetime itself is a quantum entity at
very short length scales, geometrical quantities like distance become fuzzy.

Any theory of quantum gravity should be able to test this property. Indeed, the original
proto-field construction has been shown to have non-locality [26]. But, since the proto-field
comes attached (dressed) to a line that extends all the way to the boundary, we don’t know
if the non-locality that we detect is due to genuine non-locality of quantum gravity, or an
artifact of this construction.

Having the ability to dress the proto-field with a dressing of our choice allows one to
extract the genuine non-localities of quantum gravity, as I now explain. The procedure to
tell if something is present at a point in space is to collide it with a second object. If a
collision happens then there was indeed an object at that spot. Now, if a collision happens at
multiple points, then the original object was present at multiple points, i.e. it was non local.
In the original proto-field construction, when we try to collide two objects together, their
dressings themselves also start colliding with each other. Thus, it is not possible to tell what
is causing the collision, the collision of the dressings or the fundamental non-localities of
quantum gravity. With the new construction, we can arrange the dressings of two colliding
objects such that the dressings themselves stay out of the way, i.e. they themselves don’t
collide with anything. Thus, the only non-local collisions that can potentially happen are

10The property mentioned here is called gauge invariance, and the dressings are a generalization of Wilson
lines [41]
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due to the genuine non-locality of quantum gravity.
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Figure 1.5: Basal metabolic rate of organisms plotted against their body mass. A power
law with exponent ~ 0.75 holds across 27 orders of magnitude in mass

1.3 Discussion

Apart from machine learning and physics, universal scaling laws are found in a variety of
other areas. For example, if the basal metabolic rate of organisms is plotted against their
mass M, a clear power law extending over 27 orders of magnitude is found (figure 1.5).
Various other ‘allometric’ scaling laws have been found that are summarized in table 1.1.
Interestingly, the exponents are almost always in multiples of 1/4 or 1/8. The universality
of these ‘quarter power’ scalings has been explained in terms of the efficient geometry of
distribution systems, like the circulatory system [156, 155].

A remarkable consequence of these scaling laws is the emergence of invariant quantities.
For example, since mammalian lifespan increases as M1/4, while the heart rate decreases as
M~Y4 the number of heartbeats per lifetime (= 1.5 x 10?) is approximately independent
of body size [155]. This means that whether it is giant animals like elephants or tiny ones
like mice, their hearts beat about a billion times in their lives. Similarly, the population
density in forest communities (M ~3/%) and the the individual power (M 3/4) together imply
that the power used by individuals in any size class is roughly constant [43, 155].
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Parameter Scaling with Mass
Mammalian life span M4
Mammalian heart rate M1/4
Radii of aortas and tree trunks M3/8
Unicellular genome lengths M/4
RNA concentration M-1/A4
Population density in forest communities M—3/4

Table 1.1:: Allometric scaling laws. Source of data: [155]

Similarly, a number of properties of cities, like total wages, patent production, and
electricity consumption scale with the population size. The scaling exponents () fall into
universality classes—f ~ 1.2 > 1, 8 &~ 1 and 8 =~ 0.8 < 1. As expected, quantities like
household water consumption scale linearly with population (5 & 1), since an individual’s
domestic water needs are roughly the same irrespective of the size of the city they live in.
B < 1 corresponds to economies of scale, i.e. quantities that are easier to produce on a larger
scale, for example the length of electric cables. In contrast, innovation and wealth creation
is supported by larger size. Thus, the quantities that depend on them scale with § > 1,
like the number of new patents [14]. The population dynamics based on these scalings [14]
provides quantitative insight into the super exponential growth of human population and
economic output since 10,000 BCE which we encountered in figure 1.1.

The exponents 5 > 1 are qualitatively distinct from scaling exponents found in bio-
logical systems, which are all smaller than 1. Innovation in urban economies now happens
on time scales much shorter than individual life spans, and will only becomes more rapid
as population increases (since § > 1). On the other hand, evolution in biological systems
happens on the evolutionary time scale, which vastly exceeds individual life spans. Urban
“metabolism” is likely fueled by uniquely human social dynamics that transcend biology
[14].

Universality of quantitative processes indicates the unity of the machinery behind them,
be it in natural phenomena in physics or biology, or human engineered systems like artificial
intelligence and urban centers. On one hand, in case of artificial neural networks, the
universality of scaling behaviors lead us to uncover the simple mechanisms that underlie
these complex machines. On the other hand, in case of quantum gravity, scaling behaviors
themselves become tools to understand the elusive secrets of the universe.
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Chapter 2

A Neural Scaling Law from the
Dimension of the Data Manifold

This thesis chapter originally appeared in the literature as:

U. Sharma and J. Kaplan, “A Neural Scaling Law from the Dimension of the
Data Manifold,” arXiv: 2004.10802

Abstract

When data is plentiful, the loss achieved by well-trained neural networks scales
as a power-law L o« N~% in the number of network parameters N. This empiri-
cal scaling law holds for a wide variety of data modalities, and may persist over
many orders of magnitude. The scaling law can be explained if neural models are
effectively just performing regression on a data manifold of intrinsic dimension d.
This simple theory predicts that the scaling exponents a &~ 4/d for cross-entropy
and mean-squared error losses. We confirm the theory by independently measuring
the intrinsic dimension and the scaling exponents in a teacher/student framework,
where we can study a variety of d and « by dialing the properties of random teacher
networks. We also test the theory with CNN image classifiers on several datasets

and with GPT-type language models.

2.1 Introduction

Neural Network based Machine Learning has made enormous progress in a wide variety of
domains. Scale has been a key ingredient in this success: large amounts of computation,
large datasets, and large models with millions or billions of parameters.

Not only is scale beneficial to performance, but the benefits from scale can be predicted
precisely. Recent works [69, 68, 135, 81] studying a variety of data modalities and model
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Intrinsic Dimension vs 4/a

—— |ID = 4/a for reference
102{ @ Teacher Student T
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Figure 2.1: This figure shows the relationship between the measured intrinsic dimension
(ID) of the data manifold and é, where « is the model size scaling exponent. We include
data from fully-connected teacher/student experiments, simple CNNs, and GPT-type [127,
128] language models (represented as a lower-bound due to large uncertainties with large
IDs).
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architectures all find the same scaling relation in the underfitting regime. In particular, the
dependence of the loss on the number of model parameters N has the following properties,
and each suggests a corresponding question:

e As the number of model parameters N is increased, the cross-entropy loss of well-
trained and well-tuned models scales with N as a power-law

1

L(N)am

(2.1.1)
with observed values such as a ~ 0.076 for language modeling [81], and much larger
a =~ 0.5 observed for image classification [135]. Why do we encounter this simple
functional form, and what determines the value of the exponent «?

e Scaling holds very accurately across a wide range of N, sometimes spanning many
orders of magnitude [69, 68, 81]. Why does scaling persist over a large range of model
sizes, and what determines the Ny.x where it eventually breaks down?

o Empirically, the scaling exponent o may not depend greatly on model architecture.
For example, LSTMs and Transformers scale similarly over a large range of N [81],
with losses differing only by an overall, N-independent factor. Why would scaling
exponents be roughly independent of model architecture?

We will argue that a simple conjectural theory can address these questions while making a
number of testable predictions.

2.1.1 Main Ideas

The key idea is that neural models map the data to a manifold with intrinsic dimension
d, and then use added capacity to carve up this manifold into ever smaller sub-regions. If
the underlying data varies continuously on the manifold, then the size of these sub-regions
(rather than their number) determines the model’s loss. To shrink the size of the sub-regions
by a factor of 2 requires increasing the parameter count by a factor of 2¢, and so the inverse
of the scaling exponent 1/« will be proportional to the intrinsic dimension d of the data
manifold. We develop these ideas in detail in section 2.2.

The scaling exponent a can be measured by training a succession of models of varying
size. We measure the intrinsic dimension d within the final layer' activations of trained
networks, using the distances among nearest neighbor activation vectors [95, 44].

We test the theory in a student/teacher framework, which makes it possible to scan
over a large range of a and d and test more idiosyncratic features of the theory (see figure

Tt was shown in [10] that the final hidden layer activations have the smallest intrinsic dimension in image
classifiers. Our findings are largely consistent with this.
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2.4). We also perform tests using CNNs for image classification, and by measuring the
intrinsic dimension of GPT-type models [127, 128|, where scaling exponent have already
been documented [81].

2.1.2 Contributions: Predictions and Results

In what follows we list the concrete predictions made by our theory, and their status based
on our results? and information in the literature. Throughout we use L to denote the loss,
N to denote the number of parameters in a neural network (often referred to informally as
‘model size’), a as the power-law scaling exponent, and d as the intrinsic dimension of the
data manifold.

1. Prediction: In the range of N where the loss scales as L(N) ﬁ, we predict o é,
where d is the intrinsic dimension of the data manifold for the dataset and task in
question. If the network is composed of ReLU non-linearities and the loss is mean
squared error or cross-entropy (or KL divergence), we predict

4

> — 2.1.2
0z (212

with equality expected in the generic case.

Results: See figure 2.1 for the summary combining all datasets. We find a variety of
evidence supporting this prediction, and the factor of ‘4’ fits quite well. We show in
figure 2.8 that this factor can be modified if we use other loss functions. For language
modeling with GPT [127, 128], we know é ~ 53 while we measure the intrinsic
dimension as d > 90 (figure 2.10), in accord with the inequality, but quite far from
equality.

2. Prediction: The maximum network size Np.x where we obtain power-law scaling
grows with d via log Nyax o< d. Larger d should correspond with much larger Npax.

Results: We have confirmed the approximate relation log Npax o d (see figure 2.2)
with teacher/student experiments by identifying when L(Npax) reaches a fixed value.

3. Prediction: The exponent « will not depend significantly on model architecture
except through the intrinsic dimension d. Since larger a and smaller d lead to improved
performance with scale, the best architectures will tend to have the smallest d.

Results: In [10] it was discovered empirically that better performing image classifiers
have smaller d, and [81] showed that LSTMs and Transformers have very similar
exponents. We leave the measurement of both a and d across distinct architectures
to future work.

2Code for our experiments will be available at: https://github.com/U-Sharma/NeuralScaleID
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Figure 2.2: This figure estimates the behavior of Nyax, the maximum network size where
we find power-law scaling, as a function of the intrinsic dimension in student/teacher exper-
iments. We determine Ny .x as the model size where the loss reaches an arbitrarily chosen

small value of 0.006, as a stand-in for the entropy of real data. We discuss this procedure
in section 2.3.1.

Intrinsic Dimension (ID) vs Network Size for 8 features (CE) Intrinsic Dimension (ID) vs Network Size for CIFAR10
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Figure 2.3: We show how ID measurements vary among different student network sizes
N trained from the same teacher (left), and for CNNs on CIFAR10 (right). We display the

test loss L(INV) for reference. The ID does not depend significantly on N, though it increases
by about 10% among the various model sizes tested as N increases.
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4. Prediction: Models with size N € [Nyin, Nmaz| where the loss scales as a power-law
in N all map the data to a manifold with the same intrinsic dimension d.

Results: We verify this for teacher/student experiments in figure 2.3 and for CI-
FARI1O0 in figure 2.9. This prediction holds to about 10% for these models.

5. Prediction: If the data manifold M = X; x X5 ---x X, and the loss L(x) = ), L;(z;),
then we should replace the dimension of M with the maximum dimension of X;
when estimating «, as the network can behave as an ensemble, modeling each X;
independently (see the right of figure 2.4).

Results: We confirm this prediction in section 2.3.2, see figure 2.7.

2.2 A Simple Theory for Scaling in the Underfitting Regime

In this section we explain our theory, beginning with a toy model in section 2.2.1. Then in
section 2.2.2 we argue® that the toy model can be applied to realistic neural networks with
only a few small modifications. In section 2.2.3 we explain how we measure the dimension
of the data manifold, a necessary step in validating the theory.

2.2.1 A Toy Model

Consider one of the simplest scenarios for multidimensional regression. We are given a
Lipschitz function f : [0,1]¢ — R, and we would like to approximate it as a piecewise
constant function c(x), by cutting [0, 1]¢ into smaller hypercubes. If these hypercubes have
a side length s, then we will have

N=s1 (2.2.1)

cubes, and so our approximation will depend on the N constant values c¢(x) takes within
each hypercube. If the loss is mean-squared error (MSE), then it will be bounded by

L= / £ (@) — (@) < A2 (%) (2.2.2)
0

where A is the Lipschitz bound |f(z + y) — f(z)] < Aly|, and we have ignored overall
numerical factors. Translating the s-dependence into N, this means that L(N) < ﬁ up
to a constant factor.

If the model is piecewise linear instead of piecewise constant and f(x) is smooth with

3one might say conjecture; for a more sophisticated perspective in a simpler context see [16]
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bounded derivatives, then the deviation |f(z) — ¢(x)| o« s2, and so the L? loss will scale* as
s*. We would predict

1

(2.2.4)
This will be important later, since networks with ReL'U activations produce piecewise linear
functions.

Finally, consider the case where f;(x) encode a smooth probability distribution over
i =1,---, k possibilities, and we replace the MSE loss with the KL divergence. If the ¢;(x)
are a piecewise linear model for the logits, then we also find that L o s*. So the KL and
MSE losses will scale with the same exponent in N at a given value of d. We demonstrate
this in appendix A.1.5; it is a simple consequence of the fact that the expansion of Dgr (pl|q)
in (¢ — p) begins at second order. Note that if we use a cross-entropy instead of the KL
divergence, the loss will scale in the same way towards a fixed constant value, the entropy
of the true distribution.
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Figure 2.4: Left: This shows the setup of a teacher network, emphasizing how we can
control the data manifold dimension via the number of input features k. Right: When the
data manifold is a product and the teacher T'(X) = T1(X1)+T2(X2), then student networks
can learn T' by combining sub-networks and behaving, in effect, like an ensemble. Then we
predict 4/a & dpayx, the maximum d among the components.

1A straightforward generalization suggests that if ¢(z) is composed of piece-wise k-degree polynomials,
and we use a loss |f — ¢|?, then

L(s) oc s*F1P (2.2.3)

in the infinite data limit. But if p is large then c(x) within each hypercube will utilize many parameters.
We test the p-dependence of this prediction in figure 2.8.
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2.2.2 A Conjectural Theory for Neural Networks

Neural Networks perform well on data with thousands or even millions of dimensions. It
is widely believed that this is possible because neural networks map the data into a much
lower-dimensional ‘data manifold’, preserving and focusing on the features that are relevant
for the task.

We emphasize that the data manifold is a feature of both the dataset and the task
or loss function that has been optimized. Classifiers need only attend to features relevant
for classification. Similarly, in the case of autoregressive models the data manifold would
consist only of the features necessary to predict the next token in a sequence. So the data
manifold for such a model (as we are defining it) may have many fewer dimensions than
the space of full sequences, such as complete images or text samples. Properties of the data
manifold may also depend on the model that is learning it, such as its architecture and
activation functions.

We can explain the observed scaling relations for NNs by applying our toy theory while
replacing the ambient dimension of the dataset with the intrinsic dimension of the data
manifold. If we perform regression with a neural network with ReLU activations and a
mean-squared error or KL divergence loss, the analysis of section 2.2.1 implies®

1 4
In the case where the function f(z) depends in a generic way on d independent variables,
we will confirm this prediction empirically in section 2.3.1 (see figure 2.1). We also explore
some special data manifolds and other loss functions in section 2.3.2.

This theory also largely explains why the scaling relation holds over such a large range
of N. To double the resolution with which the model differentiates different points on the
data manifold, we need 2¢ times more parameters. It’s reasonable to expect that model
performance improves smoothly when we change the resolution by an order-one factor. But
this seemingly natural assumption implies that if d > 1, we will see smooth scaling with
N over many orders of magnitude. We would predict that the range in AN over which
smooth scaling holds satisfies log(AN) o d. This also strongly suggests log Npax < d,
where Npax is the largest network size exhibiting power-law scaling, as we do not expect
Npin, the beginning of the power-law region, to increase with d. We discuss some reasons
why power-law scaling may cease in section 2.2.2.

Finally, the theory suggests an interpretation for the fact that different NN architectures
tend to have similar scaling exponents when applied to the same dataset. It would appear

®Depending on the network architecture and parameter values, the network could represent a piecewise
linear function with C' > N piecewise components [113]. However, these C' components cannot be indepen-
dently configured to optimize the loss. Since there are only N independent degrees of freedom available, we
expect N, rather than C, to determine the effective capacity.
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that a given dataset and task are associated with a data manifold of fixed dimension, and
improvements in architecture do not greatly alter its properties. Network architectures that
can achieve smaller d on the same dataset can be scaled up to achieve larger gains, and so
we would expect smaller d to correlate with better performance.

The interpretation of 4/« as the dimension of the data manifold has a close connection
with the notion of fractal dimensions. Typically fractal dimensions measure how the number
of components needed to approximate a fractal scales as the components shrink. But we can
reinterpret this definition by asking how many components are needed to obtain a certain
quality of approximation to the underlying fractal. When we use the loss itself to measure
the quality of the approximation, then 4/« is proportional to the corresponding fractal
dimension.

Before moving on, let us discuss a few subtleties.

A Bound, Not an Equality

The classic analysis we reviewed in section 2.2.1 provides an upper bound on the loss for
function approximation (regression in the infinite data limit) using piecewise constant or
piecewise linear approximators. This bound becomes an estimate when the function being
approximated is a generic Lipschitz function in d-dimensions. However, if the function has a
simple, non-generic structure then the loss may decrease much more quickly with increasing
model size. So we should expect that

a (2.2.6)

Q>

In special cases where the true underlying function or distribution is non-generically simple,
we may find that this inequality is far from saturation.

As a concrete example, consider a data manifold M = X7 x X5 x --- x X, with loss
L(xz) = >, Li(x;), as suggested on the right of figure 2.4. In this case a fully connected
neural network may learn® this decomposition, computing each L;(X;) using a separate path
through the network, and only combining these paths in the last layer. This would result
in a scaling exponent determined by the maximum of the dimensions d; of the manifolds
X;. We test L(N) for product data manifolds in section 2.3.2 and verify these predictions.

We may end up finding d > % for other reasons. We will attempt to measure d among
neural activations, but there may not be any single layer where the model compresses all of
the data onto the data manifold. For example, one might imagine a scenario where different
components of the manifold are processed or compressed in different layers of the network.
And networks with non-ReLLU activations (eg Transformers and ResNets) may mix and

51f the total loss does not decompose as a sum, it is less clear that the network can learn an effective
decomposition, but it may still be possible.
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superimpose different data manifolds upon each other, obscuring the manifold structure
and causing the measured dimension to exceed the true dimension.

Why Does Power-Law Scaling Break Down?

If the dataset size is finite, then power-law scaling with model size N will cease when we
begin to overfit the data. Overfitting dominates performance on many real-world datasets,
obscuring potentially clean scalings with N. We encounter it with CIFAR10 in figure 2.9
and on other datasets in appendix A.1.4.

Even in the infinite data limit, if the data contains any entropy or noise then the power-
law scaling must eventually end with the loss reaching a final plateau. Scaling could also end
for other, more interesting reasons. For example, perhaps beyond a certain point the loss
can only improve by exploring a higher dimensional data manifold. This is possible if the
data manifold has a pancake-like structure, with a small width that can only be dissected
by models with very large capacity. We will explore the simplest possibility, where the data
has entropy, with mock teacher/student experiments; see figure 2.2 for the result.

2.2.3 Measuring the Intrinsic Dimension of the Data Manifold

In section 2.2.2 we extended the toy model in order to make a variety of predictions relating
the scaling of the loss with model size to d, the intrinsic dimension (ID) of the data manifold.
In some of our experiments, we will control d by constructing generic functions of d inputs
and then measuring «. But the theory would be tautological for real-world data if we could
not independently measure the data manifold’s ID.

We will define d by measuring the ID of neural activations as the network processes
data from the distribution on which it was trained. There is an extensive literature on
intrinsic dimension estimation (for a review see [22]). In most cases we use the simple two-
nearest neighbors (TwoNN) method [44], though we also compare to the MLE estimation
[95] method on which TwoNN was based.

To summarize the method, let r; be the distance from a given datapoint to its kth
nearest neighbor, and define py = ri/r1. Then the cumulative distribution C'(uy) takes the
form

Clig) = (1 _ 1>“ (2.2.7)

d
H
and so we can measure the intrinsic dimension d by using the relation

1
log (1 — C () ’H)
d=
log pu,

(2.2.8)
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Figure 2.5: This figure shows L(N) along with power-law fits for teacher/student exper-
iments. The students learn from a randomly initialized 2-layer teacher with 2-19 features
and use a cross-entropy loss. The students have 2,3, or 4 layers, but for £ > 5 input features
the 2-layer students perform best and determine the model-size scaling. The measured 4/«
increases linearly with the number of features, as shown in figure 2.6.
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Practically speaking, we evaluate pj for every point on the manifold, and then apply linear
regression to measure the slope d. We measure d using various k and verify that different
values of k give consistent results. We also verify that the MLE method [95] agrees with
the TwoNN method. Fortunately, nearest neighbors can be efficiently identified [21].

The TwoNN method (the case k = 2) has already been applied to neural networks [10].
There it was found that the dimension is smallest when measured using the activations of
the final hidden layer of the network (immediately before the logits or output, so sometimes
we refer to this as ‘prefinal’). We will use these activations to measure d and compare to
1/a. For the GPT-type models (and for some others as a test in appendix A.3) we show ID

measurements for every layer.

For convenience we provide a self-contained derivation of these ID measurement algo-
rithms and a minor extension (k > 2) in appendix A.2. We also provide several tests of
the method in appendix A.3, using both synthetic and neural activation data. We find
that the method is fairly accurate for d < 20, while for larger dimensions it’s less reliable,
and typically (but not always) underestimates the true dimension. Statistical errors from
these methods are often fairly small (particularly from TwoNN), but we expect there may
be larger systematic errors, as discussed in the appendices.

2.3 Experiments and Results

In this section we discuss results from teacher/student experiments and various extensions,
and also some tests using image classification and language modeling. We relegate a variety
of technical details and a few minor observations to appendix A.1. We discuss potential
errors in the ID measurement, along with several examples, in appendix A.3.

2.3.1 Teacher/Student with Random Teachers

We generate functions of k = 2,3,---,19 input features using a randomly initialized, fully
connected ‘teacher’ neural network with a 20-dimensional input space. To achieve k < 20
we simply zero out all other inputs to this single teacher. We refer to k as the number of
features, and distinguish it from d, the intrinsic dimension, which we measure using the
activations of trained student networks.

For each value of k, we train fully connected student networks of various widths and

depths to imitate the outputs of the teacher. We work in the online setting, generating
random inputs in [—%, %}k

work topologies, training procedure, fits, errors, and ID measurements are documented in

so the dataset size is effectively infinite. Details of the net-

appendix A.1.2.

After training the students, we evaluate the loss Ly (V) for each number of features k.
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Then we fit

C

Lk(N):W

(2.3.1)
to measure ¢, « for each k. The results of this process (with cross-entropy loss) are shown
in figure 2.5.

Next we measure the intrinsic dimension from the activations of the final hidden layer
of each trained student. We use 12,000 activation vectors for each ID measurement. In
all cases we find that using more nearest neighbors, as discussed in section 2.2.3, does not
change the result significantly. In figure 2.3 we show the measured ID of the final layer of a
student network with various sizes N, along with a plot of the loss L(IN). We see that the
ID is approximately constant for these networks, though it does slowly grow by about 10%
from the smallest to the largest student network.

We plot the relationship between 4/« and either the number of features or the measured
ID d. The result, along with linear fits, are shown in figure 2.6. For both the cross-entropy
and MSE loss functions, g ~ d. The inverse exponent 1/« is linearly related to the number
of input features k, but the multiplier is larger than 4.

In section 2.2.2 we argued that scaling should end at an Ny, .y that grows as log Npax
d. We would like to test this prediction with teacher/student experiments, but in this case
the data has no entropy. So instead we will introduce an artificial threshold for the loss, as
a fictitious stand-in for the entropy of real data. Then we simply ask at what Ny,.x the loss
L(N) reaches this fixed, arbitrary value.

We chose L = 6 x 1072 as an arbitrary threshold in figure 2.2. Note that for the teacher
networks with fewer features we used the power-law fit for L(N) to estimate Npax, as it
was smaller than any network tested. This means we had to extrapolate L(N), so these
results are not purely empirical. We also compare log Nyax and d by defining Np.x as the
end of the purely empirical power-law scaling region for 2-layer students (due to a failure of
optimization or numerical precision issues); these results are relegated to figure A.1 in the
appendix.

The ID is typically a bit smaller than the number of input features. This may arise
from a combination of two factors: the ID measurement may be underestimating the data
manifold dimension, and randomly initialized networks may not provide sufficiently generic
or non-linear functions of their inputs. We explore the second hypothesis in appendix A.1.3,
where we show that by vetting the teacher networks we can improve agreement between ID
and the number of input features. Figure A.7 provides some idea of the potential errors in
the ID measurements. Since the inputs themselves are drawn from a uniform distribution
it is plausible that the ID is somewhat of an underestimate due to boundary effects.
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Figure 2.6: These figures show the correlation between the inverse scaling exponent 4/«
and both the measured intrinsic dimension and the number of input features (dimensions)
in the teacher network. Both notions of dimension are linearly correlated with 1/«, and the
intrinsic dimension scales almost exactly as 4/«, as predicted in section 2.2.2.

X3 xx3 X3xX3x X3 X3 x X®
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Figure 2.7: This figure shows results for « and d for product data manifolds with teachers
T313 (left), T543+3 (middle), and T3¢ (right). We see that in all cases % ~ max(d;) among
the product factor manifolds. The total measured IDs are approximately equal to the sum
of the dimensions of the product factors, as expected.
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2.3.2 Product Data Manifolds and Other Loss Functions
Product Data Manifolds M = X; x --- x X,

If the data manifold takes the form M = X; x X5 x -+ x X,,, with the underlying function
of x € M decomposing as F(x) = >, fi(x;), then we expect that a neural network should
be capable of separately modeling each f; within separate blocks of activations, and then
combining them in the final layer to compute the full F'. This means that although the ID
of M will be measured as dys = ), dx,, we should expect

4
= — 2.3.2
“ max(dy,) ( )
as we discussed briefly in section 2.2.2, and demonstrate diagrammatically on the right of
figure 2.4.

To test this prediction we use a vetted teacher network with 3 real inputs T5(x1, x2, x3)
and another vetted teacher taking 6 real inputs Tg(z1,- - x¢). Individually, these had ID
d3 = 2.98 and dg = 5.31 and their L(N) exponents satisfied a% = 3.3 and aiﬁ =4.9. These
teachers each produce a pair of logits. We then constructed the new teacher functions with

logits
Tsis3(x) = Ta(z1, w0, x3) + Ts3(24, 5, T6)
T3+3+3(:L') = T3(:L’1, T9, 33'3) + T3($4, s, 136) + T3(l‘7, s, :L'g)
T3i6(x) = T3(x1,22,23) + To(v4, 5, -, 29) (2.3.3)

and trained students to imitate these teachers using the cross-entropy loss. We then mea-
sured the resulting ID and « for these three product-manifold teachers. For the T5,3 and
T543+3 cases we used two or three different teachers to make sure the network could not
take advantage of the exact repetition of a single teacher.

As shown in figure 2.7, the results confirm our predictions. This provides a concrete
example where we may find that o > % for reasons that the theory precisely anticipates.
More importantly, it provides a very detailed test of our theoretical picture relating scaling
exponents to properties of the data manifold.

Other Loss Functions

The factor of ‘4’ in the relation d ~ % is derived from the behavior of the loss function and
the expectation that networks with ReLLU activations form piecewise linear functions. If we
use a loss function such as L(y,y*) = |y — y*|P for regression, from the argument of section
2.2.1 we would expect

o — (2.3.4)
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where the MSE case corresponds to p = 2. We verify this in figure 2.8 using a fixed teacher
with intrinsic dimension d ~ 7, as measured in the usual student/teacher context.

2.3.3 Image Classification with Simple CNNs

Our goal with these experiments was to study a simple, all ReLU architecture that could
scale down to a small enough size to avoid overfitting CIFAR10 [88]. So we used a version of
the default tutorial CNN in tensorflow [107], which we modified only by scaling the number
of channels (ie the width). Figure 2.9 shows the scaling of the test loss with number of
parameters N. Our only regularization was early stopping. The results match 4/a = d
quite well.

In an ideal test of the theory, we would measure « fully in the underfitting regime, with
no distinction between train and test performance. But there is a train/test gap even for
the smallest network sizes, so its unclear how to model the error in the a measurement. In
addition to the test loss, we also measured the scaling of the training loss for these models,
recording it at the early-stopping step, and found that it also scales similarly. Furthermore,
note that on the right of figure 2.9 we record the error rate (= 1— accuracy), and find that
it scales very similarly to the loss.

We performed a very similar analysis on the MNIST [91], fashion MNIST [162], and
SVHN [120] datasets using slightly smaller networks (see section A.1.4). We plot L(N)
in figure A.4, which we have relegated to the appendix, as the power-law trends on these
datasets are less clear than on CIFARI10.

Power-law exponents and IDs for CIFAR10 have been measured elsewhere using more
powerful architectures, finding both a larger value of o =~ 0.5 (for the error rate) [135] and
a smaller ID ~ 8 [10]. We cannot make a clean comparison, but given that we find that the
exponent for error-rate and loss scaling seem to be similar, these results appear to match
our predictions.

2.3.4 Language Modeling with GPT-type Models

The GPT-type language models display power-law scaling of L(N) over at least five orders
of magnitude in N, with exponent o &~ 0.076 [81]. This value of « is much smaller than
those observed for many other datasets [135], meaning that it allows us to probe a rather
different regime, where we predict the quite large value d 2 53.

We generated activation vectors from the ‘small’ 117M parameter GPT-2 model using
test data drawn from the same distribution as the training data [127, 128], and measured the
IDs. Decoder-only [99] Transformers [152] have a residual structure with blocks including
an attention mechanism and a fully-connected component. For each layer of blocks, one
can measure the ID from the output of the attention mechanism, the fully-connected layer,
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Scaling Exponent vs Dimension with Generalized Loss
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Figure 2.8: This figure shows the relationship between « and the power p when we use
the generalized loss |y — y*[P. As expected from section 2.2.1, we find a = 2p. This is a
student /teacher experiment with d ~ 7.
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Figure 2.9: The left figure shows the test and training loss L(N) for various sizes of CNN
trained on CIFAR10, while the right figure shows error (1— accuracy). All results are
evaluated at the early stopping step, where the test loss is minimized. We report test loss
results in figure 2.1, but note that the exponents for accuracy are very close to those for
loss.
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or from the output of the residual re-combination.

The activations that contribute to the Transformer’s outputs at any given token-
position depend on all activations from earlier in the sequence, except for the case of the
final layer (before multiplying by the unembedding matrix). Thus it is only the final layer
activations that can be said to capture the data manifold associated with the model’s pre-
diction for a single token. The mean loss over tokens has scaling exponent « =~ 0.076, and
from figure 21 of [81] we see that « is roughly constant for tokens that occur late in any
text sequence. So we use the activations from the last token in each sequence to measure
the ID, though the ID does not vary significantly across token positions (see figure 2.11).

In figure 2.10 we plot the measured ID for the attention output, the fully connected out-
put, and the combined output of the residual blocks for all layers. For these measurements
we used 10,000 activation vectors, each from the last token in a different text sequence (for
more details see appendix A.3.2). We see that unlike the case of image classifiers [10], the
ID is roughly constant across layers, with the exception of the first layer, where it is signif-
icantly smaller. If instead we measure the ID from the 1024 tokens in a single contiguous
passage of text, we instead find an ID = 7. This strongly suggests that the data manifold
has a scale-dependent structure, and may not be well-characterized by a single intrinsic
dimension.

It is tempting to observe that the intrinsic dimension of activations from the first
attention layer is of order 50-80, which matches well with 4/« for these models. One
might argue that this bounds the total data manifold dimensionality entering the model
through its input tokens. But as discussed above, this reasoning seems untrustworthy as
an estimate of the data manifold dimensionality relevant for next-token predictions. So we
take a conservative attitude and do not use early layer IDs as an estimate of the relevant
ID for scaling.

We conclude that since d > 90, we have that d > 4/a ~ 53, which accords with
our expectations (see 2.2.2). Given the very small value of « in language modeling, it is
satisfying to observe that the corresponding ID is very large. But it would have been more
exciting to discover o &~ 4/d for language modeling. We do not know if the discepancy
is due to added complexities from the structure of the Transformer, special structure on
the data manifold itself, a scrambling of data manifolds due to the residual structure and

attention mechanism, or some other oversimplification in our theory.

2.4 Related Work

The theory of scaling we have advocated applies basic, ‘textbook’ [154] ideas from regression
and density estimation. Our work was also partly inspired by similar scaling relations in
random forest models; with some added assumptions, it is possible to prove them [15].
As one passes from classical techniques, to random forests, and then to neural networks,
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Figure 2.10: These figures show the ID estimates for the attention and fully-connected
outputs of a 117M parameter GPT-type model, where 4/a =~ 53. The left figure shows
results from the nearest neighbor method, with 2,3, and 4 neighbors, while the right plot
shows results from the MLE method. The results roughly agree for the first layer, but the
MLE method gives smaller IDs for later layers, and is likely an under-estimate.

GPT: ID (nearest neigh.) vs layer (all tokens in one test sequence) GPT: ID (nearest neigh.) vs Token Number (prefinal layer)
170
8.00 1 N ° ° o L
e © 165 4 L4 ° ° °
7.754 ° . L
160 - [ ] e [ ]
7.50 A ° e o ° L4
° ° ° o ° ° °
° ° 155 °
7.254 ° ° e o o . .
a o
=] o o a ° °
. o ° 150 4
4 [ ) o [ )
7.00 o o ° °
° ]
6.75 1 . 145 ° °
; - °
6.50 - L] ® attention 1404 @ attention L]
® fully connected ® fully connected
6254 @ ® residual block 135{ @ residual block ° o
2 4 6 8 10 12 100 10t 102
layer token number

Figure 2.11: ID estimates from a single 1024-token text sequence (left) and the final layer
ID as measured using tokens with fixed positions within distinct sequences (right). The
data manifold associated with a single sequence has a much, much smaller dimension than
the full manifold.
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the models become increasingly powerful but less and less amenable to a direct analysis.
Nevertheless, we argue that similar principles apply and underly their scaling behavior. A
similar overall perspective has been discussed by Bickel and collaborators [16].

There is a large literature on dimensionality estimation; for a nice overview see [22].
We have primarily used the two nearest neighbor method [44], which was based on the MLE
method [95] for distances among points in a local neighborhood. In neural image classifiers,
the intrinsic dimension of the data manifold was studied [10] using the TwoNN method.
They demonstrated that the ID is much smaller than the dimension estimated via linear
methods such as PCA, among other interesting results. Other authors have established a
connection between ID and noisy labels [102], and demonstrated that neural models can
effectively identify a low-dimensional manifold in a larger ambient space [13]. It would be
interesting to understand the relationship between the data manifold and neural circuits
[123], and how the manifold changes when non-robust features are eliminated [74]. Recent
work [144] relates data dimensionality and dataset size scaling exponents for kernel methods.
The intrinsic dimension of the neural network parameter space has also been discussed [98].

Neural scaling laws have been studied in a number of papers. Perhaps the first work
on the subject was [69]. The more recent work [135] studies scaling with model size and
dataset size, both independently and simultaneously. Language models were studied in [81],
where scaling relations with model size, dataset size, training compute, and training steps
were identified. EfficientNet [149] displays near power-law scaling with model size, though
these models are not in the underfitting regime.

2.5 Discussion

We have proposed a theory connecting the model-size scaling exponent with the intrinsic
dimension of the data manifold. Many other neural scaling laws have been identified [69, 135,
81], including scalings with dataset size and compute budget, and fairly accurate power-law
fits to learning curves. We have focused on scaling with model size in the infinite data limit
because we expect it to be the simplest and most theoretically tractable scaling relation.
Scaling with dataset size may involve issues of regularization, requiring a balance between
bias and variance, while understanding the scaling with compute would require that we
contend with optimization.

Nevertheless, neural scaling exponents with dataset size are often very similar? to
model size exponents. One might argue that dataset size scaling can be understood as a
consequence of interpolation between points on the data manifold, and so should have a
similar relationship to the data manifold dimension. Recent works have made this case [144].

"Though in almost all cases [135, 81] dataset exponents are slightly larger. This runs somewhat counter
to classical expectations [154], where the number of parameters determines a tradeoff between bias and
variance, and dataset size exponents are smaller than the bias-scaling exponents that depend on model size.
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Compute scaling exponents [81] are also not far from model-size exponents, but combine
optimization and model scaling. It seems most natural to interpret them by modeling
learning curves, but perhaps optimization can be re-interpreted as the identification and
dissection of the data manifold. Something like this will be necessary in order to explain
the fact that larger models are much more sample efficient [81] than small models. This
may be the most impactful direction for future work.

It will be interesting to test this theory with a wider variety of models and datasets.
Generative modeling may be the ideal setting, since the abundance of unlabeled text, image,
and video data provides many opportunities to train large models on nearly unlimited
datasets. In this context, it may be interesting to explore what the theory suggests for
finetuning pre-trained generative models on downstream tasks. We would expect that these
tasks benefit from the pre-established existence of the data manifold; perhaps finetuning
can be understood as a process of zooming-in and refining performance in a small region of
this manifold. It would also be interesting to understand how scaling relations for the loss
compare to those for quantities that are not directly optimized, such as prediction accuracies.
In the case of CIFAR10 we saw that accuracy and loss exhibit similar exponents. Finally,
it’s worth thinking about the extent to which larger models perform better in reinforcement
learning [31]. Due to the non-stationary distribution in RL it may be difficult to understand
model-size scaling quantitatively, and it’s less clear how to apply our theory in that context.
A theory of sample efficiency scaling would be more likely to be relevant to RL.
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Chapter 3

Explaining Neural Scaling Laws

This thesis chapter originally appeared in the literature as:

Y. Bahri, E. Dyer, J, Kaplan, J. Lee, U. Sharma, “Explaining Neural Scaling
Laws,” arXiv: 2102.06701

Abstract

The test loss of well-trained neural networks often follows precise power-law
scaling relations with either the size of the training dataset or the number of pa-
rameters in the network. We propose a theory that explains and connects these
scaling laws. We identify variance-limited and resolution-limited scaling behavior
for both dataset and model size, for a total of four scaling regimes. The variance-
limited scaling follows simply from the existence of a well-behaved infinite data
or infinite width limit, while the resolution-limited regime can be explained by
positing that models are effectively resolving a smooth data manifold. In the large
width limit, this can be equivalently obtained from the spectrum of certain ker-
nels, and we present evidence that large width and large dataset resolution-limited
scaling exponents are related by a duality. We exhibit all four scaling regimes
in the controlled setting of large random feature and pretrained models and test
the predictions empirically on a range of standard architectures and datasets. We
also observe several empirical relationships between datasets and scaling exponents:
super-classing image tasks does not change exponents, while changing input distri-
bution (via changing datasets or adding noise) has a strong effect. We further
explore the effect of architecture aspect ratio on scaling exponents.
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Figure 3.1: Four scaling regimes Here we exhibit the four regimes we focus on in this work.
(top-left, bottom-right) Variance-limited scaling of under-parameterized models with dataset
size and over-parameterized models with number of parameters (width) exhibit universal scaling
(ap = aw = 1) independent of the architecture or underlying dataset. (top-right, bottom-
left) Resolution-limited over-parameterized models with dataset or under-parameterized models with
model size exhibit scaling with exponents that depend on the details of the data distribution. These
four regimes are also found in random feature (Figure 3.3) and pretrained models (see appendices).

3.1 Scaling Laws for Neural Networks

For a large variety of models and datasets, neural network performance has been empirically
observed to scale as a power-law with model size and dataset size [70, 81, 136, 67]. We
would like to understand why these power laws emerge, and what features of the data and
models determine the values of the power-law exponents. Since these exponents determine
how quickly performance improves with more data and larger models, they are of great
importance when considering whether to scale up existing models.

In this work, we present a theoretical framework for explaining scaling laws in trained
neural networks. We identify four related scaling regimes with respect to the number of
model parameters P and the dataset size D. With respect to each of D, P, there is both a
resolution-limited regime and a wvariance-limited regime.

Variance-Limited Regime In the limit of infinite data or an arbitrarily wide model,
some aspects of neural network training simplify. Specifically, if we fix one of D, P and
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Figure 3.2: Resolution-limited models interpolate the data manifold Linear interpolation
between two training points in a four-dimensional input space (left). We show a teacher model
and four student models, each trained on different sized datasets. In all cases teacher and student
approximately agree on the training endpoints, but as the training set size increases they increasingly
match everywhere. (right) We show 4/ap versus the data manifold dimension (input dimension for
teacher-student models, intrinsic dimension for standard datasets). We find that the teacher-student
models follow the 4/ap (dark dashed line), while the relationship for a four layer CNN (solid) and
WRN (hollow) on standard datasets is less clear.

study scaling with respect to the other parameter as it becomes arbitrarily large, then the
loss scales as 1/x, i.e. as a power-law with exponent 1, with = D or /P o width in
deep networks and x = D or P in linear models. In essence, this variance-limited regime
is amenable to analysis because model predictions can be series expanded in either inverse
width or inverse dataset size. To demonstrate these variance-limited scalings, it is sufficient
to argue that the infinite data or width limit exists and is smooth; this guarantees that an
expansion in simple integer powers exists.

Resolution-Limited Regime In this regime, one of D or P is effectively infinite, and
we study scaling as the other parameter increases. In this case, a variety of works have
empirically observed power-law scalings 1/x®, typically with 0 < o < 1 for both = P or
D.

We can provide a very general argument for power-law scalings if we assume that
trained models map the data into a d-dimensional data manifold. The key idea is then that
additional data (in the infinite model-size limit) or added model parameters (in the infinite
data limit) are used by the model to carve up the data manifold into smaller components.
The model then makes independent predictions in each component of the data manifold in
order to optimize the training loss.

If the underlying data varies continuously on the manifold, then the size of the sub-
regions into which we can divide the manifold (rather than the number of regions) deter-
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mines the model’s loss. To shrink the size of the sub-regions by a factor of 2 requires
increasing the parameter count or dataset size by a factor of 2¢, and so the inverse of the
scaling exponent will be proportional to the intrinsic dimension d of the data manifold, so
that o o< 1/d. A visualization of this successively better approximation with dataset size
is shown in Figure 3.2 for models trained to predict data generated by a random fully-
connected network.

Explicit Realization These regimes can be realized in linear models, and this includes
linearized versions of neural networks via the large width limit. In these limits, we can
solve for the test error directly in terms of the feature covariance (kernel). The scaling
of the test loss then follows from the asymptotic decay of the spectrum of the covariance
matrix. Furthermore, well-known theorems provide bounds on the spectra associated with
continuous kernels on a d-dimensional manifold. Since otherwise generic kernels saturate
these bounds, we find a tight connection between the dimension of the data manifold, kernel
spectra, and scaling laws for the test loss. We emphasize, this analysis relies on an implicit
model of realistic data only through the assumption of a generic, power law kernel spectrum.

Summary of Contributions:

1. We identify four scaling regions of neural networks and provide empirical support
for all four regions for deep models on standard datasets. To our knowledge, the
variance-limited dataset scaling has not been exhibited previously for deep networks
on realistic data.

2. We present simple yet general theoretical assumptions under which we can derive this
scaling behavior. In particular, we relate the scaling exponent in the resolution-limited
regime to the intrinsic dimension of the data-manifold realized by trained networks
representations.

3. We present a concrete solvable example where all four scaling behaviors can be ob-
served and understood: linear, random-feature teacher-student models.

4. We empirically investigate the dependence of the scaling exponent on changes in
architecture and data. We find that changing the input distribution via switching
datasets, or the addition of noise has a strong effect on the exponent, while changing
the target distribution via superclassing does not.

3.1.1 Related Works

There have been a number of recent works demonstrating empirical scaling laws [70, 81,
136, 67, 137] in deep neural networks, including scaling laws with model size, dataset size,
compute, and other observables such as mutual information and pruning. Some precursors
[5, 33] can be found in earlier literature.
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There has been comparatively little work on theoretical ideas [141] that match and
explain empirical findings in generic deep neural networks across a range of settings. In the
particular case of large width, deep neural networks behave as random feature models [119,
92, 108, 75, 94, 42], and known results on the loss scaling of kernel methods can be applied
[145, 17]. During the completion of this work [73] presented a solvable model of learning
exhibiting non-trivial power-law scaling for power-law (Zipf) distributed features.

In the variance-limited regime, scaling laws in the context of random feature models
[129, 64, 37], deep linear models [3, 4], one-hidden-layer networks [111, 1, 2], and wide
neural networks treated as Gaussian processes or trained in the NTK regime [94, 42, 9, 53]
have been studied. In particular, this behavior was used in [81] to motivate a particular
ansatz for simultaneous scaling with data and model size.

This work also makes use of classic results connecting the spectrum of a smooth kernel
to the geometry it is defined over [157, 130, 89, 46] and on the scaling of iteratively refined
approximations to smooth manifolds [146, 16, 90].

Recently, scaling laws have also played a significant role in motivating work on the
largest models that have yet been developed [20, 45].

3.2 Theory

Throughout this work we will be interested in how the average test loss L(D, P) depends
on the dataset size D and the number of model parameters P. Unless otherwise noted,
L denotes the test loss averaged over model initializations and draws of a size D training
set. Some of our results only pertain directly to the scaling with width w o v/P, but we
expect many of the intuitions apply more generally. We use the notation ap, ap, and aw
to indicate scaling exponents with respect to dataset size, parameter count, and width.

3.2.1 Variance-Limited Exponents

In the limit of large D the outputs of an appropriately trained network approach a limiting
form with corrections which scale as D~!. Similarly, recent work shows that wide networks
have a smooth large P limit, [75], where fluctuations scale as 1/+/P. If the loss is analytic
about this limiting model then its value will approach the asymptotic loss with corrections
proportional to the variance, (1/D or 1/4/P). Let us discuss this in a bit more detail for
both cases.

Dataset scaling

Consider a neural network, and its associated training 10ss Liyain(#). For every value of the
weights, the training loss, thought of as a random variable over draws of a training set of
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size D, concentrates around the population loss, with a variance which scales as O (D_l).
Thus, if the optimization procedure is sufficiently smooth, the trained weights, network
output, and test loss will approach their infinite D values plus an O (Dil) contribution.

As a concrete example, consider training a network via full-batch optimization. In the
limit that D — oo, the gradients will become exactly equal to the gradient of the population
loss. When D is large but finite, the gradient will include a term proportional to the O(D~1)
variance of the loss over the dataset. This means that the final parameters will be equal
to the parameters from the D — oo limit of training plus some term proportional to D~!.
This also carries over to the test loss.

Since this argument applies to any specific initialization of the parameters, it also
applies when we take the expectation of the test loss over the distribution of initializations.
We do not prove the result rigorously at finite batch size. We expect it to hold however, in
expectation over instances of stochastic optimization, provided hyper-parameters (such as
batch size) are fixed as D is taken large.

Large Width Scaling

We can make a very similar argument in the w — oo or large width limit. It has been
shown that the predictions from an infinitely wide network, either at initialization [119, 92],
or when trained via gradient descent [75, 94] approach a limiting distribution equivalent
to training a linear model. Furthermore, corrections to the infinite width behavior are
controlled by the variance of the full model around the linear model predictions. This
variance has been shown to scale as 1/w [42, 164, 9]. As the loss is a smooth function of
these predictions, it will differ from its w = oo limit by a term proportional to 1/w.

We note that there has also been work studying the combined large depth and large
width limit, where [62] found a well-defined infinite size limit with controlled fluctuations.
In any such context where the model predictions concentrate, we expect the loss to scale
with the variance of the model output. In the case of linear models, studied below, the
variance is O(P~') rather than O(v/P) and we see the associated variance scaling in this
case.

3.2.2 Resolution-Limited Exponents
In this section we consider training and test data drawn uniformly from a compact d-

dimensional manifold, z € M, and targets given by some smooth function y = F(z) on
this manifold.

45



CHAPTER 3. EXPLAINING NEURAL SCALING LAWS

Over-parameterized dataset scaling

Consider the double limit of an over-parameterized model with large training set size, P >
D > 1. We further consider well trained models, i.e. models that interpolate all training
data. The goal is to understand L(D). If we assume that the learned model f is sufficiently
smooth, then the dependence of the loss on D can be bounded in terms of the dimension
of the data manifold M,.

Informally, if our train and test data are drawn i.i.d. from the same manifold, then the
distance from a test point to the closest training data point decreases as we add more and
more training data points. In particular, this distance scales as O(D~/%) [95]. Furthermore,
if f, F are both sufficiently smooth, they cannot differ too much over this distance. If
in addition the loss function, L, is a smooth function vanishing when f = F, we have
L = O(D~Y/4). This is summarized in the following theorem.

Theorem 1. Let L(f), f and F be Lipschitz with constants K, K¢, and Kr. Further let
D be a training dataset of size D sampled i.i.d from My and let f(x) = F(x), Yo € D then
L(D) = O (Kpmax(Ky, Kr)D~Y4).

Under-Parameterized Parameter Scaling

We will again assume that F varies smoothly on an underlying compact d-dimensional
manifold My. We can obtain a bound on L(P) if we imagine that f approximates F
as a piecewise linear function with roughly P regions (see [141]). Here, we instead make
use of the argument from the over-parameterized, resolution-limited regime above. If we
construct a sufficiently smooth estimator for F by interpolating among P randomly chosen
points from the (arbitrarily large) training set, then by the argument above the loss will be
bounded by O(P~/4).

Theorem 2. Let L(f), f and F be Lipschitz with constants K, K¢, and Kr. Further let
f(z) = F(x) for P points sampled i.i.d from Mg then L(P) = O (Kpmaz(K, Kz)P~4).

We provide the proof of Theorem 1 and 2 in the appendices.

From Bounds to Estimates

Theorems 1 and 2 are phrased as bounds, but we expect the stronger statement that these
bounds also generically serve as estimates, so that eg L(D) = Q(D~¢%) for ¢ > 2, and
similarly for parameter scaling. If we assume that F and f are analytic functions on My
and that the loss function L(f,F) is analytic in f — F and minimized at f = F, then the
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loss at a given test input, Ziest, can be expanded around the nearest training point, &yain.

o0

L(xtest) = Z am(itrain)(xtest - itrain)m’

m=n>2

(3.2.1)

where the first term is of finite order n > 2 because the loss vanishes at the training point.
As the typical distance between nearest neighbor points scales as D~/% on a d-dimensional
manifold, the loss will be dominated by the leading term, L o D™/ at large D. Note
that if the model provides an accurate piecewise linear approximation, we will generically
find n > 4.
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Figure 3.3: Random feature models exhibit all four scaling regimes Here we consider
linear teacher-student models with random features trained with MSE loss to convergence. We see
both variance-limited scaling (top-left, bottom-right) and resolution-limited scaling (top-right,
bottom-left). Data is varied by downsampling MNIST by the specified pool size.

3.2.3 Kernel realization

In the proceeding sections we have conjectured typical case scaling relations for a model’s
test loss. We have further given intuitive arguments for this behavior which relied on
smoothness assumptions about the loss and training procedure. In this section, we provide
a concrete realization of all four scaling regimes within the context of linear models. Of
particular interest is the resolution-limited regime, where the scaling of the loss is a con-

sequence of the linear model kernel spectrum — the scaling of over-parameterized models

'For simplicity we have used a very compressed notation for multi-tensor contractions in higher order
terms
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with dataset size and under-parameterized models with parameters is a consequence of a
classic result, originally due to [157], bounding the spectrum of sufficiently smooth kernel
functions by the dimension of the manifold they act on.

Linear predictors serve as a model system for learning. Such models are used frequently
in practice when more expressive models are unnecessary or infeasible [110, 131, 63] and also
serve as an instructive test bed to study training dynamics [4, 56, 64, 117, 58]. Furthermore,
in the large width limit, randomly initialized neural networks become Gaussian Processes
[119, 92, 108, 121, 52, 165], and in the low-learning rate regime [94, 97, 72] neural networks
train as linear models at infinite width [75, 94, 28].

Here we discuss linear models in general terms, though the results immediately hold
for the special cases of wide neural networks. In this section we focus on teacher-student
models with weights initialized to zero and trained with mean squared error (MSE) loss to
their global optimum.

We consider a linear teacher, F', and student f.
s P
F(z) =Y wuFu(x), fl@)= 0.fu(z). (3.2.2)
M=1 pn=1

Here {F)s} are a (potentially infinite) pool of features and the teacher weights, wys are
taken to be normal distributed, w ~ N(0,1/S).

The student model is built out of a subset of the teacher features. To vary the number
of parameters in this simple model, we construct P features, f,—1 . p, by introducing a
projector P onto a P-dimensional subspace of the teacher features, f, = >, PunmFum.

We train this model by sampling a training set of size D and minimizing the MSE
training loss,
T

Lirain = 575 ) (F(za) = F(zq))?. (3.2.3)

a=1

We are interested in the test loss averaged over draws of our teacher and training dataset.
In the limit of infinite data, the test loss, L(P) := limp_,o, L(D, P), takes the form.

L(P) = %Tr c—cp” (pePT) e (3.2.4)

Here we have introduced the feature-feature second moment-matrix, C = E, [F(z)F” (z)].

If the teacher and student features had the same span, this would vanish, but as a
result of the mismatch the loss is non-zero. On the other hand, if we keep a finite number
of training points, but allow the student to use all of the teacher features, the test loss,
L(D) :=limp_,s L(D, P), takes the form,

L(D):%Ex K(z,7) — K(@)K K@) . (3.2.5)
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Here, K(x,2') is the data-data second moment matrix, K indicates restricting one argument
to the D training points, while K indicates restricting both. This test loss vanishes as the
number of training points becomes infinite but is non-zero for finite training size.

We present a full derivation of these expressions in the appendices. In the remainder
of this section, we explore the scaling of the test loss with dataset and model size.

Kernels: Variance-Limited exponents

To derive the limiting expressions (3.2.4) and (3.2.5) for the loss one makes use of the fact
that the sample expectation of the second moment matrix over the finite dataset, and finite
feature set is close to the full covariance.

D
1 1
5 Zl F(aa)FT(2a) = C+0C,  SfT(@)f(@'),= K+ 0K,
with the fluctuations satisfying Ep [6C?] = O(D~!) and Ep [6K?] = O(P~!), where ex-
pectations are taken over draws of a dataset of size D and over feature sets.

Using these expansions yields the variance-limited scaling, L(D, P) — L(P) = O(D™1),
L(D,P) — L(D) = O(P~!) in the under-parameterized and over-parameterized settings
respectively.

In Figure 3.3 we see evidence of these scaling relations for features built from randomly
initialized ReLU networks on pooled MNIST independent of the pool size. In the appen-
dices we provide an in depth derivation of this behavior and expressions for the leading
contributions to L(D, P) — L(P) and L(D, P) — L(D).

Kernels: Resolution-limited exponents

We now would like to analyze the scaling behavior of our linear model in the resolution-
limited regimes, that is the scaling with P when 1 < P <« D and the scaling with D when
1 « D <« P. In these cases, the scaling is controlled by the shared spectrum of C or K.
This spectrum is often well described by a power-law, where eigenvalues \; satisfy

A= (3.2.6)

~ iltag
See Figure 3.4 for example spectra on pooled MNIST.

In this case, we will argue that the losses also obey a power law scaling, with the
exponents controlled by the spectral decay factor, 1 + ag.

L(D) x D™k, L(P)x P™K. (3.2.7)
In other words, in this setting, ap = ap = ak.
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This is supported empirically in Figure 3.4. We then argue that when the kernel
function, K is sufficiently smooth on a manifold of dimension d, ag o d~!, thus realizing
the more general resolution-limited picture described above.

From spectra to scaling laws for the loss To be concrete let us focus on the over-
parameterized loss. If we introduce the notation e; for the eigenvectors of C and é; for the
eignvectors of % Zle F(z4)FT(z4), the loss becomes,

S D

L(D) = % D= (e g)?). (3.2.8)

i=1 j=1

Before discussing the general asymptotic behavior of (3.2.8), we can gain some intuition
by considering the case of large ax. In this case, €; ~ e; (see e.g. [101]), we can simplify
(3.2.8) to,

o0
1 - —ag—1
L(D) x D; Trag = kDT 0D, (3.2.9)

More generally in the appendices, following [17, 23], we use replica theory methods to derive,
L(D) x D™k and L(P) x P~k without requiring the large a g limit.

Data Manifolds and Kernels In Section 3.2.2, we discussed a simple argument that
resolution-limited exponents « o< 1/d, where d is the dimension of the data manifold. Our
goal now is to explain how this connects with the linearized models and kernels discussed
above: how does the spectrum of eigenvalues of a kernel relate to the dimension of the data
manifold?

The key point is that sufficiently smooth kernels must have an eigenvalue spectrum with
a bounded tail. Specifically, a C? kernel on a d-dimensional space must have eigenvalues
A S ﬁ [89]. In the generic case where the covariance matrices we have discussed can be
interpreted as kernels on a manifold, and they have spectra saturating the bound, linearized
models will inherit scaling exponents given by the dimension of the manifold.

As a simple example, consider a d-torus. In this case we can study the Fourier series
decomposition, and examine the case of a kernel K (x — y). This must take the form

K =" [an, sin(ng - (z — ) + by, cos(ng - (z — y))]

nr

where ny = (n1,---,ng) is a list of integer indices, and ay,,, by, are the overall Fourier

coefficients. To guarantee that K is a C! function, we must have a,,,b,, < # where
n? = N indexes the number of Gy, in decreasing order. But this means that in this simple

case, the tail eigenvalues of the kernel must be bounded by ﬁ as N — oo.
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Figure 3.4: Duality and spectra in random feature models Here we show the relation
between the decay of the kernel spectra, ay, and the scaling of the loss with number of data points,
ap, and with number of parameters, ap (left). The theoretical relation ap = ap = aj is given by
the black dashed line. (right) The spectra of random FC kernels on pooled MNIST. The spectra
appear well described by a power law decay.

3.2.4 Duality

We argued above that for kernels with pure power law spectra, the asymptotic scaling of the
under-parameterized loss with respect to model size and the over-parameterized loss with
respect to dataset size share a common exponent. In the linear setup at hand, the relation
between the under-parameterized parameter dependence and over-parameterized dataset
dependence is even stronger. The under-parameterized and over-parameterized losses are
directly related by exchanging the projection onto random features with the projection onto
random training points. Note, sample-wise double descent observed in [117] is a concrete
realization of this duality for a simple data distribution. In the appendices, we present
examples exhibiting the duality of the loss dependence on model and dataset size outside
of the asymptotic regime.

3.3 Experiments

3.3.1 Deep teacher-student models

Our theory can be tested very directly in the teacher-student framework, in which a teacher
deep neural network generates synthetic data used to train a student network. Here, it is
possible to generate unlimited training samples and, crucially, controllably tune the dimen-
sion of the data manifold. We accomplish the latter by scanning over the dimension of the
inputs to the teacher. We have found that when scanning over both model size and dataset
size, the interpolation exponents closely match the prediction of 4/d. The dataset size scal-
ing is shown in Figure 3.2, while model size scaling experiments appear in the appendices
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Figure 3.5: Effect of data distribution on scaling exponents For CIFAR-100 superclassed
to N classes (left), we find that the number of target classes does not have a visible effect on the
scaling exponent. (right) For CIFAR-10 with the addition of Gaussian noise to inputs, we find the
strength of the noise has a strong effect on performance scaling with dataset size. All models are
WRN-28-10.

and have previously been observed in [141].

3.3.2 Variance-limited scaling in the wild

Variance-limited scaling can be universally observed in real datasets. The theory describing
the variance scaling in Section 3.2.1 does not make any particular assumptions about data,
model or loss type, beyond smoothness. Figure 3.1 (top-left, bottom-right) measures the
In both
cases, we find striking agreement with the theoretically predicted values ap, ay = 1 across

variance-limited dataset scaling exponent ap and width scaling exponent ayy .

a variety of dataset, network architecture, and loss type combinations.

Our testbed includes deep fully-connected and convolutional networks with Relu or
Erf nonlinearities and MSE or softmax-cross-entropy losses. Experiments in Figure 3.1
(top-left) utilize relatively small models, with the number of trainable parameteters P ~
O(1000), trained with full-batch gradient descent (GD) and small learning rate on datasets
of size D > P. Each data point in the figure represents an average over subsets of size D
sampled from the full dataset. Conversely, experiments in Figure 3.1 (bottom-right) utilize
a small, fixed dataset D ~ O(100), trained with full-batch GD and small learning rate using
deep networks with widths w > D. As detailed in the appendices, each data point is an
average over random initializations, where the infinite-width contribution to the loss has
been computed and subtracted off prior to averaging.
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3.3.3 Resolution-limited scaling in the wild

In addition to teacher-student models, we explored resolution-limited scaling behavior in
the context of standard classification datasets. Experiments were performed with the Wide
ResNet (WRN) architecture [166] and trained with cosine decay for a number of steps equal
to 200 epochs on the full dataset. In Figure 3.2 we also include data from a four hidden
layer CNN detailed in the appendices. As detailed above, we find dataset dependent scaling
behavior in this context.

We further investigated the effect of the data distribution on the resolution-limited
exponent, ap by tuning the number of target classes and input noise (Figure 3.5).

To probe the effect of the number of target classes, we constructed tasks derived from
CIFAR-100 by grouping classes into broader semantic categories. We found that perfor-
mance depends on the number of categories, but ap is insensitive to this number. In
contrast, the addition of Gaussian noise had a more pronounced effect on ap. These results
suggest a picture in which the network learns to model the input data manifold, independent
of the classification task, consistent with observations in [118, 57].

We also explored the effect of network aspect ratio on the dataset scaling exponent.
We found that the exponent magnitude increases with width up to a critical width, while
the dependence on depth is more mild (see the appendices).

3.4 Discussion

We have presented a framework for categorizing neural scaling laws, along with derivations
that help to explain their very general origins. Crucially, our predictions agree with em-
pirical findings in settings which have often proven challenging for theory — deep neural
networks on real datasets.

The variance-scaling regime yields, for smooth test losses, a universal prediction of
ap =1 (for D > P) and ay =1 (for w > D). The resolution-limited regime — more
closely tied to the regime in which real neural networks are trained in practice — yields
exponents ap, ap whose numerical value is variable, but we have traced their origins back
to a single simple quantity: the intrinsic dimension of the data manifold d, which in a
general setting is significantly smaller than the input dimension. In linear models, this is
also closely related to ag, the exponent governing the power-law spectral decay of certain
kernels. Neural scaling laws depend on the data distribution, but perhaps they only depend
on ‘macroscopic’ properties such as spectra or a notion of intrinsic dimensionality.

Along the way, our empirical investigations have revealed some additional intriguing
observations. The invariance of the dataset scaling exponent to superclassing (Figure 3.5)
suggests that commonly-used deep networks may be largely learning properties of the input
data manifold — akin to unsupervised learning — rather than significant task-specific struc-
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ture, which may shed light on the versatility of learned deep network representations for
different downstream tasks.

In our experiments, models with larger exponents do indeed tend to perform better,
due to increased sample or model efficiency. We see this in the teacher-student setting
for models trained on real datasets and in the appendices find that trained features scale
noticeably better than random features. This suggests the scaling exponents and intrinsic
dimension as possible targets for meta-learning and neural architecture search.

On a broader level, we think work on neural scaling laws provides an opportunity for
discussion in the community on how to define and measure progress in machine learning.
The values of the exponents allow us to concretely estimate expected gains that come from
increases in scale of dataset, model, and compute, albeit with orders of magnitude more scale
for constant-factor improvements. On the other hand, one may require that truly non-trivial
progress in machine learning be progress that occurs modulo scale: namely, improvements
in performance across different tasks that are not simple extrapolations of existing behavior.
And perhaps the right combinations of algorithmic, model, and dataset improvements can
lead to emergent behavior at new scales. Large language models such as GPT-3 (Fig. 1.2
in [20]) have exhibited this in the context of few-shot learning. We hope our work spurs
further research in understanding and controlling neural scaling laws.
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Chapter 4

AdS3 Reconstruction with (General
Gravitational Dressings

This thesis chapter originally appeared in the literature as:

H. Chen, J. Kaplan and U. Sharma , “AdS3 reconstruction with general gravi-
tational dressings” J. High Energ. Phys. 2019, 141 (2019), arXiv: 1905.00015

Abstract

The gauge redundancy of quantum gravity makes the definition of local op-
erators ambiguous, as they depend on the choice of gauge or on a ‘gravitational
dressing’ analogous to a choice of Wilson line attachments. Recent work identified
exact AdS3 proto-fields by fixing to a Fefferman-Graham gauge. Here we extend
that work and define proto-fields with general gravitational dressing. We first study
bulk fields charged under a U (1) Chern-Simons gauge theory as an illustrative warm-
up, and then generalize the results to gravity. As an application, we compute a
gravitational loop correction to the bulk-boundary correlator in the background
of a black hole microstate, and then verify this calculation using a newly adapted
recursion relation. Branch points at the Euclidean horizon are present in the 1/c

corrections to semiclassical correlators.

4.1 Introduction and Summary

A complete description of AdS/CFT requires an exact prescription for bulk reconstruction,
which would ideally provide a quantitative guide to its own limitations. This problem may

decomposed into two (overlapping) sub-problems:

e Reconstruction of interacting bulk fields from dual boundary ‘CFT’ operators in the
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absence of AdS gravity. It’s easy to solve this problem for free bulk fields and gener-
alized free theory (GFT) duals, and it can also be addressed order-by-order in bulk
perturbation theory [79, 76, 77, 78]. This problem is very similar [126] to the question
of how to relate the operators in a CFT which ends at a boundary to the BCFT
operators living on that boundary.

¢ Bulk reconstruction in the presence of gravity. This problem is qualitatively different,
because we do not expect local bulk operators to be uniquely defined — they must
be associated with a ‘gravitational Wilson line’ or ‘gravitational dressing’. These
complications arise because of the gauge redundancy of bulk diffeomorphisms and the
universality of the gravitational force.

Both gravitational and non-gravitational interactions seem to require bulk field operators
®(X) to include mixtures of infinitely many CFT operators.

In AdSs the purely gravitational component of bulk reconstruction can be more pre-
cisely specified by taking advantage of the relation between bulk gravity and Virasoro
symmetry. This makes it possible to solve one aspect of reconstruction exactly. Prior work
[8] defined bulk operators by first fixing to Fefferman-Graham gauge, thereby assuming a
specific and arbitrarily chosen gravitational dressing. The purpose of this paper is to de-
fine bulk proto-fields with much more general gravitational dressings, or equivalently, by
defining the bulk field in a more general gauge.

Bulk Operators from Symmetry

The AdS/CFT dictionary specifies that

lim y~ 2" ®(y, 2, 2) = O(z, 2) (4.1.1)
y—0

for a bulk scalar field ®(Y') and a dual boundary CFT primary O. However, at finite y the
bulk field operator ®(Y') will include an infinite sum of contributions from other primaries.
Ultra-schematically, we may write [79]

® = O+ +VGN[TO]+GN[TTO] + ---
+9[0;0;] + ¢*[0;0,;0k] + - - - (4.1.2)
to indicate that ® includes a mixture of multi-trace operators made from the stress-tensor

T and O, as well as multi-trace operators made from other primaries O;, with perturbative
coefficients that can be computed [79, 76, 77, 78] when such a description applies.

We will be studying the terms in ® involving @ and any number of stress tensors, as
these are determined by the Virasoro symmetry! in AdSs;. Just as conformal symmetry

!There has been much recent work on AdSs reconstruction [8, 109, 115, 26, 24, 60, 59, 25, 38, 27]. Our
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Figure 4.1: This figure suggests many aspects of our reconstruction strategy. We recon-
struct a bulk operator ¢ connected by a Wilson line or ‘gravitational dressing’ that attaches
to the boundary at zg. Correlators of ¢ with stress tensors will only have singularities when
the stress tensors approach zg. When ¢ acts on the vacuum, it creates a state that we ex-
pand in radial quantization, and so when we define ¢ we assume it is surrounded by empty
space. As our methods are ultimately based on symmetry, we only compute the proto-field
¢ as a linear combination of a CFT9 primary O and its Virasoro descendants. All of these
statements have analogs for the U(1) charged ¢ we discuss as a warm-up in section 4.2, with
T—J.

dictates that CFT correlators must be decomposable as a sum of conformal blocks, bulk
scalar fields ® can be written as a sum of bulk proto-field operators ¢ that are fixed by

symmetry.

The proto-fields ¢ also have another interpretation, as sources or sinks for one-particle
states in a first-quantized worldline action description. Correlators of protofields (¢ (X1)p(Xa) - - )
with other CFT operators will match to all orders in perturbation theory with the propa-
gation of a particle from X; to X5 in the gravitational background created by these other
CF'T operators, including the effect of gravitational loops on the propagation. But the proto-
field correlators do not include non-gravitational interactions, or mixings with multi-trace

operators induced by gravity.

results [8] differ from the proposal [96], which produces a field that does not seem to satisfy the interacting
bulk equation of motion in a known gauge when expanded perturbatively in 1/c (e.g., compare (¢OT')
correlators to the results of appendix D.4 of [8]).
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‘Dressings’ and Correlators with Symmetry Currents

Charged operators in gauge theories and local bulk operators in quantum gravity are not
gauge-invariant. This means that their definition is ambiguous, and we need to supply
more information to fully specify them. This additional information may be a Wilson
line, a specific choice of gauge, or a ‘gravitational dressing’ (by this term we roughly mean
‘gravitational Wilson line’). We discuss the relation between these ideas in section 4.2.1.

The necessity and ambiguity of these dressings has a simple interpretation in the CFT.
If we are to write a bulk proto-field ¢(X) as a CFT operator, then the charge and energy
in ¢ must be visible to the charge @) and spacetime symmetries D, P, K,,, M,,, in the CFT.
These quantities can be computed by integrals of J,,(x) or T),,(z) over Cauchy surfaces on
the boundary [55], but the specific spacetime distribution of current and energy-momentum
associated with ¢(X) is somewhat arbitrary. This explains the ambiguity in ¢(X), and also
suggests how it can be fixed — the gauge and gravitational dressings are specified by the
form of ¢(X) correlators with J,(x) or T}, (x).

To make sense of this logic, it must be possible to distinguish the energy-momentum in
¢(X) from that of other sources in any state or correlator. We accomplish this by assuming
that ¢(X) is surrounded by vacuum, so that we can define ¢(X) in a series expansion? in
the bulk coordinate [126], with local CFT operators as coefficients. In this way we can use

radial quantization to define ¢(X).

We will specify general gravitational dressings in two equivalent ways. In section 4.3.2
we use a trick: starting with the proto-field defined through Fefferman-Graham [8], we use
a diffeomorphism to bend the gravitational dressing. Whereas in section 4.3.4 we take a
more abstract route, and simply construct an operator ¢(X;xo) at a point X in the bulk,
but where T'(x) on the boundary detects ¢’s associated stress-energy at a general point x.

Summary of Results

Our main result is a simple formula for a proto-field with general dressing

~ ~ x> n y2h+2n (m _ xo)m (j- _ jo)m - )
o (ua €, X510, .%'0) = Z Z TL' 2h mlml E—n—mﬁ—n—mo(x(]a LU())
n=0m,m=

(4.1.3)
The interpretation of this operator is discussed in section 4.3, but roughly speaking, the

proto-field is located (u,z,z) in AdSs, with its associated energy-momentum localized at
(zo,Zo) on the boundary. The £_y are polynomials in the Virasoro generators determined
by the bulk primary condition [8], with coefficients that are rational functions in the central

2 Another common approach [61] defines bulk fields by integrating local CFT operators over a region.
This procedure may have equivalent issues when other local CFT operators are present in the region of
integration and OPE singularities are encountered.
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charge ¢ and holomorphic dimension h of O. We verify that this result has the expected
correlators with stress tensors T'(x). Our formula can be integrated against a positive,
normalized distribution p via

o) = [ dan plao. 20)6(X a0, 30) (4.1.4)

to obtain a very general® gravitational dressing for the proto-field.

We also show in section 4.4 that correlators of ¢(X; xg, To) can be computed by a further
adaptation [26, 27] of Zamolodchikov’s recursion relations [168, 167]. Then in section 4.5
we analytically calculate the 1/¢ correction to the heavy-light, bulk-boundary propagator
on the cylinder using a recent quantization [35] of AdSs gravity. We demonstrate that our
analytic result matches that of the recursion relation. We also observe that as expected
[47, 50], the analytic 1/c correction to the correlator is not periodic in Euclidean time [27],
and so it has a branch cut singularity at the Euclidean horizon. This is surprising from the
point of view of perturbation theory in a fixed black hole background.

The outline of the paper is as follows. In section 4.2 we provide a detailed discussion
of bulk reconstruction for fields charged under a U(1) Chern-Simons field. This serves as
a warm-up where many of the ideas can be more straightforwardly illustrated. Then in
section 4.3 we turn to gravity, where many of our results are analogous to the simpler
U(1) setting. In section 4.4 we adapt a recursion relation to compute correlators of ¢ with
general dressing. In section 4.5 we explain some rather technical calculations, including the
recursion relation in a specific configuration and an analytic computation of the one-loop
gravitational correction (i.e., order 1/¢) to a (OgOpOr¢r) correlator. We provide a brief
discussion in section 4.6. Many technical results are relegated to the appendices.

4.2 Bulk Proto-Fields with U(1) Chern-Simons Charge

This section will serve as a warm-up in preparation for our eventual discussion of bulk
gravity, where most of these ingredients will have a direct analog.

4.2.1 Charged Fields, Wilson Lines, and Gauge Fixing

Consider a bulk field ¢(X) charged under a U(1) gauge symmetry. It transforms as

o(X) = X p(X) (4.2.1)

31t’s not entirely clear what operators the full space of gravitational dressings should include, but by letting
p depend on X we can parameterize a large space of possibilities. An average over z( is not equivalent to
averaging over different exponents in a Wilson line [40, 41], since the average of an exponential is not the
exponential of an average. Wilson lines should be path-ordered, so averaging over complete Wilson lines
should be the more generally valid approach.
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under the gauge redundancy, so it cannot be regarded as a physical observable. We can
remedy this problem in two equivalent ways — by fixing the gauge, or by attaching ¢(X) to
a Wilson line.

The latter approach has the clear advantage that it makes the gauge-invariant nature
of our observable manifest. Given a Wilson line

We(oo, X) = /e 42" A (4.2.2)
running from X to infinity, we can form a non-local operator
O(X) = We (o0, X)p(X) (4.2.3)

Since gauge transformations do not act at infinity, ¢ will be a gauge-invariant observable.
However, this means that ¢(X) itself was highly ambiguous, since ¢ now depends on the
path of the Wilson line. Note that once we define a gauge-invariant ¢ in this way, we can
compute observables involving it in any convenient gauge, and we will obtain the same

results.

The other (fixing the gauge) approach will be easier to discuss when we generalize
to quantum gravity. However, it’s less flexible and can lead to confusing terminology. In
this approach we simply fix a gauge, for example by setting some component of the gauge
field Ay = 0, and then compute observables involving ¢(X) in this gauge. The results
will then be well-defined observables. Note that if A, = 0 then the Wilson line in the g
direction Wy = 1 identically, so in this case the underlying gauge invariant observable will
be ¢ = Wyp(X). But in general it may not be clear how to compute with our observable
in other gauges. And it may seem confusing to refer to an observable defined in a specific
gauge as gauge-invariant (though this is in fact true).

Let us develop these ideas in the context of a scalar field ¢ in AdSs charged under a
U(1) Chern-Simons theory with level k. The scalar will be dual to a CFT9 primary operator
O with conformal dimension h and charge ¢, and the gauge field to a holomorphic conserved
current J(z). We will work in Euclidean space with a fixed metric

o dy*+dzdz
2

and in this section we will not include dynamical gravity.

ds (4.2.4)

We will be viewing ¢(y, z, Z) through the lens of radial quantization, as discussed pre-
viously in [8] and pictured in figure 4.1 (the figure denotes the gravitational case, but with
T — J it also applies to the present discussion). In the CFT ¢ will be a non-local op-
erator, but only because it will be written as an infinite sum of local operators, each a
coefficient in the near-boundary or small y expansion of ¢. If we turn off both gravity and
the Chern-Simons interaction, then ¢ is determined by symmetry to be [116]

0 y2h+2n 3
¢0(y7272) = Z(_l)nn|(2h)nLr—LlLr—LlO(2’2) (425)

n=0
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This follows from the form of the vacuum bulk-boundary propagator

y 2h
(do(y, 2,2)O0N(w, w)) = <y2 oy e w)) (4.2.6)

if we expand in y and identify the coefficients with global descendants of O.

Now let us define a gauge-invariant charged scalar field. As discussed above, we can
do this by simply attaching ¢ to a Wilson line that ends on the boundary at y = 0. A very
simple choice takes the Wilson line to run in the g direction, so that

By, 2,2) = )0 WA 2Dy, 5 7) (4.2.7)

This operator also has a very simple definition via gauge fixing — it is simply ¢ defined in
the gauge A, = 0. This makes it clear that the correlator (¢(y,0,0)O"(w,w)) should be
equal to the expression (4.2.6).

Correlators involving the boundary current will be non-trivial. Computing in pertur-
bation theory gives

qu y 2h
(J ()0 (w, @) (y,0,0)) = ( ) 7 (1.25)

z1(z1 — w) \y? + ww
where O has charge —¢. This reduces to y?*(JOTO) in the limit of small y, as expected
based on the AdS/CFT dictionary.
If we attach ¢ to the boundary with a more general Wilson line, then we will have

. X
10 L2 YA g 5 5) (4.2.9)

The Wilson line takes some general path from zg on the boundary to the location of ¢ in the

d)(y) 2, 27 20, 2) =e€

bulk, yet our notation does not include information about the path. Since Chern-Simons
theory is topological, our ¢ will only depend on this path if other charges or Wilson lines
entangle with it. However, we are invoking radial quantization to define ¢, meaning that
we will be assuming that there aren’t any matter fields or Wilson lines near ¢, or between
it and the boundary. Thus our results for the operator ¢ will be independent of the choice
of path, except through the location of z.

Correlators of this more general bulk field can still be computed in A, = 0 gauge. Since
the vacuum equations of motion set F,, = 0, in this gauge A, is independent of y. Since
on the boundary A (0, z, 2) = 4+J(z), this identification must hold for all y, so*

(Y, 2, % 20,2) = ' o T gy 2 z) (4.2.10)

Ay=0

This formula requires some regularization to remain consistent with O correlators and the
dictionary O = lim,_,o [y_thb]. If we expand to first order in ¢ we find

(J(zl)OJr(w,zD)qﬁ(y,0,0;20,0)) =~ (J(zl)OT(w,w (y,0,0)) +zf/ (z1) OJr (w,w)J(2)é(y,0, 0))

4We could also just choose to have the Wilson line run along the boundary from zg to z.
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10 =2) oty (4.2.11)

This formula has a nice interpretation, as the singularities in z; indicate the presence of
charge +q at zp and z. But higher order corrections involving many J will produce divergent
integrals. And even the simpler correlator (Of¢) also requires regularization.

In the next sections we will see how to avoid regularization by defining ¢ using symmetry
when its Wilson line attachments are simple. Then we will extend our results to include
general Wilson lines by leveraging the singularity structure of ¢ correlators.

4.2.2 A Bulk Primary Condition from Symmetry

We can take another approach, and constrain the bulk field ¢ using symmetry. If we can
determine how to extend CFT symmetries into the bulk, then we can use their action on a
charged bulk field to determine how to write it as a sum of CFT operators. This approach
will provide an exact definition, without needing to regulate Wilson lines, and it will also
generalize more directly to gravity.

The CFT current J(z) can be expanded in modes

oo

J(2)= > zﬁl. (4.2.12)

n=—oo

The global conformal generators have an algebra with J, with commutation relations

[Lim, L] = (m —n) Ly in,
(Lo Jn] = =1 s, (4.2.13)
[Jm7 Jn] = mk(sn—l—m,O’

where the subscripts of the L generators runs from —1 to 1, and the subscript of the J
generators run from —oo to co. The current acts on local primary operators via

[Jn, O(2)] = ¢z"O(z) (4.2.14)

which can be derived from the J(z)O(z) OPE. This means that a finite transformation ¢/
will rephase O(z) — €'9%" O(z).

Now we would like to understand how to extend these symmetries so that they act on
bulk fields. This requires either a careful specification of the gauge invariant operators, or
a choice of gauge. We will take the latter route and choose A, = 0. We can still transform
A, — A, + 0,\(z) while preserving this gauge fixing condition. But this is a global (rather
than gauge) symmetry transformation, since it acts non-trivially on fields at the boundary
y=0.

In the bulk, we expect that a charged field should transform as ¢ — e**¢. Since A
cannot depend on y, this transforms ¢(X) — e”‘(z)¢(X ). So in A, = 0 gauge, the J,, act

62



CHAPTER 4. ADS3 RECONSTRUCTION WITH GENERAL GRAVITATIONAL
DRESSINGS

on ¢ in the same way that they act on O, giving

[Jn: &y, 2, 2)] = 42" 0y, 2, Z)[ 4, = (4.2.15)

where we have indicated explicitly that this only holds in A, = 0 gauge. This further implies
a bulk primary condition

[Jn, ¢(y,0,0)] =0 for n>1 (4.2.16)

for the bulk field ¢. This condition is the U(1) Chern-Simons version of the gravitational
bulk primary condition originally derived in [8]. Along with the requirement that ¢ has the
correct bulk-boundary propagator in vacuum (4.2.6), this bulk primary condition uniquely
determines ¢(y, z, Z) as an expansion in y. Furthermore, it is an exact result, and does not
require a small coupling expansion.

Notice that a gauge-invariant bulk operator ¢(y, z, zZ) attached to the boundary by a
Wilson line in the g-direction must transform in the same way. This simply follows from
the fact that ¢ = ¢ identically if the latter is defined in the gauge A, = 0.

We can write a formal solution to the bulk primary conditions as

Gy, 2,2) = n(!&lzi;n Y2t g L0 (2, 2) (4.2.17)

where J_, O is defined as an nth level descendant of O satisfying the bulk primary condition
(4.2.16). In appendix C.2.1, we solve the the bulk primary condition exactly for the first
several J_ps. As in section 3.2.2 of [8], it can be shown that J_,, can be written formally
in terms of quasi-primaries as

J-nO = L2, 0 +nl(2h) ZZ

i

n—j ) (7)
LOh (4.2.18)

L th—)w

where the (’)}(j) represent the ith quasi-primary at level j (so they satisfy Llo}(lj_ j 0) and
the denominator is the norm of the corresponding operator. In writing down this equation,
we’ve used the fact that the quasi-primaries can be chosen to be orthogonal to each other.
This will be a very useful property for some of the discussions in the following sections. As

a concrete example, J_1 is given by

J10=1L O+q72 L 2hJ O. (4.2.19)
-1 = L1 2hk‘—q2 -1 — q L.

where the second term is a quasi-primary satisfying L (L,l - %J,l) 0 =0.

In appendix (C.2.2), we solve the bulk primary condition in the large k limit for the
all-order 4 terms in J_,. As shown in both appendix (C.2.1) and (C.2.2), in the k — oo, we
have J_, = L™, + O(1/k), so our expansion in y reduces to that of equation (4.2.5). Note
that as in [8], ¢ is a non-local operator in the CFT due to the infinite sum in its definition.
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Since the bulk proto-field has been defined as an expansion in descendants of a local
CFT primary, we will often informally discuss the ‘OPE’ of the current J with ¢. Because
of the bulk primary condition above, the singular term in the OPE of J (1) and ¢ (y, z, 2)

is very similar to the JO OPE (which is simply J(z1)O(z, z) ~ % +--0):
J(21) ¢ (y,2,2) ~ W9y 22) (4.2.20)
21 — %
where we have used [Jy, ¢] = q¢, since the descendant operators in ¢ all have the same

charge q.

Using these CFT definitions of the bulk charged scalar ¢, we can compute various
correlation functions, such as <¢(9TJ ceed > and <¢T¢>. We can first verify that ¢ given in
(4.2.17) indeed gives the correct bulk-boundary propagator. Using (4.2.18), one can see
(pO1) is given by

<¢ (y,2,2) O (w,qI))> = <y2 e _yw)(z — w)>2h : (4.2.21)

simply because the quasi-primary terms in J_, O do not contribute to this two-point func-
tion and the calculation reduces to that of (¢oOf) with ¢g given by (4.2.5). The bulk-
boundary three-point function (JOT¢) can be computed simply using the OPE of JO! and
J¢ (equation (4.2.20)), and the result is given by
1 1
(760 w0 ty.2.2)) =a

21 — % 21 —Ww

> <¢ (y, 2, 2) O (w, w)> . (4.2.22)

Correlation functions of the form <¢OTJ ceed > can then be computed recursively using
OPEs used above and the JJ OPE.

For the bulk two-point function <¢T¢>, we compute up to order 1/k using the pertur-
bative approximation to ¢ that we derived in appendix (C.2.2), which corresponds to the
one photon-loop correction to the bulk propagator. The details of the calculation are given
in appendix C.3.1. The result for (¢1 (y1, 21, 21) ¢ (y2, Z2, Z2)) is given by

<¢T¢>_1p_hp {1—(‘72<p5F1(1’2h+1;2(h+1);p)+p—10g(1—p)>] +O<k:12>

k 2h +1 2h
(4.2.23)
2
_ £ ; — 2y1y
where p = (M) with € = m

In appendix C.3 we also use the bulk Witten diagrams to compute <J OT¢> and <¢T¢>,
and the results exactly match equations (4.2.22) and (4.2.23). This provides a non-trivial
check of our definition of a charged bulk scalar field.

4.2.3 Singularities in J(z) and the AdS Equations of Motion

The singularity structure of the J(z) correlators in equation (4.2.22) follow from the bulk
equations of motion. So these singularities indicate the placement of Wilson lines attaching

64



CHAPTER 4. ADS3 RECONSTRUCTION WITH GENERAL GRAVITATIONAL
DRESSINGS

¢(yaz723 2032)

Figure 4.2: This figure indicates the relationship between singularities in the current J(z),
the bulk equations of motion, and Wilson lines. Analogous statements hold for gravity and
connect singularities in 7'(z) to the gravitational dressing.

bulk charges to the boundary, and vice versa. Let us briefly explain these statements, which
are illustrated in figure 4.2.

In the U(1) Chern-Simons theory, the equations of motion are

2
eabCFbC(X) — %ja

for the bulk matter charge j%(X) and bulk field strength F;. In the presence of a Wilson line
with components in the g direction, j¥ will receive a delta function contribution localized

(X) (4.2.24)

to the Wilson line. This means that F.; must include a delta function. In A, = 0 gauge,
we can identify A,(y,z,z) = %J(z), SO

0:J(2) = 21q 6%(z, %) (4.2.25)

or equivalently
j{dzj(z) = 27iq (4.2.26)
To satisfy this constraint, the current must have a simple pole J(z) = g + - -+, where the

ellipsis denotes less singular terms as z — 0. So the singularity structure of correlators with
J(z) follows directly from the bulk equations of motion. Conversely, a singularity in J(z)
in correlators with other operators indicates the presence of charge.

This means that we can use the singularity structure of correlators with J(z) or T'(z)
in the case of gravity to help to define a bulk field ¢ with a more general Wilson line
attachment or ‘gravitational dressing’. Similar observations also hold in higher dimensions,
and may be useful for bulk reconstruction more generally.
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4.2.4 Charged Bulk Operators and General Wilson Lines

In section 4.2.2 we constructed a charged bulk scalar field by fixing to the gauge A, = 0.
In so doing we defined a gauge-invariant bulk field ¢(y, z, Z) connected to the boundary
by a Wilson line in the ¢ direction. In this section, we are going to construct an exact
gauge-invariant bulk field whose associated Wilson line attaches to an arbitrary point zg on
the boundary.

There are several ways to approach the construction of this general ¢(y, z, Z; 29, Z). The
most immediate one was already discussed in section 4.2.1, namely including an explicit
Wilson line. An issue with this approach is that it requires a regulator for divergences in in-
termediate calculations, and this makes it difficult to define ¢ non-perturbatively. Another
important limitation is that it’s challenging to work with Wilson lines for bulk diffeomor-
phisms, as would be necessary when we turn to gravity.

Instead of inserting an explicit Wilson line, we can define ¢ using the singularity struc-
ture of current correlators. Correlators involving J(z1) and the field ¢(y, z,Z) defined in
A, = 0 gauge have singularities as z; — z. These singularities represent the charge of
the bulk ¢ on the boundary, as emphasized in section 4.2.3. If a Wilson line connects ¢
to the boundary at zp, then instead we expect that correlators involving J(z1)¢ will have
singularities at z.

Thus we need a way to move the singularities in z; for all correlators involving J(z1)
and ¢. In fact, we already have many of the technical tools that we need. The level n
descendants J_,O defined in section 4.2.2 were constructed so that they would not have
any additional singularities in the J(z1)J-,O OPE beyond those already present in J(z1)O.
We can use these J_,, to move an operator without moving the singularities associated with
its charge (we develop this idea in more detail in appendix C.1). The point is that since
J-—n=1L", +--- as shown in equation (4.2.18), we have that

oo xn
Y =T =t g (4.2.27)
o n!

where the ellipsis denotes terms proportional to powers of the charge g. So this expression
acts like a combination of a translation and a U(1) symmetry transformation. This means
that the non-local operator

O(222.2) =Y G=20 7 06 7). (4.2.28)
n=0

behaves like a kind of mirage. It is defined so that J (z1) O (z, z; 20, Z) only has singularities
in z; — 29, while correlators of O (z, z; 29, Z) with O (w, @) will instead have singularities
when w — z vanishes®. Explicitly, by using the OPEs of 7O and JO and properties of

®Since only the L™, terms in J_, contribute in <@ (2, 2; 20, 2) OF (w,w)>, the J_n in (4.2.28) become
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J_n, we have

(J(21)Ot (w, @) (2, %; 20, 7)) = e f(zg)z:’)_ Y. w)%l(z —o (4.2.29)

SO @(z, Z; 20, Z) behaves as though it is in two places at once.

We can generalize the above idea to obtain a bulk proto-field ¢ (y1, z, Z; 20, Z) at (y, 2, 2)
with a Wilson line landing at (29, Z) on the boundary. This leads to a proposal for a charged
bulk field with a more general Wilson line attachment

B 2h+2n (Z _ Zo)m . -
o (y, 2, 2; 20, 2 Z Z n' . T-n-mL"10 (20,2), (4.2.30)

n=0 m=0

In fact, this form for ¢ is uniquely fixed by demanding that:

1. (¢pO7) takes the vacuum form given in equation (4.2.6)

2. Correlators (Of(w,w)J(z1) -+ J(2)0(y, 2, Z; 20, Z)) only have simple poles in the z;,
which can only occur when z; — zp or z; — w.

Note that if z = zg, then only the m = 0 terms contribute to equation (4.2.30), and ¢
reduces to the bulk field of equation (4.2.17). To obtain O(z, z) as we take y — 0, we need
to simultaneously send zy — z; otherwise we obtain the non-local operator @(z, Z; 20, Z) of
equation (4.2.28).

We can verify that ¢ (y, z, Z; 2o, Z) is really the desired operator by computing <(’)T¢> and
<J(9T¢)> using the properties of 7_,s. For the bulk-boundary propagator <(9T (w,w) ¢ (y, 2, Z; 20, 2)>,
since the quasi-primaries terms in J_,O (equation (4.2.18)) will not contribute, we can
simply replace J_, O with L™ ;0. But then the sum over m becomes exactly a translation
operator, and the ¢ in (4.2.30) becomes the free-field ¢¢ of (4.2.5), and we have

2h
t(w.w 520 2)) = (O (w. 1@ 7)) — Y
<O (w7w)¢(yﬂz7z7207z)> <O (w7w)¢0(y7z7z>> (y2+(z_w) (Z—’LU)) b
(4 2.31)
as expected. For (JOT¢), we can use the OPEs J (21) O (w, ) ~ w + -+ and

J(z1) 0 (y,2,2;20,2) ~ ZlEZOgZ) (y,2,%2;20,2) + - -, where the ellipses denotes non—smgular

terms. <J(9T(;S> can then be computed by only including the singular terms in both OPEs,

and we get

2h
Z0 — W

(21 = 20) (21 — w) <y2+(z—w) (2 —w)

(7(z0) O (w,0) 6 (3,220, 2) ) = q

a translation operator, and one can see that we have <@ (2, %; 20,2) OF (w,ﬁ;)> =(0(z2) O (w, )).
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Note that here the singularities are at z; = w and z; = zp, while in equation (4.2.22), the
singularities were at z; = w and z; = 2.

Before concluding this section, we should emphasize that our methods are insensitive
to the trajectory that the Wilson line takes from (y, z, Z) in the bulk to the boundary point
zp. This is possible because the bulk theory is topological, and we have assumed that ¢ is
surrounded by a region of vacuum, so that it’s possible to define ¢ in radial quantization.
Our gravitational ¢ will be defined in the same way.

4.2.5 More General Bulk Operators from Sums of Wilson Lines

In prior sections we have developed a formalism for exactly defining and evaluating an
operator ¢(X; zg), where a Wilson line connects X = (y, z, Z) to a point zg on the boundary.
But there are a host of other choices for gauge-invariant bulk operators. We can explore
this space by defining a new bulk operator

olp](X) = /d2z0 p(z0,20)0(X; 20, 2) (4.2.33)

where p(z0,%9) > 0 and [d?z0p(20,20) = 1. The properties of ¢[p] are inherited from
¢(X; z0), which is simply the special case where p(z) = d(x — zp). Note that if we like, we
can let p depends on X so that p varies as we move ¢ to different locations X in the bulk.

Operators like ¢[p] make it possible to study bulk fields with far more general ‘dressings’,
which include superpositions of Wilson lines. For example, we might define a bulk field with
spherically symmetric dressing. Let the bulk field be located at the point (y, z, Z) in Poincare

patch and (tg,r,6) in global coordinates®, and let the point of attachment of the Wilson

line to the boundary be z5. We will average with the measure % over the spatial circle on

the boundary at fixed ¢z. In Poincare patch this means integrating with the measure 522

2miz0

along the contour |zo| = |z]|4/1 + Z—z The integration contour ensures that zp is on the same
time slice as the bulk field. In summary, the integration measure is

_ 1 y?

Note that [ d?z0p(z0,20) = 1. The integration of (JOT¢) (equation 4.2.32) then gives

(J ()0t (w, @)dlp)(y,2,2)) _ (O] —lzal) 1
(¢(y, z,2)O(w, w)) —q( ) (4.2.36)

z1 Z1 —Ww

5The Poincare patch metric ds? = W and the global AdS3 metric ds® = (1"2 + 1) dt% + r‘éfl +72d6?
are related by

e’ retetif _re
= z =

y R > .
2Tl V1 V1

tgp—if

(4.2.34)
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where |zp| denotes |z[4/1 + g—z_ and © is the Heaviside step function. Since Jo = 5= ¢ dz1J(21),
we can further contour integrate the above expression with respect to z; to obtain the total

charge of the state. The result is given by
q (O(|z1] — [20]) — O([21| — |w])) (4.2.37)

The interpretaton of this is clear: A state created by ¢ or O carries charges ¢ and —¢
respectively, and the charge content of the state at the time of insertion of J depends upon
the insertions that occur before that time. This result should be equivalent to Coulomb
gauge [40] to lowest order in perturbation theory, but will not agree more generally, because
the exponential of an average is not equal to the average of an exponential.

4.3 Gravitational Proto-Fields with General Dressing

There are no local gauge invariant operators in gravity. To understand this, observe that
diffeomorphism gauge redundancies act on local scalar fields via

p(x) = p(x) + &(2)V,p(z) (4.3.1)

This is similar to U(1) gauge theory, where a charged field transforms as ¢ — ¢ + igA(z)y,
insofar as in both cases, local fields by themselves are not gauge-invariant. As we discussed
in detail in section 4.2, we can form gauge invariant quasi-local charged operators in a U(1)
theory using Wilson line attachments.

Matters are not so simple in the case of gravity, because it is the dependence of ¢ on
the bulk coordinates themselves that renders ¢ gauge non-invariant. Lacking a simple and
general notion of a gravitational Wilson line, we will discuss diffeomorphism gauge-invariant
operators as ‘gravitationally dressed’ local operators. In this section, we consider gravita-
tional dressings’ that associate local bulk operators with specific points on the boundary.
Such dressings are natural analogs of Wilson lines joining a field in the bulk to a point on
the boundary.

We will use the notation ¢(y, z, Z; 20, Zp) to denote a diffeomorphism invariant bulk
proto-field at (y, z, Z) in AdS3 that has a gravitational line dressing landing on the boundary
at the point (zp, Zp). The simplified notation ¢(y, z, z) is used when the boundary point of
the gravitational dressing is at (z,z). We sometimes refer to the path that the associated
gravitational dressing takes, but strictly speaking our results are not associated with any
particular path. In our formalism all paths are equivalent because we assume that the bulk
field can be connected to the boundary through the bulk vacuum.

Our typical setup is pictured in figure 4.1. Some of our analysis will be analogous
to the simpler and conceptually clearer U(1) Chern-Simons case discussed in section 4.2.

"As discussed in section 4.2.1, one way to define dressed, gauge-invariant operators is to define the
operators after fixing to a specific gauge. We will use this method and others in this section.
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However, we will provide more details about the relationship between diffeomorphisms and
gravitational dressing, and explain how some simple correlation functions can be computed.

4.3.1 Review of Protofields in Fefferman-Graham Gauge

In recent work [8, 26, 27|, an exact gravitational proto-field was defined with a very specific
gravitational dressing. The dressing was determined implicitly, by fixing to a Fefferman-
Graham or Banados gauge [12] where the metric takes the form

ds?

dy? +dzdz 6T T(z T(:)T(z
_ y*+dzdz 6 (Z)dZQ_GC(Z')d22+y236<;)(Z)dzdg_ (4.3.2)

2o«
Away from sources of bulk energy, d% may be viewed as an operator whose VEV corresponds
to the semiclassical metric. That is, for a CFT state |¢), the semiclassical metric will be
given by d3\2¢) = (1|ds|v), which is the RHS of the above equation with T'(z) — (¢|T'(z)|¢)
and T'(z) — (¢|T(z)|¢). In this subsection, we are considering the case where the CFT
is living on a flat Euclidean plane with coordinates (z,Zz). So for the CFT vacuum |0),

we have (0|T'(2)|0) = 0 and (0|T(2)|0) = 0, and the bulk metric is the Poincare metric
d82 _ dy2+dzd2
0y = y*

Once we gauge fix, Virasoro symmetry transformations extend to a unique set of vector

fields in the bulk. Demanding that ¢(y, z, Z) transforms as a scalar field under the corre-
sponding infinitesimal diffeomorphisms then implies that it must satisfy the bulk primary
conditions [8]

[Ln7 ¢(ya 0, 0)] =0, [f’n, d)(yv 0, 0)] =0, n=>2, (433)
along with the condition that in the vacuum ds|20> = dythdz, the bulk-boundary propagator
is

) y2he
(0(2,2)9(y,0,0)) = 2+ 22 (4.3.4)

These conditions uniquely determine ¢(y,0,0) as a CFT operator defined by its series ex-
pansion in the radial y coordinate:

on o~ (DN -

0,0) = y="* ———L_ NL_nO(0). 4.3.5
d)(ya ) ) Yy Z NI <2hL)N N N ( ) ( )
N=0

This is a bulk proto-field in the metric of equation (4.3.2). The £_x are polynomials in the
Virasoro generators at level N, with coefficients that are rational functions of the dimension
h of the scalar operator O and of the central charge c¢. They are obtained by solving the
bulk-primary conditions (4.3.3) exactly (no large ¢ expansion is required)®. And as shown

8As a concrete example

L_y=

(2h + 1)(c + 8h) (L2 12h ) (4.3.6)

(2h+1)c+2h(Bh—5) \" ' c+8h 2
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in section 3.2.2 of [8], they can be written formally in terms of quasi-primaries as

L_NyO =LY 0+ N!(2h) ZZ *"2 (4.3.7)
n=2 1 ’LN ”Oh+n

where O,(an is the ith quasi-primary® at level n and the denominator is the norm of the
corresponding operator. In writing this equation, we have used the fact that the quasi-
primaries can be chosen so that they are orthogonal to each other. This will be a very
useful property of £L_ x5O in later discussions.

The correlation function (¢OT) was computed and it was found that [8]

(6(y,0,000(, 2T (21)) _ h2? <Z1+ 2y<—>> (4.3.8)

(¢(y,0,0)0(2, 2)> B Z% (z1 — 2)2 Y2+ 2z

Notice that this correlator has a cubic singularity when the position z; of the energy-

momentum tensor 1" approaches the point (0,0). Roughly speaking, this singularity is the
boundary imprint of the energy-momentum of the bulk field. It demonstrates the presence
of a gravitational dressing connecting ¢ to the boundary point (0,0). The boundary energy-
momentum tensor 7'(z1) can detect this dressing via the cubic singularity, just as the current
J(z1) registered the charge of a bulk field by a similar, but lower-order, singularity, as
discussed in section 4.2.3. On a more formal level, contour integrals § zf'mT(zl) surrounding
the singularity pick out the action of conformal generators L, on the bulk field ¢.

Using our more general notation ¢(y, z, Z; 20, 20), the proto-field ¢(y, 0,0) given in equa-
tion (4.3.5) is the gauge-invariant operator ¢(y, 0, 0;0,0) evaluated in the Fefferman-Graham
gauge. The gravitational dressing is in the ¢ direction. In the next subsection, we are going
to construct bulk proto-fields that have more general dressings.

4.3.2 Natural Gravitational Dressings from Diffeomorphisms

In many situations it is convenient to place the CFT on a two-dimensional surface other
than the plane. For example, in the presence of a BTZ black hole it’s more natural to place
the CFT on a cylinder, as will be discussed in section 4.5. In this section we will demonstrate
how to define scalar proto-fields with a correspondingly natural dressing, greatly generalizing
the results of section 4.3.1. The ideas are illustrated in figure 4.3.

General vacuum AdS3 metrics with different boundary geometries can be obtained from
the CFT on a plane
du® + dxdz

u2

ds* = (4.3.9)

9In prior work [8, 26, 27] the notation £™**"*( has been used, which is o

hin here.
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\¥/ ¢(u7m7j;m073_30)

-~

-_——|—-—— -

Figure 4.3: This figure suggests the use of a diffeomorphism to generate a natural gravita-
tional dressing for a CFT living on a curved space, such as the cylinder. A curved dressing
in the (u,x,Z) coordinates, with the CFT living on a plane, is mapped using equation
(4.3.10) to a radial dressing in global AdS and BTZ black hole backgrounds.

by the following coordinate transformation [133]

- 1(fEFE):
4f"(2) f1(2) + y2 1" (2) " (2)
T (f'(2))* ()
= f(2) 4f/(z)f/(5> + y2f”(z)f”(z) (4.3.10)
o= fo) - — 2T IE)

AP PG R ()

The resulting vacuum AdS3 metric is then given by

Sp(2)dz* + yQMdzdz. (4.3.11)

" 1" 2
where Sf(z) = J}, ((ZZ)) — % (f;c, ((ZZ))> is the Schwarzian derivative.

In this section, we would like to obtain a formula for a bulk proto-field ¢(y, z, Z) with
a gravitational dressing in the g direction. The difference between this section and section
4.3.1 is that in this section, the CFT is living on a different 2d surface. This may seem con-
fusing, since the boundary here is also described by (z, z), but here the energy-momentum
tensor has a non-vanishing VEV given by (0|T(2)|0) = 155. For example, if f(z) = e* and
f(2) = €* (see Section 4.3.3 for more details about this example), then (z, z) are naturally
coordinates on a cylinder and Sy = —3 (i.e. (0|T(2)|0) = —=5, which is the expectation
value of the energy-momentum tensor on the cylinder). In other words, the metric dual to
the CFT vacuum |0) here is given by (4.3.11) with a Sy # 0, whereas in section 4.3.1 the
metric dual to the CFT vacuum is given by the Poincare metric ds? = W with planar

boundary.
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To obtain a bulk proto-field operator ¢(y, z, Z) with a gravitational dressing in the g
direction, we can consider what this operator corresponds to in the (u,z, %) coordinates of

equation (4.3.9). The position (y, z, Z) of this operator will be mapped to (u(y, z, 2), z(y, 2, Z),

and the boundary point of the gravitational dressing (y = 0, 2z, z) will be mapped to the
boundary point (u = 0,29 = f(2),Zo = f(2)). Therefore we can also denote the operator
o(y, 2, z) as follows

o(y,2,2) = ¢(u, x, T; 20, To) (4.3.12)

with the understanding that (u,x,Z) are functions of (y, z,Z) as given by (4.3.11) and
zo = f(z) and Zg = f(2). Although in the (y, z, 2) coordinates, the gravitational dressing
is in the ¢ direction, in the (u,x,Z) coordinates the dressing is not in the @ direction, since
typically xg # z and Tg # Z.

These observations imply that in the (u, z, Z) coordinates, the bulk-boundary propaga-
tor should be given by

" 2h
(¢ (u,z,2;20,%0) O (21,71)) = <u2+( — )> : (4.3.13)

x—x) (T — T
The new operator must also satisfy the bulk-primary conditions

[L(IO)v (b (u7$7i.;x07£0)] = 07 [I_/Sfo)’ ¢ (U,l’,f; Zo, fO)] = 07 n > 2 (4314)

n

The above two conditions uniquely fix ¢ (u, z, Z; 2q, Zg) to bel?

) n 2h+2n x—flf())m E—i‘om _ B
gb(u,x,a:;xo,azo Z Z TL' 2h ( m'r(h' ) Efnfmﬁfnfmo (1'0,1‘0).

n=0m,m=0

(4.3.16)
Note that the £_,,_,, and £_,_ here are defined on the boundary complex plane (z,7),
where T'(x), T(z) are quantized by expanding around the point (xg,Zo). It’s obvious that
the above equation satisfies the bulk-primary conditions (4.3.14), since the £_ys and £_gs
are constructed as solutions to such conditions. Using the property (4.3.7) of the £_ s, it’s
easy to see why ¢ (u,x,Z;xg, o) has the correct bulk-boundary propagator (4.3.13) with
O(x1,%1), since the quasi-primary terms in L_pml—p_mO will not contribute in this two-
point function. So when computing (4.3.13), we can simply replace the £_,, L 7O
with LT{mET{mO, and the sums over m and m becomes translation operators. We then
have ¢ (u,z,Z;x0,Z0) = Y nep %Lﬁliﬁl(’)(x,f), which will give us the desired
bulk-boundary propagator (4.3.13).

0Performing one of the summations allows us to simplify and write ¢ as

u2

oo N
¢(u’1;7j‘;;1;07j‘0) :th Z % 2F1 (—N, —]\_], 2h,—w> ﬁ_N57N0 (l‘o,i‘o). (4315)
N,N=0

where we used Ax = ¢ — xg and AT = T — ZTo for concision.
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In prior work [8] the special case f (z) = z, f () = z was studied, so that y = u,r =
z,T = Z, and only the terms with m = m = 0 contribute in the above equation. In that
case the result reduces to

& (_1)71 y2h+2n B
Oy, 2,2,2,2) = Z Wﬁ_nﬁ_n(’) (z,2) = ¢ (y,2,2) (4.3.17)
n=0 ’ n

where ¢ (y, z, Z) here is exactly the bulk proto-field defined in section 4.3.1. And in this case,
the gravitational dressing points in the @ direction, as it coincides with the g direction.

If we take the limit that y — 0, then this also implies u — 0, and also (z — z9),
(x — Zg) — 0, as can be seen from equation (4.3.10), so we find

limy 6 (y,2,2) = (£ (2) /' ())" O (f (2) . F (9)) = O (2.7) (4.3.18)

where the Jacobian factor (f/ (z) f’ (Z))h comes from lim,_, v using equation (4.3.10). This
is exactly what we expect for a bulk operator in the (y, z, Z) coordinates with a gravitational
dressing in the ¢ direction.

Up to now we have been discussing the operator ¢(y, z, Z) in the CFT vacuum. But our

definition also applies to general CFT states |¢)). The semiclassical bulk metric associated
with [¢) is

dy® + dzdz 6T, 67 (2 36Ty (2)Ty (2
ds2, = W dzdz L) » 6Tu(D) )0, 36T T(E) ) ) (4.3.19)

) y? c c 2
where Ty, (z) = (¢|T(2)]) and similarly for Ty(2). Note that Ty (z) here is the expectation
value of the energy-momentum tensor in |¢), where the CFT lives on a general 2d surface
defined via f, f. T (z) is related to the (¢|T(z)|1)) (since we are focusing on the boundary

here, we have = f(z)) via the usual transformation rule for the energy-momentum tensor
c
Ty(2) = F'PWIT@)) + 557 (4.3.20)

where again, Sy is the Schwarzian derivative. Since on the boundary, x, ¥ are the coordinates
on a complex plane, we have (0|7'(x)|0) = 0. So in the vacuum, the metric reduces to that
of equation (4.3.11).

An interesting example that we will consider later is a map to the cylinder via f(z) = €*
and f(Z) = €7, where the bulk metric dual to the CFT vacuum is global AdS3. We will
study correlators in a heavy state |¢)) = |Op), so that the semiclassical bulk geometry is a
BTZ black hole. Specifically, we will study the bulk-boundary propagator (O |¢O|Og) in
such a heavy state in section 4.5.

Semiclassical Correlators in General Backgrounds

We would like the bulk proto-field to have the property that in any semiclassical background
arising from heavy sources in a CFT state [¢), the bulk-boundary propagator (1|pO|¢)
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takes the correct form. Formally, this means that as ¢ — oo with heavy source dimensions
hg « ¢, but with the dimension of O fixed, this correlator must obey the free bulk wave
equation in the associated metric of equation (4.3.19). Let us explain why this must be the
case.

Given any classical fields Ty, T}, forming the metric of equation (4.3.19), we will assume
that we can identify new diffeomorphisms ¢(z), g(z) so that the metric (4.3.19) arises from
a diffeomorphism (4.3.10) with g, g replacing f, f. Note that while f, f connect the empty
Poincaré patch to a corresponding CFT vacuum (4.3.11), the new functions g, g relate the
empty Poincaré patch to a Fefferman-Graham gauge metric (4.3.19) where there are heavy

sourcesl 1 .

The bulk primary conditions of equation (4.3.14) were chosen to guarantee that ¢
transforms as a scalar field in Fefferman-Graham gauge, and so it must transform as a
scalar under the map from (u,z,z) <> (y, 2, 2) induced by g, g. Then the condition (4.3.13)
guarantees that the bulk boundary propagator in (u,x,z) coordinates takes the correct
form, and so we can conclude that it must take the correct form in the semiclassical limit in
the very non-trivial metric of equation (4.3.19). Thus the conditions we have used to define
¢ ensure that its semiclassical correlators must take the expected form in the background
of any sources, as long as ¢ does not intersect with these sources directly.

4.3.3 (¢pOT) on General Vacuum AdS; Metrics and Examples

We can compute (¢pOT) with ¢ given by (4.3.16) on general vacuum AdSs metrics given by
(4.3.11). Specifically, we study

(T (21) O (w2, %2) ¢ (u, x,Z; 0, o)) (4.3.21)

with

zo = f(2),%0 = f(2),21=f(21),22 = [ (22), and Ty = f (22) (4.3.22)
Although (4.3.21) is written in terms of the (u,x,Z) coordinates, it should really be under-
stood as a correlation function in the coordinates (y, z, Z) with the metric given by (4.3.11)
(and Sy given by the Schwarzian derivative of f (z)). More precisely, to obtain the correct
(¢OT) in the (y, 2, ) coordinates, we would simply transform 7" (z1) and O (z2, Z2) to T (21)
and O (z2,Z2) using the usual transformation rules for the energy-momentum tensor and
primary operators, and leave ¢ as it is, since it’s a bulk scalar field.

We can use the OPE of T'O and T'¢ to evaluate this correlator. Note that when using
the OPE of T'¢, we need to expand T" around x instead of . Explicitly, the singular terms
in the OPEs are

L 10 (22,%) hO (19,7
T (331) @) (1’2, IE'Q) ~ lxl E:E;sz) + (x (x2$x)22) 4+ (4.3.23)
1 — 42

1YWe'll give an example of this statement in section 4.5.
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L_1¢ (u,z,T; 20, Zo) N Loo (u, x, Z; x0, To)

T (1‘1) ¢ (ua l’,i‘; .'I)O,i'()) ~

T1 — Zo (z1— x0)2
L T; 30, T
10 (u, z, T xg,xo) L (4.3.24)
(x1 — o)

where we’ve used bulk-primary conditions (4.3.14) when writing down the OPE of T'¢. So
when computing (¢OT'), we simply include all the singular terms in these two OPEs. The
L_1s will becomes just the differential operators 0,, and 0,, while the terms with Ly¢ and
L1¢ can be computed by commuting Lo and L; with O (z2, Z2) or by writing them in terms
of contour integrals. Eventually, we get

<T ($1) o (172, 3_32) qb (ua x,T; o, f0)>

_ 1 B 1 B (w2 — x0)
B [(3?1 —x9)® (21— m0)° 2(3;1 - 3;0)3] (¢0) (4.3.25)

(T — )
u? + (.1‘ — ZCQ) (.i’ — fz)

1 o — X0 1 (iL'Q — .1‘0)2

—2h 2 3
1 — X2 (3}1 —1‘0) 1 — Xo (3}1 —1‘0)

(90),

2h
where (¢pO) = (W) . Correlation functions of the form (¢OT ---T) can then
be computed recursively using the above OPEs and also the OPE of TT'.

Here, we give two examples of the above result.
Example 1: (¢OT) on Poincare AdS;
To obtain the (pOT) on the Poincare AdS3 metric, we use f(z) = z, f(Z) = z. In this case,

we have u = y,z = z, and Z = 2, and the metric (4.3.11) is simply ds? = W. After
simplification, (¢OT) is given by

_ L h(zg — 2)? R 2y? (21 — 22)
(T (2)0 (o )6 (2, = g 2 ( R = s 22)) (60)

(4.3.26)
This is exactly the result (4.3.8) obtained in [8].

Example 2: (¢OT) on Global AdS;

To obtain (¢OT) on global AdSs, whose boundary is a cylinder, we use f(z) = e* and
f (2) = €*. From equation (4.3.10), we have

Lo vee A-y A-y*;
4+y2’ 4_|_y2 :

(4.3.27)

where we've defined ¢ = e* and £ = e for notational convenience. The resulting metric is

Cdy? dedz | d2? | dF?

2
" e+ %dzdz, (4.3.28)

ds®
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which is related to the usual global AdSs metric

dr?

r24+1

ds* = (r* + 1) dt; + + r2dg? (4.3.29)

by a simple coordinate transformation
t—tp+if, Z=tg—ib, y:2(\/7’2—|—1—7“>. (4.3.30)

The bulk-boundary three-point function (¢OT') on this metric is given by

(T (&1) O (&2,8) ¢ (u,z,7:€,8)) (4.3.31)
_ h(E-&) lg s 4% (61— &) (E+ &) ]
G- @ -7 (€€ + &28a) (12 +4) + (§62+ &) (¥2 — 4)

X <O (§27§2) <f> (u7$7j7€7£)> .
Here, <(9 (52,52) ¢ (u,x,:ﬁ;g,g» is given by

2h
(O¢) = <u2 Y 52)) (4.3.32)

N 4y\/§7§i 7 2h
(E€+6&) (1P +4) + (E&a + &8) (y2 —4) .

We have also obtained the same result using the effective field theory of gravitons developed

in [35] (see appendix C.4 for details of that calculation).

4.3.4 General Gravitational Dressings from Singularity Structure

In this section we will define very general gravitational dressings through a procedure analo-
gous to that of section 4.2.4, where we studied the U(1) Chern-Simons case. To define these
bulk proto-fields we will leverage the singularity structure of correlators between ¢, O, and
any number of stress tensors. We review how the singularity structure of 7'(z) is determined
by Einstein’s equations in appendix C.1.2, generalizing the U(1) case of section 4.2.3. Here
the CFT will be living on a flat 2d plane, with the CFT vacuum state corresponding to the

. . 2 7
pure Poincare metric ds‘20> = du tgwdl’ .

The proto-field operator we will identify takes a similar form to that derived in section
4.3.2, but our interpretation here will be different, and more abstract. Another way of
motivating this section would be to ask to what extent equation (4.3.16) can be given a
general meaning, independent of the diffeomorphism of equation (4.3.10).

A General Bulk Proto-Field

The energy associated with the bulk operator ¢ must be reflected in the CFT by singularities
in T'(z) correlators. As in the U(1) Chern-Simons case of section 4.2.4, we can construct a
bulk proto-field ¢(u, x, T; x9, Zo) by demanding:
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2h
1. (¢O) must be given by (¢ (u,x,T;zo,ZTo) O (w,w)) = (ﬁ) in the vac-

w2+ (z—w)(Z
uuin.

2. Correlators (O(w,w)T(z1) - T(xn)T(x1) -+ T(Z5)P(u, z, T; 20, To)) only have poles
of up to third order in the x;, which can only occur when z; — zy (along with up to
second order poles as x; — w), and equivalently for the antiholomorphic variables.

Note that we allow poles o ;)3 in T(x;)p(u, x, T; 0, To), whereas only second order

(wi—m0
poles occur in the OPE of T'(x;) O(w). This is because ¢ contains descendants of O, including
the first descendant L_10O o« 0O, and such operators necessarily induce third-order poles.

But higher order singularities are excluded by our assumptions.

The unique operator built from Virasoro descendants of a primary O and satisfying
these conditions is

N ohgan (D) (@ —xo)™ (& — Tg)™ = _
¢(U,£L‘,QZ7.’L'0,.CE0)—Z Z U n'(2h)n mlm)! E—n—mﬁ—n—mo(anxO)

n=0m,m=0

(4.3.33)

As a formal power series expansion in CFT operators, this is identical to equation (4.3.16),

except that zo and T are now arbitrary, instead of given by f(z) and f(2). As we will

explain below, this object can be interpreted as a bulk proto-field with a dressing that
follows the geodesic path from (u,z,Z) to (xg,Zo) in any geometry.

One way to interpret this expression is as a modification of equation (4.3.5) (with
the notation (y, z, z) replaced by (u,z,z) here), where the boundary imprint of the bulk
energy has been translated to zg,Zo. In appendix C.1 we develop a theory of non-local
‘mirage translation’ operators that move the local energy of CFT operators (singularities in
T'(z) correlators) without moving the apparent location of an operator O itself (so mirage
translations leave OPE singularities between local primaries fixed). Mirage translations also

provide an independent motivation for the bulk primary conditions.

To better understand equation (4.3.33), let’s consider a few simplifying limits. If xg = =
and Tp = Z, then only the m = 0 terms contribute to equation (4.3.33), and ¢ reduces to the
bulk field of equation (4.3.5). To obtain O(zo,Zo) as we take u — 0, we need to simultane-
ously send z — x¢; otherwise we obtain a non-local operator (5(95, Z; 0, Tp), corresponding
to O(z, ) multiplied with an additional gravitational dressing on the boundary. The non-
local operator O(z, Z;xg, Zg) can be interpreted is the mirage translation of O(x,Z), as
discussed in appendix C.1.

The non-gravitational limit is also easy to understand. When ¢ — oo with A fixed, we
have £L_n — LY ;- In this limit the sum over m,m simplifies into a pure translation, and
the sums on m simply convert O(xg,Zo) — O(z,Z). Only the sum on n remains, and this
reconstructs the non-interacting field defined in equation (4.2.5).

More generally, all of the terms £_yL_jO were constructed so that they only have
OPE singularities of fixed order < 3 with T'(z1), and these singularities only occur when
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x1 — xg. The field ¢(u, x, T; x0, To) inherits this property. However, as the £_x act as a
kind of modified translation, other local CF'T operators constructed from other primaries
will behave as though ¢(u, z, ; xo, To) is located at (u,x,Z) in the bulk.

The Gravitational Dressing Naturally Follows a Geodesic

We glossed an important issue when defining equation (4.3.33): for this expression to be
meaningful, we must have some way of determining where in the bulk this field lives. In the
CFT vacuum the operator is at (u,z,z) in the Poincaré patch metric. This observation is
sufficient to determine the location of ¢ in perturbation theory around the Poincaré patch
metric. But if we turn on heavy sources, the bulk metric will change by a finite amount. We
have not fixed to Fefferman-Graham gauge in (u, z, Z) coordinates, so these coordinates are
just labels, which only have unambiguous meaning in perturbation theory or in the limit
u — 0.

We can partially resolve this issue by comparing with section 4.3.2. It is easy to see
that there exist an infinite family of f(z), f(Z) functions so that z¢,Zo = f(2), f(Z) and
equation (4.3.10) relates (u,z, Z) to (y, 2, 2). For each such f, f we implicitly define a gauge
choice in (u,x,z) by pulling back the Fefferman-Graham gauge of the (y, z, Z) coordinate
system to (u,z,Z) via the diffeomorphism (4.3.10). So the bulk location of the proto-field

could be interpreted as a bulk proto-field in any of these gauges.

However, all interpretations of the proto-field share a common feature. The gravita-
tional dressing in (y, z, Z) can be chosen to be a curve with constant (z, z), so that it points
in the g-direction. In Fefferman-Graham gauge, these curves are all geodesics. This means
that the gravitational dressing of ¢(u, z, Z; z¢, Zp) will follow a geodesic from (u, z, Z) in the
bulk to (zg,Zo) on the boundary, in any dynamical metric.

Thus we conclude that ¢(u, x, Z; zo, Zo) will behave like a scalar field in the bulk defined
by fixing to any gauge where the gravitational field does not fluctuate along the geodesic
connecting (u,z,z) and (xo,Zo). That is, if X#(\) are coordinates on this geodesic, then
R (X(N) XY (N) = 0, where hy, is the deviation of the bulk metric from the Poincaré patch
form. This leaves the gauge choice elsewhere in spacetime almost entirely undetermined.

More General Dressings

To obtain a more general class of dressed bulk ¢ we can smear ¢(X; xg, Zg) over (xg, Zo) via
6lo] (X) = / dezodto plo, To)d(X; 20, Zo) (4.3.34)

with any positive function p that integrates to one [ d*wop(wo,Zo) = 1. If we work in
perturbation theory around the vacuum (or any fixed semiclassical metric), then the location
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of the protofield in (u,z, %) coordinates will be unambiguous. Then we can obtain results
similar to the U(1) case in section 4.2.5.

4.4 Recursion Relation for Bulk-Boundary Vacuum Blocks

Gravitational dynamics can be probed with correlation functions of the bulk proto-field
(4.3.16). For example, bulk locality was studied in [26] by computing the bulk two point
function (¢¢) and Euclidean black hole horizons were investigated in [27] by computing
the vacuum blocks of heavy-light bulk-boundary correlator (Og¢rOrOf). In those works,
recursions relations were derived for computing correlators involving the proto-field of sec-
tion 4.3.1 (i.e., the special case of (4.3.16) with f(z) = z and f(Z) = z). Now that we
have the more general bulk proto-field (4.3.16), we can also derive recursion relations for
computing'? its correlators.

In this section, we are going to derive a recursion relation for computing the Virasoro
vacuum block contribution to

(Of (00) On (1) ¢r(u, x, Z; 0, Z0)Or, (0)) , (4.4.1)

where ¢, (u, T, T; 0, 79) (with h = h = hy) is given by equation (4.3.16) and the coordinates
00,0, 1 are on the complex plane with (z,Z) coordinates. In order to be more general and
include of case of section 4.3.4, we are going to assume that xg,Zo are arbitrary (i.e., we
are not assuming that they are given by f(z) and f (%)), although this will not affect
the discussion in this section. Although we use the subscripts H and L which usually
means “heavy” and “light”, the conformal dimension hy and hy, in this section are arbitrary.
We will study a special case of this result in section 4.5, and compute the bulk-boundary
propagator in a black hole microstate background.

4.4.1 General Structure of the Vacuum Blocks

As usual, the vacuum block Vj is obtained via the projection
Vo = (OH (OO) Oy (1) Poor, (u, x,X; T, fo) Oy, (O)> (4.4.2)

where Py is the projection operator into the vacuum module!? (including holomorphic and
anti-holomorphic parts). ¢, (u,x,T;xg, Tg) of equation (4.3.16) can be simplified to the

12 Although we don’t develop it in this paper, the recursion relation for computing the bulk two-point
function (¢¢) for ¢ given by (4.3.16) should be very similar to the one derived in [26].

1376 be clear, the projection operator for a representation of the Virasoro algebra with lowest weight state
|Oh, ) factorizes, that is, P, = P;‘flopz?“’hc’lo and the holomorphic part is given symbolically by

P;’lli)loz Z 1 1| h1>< h1| j 17 (4.4'3)

{mi}v{n]’} N{"Li},{nj}
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following form:

[/_NZfNO (l’o, 1_70)
(2h1) v (2h1) 5 NIN!

oo
o1, (u, x, T; w0, To) = u*" Z Ay y (u, Az, AZ)
N,N=0

(4.4.4)

where Ax = x — x¢p and Ax = T — x¢, and

_ 2
Anx (u, Az, AZ) = (2hp) y (2he) 5 (Ax)Y (Az)Y o Fy (—N, —N,2hy, —A;fm) . (4.4.5)

The extra factors of (2hr), (2hr)y in the expressions above are inserted for later conve-
nience.

Although the Virasoro vacuum block of (4.4.2) doesn’t factorize into holomorphic and
anti-holomorphic parts, we can make use of the fact that it does factorizes for a specific N
and N, since the projection operator Py factorizes. Similar to the case in [27], we can define
the holomorphic part of ¢ to be

o0

~ L_NOp (x0, o)
holo . — NYh (L0, L0
h (U, €L 1’0) = NEZO (QhL)N NI ) (446)

and we’ll obtain a recursion relation for computing the more general holomorphic block:
Vielo (b1, 2, ¢) = (O (00) | O (1)PE° G (u, 5 20) |01(0) ) (4.4.7)

Here the holomorphic projection operator P,}llflo only includes the holomorphic descendants
of |Op,). We are considering this more general block for the convenience of discussing the
recursion relation in the next subsection. Eventually, we are interested in the vacuum block
Vholo (0, hr, ¢), and it will be given in the following form

o0

1 1
Vholo (0, hr, ) = ShL Z — Fn (o) (4.4.8)
To " N=o "0
Fy (z) is an infinite series of zg, starting with Fy (zg) = 1+ --- (we’ll explain how to

obtain Fy(zg) in next subsection). The full vacuum block Vy is then obtained via the
following equation

u N,N ) 9

where Fy (Zg) is simply F(z¢) with zg replaced by zo.

where <7 1 is the inverse of the inner-product matrix between the states.

{miy{n;}
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4.4.2 Recursion Relation

Our task now is to obtain the recursion relation for computing Vyelo (h1, he, ¢) based on the
singularity structure of Vyelo (h1, h, ) as a function of the central charge ¢. Actually, the
recursion relation for computing Vo), here is almost the same as the recursion in [27] for

14

computing the Vgl in that case™, except that the seed of the recursion is different. We

reproduce the recursion relation here for convenience

Violo (R1,h2,¢) =V holo (h1,he,c — 00)

+ Z mn hlah2

( Vholo (hl — hl + mn, h27 C — Cmn (hl))
m>2 n>1 ~ Cmn 1

)
)
+ Z m” hl’ 2)Vholo (hl ha — ha +mn C%Cm”(hQ))'
— Cm,n h2) ’ ’
m>2 n>1
(4.4.10)

For more details about the meaning of the symbols R, 1., Smn, ¢m,n and how to solve this
recursion relation, please see section 4 and appendix C of [27].

As mentioned above, the seed of the recursion V1o (h1, ha,c — o0) is different from
that of [27]. In the ¢ — oo limit, only global descendants of the intermediate state |Op,)
and global descendants of Oy, contribute, so Vi, (hi,he,c— o0) is actually the global
block, i.e.

G (hl, h2) = Vholo (hl, hQ, cC — OO) . (4.4.11)

G (h1, h2) can be obtain by direct computation, as follows

G (h1, ho) = i (Og|Ox|L™O1) (L™ Oy | L™ Oy, (20)| OL)
o T 01 )R [27] 05

m1,m2=0
0o
_ L Z (h1)m1 Pmi,mz2,0 (hb ha, hL) $81+m1 j6n2+h2—hL (4.4.12)
2hy, (th)ml m1! (2h2)m2 mZ!

0 mi,mo—0

where 7o = %. We are using Zo here for keeping tracking the origin of each term (so
that we can obtain the Fy in (4.4.8) after we compute Vo) and for the convenience of
implementation in Mathematica. Here, p; j 1 (h1, ha, h3) is the three point functions of global
descendants, and it’s given by [7]

ik (1 ha, hy) = (L1 O, L2, 0, (1) |LE, O, ) (4.4.13)
= (hi+i—he—j+1—hg—k);si (h1,ho, h3)

Y The recursion relation in [27] is an special case of the recursion here, with f(z) = z and f (z) = Z, but
the general structures are almost the same.
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with
min(¢,k)

sik (h1, ho, h3) = ———— (2hs+k—p) (i—p+1),
I; 2= p)! p (4.4.14)

X (h3 +ha —h1)y_, (M1 +he —hs+p—k),_,
And we only need the p; ;5 with k = 0.

As in [27], solving the recursion produces Vi, (h1, h2,c) as the following sum!®
o
Vholo (hl, ho, C) = Z Cm’nG (h1 +m, hy + n) . (4.4.16)
m,n=0

Here, G (h1 + m, hy + n) is the global block (4.4.12) with hy — hy +m and hy — hg + n.
The summand Cy, ,,G (h1 + m, ha + n) is the contribution to Vylo from all the level m quasi-
) . and level n quasi-primaries O(] : , (denoted as LY 0y, and L3 Oy,

in previous papers [26, 27]) , and their global descendants. The coefficients C, ,, are exactly

primaries O(

the same as the coefficients in [27]. Basically, they encode the three point functions of the
quasi-primaries with primaries as follows

<OH’OH( )|Oh1+m>< hi+m ‘th-i-n )‘ OL>
hﬁ-m’ ’ h2)+n2

Cm,n = Z

‘O (4.4.17)
4,J

where we’ve assumed that the quasi-primaries are orthogonalized and the sum ZZ ; 18 over
all level m and level n quasi-primaries. In section 4 and appendix C of [27], we discussed
in detail how to obtain the above result and how to compute them using the recursion.

After obtaining Vy10(0, bz, ¢) as a polynomial of g, the coefficient of :Eév is the Fn(zo)
n (4.4.8). This is why we keep & explicitly in the global blocks (4.4.12), instead of using
the fact that 7o = ?10 to simplify the calculation of the global blocks, because that will
mix % with the 2o in Fiy(xo), and we will not be able to extract Fn(zo). After obtaining
Fn(xg), we can simply use equation (4.4.9) to compute the full vacuum block Vy. The
Mathematica code for implementing this recursion relation is attached with this paper.

Generally, the recursion relations for computing the boundary Virasoro blocks [168, 167,
29] and the bulk-boundary Virasoro blocks consist of two parts. One is the computation

15 As shown in section 3.2.2 of [8], solving the bulk primary conditions will give us £_,© in terms of quasi-
primaries and their global descendants (see the paragraph below (4.3.7) for explanations of the notations
here)

N n (%)
L_NO = N!( ZZ Lo Oh*” (4.4.15)

n=0 1 ‘L]jl nOth'n

Similarly, "Ph‘)lo can be written in terms of quasi-primaries and their global descendants. So Vholo (h1, h2, ¢)
defined in (4.4.7) can also be written as a sum over quasi-primaries and their global descendants. In this
way, it’s easier to see why Vholo (h1, h2,¢) can be decomposed into a sum over global blocks as in (4.4.16).
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of the coefficients (), ,. And the other part is the computation of the global blocks. The
computation of C,,,, is the most complicated part of the recursion relations, but luckily,
for most observables of interest, it’s universal. The difference between observables is in the
global blocks, which are the seed for the recursion relations.

4.5 Heavy-Light Bulk-Boundary Correlator on the Cylinder

Our study of bulk reconstruction was motivated by the desire to understand near horizon
dynamics and the black hole information paradox. This program may be advanced by
computing correlation functions of bulk proto-fields in a black hole microstate background.
One object of interest is the heavy-light bulk-boundary vacuum block Vg of (Og|Opér|Ox)
for ¢, defined in global AdS. When |Op) is dual to a BTZ black hole microstate (hy > 57),
Vo will be dual to the bulk-boundary propagator of the light operators in such a background.
In this section, we’ll compute this vacuum block using two different methods.

Our first method utilizes the recursion relations introduced in the last section. This
method will give us an exact result for the vacuum block as an expansion in the kinematic
variables, with coefficients evaluated exactly at finite ¢, including all the gravitational inter-
actions between the light probe operator and the heavy state. Our second method is based
on the idea of bulk-boundary OPE blocks [8] (or bulk-boundary bi-local operators) and
effective theory for boundary gravitons in AdSs/CFTy [35]. This second method will give
us the vacuum block in a large ¢ expansion with hTH fixed. We'll carry out the calculation up
to order %, which corresponds to the gravitational one-loop correction to the bulk-boundary
propagator in a microstate BTZ black hole background. We have verified that the results
from these methods agree.

We will also show analytically that the one-loop corrections are singular at the Eu-
clidean horizon. This effect only arises because the 1/c corrections to the correlators are
not periodic in Euclidean time [47, 50]. When they are interpreted as correlators in the
BTZ geometry, they must have a branch cut at the horizon.

Throughout this section, we’ll assume the following limit
¢c—o00, hg~O(c), hp~O(1), (4.5.1)

although our computation using the recursion relation is valid at finite ¢. We'll study the
bulk protofield

oL (y, 2 2) = o1 (w, 2, 7; f(2), f(2))
(with h = h = hz) to be given by equation (4.3.16) with f (z) = e¢* and f (2) = €®. In this
case, we have

g WVEE Ay 5;:4_y2§ (4.5.2)
44942’ 44y2> 4+ y? o

with € = e* and € = €. As discussed in section (4.3.2), in this case, the CFT is living on
the boundary cylinder with coordinates (z, z) and the bulk metric (4.3.11) that’s dual the
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CFT vacuum |0) is given by

o dy*+dedz  d2? d722

y2

y? 4 4 16
which becomes the usual global AdS3 metric'® (4.3.29) via the coordinate transformation
(4.3.30).

In this section, we are interested in studying bulk-boundary propagator in a heavy state
background |Of). The semiclassical bulk metric that’s dual to this heavy state is given by
equation (4.3.19), i.e.

dy? +dzdz 1 1 a’ay?
2 272 ~2 5-2 -

dS|OH> = T + ZO& dz® + ZO& dz® + TdZdZ, (454)

24h
1= =2

black hole metric

with a = and @ its complex conjugate!”. This metric is related the usual BTZ
dr?

2 _ 2
r Ty

ds* = (r2 - ri) dt3, + + r2db? (4.5.5)

via a simple coordinate transformation,

22_4 —22_4
B S PR S G 1)6;5(2”/ ). (4.5.6)

where a@ = iry and a = —iry with rp = 242”’ — 1. This is why the vacuum block Vg

of (Og|Orér|Om) has the interpretation of the bulk-boundary propagator in a BTZ black
hole microstate background.

4.5.1 Recursion Relation on the Cylinder

In last section, we obtained the recursion relation for computing the bulk-boundary vacuum
block in the configuration

(Or(00)0u(Vor, (2,3  (2), F (2)) OL(0)). (45.7)

We emphasize again that the coordinates (0, 1, c0) here are on the boundary (x,z) complex
plane (rather than the (z, Z) coordinates). In order to study the bulk-boundary propagator
in a heavy background in this section, we’ll consider the following configuration

(01(00)0u (D)oL, (w1 — 2,1 = F1— f(2),1 - F () OL(0)) (458)

16The reason that we consider this specific ¢, is because it’s easier to relate the global AdSz metric to the
BTZ black hole metric (since their boundaries are both cylindrical), and it enables us to circumvent some
technical (numerical) issues that we encounter in [27].

"In this section, we mostly consider the non-rotating BTZ black holes, but most of our formulas (especially

those of section 4.5.2, since we’ve kept o and @ independent) are easily generalized to the rotating case. In
the rotating black hole case, the relations between «, &, hzr, hzr and o, 7_ are a little bit more complicated.
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which is equivalent to <(9H|¢L (u, x,T; f (2) ,f(Z)) OL(1)|(’)H> due to translational symme-

try on the complex plane'®.

To obtain the bulk-boundary vacuum block Vy of (4.5.8), we just need to adopt the
result of last section to the special case considered here. For the configuration in (4.5.8),

we have
4y /€€ 2y? _ 2y? _ -
_ Ax — AT = =1 =1-E¢. 4.5.
u 4 y2 ) X y2 457 X y2 457 .TQ 67 CC[) f ( 5 9)

So we just need to plug the above expressions for u, Az, AZ, xg, Ty into (4.4.8), (4.4.9) and
(4.4.12) to obtain Vy. The Mathematica code for computing Vy using the recursion relation
is attached with this paper. The first several terms of Vy from the recursion relation are

given by
Vo 2@+ by hpsn 2412 (22 + 12 4.5.1
i — + . _E(Z (2% +12) — 3622+ 12 (2° +12)) s (4.5.10)
(=)
N huhr (3z3zhy — 222 (224 6) (hy — 1) 4 3223hy, — 122% (hy — 1)) N
8 “ e

3c

where we've defined s = Z—; and expanded the LHS in terms of small s,z and Z to get
the RHS. We’ve checked that this result is consistent with the semiclassical result and 1/¢
corrections to be computed in next subsection. Since the recursion relation is valid at
finite ¢, we can use it to study non-perturbative physics near the black hole horizon. Due
to numerical difficulties of obtaining convergent and reliable result near the horizon, we
postpone it to future work.

4.5.2 Quantum Corrections to (Oy|¢.Or|Og) on the Cylinder

We can use bulk-boundary bi-local operators (as a generalization of the boundary bi-local
operators in [35]) and the effective theory for boundary gravitons developed in [35] to
compute the semiclassical limit of Vy and its 1/¢ corrections. We will briefly discuss the
physical interpretation of these results at the end of this section.

Semiclassical Result

First, we notice that the semiclassical metric (4.5.4) can be obtained from the Poincare
patch
B du? + dzdz

u2

ds* (4.5.11)

8 Another way of obtaining ¢r, in (4.5.8) is to substitute f (z) and f(2) with 1 — f(2) and 1 — f(2) in
equation (4.3.16), which will not change the metrics (4.5.3).
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via the coordinate transformation (4.3.10) with

F2)=e,  F(2) =", (4.5.12)

1 _ 24hy
C

the effect of the heavy operators is trivialized via this map back to the (u, x, Z) coordinates!®.
So the semiclassical result of Vg of (Og|or (v, 21, 21) OL (22, Z2) |Og) must be given by the
bulk-boundary propagator (¢, (u1,x1,Z1) O (22, Z2)) in the (u,z,z) coordinates, that is

where o = and @ is the complex conjugate of a. This means that semiclassically,

2hp,
- 1
Vo= (f (22)F (= hL( A ) +0<) 4.5.13
0 (f ( 2) f ( 2)) U% + (xl _ xZ) (i'l _ i‘2) c ( )
where the factor (f'(z1) f' (zl))hL comes from the transformation rule for the primary
operator Oy, and

4y a@e?1+az ot (4 — adyQ)

_ e (4 — adyQ)
aay?+4 = aay? +4

aay? +4

y X1 =

uyp =

and 1y = %2, Ty = ¢*?2. For later convenience, we’ll denote the semi-classical result (the
first term in (4.5.13)) as V5, and in terms of (y,&, &) with £ = 7% and { = €™~ 2, it’s
given by [82, 27]

16 2 2=2¢a¢t
( yaTaete (4.5.14)

hr
VO == — 9 - —_ 9 .
(4(1 =€) (1-€% +y2aa(l+£%) (1+£9))
The configuration of last subsection corresponds to z; = z and 23 = 0, so the € and ¢ defined
here are the same as those of last subsection.

1/¢ Corrections

In order to compute the 1/¢ corrections (gravitational one-loop corrections) to the semiclas-
sical result of Vy, we must include perturbations in f(z) and f(2), and be more precise
about the central charge c¢. It turns out that, as in [35], we should use the following f (2)
and f (%)

ie(z) _ _, i€(2)

f(z) ="V and f (z) = ™7 Ve . (4.5.15)

where C =c—1, ag = /1 — 24%” and @g is the complex conjugate of ay. Here € and € are

to be understood as operators. We then obtain the large ¢ expansion (with hTH fixed) of Vj
via

, - hy uy 2hy,
W= (P @) (are e (4.5.10)

9Note that the (u,z,Z) in this subsection are different from those of last subsection since f (z), f (z) are
different now.

87



CHAPTER 4. ADS3 RECONSTRUCTION WITH GENERAL GRAVITATIONAL
DRESSINGS

upon plugging in the expressions of various terms using (4.3.10) with f and f of (4.5.15),
and expanding in large ¢ or small €, €. The idea here is roughly the same as the idea of the
bulk-boundary OPE blocks used in [8] to compute (¢OT') and in [27] to compute the large
¢ expansion of vacuum block of (OgOpérOr) (with hiy ~ O (1)) in Poincare AdSs. It’s
also a generalization of the boundary bi-local operators in [35] to the bulk-boundary case.

At leading order of the large C' limit (with Ay ~ O (C)), we have

~2 ¢cag ¢ag he
Vo= ( 16yPadageg _ ) (1+0(%)) aam)
(4(1 — €90) (1 — £30) + y2apap (1 + £20) (1 + £%)) ¢

where £ = 1772 and £ = €”17%2. At order 1/c, we'll get two different kinds of contributions,

one from the € and € terms, and another from the large ¢ expansion of the leading order
result (recalling that C'= ¢ —1). Since the terms linear in € or € will have zero expectation
value, we’ll only keep the terms quadratic in € or € in the large ¢ expansion. We can then
package the order 1/¢ contributions to Vj in the following form:

oc hi hi 1
Vo =V, 1+ ?VhL/c + 7Vh%/c +0 2 (4.5.18)

where V;© is the semiclassical result given in (4.5.14). The order 1/c terms of the large c
expansion of (4.5.17) will be linear in hz, and will be included in Vj,, /..

The order hy/c term Vy, /. of (4.5.18) is given by

96 (1 — £%)° <V;§OL)/C> +4aa (1 - £27) <v,§2L)/C> y?+a? (146%)° <Vfi)/c> vt
Vi /e = D? o T

where we’ve defined
D=4(1-€%(1-£&% +y’aa(1+¢&%) (14&) (4.5.20)

for notational convenience and the various terms in the numerator are given by

o (1= €92 () + (4)?) — 2% (e — e (4521
Vit = a5 (4026 (@1 — e2) € + (1 =€) (2(€ = 1) e + (€2 +1) () 2 + () 1))

= 1+ 17 () = ()€ (0% (1 — ea) — 4¢]) (e1 — eg) Lol 0EP D)

with €; = €(21) and €2 = € (z2) and the primes means the derivatives with respect to their
arguments, respectively. The complex conjugate c.c. in Equation (4.5.19) means replacing
£,€ a,a with € &, a, o, respectively, and also changing € to & The ]i';/c term plus it’s
complex conjugate is from the 1/c expansion of (4.5.17), and it’s given by

2
~ —Ta-g) 1+

Vi, = (1-a?) (2 (1-€7) (26" —a(1+67)log(¢) ~2) J log (€)>

(4.5.22)
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The order h? /c term V2 /e of (4.5.18) is given by

iz je = <V}(Z%)/C> . <V}E§L)/BZ vt <V$L)/C> v +c.c., (4.5.23)

where D is given by (4.5.20). The numerator is given by

(Vitse) + Vi) v + Vi) ' = ﬁ (i +3)°) (4.5.24)
with

Vi=4(-1) (a(e1—€)(E*+1)+(1-£%) (6, +€)), (4.5.25)
Va=a (€ +1) (a2 (€ — 1) (1 — @) +a (€5 + 1) (€] — ) +2(1—€)f),

Now to compute Vj, /. and thL Jor We need the e propagator. This is worked out in [35]

using the effective theory for boundary gravitons developed in that paper, and it’s given
by20

(e(z1)€e(22)) = g 2In(1 -¢&) + P& 1,0) +P(&,1,—a)), =€ (4.5.26)

where ®(z, s, a) is the Lerch transcendant 2!

o0 n

B(z,s,0) = ZO (n—zi—ia)s (4.5.28)

Using the e propagator (4.5.26), we can evaluate V}, /. and thL Je» but they are logarithmi-
cally divergent and need to be renormalized. We follow the procedure in [35], and define

the renormalized expectation value of the <V(i) > as follows

hL/C

<Vf(fL)/c>R = (Vi) - <<V§?/C>aﬂwl> (4.5.29)

wW—ow, W—aw,y—yv/ ad

and similarly for <V]5i2) /C>R'
L

20There is a subtlety about the ordering of the e operators in the e two-point function. When

computing Vo, we substitute (e(z1)e(z2)) with the symmetric average of the two different ordering

1 ({e(21)€(22)) + (e(22)€(21))). This procedure gives a result matching the recursion relation.

2lFor s = 1 it is related to a certain incomplete Beta function as

B(z,a,0) = 2°®(z,1,a). (4.5.27)
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Since the result of Vy only depends on z; — 29, we'll set 21 = z and zo = 0. Eventually,

the <V,(;L) /C>R terms are given by

(A2 = (st st () +2) £ 000 s
+ (14 €**) (Hog + Hy — 1 +im — 2loga) + 2 (1 — %)’ log (2 sinh (%)) ;

()~ =) (1 i1 i 2 s ()

L/c
+ (1 +€**) az + e** Fo, (4.5.31)
)~ s = fe

+ 6a2 (1 + ezaZ) <Ha + H, +2log (QSinh (%)) —2loga — g —H'W)
+ 602e™? <]—"1 —4loga —4log (2 sinh (g)) + 4log (2 sinh (%)) + ;) ,

and the <V(i) >R terms are given by

h? /e
<V}(L(;L)/C>R =192 (1 - 6&2)2 <<log (sinh (g)) —log (sinh (%)) +loga + 1) (1—e™%)?
+F3 + 2e** (H_a + H, +2log (2 sinh (%)) + zw)) ) (4.5.33)
<v}§§b)/c>R = 486/ (1 — €7) (1 — €237) (coth (%) (1 - e%) (4.5.34)

+2a (e** + 1) (loga —log <sinh (%)) + log (sinh (g)) + ;)) )

_ 2=2 az)2 9 (E) _ J2az az\2 2oz
>R—2aa (1+e%%) (acoth 3 (1—€e***) +6loga(1+e*)" —e

+6 (1 —e*)? <10g (Sinh (%)) — log (Sinh (%)) + 6;2) —6F3

1 12e0% (H_a + H, + 2log (2 sinh (%)) Fim — B)) . (4.5.35)

(it

6
where we’ve define
Fi=d(e*,1,a)+ P (e, 1,—a)+ P (e_z, l,a) +d (e_z, 1, —a)
Fo=d (e, 1,a) — P (e*,1,—a) — @ (e*Z, l,a) + o (e*Z, 1, —a)
F3=e2d (e%,1,a) + @ (¢°,1, —a) + @ (e7%,1,a) + 2% P (e7%,1,—a)
for notational convenience.

We checked that these results agree with the recursion relation of last subsection by
2
expanding in small?? s = %, z and z. We have also verified that when we take ¢, to the
boundary, we recover the 1/c correction [47] to the heavy-light vacuum block [48].

*2The branch cuts in the various functions in the equations (4.5.30)-(4.5.35) were chosen such that when
they are expanded in small z assuming z > 0 in Mathematica, the result matches that of the recursion
relation. One should be careful when evaluating (4.5.30)-(4.5.35) for z < 0.
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One-Loop Corrections Near the Black Hole Horizon

We would like to see what the semiclassical result and the 1/c corrections computed here

tell us about physics near the Euclidean black hole horizon. For the non-rotating case

2hy 2
C

considered here, the horizon is at r = ry = (which corresponds to y = —+) In

-
this case, the semi-classical result Vj© of equation (4.5.14) written in terms of the (r,tg,0)

(using the coordinate relations (4.5.6)) is given by

2h 1
vie= () — (4.5.36)
2 Ny L
(T: cosh (r40) — 7++ cos (r+tE)>

T

which is the n = 0 terms in the full semiclassical bulk-boundary correltator for a free field
in a BTZ black hole given by the image sum in [82]. So one can see that the semiclassical
result is periodic in ¢g, and it’s smooth at the horizon r = r; (and its dependence on tg
drops out there).

In terms of (y, z, ), the horizon is at y = %, and at this value of y, the % corrections
Vi, je and thL Je to the vacuum block of (Ou|prOL|On) are finite, since their numerators
truncate at order y*, and their denominators are just the same as the denominator of the
semiclassical result V5 ¢, which is also non-singular at this value of y. However, unlike the
semiclassical vacuum block, the functions Vy, /. and V2 o are not periodic in Euclidean time
[47, 50]. This means that the 1/c correction to the bulk-boundary heavy-light correlator
will have a branch point at the Euclidean horizon. So the singularity of these correlators
at the Euclidean horizon arises already in perturbation theory, and does not require non-

perturbative effects [27].

4.6 Discussion

Our primary goal has been to develop an exact bulk reconstruction procedure with very
general gravitational dressings. The motivation was to enable future investigations into
the dressing-dependence of bulk observables, as these ambiguities present a major caveat
when drawing physical conclusions. For example, using our results it should be possible to
determine if the breakdown of bulk locality at short-distances in AdSs [26] persists with a
general class of gravitational dressings. We can also investigate BTZ black hole horizons
[27], though the necessary numerics may be rather formidable. We took the first steps in
this direction in section 4.5. By exploiting the connection between the singularity structure
of CF'T stress-tensor correlators and gravitational dressings, it may be possible to generalize
some of our results to higher dimensions.

Our reconstruction procedure only incorporates effects arising as a mandatory conse-
quence of Virasoro symmetry. With hard work one could add other perturbative inter-
actions, but such methods would likely just reproduce bulk perturbation theory, without
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providing a deeper understanding of quantum gravity. So our methods are limited, as they
are only able to address certain universal features of quantum gravity. Unfortunately, in
the case of quantum gravity it would seem that we must either solve toy models completely,
and then try to argue that they are representative, or solve a universal sector of a general
class of models, and try to argue that the effects from this sector determine the relevant
physics. Given the universal nature of the gravitational force, we believe that the latter
route is a more compelling way to address locality and near-horizon dynamics.

Most work on bulk reconstruction suffers from a nagging conceptual problem. As
physical observers, we do not setup experiments by making reference to the boundary of
spacetime. And defining the bulk by reference to the boundary seems even more perverse
in a cosmological setting. Furthermore, it has been shown that using the boundary as a
reference point leads to fundamental problems, such as bulk fields that do not commute
outside the lightcone [41], even at low-orders in gravitational perturbation theory. Perhaps
a more sensible approach defines observables relative to other objects in spacetime, just
as we define our local reference frame with respect to the earth, solar system, galaxy, and
galactic neighborhood. This also seems more in keeping with interpretations of the Wheeler-
DeWitt equation [39]. We hope to formalize such a definition of local observables in future
work.
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Appendix A

Appendix to Chapter 2

A.1 Technical Details and Minor Results

A.1.1 Fitting

To extract the scaling exponent a we need to fit power-laws to the empirical L(N) for
trained models with IV parameters. For this purpose we simply fit straight lines to log L
vs log N, assuming that the error in log L was independent of N (ie we assumed Gaussian
errors in log L). We fit from the smallest value of N tested until the power-law behavior
breaks down. This point is quite clear visually in most cases, as seen in figures 2.5, A.2, and
2.9. For the case where we had networks with both different widths and different depths
2.5 we only used the networks that performed among the best at each model size (ie we
used points on the ‘convex hull’ in the L vs N plane).

However, to avoid bias we determined the last point to include in the fit in the following
way. We fit a circle (parameterized by its center and radius) to the first n > 3 points in the
log L vs log N plane (starting at N = Npin), and evaluated r(n), the radius of the best-fit
circle for each n. We then chose the value of n that achieved the maximal radius r, as this
is the ‘most linear’ set of points. Finally, we fit a straight line log L = —alog N + b to this
collection of points to determine «.

Note that this provides an alternative way to determine Ny, the largest network in
the power-law scaling region. This was the input for figure A.1, where we show Npyax as a
function of d for teacher/student experiments.

The power-law scaling breaks down in CIFAR10 and other small image datasets due
to overfitting. We do not have a complete understanding of why it breaks down for the
teacher/student experiments, but it seems to be due to a failure of optimization, perhaps
related to numerical precision. We note that the power-law behavior persists to larger model
size and smaller loss with the deeper networks in figure 2.5.
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A.1.2 Teacher/Student Experiments
Network Architectures

Our teacher networks had shape [20,600,600,2] (i.e. 20 dimensional input, two hidden
layers of output dimension 600, and final layer ouput of dimension 2) for experiments
with cross entropy loss (figures 2.5, 2.7 and 2.8), [20, 600, 600, 1] for MSE loss (figure A.2)
and [9, 240, 240, 2] for cross entropy loss with vetted teacher (figure A.3). The teachers are
randomly initialized, with biases set to zero, and weights picked from a gaussian distribution
of mean zero and standard deviation 1/ V'N, where N is the input size of the layer. We
experimented with including random non-zero biases, but did not find that they significantly
alter the behavior of teachers.

For experiments with mean-squared error loss, the teacher and student networks each
outputted a single real value. For experiments using a cross-entropy loss, networks output
two logits, and we computed the cross entropy directly from these teacher outputs (ie we
did not sample discrete values from the teacher, but used its exact output distribution).
For cross-entropy experiments we used students with 2, 3, and 4 hidden layers, and let the
best performing models define the L(N) fits, while for MSE loss we simply used students
with 2 hidden layers.

We ran 10 trials each for cross-entropy and MSE losses, and in each case selected the
ones with the 9 lowest losses. Intrinsic dimension calculations were done using the same 9
networks. For vetted teacher experiments, we took 90 trials and computed the mean of the
loss excluding the 10 worst performing students.

Optimization and LR Schedule

We use the ADAM optimizer [84] with default settings except for the learning rate. In order
to optimize effectively, we scanned over a grid of learning rates, and experimented with
cosine, linear, and step-function learning rate schedules. We ended up using step function
schedules for teacher/student experiments, and a constant learning rate for CIFAR10 and
other image datasets, as these performed roughly as well or better than other choices. We
did not find it necessary to vary the overall learning rate among different network sizes,
but the schedules themselves were important for optimization. Our learning rate schedules
for the various teacher/student experiments in the paper (labeled by associated figures) are
summarized in table A.1.

A.1.3 Vetting Teachers to Increase Intrinsic Dimension

In figure 2.6, the ID is typically smaller than the number of features, especially when the
latter is large. One might worry that this indicates ID measurements are inaccurate. In
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Power-Law Scaling Region vs Intrinsic Dimension (CE) Power-Law Scaling Region vs Intrinsic Dimension (MSE)

° —— 10g(Nmax) = 0.17d + 6.35 —— 10g(Nmax) = 0.2d +5.95 L

Nmax

103 4

2 ¢ 6IntrinSiC D?mensionlo 2 H : ! Glntrinsic gimensioso 2 14
Figure A.1: This figure shows the maximum number of parameters Ny, at which we ob-
serve power-law scaling of L(IV), as a function of the intrinsic dimension, for teacher /student
experiments. This Nyax is determined as described in appendix A.1.1. The left plot uses
cross-entropy loss, while the right uses MSE loss. This plot should be viewed as a more
empirical (but less well understood) alternative to figure 2.2.

Experiment student training steps | batch size | learning rate
(T/S) architecture (ADAM)
(random) MSE: [20,n,n,1] 0-200k 200 0.01
figures 2.6, 2.7, 2.8 | CE: [20,n,n,2] 200-220k 1000 0.01
220-240k 4000 0.001
(vetted) 0-100k 200 0.01
figure A.3 [9,n,n,2] 100-150k 200 0.001
150-170k 200 0.0001

Table A.1:: Architectures and training schedules for Teacher/Student experiments in the
paper, referenced by the figures in which the results are described.
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fact, we believe that this occurs partly because randomly initialized teacher networks do
not typically produce fully generic functions of their inputs.

We can partially remedy this problem by generating a large number of teachers and
vetting them, keeping only those that produce the most complicated and non-linear func-
tions of their inputs. The result is pictured in figure A.3, where we repeat the experiment of
section 2.3.1 with up to 9 features. We see that sufficiently vetted teachers have ID nearly
equal to their feature count, and that the relationship a ~ % continues to hold.

Presumably many vetting procedures could be successfully applied to filter the teacher
networks. To increase the complexity and non-linearity of teachers so that ID would better
match the number of input features, we followed this ad-hoc approach:

1. For a given teacher, we took a random slice along each input coordinate axis (i.e. the
values of the other coordinates are chosen uniformly at random from [-1/2,1/2)). We
performed linear regression on this slice and computed the score( R?, the coefficient of
determination), and took the mean of the scores across coordinate axes. A low score

implies more non-linearity.

2. We repeated this procedure 200 times and computed the mean score of all the trials.
This is the score for the teacher.

3. We iterated over 5000 randomly generated teachers and selected the one with the
minimum score.

A.1.4 CNNs on CIFAR10, MNIST, FMNIST, and SVHN

For CIFAR10 we used the architecture from the tensorflow CNN tutorial [107], and modified
the channel width. The architecture is recorded in table A.2.

The networks were trained for 50 epochs with the ADAM optimizer with default hyper-
parameters. We use 40 iterations of each network and average the loss (on log scale) over
the iterations. Note that we record the test and training loss at the early stopping point
where the test loss reaches its minimum value. These are the results in figure 2.9.

For MNIST [91], fashion MNIST [162], and SVHN [120], we use a slightly smaller
network (3 instead of 4 hidden layers) with architecture shown in table A.3. We used a
smaller network in the hopes of identifying a power-law scaling region without significant

overfitting.

For MNIST and fashion MNIST, we ran each network for 20 trials and took the mean
loss (on log scale). The networks were trained for 50 epochs with the ADAM optimizer
with default hyperparameters. As with CIFAR10, we take the minimum test loss during
training (i.e. early stopping), and also report training loss at this point.
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Figure A.2: This figure shows L(N) with a MSE loss for students (all with 2 hidden layers)
learning from a randomly initialized teacher with 2-19 features. Figure 2.5 shows the results
for cross-entropy loss.

Teacher/Student with CE Loss (Vetted Teacher)

94 =— ID=3.79/a +0.25
—— NumFeatures =4.61/a — 0.3

Dimension

Figure A.3: This figure shows the number of features and ID vs 1/« for vetted teachers.
ID is still smaller than the number of input features, but vetting partially closes the gap.
Compare the slope of 4.61 for number of features vs 1/a here to the left of figure 2.6, where
the slope was 5.48. Slopes for ID vs 1/« are very similar with or without vetting.
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For SVHN, the networks were trained for 5 epochs with both training and additional
datasets used for training (total 604k images), and test dataset (26k images) for testing.
We used default hyperparameters.

A.1.5 Scaling of KL Divergence with Piecewise Linear Logits

4 we take to surround

We assume the logits ¢;(z) are linear in a small region of volume s
the origin, and that the underlying probability distribution f;(x) over k discrete choices is

smooth. The loss in this region is

k
L = Z/ddxfi(x)log
i=1

where log ¢;(z) = ¢;(z) + log (Z?Zl ecj(x)). If we write ¢;(x) = fi(x) 4 0;(x) then as is well
known

fi(z)
o (A1)

k
= dy £.(2) lo 7]2(3:)
L= ;/d fi@)! gfi($)+5i(x)

i 51 X 1 61 X 2
= /ddx;fi(x) (0— fzgx; +3 (szwD +)
k (o 2
~ / ddx;;‘i@f(x)) (A.1.2)

After optimization the linear ¢;(x) will determine a ¢;(x) that is quadratic in z, and so the
4

loss per unit volume will scale as s*, as claimed.

A.2 Review of Intrinsic Dimension Estimation Methods

In this section we review the two nearest neighbor method [10] and explain that it can be
extended to k-nearest neighbors. Then we note that the same analysis derives the maximum
likelihood method [95].

MNIST FMNIST SVHN

—— test 4/a: 5.95 —— test 4/a: 10.67 6x10-1 —— test 4/a: 10.71
—— train 4/a: 12.03

1D:9.92

3x10°  4x10° 6x10° 10 3x10°  4x107 6x10° 10 6x10° 10° 2x10%
Network Size Network Size Network Size

Figure A.4: This shows train and test loss on MNIST, Fashion MNIST, and test loss on
SVHN, along with the exponents and ID measurement.
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Layer Output shape
Conv2D (32,32,n)
MaxPooling2D (16,16,n)
Conv2D (16, 16,2n)
MaxPooling2D (8,8,2n)
Conv2D (6,6,2n)
Dense (64)
Output (10)

Table A.2:: Architecture of the CNN network used for CIFAR10. We chose n in the range
1 < n < 13 to minimize overfitting. All convolutions were 3 x 3 with unit stride, and the
images have 3 colors, so the network has a total of N = 714 + 4640n + 54n? parameters.

Layer Output shape Layer Output shape
Conv2D (28,28, n) Conv2D (32,32,n)
MaxPooling2D (14,14, n) MaxPooling2D (16,16,n)
Conv2D (12,12,n) Conv2D (14,14, n)
MaxPooling2D (6,6,m) MaxPooling2D (7,7,m)
Dense (32) Dense (32)
Output (10) Output (10)

Table A.3:: Architecture of the CNN network used for MNIST and fashion MNIST (left)
and SVHN (right). All convolutions were 3 x 3 with unit stride.
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A.2.1 The Two Nearest Neighbor Method

Assume that points are drawn from a distribution with density p(x) with support on a d-
dimensional manifold in a potentially much higher dimensional ambient space. We will see
that p(x) drops out of our results, assuming that it is constant across the first few nearest
neighbors, so we will drop its explicit z-dependence in what follows.

The probability of finding n points from the dataset in a region with d-dimensional

volume V is Poisson:

pov) = ) v (A.2.1)

To see this, note that in an infinitesimal volume 6V, Py =1 — pdV and P; = pdV, with all
P,~1 = 0. Thus the generating function for P, in a finite volume V can be found by taking
the product of binomial distributions over all §V in V, giving

. R E _ = = (xpv)n —pV
G(x,V)—a%}IBO((l poV') + xpdV') v nzzo o e (A.2.2)

The coefficients of ™ are the P, above.

With this result in hand, we can consider the distribution of nearest-neighbor distances.
Consider some point in the dataset. The probability for its nearest neighbor to be in
[r1,71 + dr] is given by the product of the probability that there are no points in r < 7
times the probability of finding a point in the shell r; < r < r; + dr, which is

P(ry)dr = (dpwdrffldrl) e~ pwart (A.2.3)

where wy is the volume of a unit d-ball. This result easily generalizes to the case where there
are many 7; corresponding to the first & nearest neighbors. For example for two nearest
neighbors we find

P(ri,r)dridry = (pwdd)Qefpwdrgrf_lrg_ldrldrg (A.2.4)
since we are demanding that there are two points on two infinitesimal shells at radii rq, 9
and no points otherwise.

Now we can compute the distribution over nearest neighbor distances, and their ratios.
The TwoNN method [10] is based on the distribution of the ratio us = r2/71, which we can
compute by integrating over ri, 1o while fixing their ratio:

P(u2) = /dT’ldT25 (,uz - :i) (pwad)2ePwars pd—1pd=1

_ dod 97 1 J_
= /drl(pwdd)Qe prapryp2d=1, d=1

d

Ho
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This means that the cumulative distribution for po is

C(u) /”dd -t (A.2.6)

W= —ggdn=1-— 2.
1ot I

This means that we can identify the dimension d by measuring the slope of a linear fit of

log pa vs log(1 — C(uz2)). That’s the TwoNN method, as seen in figure A.5.

A.2.2 Extension to k-Neighbors and MLE

The beauty of the TwoNN method [10] is that it uses very short-distance information, and
so it’s plausible that the density p(x) can be well-approximated as a constant. A down-
side of this method is that it primarily measures the dimension on short scales. This can
be mitigated by applying the method while sampling different numbers of points from the
data distribution, but it’s also easy to validate the TwoNN method by simply using more
neighbors.

Let’s see what happens with three neighbors, and then we will generalize. We can
compute the distribution of uo = ro/71, us = r3/r1, and use it for validation. We have

r T
P(MQ, M3) = /drzé (,uz - 7"?) 6 (,ug — 7“?) (pwdd)36_pwdrg(Tl’l“g’r’g)d_l

3 — d 3d—1,d—1, d—1
- /dﬁ(pwdd) e PRARSTS Py ST g

2d21uél—1
H3
Intuitively, large ps becomes unlikely because it implies that there are few points inside
a large radius, but with fixed us, a larger value of uo is more probable due to the larger
volume at large radius.

We find a nice simplification when we study P(u3) and its cumulative distribution after

Nearest Neighbor ID Measurement Technique (T/S CE) 200 Nearest Neighbor ID Measurement Technique (CIFAR10) Nearest Neighbor ID Measurement Technique (GPT)
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Figure A.5: This figure shows the relationship in equation A.2.16, which we use to deter-
mine the ID using the nearest neighbor method. We display examples using teacher/student
data, CIFAR10, and GPT.
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marginalizing over ps. The probability distribution is

ps o 9d?pd=t 2d
1 K3 K3

The cumulative distribution is then

Clps) = (1 _ 1>2 (A.2.9)

ng
Thus we also find a simple method for identifying d based on us alone, namely

log (1 - C(ug))
4= log 3

(A.2.10)

This directly generalizes the TwoNN; in practice we measure d via a linear fit to the numer-
ator as a function of the denominator in this expression.

Generalizing to k neighbors, the probability distribution for ps,-- -, . is
_ 1w
P(ui) = d* =k — 1)!% (A.2.11)
H,

for p; = r;/r1. This can be used directly for maximum likelihood estimation [95]. If we
maximize log P with respect to d we find
k—1
d= _-— (A.2.12)
(k —1)log g — 355 log 11

In fact, this MLE estimator is biased; the unbiased estimator is [95]

d=E o2 — (A.2.13)
(k —1)log pg — 32525 log 1

In practice, we can compute the RHS for all points in the manifold (after fixing some value
for the number of neighbors k) and compute the mean. We display a histogram of the
MLE estimates over many points in the data manifold for two examples in figure A.6. The
variance provides some measure of the errors. Alternatively, we could directly measure log P
and evaluate the likelihood as a function of d. The variance of this estimator was studied
in [95]. They also found numerically that it can be useful to tune of the value of k, as very
small k£ overestimates ID while large k underestimates ID.

We can use these results to extend the TwoNN method in a simple way to general k.
Marginalizing over all but uy, we find that

(k—1)d ( d_ 1>’f—1

Plug) = ~—pyarr (1 (A.2.14)
My
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which leads to the cumulative distribution
1 k—1
C(ur) = <1 — d) (A.2.15)
My,

and the formula

1
log (1 - C(u)7)
d= (A.2.16)
log pu,

for the kth nearest neighbor. This can be used as a cross-check for TwoNN. For examples of
the relationship between the numerator and denominator with various k, and the relevant
fits, see figure A.5. Just as with MLE, we find empirically that larger k leads to smaller
estimates of ID (see figure A.10).

A.3 Examples and Tests of Intrinsic Dimension Estimation

The MLE and TwoNN methods have been tested and demonstrated by their authors [95,
10]. We conduct a few tests with synthetic data. Then we provide some other examples
of the ID measurement process, including errors, using our student/teacher, CIFAR10, and
language data.

A.3.1 Tests on Synthetic Data

As a baseline test, we evaluate the TwoNN and MLE methods on synthetic datasets with
dimensions ranging from 2 to 128, with results in figure A.7. We display synthetic data on
the hypercube [0, 1]¢ as well as a d-torus S! x S x --- x S! embedded in 2d dimensions (in
the simplest way, by embedding each circle factor in 2 Euclidean dimensions).

T/S CE: MLE ID estimate (histogram) CIFAR10: MLE ID estimate (histogram) GPT: MLE ID (last token, prefinal layer attention)

= D=845:14 = D=1429.12

80 90 100 110 120 130 140 150

Figure A.6: These figures show a histogram of the results for d from MLE (with 100
neighbors) among all of the points used for measurement. On the left we have a teacher
with 10 features, in the middle we have the n = 5 CNN trained on CIFAR10, while on
the right we have the GPT model’s prefinal attention output for the last token in the text
sequence. Smaller numbers of neighbors typically give larger IDs.
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We notice that 1) results are more accurate for smaller d, with quite reliable results
for the TwoNN method for d < 20, 2) at large d all methods tend to underestimate the
true ID, but 3) its certainly possible to both under and over-estimate the true ID, and
measurements are not necessarily even monotonic with the number of points used for the
measurement. We also see that for the torus the ID estimates are reasonably accurate even
for dimensions ~ 100, though there’s certainly no guarantee that this will hold for unknown
data manifolds.

As other authors have noted [22], the ID is under-estimated on the hypercube, likely
because cubes have sharp boundaries and corners which reduce the number of neighbors.
Similarly, we believe that the ID is often over-estimated for the torus because (due to the
curvature of the circles in the embedding space) points are often closer together than they
would be in flat Euclidean space. We have also seen as shown in [95] that for small & the
MLE method typically overestimates ID. The NN method seems a bit less sensitive to k as
compared to MLE.

A.3.2 Tests on Neural Network Activations

In all cases we measure ID from fully trained networks, and we always use students (not
teachers) in that context. There are a large variety of potential statistical and systematic
errors associated with these measurements:

e Variation among IDs measured from students of the same size and trained with the
same teacher network (or dataset), but with different initialization (see figure A.9).

e Variation of ID measurements among random groups of points sampled from the same
data manifold

o Dependence of ID on the number of points used (and so the overall density) from
the data manifold. More points samples shorter distance scales on the manifold. See
figure A.8.

o Dependence of ID on how many nearest neighbor points are used, either for NN (see
figure A.10) or MLE type estimation.

e Variation of ID from among points in different locations on the data data manifold
(we show a histogram of results from MLE in figure A.6)

o Dataset specific distinctions, eg from the same or different classes in an image classifier,
or from the same or different text sequences in a language model (discussed in section
2.3.4)

o Dependence of ID measurements on the layer studied (see figures 2.10 and A.8)
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Figure A.7: Here we show measured ID as a function of the number of points in the
dataset used for the measurement, for both the TwoNN (top) and MLE (bottom) methods
(with k = 100). The left plots show a uniform distribution in the hypercube [0,1]¢, while
the plot on the right show a d-torus embedded in 2d dimensions.

Figure A.8: Variation of Intrinsic Dimension(ID)
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student network (left), for the last layer of an n = 5 CNN trained on CIFAR10 (middle),
and also for the last layer and last token of GPT (right). The student is of size [15, 28, 28, 2]
and was trained on teacher with 15 features.
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Variance in ID Among Different Students with 10 features

Variance in ID Among Different Students with 15 features
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Figure A.9: Variation of Intrinsic Dimension (ID) across network sizes for a single teacher.
The figure on the left shows number of inputs features = 10 and the one on the right has
15. Each point on either figure is one student. All students on each figure are trained on
the same teacher, but the teacher for the left and right figures are different.
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Figure A.10: Variation of Intrinsic Dimension (ID) with number of neighbors used in
the algorithm. The figure on the left shows a student of size [20,25,25,2] trained on a
teacher with 10 features, while the one on the right has student shape [15, 28, 28, 2] trained

on teacher with 15 features.
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We provide some brief information about many of these sources of variation in the referenced
plots. In most cases we find that the variation of the ID is small as long as it is measured
with sufficiently many vectors. It would be interesting obtain a more precise theoretical
and experimental characterization of these methods in the future.

But as evidenced by the synthetic examples in figure A.7, this does not lead us to
believe that the IDs are fully trustworthy, especially when they are measured to be large.
Though the apparent statistical errors in ID measurements may seem small, there may be
systematic errors that are more difficult to observe.

It’s conceivable that deficiencies in ID measurement actually work to the advantage
of the theory relating d and 4/a. For example, d tends to be underestimated when the
data manifold has a boundary (or simply less support in some region), but this may also
correlate with regions of the manifold where there really is less data, and these regions
do not need to be modeled as precisely to achieve a good test loss. But we leave a more
thorough investigation of such subtleties to future work.
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Appendix to Chapter 3

B.1 Experimental setup

Figure 3.1 (top-left) Experiments are done using Neural Tangents [122] based on JAX [18].
All experiment except denoted as (CNN), use 3-layer, width-8 fully-connected networks.
CNN architecture used is Myrtle-5 network [140] with 8 channels. Relu activation function
with critical initialization [138, 92, 163] was used. Unless specified softmax-cross-entropy
loss was used. We performed full-batch gradient descent update for all dataset sizes without
L2 regularization. 20 different training data sampling seed was averaged for each point. For
fully-connected network input pooling of size 4 was performed for CIFAR-10/100 dataset
and pooling of size 2 was performed for MNIST and Fashion-MNIST dataset. This was to
reduce number of parameters in the input layer (# of pixels x width) which can be quite
large even for small width networks.

Figure 3.1 (top-right) All experiments were performed using a Flax [66] implemen-
tation of Wide ResNet 28-10 [166], and performed using the Caliban experiment manager
[132]. Models were trained for 78125 total steps with a cosine learning rate decay [100] and
an augmentation policy consisting of random flips and crops. We report final loss, though
we found no qualitative difference between using final loss, best loss, final accuracy or best
accuracy (see Figure B.1).

Figure 3.1 (bottom-left) The setup was identical to Figure 1 (top-right) except that
the model considered was a depth 10 residual network with varying width.

Figure 3.1 (bottom-right) Experiments are done using Neural Tangents. All exper-
iments use 100 training samples and two-hidden layer fully-connected networks of varying
width (ranging from w = 64 to W = 11, 585) with Relu nonlinearities unless specified as Erf.
Full-batch gradient descent and cross-entropy loss were used unless specified as MSE, and
the figure shows curves from a random assortment of training times ranging from 100 to 500
steps (equivalently, epochs). Training was done with learning rates small enough so as to
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avoid catapult dynamics [97] and no L2 regularization; in such a setting, the infinite-width
learning dynamics is known to be equivalent to that of linearized models [94]. Consequently,
for each random initialization of the parameters, the test loss of the finite-width linearized
model was additionally computed in the identical training setting. This value approximates
the limiting behavior L(oco) known theoretically and is subtracted off from the final test loss
of the (nonlinear) neural network before averaging over 50 random initializations to yield
each of the individual data points in the figure.

CIFAR-10 CIFAR-100
2 2 ® final loss 2 2 e ® final loss
A best loss 2 A best loss
.d
0 b & final error s 2 ¢ final error
1074 - [ O  best error O  best error
' 2 i 2a

. e 107w & =,

* o ) . 2
LY
* !.
10714 ,Q L
e e
», »

L

* *
102 103 10 102 108 10
SVHN FashionMNIST

final loss final loss

best loss best loss
final error final error
best error best error

10714
101
103 104 10° 103 104

Figure B.1: Alternate metrics and stopping conditions We find similar scaling behavior for
both the loss and error, and for final and best (early stopped) metrics.

B.1.1 Deep teacher-student models

The teacher-student scaling with dataset size (figure B.2) was performed with fully-connected
teacher and student networks with two hidden layers and widths 96 and 192, respectively,
using PyTorch [125]. The inputs were random vectors sampled uniformly from a hypercube
of dimension d = 2,3,---,9. To mitigate noise, we ran the experiment on eight different
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Teacher/Student Dataset Size
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Figure B.2: This figure shows scaling trends of MSE loss with dataset size for teacher/student
models. The exponents extracted from these fits and their associated input-space dimensionalities
are shown in figure 3.2.

random seeds, fixing the random seed for the teacher and student as we scanned over dataset
sizes. We also used a fixed test dataset, and a fixed training set, which was sub-sampled for
the experiments with smaller D. The student networks were trained using MSE loss and
Adam optimizer with a maximum learning rate of 3 x 1073, a cosine learning rate decay, and
a batch size of 64, and 40,000 steps of training. The test losses were measured with early
stopping. We combine test losses from different random seeds by averaging the logarithm
of the loss from each seed.

In our experiments, we always use inputs that are uniformly sampled from a d-dimensional
hypercube, following the setup of [141]. They also utilized several intrisic dimension (ID)
estimation methods and found the estimates were close to the input dimension, so we sim-
ply use the latter for comparisons. For the dataset size scans we used randomly initialized
teachers with width 96, and students with width 192. We found similar results with other
network sizes.

The final scaling exponents and input dimensions are show in the bottom of figure 3.2.
We used the same experiments for the top of that figure, interpolating the behavior of both
teacher and a set of students between two fixed training points. The students only differed
by the size of their training sets, but had the same random seeds and were trained in the
same way. In that figure the input space dimension was four.

Finally, we also used a similar setup to study variance-limited exponents and scaling.
In that case we used much smaller models, with 16-dimensional hidden layers, and a corre-
spondingly larger learning rate. We then studied scaling with D again, with results pictured
in figure 3.1.
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B.1.2 CNN architecture for resolution-limited scaling

Figure 3.2 includes data from CNN architectures trained on image datasets. The archi-
tectures are summarized in Table B.1. We used Adam optimizer for training, with cross-
entropy loss. Each network was trained for long enough to achieve either a clear minimum
or a plateau in test loss. Specifically, CIFAR10, MNIST and fashion MNIST were trained
for 50 epochs, CIFAR100 was trained for 100 epochs and SVHN was trained for 10 epochs.
The default keras training parameters were used. In case of SVHN we included the ad-
ditional images as training data. We averaged (in log space) over 20 runs for CIFAR100
and CIFARI10, 16 runs for MNIST, 12 runs for fashion MNIST, and 5 runs for SVHN. The
results of these experiments are shown in figure B.3.

The measurement of input-space dimensionality for these experiemnts was done using
the nearest-neighbour algorithm, described in detail in appendix B and C in [141]. We used
2, 3 and 4 nearest neighbors and averaged over the three.

B.1.3 Teacher-student experiment for scaling of loss with model size

We replicated the teacher-student setup in [141] to demonstrate the scaling of loss with
model size. The resulting variation of —4/ap with input-space dimensionality is shown in
figure B.4. In our implementation we averaged (in log space) over 15 iterations, with a fixed,
randomly generated teacher.

B.2 Effect of aspect ratio on scaling exponents

We trained Wide ResNet architectures of various widths and depths on CIFAR-10 accross
dataset sizes. We found that the effect of depth on dataset scaling was mild for the range
studied, while the effect of width impacted the scaling behavior up until a saturating width,
after which the scaling behavior fixed. See Figure B.5.

B.3 Proof of Theorems 1 and 2

In this section we detail the proof of Theorems 1 and 2. The key observation is to make use
of the fact that nearest neighbor distances for D points sampled i.i.d. from a d-dimensional
manifold have mean Ep , [|z — #|] = O (D~1/9), where # is the nearest neighbor of = and
the expectation is the mean over data-points and draws of the dataset see e.g. [95].

The theorem statements are copied for convenience. In the main, in an abuse of nota-
tion, we used L(f) to indicate the value of the test loss as a function of the network f, and
L(D) to indicate the test loss averaged over the population, draws of the dataset, model
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CIFAR10: Loss scaling with Dataset Size

FashionMNIST: Loss scaling with Dataset Size
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Figure B.3: This figure shows scaling trends of CE loss with dataset size for various image datasets.
The exponents extracted from these fits and their associated input-space dimensionalities are shown

in figure 3.2.
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Figure B.4: This figure shows the variation of ap with the input-space dimension. The exponent
ap is the scaling exponent of loss with model size for Teacher-student setup.
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CIFAR-10 varying width (d=28)
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Figure B.5: Effect of aspect ratio on dataset scaling We find that for WRN-d-k trained on
CIFAR-10, varying depth from 10 to 40 has a relatively mild effect on scaling behavior, while varying
the width multiplier, &, from 1 to 12 has a more noticeable effect, up until a saturating width.

initializations and training. To be more explicit below, we will use the notation ¢(f(x)) to
indicate the test loss for a single network evaluated at single test point.

Theorem 1. Let {(f), f and F be Lipschitz with constants K, K¢, and Kr and {(F) =
0. Further let D be a training dataset of size D sampled i.i.d from Mg and let f(x) =
F(z), Yz € D then L(D) = O (Kpmax(Ky, Kr)D~Y4).

Proof. Consider a network trained on a particular draw of the training data. For each
training point, x, let & denote the neighboring training data point. Then by the above
Lipschitz assumptions and the vanishing of the loss on the true target, we have ¢(f(z)) <
Kp|f(xz) = F(z)| < Kr (Ky + Kr) | — 2|. With this, the average test loss is bounded as

L(D) < Ky (Kf+ K#)Epg ||z — 2] = O (KLmax(Kf, K;)D‘l/d) . (B.3.1)

In the last equality, we used the above mentioned scaling of nearest neighbor distances. [

Theorem 2. Let ((f), f and F be Lipschitz with constants K, K¢, and Kx. Further let
f(z) = F(x) for P points sampled i.i.d from Mg then L(P) = O (Kpmax(Ky, K;)P_l/d).

Proof. Denote by P the P points, z, for which f(z) = F(z).
denote the closest point in P, £ = argminp (| — z|). Adopting this notation, the result
U

For each test point x let &

follows by the same argument as Theorem 1.

B.4 Random feature models

Here we present random feature models in more detail. We begin by reviewing exact

expressions for the loss. We then go onto derive its asymptotic properties. We again
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consider training a model f(x) = Ele 0, fu(x), where f, are drawn from some larger pool
of features, {Far}, fu(x) = 25—, Purt Far ().

Note, if {Fa(x)} form a complete set of functions over the data distribution, than
any target function, y(x), can be expressed as y = 254:1 war Fpr(z). The extra constraint
in a teacher-student model is specifying the distribution of the wjy;. The variance-limited
scaling goes through with or without the teacher-student assumption, however it is crucial
for analysing the variance-limited behavior.

As in Section 3.2.3 we consider models with weights initialized to zero and trained to
convergence with mean squared error loss.

1 D
Ltrain = ﬁ ; (f(xa) - ya)2 . (B41)

The data and feature second moments play a central role in our analysis. We introduce the
notation,

D
C=E, [F@)F(@)], C=—=Y F)F (z), C=PCPT, C=PCPT.

K@) = 5T @), K=K

Dtrain

(B.4.2)

Dtrain

Here the script notation indicates the full feature space while the block letters are re-
stricted to the student features. The bar represents restriction to the training dataset.
We will also indicate kernels with one index in the training set as 16(33) = K(z,24=1...D)
and I?(m) = K(z,x4=1..p). After this notation spree, the test loss can be written for
under-parameterized models, P < D as

1 o _ I
L(D,P) = 55Ep [Tr (C +CPTC~'cCPC — 2cPTC~1PC)] . (B.4.3)
and for over-parameterized models (at the unique minimum found by GD, SGD, or projected
Newton’s method),

L(D,P) = %Ew [K(z,2) + R@)T KRR R(@) — 2R (@) KK(@)] . (BAY)
Here the expectation Ep [e] is an expectation with respect to iid draws of a dataset of
size D from the input distribution, while E, [e] is an ordinary expectation over the input
distribution. Note, expression (B.4.3) is also valid for over-parameterized models and (B.4.4)
is valid for under-parameterized models if the inverses are replaces with the Moore-Penrose
pseudo-inverse. Also note, the two expressions can be related by echanging the projections
onto finite features with the projection onto the training dataset and the sums of teacher
features with the expectation over the data manifold. This realizes the duality between
dataset and features discussed above.
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B.4.1 Asymptotic expressions

We are interested in (B.4.3) and (B.4.4) in the limits of large P and D.

Variance-limited scaling We begin with the under-parameterized case. In the limit of
lots of data the sample estimate of the feature feature second moment matrix, C, approaches
the true second moment matrix, C. Explicitly, if we define the difference, 6C by C = C + 6C.
We have

Ep [6C] = 0
Ep [6Cry Ny 0Caty v, | = % (Ey [Fary () FNy (2) Faiy (2) Fivy (2)] = Cory vy Casvy) - (BA4.5)

Ep [5CM1N1 .- '5CMnNn] =0 (DiZ) Vn > 2.
The key takeaway from (B.4.5) is that the dependence on D is manifest.

Using these expressions in (B.4.3) yields.
1
L(D,P) = 55 Tr (c—cpfctpe)

1

P
+ ﬁ Z 1—']\/[1]\/1]\42]\[2 [5M1M2 (PTC_lp)N1N2 + (C_1PC2PT0_1)M1MZC]§11N2

My 2Ny 2=1
~2(CPTCT'P) yyy, (PTCT'P) | O (D7)
(B.4.6)
Here we have introduced the notation, Ths, nya,N, = Ex [Ear (2) En, () Far, () F, ()]

As above, defining

1
L(P):= lim L(D,P)= < Tr (c—-crPfctpre) . (B.4.7)

we see that though L(D, P) — L(P) is a somewhat cumbersome quantity to compute, in-
volving the average of a quartic tensor over the data distribution, its dependence on D is
simple.

For the over-parameterized case, we can similarly expand (B.4.4) using K = K + K.
With fluctuations satisfying,

Ep [6K] = 0

Ep [51(:&1516]6&262] = % (EP [f,u(xlll)f,u(xh)fu(xaz)fu(xbz)] - lca1bllcazb2) (B'4'8)
Ep [6Kayar * 0Kapa,) = O (P7%) Vn > 2.

This gives the expansion
1 — — —
L(D, P) = By, p [K(e,2) - K(2)T K 1K) + 0P, (B.4.9)
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and

fmuﬂnmag—ﬁuFKAK@). (B.4.10)

Resolution-limited scaling We now move onto studying the parameter scaling of L(P)
and dataset scaling of L(D). We explicitly analyse the dataset scaling of L(D), with the
parameter scaling following via the dataset parameter duality.

Much work has been devoted to evaluating the expression, (B.4.10) [158, 104, 143]. One
approach is to use the replica trick — a tool originating in the study of disordered systems
which computes the expectation of a logarithm of a random variable via simpler moment
contributions and analyticity assumption [124]. The replica trick has a long history as a
technique to study the generalization properties of kernel methods [142, 106, 105, 151, 32,
54, 17]. We will most closely follow the work of [23] who use the replica method to derive
an expression for the test loss of linear feature models in terms of the eigenvalues of the
kernel C and @, the coefficient vector of the target labels in terms of the model features.

2

K )\Z'CDQ
L(D) = g
(D) 1—WZ(R+D)\-)2

”:ZIHDA 7= Z /i—f—D/\

This is the ridge-less, noise-free limit of equation (4) of [23]. Here we analyze the asymptotic

(B.4.11)

behavior of these expressions for eigenvalues satisfying a power-law decay, \; = i~ (1+ex)
and for targets coming from a teacher-student setup, w ~ N(0,1/5).

To begin, we note that for teacher-student models in the limit of many features, the
overlap coefficients @ are equal to the teacher weights, up to a rotation w; = O;prwpr. As
we are choosing an isotropic Gaussian initialization, we are insensitive to this rotation and,
in particular, E,, [0._122] =1/8. See Figure B.8 for empirical support of the average constancy
of (; for the teacher-student setting and contrast with realistic labels.

With this simplification, we now compute the asymptotic scaling of (B.4.11) by approx-
imating the sums with integrals and expanding the resulting expressions in large D. We
use the identities:

S —n(1+a) r (n - L) 1 —-D
/ dx xD (Tta))™ =K " o 2F1 <m, n — ﬁ, n + 1 _C: 5 )
- a a K
1 (k4 Da(Fe) (1+a)l (n+ %)
oFy (a,b,c,—y) <y + By P+ ...,
(B.4.12)

Here 5 F} is the hypergeometric function and the second line gives its asymptotic form at
large y. B is a constant which does not effect the asymptotic scaling.
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Figure B.6: Duality between dataset size vs feature number in pretrained fea-
tures Using pretrained embedding features of EfficientNet-B5 [148] for different levels of
regularization, we see that loss as function of dataset size or loss as a function of the feature
dimension track each other both for small regularization (left) and for tuned regularization
(right). Note that regularization strength with trained-feature kernels can be mapped to
inverse training time [6, 93]. Thus (left) corresponds to long training time and exhibits
double descent behavior, while (right) corresponds to optimal early stopping.

Using these relations yields
ko D7 yoc DY, and L(D) o DT (B.4.13)

as promised. Here we have dropped sub-leading terms at large D. Scaling behavior for
parameter scaling L(P) follow via the dataset parameter duality.

B.4.2 Duality beyond asymptotics

Expressions (B.4.3) and (B.4.4) are related by changing projections onto finite feature set,
and finite dataset even without taking any asymptotic limits. We thus expect the depen-
dence of test loss on parameter count and dataset size to be related quite generally in linear
feature models. See Section B.5 for further details.

B.5 Learned Features

In this section, we consider linear models with features coming from pretrained neural
networks. Such features are useful for transfer learning applications (e.g. [86, 85]). In Fig-
ures B.6 and B.7, we take pretrained embedding features from an EfficientNet-B5 model [148]
using TF hub!. The EfficientNet model is pretrained using the ImageNet dataset with input
image size of (456,456). To extract features for the (32,32) CIFAR-10 images, we use bilin-
ear resizing. We then train a linear classifier on top of the penultimate pretrained features.

"https:/ /www.tensorflow.org/hub
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Figure B.7: Four scaling regimes exhibited by pretrained embedding features
Using pretrained embedding features of EfficientNet-B5 [148] for fixed low regularization
(left) and tuned regularization (right), we can identify four regimes of scaling using real
CIFAR-10 labels.

To explore the effect feature size, P, and dataset size D, we randomly subset the feature
dimension and training dataset size and average over 5 random seeds. Prediction on test
points are obtained as a kernel ridge regression problem with linear kernel. We note that
the regularization ridge parameter can be mapped to an inverse early-stopping time [6, 93]
of a corresponding ridgeless model trained via gradient descent. Inference with low regu-
larization parameter denotes training for long time while tuned regularization parameter is
equivalent to optimal early stopping.

In Figure B.7 we see evidence of all four scaling regimes for low regularization (left four)
and optimal regularization (right four). We speculate that the deviation from the predicted
variance-limited exponent ap = ap = 1 for the case of fixed low regularization (late time)
is possibly due to the double descent resonance at D = P which interferes with the power
law fit.

In Figure B.6, we observe the duality between dataset size D (solid) and feature size
P (dashed) — the loss as a function of the number of features is identical to the loss as
function of dataset size for both the optimal loss (tuned regularization) or late time loss
(low regularization).

In Figure B.8, we also compare properties of random features (using the infinite-width
limit) and learned features from trained WRN 28-10 models. We note that teacher-student
models, where the feature class matches the target function and ordinary, fully trained
models on real data (Figure 3.1), have significantly larger exponents than models with fixed
features and realistic targets.

The measured @w; — the coeflicient of the task labels under the i-th feature (B.4.11)
are approximately constant as function of index 4 for all teacher-student settings. However
for real targets, w; are only constant for the well-performing Myrtle-10 and WRN trained

118



APPENDIX B. APPENDIX TO CHAPTER 3

features (last two columns).

FC CNN-VEC Myrtle-10 WRN pretrained
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Figure B.8: Loss on the teacher targets scale better than real targets for both
untrained and trained features The first three columns are infinite width kernels while
the last column is a kernel built out of features from the penultimate layer of pretrained
WRN 28-10 models on CIFAR-10. The first row is the loss as a function of dataset size
D for teacher-student targets vs real targets. The observed dataset scaling exponent is
denoted in the legend. The second row is the normalized partial sum of kernel eigenvalues.
The partial sum’s scaling exponent is measured to capture the effect of the finite dataset
size when empirical ag is close to zero. The third row shows @; for teacher-student and
real target compared against the kernel eigenvalue decay. We see the teacher-student w; are
approximately constant.
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Layer Width Layer Width
CNN window (3, 3) 50 CNN window (3, 3) 50
2D Max Pooling (2, 2) 2D Max Pooling (2, 2)
CNN window (3, 3) 100 CNN window (3,3) 100
2D Max Pooling (2, 2) 2D Max Pooling (2, 2)
CNN window (3, 3) 100 CNN window (3, 3) 200
Dense 64 Dense 256
Dense 10 Dense 100
Layer Width
CNN window (3, 3) 64
2D Max Pooling (2, 2)
CNN window (3, 3) 64
2D Max Pooling (2, 2)
Dense 128
Dense 10

Table B.1:: CNN architectures for CIFAR10, MNIST, Fashion MNIST (left), CIFAR100 (center)
and SVHN (right)
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Appendix C

Appendix to Chapter 4

C.1 Bulk Primary Conditions as Mirage Translations

Bulk operators must leave an imprint in boundary correlators representing their conserved
charges and energies. This imprint manifests as singularities in correlators involving con-
served currents J(z) (see section 4.2.3) or the stress tensor 7'(z). In this section we develop
some formalism for displacing the singularities associated with local charge or energy in a
CFTs. This will allow us to alter the ‘gravitational dressing’ of bulk operators. We will
also identify an alternative explanation for the bulk primary condition [8]. In appendix
C.1.2 we provide a review of the singularity structure of T'(z) correlators with CEFT primary
operators as derived from the bulk.

C.1.1 Mirage Translations

In a translation-invariant theory such as a CFT, we use the momentum generator P, to
move local operators around. In a CFT5 this means that

O(z,2) = L1+ 0(0)e L1721 (C.1.1)

since L_q, L_; are the holomorphic and anti-holomorphic momentum generators.

Now let us assume that the CFT has a holomorphic U(1) current J(z). Correlators
with the current such as

(J(2)0 (2, )0(0)) = g—> ! (C.1.2)

(z _ 21)21 »2h z2h

have singularities in z; when J collides with charged operators, which indicate the presence
of charge localized at 0 and z. We will pose the following question: can we find an operator
that moves local charge without moving the associated primary operators? Or equivalently,
can we move the primary operators while leaving its charge in place?
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We can sharpen these questions into precise criteria for correlators. We would like to

find a modified translation operator Gy, 4(2f) that can appear in correlators as’!

(O1(2)J(21) -+ - I (21) [Gg (1) O(0)]) (C.1.3)

We wish to choose G, 4 so that Of(z,z) only has an OPE singularity with [G}, 4(z)O(0)]
when z — z; vanish, but the currents J(z;) have OPE singularities with [G}, 4(2£)O(0)] when
zj — 0. So the non-local object [G}, ;O] behaves like a mirage, present at both 0 and zy.

Conventional translation operators automatically satisfy the first condition. They also
satisfy the second condition when the charge of O is ¢ = 0, suggesting that Gj o(z¢,0) =

e*rL=1. So let us modify the translation generator and define

o Zn
Ghalzf) =Y T (C.1.4)

n=0
where we have J_,, = L™, +O(q), so that J_,, implicitly depends on h and g. Our criterion
require an OPE
q
J(21) [Ghq(2)O(0)] = o [Gh,q(25,0)0(0)] + - -- (C.1.5)

where the ellipsis denotes finite terms, so that we are demanding that the only singularity
is a simple pole at z; = 0. This condition will automatically be satisfied if

[, T-nO(0)] =0 forall m>1 (C.1.6)

and for any n. These conditions uniquely determine [J_,, up to an overall factor. These
overall factors will be fixed as in equation (C.1.4) by the requirement that G 4(zf) acts on
O as a conventional translation in its two-point function with OT.

We can repeat this exercise and replace charge with energy-momentum, and J(z) with
the CFTy energy-momentum tensor 7'(z). In that case, we could write

Gu(z) =Y Fr, (C.1.7)

where £_,, implicitly depends on the dimension h of the primary O to which we are applying
Gh.

We must have £_; = L_; simply because there are no other level-one combinations of
Virasoro generators This means that the OPE T'(z1) [Gx(2¢)O(0)] necessarily contains a
third-order pole - g but it needn’t have any higher order singularities. The absence of any
further smgularltles at z1 — 0 or anywhere else in the complex plane implies that the £_,,
must satisfy the bulk primary conditions

[Lin, L_,0(0)] =0 forall m >2, (C.1.8)

We are implicitly assuming we can separate z; and w; from 0 and z; and perform radial quantization
about the non-local object [Gh,qO].
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which were previously discovered in the context of bulk reconstruction. Here we see them
appearing in the answer to a question concerning the CFT alone.

C.1.2 Singularity Structure of (7T'(z)) from Einstein’s Equations

In this section, we generalize the discussion of section 4.2.3 to gravity, showing how Ein-
stein’s equations in the presence of a massive source on the boundary dictate the singularity
structure of correlators with the CFT stress tensor. This is elementary, as in essence it
amounts to Gauss’s law for AdSs3 gravity [11]. But we review the argument to emphasize
the connection between gravitational dressing and singularities.

We wish to establish that the OPE of a scalar primary with the CFT stress tensor
has Z— singularity by using the bulk equations of motion. A scalar primary inserted at the
origin will create a scalar particle propagating in the bulk. We assume that the particle is
sufficiently heavy to model its wavefunction with a worldline.

dr?+4r2d#?, the only non-vanishing

In global AdS3 with metric ds® = (r* + 1) dt3,+ =
component of the bulk energy-momentum tensor of this particle is

T = —6(r), (C.1.9)

where we denote the bulk energy-momentum tensor with a subscript “B” to avoid confu-
sion (T, T will still be the boundary bulk energy-momentum tensor). We are interested in

describing the above particle in Poincare patch ds? W The coordinate maps that
connect these two metrics are
te tp+if tg—if
e re re
yzi7 2277 5:7 (CllO)
2 +1 2 +1 2 +1

The trajectory of the particle, which is simply r = 0 in the global coordinates, is corre-
sponding to (y, z,2z) = (e'#,0,0). Since we want to study the singularity of the boundary
stress tensor T'(z) as it approaches the source, we need to localize to a small neighborhood
around r = 0, that is, we’ll take the limit z,Z — 0 in the following calculations. The
full backreacted metric will take the form of equation (4.3.2), where here we will interpret
T and T as components of a classical gravitational field. The delta function in the bulk
energy-momentum tensor (C.1.9) can be transformed to the Poincare patch via

Loy - La% 7) (C.1.11)
2mr lg]

where the Jacobian accounts for y = e at » = 0. Thus, the covariant bulk energy-momentum
tensor in Poincare patch will be given by
VBV

Th = 752 (2, 2) (C.1.12)

M B gag y/Ig]
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where the velocity of the particle following a geodesic is v* = (7,%,2) = (y,2,2) with
constant r and 6. We’'ll assume T (z) to be more singular than % and similarly for T (Z).
In the small z,z limit, we have /|g| ~ 187;# and vavﬁgag = 363/2(%”. The resulting
simplified form of the stress tensor is

" mctoty?

T o VY 52, 2 C.1.13
B~ Gisyioarere ) ( )

We apply the same limit to the LHS of Einstein equation to find the yz component to be

. . 30T
GV — gV ——— . C.1.14
54y3T2T? ( )
So the yz component of the Einstein’s equation G* — g"” = 8rGNTE" is
9T = " 62 (2, 7), (C.1.15)
z
where we’ve used Gy = % So we find
m
T()=55 (C.1.16)

where we’ve used 82% = 702 (2,%). Similarly, from the yz component of the Einstein’s

m_
272"

satisfied once we substitute these solutions for T (z) and T (Z).

equation, we can get T (2) = Other components of the Einstein’s equation are trivially

So in the large mass approximation m =~ 2h we can conclude that T = Z% in the
presence of a source localized at the origin. Bulk fields must be leave a similar imprint on
the boundary T correlators.

C.2 Solving the Charged Bulk Primary Conditions

In this appendix we solve the charged bulk primary conditions for the operators J_,, first
exactly for the first few n in appendix C.2.1, and then in appendix C.2.2, we study the large
k limit and obtain all the terms at order 1/k in J_,, for all n.

C.2.1 Exact Solutions

We’ll expand the bulk charged field as

ST B0 (n7), with = D
b (y,z,2) = Zy A T-nL" 10 (z,2), with A\, = i (2h), (C.2.1)

n=0

where we’ve factored out A, in ¢ for later convenience. Now our task is to solve for J_,s,
which satisfies the following two conditions

InT-nO =0, form>1,
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LiJ-,0 =nl(2h), O, (C.2.2)

where the first one is simply the bulk-primary condition (4.2.16), and the second one just is

to ensure that ¢ has the correct bulk-boundary propagator with O(w, w), i.e. (¢(y, z,2)O(w,w)) =
2h
———2———~) . One can also understand the second one as giving a normalization con-
Y2 +(z—w)(z-w)

dition for J_,. It can be shown that the above two conditions uniquely fix J_,,.

At each level n, we simply write J_,O as a sum over all possible level n descendant
operators with unknown coefficients, and use the above equations to fix the coefficients.
There will be equal number of unknown coefficients and independent equations at each
level n. The solutions for n up to 4 are given by

1 q
J-1 = & (L—l - %J—1> ,

hk

1 s g 7
2h(2h+1) k T 2R(2h+1) k2
1

‘73:1_ 6hZ+6htl ¢ | 3 _qi _ 1 4

St D)(2ht]) k T Th(hFD) k2 Th(hF1)(2htD) k2

15— U (2 s 437 0L+ 3L )+ 5L (T Ty - T AT L < 3

X _I_E( —3+3J ol 1 +3J1 _1)+ﬁ(*2 -1+ Jada 71)—5_1 ;
and
B 1

T4 = (16h3+36h2+22h+3)q> (2412 +36h+11)¢* (4h+3)¢b e

T SR(2h+3) 22 +3ht Dk T Th(2h+3) @RI A3h4 R 2h(2h13) (2R +3ha DR | Th(2ha3) Rt DR

x [L‘i L= T 6T 8T Ly + 6T 517 + 4T 413))

k
2
+ % (8J_3J_1 +3J2J 2 +12J 2] 1 L1 + 6J31L2’1)
6¢> ¢'
—F (6902, +4J2 L 1) + ﬁ']il :

In principle, one can continue this calculation up to arbitrarily large n. However, as n
increase, the number of descendant operators at level n will increase very fast and the
calculation becomes very complicated.

One useful way of organizing the terms in J_, O is to separate the contribution of the
global descendants of O from that of quasi-primary operators and their global descendants,
i.e.

J-nO = L™, 0 + quasi-primaries plus their global descendants. (C.2.4)

For example, we can rewrite J_10 as

J10=1L (’)+q2(L _2h, )(’) (C.2.5)
-1 -1 Wk — 2 -1 p -1 L.
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where (L_1 — %J_l) O is a quasi-primary operator since it satisfies L (L_l — %J_1> 0=
0.

Actually, we can be more precise about the statement (C.2.4). Similar to the case of
gravity considered in section 3.2.2 of [8], one can show that J_, O can be written as

T-n® = L",0 +n! (2h) ZZ

i

L ip®
! h)“ (C.2.6)
L% jOh-H

where the (’)}(Li ; represent the ith quasi-primary at level j (so they satisfy Ll(’),(LJ)r j 0) and
we’ve assumed that the quasi-primaries are orthogonal to each other. The denominator in
each term is the norm of the corresponding operator. The simplest example of the above

expression is given by J_10 in (C.2.5), which can be written as
(L1 -24)0
2
2h
(21 - 7‘“) g

J 10 =L_i+2h (C.2.7)

h(2hk—q?)
q? )

where we’ve used the fact that ‘(L 1= —J ) (9‘

Note that the quasi-primaries (’)}(ZZJ)r ; must include at least one J generator in them (like

the J_1 in <L 1— —J_ > 0), so their norms must be at least order k in the large k limit.
This means that in the large k limit, we have

lim J_, = L",,

k—o00
as expected.
The decomposition of J_, O in (C.2.4) is useful is because we can make use of this fact
when computing some correlation function. For example, since the two-point functions of

O with quasi-primaries vanish, the terms that will contribute to <¢OT> are those global
descendants terms L™ ;0. Therefore, we have

(6 (y,2,2) O (21,71)) = Dy T2\, <L’11E’ll(9 (z,2) O (21, 51)>
n=0

B (y2+<z_fl><g_zl)>2h (C.2.8)

C.2.2 Large k Expansion

In this section, we are going to solve the charged bulk primary conditions to next to leading
order of the large k limit. We can assume the ansatz for J_, O up to this order to be

(n) n_ g
Ton = <1+a(])€) L+ 2
i=1
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where O (k%) includes all the higher oder terms. For the exact J_, 0, we have J,,,J_,O =0
for m > 1. This means that we must have

o™ n_ g |
N Rl RS B e Y Ay

0=0 <;> : (C.2.10)

=1

since J,, acting on some of the order k:i? terms may give order % result. So the leading order
contribution to the LHS of the above equation should vanish,

a(n) n a(n) ' n
I | (14 =0 | L8O+ D == d L | O (| mlgL™y ™ + mal) L0 = 0
=1

(C.2.11)

where we discarded the order % terms on the RHS of the approximation symbol and we’ve

assumed 1 < m < n in the above equation. Solving the equation on the RHS for agf), we

get
|
- C.2.12
%m (n— m)!mq ( )
Now using the condition that LT J_,O = n!(2h), O, we can solve for a(()n). We have
a(()n) n a(n) n 1
LYJ_,0=|[1+——|n!(2 tql —)!(2 , — .
1 T-nO + =7 n(h)n—l—; it | (n=0)(2h), 0+o(k2>
(C.2.13)
Requiring the RHS to be equal to n!(2h), O up to order #, we get
n 1\~
al" = - S al (2n),_; = —q(@O(1 - 20) — O (~2h —n + 1)) (C.2.14)
n =1

where 1(©) is the digamma function.
(n)

i

(n)

In summary, the order % terms in J_, are given by (C.2.9) with a, ’ and ag ' given
by (C.2.12) and (C.2.14), respectively. In appendix C.3.1, we are going to use this result to

compute the % correction to the bulk propagator <¢>T¢>.

C.3 Bulk Correlation Functions in U(1) Chern-Simons Theory

In this appendix we first compute the 1/k corrections to the bulk propagator <¢T¢>> using
CFT techniques (i.e., using the result we obtained in last section for the 1/k corrections in
#). Then in appendix C.3.2, we compute (¢O'J) and (¢7¢) using Witten diagrams, and
get exactly the same results as the CFT calculations. These calculations provide a non-
trivial check of our definition of a bulk charged scalar field using the bulk primary condition
(4.2.16).

127



APPENDIX C. APPENDIX TO CHAPTER 4

C.3.1 CFT Calculation of (¢¢)

We can compute <¢T (y1, 21, 21) ¢ (y2, 22, 22)>, where ¢ is ¢ with ¢ — —¢, using the result
we obtained in last section for the 1/k correction terms in ¢. Up to order %, ¢ is given by

¢, 22) =y Y MNT L 0(2,2), A= (C.3.1)
n=0 ’

with

o™ n__(n)
Tn = < (I){) L™, + Z a% JL""+0 <k2> (C.3.2)

and al(-n) = —q(nfii)!i and a(() ") = —q(pO(1 = 2h) — PO (=2h — n + 1)), as computed in
appendix C.2.2. We can compute (¢ (y1, 21, 21) ¢ (y2, Z2, Z2)) by directly inserting the above
expansion of ¢ into <¢T¢> and summing over all the contributions. So up to order %, we
have

<¢T (y1,21,21)¢(y2,22,22)> (n192)* Z Yy Ny Ay (A+B+C+ D) (C.3.3)

ni,n2=0
with
(nl) (n2) ~ ~

A= (1 n ?) <L7j11L7_“1(9T (21,71) L2 L0 (22,22)> , (C.3.4)
n2 (”2)

B= Zli: <L"1 L™ O (21,71) J_iy L™ 20" O (29, 22)> (C.3.5)
i9=1
n1 (”1)

C= L <J_“L”1 L O (21, 7) L L0 (2, 52)> , (C.3.6)

ni np (n1) (n1)

i Y ni—t17n = no—i2 N =
D=3 ot (T LTI O (21, 2) T L L0 (29,2) ). (C37)

where we’ve only kept the terms that may contribute to order %

The % term in A will cancel the % terms in B and C?, so the sum of A+ B+ C will be

A+ B+C= (LM L0 (21, 20) LRI 0 (2, 2) ) (C.3.9)

2This can be checked by direct calculation. On the other hand, we can also see that this must be true by
separating ¢ into two parts: ¢ = ¢o + ¢q.p, where ¢g is the free-field

¢o =" Yy AL L0 (C.3.8)
n=0
and ¢q.p includes the contributions from quasi-primaries and their global descendants. We can do this
separation because of the property of J_, in (4.2.18). The point here is that ($o¢q-p) must be zero, since
the two-point function O with a quasi-primary is zero and this is also true for the two-points of their global
descendants. So the 1/k corrections can only come from (¢, ,¢q-p), that is, the terms in D of (C.3.7).
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Since L_; and L_; are simply derivatives 0, and 05, this is simply computed to be

[(2h)n1+n2]2

2h+n1+n2 z2h+ni1+ng
212 212

The sum of this term in equation (C.3.3) will give the free field limit of (¢¢), which is

A+B+C=

(C.3.10)

o
1—p’

¢ = 2y192
Y+ Y3 + 212212

(Podo) = with p = (C.3.11)

2
8
1+/1-¢&) "

where ¢y is given in (C.3.8).
Now the only term left to compute is D. The anti-holomorphic part can be computed
simply, and we have
<J_i1LTl_“ETlOT (21,21) J_iy L™ 2 L2 O (2, 52)> (C.3.12)

(2h)n n (_1)7“ n1—i ng—1i
_ 221};”21%2 <J,Z-1le 1O (21) J_i, L™ 20(22)>
12

Since we only care about the order % terms in D, we only need to compute the order k& term
in the two-point function on the RHS of the above equation, which is

(Tl (2) T, L7720 (22) ) (C.3.13)
L S ) o U — <L”1—i10 (21) Jiy Jin L3720 (22)> +o
2w J,, (z—z)2t N T e

1 1ok
:T dz i1 i2+1 <
TSy (2—21)" (2 — 22)

1 .
k (—1)”1 (Qh)nl—i1+n2—i2 (12)1‘1
2hFmtns (i1 — 1)

L™ 710 (21) L™ 20 (22)> .

where we’ve only kept the leading order terms.

Putting everything together, we have

<¢T¢> = (dogo) — % (X1X2)" (C.3.14)

(DM 2Ry [ 2 (2) 0, 4y iy iy (12)s, A 1
x Z Z 2221 (n1 — ’Ll)' (nz — 22)' (i1 — 1)!i1’i2 Xl X2 + O (ﬁ)

1
(2h),, (2h)n, S

ni,no=0

2 2
YI_ Xy = —%2_ Mathematica is not able to perform the above
212212 212212

sums, but it can be checked that the following expression

h 2 2
N A (pPeFi(L2h+ 1;2(h+1)5p) | p N ﬂ (1>
<¢¢>_1—p|:1 k:< 2h + 1 Top ~lesl=0) )|+ 015
(C.3.15)

gives the same expansion when expanded in small X; and X5 . In appendix C.3.2, we’ll
show that the above expression is the result of the bulk Witten diagram calculation. Thus
this provides a non-trivial check of our definition of a bulk charged proto-field in U (1)
Chern-Simons theory.

where we've defined X, =
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C.3.2 Bulk Witten Diagram Calculation for (JO'¢) and (¢'¢)

In this section, we are going to compute <J C)T¢> and (¢T¢) using Witten diagrams. The
calculations here will be very similar to that of (T'O¢) in [8] and that of (¢p¢) in [27],
except that the (A,A,) two-point function and the bulk three-point vertex are different,
but actually simpler.

The action of the U (1) Chern-Simons theory in Poincare AdSs is given by
k v
I= /d?’xme“ AAL0, AN + Vgl (qub (VHe) + m2¢¢T> (C.3.16)

with V¢ = (0, +iqA,) ¢ and (qub)T = (0, —igA,) ¢'. The Poincare AdS3 metric and

its inverse are

s 00 y2 0
gw=| 0 0 52 |, ¢=[0 0 27 (C.3.17)
0 ﬁ 0 0 2% 0

in the coordinate system (y, z, Z). From the Chern-Simons action (C.3.16), we can see that
the photon two point function is given by

1
H (}/1, YQ) = <Az (yl, 21, 21) A, (y27 292, 22)> =0 (0318)
k? (21 — 22)
Here and in some other parts of this paper, we'll use X or Y to denote (y, z, Z) for conve-
nience. The scalar two point function is just the usual bulk-bulk propagator as in (C.3.11)

h

G(Y1,Y2) = <¢T (y1,Z1,21)¢(y2,Z2,22)> = 1p_ 5 (C.3.19)

with m? = 4h (h — 1). The photon-scalar-scalar three point vertex is given by

iqg"” Ay <¢a,ud;[ - ¢Tau¢) . (C.3.20)
And since we’ll only be interested in the z component of A,, the above vertex becomes
i2qy2A. (00:6" — 9'0:0) (C.3.21)

where we've used ¢g** = 2y?. We'll assume® that we are free to perform an integration by
parts, so that the above vertex can be written as —4iqy?A.¢!0z¢.

We’ll also need to bulk-boundary propagator for the charged scalar field and the photon
field. These are given by

2h
K (Y1,(22,22)) = <¢(Z/1,Z1,21) of (22,22)> = ( Ui )2> (C.3.22)

Y2+ (21— 22) (21 — 22

3There may be some subtleties about this, which we explain in the calculation of (¢OJ) in next subsection.
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and
(A (V1) T (22)) = — (C.3.23)
(21 — 22)

where we’ve used the fact that J(z) = %.

Witten Diagram Calculation for <J (’)Tqﬁ>

The Witten diagram for <J (’)T¢> is given by figure C.1. We’ll use the saddle point approx-
imation to evaluate this diagram. The idea is that instead of integrating the bulk vertex
point over AdSs, we only integrate along the geodesic connecting ¢ and Of. In appendix
D.4 of [8], we showed that the saddle point approximation for (pOT) actually gives the
exact result. We expect the same thing to happen here.

J(z1) Ol )

Figure C.1: Witten diagram for (JOT®)

The bulk-boundary three-point function (J (21) O (22, 22) ¢ (X1)) (with X1 = (y,0,0))
is computed as usual by

<JOT¢>> - / VI X ——2iqy* [GOs K — GO K] (C.3.24)
AdSs () — = )

where where we’ve denoted X' = (v/, 2/, Z’), and also used the bulk-boundary propagator for
the photons (C.3.23). Explicitly, the coordinate dependence of G and K are G = G (X1, X')
and K = K (X', (29,%)). Now as mentioned above, we integrate by parts* to find

<J@f¢> - deX’%Gaz/K (C.3.25)
AdSs (¢ — z1)?

Now we can do a saddle point approximation as in appendix D.4 of [8]. The idea is as

follows. We can write
_2hU(X1,X,)

G(X,X)=-S " C.3.26
( 1 ) 1 _ e_QU(Xl’X,) ( )

4In fact, when performing an integration by parts, there is a delta function term coming from 95/ ﬁ =
762 (2 — 21,2 — Z1). Such terms would contaminate pure CFT correlators (as well as bulk correlators) and
violate Ward identities, and so we have dropped them. This can be viewed as a choice of regulator. It would

be very interesting to better understand regulation, and the role of these terms, in future work.
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where p = e72°

and o(x, x7) is the geodesic length between X; = (y,0,0) and X' =
(y/,2',Z"), whose expression can be obtained from (C.3.11). Similarly, the bulk boundary

propagator can be written as

K (X', (23,5)) = ¢ "0 202) (C.3.27)

s ) (A= Y R (
y/
between X' = (v, 2/,Z') and (z2,%2). So the integral (C.3.25) after simplification can be

where o(x/ (2, 2,)) = log regularized) bulk-boundary geodesic length

written in the following form

d /di/d ! T 70(74/’2/’2/)7(22’22) I _
<J(’)T¢>> = Sihq/z/z;ye—ﬂm(y 27 © - (2 22)2 (C.328)
Yy 1 —e w00 ="7) (2 — )

where L (y',2',2') = o(x, x/) + 0(x7,(20,5))- Now we can take the large h limit and the
integration will be dominated by the line integral along the geodesic from X; = (y,0,0) to
(22, Z2). This geodesic parameterized by 2’ is given by

/

S Fa e (1 _ z) (v + %), (C.3.29)

z

so that the saddle point approximation to equation (C.3.25) is

—20 =
2 1 e T(XGE2R) 1 (2 — 29)
JO) = 8mige=2n1(v.0.0) / dz' — , C.3.30
< ¢> q 0 /| det 82L| 1— 672U(X1’X/) y/2 (Z/ o 2’1)2 ( )
where the determinant is given by
2L 020,L 425 (2'7z + i
det 92 — det | %2 ) = 4 (2t y) o (C.3.31)
8y/85/L 8y/L 2/2 (z/ — 22) (2222 -+ y2)
Plugging this in (C.3.30), we have
_ = 1 qz2
J(21)O1 0,0)) = q{OT / d = o) (C.3.32
(T)0M 0 20000,0,00) = (007) |/ 5 = 5 (90T (C332)

2h
where we've used the fact that (¢(y,0,0)0(22,2)) = e—2hL(y,0,0) — (y2+3;222) and we
neglected a numerical constant in obtaining the above result. The above result is exactly
the same as the result (4.2.22) obtained via assuming ¢ to be a charged bulk field defined

by the bulk primary condition (4.2.16).

One-loop Correction to <¢Tqﬁ>

In this subsection, we are going to compute one loop correction to <¢T<b>. The Witten
diagram is given in figure C.2, and it’s computed as follows

(o o), =168 [ VigldX' [ Vigldx 7y (C.3.33)

1 loop
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Figure C.2: Witten diagram for (¢f¢)

x G (X1,X')0xG (X', X")H (X', X") 0:4G (X", X2)
Acting on this two-point function with the Klein-Gordon operator twice, we have

(V3 +m?) (V34 m?) (6 (X0) 6 (X)) = —=16¢°H (X1, X) 41305, 02,6 (X1, X2)
b (C.3.34)
By using the photon propagator (C.3.18) and the bulk-bulk propagator (C.3.19), one can
show that the RHS of the above equation is
32¢%p" 1 (2R2(1 — p)2 + h (=5p° +4p+1) +3p(p+ 1))
- k(1—p) '

only depends on the p, equation (C.3.34) becomes

(C.3.35)

Assuming P (p) = <¢T (X1) ¢ (X2))

1 loop
4
16 (h — 1) WP (p) + p6_1 (=h*+h+1) p>P' (p) (C.3.36)
2p% ((h—1 —1)— 1) P” 40% (2p — 1) P®)

~32p* (k=1 h(p—1)=Tp+1) (p)+6p (20 -1 (p)+16p4p(4)(p)

p—1 p—1
- 32¢%" T (2R (1 = p)® + h (5P +4p+1) +3p(p+1))

a k(1 —p)®

Luckily, Mathematica is able to solve the above fourth order differential equation. Fixing
the integration constants, we get

2 b [p2aFi(1,2h + 1;2(h + 1);
¢ o [P PL2h 2k 4 1)ip) oy uq ] (C.3.37)

Pl ==11-, oh + 1 2

which is exactly the same as the % correction to the two-point function of the bulk charged
proto-field computed in appendix C.3.1 using pure CFT technics.

C.4 Computations of (¢OT) in Global AdS;

In this section, we use two methods to calculate (¢OT) in global AdSs. These two methods
are essentially the same. Both of them are based on the idea of bulk-boundary OPE blocks
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(as we called them in [8] and [27]) or the bulk-boundary bi-local operator pO (C.4.2) (a
generalization of the boundary bi-local operator as defined in [35]). The first method is
to expand the vacuum channel of the bulk-boundary bi-local operator in terms of the €
operator defined in section 6 of [35], and then use the e propagator, which was derived from
the Alekseev-Shatashvilli theory of boundary gravitons in that paper, to compute (¢OT).
The second method is to expand the vacuum channel of the bi-local in terms of the energy-
momentum tensor 7" and use the two-point function of 7" to compute (¢pOT). Both of them
give the same result as (4.3.31) obtained using the properties of the bulk proto-field.

C.4.1 (¢OT) in Global AdS; from Alekseev-Shatashvili

The idea here very similar to that of section 4.5.2, where we computed the 1/c¢ corrections
to the bulk-boundary propagator in a heavy background. The difference is that here we are
considering bulk-boundary bi-local operator ¢QO in the vacuum.

As in section 4.3.3, we use f (z) = e* and f (2) = €7 to obtain the global AdS3 metric
(4.3.28). But now we are going to include perturbation as follows

,and f(2) = i (C.4.1)

e(z)
c

fz)=e"

(with € (z) and €(z) promoted to operators). Specifically, the vacuum contribution to the
bulk-boundary bi-local operator is given by

2h

= ' 7= \\P Ul
om0 e = (1) ) ()
(C.4.2)
The (u1,21,71) here are functions of (y1, 21, Z1) given by (4.3.10) with f(z) and f(2) given
by (C.4.1). One can see that the above expression becomes the boundary bi-local defined in
[35] when we send ¢ to the boundary by taking y; — 0. Written in terms of the coordinates

(y, 2z, Z) and expanded in large ¢, the above vacuum block becomes

& (y1, 21, 21) O (22, 22) |vac _ 1—1—1361 + C¢| + Del + Eex + Fé Lo <12> (C43)
c

(¢ (y1,21,21) O (22, 22)) g1obal Ads, ¢ A

where €; = €(z;) and the derivatives are with respect to z;. The bulk-boundary propagator
(@ (y1, 21, 21) O (22, 22)) giopal Ads, in global AdSs is given in (4.3.32) (up to a factor of (&,&)"

coming from the (f’(z2) f' (Zg))h in (C.4.2)), i.e.

_ _ 4y, 5151§252 _ ! (C 4 4)
G161+ 68&) (7 +4) + (S8 + L&) (v —4) 7 -

(0O) global AdS; = ( (

where we've defined & = e% and & = e*. The denominator and the coefficients in the
numerator of (C.4.3) are given by

A=1i((yi —4) (£& +6&E) + (v +4) (& + &£8)),
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B=(y} —4) (&& — &&) + (yi +4) (6& — &&)

C = (yi +4) (£& +6&) + (v —4) (6& + &E), (C.4.5)
D=2y (&4 - &) (G +&),

E=(y; +4) (&& — &&) + (v —4) (L& - 6&),

F=—(y—4) (&& +&&) — (v +4) (6é + L&)

We've only kept the holomorphic € terms in (C.4.3), since the anti-holomorphic € will not
contribute to (pOT).

To compute (¢OT'), we also need to write the energy-momentum tensor 7' in terms
of the e operators. As explained in section 2 of [8], T" is simply given by the Schwarzian
derivative as follows:

" 3 (gl c i
T(z) =5 [f & )f(( )( ))22(f ) ] =—0 - (a<z) —e<3>(z)) +0 (i) (C.4.6)

The last piece of information we need to compute (¢OT) is the e propagator (e€). The action

obeyed by € and € is the saddle point quadratic action derived from the Alekseev-Shatashvilli
action. And the e propagator is given in section 6 of [36],

<e<z>e<o>>=66< LB 0-g

5 ¢ In(1-— f)) , &=¢° (C.4.7)

Note that we have a different normalization for the es.

Eventually, (¢ (y1, 21, 21) O (22, 22) T (2)) is given by®

(9OT)  _  h(&—6)*€ £— €14 — MG (&) (G + &) _c
<¢O>global AdSs E-&)E-&) (fl& + 5252) (y? +4)+ (5152 + fgfl) (y3 —4) 24
(C.4.8)

which agrees with (4.3.31) up to a trivial transformation for @ and T from the complex
plane (.f,f) to the cylinder (z, 2).

C.4.2 (¢pOT) in Global AdS; from (T'T)

We can also compute (¢OT') in global AdSs without using the € propagator as we did in
last subsection. Instead, we’ll use the two-point function of the energy-momentum tensor 7.
This was the method that we used in [8] to compute (pOT) (equation (4.3.26)) in Poincare
AdSs, and also in appendix B of [27] to compute the 1/c corrections to the vacuum block
of all-light bulk-boundary correlator (O202¢101) (with ¢; the proto-field of section 4.3.1)
up to order 1/c2.

®There could be 1/c corrections to (¢OT) coming from the higher order terms in (C.4.3) and (C.4.6).
But since the result for (¢OT) is exact without any 1/c correction (as computed using the properties of the
bulk proto-field in 4.3.3), such higher order have been dropped by the regulator, as in [49, 8, 27].
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The idea is actually very similar to that of last section. Instead of denoting the pertur-
bation via €, we expand f (z) in the large ¢ limit as

1
f(z) :ez—i—gfl(z)%—..., (C.4.9)
and similarly for f(2). Then similar to last subsection, the energy-momentum tensor 7' (z)
is given by
c [f"()f () =3 (") T SN C) 1
T(Z) = E (f’(z>)2 - —ﬂ + Ee (2f1 — 3f1 + fl ) + O (c> .
(C.4.10)

The energy-momentum tensor 7' (£) on the complex plane with coordinates (f =e* &= ez)
is related to 7' (z) as usual by

T(2) = —§+£2T(E), (C.4.11)
so from (C.4.10), we have
T (e*) = %6’32 (2f{ —-3f + f1(3)> (C.4.12)

We can now solve for fi (z) in terms of T"(e*), and the solution is given by

fi(z) = 12/ (/ & (e — T (ezn> dz”> dz'. (C.4.13)
0 0

The bulk-boundary OPE block or the bulk boundary bi-local operator (C.4.2) can then
be expanded in large c,

#(y,0,0) O (22, 22) |vac _ 1 hfi(z2) 2h ((y* +4) & + 1y —4) f1(22) 1
(¢ (¥,0,0) O (22, 22)) giopar Aas, = c < &2 (2 +4) (1+&&)+ 2 —4) (&2+ fz)) +0 (c2>
(C.4.14)
Using (T (e*) T (e*?)) = m on the complex plane, we find
c(f—1)°
T (7)) = C.4.15
/ . c(é—1)*& (1 - 36+ 26)
f1(z2)T (%)) = —
(L) T () T T
and (¢ (y,0,0) O (22,22) T (2)) (after transforming T to the cylinder) is given by
@oT)  _ _h1-&)°¢ . W& (+6) e
(@O0)giobat aas, (€ —1)° (6 —&)° (1+68) P+ + (L+&) 2 —4)| 24
(C.4.16)

which is exactly the result obtained in last subsection (C.4.8) with y; = y,21 = z; = 0.
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