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Abstract

Gravity rules the Universe. It can form enormous cosmic webs of matter and hold

together planets, stars, solar systems, and even galaxies. Yet, gravity itself is not

directly visible.

However, we can get a glimpse into this dark sector by listening to gravity’s own

messengers – gravitational waves. Since 2015, humankind has heard gravitational

waves from at least 50 collisions involving black holes and neutron stars. This leaves

us with the burning question: what causes these black holes and neutron stars to

collide? In the first part of this thesis, we ask questions related to the origin of these

colliding objects. How will the inventory of merging black holes and neutron stars

explode as our detectors improve? Can black holes merge repeatedly? If so, where

do such repeated mergers happen? Can we tell apart which events are products of

repeated mergers?

We have just started listening to a full symphony produced by some of the most

violent events: mergers of black holes. This full symphony is encoded in the higher

harmonics that accompany the cosmic melody produced by the spacetime’s resonating

vibrations. In the second part of this thesis, we focus on the final stages of the binary

coalescence – the so-called ringdown phase – when this melody is the loudest. We try

to understand how the signal heard by our detectors changes when we change the
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properties of the black holes that play this tune. We also try to understand whether

the future detectors can listen to the full symphony, or if they can record only some of

the notes. We develop methods to harness the vast potential of ringdown harmonics

to estimate of the properties of the black holes that produced the signal.
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Chapter 1

Introduction

Astronomy is humanity’s oldest science. Fascinated by its breathtaking beauty, many ancient

civilizations tried to understand the starry sky. As humankind evolved from stargazers to

scientists, astronomy evolved from hand-drawn sky maps to stunning images of the distant

Universe taken by telescopes. Yet, one aspect has not evolved since prehistoric times: all

of our information about the Universe comes from photons seen by our eyes or telescopes.

However, photons are easily obstructed. There are regions of the Universe that will forever

remain shrouded to telescopes, such as dense environments that light cannot escape or

sources too dim to be seen with current telescopes.

On 14 September 2015, humankind added a new sense to our perception of the Universe: for

the first time, we “heard” two black holes (BHs) ramming into each other [11]. This cosmic

gravitational-wave (GW) symphony was detected by the Laser Interferometer Gravitational-

Wave Observatory (LIGO): arguably the most sensitive instruments built by humans, capable

of picking up disturbances much smaller than the size of a proton. GWs are a natural

consequence of Einstein’s theory of general relativity (GR), where matter warps space

and time. Cataclysmic events – like supernova explosions or two BHs cannibalizing each

other – churn up this sea of spacetime. The resulting distortions ripple out, stretching and

compressing the spacetime and ultimately reaching GW detectors on Earth.
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In the six years since the first detection, GW astronomy has witnessed a revolution: observa-

tions are becoming routine with LIGO making many spectacular discoveries. These include

GW170817 (the merger of two neutron stars resulting in fireworks imaged by telescopes

around the world, ushering in the new era of multimessenger astronomy); GW190521 (a BH

too heavy to be the byproduct of stellar collapse); and GW190814 (involving an object too

heavy to be a neutron star and too light to be a BH) [9]. The GW window just opened up,

and already we have clues to many long-standing mysteries. However, GW astronomy is yet

to reach its full potential. In addition, some observations have raised more questions than

they answered, and have even challenged our understanding of fundamental processes in

stellar evolution.

Section 1 of this introduction will provide a brief overview of planned GW detectors and the

outstanding puzzles they aim to solve. Section 2 gives some background about Chapter 2-4,

where we discuss different formation pathways of compact-object binaries and the unique

traits that can be used to tell them apart. Section 3 sets the stage for Chapters 5-7, and

focuses on binary BH spectroscopy.

1.1 Next-generation gravitational-wave astronomy

Ground-based detectors: The two LIGO detectors in the United States and the Virgo

detector in Europe have jointly witnessed about 50 explosive collisions of BHs and neutron

stars. These ground-based detectors observe the high-frequency GW spectrum from ∼ 10 Hz

to∼ 10 kHz. In 2019, they were joined by KAGRA – the first-ever underground interferometer
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with cryogenic technology – in their hunt for GWs. LIGO-India is also expected to be

operational by the mid-2020s. With this five-detector network spread across the globe,

we will be able to pinpoint the location from where the GWs emanated to unprecedented

accuracies. The GW community is also gearing up for upgrades to the current facilities.

The planned Advanced LIGO upgrade, A+, will improve the LIGO sensitivity by employing

quantum light squeezing to reduce laser phase noise at high frequencies and radiation

pressure noise at low frequencies [4]. Later improvements (Voyager) could reduce this noise

further by changing the suspension material, increasing laser power, and reducing thermal

noise by operating at 120 K [12, 13, 14]).

GW astronomy will reach its pinnacle with third-generation (3G) detectors, whose cutting-

edge technology will far surpass the current detectors. This next generation of GW observa-

tories, planned for the 2030s and comprising of the Einstein Telescope (ET) and Cosmic

Explorer (CE), will confront some of the biggest outstanding problems in physics and

astronomy [15]. Einstein Telescope is a planned European 10 km triangular facility built

underground to reduce seismic noise, while the US-based Cosmic Explorer (CE) would feature

40 km L-shaped interferometer arms that employ the quantum squeezing technology of A+

and the cryogenic cooling of KAGRA. Together, these facilities will detect mergers right

out to the edge of the Universe, when it was still in infancy, assembling its first stars. This

immense reach will reveal how star formation and the environments which nurtured these

merging objects changed throughout cosmic time. Future detectors will observe neutron

stars as they rip each other apart before colliding. This will allow us to study incredibly

dense matter in neutron-star cores, and understand how matter behaves when subjected
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to such immense pressures and densities. While the detection of GW170817 has already

provided irrefutable evidence that heavy elements form during neutron star collisions, future

detectors will tell if they can synthesize all the heavy elements in the cosmos or if alternate

channels are also at play. GWs can measure the luminosity distance of binary BHs and

neutron stars without the need to calibrate them with standard candles. These “standard

sirens” will let us precisely measure cosmological parameters, such as the Hubble parameter

and dark energy density. This will provide us with new insights into how the Universe

is evolving, possibly clarifying if dark energy is just a cosmological constant or if there is

missing physics behind the late-time accelerated expansion of the Universe. Next-generation

detectors might also observe GWs from supernovae, allowing us to unravel the physics

behind these violent stellar explosions. The extent of the sensitivity of 3G detectors can

be gleamed from the fact that they would be capable of observing quakes and micron-sized

mountains on neutron stars [16].

Space-based detectors: If LIGO and its successors are the quietest place on Earth, the

Laser Interferometer Space Antenna (LISA) will be the quietest place in space. As sensitive

as they are, there’s a limit to what ground-based detectors can accomplish: they can not

hear GWs with frequencies less than 1 Hz. To listen to lower frequencies, we must find

ways to avoid seismic noise – a feat only possible in space. LISA will consist of three

spacecraft in a triangular formation, 2.5 million kms apart, cartwheeling around the sun.

A proof-of-concept mission, LISA Pathfinder, was launched in 2015 to test the key LISA

technologies. This mission, however, surpassed our wildest expectations and even surpassed

the noise requirements for the proposed LISA [17]. As soon as it turns on in 2034, LISA

4



CHAPTER 1.

will hear the GW symphony from tens of thousands of sources, ranging from white dwarf

binaries in our own galaxy to massive black holes (MBHs) at the edge of the universe. LISA

will chronicle the evolution of BHs during cosmic dawn and high noon, telling us how BHs

grow so big so fast. LISA may be able to distinguish between the different formation and

evolution scenarios of massive BHs. The BH masses measured by LISA will shed light on

the nature of their seeds, while their spins will help us understand the chaotic or coherent

nature of accretion flows. LISA will also witness massive BHs cannibalizing smaller BHs,

referred to as extreme mass ratio inspirals (EMRIs). Smaller BHs acting as test masses will

map out the spacetime warped by the supermassive BH, providing us with very accurate

tests of GR and of the Kerr nature of massive BHs.

This thesis revolves around two overarching themes: i) how future detectors can shed light on

the origin of merging binaries, and ii) how efficiently future detectors can extract information

from the full symphony produced by merging BHs.

1.2 Discovering the homeland of LIGO’s binaries

Six years after discovering the first binary BH, the origin of the BHs detected by LIGO

remains shrouded in mystery. How, when, and where do these binaries form? What is the

physics that drives their evolution? The answers to these riddles may be just around the

corner. Once-rare GW events are now commonplace. The inventory of GW observations has

grown to include around 50 events, and it has already transformed astronomy by providing

information that cannot be obtained in any other way.

5



CHAPTER 1.

One of the most popular channels for binary formation in galactic fields is via common

envelope. In this scenario, one of the stars in a binary star system puffs up and engulfs

its companion in a gassy envelope. The drag experienced by these objects brings them

closer until they are nearby enough to merge via GWs. However, this process is plagued by

many uncertainties, like supernovae kicks, common-envelope efficiency, etcetera. Observing

a large population of compact object coalescences can help us figure out poorly understood

phenomena. Chapter 2 (based on Ref. [18]) predicts how the inventory of binary mergers

will grow as GW detectors improve. We also illustrate how the evolution of the merger rate

holds essential clues about the processes by which BHs and neutron stars evolve and merge.

As the detectors advance and deepen their horizons to a farther, younger Universe, they will

provide revelations about the physics that drives these binaries to merge and about how

well compact objects thrive in different environments.

LIGO binaries could also be synthesized dynamically in star clusters with cores that are

swarming with BHs. Entwined by gravity, these BHs move around, forming pairs and

swapping partners until one day they crash into each other. In Chapter 3 (based on

Ref. [19]), we discuss a semi-analytical model for this chaotic process that predicts the main

features of the BHs it produces. This chaotic dynamics randomizes the spin directions of

these BHs, setting them apart from BH binaries that spend their whole lives in galactic

fields and tend to have aligned spins. For this reason, spin directions are thought to be

among the the cleanest signatures to differentiate between the two scenarios. However,

employing spin directions is ineffective if BHs are born with small spins, as suggested by

some observations [20] and simulations [21]. Stellar clusters have another fascinating aspect:
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their ability to merge BHs repeatedly. However, clusters face a significant hurdle when

producing such repeated mergers. During asymmetric mergers, gravitational radiation is not

emitted isotropically, causing merger remnants to recoil to conserve linear momentum. If

this recoil is large enough, the remnant gets flung off its birthplace, never to merge again.

Chapter 3 estimates how efficiently we can retain the remnants of previous mergers (called

second-generation or 2g BHs). These retained remnants partake in future mergers and can

easily be identified by LIGO. We also discuss two traits that characterize second-generation

BHs, but are forbidden among the BHs born after a star’s demise:

i) Mass gaps due to (pulsational) pair-instability supernovae: In stars heavier than 130M⊙,

photons countering the gravity’s pull vanish, producing electron-positron pairs. Consequently,

the outer layers collapse inwards, the nuclear burning accelerates, and the star blows apart.

This leaves behind a mass gap between ∼ 60M⊙ and ∼ 120M⊙ where no BHs can exist.

However, 2g BHs do not have such constraints. They are twice as heavy as their parents

and often leak into the mass gap, making them relatively easy to spot.

ii) Spin gaps: Some stellar physics simulations also suggest that BHs are born with tiny

spins. The Taylor-Spruit mechanism can transfer the angular momentum of the star away

from the collapsing core, resulting in BH spins ∼ 10−2 [22]. This has shown to be the case

for many GW observations as well [20]. So the BHs born from a star’s demise might be

forbidden from possessing large spins. However, remnants of previous mergers are exempt

from such a restriction and rotate rapidly with spin ∼ 0.7. Chapter 3 predicts the fraction

of mergers populating the mass and spin gaps – traits that are off-limits to first-generation

BHs. We also show that if we can identify the number of mergers with these traits in the
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population detected by LIGO, we may even be able to determine how many of total mergers

originated in a cluster.

On May 21, 2019, LIGO recorded its most massive merger [23], with at least one BH in

the mass gap. Such a merger could only have been produced by astrophysical processes

inside a cluster or AGN. In Chapter 4, we show that not only this merger resides in the

mass gap, but that it also lies right inside the spin gap, further cementing the claim of its

hierarchical origin. The spin of a 2g BH retains the imprint of the progenitors that formed it.

In Chapter 4 (based on Ref. [24]), we formulate a recipe to extract the masses and spins of

the parents that merged giving birth to the 2g BH. The properties of the parents can further

be used to identify the environment in which such BHs form. We apply this prescription

to the case of GW190412 [25], another event likely to have resulted from repeated mergers.

We also calculate the recoil that the parents of GW190412’s primary BH received when

they merged. This allows us not only to reconstruct the family tree of GW190412, but also

predict its birthplace.

1.3 Black holes and bells

When we strike a bell with a hammer, it resonates for some time. Something similar happens

when two BHs merge. The merger product is a highly distorted BH that gets rid of any

deformities by ringing like a bell in a stage called the “ringdown.” This phase is described

by damped oscillations, called quasinormal modes (QNMs), with frequency and decay time

that depend only on the mass and spin of the final BH. The ringdown signal carries unique
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fingerprints of the remnant, and it can be used to characterize its properties. This idea is

sometimes called “black hole spectroscopy”: QNMs can identify Kerr BHs, just like atomic

spectra identify the elements. This makes QNMs a powerful tool to test the Kerr nature of

astrophysical BHs or constrain modified gravity theories. Each QNM radiates in different

angular patterns governed by angular-harmonic indices (ℓ,m), that describe the “shape” of

emission. This is similar to notes from a guitar string, which has several harmonics besides

the fundamental frequency of vibration. Most of the GWs emitted from a binary are carried

by the harmonic (ℓ, |m|) = (2, 2), and smaller energy is radiated in higher harmonics with

(ℓ, |m|) ̸= (2, 2).

Along with a long-lived fundamental mode, each harmonic consists of a superposition of

“overtones” – loud but short-lived modes. While these overtones are basic to BH perturbation

theory, they were routinely overlooked in the data analysis of binary BH mergers. In Chapter 5

(based on Ref. [10]), we highlight the importance of overtones during the ringdown. We

show that at least 2-3 overtones must be extracted to measure the remnant’s spin and mass

with sub-percent accuracy.

To test the no-hair theorem, multiple modes must be detected: one mode is needed to

extract the remnant’s mass and spin, and any other mode provides tests of general relativity.

However, only modes with large enough amplitude are detectable. For binary BH coalescence,

the excitation (and hence, detectability) of different QNMs will depend on the properties of

their progenitors. So an essential requirement to perform BH spectroscopy is to quantify the

excitation of different QNMs as a function of the properties of the progenitors (including

their masses and spins). Chapter 5 studies how the fundamental mode of different ringdown
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harmonics gets excited during BH mergers with aligned spins.

In Chapter 6 (based on Ref. [26]), we investigate the capability of present and future detectors

to detect multiple harmonics. A given ringdown mode can be detected if: (i) it has large

enough excitation, (ii) the frequency of the mode lies in a sensitive region for the given

detector, (iii) the binary is close enough, and (iv) sky location and spin orientations are

favorable. The first aspect is explored in Chapter 5. Next we focus on items (ii)-(iv) by

exploring regions in the redshift-mass space that could be detected by Advanced LIGO,

the Einstein Telescope and LISA if the binary is optimally located and oriented. This

allows us estimate the combinations of binary parameters and detectors for which one could

observe multiple modes, and thus do BH spectroscopy. We point out that LISA could see so

many harmonics that current numerical relativity (NR) simulations would not be sufficient

to extract all available science from the data. We discover a characteristic “turnover” at

z > 1 in the LISA horizon redshift as a function of the source-frame mass. This implies

that ringdown signals that are unobservable at small distances could become observable at

large distances, when they get “redshifted back” in the LISA band. Horizons calculated

assuming optimal orientation do not show how sky location or BH spin orientations affect

these estimates. By doing Monte Carlo simulations over sky location and source orientation,

we generate a “universal,” source-independent distribution of the sky sensitivity, allowing us

to compute the detection probability of ringdown modes from a given binary.

The conventional wisdom says that the properties of the merging BHs, namely the masses

and spins, could be deduced only from the inspiral phase of the signal. This has limited

most studies of the ringdown to tests of GR or of the no-hair theorem.
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In Chapter 7 (based on Ref. [27]), we challenge this paradigm and we show that ringdown

is a treasure trove of information on various properties of the binary. In other words, by

carefully listening to the bell, we can find the properties of the hammer that struck it.

The biggest obstacle faced when tackling this problem is the degeneracy between intrinsic

properties (like masses, spins, etc.) and extrinsic properties (like sky position, inclination and

distance). Higher harmonics offer the solution to this hurdle. Despite being subdominant,

higher harmonics add a very rich structure to a rather dull quadrupolar radiation. This rich

structure is crucial in breaking several degeneracies that haunt the parameter estimation

(PE) of BH binaries. We show how symmetries in ringdown harmonics could be exploited to

disentangle all binary properties even when the inspiral is not visible in the LISA band. We

show that the amplitudes of three ℓ = m harmonics can be exploited to construct a blend

of “harmonic ratios” that can be used to infer binary’s mass ratio and inclination. LISA

inspiral sources are long-lived, and LISA’s cartwheeling motion around the Sun modulates

the amplitude and phase of the signal, which in turn can disentangle the source location

and orientation. For the short-lived ringdown, this is a drawback. We show that the relative

signal amplitudes of the (2, 2) and (2, 1) modes in two LISA channels and the difference

between their phases can pinpoint the source location. This was later corroborated by

Ref. [28] using a computationally expensive Bayesian parameter estimation code. Their

numerical sky-localization contours match the patterns that we predict analytically. They

further substantiated our findings that many degeneracies do not break until very close

to the merger phase, when higher harmonics are prominent. Our recipe proves to be very

effective at high masses (M > 106M⊙) where ringdown harmonics are very prominent, and

11
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even more dominant than the inspiral. As we increase the binary mass, the inspiral phase

gets shorter and shorter, and its signal-to-noise ratio (SNR) drops. On the other hand,

higher harmonics of the ringdown are in the sweet spot of the detector’s sensitivity, and

present large SNRs. In these scenarios, when low-frequency noise conceals the inspiral,

various ringdown harmonics are the key to parameter estimation.
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Chapter 2

Gravitational-wave detection rates
for compact binaries formed in
isolation: LIGO/Virgo O3 and
beyond

Abstract

Using simulations performed with the population synthesis code MOBSE, we compute

the merger rate densities and detection rates of compact binary mergers formed in

isolation for second- and third-generation gravitational-wave detectors. We estimate

how rates are affected by uncertainties on key stellar-physics parameters, namely

common envelope evolution and natal kicks. We estimate how future upgrades will

increase the size of the available catalog of merger events, and we discuss features of

the merger rate density that will become accessible with third-generation detectors.

14
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2.1 Introduction

The detection of gravitational waves (GWs) from 10 binary black holes (BBHs) and a binary

neutron star (BNS) in the first two LIGO/Virgo observing runs [9], and the subsequent

detections of numerous compact binary candidates in the third observing run, naturally

lead to the question: how do these binaries form, and what is the physics that drives their

evolution?

Advanced LIGO (AdLIGO) is expected to reach design sensitivity in the near future, the

so-called A+ upgrade to current detectors was already approved for funding, and further

upgrades (A++ and Voyager) are expected in the near future [12, 13, 14, 15, 29]. The GW

community is also planning future, “third-generation” (3G) facilities, such as the Einstein

Telescope (ET) [30, 31] and Cosmic Explorer (CE) [15], which will extend the observable

horizon to the very early Universe.

As GW detectors improve and the number of detections grows, we will gather information

about the environments in which compact binaries form, and constrain the physical pa-

rameters that drive their evolution. Future GW detectors will measure compact binary

parameters (such as masses and spins) within few per cent accuracy [32], reconstructing fine

details of distribution of these observables. They will observe sources up to redshifts as large

as z ∼ 102 [33], allowing us to study how the merger rate density evolves with redshift, and

ultimately to constrain astrophysical models [34, 35, 36]. The large number of detections

that comes with increased sensitivity will also reduce statistical errors on the parameters

that describe compact binary populations to few per cent with ∼ 103 observations [37].
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Compact-object binaries could form either in the field [38, 39] or through dynamical inter-

actions in young [40, 41, 42], nuclear [43, 44] or globular clusters [45, 46]. In this chapter

we present updated detection rates, and a roadmap of our prospects for constraining the

astrophysics of compact binaries in the near future. We study how detection rates for

binaries formed in isolation (“field binaries”) will evolve with future improvements of GW

detectors, with the goal to understand if and when characteristic features of the astrophysical

populations will become visible.

The plan of the chapter is as follows. In Sec. 2.2 we present our astrophysical populations

based on the MOBSE population-synthesis code [47, 48]. In Sec. 2.3 we investigate how

uncertainties in binary evolution affect the evolution of the merger rate density, and what

new generation of detectors can tell us about this evolution. In Sec. 2.4 we compute detection

rates for each of the six models we consider and for different detector sensitivities. In Sec. 7.7

we summarize our findings and out line directions for future work. Appendix 2.A gives details

on how detection rates are computed from the MOBSE simulations. Throughout the chapter

we use the standard cosmological parameters determined by the Planck Collaboration [49].

We assume that a source is detected if the single-detector signal-to-noise ratio (SNR) ρ is

such that ρ > 8.

2.2 Astrophysical populations

We use simulations performed with the population-synthesis code MOBSE [48]. MOBSE is

an upgrade of the BSE code [39] which includes up-to-date prescriptions for the evolution
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of massive stars. The treatment of stellar winds accounts for the stellar metallicity and

luminosity dependence of the mass loss. Compact objects are produced via different channels,

including core-collapse, electron-capture and (pulsational) pair instability supernovae (SNe).

In our simulations, the primary star’s mass m1 is distributed according to the Kroupa mass

function [50]

F(m1) ∝ m−2.3
1 with m1 ∈ [5− 150]M⊙ , (2.1)

while the mass ratio q = m2/m1 scales like [51]

F(q) ∝ q−0.1 with q ∈ [0.1− 1] . (2.2)

The orbital period P is drawn from

F(P) ∝ P−0.55 with P = log10

(︃
P

day

)︃
∈ [0.15− 5.5] (2.3)

and the eccentricity e follows the distribution [51]

F(e) ∝ e−0.42 with 0 ≤ e < 1 . (2.4)

Among the many physical processes involved in the formation of compact binaries that

can merge within a Hubble time, the so called common-envelope phase is believed to be

critical [52, 53]. When a star in a binary system overfills its Roche lobe, it starts transferring

mass, and eventually forms a common envelope that engulfs the companion. The common
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Table 2.1: Catalog of MOBSE models considered in this study.

Model σCCSN α

α1 265 km/s 1
α3 265 km/s 3
α5 265 km/s 5

CC15α1 15 km/s 1
CC15α3 15 km/s 3
CC15α5 15 km/s 5

envelope does not corotate with the stars or their cores, and this leads to a drag force. As

a result, the stars spiral in and transfer their orbital energy to the envelope. The system

will survive only if the energy transferred is sufficient to eject the envelope [54, 55, 56]. The

efficiency of this mechanism constitutes a main uncertainty in compact-binary formation

modelling.

Another important source of uncertainty are natal kicks. If a compact object forms from

a supernova explosion, it is expected to receive a birth kick because of asymmetric mass

ejection. A non-zero kick (the so-called Blaauw kick [57]) is expected even in the unlikely

case where mass loss is symmetric, but the compact object is part of a binary system. This

natal kick can disrupt the binary or substantially modify its orbit. Kicks set the fraction of

stellar binaries which are unbound by the SN explosion and, consequently, play a major role

in determining GW detection rates [38, 47, 58].

As described by Ref. [59] and summarized in Table 2.1, we consider six representative

populations of merging binaries, aiming at bracketing the uncertainties in the physics of

both common envelope and natal kicks. These two parameters might be the first to be

constrained with GW data (see e.g. [37, 60]).
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The common envelope phase is treated using the so-called αλ formalism [55, 61], where

α quantifies the efficiency of energy transfer to the envelope and λ represents the binding

energy of the envelope. In this work we consider α as a free parameter, while λ depends on

the stellar type [62] and it is computed by using the prescriptions derived in Ref. [63]. Kicks

are extracted from a Maxwellian distribution with root-mean-square speed (rms) σCCSN for

core-collapse SNe that produce neutron stars. 1 For black holes, we reduce the kick velocity

vBH by taking into account fallback: vBH = (1 − ffb)vNS, where vNS is the natal kick for

neutron stars and ffb parametrizes the amount of fallback on the proto-compact object [65].

Models CC15 produce natal kicks ≤ 100 km s−1, and therefore they are in tension with the

proper motions of the fastest single Galactic neutron stars [66]. These models were chosen

because they give a local merger rate density of binary neutron stars consistent with the

one inferred from GW170817 [67], without requiring exotic assumptions about common

envelope.

MOBSE predicts the NS masses from 1.1 to 2M⊙ where light (heavy) NSs are preferred during

BNS (NSBH) mergers. On the other hand, NSBH mergers favor low BH masses (< 15M⊙)

while BBH mergers could have BHs as heavy as 45M⊙ with most binaries having mass ratios

close to unity [59].
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Figure 2.1: Merger rate density R(zm) for

the models listed in Table 2.1. Here “low

kicks” corresponds to σCCSN = 15 km/s,

while “high kicks” corresponds to σCCSN =

265 km/s. Black dashed lines are propor-

tional to the star formation rate. Vertical

dashed gray lines correspond to the hori-

zon obtained by assuming BNSs of mass

(1.4+1.4)M⊙, NSBHs of mass (1.4+5)M⊙,

and BBHs of mass (10+10)M⊙ (see [1] for

a discussion). For BBHs, the CE horizon

z = 77 is so large that it lies to the right

of the x-axis range in the figure. The red

shaded region shows the allowed ranges

for the merger rate densities based on O1

and O2 observations with their “power

law” model for BBHs and “uniform mass”

model for BNSs obtained using the PyCBC

pipeline).

2.3 Merger rate densities

The merger rate density R(zm) as a function of merger redshift zm tracks the distribution

of merging binaries across cosmic time, and it depends on two factors:

(i) the rate of binary formation at a given redshift zf , and

1Neutron stars can also form through electron-capture SNe, which are less energetic, faster

and do not develop large asymmetries. This is generally expected to lead to small kicks, and

therefore we assume σECSN = 15 km/s [64].
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Figure 2.2: SNR distribution for the low-kick α = 5 model and different detectors. Here

Rdet is the number of detections per year for the given detector, as defined in Eq. (2.5).

(ii) the distribution of time delays tdelay between the formation of the parent stars in the

binary and the merger of their compact object remnants.

In turn, binary formation at zf depends on the star formation rate and the metallicity, both

of which evolve over time. The time delay distribution is sensitive to the physics that drives

binary evolution (see e.g. [45, 68, 69]).

In Fig. 2.1 we plot the evolution of the merger rate density for the six MOBSE models

considered in this study. The low-redshift behavior is often parametrized as a power law:

R(z) ≈ R0(1 + z)λ0 [34, 36], where R0 is the local merger rate density and λ0 is a model-

dependent parameter that describes its evolution. The parameter λ0 can be used to infer

astrophysical information. The star formation rate is well approximated by λ0 ≃ 2.4 for

0.1 < z < 1 [34]. Therefore, an observed λ0 < 2.4 would imply that mergers peaked before

the peak of star formation, which is only possible if compact-object binary formation is high

at low metallicities and if the time delays are short enough [34]. Current detectors can only
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investigate the evolution of the merger rate at low redshift, but in the near future we will be

able to trace the redshift evolution of the merger rate density.

Figure 2.1 shows that the BNS rate density follows quite closely the star formation rate,

with a peak at slightly lower redshift (because of the short but finite time delays). Current

observations favor models with low kicks and large α: as shown by the red shaded region in

the top panel of Fig. 2.1, only low-kick models with α = 3 and α = 5 can explain the high

local merger rates resulting from the detection of GW170817 [59, 70]. Most BNS formation

models have weak dependence on metallicity. Quite interestingly, some of them show a

bimodal distribution, with a dip at zm ≈ 5.6 and a second peak at zm ≈ 9. Indeed, the

efficiency in forming merging BNS has a minimum at intermediate metallicity Z ∼ 0.1Z⊙

(see e.g. Fig. 14 of [59]). Stars at intermediate metallicities tend to develop larger radii,

and this leads to the formation of wide BNS systems that either do not merge in a Hubble

time, or are easily disrupted by a SN explosion (because of their large orbital separation).

However, not all models that show a dip in the merger efficiency lead to a bimodal merger

rate density. Since most detectors are not sensitive to binaries from such large redshifts, 3G

detectors are needed to observe this behavior in the early Universe.

By contrast, BBH production is very efficient at low metallicities because of the impact

of metallicity on stellar radii and evolutionary stages. At solar metallicity massive stars

become Wolf-Rayet stars quite rapidly, after leaving the giant branch, because of stellar

wind efficiency. Wolf-Rayet stars have small radii (1− 2 R⊙); thus, it is highly unlikely that

such stars enter common envelope. Without common envelope, the binary star evolves into

a BBH with a large orbital separation, which will not be able to merge within a Hubble
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Figure 2.3: Detection rates of BBHs, NSBHs, and BNSs for second- and third-generation

detectors. Here “low kicks” corresponds to σCCSN = 15 km/s, while “high kicks” corresponds

to σCCSN = 265 km/s. Horizontal lines represent all events in the universe, as would be seen

by a perfect (noiseless) detector.

time. In contrast, metal-poor massive stars can retain a large fraction of their hydrogen

envelope and avoid the Wolf-Rayet stage, increasing the probability of undergoing mass

transfer and entering common envelope. The rate density peaks at z ≳ 2, earlier than the

peak of star formation, and the merger rate density at small redshifts is not as steep as the

star formation rate (i.e., it has λ0 < 2.4). We should soon be able to verify this trend with

current detectors.

2.4 Detection rates

To study how detection rates will benefit from detector improvements, here we will consider

noise power spectral densities for the AdLIGO design sensitivity noise [29]; planned upgrades

to existing LIGO detectors (A+, A++ and Voyager [12, 13, 14]); and 3G detectors, including

CE [15] and the Einstein Telescope (more specifically, ET-B [30]). We approximate the

detector noise for the O2 and O3 runs by rescaling the AdLIGO noise curve in such a way
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Table 2.2: Minimum and maximum detection rates (yr−1) across all models.

Detector BNS NSBH BBH

O2 0.028 - 0.91 0.12 - 1.1 27 - 40
O3 0.11 - 3.4 0.46 - 3.9 94 - 1.5× 102

AdLIGO 0.27 - 8.6 1.2 - 9.3 2.2× 102 - 3.6× 102

A+ 0.88 - 28 3.2 - 26 5.6× 102 - 9.7× 102

A++ 2.3 - 71 8.1 - 63 1.3× 103 - 2.4× 103

Voyager 32 - 9.4× 102 1.0× 102 - 7.8× 102 9.7× 103 - 2.7× 104

ET-B 1.1× 103 - 2.7× 104 2.4× 103 - 2.2× 104 4.9× 104 - 2.7× 105

CE 1.6× 104 - 2.7× 105 1.6× 104 - 1.4× 105 8.6× 104 - 5.4× 105

Noiseless 2.8× 104 - 4.5× 105 2.0× 104 - 1.8× 105 9.2× 104 - 5.7× 105

that the resulting BNS range is 90 Mpc [9] and 140 Mpc [71], respectively. In Fig. 2.2 we

plot the distribution of signal-to-noise ratios (SNRs) for these detectors using the low-kick

model with α = 5. Most of the binaries with very large SNRs come from local Universe,

so their distribution scales like 1/ρ4 [72]. 2 Since CE (and, for BBHs, also ET) will see

past the peak of the merger rate density (cf. Fig. 2.1), the maximum detection redshift is

not controlled by the detector capabilities, but by the physics that governs the merger rate

density R(zm). Figure 2.3 shows the detection rates, Rdet for different astrophysical models

and different detectors, comparing them with the intrinsic merger rate in the Universe

that would correspond to an ideal, noiseless detector (see Appendix 2.A for details of the

detection-rate calculations). According to our models, AdLIGO at design sensitivity could

see 220 − 360 BBH, up to 9 NSBH and 9 BNS mergers per year. Upgrading AdLIGO

detectors to a configuration like A+ would increase the detection rates by a factor of 3. With

3G detectors, BBH rates would increase by up to 2–3 orders of magnitude, while NSBH and

BNS detection rates would increase by up to 3–4 orders of magnitude. CE would see at

2In the local Universe, the total number of binaries within luminosity distance D∗ is

N(D < D∗) ∝ D3
∗, or equivalently N(ρ > ρ∗) ∝ ρ−3

∗ , so the SNR probability distribution

scales like N(ρ∗) =
dN(ρ>ρ∗)

dρ∗
∝ ρ−4

∗ .
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least 92% of all BBH mergers in the Universe, compared to the 0.06–0.24% seen by AdLIGO

at design sensitivity. Current-generation detectors like AdLIGO have low BNS and NSBH

detection rates, detecting only 10−5 (∼ 10−4) of all BNS (NSBH) mergers in the Universe.

By contrast, CE will see more than 50% (∼ 75%) of all BNS (NSBH) mergers.

It is also clear from Fig. 2.3 that α and σCCSN can affect detection rates of all compact

binary systems by up to an order of magnitude. In particular, BBH and BNS rates are

affected in different ways by the common-envelope efficiency parameter α: lower values of α

yield smaller rates for BNSs and larger rates for BBHs. This can be understood as follows.

BBHs form from massive stars that can develop very large radii during their evolution, and

therefore enter the common envelope phase with a wide orbital separation. If α > 1, the

envelope will be ejected easily while the binary is still widely separated, and the outcome

will be a wide binary that is unlikely to merge in a Hubble time [59]. In contrast, BNSs

form from smaller stars, and the orbital separation at the beginning of the common envelope

phase is smaller. Therefore high values of α lead to the formation of a close binary that can

merge in a Hubble time, while small values of α cause a premature merger of the system.

Low kicks (CC15α1, CC15α3, CC15α5) lead to higher detections rates for BNS and NSBH

mergers, because strong kicks are efficient at disrupting these binaries. On the other hand,

most BBH progenitors undergo direct collapse in the models presented here: nearly all of

the star’s mass falls back onto the compact object, and kicks are suppressed. For this reason,

BBH detection rates are nearly insensitive to natal kicks. 3

3BBH merger rates are found to strongly depend on SN kicks if fallback is suppressed [47,

58, 73].
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Local NSBH merger rates for low-kick models are larger than high-kick models by a factor

of 3–10. If we assume low (high) SN kicks, the NSBH merger rate increases (decreases) with

α. This is because large SN kicks tend to unbind the binary. If the natal kick is high, a

small value of α increases the probability that the system merges, because if α is small the

system’s semi-major axis shrinks considerably during CE, after the first supernova. Thus,

if the kick is high a small value of α increases the NSBH merger rate. In contrast, if the

kick is low, a small value of α might trigger the premature merger of the binary, before the

second compact object has formed. Thus, if the kick is low, the highest NSBH merger rate

is achieved for a rather large value of α, as already explained in [70].

We list minimum and maximum rates across all models in Table 2.2.

2.5 Conclusions

We studied the detection rates and redshift evolution of BNS, NSBH and BBH merger rate

densities. The redshift distribution of the merger rates contains important clues about the

physics that drives the evolution of these compact objects (see also the companion papers

[47, 70, 74]). The merger rate history of compact-object binaries is obtained by convolving

their formation history with the time-delay distribution. The formation rate depends on

both star formation rate and metallicity. The formation of BNSs depends only mildly on

metallicity, and therefore their formation across cosmic time follows quite closely the star

formation rate (but it is shifted to slightly lower redshifts, because of finite delay times).

Therefore for BNSs we expect λ0 ≳ 2.4, i.e. the merger rate peak occurs after, but very
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close to the peak of star formation. Current detectors have small BNS horizons, so they

will mainly see binaries that formed in the local Universe, where metallicity is high, but

3G detectors should allow us to observe large-redshift BNSs and to verify this prediction.

In contrast, BBH production (and, marginally, NSBH production) is very efficient at low

metallicities. Most BBHs form at z ≳ 2, before the peak of star formation, and their merger

rate density evolves slowly compared to BNSs: most BBHs and NSBHs formed before the

peak of star formation, yielding λ0 < 2.4. Only CE (and, in the case of BBHs, ET) will

allow us to see beyond the merger rate peak of compact object binaries.
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Figure 2.4: Growth of catalog size as detec-

tors improve for models in agreement with

current observations. The timeline for dif-

ferent detectors and their upgrades is esti-

mated following Refs. [2, 3, 4]. We assume

an optimistic duty cycle of 100%, which

is compatible with expectations for future

observations with multiple detectors.

We also investigated how these rates are affected by common-envelope efficiency and natal

kicks, considering both second- and third-generation detectors. We found that a lower

common envelope efficiency leads to smaller BNS detection rates, and larger BBH detection

rates. This is because lower efficiency causes a longer inspiral of the stellar cores, leading to

BNS progenitors that merge prematurely, before they can collapse into a neutron star. By

contrast, BBH progenitors are much larger, and their orbits are wider compared to BNS

progenitors. Natal kick assumptions affects only BNS and NSBH mergers in our models:

high kicks can more easily disrupt binaries and usually lead to lower detection rates. On the
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other hand, BBH kicks are suppressed because of the large amount of material that falls

back onto the compact object after the supernova explosion.

In Fig. 2.4 we plot the growth of the GW catalog size as detectors improve, based on the

rate calculations of Fig. 2.3. We assume 1 year of observations for O3, which started in

2019. The observing run O4 for AdLIGO at design sensitivity is expected to start in 2021,

and it should last for ∼ 2 years, followed by 1 year of commissioning period for upgrades to

A+ (which is currently targeted to be operational by 2024 [4]). We assume the operational

time for A+ to be 6 years [3], with further upgrades to “A++” in 2027. By the beginning

of the 2030s, when new detectors – Voyager in the existing LIGO facilities, and CE/ET in

separate facilities – may start operations, we could have a GW catalog of up to 104 events.

In Fig. 2.4 we assume a 5-year observation period before Voyager is superseded by CE.

As the detectors improve, the rapid growth of the GW catalog should allow us to place

stringent constraints on the population parameters that influence the final stages of the lives

of massive stars.
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Appendix

2.A Detection rate calculations

The detection rate is given by [75, 76]

Rdet =

∫︂ t0

0
pdetR(zm)

dVc
dtm

dtm
dtdet

dtm, (2.5)

where t0 is the age of universe and pdet is the probability of detecting a given binary, defined

in Eq. (2.15) below. The factor dtm/dtdet = 1/(1 + zm) accounts for the different clock rates

at merger and at the detector. The source-frame merger rate density at redshift zm is

R(zm) ≡ dN

dVcdtm
=

∫︂ tm

0
sfr(zf )

dN

dtmdMf
dtf , (2.6)

where the star-formation rate is sfr(zf ) ≡ dMf

dVcdtf
. The second term in the integrand accounts

for the number of binaries per unit star-forming mass that form at tf and merge at tm. Here,

we have marginalized over the distribution of component masses and time delays. We can

rewrite Eq. (2.5) (after switching the order of the integrals over tf and tm) as

Rdet =

∫︂ t0

0
sfr(zf )

d

dMf

(︄∫︂ t0

tf

dN

dtm

pdet(zm)

1 + zm

dVc
dtm

dtm

)︄
dtf ,

=

∫︂ t0

0
sfr(zf )

d

dMf

(︃∑︂ pdet(zm)

1 + zm

dVc
dzm

dzm
dtm

)︃
dtf . (2.7)
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In the second line above, we converted the integral over a distribution to a Monte-Carlo

sum, ∫︂
dN

dtm
f(tm)dtm →

∑︂
i

f(tim) . (2.8)

In practice, the term in parentheses is evaluated by Monte Carlo integrations, where the

samples tim are generated from the distribution dN/dtm. The comoving volume element

dVc/dz is given by

dVc
dz

(z) = 4π
c

H0

D2
c

E(z)
, (2.9)

where E(z) is the function that describes the evolution of Hubble parameter, i.e. H(z) =

H0E(z), and Dc is comoving distance [77]. The factor of 4π takes into account the angular

integration over the sky.

In practice, at a given metallicity Zf , MOBSE starts with a given total mass Msim and outputs

a distribution of binaries. For each set of free parameters in Table 2.1, we have 12 simulations

of 107 binaries each, with metallicities Z = 0.01–1Z⊙. We simulate a set of compact-object

binaries formed at different times tf inside bins of ∆tf = 10 Myr. At the time of formation

tf , we assume that the metallicity is given by

log
Z(zf )

Z⊙
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−0.19 zf , zf ≤ 1.5

−0.22 zf , zf > 1.5 ,

(2.10)

i.e. we follow the metallicity evolution of Ref. [78], but we rescale it so that Z(0) = Z⊙. Each
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formation time bin is assigned one the 12 metallicities according to Eq. (2.10). However,

since the MOBSE simulation started with total binary mass, Msim, we need to rescale this

mass according to the star formation in that particular time bin. We have adopted the

following fit for star formation rate [79]:

sfr(z) =
0.015(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M⊙Mpc−3. (2.11)

These binaries are then evolved in time until they merge at tm. This produces a catalog of

binaries that form at tf and merge at zm. The integral in Eq. (2.7) can be now be written as

Rdet =
∑︂
i

(si(tf )∆tf )
pdet

1 + zm

dVc
dzm

dzm
dtm

, (2.12)

where all terms except the first are evaluated at the merger redshift zm. The first term is

the number density of binaries formed at redshift zf ,

si(zf )∆tf = fbinfIMF
sfr(zf )

Msim(Zf )
∆tf . (2.13)

The factors fbin = 0.5 and fIMF = 0.285 take into account the fact that MOBSE only simulates

binaries with primary mass larger than 5M⊙.

Finally, a binary is assumed to be detected if it has the signal-to-noise ratio (SNR) ρ =

ρ0w > 8, where ρ0 is the SNR assuming that the binary is optimally oriented and located in

the sky, while 0 ≤ w ≤ 1 is the projection factor that depends on the binary’s sky position
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and orientation. The optimal SNR is calculated as

ρ20 = 4

∫︂ ∞

0

h̃
∗
(f)h̃(f)

Sh(f)
df , (2.14)

where h(f) is the frequency-domain GW signal and Sh(f) is the detector noise power spectral

density [80, 81]. The horizon zh is the farthest redshift for which a binary with component

masses m1 and m2 can be detected, i.e. ρ0(m1,m2, zh) = 8. The quantity ρ0 determines

the probability of detecting a binary that lies within the detector’s horizon (i.e. ρ0 > 8, or

equivalently z < zh):

pdet =

∫︂ 1

8/ρ0

p(ω)dω (2.15)

where p(w) is the probability distribution function of ω [82]. Detection rates only depend

on pdet, hence ρ0. We calculate the signal-to-noise ratio of BBH mergers using the waveform

approximant IMRPhenomD, while for NSBH and BNS mergers we use TaylorF2. Since MOBSE

does not have any prescriptions to evolve the spins, we assume black holes and neutron stars

to be non-spinning. Spins are expected to impact detection rates within a factor 1.5 [58],

which should be added to the error budget of our estimates.

Note that in Fig 2.2, where we looked at the distribution of ρ = ρ0w, we sample p(ω) for

each binary in the catalogs mentioned above and assign the SNR accordingly.
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The mass gap, the spin gap, and
the origin of merging binary black
holes

Abstract

Two of the dominant channels to produce the black-hole binary mergers observed

by LIGO and Virgo are believed to be the isolated evolution of stellar binaries in

the field and dynamical formation in star clusters. Their relative efficiency can be

characterized by a “mixing fraction.” Pair instabilities prevent stellar collapse from

generating black holes more massive than about 45M⊙. This “mass gap” only applies

to the field formation scenario, and it can be filled by repeated mergers in clusters.

A similar reasoning applies to the binary’s effective spin. If black holes are born

slowly rotating, the high-spin portion of the parameter space (the “spin gap”) can

only be populated by black hole binaries that were assembled dynamically. Using a

semianalytical cluster model, we show that future gravitational-wave events in either

the mass gap, the spin gap, or both can be leveraged to infer the mixing fraction

between the field and cluster formation channels.
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3.1 Introduction

Gravitational-wave (GW) observations of merging black-hole (BH) binaries are bringing us

into a new era where many questions are still unanswered. How, when, and where do these

binaries form? What is the core physics that drives them to merge?

The two most popular formation channels are isolated binary evolution in the field and

dynamical formation in clusters (see e.g. [52, 53] for reviews). For isolated binaries, the

most promising mechanism to catalyze mergers is a common-envelope phase in between

the formation of the two BHs. Alternatively, dynamical channels predict that binary

BHs (BBHs) form and harden through three-body encounters in dense stellar clusters.

Other scenarios for the formation and merger of BBHs include chemically homogenous

evolution [83, 84], AGN disks [85, 86, 87], secular interactions in triples [44, 88, 89], and

primordial BHs [90]. Different formation pathways leave different imprints on the properties

of the BBH population, including the binary masses, spins, eccentricities, and redshift

evolution. Measuring these distributions informs us on the environment in which BBHs form

and evolve [36, 91, 92, 93, 94].

One of the most promising signatures is the distribution of BH spins: systems formed

through dynamical interactions are expected to have isotropic spin orientations, whereas

binaries born in the field are more likely to have aligned spins [58, 95, 96, 97].

However, if BHs are naturally born with low spins, it becomes harder to differentiate between

formation channels using spin alignment. LIGO/Virgo observations indicate that this may
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be the case: the majority of the events reported so far have “effective spin”1 χeff ≃ 0.

More specifically, all detections from Ref. [9] but two (GW151226 and GW170729) are

compatible with χeff = 0 at 90% confidence, although this is a somewhat prior-dependent

statement [98]. For GW151226 and GW170729, the 90% lower limit on the effective spin

is as low as χeff ∼ 0.1 [9]. A recent study [20] showed that the effective spin distribution

of LIGO observations is almost consistent with a Dirac delta centered at χeff = 0. The

additional triggers reported in Refs. [99, 100], if astrophysical in nature, might be high-spin

outliers with χeff ≳ 0.5, but this is also a prior-dependent statement [101].

Recent stellar-physics simulations also suggest that BHs are born with very low spins.

Efficient core-envelope interactions may transfer the angular momentum of the progenitor

star away from the collapsing core, resulting in BH spins χ ∼ 10−2 [22].

If stellar-mass BHs do indeed rotate very slowly, we will not be able to differentiate the

aligned and isotropic populations, making it difficult (if not impossible) to use spin alignment

to disentangle BH mergers formed in the field from dynamically-formed binaries.

In this chapter we identify specific observational signatures that are enhanced if spins are

indeed small. In a nutshell, we exploit specific regions of the parameter space which can

plausibly be populated by only one of the two scenarios. These “reserved regions” or “gaps”

provide a new handle to infer the mixing fraction between the underlying formation channels.

1For a binary with component masses m1 > m2, mass ratio q = m2/m1 and dimensionless

spins of magnitude χi at angles θi (i = 1, 2) with respect to the orbital angular momentum,

the effective spin χeff ≡ (χ1 cos θ1 + qχ2 cos θ2)/(1 + q) is a mass-weighted combination of

the components of the BH spins parallel to the binary’s orbital angular momentum.
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Suppose, for simplicity, that only two formation channels (“field” and “cluster”) are at play

for N BBH detections:

Nfield +Ncluster = N . (3.1)

The fraction of observation from the “cluster” scenario is

f ≡ Ncluster

N
. (3.2)

while the “field” fraction is given by 1− f . Let us further separate the fraction of the catalog

entries that are inside/outside a specific region of the parameter space (“gap”), i.e.

N = Nno gap +Ngap . (3.3)

This gap is a reserved region, in the sense that it can only be populated by one of the models

(say “cluster”): this implies Nfield,gap = 0, and therefore Ngap = Ncluster,gap. If the efficiency

of the “cluster” model at populating the gap

λ ≡ Ncluster,gap

Ncluster
(3.4)

can be reliably estimated, one immediately obtains an estimate of the number of binaries

coming from each population:

Ncluster =
Ngap

λ
, Nfield = N − Ngap

λ
, (3.5)
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or equivalently of the mixing fraction:

f =
Ngap

λ N
. (3.6)

For instance, if N ∼ 100 events are detected during LIGO/Virgo’s third observing run O3

and one of them lies in the gap, an efficiency λ ∼ 5% would imply that f ∼ 20% of the

observed BH binaries must have formed in clusters, and the remaining 1− f ∼ 80% must

have formed in the field.
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Figure 3.1: Illustration of the “mass gap”

in the primary mass m1 (top panel) and

of the “spin gap” in the effective spin χeff

(bottom panel). Solid (dashed) lines are

computed under the assumption that the

maximum individual BH spin at birth is

χmax = 0.1 (0.2). Only 2g events can pop-

ulate the regions of the parameter space

with high values of m1 and/or χeff .

Gaps in the parameter space are naturally populated by hierarchical BH mergers. When

two BHs merge in the field, the remnant BH does not interact again with other BHs. This is

not necessarily true for BHs that merge in clusters. If these “second-generation” (henceforth

2g) BHs remain in the cluster, they might continue to interact with other BHs, eventually

forming new binaries and merging again [102, 103, 104, 105]. These 2g BHs will, on average,
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be heavier than their ancestors. Moreover, binary formation and hardening tend to occur

faster for heavier objects, and thus mergers occur more often.

Both supernova models and LIGO observations [36] indicate the presence of a mass gap

(usually referred to as the “upper mass gap”, to distinguish it from the putative gap

between BHs and neutron stars). Pair-instability supernova (PISN) and pulsational pair-

instability supernova (PPISN) [106] prevent the formation of BHs with masses larger than

∼ 45M⊙ [107, 108, 109, 110, 111]. The pair-instability mass gap is our first reserved region:

if a merging binary with a component BH heavier than the PISN threshold is found, this

would point towards a hierarchical origin.

When two “first-generation” (henceforth 1g) BHs merge, they form a remnant with a unique

distribution of spins which is largely independent of the spins of their progenitors. In

particular, remnant spins are strongly peaked at χ ∼ 0.7 [102, 103, 112]. This is our second

reserved region, which we call the “spin gap” (although to be rigorous we should call it

the “effective spin gap”): if BHs are indeed born with low spins from stellar collapse, the

detection of a highly spinning object would also indicate a hierarchical origin. The mass

and spin gaps are illustrated in Fig. 3.1.

A 2g merger can occur only if (i) the preceding 1g merger happened in situ, and (ii) the

merger remnant remains bound to the cluster. Only BHs that receive kicks smaller than

the escape speed of the clusters can be retained and potentially merge again. Conversely,

the detection of 2g mergers can be used to constrain the escape speed of clusters [105, 113].

Generic BH recoils are O(100 km/s) [105, 114], but kick velocities tend to zero for BHs with
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similar masses and small spins, as indicated by current observations.

While we assume that 2g mergers happen only in dense star cluster, other astrophysical

mechanisms (such as gas accretion [115], stellar mergers [110], Population III stars [116,

117, 118] or gravitational lensing [119, 120]) could lead to events that contaminate these

gaps and complicate the measurement of the mixing fraction, f . However these mechanisms

are expected to be subdominant. Furthermore it should still be possible to disentangle the

population of dynamically formed 2g mergers from other sources, because of the unique

relationship between the 1g and 2g populations.

The rest of this chapter puts these ideas on more solid footing. In Sec. 3.2 we describe a

semianalytical cluster model based on simple prescriptions, which, however, can replicate the

main features relevant to BH mergers of the more complex and computationally expensive

Monte Carlo simulations [45, 46, 121] and direct N -body simulations [69, 122]. In Sec. 3.3

we use this model to predict the fraction of events populating the mass and spin gaps.

In Sec. 3.4.1 we use simple analytical approximations for the effective spin probability

distribution functions (PDFs) in field binaries and cluster binaries to estimate measurement

errors on the “mixing fraction” between field and cluster events using only 1g mergers, and

in Sec. 3.4.2 we show that using the mass and spin gaps can yield better estimates of the

mixing fraction. In Sec. 7.7 we summarize our results and discuss directions for future

research. The derivation of the spin PDFs is presented in Appendix 3.A. Throughout the

chapter, we use cosmological parameters from Ref. [49].
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3.2 Hierarchical mergers with a semianalytical cluster model

In this section we use a semianalytical cluster model which is not meant to replace N -body

simulations, but serves our main purpose: relating the bulk properties of clusters to the

characteristics of binary mergers which can be observed in GWs.

3.2.1 Binary formation and mergers in clusters

Massive clusters are hotbeds for multiple-generation BBH mergers, but a good understanding

of their evolution is elusive because the large number of particles comprising these systems

makes numerical simulations extremely challenging. We evolve binary BHs in clusters

following Refs. [43, 123]. Reference [43] used a semianalytical approach to predict rates

and properties of inspiraling BH binaries forming in nuclear star clusters (NSCs), while

Ref. [123] combined a cosmological model of globular cluster (GC) formation with analytical

prescriptions from Ref. [43] to study the properties of dense clusters that form merging BH

binaries.

We calibrate the half-mass radius rh for GCs to fits of late-type galaxies [43, 124]:

rh =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 pc if Mcl ≤MNSC,

2.14

(︃
Mcl

106M⊙

)︃0.321

pc if Mcl > MNSC,

(3.7)

where we set MNSC = 2.87 × 106 M⊙ (slightly lower than the value MNSC = 5 × 106 M⊙

used in Ref. [43]) to ensure continuity between the GC and the NSC regime.
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The escape velocity from the cluster is [43]

vesc ≃ 0.1

√︄
Mcl

M⊙

pc

rh
km s−1, (3.8)

and the velocity dispersion is given by σ⋆ = vesc/(2
√
3), as predicted by Plummer’s model.

The number density of stars at the center of the cluster is set to [43]

n⋆ = 4× 106
(︂ σ⋆
100 km s−1

)︂2
pc−3 (3.9)

to match observations [125, 126].

Mass segregation

Clusters containing a subpopulation of BHs with average mass ⟨mBH⟩ will segregate to the

cluster core on a timescale [127]

tMS =
⟨m⋆⟩
⟨mBH⟩

tr(rh) , (3.10)

where ⟨m⋆⟩ is the mass of a typical star in the cluster and tr(rh) is the relaxation time at

the half-mass radius

tr(rh) = 4.2× 109
(︃

15

lnΛ

)︃(︃
rh
4 pc

)︃3/2(︃ Mcl

107 M⊙

)︃1/2

yr . (3.11)

We set the Coulomb logarithm parameter to Λ ≃ 0.4N⋆ [127], where N⋆ ≃Mcl/⟨m⋆⟩ is the

number of stars in the cluster.
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As they fall into the core, BHs lose energy to stars, which become more energetic and migrate

outwards. Over time the BHs become confined to an ever smaller core, where fewer stars

are available to carry out the energy. Eventually BHs decouple from the rest of the cluster

population. Assuming that the fraction of the total cluster mass contained in BHs is [123]

fBH =
MBH

Mcl
= 0.05 (3.12)

and that BHs are confined in the “BH half-mass radius”

rBH ≡ MBH

Mcl
rh = fBHrh , (3.13)

one can find the number density of BHs as [128]:

nBH = n⋆
MBH

Mcl

r3h
r3BH

= f−2
BH n⋆ , (3.14)

where n⋆ is the number density of stars in the core.

The velocity dispersion of BHs in this dynamically decoupled core is related to the stellar

dispersion through the temperature ratio

ξ =
⟨mBH⟩σ2BH

⟨m⋆⟩σ2⋆
= 5 , (3.15)

where for the latest equality we follow Refs. [123, 129, 130].
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Formation of BH binaries

In the dense environment of the cluster core BHs can efficiently form binaries, which will

then harden and eventually merge through the following processes.

1) Three-body interactions. If the density is high enough, a close encounter between

three single BHs can lead to the formation of a BH binary, with the third BH carrying

away the energy needed to bind the pair. The timescale to form a binary via three-body

interactions is [128]

t3bb = 6.45× 109
(︃

nBH

106 pc−3

)︃−2 (︂ σBH

10 km s−1

)︂9(︃ m1

10M⊙

)︃−5

yr , (3.16)

where m1 is the mass of the heaviest BH in the triple system. Three-body binary

formation is highly efficient because of the strong dependence on the velocity dispersion,

which is much smaller for BHs compared to stars: cf. Eq. (3.15).

2) Binary-single interactions. Clusters also have a population of stellar binaries,

which tend to sink towards their cores because they are heavier than single stars. Once

inside the core, these binaries undergo binary-single interactions with BHs. Most such

encounters end up in exchanges between the BH and the lighter of the two stars in the

binary. If the cluster core contains enough hard stellar binaries, a BH of mass mBH

can form a binary with a star via exchange interactions on a timescale [131]

t1-2 = 5× 109
(︃
fb
0.1

)︃−1(︃ n⋆
104 pc−3

)︃−1 σBH

10 km s−1

×
(︃
2⟨m⋆⟩+mBH

20M⊙

)︃−1 (︂ ahard
1 AU

)︂−1
yr , (3.17)
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where fb = 0.1 is the binary fraction in the core [132] and ahard is the typical separation

of a hard stellar binary. The latter is estimated as [133, 134]:

ahard = 1.5

(︃
rh
3 pc

)︃(︃⟨m⋆⟩/Mcl

10−5

)︃
AU, (3.18)

which corresponds to the maximum separation of a hard stellar binary in the core. This

BH–star system might form a BH–BH binary following another exchange interaction

with a single BH on timescales smaller than t1-2. Comparing Eq. (3.16) and Eq. (3.17)

shows that three-body binary formation is likely to dominate the dynamical formation

of BH binaries, because the binary fraction fb is rather small.

3) GW captures. BHs can also form binaries through single-single GW capture. In

this case, two single BHs become bound after a close encounter if sufficient energy is

dissipated via GWs. Such BH binaries are predicted to be very eccentric [135] and,

consequently, merge almost instantly [136]. The rate of single-single GW capture

mergers is comparable to that of binary-single interactions only when the binary

fraction is at the percent level [135]. For fb = 0.1 as assumed here, GW captures can

be safely neglected.

To summarize, we define the BBH formation timescale to be min(t1-2, t3bb).

Hardening and Merger

After a “hard” binary (i.e., a binary with binding energy greater than the kinetic energy of

cluster particles) is formed, it typically undergoes a series of strong encounters with stars
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in the core. Because of “Heggie’s law” [133], these repeated encounters tend to make hard

binaries harder and soft binaries softer. In a cluster with BH mass density ρBH, a binary

will harden at a rate [137]

ȧdyn = −20
GρBH

σ2BH

a2 . (3.19)

If, after an interaction with another BH, the semimajor axis a of the binary decreases to afin,

the binary will recoil with velocity ∝ (afin)
−1/2. This happens because the extra binding

energy is converted to kinetic energy, most of which is carried away by the interloper, while

some of it gets transferred to the binary system.

So, while binaries become harder with every encounter, these binaries also receive larger

and larger recoils, and may eventually be kicked out of the cluster. By equating the recoil

speed to the escape velocity of the cluster vesc, one can estimate the binary separation at

which the binary could be ejected:

aej = 3.9 η
(︂ vesc
30 km s−1

)︂−2 m3

20M⊙

m3

m1 +m2 +m3
AU , (3.20)

where m1 and m2 are the BBH component masses, η ≡ m1m2/(m1 +m2)
2 is the symmetric

mass ratio of the BBH, and m3 = ⟨mBH⟩ is the mass of the BH interloper.

A binary can avoid ejection if gravitational radiation takes over and drives it to merger

before another dynamical interaction kicks it out of the cluster. The binary separation decays

due to gravitational radiation as

ȧGW = −64

5

G3

c5
m1m2(m1 +m2)

a3
f(e) , (3.21)
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where e is the eccentricity and

f(e) =

(︃
1 +

73

24
e2 +

37

96
e4
)︃
(1− e2)−7/2 . (3.22)

We adopt the median value e = 1/
√
2 expected for a thermal distribution p(e) = 2e. GWs

start dominating the dynamics at the separation aGW where dynamical hardening [Eq. (3.19)]

balances GW emission [Eq. (3.21)]. Setting ȧdyn = ȧGW yields

aGW = 0.05

(︃
m1 +m2

20 M⊙

)︃3/5

×
[︃
η

σBH

30 km s−1

106M⊙ pc−3

ρBH
f(e)

]︃1/5
AU . (3.23)

For a < aGW, GWs dominate the energy loss from the binary. If aGW < aej, dynamical

encounters eject the BBH from the cluster before GWs can drive the BHs to coalescence. In

this case, the ejected BBH (with a separation aej) can continue to harden ex situ via GW

emission. On the other hand, if aGW > aej, GW emission will cause the BBHs to coalesce in

situ before ejection.

Assuming that each interaction extracts 20% of the binary’s binding energy [137], the time

to harden to a separation acrit = max(aGW, aej), from an initial separation a≫ acrit is [138]

thard =
0.316

q3

(︂ σBH

30 km s−1

)︂(︂ acrit
0.05AU

)︂−1
(︃
m1 +m2

20M⊙

)︃−1(︃ nBH

106 pc−3

)︃−1

Gyr. (3.24)

The binary will continue to interact with other cluster members until it reaches a semimajor

axis acrit. After reaching acrit, the binary’s hardening is dominated by GW emission, which
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drives the system to coalescence on a timescale [136]

tGW = 0.56× 108
[︃
m1m2(m1 +m2)

2× 103M3
⊙

]︃−1 (︂ acrit
0.1AU

)︂4(︃1− e2

0.5

)︃7/2

yr . (3.25)
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Figure 3.2: Timescales involved in the

merger of (10 + 10)M⊙ (top) and (50 +

50)M⊙ (bottom) BBHs. The timescales

related to three-body interactions, binary-

single interactions, mass segregation, GW

inspiral, and critical hardening are indi-

cated in green, yellow, red, purple, and

blue, respectively. The thick black line

marks the sum ttot of Eq. (3.26). The gray

shaded region marks time delays larger

than the age of the Universe.

Timescale comparison

The total delay time between the formation of the cluster and a BBH merger is the sum of

the timescales for mass segregation [Eq. (3.10)], BBH formation [min(t1-2, t3bb)], hardening

[Eq. (3.24)] and GW-induced merger [Eq. (3.25)]:

ttot = tMS +min(t1-2, t3bb) + thard + tGW . (3.26)
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Our estimates neglect the lifespans of massive stars that lead to BH formation, which is of

order O(1)Myr. Figure 3.2 shows how the different terms in this sum depend on Mcl:

1) Mass segregation. BHs sink into the core on a timescale tMS ∝ (r3hMcl)
1/2 [Eq. (3.10)].

In our model GCs have a fixed rh, so tMS ∝ M
1/2
cl ; for NSCs the mass segregation

timescale is approximately tMS ∝Mcl [Eqs. (3.7) and (3.11)].

2) BBH formation. BH binaries form predominantly through three-body interactions,

which are very sensitive to the velocity dispersion [Eq. (3.16)]. Heavier clusters have a

larger velocity dispersion which makes three-body interactions inefficient, therefore

BBH formation timescales increase very steeply with cluster size (t3bb ∝M
5/2
cl ). As

a result binary formation through three-body interactions is slower in most NSCs

compared to GCs, where BBHs could also form through binary-single interactions on

a timescale t1-2 ∝M
1/6
cl [Eq. (3.17)].

3) Hardening. For ex situ mergers, binaries are ejected more rapidly for smaller clusters,

and therefore they spend less time hardening (thard ∝M
1/2
cl ). On the other hand, the

hardening timescale for clusters that retain their binaries decreases with cluster mass

(thard ∝M
−2/5
cl ): larger clusters have higher densities and a larger influx of BHs to the

center, which makes dynamical hardening more efficient.

4) GWs. Small clusters have low escape speeds and BBHs get ejected at large orbital

separations (aej ∝M−1
cl ) due to dynamical interactions. Therefore, the gravitational

radiation reaction timescale tGW ∝ a4crit ∝ M−4
cl increases sharply for small clusters.

The situation is different for heavier clusters, which retain and dynamically harden
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BBHs until GW emission takes over: in this case aGW ∝ M
−1/10
cl , and thus tGW ∝

M
−2/5
cl .

The dominant term depends on both the mass of the cluster and the mass of the binary

(Fig. 3.2). For lighter BBHs of ∼ (10 + 10)M⊙, only the GW timescale matters for clusters

with mass ≲ 106M⊙, while the three-body interaction timescale is dominant for large clusters.

For larger BBHs of (50 + 50)M⊙, hardening time and mass segregation timescales also play

an important role, while the GW radiation-reaction timescale and the three-body timescale

become important only for Mcl ≲ 105M⊙ and Mcl ≳ 108M⊙, respectively. Figure 3.2 also

confirms our earlier claim that binary-single interactions are not an efficient channel for

BBH formation. They only become important for light binaries in very massive clusters, but

at that point t1-2 becomes comparable to the age of the Universe.

Figure 3.2 also shows the total delay time for equal-mass binaries as a function of Mcl. For

a binary with fixed component masses m1 = m2, the delay time decreases with Mcl for

clusters of mass Mcl ≲ 106M⊙, where the gravitational radiation or hardening timescales

dominate. For Mcl ≳ 106M⊙, other processes dominate and the delay time increases. The

minimum time delay tmin
tot over all cluster masses is, in general, a function of m1 and m2:

tmin
tot (m1,m2) = min[ttot(m1,m2,Mcl)] , (3.27)

where we take Mcl ∈ [105M⊙, 109M⊙]. For a given binary of masses (m1, m2), as long as
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t0 > tmin
tot , there are two values of Mcl – say Mmin

cl and Mmax
cl – such that

ttot(m1,m2,M
min
cl ) = t0 ,

ttot(m1,m2,M
max
cl ) = t0 . (3.28)

These represent bounds on the range of cluster masses that can produce merging BHs

with masses m1 and m2 within time t0: BBH mergers are possible, on average, when

Mmin
cl ≤Mcl ≤Mmax

cl . This point will be important later (cf. Sec. 3.2.2).

104 105 106 107 108 109

Mcl [M�]

20

40

60

80

100

m
1

=
m

2

MS 3bbHardeningGW

Figure 3.3: Dominant timescales in the

(Mcl,m1) plane for an equal-mass binary

(m1 = m2). Regions where three-body

interactions, mass segregation, hardening,

and GW inspiral dominate are indicated in

green, red, blue, and purple, respectively.

Figure 3.3 illustrates the dominant timescale as a function of cluster mass and BBH mass

for an equal-mass binary (m1 = m2). Most BBHs have small masses (cf. Sec. 3.2.2), where

ttot is dominated by tGW and t3bb [123]. Both of these timescales decrease sharply with the

BH mass (tGW ∝ m−7
1 and t3bb ∝ m−5

1 ), so mass segregation and hardening (which decay

as m−1
1 and m−1.6

1 , respectively) can become the dominant timescales only for BBHs with

larger masses. The hardening time dominates for m1 ≳ 10M⊙, while the mass segregation

timescale dominates for m1 ≳ 25M⊙ in some NSCs with mass Mcl ≳ 107M⊙.
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Figure 3.4: Contour plot of the total delay

time for the merger of an equal-mass BBH

system (m1 = m2) as a function of the

cluster mass. The white dashed line is the

boundary between the regions where most

mergers happen ex situ (left) and in situ

(right).

Figure 3.4 shows how the time ttot varies in the (Mcl, m1) plane, assuming again an equal-

mass binary (m1 = m2). In particular, the white dashed line separates the region where

mergers occur in situ and ex situ: small BHs and BBHs hosted in small clusters are

ejected because of large recoils and insufficient escape speed, respectively. After they are

ejected, these BHs then take a long time to merge under gravitational radiation reaction:

as discussed earlier, this phase dominates their entire evolution. More quantitatively, BHs

with m1 ≲ 7M⊙ take ≳ 109 yr to merge. Our model does not predict mergers of BHs with

m1 ≲ 4M⊙, which are always ejected before a binary is formed. We also find that below a

minimum primary BBH component mass for in situ mergers

mmin,is ≃ 6M⊙ (3.29)

all mergers happen outside the cluster.
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Figure 3.5: Distribution of host cluster masses (left) and primary BBH masses (right) for the

1g+1g populations. Black curves show the full sample of 1g mergers (higher generations are

excluded from this plot). Red curves show the fraction of binaries that survive dynamical

kicks and are able to merge inside the cluster. Blue curves show systems that further survive

GW kicks and remain available to assemble the second generation of BH mergers. We

assume χmax = 0.1 (solid) and χmax = 0.5 (dashed).

3.2.2 First-generation mergers

Ideally, one should generate the population of merging binaries by convolving a cluster

formation model with the delay times discussed in the previous section. There are large

uncertainties in this process [139, 140, 141], so we choose instead to start by considering the

observed population of first-generation BBHs.

We distribute the primary mass of 1g+1g mergers according to [36]

p(m1) ∝ mα
1 , m1 ∈ [mmin,mmax] , (3.30)
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while the secondary mass is drawn from

p(m2|m1) ∝ mβ
2 , m2 ∈ [mmin,m1] . (3.31)

We fix α = −1.6 and β = 6.7, as estimated from GW observations [36], and mmin = 5M⊙.

The parameter mmax marks the onset of the mass gap and it is set to 45M⊙ [109] unless

specified otherwise. The spin magnitudes of the component BHs are drawn from a uniform

distribution in the range [0, χmax].

We sample redshifts from the Madau star-formation-rate fit [79]:

sfr(z) =
0.015(1 + z)2.7

1 + [(1 + z)/2.9]5.6
. (3.32)

Lighter BHs have longer total delay times ttot. Therefore, at any given redshift there is

a lower bound on the masses of BBHs that could form and merge within a given time.

Assuming that clusters could not have formed earlier than tmax = 13.4 × 109 years ago

(zmax = 11.34), we discard all binaries that could not have merged at the sampled redshift.

In other words, we only keep binaries that satisfy the constraint

tlookback(z) + tmin
tot (m1,m2) < tmax , (3.33)

where tlookback is the cosmological lookback time [77]. This procedure removes some low-mass

and/or high-z binaries, slightly modifying our merging population relative to the sampled

distribution.
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Starting from this 1g+1g population, we can now use the semianalytical scheme outlined

above to obtain the distribution of 2g + 1g and 2g + 2g binaries.

Clusters that merge black holes

For each binary we sample the cluster mass from a distribution of the form [142]

p(Mcl) ∝M−2
cl (3.34)

in a range of cluster masses Mcl ∈ [Mmin
cl ,Mmax

cl ] that could support BBH mergers at redshift

z. Here Mmin
cl and Mmax

cl are calculated from Eq. (3.28), with t0 = tmax − tlookback(z) > ttot.

The black line in the left panel of Fig. 3.5 shows the resulting distribution of cluster masses.

Smaller clusters are more abundant, but relatively inefficient at bringing binaries to merger:

BBHs get ejected from the cluster with large orbital separations, and therefore have long

GW-driven inspiral timescales tGW. Most of the merging binaries come from GCs with mass

∼ 106M⊙: these clusters lie in the “sweet spot” where delay times are smallest, especially

for lighter BBHs, which form the bulk of the population (cf. Figs. 3.2-3.4). This behavior is

consistent with Refs. [123, 143]. In our model, smaller BHs of component masses ∼ 5M⊙

can only form in clusters with Mcl ≃ 105.8 − 106.2M⊙: these are the only systems that can

efficiently lead light BBHs to merger. On the other hand, heavier BBHs have smaller delay

times, and they can merge more easily within a wider range of cluster masses. Because of

the shape of the probability distribution function p(Mcl), most of these massive BBHs come

from clusters at the lower end of the mass spectrum.
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3.2.3 Hierarchical mergers

Our goal is to look for smoking guns that can be used to identify the 2g population. We

must first address a key question: how efficiently do clusters produce 2g mergers?

Retention in the cluster

Given a sample of binaries with masses (m1, m2) merging in a cluster of mass Mcl, we

assume that all binaries with aGW < aej merge inside the cluster. At merger, the remnant

receives an additional kick vkick due to asymmetric GW emission. If vkick < vesc the remnant

is retained in the cluster, where it can merge again and form a 2g binary. The properties

of the merger remnant are computed using fits to numerical-relativity simulations for final

mass [144], spin [145] and recoils [146, 147, 148, 149, 150] as implemented in Ref. [151],

assuming isotropic spin orientations.
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Figure 3.6: Fraction of BBHs retained af-

ter kicks due to either (i) dynamical inter-

actions before merger (solid line), or (ii)

GW recoil at merger (dashed lines). The

largest spin of 1g BHs χmax increases from

top (red, χmax = 0.1) to bottom (purple,

χmax = 0.7).

For illustrative purposes, in Fig. 3.6 we focus only on the retention power of clusters ignoring

the prescriptions of Sec. 3.2.2, as well as the fact that some clusters might not be able

to drive small BHs to merger. We plot both the fraction of in situ mergers (aej < aGW)
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and retained BHs (vkick < vesc) for different assumptions on the quantity χmax that marks

the “edge” of the spin gap. in situ BH mergers are only possible for clusters with mass

Mcl > 1.6× 105M⊙, where this threshold is mainly set by mmax. For Mcl > 4× 106M⊙ – a

threshold now set by mmin – all mergers are found in situ. Post-merger kicks increase when

the merging BH spins are large, so the retention fraction decreases steeply with χmax. For

larger values of χmax, the population contains more BHs that receive kicks larger than the

escape speed of all but the most massive clusters.

In the right panel of Figure 3.5 we convolve this retention power and the prescription

of Sec. 3.2.2 to illustrate the final distribution of BBH primary masses m1. The 1g+1g

distribution of primary masses follows the injected power law m−1.6
1 . Most small-mass

BHs get ejected due to kicks from dynamical interactions, resulting in an almost flat

distribution for in situ mergers with m1 ≳ 30M⊙ In addition, in situ mergers do not occur

for m1 < mmin,is ≃ 6M⊙ (cf. Figs. 3.4 and 3.5).

The mass distribution of the retained binaries depends on χmax. Larger χmax leads to

large kicks: this reduces the number of retained remnants, but also affects the slope of

the distribution. This can be understood as follows. Because β ≫ 1, most binaries have

mass ratio q close to unity. For χmax = 0, symmetry in the merger process (e.g. [114])

implies vkick = 0. In this case, the m1 distributions of in situ and retained mergers should

be very similar, with the same plateau at m1 ∼ mmax. For larger values of χmax, however,

most of the small clusters do not retain post-merger remnants, which removes a significant

fraction of the heaviest BBHs. These systems can form and merge easily in a wider range

of cluster masses, which implies that a significant fraction of them comes from the lighter,
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more abundant environments. Therefore, large values of χmax lead to an m1 distribution of

retained BBHs which drops more sharply.

The left panel of Fig. 3.5 shows the mass distribution of clusters that host BBHs. As

expected, in situ and retained cluster events are more likely in heavier systems with a larger

escape speed. In particular, clusters with Mcl ≳ 3 × 106M⊙ are able to produce in situ

events. The cluster masses that can retain BHs following GW kicks and thus support 2g

mergers are sensitive to the maximum spin χmax of 1g BHs. For χmax ≳ 0.5, some BHs are

ejected even from the most massive NSCs.

2g+1g or 2g+2g?

If retained, a BBH merger remnant (a “2g BH”) can merge with either another 2g BH

(2g+2g merger) or with a 1g BH (2g+1g merger). Selective pairing of BH component masses

implies that the retained remnants of 1g mergers are more likely to merge with a 2g BH

(cf. [105]). However, because heavier BHs merge more quickly, 2g systems have a very small

survival time in the cluster compared to 1g BHs. Although 2g BHs would tend to pair with

other 2g BHs, their short merger time implies a lower merger probability for 2g+2g mergers.

In order to take into account some of these complications, we assign a merger probability

based on (i) the number density of 1g BHs, and (ii) the number density of BHs retained

within a given cluster at a given redshift. We divide the 1g population into bins of cluster

mass and redshift, n1g(Mcl, z). We do the same for the retained remnants and calculate

the number of binaries in each bin, nrem(Mcl, z). The number of ways in which a 2g+1g

binary can form is proportional to n1g × nrem, while for a 2g+2g binary it is proportional to
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nrem(nrem − 1)/2. So the ratio between 2g+2g and 2g+1g mergers in a cluster of mass Mcl

at redshift z is ∝ (nrem − 1)/(2n1g).

If a 2g BH of mass m1 merges with another 2g BH, we extract the companion mass

m2 ∈ [mmin, m1] from the same distribution p(m2|m1) ∝ mβ
2 used in Sec. 3.2.2. Its spin is

estimated by binning and resampling the 2g remnant spin distribution. For the case of 2g+1g

mergers, we extract m2 from p(m2|m1) ∝ mβ
2 but now restrict m2 ∈ [mmin,min(m1,mmax)].

The spin is extracted from the 1g distribution p(χ) = constant with χ ∈ [0, χmax].

We calculate the time delay between a 1g+1g merger and the next merger involving its

2g remnant using the same ttot introduced in Eq. (3.26) above, but replacing the mass

segregation timescale tMS by tMS × (vkick/vesc)
3 to take into account the time needed by

the kicked remnant to sink back into the cluster core. This is obtained from Eq. (3.10) by

assuming that the GW recoil displaces the remnant to (vkick/vesc)
2rh [43].

The redshift distribution of 1g+1g mergers was assumed to follow the Madau star formation

rate of Eq. (3.32). We find that 2g BBHs closely follow the same distribution, contrary to

the expectation that repeated mergers may suffer further time delays [102]: cf. Fig. 3.7.

This is because merger products are heavier compared to their progenitors, and thus merge

on very short timescales in our model.

We find that, overall, the number of 2g+1g events dominates over the 2g+2g populations

with a relative fraction of about 4:1 for χmax = 0.01. The fraction of 2g+2g mergers decreases

and tends to zero as χmax → 1.
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Figure 3.7: Distribution of merger redshifts

z. Red, green, and blue curves indicate

the 1g+1g, 2g+1g, and 2g+2g populations,

respectively. Solid (dashed) histograms are

obtained with χmax = 0.01 (χmax = 0.5).

3.2.4 Caveats

The M−2
cl scaling of cluster masses [Eq. (3.34)] is based on present-day observations. A larger

number of heavier clusters might have been present (and subsequently disrupted) at larger

redshifts. This could increase the fraction of binaries retained in the cluster, and hence the

number of 2g mergers. Moreover, we fixed rh as a function of Mcl [Eq. (3.7)] based on fits

from Ref. [43]. However, a wide distribution of rh is observed for a given Mcl. This means

that even for small Mcl, one can find smaller rh (and hence larger vesc) than assumed here.

Therefore, 2g mergers could occur efficiently in many clusters smaller than those discussed

here. We also assumed that all clusters have the same distribution of BHs given by α and

mmax. More realistically, the mass distribution of BHs should be a function of metallicity,

which in turn has a complicated correlation with Mcl, the mass of the host galaxy, etc [152].

These complications were ignored in our simple model, and they are beyond the scope of

the present work.
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3.3 Filling the mass and spin gaps by hierarchical mergers

We now discuss two key features of the observed merger distribution that can help to identify

the origin of BBH mergers: the mass gap and the spin gap.

3.3.1 The mass gap

Theoretical studies suggest the existence of a gap in the BH mass function of 1g mergers

above mmax ∼ 45M [109] due to PISN and PPISN [106]. The distribution of BBH mergers

detected in O1 and O2 already hints at the possible existence of an upper bound of ∼ 40M⊙

on the component BH masses [36]. The detection of BH binaries with component masses in

the mass gap could be evidence that repeated mergers are at play.

In our model, only 2g BHs can have masses above mmax. We thus define the number of

mergers in the mass gap as

NMgap ≡ N1g+2g(m1 > mmax) +N2g+2g(m1 > mmax) . (3.35)

The efficiency of the cluster model at populating the mass gap is given by

λM ≡ NMgap

Ncluster
. (3.36)

The top panel of Fig. 3.1 shows the distribution of primary masses for χmax = 0.1, 0.2. In

both cases, around 25% of 2g mergers lie in the mass gap.

60



CHAPTER 3.

3.3.2 The spin gap

While core collapse might leave behind slowly rotating BHs [22], BBH mergers produce

remnants with a spin distribution peaked at χ ∼ 0.7 [102, 103, 112]. This is the second

smoking-gun signature of 2g mergers, as shown in the bottom panel of Fig. 3.1 for χmax = 0.1.

The effective spin distributions of the 2g+1g and 2g+2g populations is broader compared to

the 1g+1g case, with events leaking in the region where |χeff | > χmax. This region is the

spin gap.

Much like evading the PISN/PPISN constraint is a prerogative of repeated mergers, we find

that populating the spin gap is also a strong indication of 2g events. The 2g+1g and 2g+2g

populations are, collectively, well distinct from the 1g+1g binaries. In particular, 2g events

constitute only ∼ 1% of mergers with effective spin outside the gap (|χeff | < χmax ). This

assumption is solid as we change χmax: we find that the fraction of 2g events outside the

spin gap peaks at 2% for χmax = 0.24.

The number of events in the spin gap is defined as

NSgap ≡ N1g+2g(|χeff | > χmax) +N2g+2g(|χeff | > χmax) , (3.37)

while

λS ≡ NSgap

Ncluster
(3.38)

is the cluster efficiency at populating this region. In the bottom panel of Fig. 3.1, for
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example, 74% of all 2g mergers lie in the spin gap when χmax = 0.1. This number reduces

to 50% for χmax = 0.2.
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Figure 3.8: Fraction of events that lie in

one and/or both gaps. The total contribu-

tions to the mass (λM) and spin (λS) gap

are given by the thick solid red and thick

dashed blue curves, respectively. The other

curves indicate contributions from binaries

that are in one gap but not in the other

one (λMS and λMS), in both gaps (λM∧S),

or in either of the two gaps (λM∨S).

3.3.3 Gap efficiencies

The maximum 1g spin χmax is the main parameter that determines the efficiencies λM and

λS, which are shown as thick lines in Fig. 3.8. For χmax = 10−2, about 5% (14%) of all

mergers lie in the mass (spin) gap. These are conservative upper limits: if χmax is increased,

merger products receive larger and larger GW kicks, and the number of 2g mergers decreases

drastically. For χmax = 0.5, only 0.4% of mergers lie in the mass gap. The effect is even

more severe for the spin gap, which remains nearly empty (≃ 0.01% of the events).

The spin efficiency is largely independent of both mmax and α. The mass efficiency, on the

other hand, depends on α and, to a lesser extent, on mmax. These trends are illustrated in

Fig. 3.9, which can be understood by a simplified model as follows.

Let us assume that the component masses of the population retained after merger follow

62



CHAPTER 3.

-3.0 -2.5 -2.0 -1.5 -1.0
10

-3

10
-2

10
-1

40 45 50 55 60
0.00

0.02

0.04

Figure 3.9: Mass-gap efficiency λM as a

function of the mass spectral index α (top

panel) and the gap edge mmax (bottom

panel). The largest 1g spin χmax is var-

ied from 0 to 0.5 (top to bottom in each

panel). In the top panel, black dashed

lines show the approximate dependence

from Eq. (3.42) with α = −1.6. In the

bottom panel, black dashed lines represent

our default value mmax = 45M⊙.

some power law p1g(m) ∝ mα′
for m ∈ [mmin,is,mmax]. Let us also neglect energy dissipation

during merger. The primary masses of 2g events will be distributed according to

p2g(m) =
1

2

1 + α′

m1+α′
max −m1+α′

min,is

(︂m
2

)︂α′

, (3.39)

where m ∈ [2mmin,is, 2mmax]. The probability that an event lies in the mass gap, i.e.

m > mmax, is given by

Λ(α′) =

∫︂ 2mmax

mmax

p2g(m)dm =
2−(α′+1) − 1

Q−(α′+1) − 1
, (3.40)

where

Q ≡ mmax

mmin,is
∼ 7.5 . (3.41)
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We can approximate the dependence of λM on α by rescaling

λM(χmax, α) =
Λ(α)

Λ(α′)
λM(χmax, α

′) . (3.42)

The scaled value λ(α = −1.6) is shown in the top panel of Fig. 3.9 with black dashed lines.

Our analytical approximation closely follows the estimate provided by the full cluster model.

This agreement is somewhat surprising, because the primary components of retained BHs

are not distributed according to a power law at low masses (cf. the right panel of Fig. 3.5).

The bottom panel of Fig. 3.9 shows that λM is very mildly dependent on mmax. For example,

for χmax = 0.1, λM changes from 2.5% at mmax = 40M⊙ to 2% at mmax = 60M⊙.
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Figure 3.10: Probability of an event be-

ing in only one of the two gaps. The blue

(black) curve shows the probability that a

binary lies in the the spin (mass) gap but

not in the mass (spin) gap. The dashed

black line corresponds to the approxima-

tion χmax/0.34 (see text).

3.3.4 One or both gaps?

Although we argue that both gaps are smoking-gun signatures of hierarchical mergers, only

a subset of binaries will have both large masses and large spins. Other sources will lie in one

of the gaps but not the other.

The various contributions are shown in Fig. 3.8. In particular:
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• λS and λM are the spin- and mass-gap efficiencies introduced above in Eqs. (3.36) and

(3.38);

• λM∧S is the fraction of events that lie in both the mass gap and the spin gap;

• λM∨S is the fraction of events that lie in either the mass gap or the spin gap;

• λMS is the fraction of events that lie in the mass gap, but not in the spin gap; and

• λMS is the fraction of events that lie in the spin gap, but not in the mass gap.

For χmax ∼ 0, the spin gap occupies a large portion of the parameter space, which implies

that all binaries in the mass gap must also be in the spin gap: λM → λM∧S. The opposite is

true for χmax ≳ 0.7: the spin gap shrinks and, consequently, λM → λMS ∼ λM∨S. A future

event with large mass but small effective spin (MS) can be explained by our model only

if χmax is sufficiently large. If BHs are indeed born with negligible spins χmax ∼ 10−2, we

find that a mass gap event should also be in the spin gap. This is an important feature of

our model, which can potentially allow us to disentangle the contribution to the mass gap

provided by hierarchical mergers (as considered here) from other mechanisms.

We can similarly define the probability of producing events in one of the two gaps but not

in the other:

p(S|M) =
λMS

λM
= 1− λM∧S

λM
(3.43)

p(M |S) =
λMS

λS
= 1− λM∧S

λS
. (3.44)

These are shown in Fig. 3.10. Events in the spin gap have a ∼ 67% probability of not being
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in the mass gap (blue curve) at α = −1.6. Notably, this probability is almost independent

of χmax. On the other hand, the probability of observing a mass gap event outside the spin

gap grows from 0 to 1 as χmax increases.

More specifically, we find a linear behavior p(S|M) ∝ χmax for χmax → 0. As we show in

Appendix 3.A, the χeff distribution of 2g+1g mergers (which form the bulk of 2g mergers) is

roughly uniform for χeff ∈ [−χf/2, χf/2], where χf ≃ 0.68 is the most probable remnant

spin (cf. Fig. 3.1). To a first approximation and for small χmax, the probability of a

mass-gap event not lying in the spin gap for 2g+1g mergers can be approximated by

χmax/(χf/2) ≃ χmax/0.34 (black dashed line in Fig. 3.10).

In this work we have ignored the relatively rare possibility of 3g mergers, which happen

when the remnant of a 2g merger is also retained in the cluster. Since 2g BHs have large

spins ∼ 0.7, they receive large merger recoils. Only clusters with very high escape speed

can successfully retain a meaningful fraction of 3g mergers [105]. For example, at χmax ≈ 0,

when 2g events account for > 10% of all cluster events, only ∼ O(0.01%) events are 3g.

3.4 Inference with mass and spin gaps

The effective spin has long been proposed as a tool to infer the fraction f of BHs formed

in clusters. The orientations of BHs formed in clusters should be isotropically distributed,

leading to a symmetric χeff distribution centered at χeff = 0, while field binaries should be

preferentially aligned, leading to a distribution skewed towards positive values of χeff [58, 73,

96, 97, 153]. However this argument fails if 1g BHs are all born with small spins, because
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in that case the effective spin χeff ∼ 0 irrespective of the spin orientations. Indeed, as we

show below, if we only focus on 1g+1g mergers the error on the mixing fraction f scales as

δf ∝ 1/χmax.

In this chapter we argue that the mass and the spin gap can provide a powerful alternative

which, crucially, remains viable also for small BH spins at birth.

3.4.1 Measuring the mixing fraction and χmax with 1g mergers

As we argued earlier, the efficiencies λM and λS depends on χmax. We first need to estimate

the accuracy with which GW detectors can measure χmax using only 1g BHs.

To simplify the notation, let us introduce a “normalized effective spin”

χ̂ ≡ χeff

χmax
=
χ1 cos θ1 + qχ2 cos θ2

χmax(1 + q)
∈ [−1, 1] . (3.45)

We distribute the spin angles θ1 and θ2 uniformly in the cosine between 0 and θmax. For

the cluster model, we set θmax = π, such that the distribution is isotropic. For the field

binaries, perfect alignment would imply θmax = 0, but nonvanishing values are predicted

in more realistic models (e.g. [58, 95]). Hereafter, θmax refers to the largest spin tilt of the

field binaries.

If χ̂ has PDF p̂(χ̂), the PDF of χeff can be recovered easily as

p(χeff |χmax) =
p̂ (χ̂)

χmax
. (3.46)
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Figure 3.11: PDF p̂cluster(χ̂) for cluster

binaries from Eq. (3.80) (solid black line)

and field binaries p̂field(χ̂) from Eq. (3.75)

(dashed lines). For the field binaries, we

assume either θmax = 0◦ (blue) or θmax =

60◦ (red).

The derivation of analytical approximations for p̂ (χ̂) for cluster and field binaries is presented

in Appendix 3.A. The main result consists of the PDFs for the cluster model p̂cluster(χ̂)

[Eq. (3.80)] and that of the field formation channel p̂field(χ̂) [Eq. (3.75)], shown here in

Fig. 3.11.

If we denote by f the mixing fraction between the two channels, the total PDF is given by

p̂(χ̂) = f p̂cluster(χ̂) + (1− f) p̂field(χ̂) . (3.47)

Suppose we have N1g effective spin measurements {χi
eff}. The log-likelihood of this sample

can be written as

L ≡ L(f, χmax|{χi
eff}) =

N1g∑︂
i

log
p̂(χ̂)

χmax
. (3.48)

The quantities f and χmax can be estimated from the observed {χi
eff} by maximizing the

likelihood. The variance of the estimator quantifies the associated uncertainties.

68



CHAPTER 3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

-2

10
-1

10
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

-2

10
-1

10
0

Figure 3.12: Relative error δf/f on the fraction of dynamical mergers as as a function of

χmax considering either only 1g mergers (black), the mass gap (red), or the spin gap (blue).

We assume a catalog of N = 104 observations, a mixing fraction f = 0.5, and the largest

misalignment angles for field binaries θmax = 30◦ (left) and 60◦ (right). The contributions

due to Poisson counting errors and efficiency uncertainties are marked with dashed and

dotted lines, respectively.

Mixing fraction errors

LIGO measures χeff better than any other spin parameter, but still with some errors. The

uncertainties δχi
eff in the i-th event affect the estimate of f via

(δf)2 =

N1g∑︂
i

(︃
∂f

∂χi
eff

δχi
eff

)︃2

, (3.49)

where

∂f

∂χi
eff

= −∂
2L/∂χi

eff∂f

∂2L/∂f2 = −
Lfχi

eff

Lff
(3.50)
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and

Lfχi
eff
=
∑︂
i

χ̂i[p̂cluster(χ̂i)p̂
′
field(χ̂i)− p̂field(χ̂i)p̂

′
cluster(χ̂i)]

χmax p̂(χ̂i)
2

.

Lff = −
∑︂
i

[︃
p̂cluster(χ̂i)− p̂field(χ̂i)

p̂(χ̂i)

]︃2
, (3.51)

Instead of evaluating these quantities as Monte Carlo sums, we consider the integrated

expectation value

⟨g(χ̂)⟩ ≡ 1

N

∑︂
i

g(χ̂i) →
∫︂ 1

−1
g(χ̂) p̂(χ̂) dχ̂ . (3.52)

We also express δχi
eff as

δχi
eff =

σLIGO

ρi
, (3.53)

where the signal-to-noise ratio (SNR) ρi is drawn from the distribution p(ρ) ∝ ρ−4 [72, 154]

in the range [8,∞), and σLIGO = ⟨ρ δχeff⟩ ≃ 1.4 is the median error δχeff from LIGO/Virgo

observations scaled by the SNR [9]. Ignoring the relatively weak SNR dependence on the

effective spins [58, 75, 153] and marginalizing over δχeff , a Monte Carlo sum like that in

Eq. (3.49) can be approximated as

1

N

N∑︂
i

(g(χ̂i)δχ
i
eff)

2 = ⟨g(χ̂)2⟩
∫︂ ∞

ρthr

⟨ρ δχeff⟩2
ρ2

p(ρ)dρ

= ⟨g(χ̂)2⟩(δχeff)
2 , (3.54)

where

δχeff =

√︃
3

5

σLIGO

ρthr
≃ 0.136 . (3.55)
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By combining Eqs. (3.49-3.54) one gets

δf =
Ff (f, θmax)

χmax

√︁
N1g

, (3.56)

where

Ff (f, θmax)
2 =

(︁
δχeff

)︁2 ⟨︂(︂χ̂ p̂clusterp̂
′
field−p̂fieldp̂

′
cluster

p̂2

)︂2 ⟩︂
⟨︂(︂

p̂cluster−p̂field
p̂

)︂2 ⟩︂2 (3.57)

and we omitted the arguments of p̂(χ̂), p̂cluster(χ̂) and p̂cluster(χ̂), for clarity. The function

Ff (f, θmax) varies only mildly with f and increases slowly with the largest misalignment

angle of field binaries θmax. For θmax < 60◦, one has Ff (f, θmax) ∼ O(0.1). Equation (3.56)

returns δf ∝ χ−1
max, as expected (see the solid black lines in Fig. 3.12): one cannot rely on the

spin orientations to measure the mixing fraction if BH spins are too low. If χmax ∼ 0.01 [22],

one would need ≳ O(105) 1g detections to achieve errors on the mixing fraction δf ∼ 0.1.

For larger values of χmax, we can use 1g events to measure f quite accurately. For example,

if χmax = 0.5 we can achieve an error δf ≲ 0.1 with only ∼ 100 events.

Errors on χmax

We estimate δχmax due to errors on the individual χi
eff measurements by error propagation:

(δχmax)
2 =

N1g∑︂
i

(︃
∂χmax

∂χi
eff

δχi
eff

)︃2

, (3.58)
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where using the same notation as above we get

∂χmax

∂χi
eff

= −∂
2L/∂χi

eff∂χmax

∂2L/∂χ2
max

= −
Lχmaxχi

eff

Lχmaxχmax

, (3.59)

with

Lχmaxχi
eff
= − 1

χ2
max

∑︂
i

[︁
χ̂i log

′′ p̂(χ̂i) + log′ p̂(χ̂i)
]︁
,

Lχmaxχmax =
1

χ2
max

∑︂
i

[︁
1+2χ̂i log

′ p̂(χ̂i)+χ̂
2
i log

′′ p̂(χ̂i)
]︁
. (3.60)

Combining these results and replacing the sum by an integral as in Eq. (3.52), Eq. (3.58)

yields

δχmax =
Fχmax(f, θmax)√︁

N1g

, (3.61)

where

Fχmax(f, θmax)
2 =

(︁
δχeff

)︁2 ⟨
(︁
χ̂ log′′ p̂+ log′ p̂

)︁2⟩
⟨1 + 2χ̂ log′ p̂+ χ̂2 log′′ p̂⟩2 . (3.62)

Here, again, we have suppressed the argument of p̂(χ̂).

The function Fχmax(f, θmax) presents a mild dependence on f for nonzero misalignment

angles, but it diverges as θmax → 0. Mathematically, the reason for the divergence is that,

in the limit θmax → 0, log′′ p̂(χ̂) diverges as χ̂ → 1 in our simple analytical model. The

divergence may not occur in a more accurate Bayesian inference analysis. In the limit

f → 1, when all events come from clusters [Eq. (3.47)] and θmax is irrelevant, we have

Fχmax(f, θmax) ≃ 1.
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Figure 3.13: Fractional error on the mixing fraction
√
Nδf/f obtained using mass gap (left)

and spin gap (right) as a function of χmax and f assuming θmax = 60◦. The white dashed

line marks the location where the error δf from 1g events equals the one obtained with the

gaps. In particular, gap (1g) events dominate to the left (right) of the white dashed lines.

Our estimate considers the errors on χmax and f due only to measurement errors on the χi
eff .

Another source of error is the variance of the maximum-likelihood estimator itself (given by

the inverse of the Fisher information matrix), which would be present even if all of the χi
eff

were measured perfectly. However these errors are always subdominant with respect to the

measurement errors estimated above, because δχeff [Eq. (3.55)] is relatively large.

We have also assumed that the maximum likelihood estimator χmle
max coincides with the true

value χmax. This approximation must break down for a finite sample of size N , and then

χ̂mle = χeff/χ
mle
max will not follow the distribution p̂(χ̂). A more careful error analysis is an

interesting topic for future research.
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3.4.2 Measuring the mixing fraction with the gaps

We finally address the crucial point of this chapter: can the mass and spin gaps be used to

constrain the mixing fraction between different formation channels?

Suppose we are given a catalog of N observations, which include 1g and 2g events. As

discussed in the introduction, the number of identifiable 2g mergers because of the mass and

spin gaps is

NMgap

N
= f λM(χmax),

NSgap

N
= f λS(χmax) , (3.63)

where f is the fraction of all detections that were produced in clusters. The number of 1g

events available to infer χmax, as described in Sec. 3.4.1, is

N1g = N [1− fλS(χmax)] . (3.64)

For either the mass gap (λgap = λM) or the spin gap (λgap = λS), the uncertainty in

measuring f is given by

(︃
δf

f

)︃2

gap

=

(︃
∂λgap/∂χmax

λgap
δχmax

)︃2

+

(︃
δNgap

Ngap

)︃2

. (3.65)

The first term on the right hand side represents the uncertainty in measuring the efficiency

propagated from χmax. As we argued in Sec. 3.3.3, the dependencies on the other population

parameters (such as α and mmax) are mild and can be neglected. The second term in
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Eq. (3.65) is the Poisson counting error associated with the number of mass/spin gap events,

δNgap

Ngap
=

1√︁
λgapfN

. (3.66)

In Fig. 3.12 we plot the relative errors in the mixing fraction δf/f for both the mass gap

(red) and the spin gap (blue) as a function of χmax. Figure 3.12 also shows the individual

contributions due to efficiency errors and Poisson errors. For illustration we consider N = 104

observations with a mixing fraction of f = 0.5, and we select two values of the largest

misalignment angle for field binaries: θmax = 30◦, 60◦.

Spin-gap events yield a more accurate measurement of f at small values of χmax. This is

because (i) the number of spin-gap events is higher (i.e. λS is large) and thus Poisson errors

are low, and (ii) the derivative ∂λS/∂χmax vanishes for χmax → 0, leading to small efficiency

errors. The mass gap is more informative for larger values of χmax, because λS < λM for

χmax ≳ 0.3, while (∂λS/∂χmax)/λS > (∂λM/∂χmax)/λM for χmax ≳ 0.05.

The “critical” value of χmax at which the mass gap is preferred over the spin gap depends

on both f and θmax. In particular, the threshold is χmax ≃ 0.07 (0.25) for f = 0.5 and

θmax = 30◦ (60◦). This is one of the most important findings of this chapter: if BHs are born

slowly rotating, spin-gap events are more effective than mass-gap events at pinning down the

mixing fraction between formation channels.

In general, we find that counting errors dominate for large values of χmax, simply because

there are not enough gap events: cf. Eq. (3.66). From Fig. 3.12, at f = 0.5 efficiency errors
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are important only when χmax < 0.1 (0.02) for mass-gap events and when χmax < 0.33 (0.14)

for spin-gap events at θmax = 30◦ (60◦). The parameter θmax enters δf/f in Eq. (3.65) only

through the efficiency error [cf. Eq. (3.58)]. As a result, only the small-χmax behavior of the

δf/f errors is affected by θmax: for example, compare the left and right panels of Fig. 3.12,

where δf/f is the same for θmax = 30◦ and θmax = 60◦ at large χmax.

Besides χmax and f , the two parameters determining the mass spectrum (α and mmax)

mildly affect the number of event, and thus the Poisson errors. For instance, λM increases for

|α| < 1.6, which implies that Poisson errors become less relevant. As expected, we find that

spin-gap estimates are more robust against changes in mmax and α compared to mass-gap

estimates. This is simply because the mass spectrum parameters have a direct impact on

the 1g mass distribution.
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Figure 3.14: The shaded areas mark values

of f and χmax where gaps provide a more

accurate measurement of the mixing frac-

tion f compared to 1g events. Results for

the spin (mass) gap are indicated with solid

(dashed) curves. Darker (lighter) regions

show results for θmax = 10◦ (60◦).

Figure 3.13 shows contours of δf/f
√
N obtained from the mass gap (left panel) and the

spin gap (right panel) in the (χmax, f) plane, assuming for concreteness θmax = 60◦. We also
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plot contours (dashed white lines) where either of the gap measurements and 1g detections

achieve the same δf accuracy: gaps are better than 1g observations at constraining f to

the left of these lines, and worse to the right of these lines. As a rough rule of thumb, the

mixing fraction is better constrained through gap measurements when χmax ≲ 0.1, while the

1g population is more constraining if χmax ≳ 0.1. This is another central result of our work.

Suppose for concreteness that χmax = 10−2, as predicted by Ref. [22]. Then spin-gap events

would allow us to measure the mixing fraction f with an accuracy of δf = 0.1 with a catalog

of N ∼ 150 events if f = 0.2 (N ∼ 3000 events if f = 1), corresponding to 5 (400) events

in the gap. Achieving the same δf = 0.1 accuracy with mass-gap events would require

N ∼ 450 events if f = 0.2 (N ∼ 4400 events if f = 1), corresponding to 4 (200) events with

m1 > mmax. This should be compared with the ≳ 105 events needed for measuring f at

χmax = 10−2 using 1g events only.

To make the previous rule of thumb more precise, in Fig. 3.14 we show regions in the

(χmax, f) plane where gap events would lead to smaller errors compared to 1g events. This

plot confirms that looking at events in the gaps is crucial if BHs are born slowly rotating

(i.e., at small χmax) and cluster formation is inefficient (i.e., at small values of f). The region

where the gaps are important increases with θmax, because (as we discussed in Sec. 3.4.1)

δχmax diverges for small values of χmax.

We summarize our main points as follows:

• Spin-gap events measure f more accurately than mass-gap events at small χmax.

• The error δf at χmax ≳ 0 is dominated by the efficiency error; this is governed by the
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maximum misalignment angle θmax in field formation scenarios, and it is only mildly

affected by the mass spectrum parameters α and mmax.

• Poisson errors dominate for large χmax. For spin-gap events the Poisson errors depend

only on χmax, while for mass-gap events they are also governed by the mass spectrum

parameters α and mmax.

• Gap events measure f better than 1g events at small χmax, small f , and large θmax.

3.5 Conclusions

Each event in the growing LIGO/Virgo BBH catalog yields three main “intrinsic” observable

quantities: the binary component masses and the effective spin. The observed events are

likely to come from at least two, and possibly more, formation channels. As the number of

observations grows, reserved regions in the intrinsic parameter space (the mass and spin

gaps) could allow us to measure the relative contributions of different channels. In this

chapter we quantified this statement, showing that the mass and spin gaps allow us to

efficiently separate the contribution of field binaries from the contribution of binaries formed

dynamically in star clusters.

Supernova instabilities [106] and efficient core-envelope interactions [22] imply that massive

stars should form BHs with an upper mass (m ≲ 45M⊙) and spin (χ ≲ 0.1) limit. Therefore,

our current understanding of field binary evolution hints at the existence of both a “mass

gap” and a “spin gap” within this formation scenario. Repeated mergers in clusters provide

a natural way to evade these constraints (see e.g. [104, 105, 155]). Assuming to a first
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approximation that only these two scenarios are at play, observations of BBHs in either

the mass gap, the spin gap, or both, would not only imply that those events were formed

dynamically, but it would also improve our understanding of the origin of the whole observed

population.

The key theoretical input to perform this analysis is the efficiency with which dynamical

environments like GCs and NSCs can populate the gap(s). We used a semianalytical model

specifically designed to predict the occurrence of repeated (2g) mergers in dense star clusters.

The main prediction of our model is that the gap efficiencies are of the order of a few %

and that they are mostly sensitive to χmax, the largest spin magnitude of individual BHs at

birth.

We propose the following broad observational strategy. We can assume that the bulk of

the population consists of 1g BHs, which are outside the gaps and can be used to measure

χmax (Sec. 3.4). As shown in Sec. 3.3, a measurement of χmax can be converted into a solid

estimate of the cluster efficiencies at populating the mass gap (λM) and the spin gap (λS).

Combined with the measured distribution of the effective spins
{︁
χi
eff

}︁
, this results in an

estimate of the mixing fraction f between cluster and field binaries (Sec. 3.4.2).

Many studies in the literature (see e.g. [58, 96, 97, 156, 157, 158]) devised strategies to

infer the mixing fraction f between field and cluster formation channels from the observed

distribution of effective spins
{︁
χi
eff

}︁
. The underlying idea behind most of these studies is

that cluster formation predicts a distribution of χeff which is symmetric about zero, while

binaries in the field should show a preference for χeff > 0. All strategies that rely on a
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measurement of the spin orientations, however, are bound to fail if the spin magnitudes are

small. Indeed, in Sec. 3.4 we show that, within this approach, the accuracy in determining

the mixing fraction scales like δf ∝ 1/χmax.

On the other hand, by exploiting the gaps we can estimate the mixing fraction f between

different channels even if BH spins at birth are zero. If anything, the spin gap is larger if the

natal spins are small, and outliers can be more easily identified. Indeed, we find that both

the mass and spin gaps allow for a better measurement of the mixing fraction (compared to

the standard “χeff distribution test”) test as long as χmax ≲ 0.1. Both observations [9, 36]

and theoretical modeling [22, 113] suggest that this is indeed the case, making our new

observational strategy timely and relevant.

We assumed that the mass and spin gaps can only be populated by repeated mergers in

clusters. This is an important caveat of our study. While 2g mergers constitute a well-

motivated scenario (see e.g. [104, 105, 155]) which is now being implemented in LIGO/Virgo

parameter estimation pipelines [159], other astrophysical mechanisms could “pollute” the

gaps and deteriorate the measurement of f . These include include gas accretion [115],

stellar mergers [110], Population III stars [116, 117, 118], or gravitational lensing2 of 1g

2A gravitational lens with magnification µ increases the amplitude of a GW event by

a factor of
√
µ [119, 120]. This magnification reduces the inferred luminosity distance,

increasing the apparent source-frame mass and producing “fake” mass-gap events. However,

the lensing probability is rather small (∼ 10−3 according to Ref. [119]). The distribution of

magnification factors depends on the lens model, but it roughly scales like p(µ) ∼ µ−3 for

µ > 2 [160, 161, 162]. In order to contribute significantly to the mass gap, lensed events must

be located at high redshifts, have large magnification, and have source-frame masses close

enough to the mass gap. Taking into account the lensing probability, the shape of the mass
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events [119, 120].

An independent reanalysis of data from the first and second LIGO/Virgo observing runs

identified at least one BBH event (GW170817A, not to be confused with the famous binary

neutron star merger that occurred on the same day) which may have both high mass and

high spin [100]. Based on these properties of the binary, some authors [163] suggested that

GW170817A might have formed in an AGN disk [86, 87]. However, as pointed out in the

context of the first candidate mass gap event GW170729 [164], it is dangerous to evaluate

individual outlier events without reference to the entire population. We postpone a more

complete study, including an outlier analysis along the lines of Ref. [164], to future work.

Two predictions of our model are particularly noteworthy, because they could be verified or

disproved in the near future:

1. Future events with large mass but small effective spin (MS in our notation) can be

explained only if χmax is sufficiently large. In other words, we find that a mass gap

event should also be in the spin gap: cf. Fig. 3.8, and note that Ref. [113] recently

proposed a similar argument. This is an important feature of our model, that can

potentially allow us to disentangle the hierarchical merger contribution to the mass

gap considered in this work from other astrophysical mechanisms.

2. If BHs are born slowly rotating, high-spin events are more effective than high-mass

events to pin down the mixing fraction between formation channels: the spin gap (which

function and the magnification function, we estimate that the probability of observing a

mass-gap event due to lensing is ∼ 10−5, so it can safely be neglected in the present context.
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was largely neglected in the literature so far) is actually more discriminating than the

mass gap if spins are small, as suggested by astrophysical theory and LIGO/Virgo

observations so far (Fig. 3.14).

In this exploratory study we have made simplifying assumptions that should be relaxed in

the future.

First of all, to keep the analysis general, we focused on the fraction of the total number

of observations that end up in the mass or spin gaps. In practice, this fraction will be

detector-dependent: third-generation detectors such as the Einstein Telescope or Cosmic

Explorer will be more sensitive to low-mass binaries, while current detectors introduce a

selection bias that favors large masses.

Secondly, our ability to distinguish between different formation scenarios could improve if

we considered not only the number of events in the gap, but also their distribution. In our

strategy we proposed estimating χmax from the 1g spin distribution and to simply count

events with |χeff | > χmax. However 2g+2g mergers can result in effective spins χeff ≳ 0.34,

while this is not possible for 2g+1g events (cf. Fig. 3.1). Third-generation detectors could

allow us to infer the spin distribution of spin-gap events, and possibly to measure the relative

number of 2g+2g and 2g+1g events. Similarly, the mass distribution of mass-gap events

contains useful information. For large χmax, only very large NSCs could retain post-merger

remnants, leading to a steeper mass distribution (cf. Sec. 3.2.3). This dependence is weak,

but mass-gap events should typically have large SNRs, and therefore their mass distribution

is easier to measure.
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The upcoming release of LIGO/Virgo data from the third observing run O3 will bring

us closer to the large-statistics regime of GW astronomy. As we enter this new era, the

observational strategy outlined in this chapter could lead us to a better estimate of the

relative contribution of different formation channels.
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Appendix

3.A Analytical approximations of χeff probability distribu-

tions

The goal of Sec. 3.4 is to compute errors on the maximum effective spin χmax and on the

mixing fraction f by error propagation, which requires the evaluation of first and second

derivatives of the PDFs. In principle this could be done by sampling the distributions and

numerically interpolating the results, which however would result in large errors on the

derivatives. To overcome this problem, in this Appendix we find analytical expressions for

the PDF of χ̂ in the two scenarios of interest: cluster and field formation.

Our starting point is the rescaled effective spin χ̂ of Eq. (3.45). Since in Eq. (3.31) we set

β = 6.7 ≫ 1, we can assume q = 1 for the vast majority of our sources, so that

χ̂ ≃ χ̂1 cos θ1 + χ̂2 cos θ2
2

, (3.67)

where χ̂i = χi/χmax. We have verified that setting q = 1 leads to negligible deviations with

respect to the PDFs found by using generic values of q.

We will repeatedly use the following standard identities from probability theory. If X and Y

are two independent, continuous random variables with PDFs fX and fY , the PDF of their
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product XY and of their sum X + Y are

fXY (z) =

∫︂ ∞

−∞
fX (x) fY (z/x)

1

|x| dx , (3.68)

fX+Y (z) =

∫︂ ∞

−∞
fX(x)fY (z − x)dx . (3.69)

The PDF of a generic bijective function g(X) is

fg(X)(z) = fX(g−1(z))

⃓⃓⃓⃓
dg−1(x)

dx

⃓⃓⃓⃓
x=z

. (3.70)

3.A.1 Field binaries

For field binaries the spins will be nearly aligned, so we draw cos θi (i = 1, 2) uniformly in

the range [1− δ, 1], where δ is related to the maximum misalignment angle θmax of each spin

by θmax = arccos(1− δ).

First we find the distribution of

zi = χ̂i cos θi , (3.71)

which is a product of the two uniform distributions

p(cos θi) = 1/2δ, cos θi ∈ [1− δ, 1] ,

p(χ̂i) = 1, χ̂i ∈ [0, 1] . (3.72)
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From Eq. (3.68) one gets

p(zi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− log(1− δ)/δ for 0 < zi ≤ 1− δ ,

− log(z)/δ for 1− δ ≤ zi ≤ 1 .

(3.73)

For q = 1, the distribution of

χ̂ =
z1 + z2

2
(3.74)

follows directly from Eqs. (3.69) and (3.70).
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where Eqs. (3.75) hold for δ ≤ 1/2 (θmax = 60◦), Eqs. (3.76) hold for 1/2 < δ ≤ 1, we defined

ξ = log(1− δ), and

Li2(z) =
∞∑︂
k=1

zk

k2
=

∫︂ 0

z

ln(1− t)

t
dt (3.77)

is the dilogarithm.

3.A.2 Cluster binaries

First generation

For cluster BBHs we assume an isotropic distribution, i.e. we draw cos θi from a uniform

distribution in [−1, 1]. First we find the distribution of zi = χ̂i cos θi, which is a product of

two uniform distributions:

p(cos θi) = 1/2 , cos θi ∈ [−1, 1] ,

p(χ̂i) = 1 , χ̂i ∈ [0, 1] . (3.78)

Using Eq. (3.68) one has

p(zi) = −1

2
log |zi|, for zi ∈ [−1, 1] . (3.79)

Finally, the distribution of χ̂ from Eq. (3.74) can be calculated using Eqs. (3.69) and (3.70),

with the result
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p̂cluster(χ̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2|χ̂|Li2
(︂

2|χ̂|
2|χ̂|−1

)︂
− 1

2

(︁
4 + π2

)︁
|χ̂|

− log(1− 2|χ̂|) (−2|χ̂|+ |χ̂| log(1− 2|χ̂|) + 1) + 2 for 0 < |χ̂| ≤ 1/2,

|χ̂|Li2
(︂
1− 1

2|χ̂|

)︂
− |χ̂|Li2

(︂
1

2|χ̂|

)︂
− 2χ̂

−(−2 |χ̂|+ |χ̂| log(2|χ̂|) + 1) log(2|χ̂| − 1) + 2 for 1/2 < |χ̂| ≤ 1.

(3.80)

2g+1g and 2g+2g mergers

Here we provide some approximations to the PDFs of 2g mergers. These are not used

explicitly in the main body of the chapter, but they are useful to understand some of the

trends observed in our model.

Let us start from 2g+1g events. In the small-χmax limit, the spin of 1g BHs is neglibigle,

while 2g remnants will have spins χf ≃ 0.68, which yields

χeff ≃ χf cos θ1
1 + q

. (3.81)

Because β ≫ 1, 2g BH with m1 < mmax will pair with a 1g BH of similar mass (i.e. q = 1),

resulting in χeff ≃ 0.34 cos θ1. Since cos θ1 is distributed uniformly in [−1, 1], the resulting

distribution of χeff is also uniform in [−0.34, 0.34]:

p2g+1g(χeff) ≃
1

χf
for |χeff | ≤

χf

2
, (3.82)
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as seen in the bottom panel of Fig. 3.1. The equal-mass assumption breaks down for 2g+1g

mergers in the mass gap, which leads to events with |χeff | > 0.34, causing the “tail” in the

χeff distribution observed in Fig. 3.1.

For 2g+2g mergers, the equal-mass approximation remains appropriate. One has

χeff ≃ χf

2
(cos θ1 + cos θ2) . (3.83)

Both cos θi are distributed uniformly in [−1, 1]. Eq. (3.69) returns a PDF

p2g+2g(χeff) ≃
1

χf

(︃
1− |χeff |

χf

)︃
for |χeff | ≤ χf , (3.84)

in good agreement with Fig. 3.1.

With the above distributions, we can also provide an analytical approximation for the

probability that an event lies in the spin gap:

p2g+1g(|χeff | > χmax) = 1− 2χmax

χf
, (3.85)

p2g+2g(|χeff | > χmax) =

(︃
1− χmax

χf

)︃2

.

(3.86)

Suppose that a fraction f2g+2g of all 2g events are assigned to 2g+2g (cf. Sec. 3.2.3), so that

p2g(χeff) = (1− f2g+2g) p2g+1g(χeff) + f2g+2g p2g+2g(χeff) . (3.87)
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The probability of having a spin-gap event is given by

p2g(|χeff | > χmax) = 1− 2χmax

χf
+ f2g+2g

(︃
χmax

χf

)︃2

. (3.88)

The term of order O(χ2
max) can be neglected for small values of χmax. Furthermore, let us

note that f2g+2g is a monotonically decreasing function of χmax, with maximum ≃ 0.25. We

can thus approximate the spin-gap efficiency as being independent of f2g+2g:

λS(χmax) ≃
(︃
1− 2χmax

χf

)︃
λ2g(χmax) , , (3.89)

where λ2g(χmax) is the efficiency of producing 2g events, i.e. the fraction of all events that

are either 2g+2g or 1g+2g.
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Looking for the parents of LIGO’s
black holes

Abstract

Solutions to the two-body problem in general relativity allow us to predict the mass,

spin and recoil velocity of a black-hole merger remnant given the masses and spins

of its binary progenitors. In this chapter we address the inverse problem: given a

binary black-hole merger, can we use the parameters measured by gravitational-wave

interferometers to tell if the binary components are of hierarchical origin, i.e. if they

are themselves remnants of previous mergers? If so, can we determine at least some

of the properties of their parents? This inverse problem is in general overdetermined.

We show that hierarchical mergers occupy a characteristic region in the plane com-

posed of the effective spin parameters χeff and χp, and therefore a measurement of

these parameters can add weight to the hierarchical-merger interpretation of some

gravitational-wave events, including GW190521. If one of the binary components has

hierarchical origin and its spin magnitude is well measured, we derive exclusion regions

on the properties of its parents: for example we infer that the parents of GW190412

(if hierarchical) must have had unequal masses and low spins. Our formalism is quite

general, and it can be used to infer constraints on the astrophysical environment

producing hierarchical mergers.
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Figure 4.1: Schematic representation of the inverse problem addressed in this chapter. In

Sec. 4.2 we ask: if we detect GWs from a binary BH merger with mass ratio q, effective

spin χeff and precessional spin χp, can we establish whether one of the binary components

(in this cartoon, the one with remnant spin χr = χ1) originated from a previous merger?

In Sec. 4.3 we ask instead: if indeed one of the binary components comes from a previous

merger and we measure χr, can we determine the mass ratio Q, spin magnitudes ξ1,2 and

recoil velocity of the parent binary? The merger remnant does not necessarily have to be

the primary component of the observed binary, as shown in this cartoon (i.e., the arguments

in Sec. 4.3 apply also to the case where χr = χ2).

4.1 Introduction

Gravitational-wave (GW) astronomy is rapidly entering a data-driven regime where astro-

physical modeling uncertainties are becoming the key limiting factor. The most popular

astrophysical formation channels for the merging black-hole (BH) binaries detected by LIGO

and Virgo include isolated binary evolution in the galactic field and dynamical assembly in

either dense stellar clusters or accretion disks [52, 53]. Astrophysical predictions depend on
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several poorly understood phenomena (nuclear-reaction rates, supernova kicks, common-

envelope efficiency, metallicity, formation and evolution of stellar clusters), which make the

various channels largely or partially degenerate. While there is some evidence that multiple

formation channels provide comparable contributions to the overall rate of merger events

detectable in GWs [165, 166], pinpointing the origin of specific systems observed by LIGO

and Virgo remains challenging.

The difficulty of the task is greatly alleviated by the so-called “gaps” in the BH binary

parameter space: regions that can be populated only by a subset of the proposed formation

channels. The mass spectrum of merging BHs is predicted to present two such gaps.

The typical timescales involved in the explosion mechanism may prevent the formation of

compact objects between ∼ 3M⊙ and ∼ 5M⊙ [65], while unstable pair production during

the advanced evolutionary stages of massive stars can impede collapse to BHs with masses

≳ 50M⊙ and ≲ 120M⊙ [109, 167]. The existence of both gaps is partially supported by

current observations, which show that the BH binary merger rate is indeed suppressed in

those regions [168]. However, observations also tell us that the gaps are somehow polluted,

with GW190814 [169] and GW190521 [23] presenting component masses that sit squarely in

the lower and upper mass gap, respectively.

Spin orientations are often invoked as a promising tool to distinguish formation channels,

with binaries born in the field (assembled dynamically) being more likely to enter the

LIGO band with small (large) spin-orbit misalignments [58, 95, 96, 170]. However, the

discriminating power of the spin directions trivially fades if the spin magnitudes turn out

to be vanishingly small, as predicted by some [22, 171] (but not all [172, 173]) models of
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stellar evolution. In analogy with the mass gaps highlighted above, we previously referred

to the putative absence of high-spinning BHs as the “spin gap” [19]. While the bulk of

the observed population appears to be compatible with small but nonzero spins [168], both

GW190521 [23] and GW190412 [25] present strong evidence of spin dynamics.

Hierarchical BH mergers are a natural strategy to populate both the upper mass gap and

the spin gap [102, 103] (see [174] for a review). By avoiding stellar collapse altogether,

assembling objects from older generations of BH mergers bypasses the constraint imposed

by both pair production instabilities and core-envelope interactions. The masses of merger

remnants are roughly equal to the sum of the masses of the merging BHs, while their spins

follow a characteristic distribution that is highly peaked at ∼ 0.7. The key prediction is

that of a positive correlation between masses and spins, with a depleted region in the high-

mass/low-spin corner of the parameter space [175, 176]. Hierarchical mergers could explain

the mass/spin gap properties of both GW190412 [177, 178] and GW190521 [179]. Some

population analyses are tentatively reporting that a subpopulation of hierarchical mergers

might be present in the data [180, 181, 182], although current evidence is inconclusive [168].

In order to host hierarchical mergers, astrophysical environments need to possess a sufficiently

large escape speed to retain merger remnants following relativistic recoils [105]. Nuclear star

clusters, accretion disks surrounding active galactic nuclei (AGN), and possibly globular

clusters are among the most plausible hosts [19, 104, 183, 184, 185, 186].

This line of reasonings leads to two deeply connected questions, which are illustrated

schematically in Fig. 4.1. First, do the measured parameters of a GW event allow us to tell

if it originated hierarchically from previous mergers? If so, what are the properties of the
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parent BHs? While the main goal of LIGO/Virgo data analysis is to infer the properties of

the merging BHs from the observed GWs, here we take one step backward in the BH family

tree and try to constrain the properties of the parent BHs that generated the observed

binary. This the problem is in general overdetermined, but we show that it is possible to

infer many properties of the parent binary.

Current spin inference is largely limited to estimates of some effective combinations of the

two spins. In Sec. 4.2, we show that hierarchical mergers occupy a distinct region in the

plane composed of the two commonly used parameters χeff and χp, which can thus be

used to infer if one or both of the merging BHs originated from a previous merger. We

apply this argument to GW190521 and show that, together with its mass-gap properties,

its spin values add considerable weight to a hierarchical merger interpretation. Next, in

Sec. 4.3 we show that events with a well-constrained component spin magnitude allow for a

unique reconstruction of the previous generation of BHs. Our argument relies on inverting

a numerical-relativity fit for the remnant spin. We apply this inversion to GW190412 and

find that its parent binary must have had a moderate mass ratio and moderately low spins.

Finally, in Sec. 4.4 we present conclusions and directions for future work. We use geometrical

units G = c = 1 and GW posterior samples from Ref. [187].

4.2 Hierarchical black-hole mergers in the (χeff , χp) plane

A GW signal depends in principle on all six degrees of freedom corresponding to the two

spin vectors χ1 and χ2, but most of the discriminating power is contained in a limited
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number of effective parameters. In this section we illustrate how, even with this limited set

of information, one can draw powerful constraints on the likelihood that a given GW event

originated from previous mergers.

4.2.1 Effective spins

The two spin components parallel to the binary’s orbital angular momentum are often

combined into the mass-weighted expression [188]

χeff ≡ χ1 cos θ1 + qχ2 cos θ2
1 + q

, (4.1)

where q = m2/m1 ≤ 1 is the mass ratio, χi = |Si|/mi are the dimensionless Kerr parameters

of the individual BHs, and θi = arccos(Sî · L̂) are the spin-orbit angles. The effective spin

χeff is a constant of motion at second post-Newtonian (2PN) order [188, 189].

The precession of the orbital plane is encoded in the variation of the direction of the orbital

angular momentum |dL̂/dt|. It is usually described in terms of a spin parameter χp first

defined in a heuristic fashion as [190]

χ(heu)
p = max (χ1⊥, χ2⊥) , (4.2)

where

χ1⊥ = χ1 sin θ1 , χ2⊥ = q
4q + 3

4 + 3q
χ2 sin θ2 , (4.3)
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This parameter is routinely used in GW data analysis [168].

Figure 4.2: Distribution of different BH generations in the (χeff , χp) plane. Green, orange,

and blue regions indicate 1g+1g, 1g+2g, and 2g+2g mergers, respectively, with contours

marking the 68% and 90% levels. We consider a simple population model where χmax

indicates the largest BH spins at formation, and β indicates the binary pairing properties.

In particular, we consider (χmax, β) = (0.1, 5) (small spins and selective pairing, left panels);

(χmax, β) = (0.5, 5) (large spins and selective pairing, middle panels); and (χmax, β) = (0.1, 0)

(small spins and random pairing, right panels). We contrast the aligned effective spin χeff with

the heuristic value of the precession parameter χ
(heu)
p (bottom panels) and the asymptotic

limit of the consistently averaged quantity limr→∞ χ
(av)
p . Gray contours indicate the posterior

distribution of GW190521 (68% and 90% levels). Samples have been back-propagated to

fGW = 0 Hz (r → ∞) to model how the source formed.

The quantity χ
(heu)
p ∈ [0, 1] retains some, but not all, precession-timescale variations. This

inconsistency was rectified in Ref. [191] using a complete precession-average of |dL̂/dt| at

2PN. Their augmented definition χ
(av)
p ∈ [0, 2] has the desirable properties of (i) being
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conserved on the short spin-precession timescale of the problem, (ii) consistently including

two-spin effects, (iii) agreeing with the heuristic expression in the single-spin limit. In the

large-separation limit r → ∞ (corresponding to GW emission frequencies fGW → 0), the

quantity χ
(av)
p can be written in closed form as [191]

lim
r→∞

χ(av)
p =

|χ1⊥ − χ2⊥|
π

E

[︃
− 4χ1⊥χ2⊥
(χ1⊥ − χ1⊥)2

]︃
+
χ1⊥ + χ2⊥

π
E

[︃
4χ1⊥χ2⊥

(χ1⊥ + χ2⊥)2

]︃
, (4.4)

where E(m) is the complete elliptic integral of the second kind. In practice, this expression

is accurate down to ≲ 0.1% (1%) for r ≳ 106M (104M) (where M = m1 +m2 is the total

mass of the binary), and thus well describes BH binaries at the large separations where

they form. For configurations in the sensitivity window of LIGO/Virgo (fGW ≳ 10 Hz), one

instead needs to use χ
(av)
p as given in Eq. (16) of Ref. [191].

4.2.2 Elliptical arcs

Let us assume for simplicity that first-generation (1g) BH binaries have uniformly distributed

spin magnitudes χi ∈ [0, χmax], while their mass ratio q has a power-law distribution p(q) ∝ qβ .

Large, positive values of β indicate a scenario where BHs pair selectively with companions

of similar masses, as expected in mass-segregated clusters. The case β = 0 models a random

pairing process, and it is tentatively supported by current GW observations [168]. The spin

directions are assumed to be isotropically distributed, as expected in dynamical formation

channels.

From this 1g population, we estimate the spin of the second-generation (2g) merger remnants
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using fits to numerical relativity simulations [145]. Assuming the same pairing probability

p(q) ∝ qβ, we then construct three populations, 1g+1g, 1g+2g, and 2g+2g. This is shown

in Fig. 4.2, where we contrast χeff against both the heuristic expression χ
(heu)
p [Eq. (4.2)] as

well as the asymptotic limit of the fully averaged expression χ
(av)
p [Eq. (4.4)].

We find that 1g+1g BH binaries are confined to a region near the origin of the (χeff , χp)

plane. Interestingly, the populations involving 2g BHs cluster in arc-shaped structures

extending to regions of the plane where χp ≳ 0.5 and |χeff | ≳ 0.5.

The leftmost panels of Fig. 4.2 show a case where BH spins at birth are low (χmax = 0.1) and

pairing is highly selective (β = 5). In this case, the 1g+2g and 2g+2g spin distributions are

well separated from their 1g+1g progenitors, indicating that future GW measurements with

accuracies of ∼ 10% on χeff and χp will allow us to confidently pinpoint their hierarchical

generation.

To better understand this analytically, let us analyze the limit where χmax ≪ 1 and β ≫ 1.

Because pairing is selective, most sources will have q ∼ 1.

For the 1g+2g population, one has χ2 ∼ 0 (because 1g spins are assumed to be low) and

χ1 ∼ 0.7 (because the 2g BH is the remnant of a previous merger). The condition χ2 ≪ χ1

implies χ
(heu)
p ≃ limr→∞ χ

(av)
p [191], thus explaining why the two orange arcs in the left

panels of Fig. 4.2 are very similar to each other. From the definitions (4.1) and (4.2) it

follows that χeff ≃ χ1 cos θ1/2 and χp ≃ χ1 sin θ1, and therefore

(︃
2

0.7
χeff

)︃2

+
(︂ χp

0.7

)︂2
≃ 1 , (4.5)
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which is the equation of an ellipse. The effective spins are thus limited by −0.35 ≲ χeff ≲ 0.35

and 0 ≲ χp ≲ 0.7.

For the 2g+2g case, one has q ∼ 1 and χ1 ∼ χ2 ∼ 0.7. This yields the relation

(︃
2

0.7
χeff + cosϑ

)︃2

+

(︄
χ
(heu)
p

0.7

)︄2

≃ 1 , (4.6)

where cosϑ is a random number distributed uniformly in [−1, 1]. The additional term

compared to Eq. (4.5) has the effect of splitting the ellipse and shifting it horizontally in both

directions, resulting in the double-arc blue structures observed in Fig. 4.2. Equation (4.6)

also implies χ
(heu)
p ≲ 0.7. However this is an artificial limit introduced by the heuristic

definition of χp, as evidenced by the sharp truncation of the blue arcs in the top panels of

Fig. 4.2. We can estimate the upper bound of the fully averaged precession parameter χ
(av)
p

by imposing χeff ∼ 0, which in this case corresponds to setting cos θ1 ∼ − cos θ2 and thus

χ1⊥ ∼ χ2⊥ in Eq. (4.4), with the result

lim
r→∞

χ(av)
p ≲

4× 0.7

π

√︁
1− cos2 ϑ ≲ 0.9 . (4.7)

This is consistent with the extended blue arcs in the bottom-left panel of Fig. 4.2.

The trends we just described remain valid, although in a more approximate fashion, for

generic values of β and χmax. For uniform pairing (β = 0; rightmost panels in Fig. 4.2),

the 2g spins follow a broader distribution extending from ∼ 0 to ∼ 0.7. This increases the

area covered by the arcs in Fig. 4.2. Small-spin 2g mergers end up populating the region
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where χeff and χp are both small, leading to some overlap with the 1g+1g distribution. If

instead the 1g spins are larger (χmax = 0.5; middle panels in Fig. 4.2), the 1g+1g spins end

up spanning a larger region in the (χeff , χp) plane, but the 2g spins remain peaked at large

values.

4.2.3 Back-propagating GW190521

At present, the most promising candidate of hierarchical origin is GW190521 [23]. This

conclusion is largely driven by its masses, at least one of which lies in the pair-instability gap.

The “effective-spins arcs” we just explored allow us to cross-check if this interpretation is

also compatible with its spin properties. The measured values of χeff and χp for GW190521

are indicated in Fig. 4.2 with grey contours. In the posterior distribution samples provided

in Ref. [187], the spin directions are provided at the arbitrary reference frequency fGW = 11

Hz. We back-propagate the spin distributions to fGW = 0 Hz using the formalism and the

code of Refs. [151, 189, 192]. This is because, much like any other astrophysical model, our

populations describe BH binaries at formation, not at detection, so it would be wrong to use

the LIGO posterior samples at face value. To the best of our knowledge, this is the first time

that samples from a real GW event have been back-propagated from detection to formation.

GW190521 is more easily accommodated by the 1g+2g and 2g+2g populations for all values

of χmax and β explored in Fig. 4.2. To quantify this statement, we compute the likelihood

that GW190521 belongs to generation g:

Pg(χmax, β, |d) =
∫︂
dχeff dχp

p(χeff , χp|d)
π(χeff , χp)

pg(χeff , χp|χmax, β) (4.8)
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where g={1g+1g, 1g+2g, 2g+2g}, p(χeff , χp|d) is the LIGO posterior for GW190521,

π(χeff , χp) is the LIGO prior, and pg(χeff , χp|χmax, β) is the probability distribution of

(χeff , χp) for given (χmax, β). Note that in the expression above we are implicitly neglecting

selection effects [193, 194], which are largely irrelevant in this case because we are integrating

only over the spin parameters [153]. Since the event priors and posteriors are provided as

discrete samples, the integral in Eq. (4.8) is computed as a Monte Carlo summation with pg

and π evaluated on the posterior samples. The prior values are estimated with a bounded

kernel density fit to the LIGO prior samples.

The likelihood ratios

L1g+2g =
P1g+2g(χmax, β, |d)
P1g+1g(χmax, β, |d)

(4.9)

and

L2g+2g =
P2g+2g(χmax, β, |d)
P1g+1g(χmax, β, |d)

(4.10)

are given in Table 4.1 for all values of χmax and β explored in Fig. 4.2. For small 1g spins

and selective pairing (χmax = 0.1 and β = 5), large precessing spins of GW190521 can only

be explained by 2g populations. On the other hand, if χmax = 0.5, 1g populations have

extended support to large (χeff , χp), leading to a reduction in L1g+2g and L2g+2g. Similarly,

random pairing at β = 0 also leads to smaller 2g spins and hence a relatively smaller support

at large spins, again reducing L1g+2g and L2g+2g. In Table 4.1 we did not include a prior

ratio, which is model-dependent.
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χp = χ
(av)
p χp = χ

(heu)
p

(χmax, β) L1g+2g L2g+2g L1g+2g L2g+2g

(0.1, 5) 5.3 8.9 6.1 6.3
(0.5, 5) 3.5 5.1 3.4 3.6
(0.1, 0) 3.8 4.7 4.5 4.8

Table 4.1: Likelihood ratios for GW190521 given comparing a 1g+2g and 2g+2g origins

against 1g+1g.

4.3 The parents of hierarchical black-hole mergers

Constraints on hierarchical mergers would become more informative if GW data were to

provide accurate measurements of the individual spins of the merging BHs, and not only of

some effective combination thereof. In this case, one can reconstruct not only the generation

of the observed events, but also the properties of its parents.

4.3.1 Constraints on the remnant black hole spin

Suppose that we have measured the dimensionless spin χr of one binary component. This is

likely to be the spin of the heavier BH in the observed binary (i.e. χr = χ1), although this

is not required for the argument presented here to be valid. Assuming that the measured

BH with spin χr is the remnant of a previous merger, we now wish to infer the properties of

its parents.

Consider a parent binary with masses M1,2, spins ξ1,2 and mass ratio Q = M2/M1 ≤ 1

(recall that m1,2, χ1,2 and q = m2/m1 denote the corresponding quantities for the observed
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Figure 4.3: Bounds on the mass ratio Q and spin combination ξ̃ of the parent binary

producing a remnant with spins χr = 0.5 (solid black line), χr = 0.69 (thin dashed line), and

χr = 0.9 (thin dash-dotted line). The lower and upper bounds are given by the functions F±

defined in Eq. (4.16). For clarity, in this figure we explicitly label these functions only when

χr = 0.5. Blue lines represent further upper limits that can be imposed if the parent BH

spins are bounded by ξ1,2 < χmax with χmax = 0.2, 0.5 and 1 (in different shades of blue):

cf. Eq. (4.18). For given values of χr and χmax, the allowed region for the progenitors lies

within the wedges above the black curves corresponding to the given χr, and below the blue

curves corresponding to the given χmax.

binary, cf. Fig. 4.1). Using the numerical-relativity fits of Ref. [195], the spin χr is given by

χr = min

{︄
1,

⃓⃓⃓⃓
⃓ξ1 +Q2ξ2
(1 +Q)2

+ ηL̂

[︄
2
√
3 + t2η + t3η

2

+s4

(︃
ξ1 +Q2ξ2
1 +Q2

)︃2

+(s5η + t0 + 2)

(︃
ξ1 +Q2ξ2
1 +Q2

)︃
·L̂
]︄⃓⃓⃓⃓
⃓
}︄
, (4.11)

where η = Q/(1 + Q)2 and L denotes the angular momentum of the parent binary. The
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fitting coefficients are t0 = −2.8904, t2 = −3.51712, t3 = 2.5763, s4 = −0.1229, and

s5 = 0.4537 [195].

When both spins of the parent binary are either aligned (L̂ · ξ̂1 = L̂ · ξ̂2 = +1, henceforth

denoted by ↑↑) or antialigned (L̂ · ξ̂1 = L̂ · ξ̂2 = −1 denoted by ↓↓) relative to the orbital

angular momentum, χr is given by

χ↑↑/↓↓
r =

⃓⃓⃓⃓
⃓2√3η + t2η

2 + t3η
3 +

s4η

(1− 2η)2
ξ̃
2 ±

[︃
1 + η

(s5η + t0 + 2)

1− 2η

]︃
ξ̃

⃓⃓⃓⃓
⃓ , (4.12)

where

ξ̃ =
ξ1 +Q2ξ2
(1 +Q)2

. (4.13)

The + and − signs correspond to aligned (↑↑) and antialigned (↓↓) spins, respectively.

Compared to Eq. (4.11), we dropped the minimum operation and, consequently, our inversion

is valid only for χr < 1.

In most of the three-dimensional parameter space (Q, ξ1, ξ2), the remnant spin χr is

maximum when the binary spins are aligned (χr = χ↑↑
r ) and it is minimum when they are

antialigned (χr = χ↓↓
r ). In the corner of the parameter space with Q/(1 +Q)2 ≲ 0.28ξ̃ , the

minimum χr is instead obtained when the primary BH is antialigned and the secondary BH

is aligned, i.e. L̂ · ξ̂1 = −L̂ · ξ̂2 = −1 (denoted by ↓↑). The value of χ↓↑
r can be obtained by

replacing ξ̃ → (ξ1 −Q2ξ2)/(1 +Q)2 in the expression for χ↓↓
r . Because

ξ1 −Q2ξ2
(1 +Q)2

= ξ̃ +O(Q2) (4.14)
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and the condition χ↓↑
r < χ↓↓

r requires unequal mass binaries, in the following we approximate

the minimum of χr with χ
↓↓
r for all values of Q, ξ1, and ξ2. The error introduced by this

approximation is ∆χr ≲ 0.07, and it is largest for extremal spins ξ1 ∼ 1 and Q ∼ 0.26.
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Figure 4.4: Allowed range of the parent bi-

nary mass ratio Q for a given value of the

observed spin χr. A single value Q = Q0

(solid black curve) is allowed if both parents

are nonspinning, i.e. χmax = 0. As χmax in-

creases, the allowed range of Q for a given χr

(shown in different shades of blue) widens.

4.3.2 Inferring the parents’ mass ratio from the remnant spin

Our next goal is to find the spin combinations that yield a given χr. We can invert the

relation

χ↓↓
r (Q, ξ̃) ≤ χr ≤ χ↑↑

r (Q, ξ̃) (4.15)

to obtain the ξ̃ needed to form a remnant with spin χr:

F−(χr, Q) ≤ ξ̃ ≤ F+(χr, Q) , (4.16)

where the functions F−(χr, Q) and F+(χr, Q) are obtained by inverting Eq. (4.12) and are

shown in Fig. 4.3. The detection of a BH with spins χr restricts the progenitor’s properties

to a specific wedge of the (Q, ξ̃) plane.
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There is a special value of the mass ratio Q0 for which F−(χr, Q0) = 0. This case corresponds

to the merger of nonspinning BHs (ξ1 = ξ2 = 0). From Eq. (4.11) one gets

χr = η0

(︂
2
√
3 + t2η0 + t3η

2
0

)︂
, (4.17)

where η0 = Q0/(1 +Q0)
2. For instance, for χr = 0.5 one has Q0 = 0.28. If the parent binary

had a mass ratio Q0, there would be no restriction on the component spin magnitudes of the

progenitors that could have formed the observed remnant. For all other values of Q ≠ Q0,

the parents must have had nonzero spin magnitudes.

When the remnant spin reaches a value χr ≃ 0.69, we find that Q0 = 1. Equal-mass parents

can form this remnant irrespectively of their spin magnitudes, but larger BH spins are

required if Q is smaller. If χr ≳ 0.69, the equation F−(χr, Q0) = 0 does not admit solutions

with Q0 ∈ [0, 1]. Nonspinning BHs cannot possibly form such a remnant. If interpreted as a

hierarchical merger, a putative GW observation of a BH with χr ≳ 0.69 would indicate that

the BHs of the previous generation were also spinning.

One might want to further impose an upper bound on the spin magnitudes of the previous-

generation BHs, say ξ1,2 ≤ χmax. If the parent’s binary consists of 1g BHs, the parameter

χmax has the clear physical interpretation of the largest BH spin resulting from stellar

collapse. This additional condition translates to

ξ̃ ≤ 1 +Q2

(1 +Q)2
χmax , (4.18)
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and further restricts the allowed region in the (Q, ξ̃) plane. The upper bounds corresponding

to selected values of χmax are shown in Fig. 4.3 as solid colored lines. For instance, if χr = 0.5

and χmax = 0.1, the parent’s mass ratio must satisfy 0.22 ≤ Q ≤ 0.34.

This point is further explored in Fig. 4.4. For a given value of χr, there is a finite range of

allowed mass ratios Q. The width of this range depends on the largest spin magnitude of

the progenitor χmax. In particular, it shrinks to zero for χmax = 0 (corresponding to the

condition Q = Q0) and widens progressively if larger progenitor spins are allowed.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

Figure 4.5: Probability density function of

the primary spin in a putative 1g+2g GW

event as a function of the mass ratio Q

and spin magnitude ξ1,2 of the parent bi-

nary. Blue (green) curves refer to Q = 0.2

(Q = 0.8), and solid (dashed) lines refer to

ξ1 = ξ2 = 0.2 (ξ1 = ξ2 = 0.5). Vertical lines

show the remnant spin values for the sim-

pler case where both parents have zero spin,

ξ1 = ξ2 = 0.

4.3.3 Not all parents are equally likely

The exclusion regions on the parents’ properties presented so far were obtained by requiring

that there exists some orientation of the progenitor spins ξ̂1,2 that can produce a given

remnant. The distribution p(χr|Q, ξ1, ξ2) is shown in Fig. 4.5 assuming isotropic spin

directions, as expected for dynamical formation channels that may produce hierarchical

mergers.
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Figure 4.6: Left: The probability p(χr = 0.5|Q, ξ1 = ξ2) (in arbitrary units) as a function

of the parent’s mass ratio Q and spins ξ1 = ξ2 (here taken to be equal to each other for

simplicity), assuming isotropic spin directions. Right: kick velocity vkick imparted to BHs

with spin χr = 0.5 as a function of the mass ratio Q and spins ξ1 = ξ2 of the merging binary.

Areas of high probability (dark regions in the left panel) correlate with areas of low kick

(light regions in the right panel). The white areas beyond the solid black lines represent

forbidden regions where a remnant with χr = 0.5 can not be formed.

As Q→ 1, the probability is narrowly peaked around 0.7. The location of the peak value of

χr decreases at smaller mass ratios. Larger progenitor spins also lead to broader distributions

of remnant spins (see e.g. [112, 175]).

Using the inversion formalism described above, we can now explore which of the possible

parents are more or less likely. The left panel of Fig. 4.6 illustrates how the probability

of forming a BH of spin χr = 0.5 depends on the progenitors’ spins and mass ratio. We

have fixed ξ1 = ξ2 to reduce the number of parameters for illustrative purposes, but the

argument can be made more general. The solid black lines represent the bounds derived

from Eq. (4.16). There are two distinct regions of the parameter space where the probability
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Figure 4.7: Assuming that the primary BH in GW190412 is of hierarchical nature, we

show (in blue) the posterior distribution of the mass ratio Q and spin magnitudes ξ1,2 of its

parents. Contours indicate the 50% and 90% confidence intervals. The medians and 90%

credible intervals of the marginalized distributions are Q = 0.21+0.32
−0.16, ξ1 = 0.37+0.45

−0.30, and

ξ2 = 0.50+0.40
−0.40. The green line shows the posterior of Q under the assumption that ξ1,2 = 0,

with median and 90% confidence intervals Q = 0.22+0.14
−0.11.

is highest:

1. When the mass ratio is close to the critical value Q ≃ Q0 and the spins are small, i.e.

ξ1,2 ≃ 0.

2. When Q ≃ 0 and ξ1 ≃ χr, corresponding to the trivial case of a very small body

merging into a larger Kerr BH with spin χr.

The spin orientations lose meaning in both the zero-spin (case 1) and test-particle (case 2)
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limits, which implies a higher concentration of possible remnants.

Crucially, these are the very same limits that minimize the kick imparted to the BH remnant.

This is illustrated in the right panel of Fig. 4.6, where we use the kick fitting formula

of Ref. [151], selecting the spin directions that can produce the targeted χr. The kick is

suppressed in both of the “special” regions near Q ≃ 0 and ξ1 = ξ2 ≃ 0. Parents with these

properties are not only more likely to form a remnant with the targeted properties, but

also more likely to form a remnant that is retained in its astrophysical host – a prerequisite

condition in the scenario depicted here, where we are observing the GWs emitted by the

subsequent merger.

4.3.4 Application to GW190412

The arguments above require that the spin of one BH binary component can be reliably

measured from the data. As explored in Sec. 4.2, we often have access only to the effective

spins. For q ≪ 1, the spin of the secondary is negligible and one can reconstruct the spin of

the primary BH as χ1 ≃
√︂
χ2
eff + χ2

p.

Although most of the binaries detected to date are compatible with having comparable

masses, there are two notable exceptions: GW190412 with q = 0.28+0.13
−0.07, and GW190814

with q = 0.112+0.008
−0.008 [187]. In particular, GW190412 was shown to be compatible with

a hierarchical merger [177] and interpreted as such in both cluster [178] and AGN [196]

formation models. Using the spin inversion formalism derived in this chapter and the LIGO

measurement χ1 = 0.44+0.16
−0.22 [187], can we infer the properties of the parents of GW190412?

112



CHAPTER 4.

Given the event data d, we calculate

p(Q, ξ1, ξ2|d) ∝ π(Q, ξ1, ξ2)

∫︂
p(χr|Q, ξ1, ξ2) p(χr|d) dχr , (4.19)

where p(χ1|d) denotes the LIGO posterior for GW190412, p(χr|Q, ξ1, ξ2) is the probabil-

ity distribution introduced in Sec. 4.3.3 (where we assumed isotropic orientations), and

π(Q, ξ1, ξ2) is a prior, which we assume flat in Q ∈ [0, 1] and ξ1,2 ∈ [0, 1]. We sample

p(Q, ξ1, ξ2|d) using Markov-chain Monte Carlo [197].

Figure 4.7 shows the resulting constraints on the parents of GW190412’s primary BH.

In particular, we infer that the progenitor binary must have had a relatively small ratio

Q = 0.21+0.32
−0.16. This follows mainly from the small value of χr ≈ 0.44. As illustrated in

Fig. 4.6, the regions around Q ≃ Q0, ξ1,2 ≃ 0 and Q ≃ 0, ξ1 ≃ χr are favored. Similar

features can also be seen in Fig. 4.7, although these are somewhat washed out by measurement

errors on χr. Small values of ξ1 are favored, while ξ2 can not be inferred. If the mass ratio

Q is small, one has ξ̃ ≈ ξ1, and the likelihood becomes largely independent of ξ2.

Now that we have (samples of) the parent binary’s properties, we can estimate the energy Erad

that was dissipated in GWs during the earlier merger that formed the primary component of

GW190412. For each sample in the three-dimensional parameter space (Q, ξ1, ξ2) of Fig. 4.7,

we solve for the spin directions ξ̂1,2 that correspond to a given remnant spin χr in the LIGO

posterior. We then plug the resulting values of (Q, ξ1, ξ2) into the numerical-relativity fit of

Ref. [144] to estimate Erad. Combined with the samples of m1 = 30.1+4.6
−5.3 [187] provided by
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LIGO, this allows us to reconstruct the masses

M1 =
m1

1 +Q
(1− Erad) , (4.20)

M2 =
Qm1

1 +Q
(1− Erad) (4.21)

of the parent BHs.

The results of this procedure are shown in Fig. 4.8. We find that the parents of the

primary BH in GW190412 had masses M1 = 25.24+3.55
−4.83M⊙ and M2 = 5.61+5.67

−3.98M⊙. The

negative correlation between M1 and M2 apparent in Fig. 4.8 follows from the constraint

M1 + M2 ≃ m1, which is accurate up to small corrections due to the radiated energy

Erad ≲ 5%.

Using the same procedure we just described, we can also estimate how much linear momentum

was emitted during the merger of the parents, hence the kick imparted to the primary

component of GW190412 when it formed. Using the numerical-relativity fit assembled in

Ref. [151], we find vkick = 158+240
−125 km/s. The resulting distribution is shown in Fig. 4.9.

The observed bimodality is a direct consequence of the distributions of Q found in Fig. 4.7.

The peak at Q ∼ 0.2 is responsible for the dominant mode at vkick > 100 km/s [147], while

the tail at Q ≳ 0 produces the secondary mode at vkick ≳ 0, as predicted in the test-particle

limit.

This estimate implies that, if GW190412 is indeed a hierarchical merger, it must have formed

in an environment with escape speed vesc ≳ 100 km/s (or otherwise the primary BH would

have been ejected, preventing the formation of GW190412 itself), in agreement with previous
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Figure 4.8: Masses M1 and M2 of the par-

ents of the primary component in GW190412

(blue) under the uniform-spin priors. Con-

tours indicate the 50% and 90% confidence

intervals. The medians and 90% credi-

ble intervals of the marginalized distribu-

tions are M1 = 25.24+3.55
−4.83M⊙ and M2 =

5.61+5.67
−3.98M⊙. The green lines show 90%

confidence intervals when the progenitors

are non-spinning: M1 = 25.24+2.35
−3.35M⊙ and

M2 = 5.44+3.41
−2.80M⊙.

work by some of the authors [177]. Astrophysical environments with such escape speeds

include nuclear star clusters and AGN disks, but not globular clusters [198], their escape

speeds ranging from 10 to 100 km/s [199]. In particular, we find p(vkick > 10km/s) = 0.94,

p(vkick > 50km/s) = 0.87, and p(vkick > 100km/s) = 0.75.

Under a more restrictive – but arguably astrophysically motivated – prior where the progeni-

tors are assumed to be nonspinning (ξ1 = ξ2 = 0), we obtain a similar estimate for the mass

ratio: Q = 0.22+0.14
−0.11 (green line in the top panel of Fig. 4.7). The masses and recoil velocities

calculated for nonspinning progenitors are consistent with those obtained under uniform-

spin priors, but with smaller errors: we find M1 = 25.24+2.35
−3.35M⊙, M2 = 5.44+3.41

−2.80M⊙ and

vkick = 141+33
−71 km/s.

When interpreting our results, one should keep in mind that our error budget only takes

into account the statistical uncertainties on the parameters of the GW events. Much like

anything else in science, our procedure also suffers from systematics (for instance, in the
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Figure 4.9: Kick imparted to the primary

BH in GW190412, assuming it originates

from a previous BH merger. The blue color

represents the uniform-spin prior, while the

green color corresponds to the zero-spin prior.

The median and 90% credible interval are

vkick = 158+240
−125 km/s (uniform-spin prior)

and vkick = 141+33
−71 km/s (zero-spin prior).

specific numerical-relativity fits used here).

4.4 Conclusions

Most of the literature on compact binaries is concerned with determining the properties of

a merger remnant from the properties of its progenitors. In this chapter we addressed the

inverse problem in two steps (see Fig. 4.1):

• If we observe a binary system that ends up merging in LIGO, can we tell from the

observed properties of the binary – and in particular from the effective-spin parameters

(χeff , χp) – whether one of the BHs came from a previous (hierarchical) merger?

• If indeed one of the BHs came from a previous merger, can we determine at least some

of the properties of its parents?

Given the parameters of a binary system, the direct problem has a well-defined solution that

can be found by solving the field equations of general relativity. On the contrary, the inverse

problem is in general overdetermined, because the only information available to us comes
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from the gravitational radiation emitted by the observed binary. We have demonstrated

that this is enough to infer at least some of the properties of the parent binary.

In particular, our key results are that:

• Hierarchical mergers occupy a distinct region in the (χeff , χp) plane. Therefore, a

measurement of these spin parameters can add considerable weight to a hierarchical-

merger interpretation of an event located in the pair-instability mass gap. Notably,

this is the case for GW190521.

• If one of the BH binary components (not necessarily the primary) does indeed have

hierarchical origin and its spin magnitude is well measured, one can place significant

constraints on the properties of its parents. For example, we can infer that the parents

of the heavier BH in GW190412 must have had a moderate mass ratio Q = 0.21+0.32
−0.16

and moderately low spins.

We stress that, while we focused on the examples of GW190521 and GW190412, the formalism

developed in this work is quite general.

The inversion procedure presented in Sec. 4.3 requires estimates of the individual spin

components. While challenging at the current detector sensitivity, these are bound to become

routine in the future. For stellar-mass BH binaries, third-generation ground-based detectors

will measure component spin magnitudes within ∼ 1% (see e.g. [32]). A similar accuracy

is expected for supermassive BH binaries observed with the space-borne interferometer

LISA [200]. In that case, the BH parents problem is arguably even more relevant than in

the LIGO context, given that supermassive BHs are firmly believed to grow hierarchically
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following the assembly of large scale structures in the Universe [201].

Measurements of the masses, spins, and kicks of the progenitor of a hierarchical merger

can be translated into constraints on their birthplace. In the LIGO context, for example,

they can be used to infer bounds on the escape speeds and masses of the clusters that

may have produced such mergers via dynamical interactions [105]. We have illustrated this

point through a constraint of the cluster’s escape speed for GW190412, but a more rigorous

implementation of this idea requires better astrophysical modeling, which will be the subject

of future work.

The identification of the parents’ properties can be used to validate or reject the hierarchical

origin of a GW event, because the inferred parents should presumably be part of the same

population of merging BHs observed by our detectors. A posterior predictive check using

the rest of the observed GW catalog could be used to verify this hypothesis (see e.g. [164]).

If ad-hoc population outliers are required, this would rule out (or cast serious doubt on) the

assumed hierarchical origin for the observed event. Such a test is a natural follow up of this

work.
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Black holes and bells
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Chapter 5

Black Hole Spectroscopy:
Systematic Errors and Ringdown
Energy estimates

Abstract

The ringdown phase consists of a simple linear superposition of exponentially damped

sinusoids (the quasinormal modes). How many quasinormal modes are necessary to

describe waveforms with a prescribed precision? What other systematic effects are

present in current state-of-the-art numerical waveforms? These issues, which are basic

to testing fundamental physics with distorted black holes, have hardly been addressed

in the literature. We use numerical relativity waveforms and accurate evolutions

within black hole perturbation theory to provide some answers. We show that (i) a

determination of the fundamental ℓ = m = 2 quasinormal frequencies and damping

times to within 1% or better requires the inclusion of at least the first overtone, and

preferably of the first two or three overtones; (ii) a determination of the black hole

mass and spin with precision better than 1% requires the inclusion of at least two

quasinormal modes for any given angular harmonic mode (ℓ, m). We also improve on

previous estimates and fits for the ringdown energy radiated in the various multipoles.
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5.1 Introduction

The historic LIGO gravitational wave (GW) detections of binary black hole (BH) mergers [202,

203, 204, 205] ushered in a new era in astronomy. The growing network of Earth-based

interferometers and the future space-based detector LISA will probe the nature of compact

objects and test general relativity (GR) in unprecedented ways [206, 207, 208, 209, 210].

One of the most interesting prospects is the possibility to use GW observations to measure

the quasinormal mode (QNM) oscillation frequencies of binary BH merger remnants. In

GR, these oscillation frequencies depend only on the remnant BH mass and spin, so these

measurements can identify Kerr BHs just like atomic spectra identify atomic elements.

This idea is often referred to as “BH spectroscopy” [211, 212, 213, 214]). In the context

of modified theories of gravity, QNM frequencies would inform us on possible corrections

to GR and allow to constrain specific theories [215, 216]. In other words, the payoff of

BH spectroscopy is significant not only as a tool to test GR [217, 218], but also as a tool

to quantify the presence of event horizons in the spacetime (by looking, for instance, for

“echoes” in the relaxation stage [219, 220, 221, 222]).

In practice, there are two main obstacles to measuring multiple QNM frequencies (i.e., to

identifying multiple spectral lines). The first is of a technological nature, and relates to

the fact that rather large signal-to-noise ratios (SNRs) are required [223]. Recent estimates

suggest that most individual binary BH mergers detected by LISA could be used to do

BH spectroscopy, but significant technological improvements are necessary for Earth-based

detectors to achieve the necessary SNR [224, 225]. However the sensitivity of upcoming

detectors is constantly improving, and there are good reasons to believe that this issue will
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eventually be resolved. The second challenge concerns systematic effects which might be

unaccounted for in our current theoretical or numerical understanding of the waveforms.

For example, it is well known that (even at the level of linearized perturbation theory) the

late-time decay of BH fluctuations is not exponential but polynomial [214, 226]. Thus, one

must question the validity of exponentially damped sinusoids as a description of the late-time

GW signal (see e.g. recent work by Thrane et al., who claimed that spectroscopy will not

be possible even in the infinite SNR limit [227]). When does the exponential (QNM) falloff

give way to the polynomial tail? Are nonlinearities important, and how do they affect the

simple linearized predictions?

There are very few studies of the accuracy achievable in extracting QNM frequencies from

numerical simulations. Some of these studies pointed out that the accuracy of numerical

waveforms may be limited by gauge choices or wave extraction techniques [228, 229]. There-

fore we ask: what is the systematic deviation between BH perturbation theory predictions

and the QNM frequencies extracted from numerical simulations? In other words, what is

the size of systematic errors in the extraction of QNM frequencies from current state-of-the-

art numerical simulations? These questions are of paramount importance for any claims

about independent BH mass and spin extraction using ringdown waveforms, and for any

ringdown-based tests of GR.

We address these questions using public catalogs of numerical relativity simulations (focusing

on the Simulating eXtreme Spacetimes (SXS) Gravitational Waveform Database [230]), as

well as extreme mass-ratio waveforms produced using the Kerr time-domain perturbative

code written by one of us [231, 232].

122



CHAPTER 5. BLACK HOLE SPECTROSCOPY: SYSTEMATIC ERRORS AND
RINGDOWN ENERGY ESTIMATES

One of the main results of our analysis, validating a multitude of studies in the past decade

or so, is that a “pure ringdown” stage does not exist per se, detached from the rest of the

waveform. In other words, the full glory and complexity of GR must be accounted for when

extracting physics. Nevertheless, the notion of ringdown can be useful in the context of

simple, independent checks on the physics. We have in mind, for instance, ringdown-based

tests of the no-hair theorem or constraints on modified theories of gravity. Accurate models

of the amplitude and phase of each QNM are necessary to perform such tests. In fact,

these quantities are also crucial to alleviate the problem of low SNRs in individual events

by combining posterior probability densities from multiple detections [233] or via coherent

stacking [234]. At the moment, our ability to do coherent stacking is limited by the theoretical

understanding of ringdown: stacking requires phase alignment between different angular

components of the radiation, which can only be achieved through a better understanding of

the excitation and starting times of QNMs [235, 236, 237, 238, 239]. Most early studies of

QNM excitation relied on the evolution of simple initial data (e.g. Gaussian wave packets)

in the Kerr background [240, 241]. After the 2005 numerical relativity breakthrough, some

authors investigated QNM excitation in the merger of nonspinning BHs [6, 242, 243, 244],

but to this day there is little published work on spinning mergers (with the notable exception

of Ref. [245]). In this work we use numerical relativity simulations to fit the energy of the

modes for spin-aligned binaries, thus alleviating some of the difficulties inherent in stacking

signals for BH spectroscopy.
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5.2 Systematic Errors in Extracting Quasinormal Mode Fre-

quencies

In the ringdown phase the radiation is a superposition of damped sinusoids with complex

frequencies ωℓmn parametrized by three integers: the spin-weighted spheroidal harmonic

indices (ℓ, m) and an “overtone index” n, which sorts the frequencies by their decay time

(the fundamental mode n = 0 has the smallest imaginary part and the longest decay time).

The complex Penrose scalar Ψ4 (and the strain h) can be expanded as

rΨℓm
4 = Θ(t− tℓm0 )

N∑︂
n=1

Bℓmn exp
[︂
i(ωℓmn(t− tℓm0 ) + ϕℓmn)

]︂
. (5.1)

where Θ(x) is the Heaviside function, ωℓmn = ωℓmn
r +iωℓmn

i and tℓm0 is the so-called “starting

time” of ringdown for the given (ℓ, m). Early studies used least-squares fits to extract QNM

frequencies from nonspinning binary BH merger simulations [6]. Other fitting procedures

were proposed, but yield very similar results [229, 242, 246]. Therefore, for simplicity, we

will use a simple least-squares fit. For illustration, we consider nonspinning SXS waveforms

with mass ratios q = 1 (SXS:BBH:0180) and q = 3 (SXS:BBH:0183), as well as waveforms

for point particles falling into a nonrotating BH.

For point particle evolutions we fit the strain h. When considering the SXS comparable-mass

merger waveforms we use the Penrose scalar, as it is known to yield slightly better QNM

fits [6, 228], but we checked that our main conclusions would remain valid had we used

the strain h instead. For the multipolar components (ℓ, m) = (2, 2), (3, 3) and (2, 1),

that usually dominate the radiation, we use waveforms extrapolated to infinite extraction
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radius using a second-order polynomial (as reported by the SXS collaboration, higher-order

polynomials could yield noisy results close to the merger). For the (4, 4) and higher-order

multipoles we found that the ringdown part of the waveform does not converge with extraction

radius for a large number of simulations. Furthermore, the largest extraction radii listed in

the SXS catalog are different for different simulations, so they cannot be compared directly.

We only used waveforms for which the higher-order multipoles seem to converge, finding the

EMOP energy as a function of extraction radius, and then comparing all energies (whether

computed by interpolation or extrapolation) at an extraction radius of 500M .

The fits are performed in two different ways in order to address different aspects of the

systematic error analysis:

(i) How accurately can we determine the ringdown frequencies themselves, without assuming

any (no-hair theorem enforced) relation between the frequencies?

To answer this question we assume that (ωℓmn
r , ωℓmn

i , Bℓmn, ϕℓmn) in Eq. (5.1) are all

unknown, so we have a total of 4N fitting coefficients for an N -mode fit. Then we look at the

relative error between the real and imaginary part of the fundamental QNM (as derived from

the fit) and the predictions from BH perturbation theory [213, 214]. This fitting procedure

does not enforce the fact that, in GR, QNM frequencies are uniquely determined by the

BH mass and spin [213, 214]. Systematic errors computed in this way can be seen as lower

bounds on how much any given modified theory must modify ringdown frequencies to be

experimentally resolvable from GR.

The results are shown in Fig. 5.1. BHs are poor oscillators, so ωr is always easier to determine
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Figure 5.1: Fractional errors δωr/ωr (thick lines) and δωi/ωi (thin lines) between the

fundamental ℓ = m = 2 QNM frequencies computed from BH perturbation theory and those

obtained by fitting N overtones to numerical waveforms according to method (i) (see text).

Left: SXS waveforms, q = 1; middle: SXS waveforms, q = 3; right: point-particle waveforms.

Here t22peak is the time at which the amplitude of the l = m = 2 mode is maximum, and time

is measured in units of c3/(GM).
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Figure 5.2: Error in the spin δaf (thick lines) and fractional error in the mass δMf/Mf

(thin lines) estimated by fitting N QNMs with ℓ = m = 2 according to method (ii) (see text).

Left: SXS waveforms, q = 1; middle: SXS waveforms, q = 3; right: point-particle waveforms.

Here t22peak is the time at which the amplitude of the l = m = 2 mode is maximum, and time

is measured in units of c3/(GM).
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than ωi, and δωr/ωr is typically an order of magnitude smaller than δωi/ωi. Furthermore,

Fig. 5.1 shows that adding overtones generally reduces the systematic error in ωr and ωi

for all mass ratios. For SXS waveforms we found that including the N = 4 mode would

not further improve the agreement, while for quasicircular inspirals of point particles into

nonrotating BHs δωr/ωr and δωi/ωi decreases to ∼ 10−4 and 10−3, respectively.

(ii) How accurately can we determine the remnant’s mass and spin from ringdown frequencies,

assuming that GR is correct?

To answer this question we still consider (B
(j)
lm , ϕ

(j)
lm) as free parameters, but now we enforce

the condition that the QNM frequencies ωℓmn
r, i must be functions of the remnant BH mass

Mf and dimensionless spin af , so we have only 2N + 2 fitting coefficients. As shown in

Fig. 5.2, the accuracy in determining both mass and spin is comparable to the accuracy in

the poorest determined quantity (i.e., ωi). The trend is the same as in Fig. 5.1, and errors

decrease as we include more overtones.

The results in Figs. 5.1 and 5.2 disprove the claim of [227] that large-SNR detections

cannot be used to perform BH spectroscopy, but they also show that the relative error

between quantities computed in BH perturbation theory and those extracted from numerical

simulations currently saturates at ∼ 10−3. This “saturation effect” is less problematic for

the quasicircular inspiral of point particles into Schwarzschild BHs, where relative errors

can be reduced by approximately one order of magnitude (we get worse agreement for point

particles falling into rotating BHs, where spherical-spheroidal mode mixing [5, 6, 7, 8] must

be taken into account).
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This observation has an important implication: further numerical or theoretical work is

required to reduce systematic errors for comparable-mass binary BH mergers in the LISA

band, that may have SNRs ∼ 103 or higher [247, 248].

0 2 4 6 8 10 12 14 16

t22
0 − t22

peak

10−4
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10−2

10−1

100

δω
3
3
/ω

3
3

q = 3

q = 5

q = 8

Figure 5.3: This figure shows how (3, 3)

modes contaminate the (2, 2) components of

unequal-mass BH mergers in the SXS wave-

forms. We fit the (2, 2) mode using a 3-mode

fit and method (i) in the text. Then we plot

the fractional errors δωr/ωr (thick lines) and

δωi/ωi (thin lines) with respect to the funda-

mental ℓ = m = 3 QNM frequencies from BH

perturbation theory. This plot used the sim-

ulations labeled as SXS:BBH:0183 for q = 3,

SXS:BBH:0056 for q = 5 and SXS:BBH:0063

for q = 8.

The saturation discussed above may be related to an undesired feature of SXS waveforms.

It was already noted in [229] that the ℓ = m = 2 component of Ψ4 in the SXS simulations

contains a spurious decaying mode corresponding to the fundamental ℓ = m = 4 QNMs for

q = 1. We confirm their finding. Furthermore, as we show in Fig. 5.3, a multi-mode fit of

unequal-mass waveforms shows the presence of a spurious frequency that matches quite well

the fundamental QNM with ℓ = m = 3.

These spurious modes seem to be present only in the SXS simulations. We did not find

them in the public catalog of waveforms from the Georgia Tech group [249], nor in our own

point-particle waveforms. Understanding the origin of these modes is beyond the scope of

this work. We speculate that they may be gauge or wave extraction artifacts, but they are
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unlikely to come from spherical-spheroidal mode mixing, which only mixes components with

the same m and different ℓ’s [5, 6, 7, 8]. Whatever their origin, these spurious modes must

be understood if we want to control systematics at the level required to do BH spectroscopy

with LISA.

The sharp local minima in Figs. 5.1, 5.2 and 5.3 suggest that the QNM frequencies (and

consequently, the remnant spin and mass) extracted from the ringdown oscillate about their

“true” values. We suspect that this is purely due to systematics, but we can not rule out

nonlinear effects.

5.3 Ringdown Energies and Starting Times

An important prerequisite to perform BH spectroscopy (whether via single detections or

by stacking) is to quantify the excitation of QNMs, and to provide a definition of their

starting times which is suitable for data analysis purposes. Quite remarkably, we are aware

of only one paper that tried to quantify QNM excitation for spinning binaries [243]. Here

we improve on the results of [243] by (i) using newer and more accurate simulations from

the SXS catalog, and (ii) implementing a better criterion to determine simultaneously the

energy (or relative amplitude) of different ringdown modes, as well as their starting times.

There is no unique, unambiguous way of defining such a starting time, because ringdown

is only an intermediate part of the full signal resulting from the merger dynamics of the

two-body system. Nevertheless, a physically sensible, detector-independent criterion is to

decompose the full waveform into components “parallel” and “perpendicular” to the QNM.
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Figure 5.4: EMOP energies as a function of

mass ratio for nonspinning binaries in the

SXS catalog. The anomalous behavior of the

(3, 2) mode is due to spherical-spheroidal

mode mixing [5, 6, 7, 8]: the contamination

of the (2, 2) mode observed in the (3, 2)

mode is more prominent for comparable mass

ratios.

Table 5.1: Fitting coefficients for the EMOP energy, along with the corresponding errors. A

superscript “0” corresponds to the nonspinning contribution, while “s” denotes the spin-

dependent contributions. Since poorly excited modes tend to be dominated by numerical

noise, we have only considered modes with EEMOP ≥ 10−4M . We also dropped the (4, 4)

mode data from some simulations where the EMOP energy did not converge as we increase

the wave extraction radius.

Modes a0 b0 c0 as bs cs ds es Max. (Mean) Error

(2, 2) 0.303 0.571 0 −0.07 0.255 0.189 −0.013 0.084 3.63% (0.64%)
(3, 3) 0.157 0.671 0 0.163 −0.187 0.021 0.073 0 11.24% (2.32%)
(2, 1) 0.099 0.06 0 −0.067 0 0 0 0 9.54% (2.01%)
(4, 4) 0.122 −0.188 −0.964 −0.207 0.034 −0.701 1.387 0.122 12.75% (1.93%)

The ringdown starting time is defined as the point where the energy “parallel to the QNM”

is maximized. Nollert, who introduced this concept, called this the “energy maximized

orthogonal projection” (EMOP) [250]. Nollert’s EMOP criterion can be interpreted in data

analysis terms as answering the following question: given a single-mode QNM template,

what starting time would maximize the ringdown energy in the infinite-SNR limit? This

question is clearly relevant to GW data analysis, and it provides a “unique” definition of

the starting time that does not depend on the detector’s sensitivity. Note that maximizing
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Figure 5.5: EMOP energies Eℓm in different (ℓ, m) modes for aligned-spin SXS simulations

with q = 2 as a function of χ+ and χ−, along with the fits given in Eq. (6.19).

the energy in the fundamental mode is not the same as minimizing the errors in (say) the

remnant’s mass and spin. A ringdown waveform starting at time t0 has the form

hQNM = h+QNM + ih×QNM = Θ(t− t0) exp [i(ωt+ ϕ)] .

Given the complex strain h = h+ + ih× from numerical relativity, the energy “parallel to

the QNM” hQNM is

E∥ =
1

8π

|
∫︁
t0
ḣḣ

∗
QNMdt|2∫︁

t0
ḣQNMḣ

∗
QNMdt

=
ωi|
∫︁
t0
ḣḣ

∗
QNMdt|2

4π
(︁
ω2
i + ω2

r

)︁ , (5.2)

where in the second equality we have explicitly evaluated the integral in the denominator.

The ringdown starting time is defined as the lower limit of integration t0 such that E∥ in
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Eq. (5.2) is maximum, and the EMOP energy is EEMOP = maxt0(E∥).

Equation (5.2) is an improvement over the definition used in [242], where we first computed

the EMOP energy separately for the plus and cross polarizations, and then averaged the

starting time from the two polarizations. Furthermore E∥ is independent of phase rotations

in either the numerical waveform (h → heiθ) or in the QNM (hQNM → hQNMe
iϕ). EMOP

energies computed from the SXS waveforms for nonspinning binary mergers are shown in

Fig. 5.4.

For binaries with aligned spins, a good fit to the EMOP energy in the first few dominant

(ℓ, m) modes is

Eℓm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η2(A0

ℓm +Aspin
ℓm )2 , even m,

η2(
√
1− 4ηA0

ℓm +Aspin
ℓm )2 , odd m,

(5.3)

where the nonspinning contribution A0
ℓm is well fitted by

A0
ℓm = a0ℓm + b0ℓmη , (ℓ, m) = (2, 2), (3, 3), (2, 1) ,

A0
ℓm = a0ℓm + b0ℓmη + c0ℓmη

2 , (ℓ, m) = (3, 2), (4, 4), (5, 5) ,

and η = q/(1 + q)2 is the symmetric mass ratio. The contribution from the spins Aspin
ℓm can

be written in terms of the symmetric and asymmetric effective spins

χ± ≡ m1χ1 ±m2χ2

M
, (5.4)

where χ1 and χ2 are the dimensionless spins of the two BHs, and χ+ = χeff (the “effective
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spin” parameter best measured by LIGO, which is conserved in post-Newtonian evolutions

at 2PN order [189, 192, 251, 252]).

We use the post-Newtonian inspired fits [253, 254]

Aspin
22 =ηχ+

(︃
as22 +

bs22
q

+ cs22q + ds22q
2

)︃
+ es22δχ− ,

Aspin
33 =ηχ−

(︃
as33 +

bs33
q

+ cs33q

)︃
+ ds33δχ+ ,

Aspin
21 =as21χ− ,

Aspin
44 =ηχ+

(︃
as44
q

+ bs44q

)︃
+ δηχ−

(︃
cs44 +

ds44
q

+ es44q

)︃
, (5.5)

where δ =
√
1− 4η = (q − 1)/(q + 1). The fitting coefficients, along with the mean and

maximum percentage errors of each fit, are listed in Table 5.1. The dependence of the EMOP

energy on spins is illustrated in Fig. 5.5 for simulations with mass ratio q = 2.

5.4 Conclusions

The recent detection of gravitational waves by the LIGO/Virgo collaboration makes the

prospect of spectroscopic tests of general relativity realistic in the near future. As detectors

and data quality improve, a good understanding of the ringdown stage will require an assess-

ment of systematic errors affecting the waveforms. Previous studies bounded environmental

and astrophysical effects in BH ringdown waveforms [255]. In this work we started addressing

how numerical and/or theoretical limitations affect our ability to perform BH spectroscopy.

It is known that the late-time behavior of any BH perturbation should be a power-law decay.
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Thus, a description using exponentially damped sinusoids must eventually break down.

We showed that no precise tests of GR nor any accurate measurement of BH masses or spins

are possible with single-mode templates: two or three modes are necessary.

To facilitate spectroscopic tests (whether in single detections or via stacking) we extended

the EMOP calculations of Ref. [242] using the SXS waveforms in the case of (anti-)aligned

spins. In this preliminary study we neglected subtle issues such as mode mixing, which is

known to affect in particular the (3, 2) mode [6, 7, 8]. Further work is required to apply our

results in gravitational-wave data analysis [213, 233, 242, 256, 257] or to understand how

these systematics affect tests general relativity with ringdown, e.g. within the “post-Kerr”

framework proposed in [216].

Even after subtracting three or four quasinormal modes, our analysis shows no evidence of

power-law tails in the numerical data. This probably means that tails dominate the signal

only at very late times, when numerical error is already significant. Notwithstanding, and

due to their interesting origin – backscatter off spacetime curvature – the identification of

tails in numerical simulations of comparable mass BH mergers is an interesting challenge

that should be addressed in future work.
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Chapter 6

Multi-mode black hole
spectroscopy

Abstract

The first two LIGO/Virgo observing runs have detected several black hole binary

mergers. One of the most exciting prospects of future observing runs is the possibility

to identify the remnants of these mergers as Kerr black holes by measuring their

(complex) quasinormal mode frequencies. This idea – similar to the identification of

atomic elements through their spectral lines – is sometimes called “black hole spec-

troscopy”. Third-generation Earth-based detectors and the space-based interferometer

LISA could measure multiple spectral lines from different multipolar components of

the radiation, and therefore provide qualitatively better tests of the Kerr hypothesis.

In this chapter we quantify the redshift out to which the various modes would be

detectable (or, conversely, the number of detectable modes at any given redshift) as a

function of the intrinsic parameters of the merging binary. LISA could detect so many

modes that current numerical relativity simulations do not have enough resolution

(or do not contain enough higher harmonics) to extract all available science from the

data.
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6.1 Introduction

The first detection of black hole (BH) binary mergers by the LIGO/Virgo collaboration,

GW150914 [202], marked the beginning of gravitational wave astronomy. The first two

observing runs (O1 and O2) led to the detection of 5 confirmed BH binary mergers, a BH

binary merger candidate which is likely to be of astrophysical origin [258], and a neutron star

binary [67]. Therefore the inspiral, merger and ringdown of compact objects is anticipated

to be the main target of the next LIGO/Virgo observing run (O3).

In this chapter we focus on the so-called “ringdown” stage of a BH binary merger, where

the deformed remnant relaxes to a Kerr BH. Out of the events observed so far, only one

(GW150914) had significant signal-to-noise ratio (SNR) in the ringdown, but it is quite likely

that O3 will lead to more and louder observable ringdown events. In general relativity, the

ringdown is a sum of damped oscillations known as “quasinormal modes,” with frequencies

and damping times that depend only on the mass and spin of the final BH [214, 259, 260].

The simplicity of the spectrum allows us to identify a Kerr BH, just like spectral lines

can be used to identify atomic elements: this idea is commonly referred to as “black hole

spectroscopy” [211, 212, 213]. Some modified gravity theories admit the same BH solutions

as general relativity [210]. However, even in these cases the dynamics and gravitational wave

emission of perturbed BHs will differ from general relativity [217, 261]. The ringdown can

be modified even within general relativity if the merger remnant is some exotic compact

objects – such as a boson star – or if there are significant modifications in BH dynamics at

the horizon scale, as suggested by some quantum gravity models [262].
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Spectroscopic tests of Kerr dynamics require the measurement of multiple quasinormal

mode frequencies [212, 213, 223, 256]. The fundamental (and loudest) mode is needed to

extract the mass and spin of the remnant. Any other mode can then be used to look for

departures from general relativity or constrain their magnitude. However, the detectability

of each quasinormal mode is contingent on whether it is excited to high enough amplitude

in the merger. In general relativity, the specific nature of the perturbation does not affect

the quasinormal mode frequencies, but it affects the degree to which different modes are

excited [235, 238, 239, 263]. The excitation (and hence the detectability) of different

quasinormal modes in a binary BH coalescence depends on the properties of the progenitors

in a way that can be quantified using numerical relativity simulations [6, 10, 223, 242, 243,

244, 245, 264].

Significant detector improvements may be necessary to detect ringdown with high SNRs,

or to detect sub-dominant modes [224, 225]. The prospects for detecting high-SNR events

or multiple modes will be much better with third-generation ground-based detectors – like

the Einstein Telescope (ET) [31] or Cosmic Explorer (CE) [15, 265] – and with the space

interferometer LISA [17, 247, 248]. In the absence of a direct measurement of higher-order

modes, spectroscopic tests of general relativity may still be possible with current-generation

detectors by combining posterior probability densities from multiple detections [233] or via

coherent stacking [234].

Astrophysically, BH masses range from ∼ 3M⊙ to 1010M⊙ (see e.g. [266] for a recent review).

Prior to the direct detection of gravitational waves, BHs were known to exist in X-ray

binaries with masses ranging from ∼ 3M⊙ to ∼ 20 M⊙ [267]. We now know that stellar
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collapse can generate BHs as massive as ∼ 36 M⊙ (unless the progenitors of LIGO mergers

were themselves formed in previous mergers [102, 103, 268]). Theory extends this range

up to ∼ 40–60 M⊙ and predicts the existence of a “mass gap” between ∼ 60–150 M⊙,

because in this mass window pair instabilities during oxygen burning can lead either to

substantial mass losses or (in higher-mass stellar progenitors) to the complete disruption of

the star [107]. BHs heavier than 150 M⊙ can form at low metallicities if the initial mass

function of stars extends further out, up to hundreds of solar masses. There is circumstantial

observational evidence for IMBHs: they have been claimed to power ultra-luminous X-Ray

sources [269, 270], with further claims of detection in star clusters [271, 272, 273] and

from quasi-periodic oscillation [274, 275]. Second- and third-generation gravitational-wave

detectors are sensitive to ringdown from intermediate-mass BHs (IMBH), so ringdown

observations can help shed light on the nature and extent of the mass gap and on the

existence of IMBHs. LISA [17, 247, 248], currently scheduled for launch in 2034, will target

more massive BH mergers.

Our main goal in this work is to assess the capabilities of these future gravitational-wave

detectors to observe multiple ringdown modes. The plan of the chapter is as follows. In

Section 6.2 we review the criteria to detect multiple ringdown modes and the calculation of

their SNR. In Section 6.3 we compute the horizons out to which higher-order modes would

be detectable, we define and quantify the response redshift and detectability fraction, and we

point out interesting features in the response redshift for higher-order modes. We conclude

in Section 7.7 by pointing out the limitations of this study and directions for future work.
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6.2 Detectability and signal-to-noise ratio of higher-order ring-

down modes

In this section we outline a method – the Generalized Likelihood Ratio Test (GLRT) –

that can be used to test whether a given mode with multipolar indices (ℓ ,m) is present

in the ringdown signal. The GLRT was used in [223] to study ringdown detectability in

the time domain under the simplifying assumption of white noise. In general the noise in a

gravitational wave detector is colored, so different ringdown modes for the same merging

binary BH system will be affected by noise in a different way. Here we work in the frequency

domain and, for simplicity, we assume that all dominant modes (besides the one we are

looking for) are known and have been subtracted from the signal. In the same spirit, we also

ignore the parameter estimation noise that arises from subtracting imperfectly estimated

dominant modes [234].1

Let n(t) be the noise, and y(t) the signal that is left after all dominant modes have been

subtracted. Call H1 the hypothesis that the signal contains the next subdominant (ℓ ,m)

1Subtracting an imperfectly estimated mode will lead to an additional source of noise.

Higher harmonics with ℓ = m typically lie at higher frequencies compared with the dominant

ℓ = m = 2 mode, so the additional noise will lie at lower frequencies and does not significantly

affect their detectability. However, higher harmonics with ℓ ̸= m can have frequencies at

which the dominant mode can have significant amplitude. For example, the (2, 1) ringdown

mode amplitude is subdominant compared to the inspiral phase of the dominant (2, 2) mode,

and imperfect subtraction of the (2, 2) inspiral can lead to significant additional noise.
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mode, and H2 the hypothesis that it does not:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H1 : y(t) = Ahℓm(t) + n(t) ,

H2 : y(t) = n(t) .

(6.1)

The likelihood that the (ℓ ,m) mode (with unknown amplitude A) is present is then given by

PA ∝ e−⟨y−Ahℓm|y−Ahℓm⟩ , (6.2)

where

⟨h1|h2⟩ ≡ 2

∫︂ ∞

0

h̃
∗
1h̃2 + h̃1h̃

∗
2

Sh
df. (6.3)

By extremizing the likelihood given above, i.e. by computing

maxA ln PA = minA⟨y −Ahℓm|y −Ahℓm⟩ ,

we can evaluate the maximum-likelihood estimate Â of the unknown parameter A, with the

result:

Â =
⟨y|hℓm⟩

⟨hℓm|hℓm⟩ . (6.4)

We now compute the logarithm of the ratio of the maximized likelihoods under the two

hypotheses:

T (y) = ln
maxH1PA

maxH2PA=0
=
Â

2

2
⟨hℓm|hℓm⟩ = ⟨y|hℓm⟩2

2⟨hℓm|hℓm⟩ . (6.5)
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According to the GLRT test, we favor the hypothesis H1 if
√︁
2T (y) exceeds a specified

threshold γ:

√︁
2T (y) = ρcrit = Â ||hℓm|| > γ , (6.6)

where we have defined ρ2crit ≡ ⟨Âhℓm|Âhℓm⟩.

We choose γ by setting a tolerable false-positive rate Pf = Q(γ), where

Q(x) ≡ 1√
2π

∫︂ ∞

x
e−

z2

2 dz (6.7)

is the right-tail probability function for a Gaussian distribution with zero mean and unit

variance. The detection rate Pd is given by

Pd = Q(γ − ρcrit) = Q(Q−1(Pf )− ρcrit) . (6.8)

From these criteria we can compute the critical SNR required to claim detection of a given

mode:

ρcrit = Q−1(Pd)−Q−1(Pf ) . (6.9)

For example, by choosing (Pf , Pd) = (10−6 , 0.99) we would get ρcrit = 7.08, close to the

threshold of 8 used by the LIGO Scientific Collaboration. We will follow the LIGO convention

and choose a more stringent threshold of ρcrit = 8 [276].
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6.2.1 Signal-to-noise ratio

Ref. [223] introduced a detector-independent criterion for detectability of higher harmonics.

They defined the total time-domain SNR for two modes – the dominant mode h0(t) and the

subdominant mode h1(t) – as ρ = ||h0(t) + h1(t)||t/σ, where σ is the assumed white noise

and the time-domain norm is defined in [223]. For the subdominant mode to be detected,

its norm must be larger than the noise, i.e.

||h1(t)||t > η σ (6.10)

or σ < ||h1(t)||t/η, where η can be set by choosing an appropriate false-alarm rate and

detection probability. Using this bound on the noise, Ref. [223] proposed the following

noise-independent criterion for the detectability of a subdominant mode:

ρ > ρGLRT = ||h0(t) + h1(t)||t/σ . (6.11)

Here we work under the more realistic assumption that the noise is colored and we integrate

over the noise power spectral density of the detector Sh(f), so we do not follow the procedure

of [223] to compute the total SNR. Instead we compute the ringdown SNR from a BH of

mass M at distance r as

ρ2 = 4

∫︂ ∞

0

h̃
∗
(f)h̃(f)

Sh(f)
df , (6.12)

where h̃(f) is the Fourier transform of the gravitational wave strain. Focusing on the
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fundamental (n = 0) mode for a given multipolar component (ℓ, m), the two ringdown

polarizations after summing over the +m and −m modes are given by [223, 243, 245]

hℓm+ (t) =
MAℓmY

ℓm
+

r
Re(e−t/τℓm+i(2πfℓmt+ϕℓm)) ,

hℓm× (t) =
MAℓmY

ℓm
×

r
Im(e−t/τℓm+i(2πfℓmt+ϕℓm)) , (6.13)

where fℓm is the quasinormal frequency, Qℓm is the quality factor, τℓm = Qℓm/(πfℓm) is the

damping time, and the angular functions are defined as

Y ℓm
+ (ι) ≡ −2Y

ℓm(ι, 0) + (−1)ℓ −2Y
ℓ−m(ι, 0),

Y ℓm
× (ι) ≡ −2Y

ℓm(ι, 0)− (−1)ℓ −2Y
ℓ−m(ι, 0). (6.14)

The strain measured by the detector is

h = h+F+ + h×F× , (6.15)

where F+,× denotes the pattern functions (see e.g. [277]):

F+ =
1

2
(1 + u2) cos 2ϕ cos 2ψ − u sin 2ϕ sin 2ψ ,

F× =
1

2
(1 + u2) cos 2ϕ sin 2ψ + u sin 2ϕ cos 2ψ . (6.16)

Here we use the standard notation for the angles (θ, ϕ) describing the source location in

the sky and for the polarization angle ψ, and we define u = cos θ. To compute the SNR, we
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Figure 6.1: Horizon redshift (left scale) and luminosity distance (right scale) as a function

of the remnant BH mass in the source frame (top panel) and in the detector frame (bottom

panel) for an optimally oriented, nonspinning BH binary merger with mass ratio q = 2 as

observed by ET (solid lines), Advanced LIGO (dashed lines) and LISA. Star symbols (∗)
mark the mass and redshift of the ten binary BHs detected by the LIGO/Virgo collaboration

so far [9].
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follow Flanagan and Hughes [278]: we assume that the waveform for t < 0 is identical to

the waveform for t > 0, and we divide the amplitude by
√
2 to compensate for the doubling.

Proceeding as in [213] we find that

ρ2ℓm =

(︃
MAℓmΩℓm

r

)︃2 τℓm
2Sh(fℓm)

, (6.17)

where we have defined the sky sensitivity for the given multipole as Ωℓm ≡
√︂(︁

F+Y ℓm
+

)︁2
+
(︁
F×Y ℓm

×
)︁2

(see e.g. [1, 75]). The quasinormal mode amplitude Aℓm is related to the radiation efficiency

ϵrd ≡ Eℓm/M through [213, 278]

Aℓm =

√︃
4ϵrd

MQℓmfℓm
. (6.18)

To calculate the radiated energy Eℓm we use fits of form [10]

Eℓm = [aℓm(q) + bℓm(q)χ+ + cℓm(q)χ−]
2 . (6.19)

Here aℓm, bℓm and cℓm are functions of the binary’s mass ratio q = m1/m2 ≥ 1 and of the

effective spin parameters χ±, which in turn are defined in terms of the masses (m1, m2) and

dimensionless spins (χ1, χ2) of the merging BHs as

χ± ≡ m1χ1 ±m2χ2

m1 +m2
. (6.20)

In particular, χ+ (sometimes denoted as χeff) is the total “effective spin” parameter measured

by LIGO, which is conserved at second post-Newtonian order during the binary’s evolu-
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tion [188, 189, 192, 251, 252]. To leading order, the excitation of the (2 , 1) mode depends

solely on the other (“asymmetric”) spin parameter χ−, with a functional dependence of the

form E21 = [f(q) + g(q)χ−]
2 (see [279] for details).

6.3 Horizon redshift, response redshift and detectability frac-

tion

We can rewrite the SNR in Eq. (6.17) as

ρℓm = ρoptwℓm , (6.21)

where

ρ2opt =

(︃
MAℓmΩmax

ℓm

r

)︃2 τℓm
2Sh(fℓm)

(6.22)

is the SNR for a binary that is optimally located and oriented in the sky, and wℓm(θ, ϕ, ψ, ι) ≡

Ωℓm/Ω
max
ℓm is a “projection function” such that 0 ≤ wℓm ≤ 1. We define the “horizon redshift”

zh and the corresponding horizon luminosity distance dhL (computed using the standard

cosmological parameters determined by Planck [49]) as the farthest distance (or redshift) at

which the ringdown from a given mode can be detected, or – according to our conventions

– the redshift at which ρopt(z
h) = 8. Note that the notion of “optimally-oriented” has a

different meaning for different modes.

Figure 6.1 shows the detector horizons as a function of the source-frame remnant mass Ms

(top) and of the detector-frame remnant mass M = Ms(1 + z) (bottom) for nonspinning
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binaries with mass-ratio q = 2. Stars indicate the mass and redshift of the six LIGO detection

candidates so far (including the astrophysical candidate LVT151012 [258]). Advanced LIGO

at design sensitivity could detect the dominant (2 , 2) mode from a ≈ 60M⊙ GW150914-like

binary out to redshifts z ≃ 0.36, but the horizon redshift would be sensibly larger (z ≃ 0.87)

for the merger of two ∼ 50M⊙ mass BHs, if such massive BHs are indeed formed by either

stellar collapse or repeated mergers [102, 103, 107, 268] .

Significant improvements over current detectors are necessary to detect sub-dominant modes

from BH binary mergers similar to those observed so far. Therefore, for the time being, we

must resort to combining posterior probability densities from multiple detections [233], co-

herent stacking [234], or possible narrow-band tuning [280] to boost the detectors’ sensitivity

in order to test general relativity. The situation is drastically different for third-generation

detectors like the Einstein Telescope2 (ET) [31] and Cosmic Explorer (CE) [15, 265]. For

ET, the dominant (2 , 2) mode would be detectable out to redshift z ∼ 15 for optimally

oriented binaries. Moreover, for a GW150914-like binary, ET could observe the (3 , 3) and

(2 , 1) modes out to z ∼ 0.1. Higher-order modes are more excited when the mass ratio is

significantly different from unity [242]: for example, Fig. 6.1 shows that the (3 , 3) mode is

detectable out to z ∼ 3 when q = 2.

One feature of Fig. 6.1 is noteworthy and requires some explanation. It has long been known

that, in the eikonal limit, quasinormal modes can be understood as perturbations of null

rays at the light ring that slowly leak out to infinity [281, 282, 283, 284]. This interpretation

2In this chapter we use the ET-B noise power spectral density available at http://www.et-

gw.eu/index.php/etsensitivities.
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Figure 6.2: Left: Energy in the (2 , 1) mode normalized by its maximum value, which corre-

sponds to χ− = −1 [10], as a function of χ− for selected values of q. Right: Horizon redshift

(left y-axis) and luminosity distance (right y-axis) for an optimally oriented GW150914-like

binary as a function of χ−. Thick, medium and thin lines correspond to ET, Voyager and

Advanced LIGO, respectively. Black, red, green and blue lines refer to the (2, 2), (3, 3),

(4, 4) and (2, 1) modes, respectively.

leads to the conclusion that the real part of the frequency of modes with ℓ = m scales like

ℓ. Comparisons with numerical results show that this scaling is surprisingly good also for

low ℓ’s [285, 286, 287, 288]. So, in principle, the (3, 3) and (4, 4) modes should allow us to

probe masses that increase linearly with ℓ (and m). This effect is partially offset by the

smaller amplitude of the higher modes and by cosmological redshift. If the radiated energy

is large enough (or the noise power spectral density is low enough) that the signal is visible

out to z ≳ 1, the observed frequency f = fs/(1+ z) of low-ℓ modes decreases by a significant

factor with respect to the source-frame mode frequency fs, so low-mass BHs are “redshifted

back in band” (as seen in Fig. 6.1). At the moderate redshifts accessible to Advanced LIGO

(ET), the “eikonal limit enhancement” effect for the (3, 3) and (4, 4) modes prevails (if only

slightly) at masses of order ∼ 2 × 103 M⊙ (∼ 2 × 104 M⊙, respectively), so these modes

allow us to peer deeper into the IMBH regime.
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Figure 6.3: ET horizon redshift and lu-

minosity distance for the (2 , 2), (3 , 3),

(2 , 1) and (4 , 4) modes as a function of

source mass for BH mergers with mass

ratio q = 1.5. The best (worst) cases

correspond to the value of χ− that maxi-

mizes (minimizes) the energy radiated in

the (2 , 1) mode.

In the case of LISA, by comparing the top and bottom panel we can see some important

effects related to the cosmological redshift of observable masses and frequencies. The plot of

the horizon redshift as a function of the detector-frame mass (bottom) traces quite closely

the shape of the LISA noise power spectral density [289], including the characteristic “bump”

due to galactic confusion noise (for which we assume four years of observation time). The

detectability of IMBHs in the mass range between ≈ 104M⊙ and ≈ 105M⊙ depends on the

LISA sensitivity at frequencies ≳ 0.1 Hz, which is uncertain. Similarly, the detection of the

(2, 2) and (2, 1) modes for BHs of mass Ms ∼ 109 M⊙ relies on understanding the noise

power spectral density below ∼ 10−5 Hz. To highlight these uncertainties, we use a dashed

line to mark computed horizon redshifts that depend on the high- and low-frequency ends of

the LISA noise power spectral density.

LISA will be sensitive to massive BH ringdowns in the 105–109M⊙ range out to very large
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redshifts. A remarkable feature of Fig. 6.1 is that LISA can detect ringdown modes from

essentially all multipolar components computed by state-of-the-art numerical relativity

simulations, up to ℓ = m = 7. In fact, even modes whose amplitude is comparable to

numerical noise in current simulations – such as the (8, 8) mode – could be observable.

The LISA horizon redshift as a function of the source-frame mass (top panel) shows a

characteristic “turnover” for IMBHs at z ∼ 1: at such sizeable redshifts, ringdown signals at

(source-frame) masses that would otherwise be unobservable are “redshifted back” in the

LISA band and become observable. This is particularly interesting, because LISA ringdown

signals can be used to probe the IMBH population at masses Ms ≲ 105 M⊙ and redshifts

z ∼ 10, when mergers of these objects might have been common.

Figure 6.1 also shows that ground-based detectors are complementary to LISA in their

potential to investigate the nature of IMBHs, being sensitive to multiple ringdown modes

from IMBH remnants of source-frame mass Ms ≲ 4× 104 M⊙ at relatively small redshift.

With Advanced LIGO, the (2 , 2), (3 , 3) or (4 , 4) ringdown modes of IMBHs could be

detected up to masses of ∼ 1750M⊙, 2780M⊙ or 3760M⊙, respectively. A third-generation

detector like ET can observe IMBHs with masses up to an order of magnitude larger than

this.

6.3.1 Effect of spins on multi-mode ringdown observations

How do spins affect these ringdown horizon estimates? Let us first consider, for concreteness,

the BH mergers observed during the O1 and O2 runs. Only the first event (GW150914) had

a marginally detectable ringdown signal, and most binaries had a measured (symmetric)
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Figure 6.4: LISA horizon redshift and luminosity distance for the (2 , 2), (3 , 3), (2 , 1) and

(4 , 4) modes as a function of source mass for BH mergers with mass ratio q = 2 (left panels)

and q = 10 (right panels). Estimates for the best/worst case were found by choosing the

value of χ− that maximizes/minimizes the energy radiated in the (2 , 1) mode.
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effective spin parameter χ+ compatible with zero. The data do not place strong constraints

on the magnitude of the individual spins (and consequently, on the asymmetric effective

spin parameter χ−).

In [10] we estimated the energy radiated in each multipole by fitting numerical relativity

simulations. Confirming earlier conclusions [245, 279], we found that the excitation of the

ℓ = m = 2, 3, 4 modes depend weakly on the spins for comparable mass ratios, while the

(2 , 1) mode strongly depends on the spins (at leading order) through the poorly constrained

parameter χ−. In the left panel of Fig. 6.2 we plot this dependence for selected values of the

mass ratio q. For q ≲ 4.2 the energy radiated in the (2 , 1) mode vanishes, and therefore the

mode becomes unobservable, at some finite value of χ− < 1 which is well approximated by

(using fits from [10])

χ− ≃ q − 1

q + 1

[︃
1.49 +

0.9q

(q + 1)2

]︃
. (6.23)

Values of q and χ− such that the energy in the (2, 1) mode vanishes are (in this sense)

worst-case scenarios for the observation of multiple modes. The best-case scenario is the one

that yields the maximum horizon redshift for the (2, 1) mode. As we see from the left panel

of Fig. 6.2, this corresponds to χ− = −1 for all values of q. To quantify how uncertainties in

χ− would impact multi-mode spectroscopy, in the right panel of Fig. 6.2 we plot the horizon

redshift for the dominant multipoles of a GW150914-like binary with total source-frame mass

m1s +m2s = 65M⊙, mass ratio q ≃ 1.24, and χ+ ≃ 0. The horizon redshift and luminosity

distance for each mode increases as the detectors become more sensitive, but it is always a

mildly varying function of χ− for the (2, 2), (3, 3) and (4, 4) modes. However the amplitude
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of the (2, 1) mode drops to zero (and the mode becomes unobservable) when χ− ≃ 0.18.

In Fig. 6.3 we show the best- and worst-case horizon redshifts for an optimally oriented

binary as observed by ET. For concreteness we focus on a mass ratio q = 1.5, close to the

mean measured mass ratio for BH binaries detected so far by the LIGO/Virgo collaboration.3

For q = 1.5, the worst-case scenario where the (2, 1) mode is undetectable corresponds

to χ− = 0.34. The top panel shows that, in the best-case scenario, ET could observe as

many as three (four) modes out to z ∼ 2.27 (z ∼ 0.18) for mergers with total source mass

Ms ∼ 200 M⊙. Even in the worst-case scenario, we could observe three modes out to z ∼ 1

if IMBH mergers of total mass Ms ∼ 600 M⊙ occur in the local Universe.

In Fig. 6.4 we show the best- and worst-case horizon redshifts for optimally oriented binaries

with q = 2 (left) and q = 10 (right) as observed by LISA. These mass ratios were chosen to

bracket the typical range of mass ratios expected from astrophysical models of BH formation

(see e.g. Fig. 3 of [290]). For q = 2, the (2, 1) mode is undetectable when χ− = 0.56; for

q = 10, it is least excited when χ− = 1. It is truly remarkable that LISA can observe the

four dominant modes (and in fact, also many of the subdominant modes, not shown in this

plot) out to z > 20 for mergers with source mass Ms ∼ 5× 105 M⊙. Even in the worst-case

scenario, depending on the masses of the merging BHs, LISA could see the four dominant

modes out to redshift z ≳ 5.

3As pointed out in previous work, numerical merger simulations of spinning binaries with

comparable masses (q ≃ 1) yield unreliable estimates for the ringdown energy in the (4 , 4)

mode [10].
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Figure 6.5: Left: Cumulative distribution function C(w) for the projection parameter w.

Right: Optimal SNR required by a ringdown mode to be detected with probability fd.
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6.3.2 Response redshift and detectability fraction

The horizon estimates computed so far assume optimal source orientation and sky location.

In general, the SNR of observed events depends on the source position and orientation. The

sky sensitivity of the detector (as encoded in wℓm) can affect the detectability of individual

modes (see [75, 291, 292, 293, 294, 295, 296] for a discussion of this issue in the context

of inspiral, and [1] for a nice overview of the nomenclature and conventions used in the

gravitational-wave literature).

The cumulative distribution function for the “projection function” wℓm is independent of the
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Figure 6.7: Response redshift zfd at which nonspinning binaries of selected source-frame

masses with q = 2 (thick lines) and q = 10 (thin lines) could be detected with probability fd

by LISA.

intrinsic properties of the source. We generate this distribution numerically using a Monte

Carlo method, assuming that the sources are uniformly distributed over sky location and

orientation. Because of the eimϕ dependence of the spin-weighted spherical harmonics, the

cumulative distribution function depends only on ℓ: for example, C(w) for the (2 , 1) mode

coincides with the well-known cumulative distribution function for the (2 , 2) mode of the

inspiral and ringdown. The cumulative distribution functions for the dominant modes are

shown in the left panel of Fig. 6.5. Under the assumption that a binary is detectable when

wℓm > 8/ρopt, from the cumulative distribution function we can also compute the fraction

of detectable binaries

fd = 1− C(8/ρopt) , (6.24)

Just like C(w), fd depends on ℓ but not on m. From the right panel of Fig. 6.5 we infer

that the optimal SNR ρopt required to detect the (2, 2), (3, 3) and (4, 4) mode with 50%

(95%) probability is 24.5 (98), 17.8 (67.3) and 20.8 (121.2), respectively. For the (2, 2) mode,

detection probabilities fd = 0.36, 0.63, 0.84 and 0.95 correspond to ρopt = 20, 30, 50 and
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100, respectively.

Redshift horizons computed by setting ρopt = 8 do not give information about the probability

of detecting binaries with suboptimal orientations. For this purpose it is useful to introduce

the “response redshift” zfd (see e.g. [1]), defined as the redshift at which a binary could be

detected with probability fd. In Fig. 6.6 we plot fd as a function of zfd for the (2, 2) mode

in the case of Advanced LIGO (thin line), and for the four dominant modes in the case of

ET (thick lines). All plots refer to a 100M⊙ nonspinning binary with q = 1.5. By definition,

the detection probability fd drops to zero at the horizon redshift, where ρopt = 8. For ET,

the detection probability fd is 90% (50%) at z = 1.72 (4.99), 0.08 (0.25), 0.05 (0.15) and

0.01 (0.04) for the (2, 2), (3, 3), (2, 1) and (4, 4) modes, respectively. For Advanced LIGO,

the detection probability fd is 90% (50%) at z = 0.07 (0.19) for the (2, 2) mode. Note that

the redshift at which the detection probability fd = 0.5 is a useful indicator of the distance

at which binary ringdown is observable, because it corresponds to the median redshift at

which the given mode would be visible, independently of astrophysical assumptions on the

intrinsic merger rates [1].

Figure 6.7 shows similar results for LISA observations of BHs of total source-frame mass

105M⊙, 106M⊙, 107M⊙ and 108M⊙ with either q = 2 (thick lines) or q = 10 (thin lines).

Once again, by definition fd = 0 at the horizon redshift, where ρopt = 8. The behavior of

these probability distributions when the source mass is 106M⊙, 107M⊙ and 108M⊙ is very

similar to the results shown in Fig. 6.6. However, the probability distribution for binaries

of mass 105M⊙ shows an interesting bimodal distribution. This bimodality is related to

the characteristic “turnover” for IMBHs at z ∼ 1 that we observed in Fig. 6.1: when z ≳ 1,
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ringdown signals at (source-frame) masses that would otherwise have been unobservable are

“redshifted back” in the LISA band and become observable. The high-redshift peak observed

in the dash-dotted (green) probability distributions in the top panels of Fig. 6.7 has very

interesting implications for IMBH mergers at high redshifts: LISA ringdown signals can

be used to probe the populations of IMBHs with mass Ms ≲ 105 M⊙ and redshifts z ≳ 10.

This could be a unique way to shed light on the formation and merger of primordial BHs

and of IMBH seeds produced in more conventional scenarios, such as the relativistic collapse

of massive Pop III stars or the direct collapse of a supermassive protostar in a metal-free

dark matter halo (see e.g. [266]).

Tables 6.1 and 6.2 complement and extend the results in Figures 6.6 and 6.7. In these Tables

we list the horizon redshift for an optimally oriented binary and (in parentheses) the redshift

corresponding to the median value of sky sensitivity Ωℓm, i.e. the response redshift at which

fd = 0.5.

Table 6.1 lists these quantities for nonspinning binaries with q = 1.5, selected values of the

remnant source-frame BH mass Ms, and three ground-based detectors (Advanced LIGO,

Voyager and ET). Advanced LIGO cannot observe subdominant modes from the merger

of stellar-mass BH binaries, but it could observe the (3, 3) mode out to redshifts z ≳ 0.2

for IMBH mergers with Ms ∼ 500 M⊙. The horizon and median redshift decrease when

Ms ∼ 103 M⊙ for all ground-based detectors, but the better low-frequency sensitivity of ET

makes it possible to observe multiple ringdown modes out to z ∼ 1 from BH remnants as

massive as Ms ∼ 5000 M⊙. Note also that the ET horizon redshift for a Ms ∼ 50 M⊙ binary

is zh ∼ 13, but the median redshift is much lower (z0.5 ∼ 3): these findings are compatible
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with previous rate calculations based on population synthesis models (see e.g. Fig. 3 of [224],

and Figs. 13 and 15 of [118]).

Table 6.2 lists these quantities for LISA observations of BH binary mergers with q = 2 and

q = 10. The observed trends are easily explained by considering that the relative excitation

of subdominant modes is higher, but the total energy radiated (and therefore the horizon

redshift) decrease when q gets larger [242]. LISA has the incredible potential to measure

multiple ringdown modes in a wide range of masses and mass ratios out to cosmological

redshifts. Interestingly, LISA can observe multiple ringdown modes from very massive

binary mergers (say, 108 +109 M⊙), as long as the merger rates are high enough in the local

Universe (z ≲ 0.5): see e.g. [297] for a recent, detailed investigation of how LISA design

choices would affect this science. We plan to explore this possibility using astrophysical BH

formation models in future work.

6.4 Conclusions and outlook

Atomic spectroscopy is a standard tool in modern astronomy. As gravitational wave detectors

improve in sensitivity, it seems reasonable to expect that gravitational spectroscopy will

similarly become a standard tool to identify merger remnants as the Kerr BHs predicted by

general relativity, unless nature has some surprise in store.

In this chapter we investigated the potential of future detectors to detect multiple gravita-

tional spectral lines. We computed the horizon and median redshifts at which the dominant

modes of the radiation can be detected by Advanced LIGO, third-generation ground-based

158



CHAPTER 6. MULTI-MODE BLACK HOLE SPECTROSCOPY

Table 6.1: Horizon redshift out to which a given mode can be detected with ground-based

detectors for nonspinning binaries with q = 1.5 and selected values of the remnant BH mass

in the source frame, Ms. The computed horizon redshifts assume either optimal orientation

(zh) or fd = 0.5 (z0.5, in parenthesis): see text for details.

Ms(M⊙) (2, 2) (3, 3) (2, 1) (4, 4)

zh (z0.5) zh (z0.5) zh (z0.5) zh (z0.5)

Advanced LIGO

50 0.21 (0.06) 0.01 (0.01) 0.01 (0.00) 0.00 (0.00)
100 0.80 (0.19) 0.04 (0.02) 0.03 (0.01) 0.01 (0.00)
500 1.25 (0.60) 0.32 (0.15) 0.12 (0.04) 0.11 (0.04)
1000 0.65 (0.40) 0.30 (0.15) 0.08 (0.03) 0.16 (0.07)

Voyager

50 2.53 (0.32) 0.06 (0.03) 0.05 (0.02) 0.01 (0.01)
100 7.15 (1.41) 0.18 (0.08) 0.14 (0.04) 0.05 (0.02)
500 2.30 (1.61) 1.45 (0.73) 0.54 (0.23) 0.54 (0.18)
1000 0.99 (0.75) 0.94 (0.62) 0.26 (0.12) 0.73 (0.33)

Einstein Telescope

50 13.03 (3.03) 0.13 (0.05) 0.14 (0.04) 0.02 (0.01)
100 11.04 (4.99) 0.85 (0.25) 0.56 (0.15) 0.12 (0.04)
500 6.33 (3.24) 2.26 (1.28) 0.89 (0.39) 1.28 (0.54)
1000 4.89 (2.51) 1.81 (1.07) 0.70 (0.31) 1.16 (0.57)
5000 1.86 (1.31) 0.97 (0.56) 0.34 (0.14) 0.63 (0.32)

Table 6.2: Horizon redshift out to which a given mode can be detected with LISA for selected

nonspinning binaries with q = 2 (top) and q = 10 (bottom). The computed horizon redshifts

assume either optimal orientation (zh) or fd = 0.5 (z0.5, in parenthesis): see text for details.

(m1s +m2s)(M⊙) (2, 2) (3, 3) (2, 1) (4, 4)

zh (z0.5) zh (z0.5) zh (z0.5) zh (z0.5)

q = 2

106 + 2× 106 54.11 (35.35) 37.37 (18.48) 16.36 (7.38) 24.93 (14.79)
107 + 2× 107 14.05 (12.29) 10.4 (9.47) 4.65 (3.4) 8.66 (5.43)
108 + 2× 108 3.45 (3.06) 2.51 (2.53) 1. (0.86) 2.08 (1.93)
109 + 2× 109 0.67 (0.58) 0.44 (0.45) 0.11 (0.09) 0.34 (0.31)

q = 10

105 + 106 46.51 (12.56) 34.29 (13.06) 17.53 (6.26) 28.69 (13.36)
106 + 107 13.33 (6.18) 13.16 (6.43) 7.1 (2.81) 13.71 (5.34)
107 + 108 3.29 (1.48) 3.31 (1.72) 1.68 (0.69) 3.55 (1.72)
108 + 109 0.64 (0.2) 0.64 (0.26) 0.25 (0.06) 0.71 (0.26)
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detectors such as ET, and LISA.

We found that Advanced LIGO cannot observe subdominant modes from the merger of

stellar-mass BH binaries, but it could observe the (3, 3) mode out to redshifts zh ≳ 0.2

for IMBH mergers with Ms ∼ 500 M⊙. Horizon redshifts decrease when Ms ∼ 103 M⊙

for all ground-based detectors, but the better low-frequency sensitivity of ET makes it

possible to observe multiple ringdown modes out to zh ∼ 1 from BH remnants as massive

as Ms ∼ 5000 M⊙. The ET horizon redshift for a Ms ∼ 50 M⊙ binary can be very large

(zh ∼ 13), but the median redshift is much lower (z0.5 ∼ 3). In contrast, BH binary mergers

in the LISA band could be used to measure multiple ringdown modes in a wide range of

masses and mass ratios out to cosmological redshifts. In fact, LISA can detect ringdown

modes from all multipolar components computed so far in state-of-the-art numerical relativity

simulations. Even modes whose amplitude is comparable to numerical noise in current

simulations – such as the (8, 8) mode – could be observable. Cosmological redshift produces

a characteristic “turnover” in the LISA horizon redshift for IMBHs at z ∼ 1 (Fig. 6.1) and

a bimodal distribution in the detection probability (Fig. 6.7): large-z ringdown signals at

(source-frame) masses that would otherwise be unobservable are “redshifted back” in the

LISA band and become observable. Therefore LISA observations of the merger/ringdown

phase can be used to probe the IMBH population at masses Ms ≲ 105 M⊙ and redshifts

z ∼ 10, when such mergers might have been common. LISA can also detect multiple

ringdown modes from BH binary mergers of mass ≳ 108 M⊙ at z ≲ 0.5, as long as the

merger rates are large enough in the local Universe. As pointed out in [297], these science

goals should be taken into account in design studies of the LISA sensitivity at low and high
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frequencies.

Our work can and should be improved in many ways. To quantify detectability we used fits

from [10], which are based on the “energy maximized orthogonal projection” criterion and

more conservative than the estimates of Ref. [224], where we used the detection-oriented

“matched filtering” fits from [242]. Several different ways to quantify ringdown excitation from

numerical simulations have been proposed over the years [223, 242, 243, 244, 245, 264, 298].

In general these estimates lead to slightly different predictions for the horizon redshift. This

dependence should be investigated. We plan to revise our fits – especially for the spin

dependence of subdominant modes, such as the (4, 4) mode – as soon as updates to the

SXS public waveform catalog described in [230] become available, but the broad qualitative

conclusions of our work should remain valid.

One of the main conclusions of our work is that LISA may allow us to see so many ringdown

modes that systematic errors in numerical relativity simulations may be comparable to

statistical errors. We hope that this consideration will motivate further studies of ringdown

excitation and the development of more accurate numerical relativity simulations of BH

mergers.

Of course, deviations from general relativity may drastically modify the ringdown spec-

trum [210, 216, 261, 299, 300, 301], and possibly even make subdominant modes undetectable.

This possibility would invalidate our analysis, which assumes that general relativity is the

correct theory of gravity. It would be very exciting if our study of subdominant ringdown

modes were to be proven wrong or irrelevant for this reason.
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Chapter 7

LISA parameter estimation and
source localization with higher
harmonics of the ringdown

Abstract

LISA can detect higher harmonics of the ringdown gravitational-wave signal from

massive black-hole binary mergers with large signal-to-noise ratio. The most massive

black-hole binaries are more likely to have electromagnetic counterparts, and the

inspiral will contribute little to their signal-to-noise ratio. Here we address the

following question: can we extract the binary parameters and localize the source using

LISA observations of the ringdown only? Modulations of the amplitude and phase

due to LISA’s motion around the Sun can be used to disentangle the source location

and orientation when we detect the long-lived inspiral signal, but they can not be

used for ringdown-dominated signals, which are very short-lived. We show that (i) we

can still measure the mass ratio and inclination of high-mass binaries by carefully

combining multiple ringdown harmonics, and (ii) we can constrain the sky location

and luminosity distance by relying on the relative amplitudes and phases of various

harmonics, as measured in different LISA channels.
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7.1 Introduction

Gravitational waves are predominantly quadrupolar. For the black hole (BH) binaries

detected by LIGO and Virgo, the fraction of energy radiated in subdominant multipoles

increases with the mass ratio q [6, 242] (we define q ≡ m1/m2 ≥ 1, where m1 is the mass

of the primary and m2 is the mass of the secondary). For BH binaries of total mass

M = m1 +m2, gravitational-wave frequencies scale like 1/M . Simple WKB arguments [281]

suggest that the quasinormal mode frequencies of the remnant are roughly proportional

to the harmonic index ℓ (see e.g. [214, 259, 302] for reviews). Since higher multipoles

corresponds to higher harmonics of the ringdown signal, which radiate at higher frequencies,

high-ℓ modes become more important for high-mass binaries.

Interest in higher harmonics is growing as the sensitivity of interferometric detectors im-

proves [303, 304, 305, 306, 307, 308]. This is because (if detectable) subdominant multipoles

and higher harmonics of the radiation add structure to the gravitational waveforms. Different

harmonics have different dependence on inclination, mass ratio and spins, so their observation

can break some of the degeneracies that currently haunt the parameter estimation.

One example is the distance-inclination degeneracy. Different multipoles correspond to

different spherical harmonic indices and to a different angular dependence (and hence

inclination dependence) of the radiation. Therefore higher multipoles allow us to distinguish

between different binary orientations, and this can also lead to improvements in distance

measurements. Degeneracy breaking can also occur because the excitation of each higher

multipole depends in a characteristic way on the mass ratio q and on the spins [10, 26, 243,
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Figure 7.1: Solid lines indicate ringdown horizons for (2, 2), (3, 3), (2, 1), (4, 4) modes for a

binary with q = 2 (top) and q = 10 (bottom). Dashed and dash-dotted lines correspond to a

low-frequency cutoff fcut = 10−4 Hz and fcut = 2× 10−5 Hz, respectively.

244, 245, 253, 254]. This can break the degeneracy between the mass ratio q and the so-called

“effective spin” parameter χeff . For example, it was recently shown that higher harmonics

allow us to better determine the mass ratio of the most massive BH binary detected to date

(GW170729) [309], and this can also lead to improved effective spin estimates. Higher-order

modes can also break the degeneracy between polarization and coalescence phase [310].

In this chapter we will focus on the information carried by higher multipoles of the ringdown,

as they may be detectable by the space-based interferometer LISA [248]. Several works

have studied how LISA detectability and parameter estimation are affected by higher
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harmonics of the inspiral, finding that they can improve LISA’s angular resolution and

(consequently) luminosity distance estimates by a factor ∼ 102, especially for heavier binaries

with M ≳ 107M⊙ [311, 312, 313, 314].

Ringdown is expected to be dominant over the inspiral for binaries with mass M ≳

106M⊙ [213, 278, 315]. Higher harmonics of the signal usually have low amplitudes during

the inspiral, and become dominant only during merger and ringdown (see e.g. [316]). In

general, higher harmonics are more important in the ringdown stage: during the inspiral the

higher harmonics are always subdominant relative to the inspiral of the (2, 2) mode, while

harmonics with ℓ = m > 2 stand out in the frequency domain during the ringdown, because

they have larger frequencies (and hence are not “buried” under the (2, 2) component of the

signal).

Since higher multipoles typically correspond to higher frequencies and f ∼ 1/M , when M is

large enough the dominant mode will fall out of the sensitivity band of LISA and become

undetectable: higher harmonics could be our only means to observe otherwise undetectable

high-mass sources. For systems with mass M ≳ 106M⊙, high-frequency harmonics can lie

closer to the noise “bucket” of LISA than the fundamental (low-frequency) modes, and

therefore they can have relatively large SNR. This is particularly important for large-q

mergers, because then higher modes can have relatively large amplitudes relative to the

(2, 2) mode [10, 243, 305]. In fact, the SNR in higher harmonics for massive binaries with

large q is comparable to (or greater than) the (2, 2) mode SNR.

It is generally believed that it will be hard to control LISA’s noise below a low-frequency
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cut-off fcut ∼ 10−4 Hz, or possibly fcut ∼ 2× 10−5 Hz. A low-frequency cutoff implies that

there is a maximum redshifted mass M cut
ℓm beyond which the (ℓ, m) mode goes out of band.

This maximum mass can be written as

M cut
ℓm = µℓm8 M⊙

10−4Hz

fcut

ω̂ℓm

ω̂q=1
ℓm

. (7.1)

Here ω̂ℓm denotes dimensionless QNM frequencies scaled by their maximum value ω̂q=1
ℓm ,

which for nonspinning BH binary mergers corresponds to q = 1 (a = 0.686). As shown

in [214], these frequencies are well fitted by an expression of the form

ω̂ℓm = f ℓm1 + f ℓm2 (1− a)f
ℓm
3 . (7.2)

For mergers of nonspinning BHs, the remnant spin a is a function of mass ratio q only. It

can be approximated as [195]

a(q) = η
(︂
2
√
3− 3.5171 η + 2.5763 η2

)︂
, (7.3)

where η = q/(1 + q)2 is the symmetric mass ratio. In Table 7.1 we list µℓm8 , ω̂q=1
ℓm , f ℓm1 , f ℓm2

and f ℓm3 for the dominant modes.

The importance of the low-frequency cut-off can be appreciated by looking at Fig. 7.1, where

we consider nonspinning binary mergers with q = 2 (top panel) and q = 10 (bottom panel).

Low-frequency sensitivity is crucial to observe ringdown from the most massive BH mergers,

so we also plot ringdown horizons obtained by truncating the LISA noise power spectral
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Table 7.1: Fitting coefficients for Eqs. (7.1) and (7.2).

(ℓ, m) µℓm8 ω̂q=1
ℓm f ℓm1 f ℓm2 f ℓm3

(2, 2) 1.71× 108 0.529 1.525 −1.157 0.129

(3, 3) 2.71× 108 0.839 1.896 −1.304 0.182

(2, 1) 1.47× 108 0.456 0.6 −0.234 0.418

(4, 4) 3.68× 108 1.139 2.3 −1.506 0.224

density at fcut = 10−4 Hz (dashed lines) and fcut = 2× 10−5 Hz (dash-dotted lines). LISA

Pathfinder exceeded the LISA requirements at frequencies as low as 2× 10−5 Hz [17]. If the

LISA constellation noise can be trusted at these same frequencies, the mass reach of the

instrument would extend up to ∼ 109M⊙, where the inspiral is not visible and most of the

SNR will come from merger and ringdown.

7.1.1 Plan of the chapter

In this work we study LISA parameter estimation using only the ringdown. The various

sections address the measurement of different parameters, as follows:

Remnant mass and spin. The spin and (redshifted) mass of the remnant can be found

from measurements of the quasinormal mode frequencies. In Sec. 7.2 we study how accurately

LISA can measure the remnant mass and spin, and how higher harmonics can improve these

measurements.

Mass ratio and inclination. The relative excitation of higher multipoles depends on the

binary mass ratio q and inclination angle ι. In Sec. 7.3 we use estimates of the relative

amplitudes of different ℓ = m modes to measure q and ι.
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Source location and luminosity distance. LISA inspiral sources are long-lived, and

LISA’s motion around the Sun modulates the amplitude and phase of the signal, which

in turn can be used to disentangle the source location and orientation. On the contrary,

the ringdown is very short-lived, and hence we cannot use the modulation of the antenna

pattern for localization. Furthermore, the angular dependence of different modes with ℓ = m

depends only on ι, so we must rely on modes with ℓ ̸= m to infer more information on the

source location. In Secs. 7.4 and 7.5 we show that we can constrain the sky location and

luminosity distance by relying on the relative amplitudes and phases of the (2, 2) and (2, 1)

modes, as measured in different LISA channels.

In Sec. 7.6 we present a preliminary exploration of the dependence of the errors on mass

ratio, inclination, and sky-location.

In Sec. 7.7 we summarize our results and discuss possible directions for future work.

In most of this chapter we ignore the motion of LISA, because ringdown signals are typically

much shorter than LISA’s observation time and orbital period. This assumption is justified

in Appendix 7.A, where we study the effect of first-order corrections to this approximation.

We show that these corrections are negligible even for binaries with M > 108M⊙, when the

ringdown can last for hours. Finally, in Appendix 7.B we show that parameter estimation

could improve dramatically for sources that can be associated with an electromagnetic

counterpart.
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Figure 7.2: Angle-averaged errors on the remnant’s redshifted mass (top panel) and dimen-

sionless spin (bottom panel) as a function of the remnant’s total mass. We consider a binary

merger of mass ratio q = 2 (left) and q = 10 (right) at z = 1. Each line corresponds to

a different mode; the thick, solid black line corresponds to the total error obtained after

combining all modes.

7.2 Remnant mass and spin

For our present purposes we can model the LISA detector in the low-frequency approximation

as a combination of two independent LIGO-like detectors or “channels” (denoted by a

superscript i =“I” or “II”) with antenna pattern functions F I,II
+ ,× and sky-sensitivities

ΩI,II
ℓm [317, 318]. The ringdown signal from a BH with source-frame mass Ms, redshifted mass

M =Ms(1 + z) and dimensionless spin a measured by each detector can be written in the
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Figure 7.3: Median relative error on the detector-frame mass (left) and median absolute

error on the remnant spin (right) for binary mergers with q = 2 (top panels) and q = 10

(bottom panels). We also show the horizon of (2, 2) mode and redshifted-mass cutoff at

fcut = 10−4 Hz (in red) fcut = 2× 10−5 Hz (in green).

time domain as a superposition of damped sinusoids of the form

hiℓm(t) = Ai
ℓme

−(t−t0)/τℓm cos
(︁
2πfℓmt+Φi

ℓm

)︁
, (7.4)

where fℓm = f
(s)
ℓm/(1 + z) is the redshifted (detector-frame) frequency, τℓm = τ

(s)
ℓm(1 + z)

is the redshifted decay time, and for later convenience we also define the quality factor

Qℓm = πfℓmτℓm.
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The signal phase Φi
ℓm is given by

Φi
ℓm = ϕℓm − 2πfℓmt0 +mφ+ tan−1

(︄
F i
× Y

ℓm
×

F i
+ Y

ℓm
+

)︄
, (7.5)

where t0 is the starting time of the signal.

The signal amplitude in the i-th detector is

Ai
ℓm =

MΩi
ℓm

dL
Aℓm(q) , (7.6)

where dL = dL(z) is the luminosity distance to the source (we use the standard cosmological

parameters determined by Planck [49]),

Ωi
ℓm ≡

√︂(︁
F i
+Y

ℓm
+

)︁2
+
(︁
F i
×Y

ℓm
×
)︁2

(7.7)

is a “sky sensitivity” coefficient and Aℓm is a ringdown excitation amplitude, which depends

on the mass ratio of the binary and on the spins of the progenitors [26, 242, 243, 244, 264].

We compute Aℓm as described in Ref. [26]. We consider only nonspinning binaries and we

neglect precession (cf. [319, 320, 321] for a calculation of ringdown excitation amplitudes of

more general trajectories in the extreme mass-ratio limit).

The antenna pattern functions F i
+,× depend on the source sky position angles (θ, ϕ) and on
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the polarization angle ψ [317]:

F I
+(u, ϕ, ψ) =

1 + u2

2
cos 2ψ cos 2ϕ− u sin 2ψ sin 2ϕ ,

F I
×(u, ϕ, ψ) =

1 + u2

2
sin 2ψ cos 2ϕ+ u cos 2ψ sin 2ϕ ,

F II
+,×(u, ϕ, ψ) = F II

+,×
(︂
u, ϕ− π

4
, ψ
)︂
, (7.8)

where u = cos θ. The harmonics Y ℓm
+,× corresponding to the two ringdown polarizations can

be found by summing over modes with positive and negative +m, as follows [223, 243, 245]:

Y ℓm
+ (ι) ≡ −2Y

ℓm(ι, 0) + (−1)ℓ −2Y
ℓ−m(ι, 0),

Y ℓm
× (ι) ≡ −2Y

ℓm(ι, 0)− (−1)ℓ −2Y
ℓ−m(ι, 0). (7.9)

Here ι is the angle between the spin axis of the remnant and the plane of the sky. For

example, for ℓ = m = 2 we get

Y 22
+ (ι) =

1

4

√︃
5

π

[︁
1 + (cos ι)2

]︁
,

Y 22
× (ι) =

1

2

√︃
5

π
cos ι . (7.10)

Ref. [213] used a Fisher matrix analysis to estimate errors on the detector amplitude Ai
ℓm

and on the phase Φi
ℓm:

δAi
ℓm

Ai
ℓm

=

√
2

ρiℓm
, (7.11)

δΦi
ℓm =

1

ρiℓm
. (7.12)
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Here ρiℓm denotes the signal-to-noise ratio (SNR) in detector i [26]:

ρiℓm = ρ0ℓmw
i
ℓm(ι, θ, ϕ, ψ) , (7.13)

where ρ0ℓm is a detector-independent optimal SNR, while wi
ℓm(ι, θ, ϕ, ψ) = Ωi

ℓm/max(Ωi
ℓm) ≤

1 is a “projection factor” that depends on the sky location, inclination and polarization

angles.

Ref. [213] also showed that a quasinormal mode with signal-to-noise ratio (SNR) ρℓm =[︁
(ρIℓm)2 + (ρIIℓm)2

]︁1/2
can be used to measure the redshifted mass and spin of the remnant

with accuracy

δa =
1

ρℓm

⃓⃓⃓⃓
2
Qℓm

Q′
ℓm

⃓⃓⃓⃓
, (7.14)

δM

M
=

1

ρℓm

⃓⃓⃓⃓
2
Qℓmf

′
ℓm

Q′
ℓmfℓm

⃓⃓⃓⃓
, (7.15)

which is independent of the channel, since we are summing over i = I, II. In other words, the

error σ resulting from two-detector measurements is σ−2 = σ−2
I + σ−2

II , which is equivalent

to replacing the SNR ρiℓm in each detector by the total SNR ρℓm. Therefore, in this section

and in the next we will drop the subscript i.

Estimates of mode excitation based on numerical relativity simulations suggest that, in

favorable cases, LISA may see all multipolar components of the radiation that have been

computed in current numerical relativity simulations [26]. Parameter estimation errors could

be further reduced for these “golden binaries”, as we show in Fig. 7.2. We consider a binary
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with q = 2 (left panels) and q = 10 (right panels) at z = 1 and we plot angle-averaged

parameter estimation errors on redshifted mass and spin inferred from specific modes, as well

as the (smaller) total error estimate when we consider all multipoles. We assume Gaussian

distributions for the errors from each mode, and we estimate the total error as

(︃
δM

M

)︃−2

reduced

=
∑︂
ℓm

(︃
δM

M

)︃−2

ℓm

, (7.16)

(δareduced)
−2 =

∑︂
ℓm

(δaℓm)−2 ,

where (δM/M)ℓm is the relative error on the remnant’s redshifted mass and δaℓm is the

absolute error on its dimensionless spin computed using the (ℓ, m) mode. For small mass

ratios most of the parameter estimation accuracy comes from the (2, 2) mode, while higher

multipoles make almost no contribution to the total error. The scenario changes drastically

for q = 10: now all harmonics have SNR comparable to that of the (2, 2) mode, the errors

from the individual modes are comparable, and adding them in quadrature leads to a

significant improvement in parameter estimation.

In Fig. 7.3 we show contour plots for the median relative error δM/M on the redshifted

mass (left) and for the median absolute error δa on the dimensionless spin (right).

LISA can measure BH remnant spins for binaries with q = 2 (10) with an accuracy of 0.01

up to redshift z = 9.8 (2.6) if M = 106M⊙, or up to redshift z ≈ 1.2 (0.5) if M ∼ 108M⊙.

LISA can also measure the redshifted mass of the remnant for binaries with q = 2 (10) with

an accuracy of 1% up to redshift z = 12 (6) if M = 106M⊙, or up to redshift z ≈ 1.5 (0.8) if

M ∼ 108M⊙.
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Interestingly, the remnant spins and redshifted masses for binaries with q = 2 (10) can be

measured with an accuracy of 10% even if the remnant has mass as large as M ∼ 109M⊙,

as long as the merger occurs at z < 0.7 (0.3). Such binaries are usually thought to be

observable only with Pulsar Timing Arrays (PTAs). It is possible that PTAs may observe

the early inspiral of a few resolvable binaries with z < 1 [322], while LISA may observe their

merger-ringdown.

7.3 Mass ratio and inclination

In this section we will exploit the fact that the excitation of different modes with ℓ = m

depends in a characteristic way on the mass ratio q and on the inclination angle ι to infer q

and ι. Let us focus first on one of the two independent LIGO-like detectors, dropping the

superscripts (I, II) for clarity.

For multipoles with ℓ = m, the sky sensitivity appearing in Eq. (7.6) is of the form

Ωℓℓ = rℓ(sin ι)
ℓ−2Ω22 , (7.17)

where the proportionality constant

rℓ =
(−1)ℓ22−ℓ

√
5

√︄
(2ℓ)!(2ℓ+ 1)

(ℓ− 2)!(ℓ+ 2)!
(7.18)

is such that

Y ℓℓ
+,× = rℓ(sin ι)

ℓ−2Y 22
+,× . (7.19)
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The detector-amplitude ratio of two modes – which to simplify the notation we shall denote

as, say, Aℓi = Aℓimi
with ℓi = mi – depends only on q and ι, i.e.

Aℓ2

Aℓ1

= (sin ι)ℓ2−ℓ1Hℓ1ℓ2(q) , (7.20)

where

Hℓ1ℓ2(q) ≡
rℓ2
rℓ1

Aℓ2(q)

Aℓ1(q)
. (7.21)

By a simple extension, we can obtain a three-mode combination which depends only on q:

Aλ
ℓ2

Aℓ3Aλ−1
ℓ1

= Gℓ1ℓ2ℓ3(q) , (7.22)

where

Gℓ1ℓ2ℓ3(q) ≡
rλℓ2

rℓ3r
λ−1
ℓ1

Aλ
ℓ2

Aℓ3A
λ−1
ℓ1

(7.23)

and λ ≡ (ℓ3 − ℓ1)/(ℓ2 − ℓ1). This function is plotted in Fig. 7.4 in two cases of interest:

(ℓ1, ℓ2, ℓ3) = (2, 3, 4) and (ℓ1, ℓ2, ℓ3) = (2, 3, 5). Note that Gℓ1ℓ2ℓ3(q) has a local maximum

for q ∼ 4 in both cases. This observation will be useful later.

Note that Gℓ1ℓ2ℓ3(q) is obtained by fitting ringdown excitation amplitudes to numerical

simulations. Higher harmonics are typically subdominant and contaminated by numerical

noise. Since the errors are proportional to Gℓ1ℓ2ℓ3(q)/G
′
ℓ1ℓ2ℓ3

(q), our results are very sensitive

to the accuracy of these fits (and therefore, indirectly, to the accuracy of the numerical

simulations). This is why we do not use modes with ℓ > 5 to estimate q and ι, even though

those modes were used to estimate M and a.
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Figure 7.4: The function Gℓ1ℓ2ℓ3(q) defined

in Eq. (7.23).

The idea is now to infer q and ι from the detector amplitudes Aℓi of the three dominant

modes. To estimate measurement errors on q and ι, we propagate errors from the basis

{Aℓ1 , Aℓ2 , Aℓ3} to the basis {q, ι} as follows:

covℓ1ℓ2ℓ3(q, ι) =
∂(q, ι)

∂Aℓ1ℓ2ℓ3

· cov(A) ·
(︃
∂(q, ι)

∂Aℓ1ℓ2ℓ3

)︃T

, (7.24)

where cov(A) is the diagonal covariance matrix of detector amplitudes with elements 2
A2

ℓ

ρ2ℓ
,

and ∂(q, ι)
∂Aℓ1ℓ2ℓ3

denotes the Jacobian of the transformation between the two bases, obtained

from Eqs. (7.20) and (7.22). We can also use multiple mode combinations to reduce the

uncertainty:

cov(q, ι)−1 =
∑︂

{ℓ1,ℓ2,ℓ3}
covℓ1ℓ2ℓ3(q, ι)

−1 . (7.25)

The left panel of Fig. 7.5 shows contour plots of the median relative error on the mass ratio

δq/q (left) for sources uniformly distributed over the sky. To reduce the error we follow the

procedure outlined above, using the following two combinations of modes: (ℓ1, ℓ2, ℓ3) =

(2, 3, 4) and (3, 4, 5). The top panels show that for a binary with mass ratio q = 2,

LISA can measure q with an accuracy of 10% up to redshift z = 16(2.1) for BHs of mass
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Figure 7.5: Median relative errors δq/q for the mass ratio (left) and median error on the

inclination angle ι (right) for nonspinning binary mergers with mass ratio q = 2 (top) and

q = 10 (bottom). We also show the horizon of (2, 2) mode and redshifted-mass cutoff at

fcut = 10−4 Hz (in red) fcut = 2× 10−5 Hz (in green).

106M⊙(108M⊙). In the bottom panels we consider a binary with mass ratio q = 10, and we

show that measuring the mass ratio is harder: in this case we can get q with better than

10% accuracy out to z = 0.7 for Ms = 106M⊙. The right panel of Fig. 7.5 shows median

error contours for the inclination angle ι. For a q = 2 binary (top panel), LISA can measure

ι within 10◦ up to z ≈ 18 (2.4) for BHs of mass 106M⊙ (∼ 108M⊙). In the bottom panel

we consider a q = 10 binary, for which q is harder to measure, but the inclination can still

be measured to a relatively good accuracy: we can measure ι within 10◦ up to redshift

z ≈ 11 (1.4) for BHs of mass 106M⊙ (∼ 108M⊙). The dependence of the various errors on
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the binary parameters will be discussed in more detail in Sec. 7.6 below.

7.4 Sky localization

In general, LISA can localize inspiraling sources and measure their distance by using

amplitude and phase modulations due to the orbital motion of the constellation around the

Sun [317, 318, 323, 324, 325]. This is not possible when we observe only the merger/ringdown,

because then the signal duration is very short: even for remnant masses as large as ∼ 109M⊙

the signal can last at most ∼ 17 hours, compared to the LISA orbital time scale T ∼ 1 yr.1

For this reason we will explore other ways of localizing the source, which are mainly based

on comparing the amplitudes and phases of the harmonics measured in different channels.

7.4.1 Localization contours using the amplitudes and phases of the dom-

inant mode in different channels

A first possibility to determine the sky location of a source is to take the ratio of the signal

amplitudes in two channels

Qℓm
A =

(︃AI
ℓm

AII
ℓm

)︃2

=

(︃
ΩI
ℓm(ι, θ, ϕ, ψ)

ΩII
ℓm(ι, θ, ϕ, ψ)

)︃2

=

(︁
F I
+

)︁2
+ s2ℓm

(︁
F I
×
)︁2(︁

F II
+

)︁2
+ s2ℓm

(︁
F II
×
)︁2 (7.26)

1In principle, for such massive binaries we could still measure first-order corrections to

the antenna pattern due to orbital modulations. However, in Appendix 7.A we show that

these modulations can be measured with a typical accuracy ∝ T/τ22, which is not sufficient

even for the most massive remnants.
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and the difference of the phases measured in the two channels

tan−1Qℓm
Φ = ΦII

ℓm − ΦI
ℓm

= tan−1

(︃
sℓmF

II
×

F II
+

)︃
− tan−1

(︃
sℓmF

I
×

F I
+

)︃
. (7.27)

where we have defined the function sℓm(ι) = Y ℓm
× (ι)/Y ℓm

+ (ι), and we have omitted the

inclination dependence for brevity. From Eqs. (7.10) and (7.19) it follows that

s = sℓℓ = s22 =
2 cos ι

1 + cos2 ι
(7.28)

for all modes with ℓ = m. This function is plotted in Fig. 7.6 along with the corresponding

function s21.

0 30 60 90 120 150 180

-1.0

-0.5

0.0

0.5

1.0

Figure 7.6: The function s = sℓℓ [cf.

Eq. (7.28)] and the function s21.

The amplitude ratio QA = Q22
A and phase difference QΦ = Q22

Φ of the dominant mode with

ℓ = m = 2 are the two main observable quantities. Let us assume that we have determined

the inclination ι as described in Sec. 7.3. Then the two observables (QA, QΦ) depend on

three unknowns (θ, ϕ and ψ). Since, at this stage, this system is underdetermined we cannot

find the exact sky location (θ, ϕ), but we can infer contours of constant (QA, QΦ) in the sky.
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For the moment we will ignore measurement errors on QA and QΦ, which scale like 1/ρ22.

This assumption is justified: the limiting factor in the measurement is the inclination ι,

determined (as we discussed previously) from subdominant modes such as (ℓ, m) = (4, 4) or

(5, 5), which typically have smaller signal-to-noise ratio than the (2, 2) mode.

By eliminating ψ from Eqs. (7.26) and (7.27) we get contours in the (θ, ϕ) plane. These

belong to two classes of solutions, as illustrated in Fig. 7.7:

• Type I: the contours form a set of 8 closed rings, and there can be anywhere from 0 to

4 solutions at a given ϕ (top panel of Fig. 7.7).

• Type II: the contours form two ring-like structures enclosing the north and south pole,

and there are two solutions at any given ϕ (middle panel of Fig. 7.7).

These two classes of solution arise because the equations have a different number of solutions

in different regions of the (QA, QΦ) parameter space: ring-like solutions of Type II arise

when

s2 < QA <
1

s2
and |QΦ| >

(QA + 1) |s|√︁
(QA − s2) (1−QAs2)

. (7.29)

In the bottom panel of Fig. 7.7 we plot the “phase diagram” of solutions in the (QA, QΦ)

parameter space for a source at θ = ϕ = ψ = 60◦ and three fixed values of ι = 45◦, 60◦, 75◦.

Type II solutions are usually present for nearly edge-on binaries. Most of the solutions

are of Type I, with only about 1/4 of sources belonging to Type II if we assume that

they are isotropically distributed. Notice also that the rings are symmetric under parity

(u ≡ cos θ → −u, ϕ→ 2π − ϕ).
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In practice, the rings will have finite “widths” which are mainly determined by the uncertainty

in ι.

Figure 7.7: Top and central panels: lo-

calization contours found using relative

detector amplitudes QA and phases QΦ

for the dominant (2, 2) mode. Here we

consider a source at (u = cos ι, ϕ, ψ) =

(0.5, 60◦, 60◦) and three selected values of

the inclination: 45◦ and 60◦ (top panel)

and 75◦ (central panel). For smaller in-

clinations (ι = 45◦ and ι = 60◦) we get

Type I contours, according to the defini-

tion in the main text. For larger inclina-

tions (ι = 75◦) we get Type II contours.

The bottom panel shows a phase diagram

of the different classes of solutions in the

(QA, QΦ) plane for three fixed values of the

inclination.

The discussion above focused on modes with ℓ = m, but it is also applicable to ℓ ̸= m modes,

with the (2, 1) mode being the most relevant observationally. The main difference is that

s21 = cos ι. The (2, 1) mode also yields two families of solutions, with the “phase diagram”

being determined by Eq. 7.29. The three Type II regions shown in Fig. 7.7 – which correspond

to ι = 60◦, 75◦, 80◦ for the (2, 2) mode – would correspond to ι = 36.9◦, 61◦, 70.3◦ for the

(2, 1) mode. In other words, Type II solutions are more likely for the (2, 1) mode: about

one third of the sky gives Type II solutions for the (2, 1) mode, compared to about one
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fourth of the sky for the (2, 2) mode.

7.4.2 Localization contours using the amplitude of the (2, 1) mode

In the previous section we inferred localization contours using the amplitude ratio QA = Q22
A

and phase difference QΦ = Q22
Φ of the dominant mode with ℓ = m = 2, assuming that the

inclination has been measured as described in Sec. 7.3. Unfortunately we cannot extract

any more information from the remaining modes with ℓ = m, because the sky sensitivity

Ωℓℓ ∝ sin(ι)ℓ−2Ω22 for all of these modes: cf. Eq. (7.17).

More information on the pattern functions F i
+,× is encoded in modes with ℓ ̸= m. The

excitation of these modes is generally harder to quantify through numerical relativity

simulations, where subdominant modes are usually contaminated by dominant modes

through a mixing of spherical and spheroidal harmonics with the same m and lower ℓ [5,

6, 7, 8, 242, 244]. The (2, 1) mode is an exception, because (i) it is not affected by mode

mixing, and (ii) it can be excited to relatively large amplitudes, especially for spinning BH

binaries [10, 26, 243, 244, 245, 279].

In this section we will focus on the localization information contained in the (2, 1) mode.

Let us assume that the inclination angle ι and the mass ratio q are known. Then a

possible strategy would be to think about the two sky sensitivities (Ωi
22,Ω

i
21) (or more

precisely, the corresponding measurable detector amplitudes Ai
ℓm ∝ Ωi

ℓm
dL

) as functions of the

corresponding antenna pattern functions (F i
+, F

i
×) in each channel [cf. Eq. (7.7)], and to

solve these equations to determine (F i
+, F

i
×) in each channel. A problem with this strategy

is that we can never obtain the antenna pattern functions themselves, but only the ratios
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F i
+,×/dL, which are degenerate with the luminosity distance. Following this line of reasoning,

we consider instead two ratios of angular functions: the relative channel power QC and the

relative polarization power QP .

Relative channel power

We start by defining the relative channel power QC between channels I and II:

QC =
(F I

+)
2 + (F I

×)
2

(F II
+ )2 + (F II

× )2
. (7.30)

This combination has some interesting properties. First of all, the numerator and the

denominator (which can be thought of as the antenna power of each channel, or detector) are

independent of the polarization angle ψ, and they are given by simple functions of u = cos θ

and ϕ:

(F i
+)

2 + (F i
×)

2 =
1

8

[︂
1 + 6u2 + u4 ±

(︁
u2 − 1

)︁2
cos(4ϕ)

]︂
, (7.31)

where the plus sign corresponds to the first channel (i = I), while the minus sign corresponds

to the second channel (i = II). Because of this property, constant-QC contours in the sky

can be found from the analytic relation

cos 4ϕ =
QC − 1

QC + 1

(1 + 6u2 + u4)

(u2 − 1)2
, (7.32)

and they are shown in Fig. 7.8. The intersection of the constant-QC contours of Fig. 7.8

with the localization contours of Fig. 7.7 corresponds (in the absence of measurement errors)
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to a finite set of points in the sky.

Figure 7.8: Constant-QC contours

(Eq. 7.32) for QC = 0.25 (innermost,

dark blue contour), 0.5, 0.75, and 0.9

(outermost, light green contour).

The relative channel power QC can be computed from the detector amplitudes as follows.

One possibility is to solve Eq. (7.6) to find F I,II
+,×/dL, and to use these quantities to compute

QC . In alternative, we can use the relation

(Ωi
21)

2 − 4(Ωi
22)

2 ∝ (F i
+)

2 + (F i
×)

2 , (7.33)

to show that

QC = QA

4Â21(q)
2 −

(︂
ÂI

)︂2
4Â21(q)2 −

(︂
ÂII

)︂2 , (7.34)

where Â21(q) ≡ A21(q)/A22(q) is the relative mode amplitude, while Âi ≡ Ai
21/Ai

22 is the

relative detector amplitude.

Relative polarization power

A second useful combination is the relative polarization power

QP =
(F I

+)
2 + (F II

+ )2

(F I
×)2 + (F II

× )2
. (7.35)
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This quantity is complementary to QC , in the following sense. First of all, the numerator

and the denominator are now independent of the polarization angle ϕ, and they are given

by simple functions of u = cos θ and ψ:

(F I
p)

2 + (F II
p )2 =

1

8

[︂
1 + 6u2 + u4 ±

(︁
u2 − 1

)︁2
cos(4ψ)

]︂
. (7.36)

where the plus sign corresponds to the plus polarization, while the minus sign corresponds

to the cross polarization. By the same reasoning outlined above we find that

cos 4ψ =
QP − 1

QP + 1

(1 + 6u2 + u4)

(u2 − 1)2
, (7.37)

and therefore constant-QP contours are completely identical to those shown in Fig. 7.8 for

QC .

By solving Eq. (7.6) for F I,II
+,×/dL and using these quantities to calculate QP we get

QP = − cos2 ι
Â21(q)

2 −
(︂
Â(I+II)/s

×
21(ι)

)︂2
Â21(q)2 −

(︂
Â(I+II)/s

+
21(ι)

)︂2 , (7.38)

where we have defined

Â2
(I+II) ≡

QA(ÂI)
2 + (ÂII)

2

QA + 1
=

(AI
21)

2 + (AII
21)

2

(AI
22)

2 + (AII
22)

2
(7.39)
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as well as

s+21(ι) ≡ Y 21
+ (ι)

Y 22
+ (ι)

=
2 sin ι

1 + cos2 ι
,

s×21(ι) ≡ Y 21
× (ι)

Y 22
× (ι)

= sin ι . (7.40)

Constant-QC and constant-QP contours are both bounded in latitude: for example−um(QP ) <

u < um(QP ), where

um(QP ) =

√︄
−1 +

2

QP
− 2

√
1−QP

QP
. (7.41)

An identical relation holds for QC .

The intersection of constant-QP contours with the localization contours of Fig. 7.7 also

corresponds (at least in the absence of measurement errors) to a finite set of points in

the sky. In both cases, when solving for sky position we inevitably end up with multiple

solutions. The situation is not too dissimilar from sky localization with (say) three Earth-

based interferometers: by using times of arrival for each two-detector combination we can

identify a ring in the sky, and the intersection of two rings identifies two points in the sky.

Is there an optimal strategy to find “the” right solution in our case? One possibility to

further localize the signal is to use the time delay between different spacecraft. Time-delay

contributions appear as higher-order corrections to the phase which depend on the projected

arm lengths Lij = L (1− n̂ · r̂ij), where r̂ij denotes the unit separation vector between

spacecraft i and j, Lij is the corresponding arm length, and n̂ is the unit vector pointing

towards the source [326]. These projected arm lengths can be related to the sky location,
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and therefore an accurate phase measurement could (in principle) give more insight on sky

location. This method is more effective for high-frequency signals.

Ref. [326] studied the localization of sine-Gaussian bursts by measuring time delays between

different spacecraft, finding that bursts with short duration could be localized much better

than bursts with longer duration due to a degeneracy between the central time of the burst

wavelet and the sky localization: bursts with a longer duration yield poor constraints on the

central time, and hence poor sky localization. Similar arguments should be applicable to

ringdown signals. In the case of ringdown, the “starting time” t0 in Eq. (7.4) – which is the

analog of the central time in the burst analysis – can be determined with good accuracy

from relative phase calculations. In principle it should be possible to use higher-order phase

corrections to improve the sky-localization procedure based on relative amplitudes that we

described above.

7.4.3 Errors

Now that we have outlined the general procedure, let us turn to estimating the sky localization

errors using error propagation.

We have two independent ways of calculating the source position and polarization: we can

use either (QA, QΦ, QC) or (QA, QΦ, QP ). The unknowns Θj = {θ, ϕ, ψ} can be calculated

from the three-vectors Qj = {QA, QΦ, Qj} (where j = C, P ). In turn, these three-vectors

depend on the mass ratio q, the inclination ι and the detector amplitudes, which we will

collectively denote as XΘ = {q, ι, ÂI
21, Â

II
21}. Therefore we need a mapping between three
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Figure 7.9: Median errors on sky localization (left) and luminosity distance (right) for

binaries with q = 2 (top) and q = 10 (bottom). We also show the horizon of (2, 1) mode

and redshifted-mass cutoff at fcut = 10−4 Hz (in red) fcut = 2× 10−5 Hz (in green).

sets of variables:

XΘ → Qj → Θj . (7.42)

The covariance matrices for these sets of variables are related by Jacobian matrices as follows:

covj(Θ) =
∂Θ

∂Qj
· ∂Qj

∂XΘ
· cov(XΘ). · ∂Qj

∂XΘ

T

· ∂Θ
∂Qj

T

(7.43)

where a T denotes the transpose.

We ignore errors on the amplitudes and phases of the (2, 2) mode, which are typically very

small compared to the errors associated with q, ι or the (2, 1) amplitudes. Furthermore we
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can neglect correlations between {q, ι} and the (2, 1) mode amplitudes, so the covariance

matrix for XΘ is block-diagonal:

cov(XΘ) =

⎛⎜⎜⎜⎜⎜⎜⎝
cov(q, ι) 0 0

0 2(AI
21
ˆ /ρI21)

2 0

0 0 2(AII
21
ˆ /ρII21)

2

⎞⎟⎟⎟⎟⎟⎟⎠ (7.44)

The Jacobian
∂Qj

∂XΘ
can be calculated from Eqs. (7.34) and (7.38), while the Jacobian

∂Θ
∂Qj

=
∂Qj

∂Θ

−1
can be computed from Eqs. (7.26), (7.27), (7.30) and (7.35).

It is possible to reduce the error by combining results from both QC and QP :

cov(Θ)−1 =
∑︂
j

covj(Θ)−1 . (7.45)

We define the sky-localization error as the determinant of the (u, ϕ)-block of cov(Θ):

δΩ = {det [cov(u, ϕ)]}1/2 . (7.46)

In the left panel of Fig. 7.9 we plot the median sky-localization errors for sources uniformly

distributed over the sky. LISA can localize a Ms = 106M⊙ source with q = 2 (10) within

100 deg2 up to redshift z ≈ 13 (9.4). However sky localization relies on measurements of the

(2, 1) mode, which has lower frequency than the (2, 2) mode (for fixed Ms) and gets out of

band earlier as we increase the mass. Therefore sky-localization accuracy suffers at high

masses: for example, we can localize a Ms = 108M⊙ source with q = 2 (10) within 100 deg2
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only up to redshift z ≈ 1.7 (1.2). It may be possible to localize such high-mass sources using

the time evolution of the antenna pattern. This is because, as we show in Appendix 7.A, the

time-evolution of the amplitude is known much better than the (2, 1) amplitude for binaries

with Ms ≳ 5× 108M⊙. In these cases, we may expect the errors to be significantly smaller.

In Fig. 7.9 we show the “reduced” error obtained by combining both QC and QP , but

using QP alone gives better sky-localization accuracy than using QC alone for most sources

(approximately 77% of the sky). This can be understood as follows. The relative channel

power QC [Eq. (7.30)] and the amplitude ratio QA [Eq. (7.26)] differ only by factors of s22

multiplying F i
× in the numerator and in the denominator. From Fig. 7.6 we see that s22 ≃ 1

unless ι ≳ 90 deg (i.e., unless the binary inclination is close to edge-on). We conclude that

QC ≃ QA in a large portion of the parameter space, and using QC does not necessarily lead

to new information.

Note that we chose to consider QC and QP mainly because they are easy to understand and

manipulate, but in data analysis applications other combinations may be easier to measure,

and the particular combination that leads to the smallest errors will in general depend on the

source position and orientation. Some examples of combinations that could be considered

include F I
+/F

I
×, F

I
+/F

II
+ , F I

+/F
II
× , etcetera.

7.5 Luminosity distance

The strategy for sky localization in Sec. 7.4 was to determine the ratios F I,II
+,×/dL between

the antenna pattern functions and the luminosity distance. The antenna pattern functions
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Table 7.2: Redshifts at which various median errors are equal to the values indicated in the

top row, for selected values of the remnant’s source-frame mass Ms.
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depend on the angles (θ, ϕ, ψ), so we can (at least in principle) determine these angles from

a knowledge of F I,II
+,×/dL. At this point it would be straightforward to compute dL.

A simple way to determine dL is to use the fact that the “total” antenna power depends

only on u = cos θ:

P(u) =
∑︂
i

[︁
(F i

+)
2 + (F i

×)
2
]︁
=

1

4

(︁
1 + 6u2 + u4

)︁
. (7.47)

Then we can compute the distance in terms of the detector amplitudes of the (2, 2) and

(2, 1) modes as follows:

P(u)

d2L
=
ζ(ι)

M2

∑︂
i=I,II

(︃ Ai
22

A22(q)

)︃2
⎡⎣4−(︄ Âi

21

Â21(q)

)︄2
⎤⎦ , (7.48)

where

ζ(ι) =
4π

5

sec2 ι

3 + cos2 ι
. (7.49)

Next we estimate errors on the luminosity distance by error propagation. The unknown

luminosity distance dL can be computed in the “basis” Xj
d = {uj , q, ι, Â

I
21, Â

II
21}, where

uj is the colatitude calculated using Qj = (QC , QP ). We will ignore once again the errors

on the amplitude and phase of the (2, 2) mode, which are much smaller than the errors

associated with q, ι or the (2, 1) amplitudes. Then we have

(δdL)
−1 =

∑︂
i

(︄
∂dL

∂Xj
d

· cov(Xj
d) ·

∂dL

∂Xj
d

T
)︄−1

. (7.50)

Since correlations between {q, ι} and the (2, 1) mode amplitudes are negligible and we are
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ignoring the errors associated with the (2, 2) mode, the covariance matrix for Xj
d is simply

cov(Xj
d) =

⎛⎜⎜⎝ δuj cov(u,XΘ)

cov(u,XΘ)T cov(XΘ) ,

⎞⎟⎟⎠ (7.51)

where cov(u,XΘ) reads

cov(u,XΘ) =
∂u

∂Qj
· ∂Qj

∂XΘ
· cov(XΘ) . (7.52)

Even if we have no sky localization information, we can still compute an “effective distance”

d⋆ defined as follows:

d⋆ =
dL√︂

4
∑︁

i

[︁
(F i

+)
2 + (F i

×)2
]︁ . (7.53)

This quantity is very similar to the “effective distance” for LIGO-like Earth-based detectors,

which is degenerate with the inclination angle ι [1].

Even in the worst-case scenario where u is completely unconstrained, the allowed range

for d⋆ is relatively limited: d⋆ ≤ dL ≤ 2
√
2d⋆. However in most cases the (2, 2) mode is

dominant, so QA and QΦ can be determined very accurately. These quantities alone cannot

determine the sky location, but they can be used to set bounds on u which can be very

narrow (especially when the inclination is not close to edge-on): see for example the ι = 45◦

case in the top panel of Fig. 7.7, for which 0.47 < |u| < 0.58, or 1.54 d⋆ < dL < 1.77 d⋆.

In the right panel of Fig. 7.9 we plot the median luminosity distance errors for sources

uniformly distributed and oriented over the sky. The top panels show that for a binary with
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q = 2, LISA could measure dL with an accuracy of 10% up to redshift z = 3.6 for BHs of

mass 106M⊙. In the bottom panels we consider a binary with q = 10, and we show that

LISA could measure dL with better than 10% accuracy out to z = 0.6 for Ms = 106M⊙.

Table 7.2 summarizes LISA’s parameter estimation capabilities by listing the redshift out to

which various median errors are equal to specific thresholds (indicated in the top row) for

selected values of the remnant’s source-frame mass Ms.
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Figure 7.10: Top panel: Relative error δq/q

on the mass ratio, scaled by the SNR ρℓ3

of the third (least dominant) mode used

in the analysis. Middle panel: inclination

error δι scaled by the optimal SNR ρ0ℓ3 of

the third (least dominant) mode used in

the analysis as a function of q, for ι = 45◦.

Bottom panel: inclination error δι scaled

by the optimal SNR ρ0ℓ3 as a function of

ι for q = 2 (thick lines) and q = 10 (thin

lines).
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7.6 Error dependence on mass ratio, inclination and sky po-

sition

So far we have mostly estimated errors for specific binary systems. We now wish to explore

more systematically the dependence of the errors on the mass ratio q, the inclination ι, and

the sky position of the source.

7.6.1 Mass-ratio and inclination dependence

Let us start by exploring the q-dependence of the errors. We consider a three-mode

combination as in Eq. (7.22) and assume that ℓ3 is the least dominant mode. If we ignore the

errors on the dominant modes and we also ignore correlations, we can show from Eq. (7.22)

that the error on q can be written as

δq =

√
2

ρℓ3

Gℓ1ℓ2ℓ3

G′
ℓ1ℓ2ℓ3

, (7.54)

where a prime denotes a derivative with respect to q. Recall that according to Eq. (7.13)

the SNR in a given mode can be factored as ρℓm = ρ0ℓm × wℓm, where ρ0ℓm is the SNR for

an optimally oriented binary, and wℓm(ι, θ, ϕ, ψ) is a position, orientation and polarization-

dependent “projection factor” such that 0 ≤ wℓm ≤ 1 (see e.g. [75]).

For most binaries, the two strongest modes correspond to ℓ1 = ℓ = m = 2 and ℓ2 = ℓ = m = 3

(see e.g. [26]). In Fig. 7.10 we plot the errors on various quantities assuming that either

ℓ3 = 4 or ℓ3 = 5. In both cases the fractional error δq/q diverges at q ≈ 4 because G′
ℓ1ℓ2ℓ3

= 0
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there (cf. Fig. 7.4) and it saturates at large q, approaching the limit

δq

q
≈ 9.4

ρ44
,

δq

q
≈ 8.0

ρ55
. (7.55)

For the inclination we find

δι =
tan ι

ℓ2 − ℓ1
δq

⃓⃓⃓⃓
H ′

ℓ1ℓ2

Hℓ1ℓ2

⃓⃓⃓⃓
(7.56)

=
1

ρℓ3

tan ι

ℓ2 − ℓ1

⃓⃓⃓⃓
⃓H ′

ℓ1ℓ2

Hℓ1ℓ2

Gℓ1ℓ2ℓ3

G′
ℓ1ℓ2ℓ3

⃓⃓⃓⃓
⃓ , (7.57)

and the error diverges at q ≈ 4 for the same reason.

Finding analytical scalings for the errors on dL and Ω is not as simple, mainly because the

sky-position dependent terms are complex and we have to “change basis” twice, as explained

above. In Fig. 7.11 we consider for definiteness a Ms = 107M⊙ remnant at z = 1 with

(ι, u, ϕ, ψ) = (45◦, 0.5, 30◦, 60◦), and we plot the q-dependence of various errors. Mass and

spin errors depend on the remnant properties, which in turn depend on q. As expected,

δq/q and δι diverge close to q = 4, and the errors are typically smallest for small values of q.

Interestingly, the sky-localization errors have a weaker dependence on q and they do not

diverge at q = 4, but they do diverge for nearly equal-mass systems (q → 1). Distance errors

diverge at both q ≃ 1 and q ≃ 4.

Equation (7.54) for δq depends on the inclination ι only through ρℓ3 . To single out the ι

dependence, we average the projection factor wℓm(ι, θ, ϕ, ψ) over the remaining angles (θ, ϕ
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Figure 7.11: Mass-ratio dependence of

various errors for a Ms = 107M⊙ rem-

nant at z = 1 with (ι, u, ϕ, ψ) =

(45◦, 0.5, 30◦, 60◦).

and ψ) with the result

δq ∝ 1

w̄ℓ3ℓ3(ι)
∝ 1

(sin ι)ℓ3−2
√
1 + 6 cos2 ι+ cos4 ι

, (7.58)

which diverges for face-on binaries. By proceeding in a similar way we find that, upon
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Figure 7.12: Inclination dependence of var-

ious errors for a Ms = 107M⊙ remnant at

z = 1 with (u, ϕ, ψ) = (0.5, 30◦, 60◦) and

q = 2 (thick lines) or q = 10 (thin lines).

angle-averaging, δι in Eq. (7.56) reduces to

δι ∝ tan ι

w̄ℓ3ℓ3(ι)

∝ 1

(sin ι)ℓ3−3 cos ι
√
1 + 6 cos2 ι+ cos4 ι

, (7.59)

which diverges for both face-on and edge-on binaries (as shown in the bottom panel of

Fig. 7.10). This can be understood as follows. The amplitude of ℓ = m modes is proportional

to sin ιℓ−2, so the amplitude of higher harmonics is very low for face-on binaries. On the
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other hand, for edge-on binaries sin ιℓ−2 is flat, and measuring ι is hard.

Let us now look at the ι dependence of various errors. In Fig. 7.12 (which is similar to

Fig. 7.11) we consider for definiteness a Ms = 107M⊙ remnant at z = 1 with (u, ϕ, ψ) =

(0.5, 30◦, 60◦), and we plot the i-dependence of various errors for two selected values of the

mass ratio (q = 2, 10).

Some remarks are in order. Spin and mass errors (δaf and δM/M) depend on ι only through

the joint SNR (ρIℓm)2 + (ρIIℓm)2 ∝ (ΩI
ℓm)2 + (ΩII

ℓm)2. For moderate mass ratios (q = 2) the

(2, 2) mode is dominant, and higher harmonics do not contribute much to the measurement

of af and M . For the (2, 2) mode, (ΩI
22)

2 + (ΩII
22)

2 decreases with ι, leading to smaller

SNRs and larger errors for edge-on binaries. The situation is different for larger mass ratios

(q = 10): higher harmonics are more prominent, and their contribution to the error budget is

comparable to the (2, 2) mode (cf. Fig. 7.2). The higher harmonics vanish when the binary

is face-on – i.e. when most of the SNR comes from (2, 2) mode – and have maxima when

0 < ι < π/2, unlike the (2, 2), which decreases monotonically with ι. As a result, δaf and

δM/M have a minimum when q = 2.

We can also use Fig. 7.12 to better understand Fig. 7.11, in which we had fixed ι = 45◦.

For example, from the bottom panel of Fig. 7.12 we see that face-on binaries (ι ≃ 0◦) have

similar inclination errors for q = 2 and q = 10, while for edge-on binaries (ι ≃ 90◦) δι is

larger for q = 10 than for q = 2. In Fig. 7.11, the mass ratio dependence would have been

milder (stronger) had we considered ι ≃ 0◦ (ι ≃ 90◦) rather than ι = 45◦. Inclination has a

much milder effect on sky localization errors, whether q = 2 or q = 10.
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Figure 7.13: Dependence of the sky lo-

calization errors (top) and distance errors

(bottom) on sky position. Here we con-

sider a binary with Ms = 107M⊙ at z = 1

with (q, ι, ψ) = (2, 45◦, 60◦). We also plot

localization ellipses at constant u and ϕ.

For visualization purposes we magnify the

size of each ellipse by a factor 10 (i.e., we

magnify the area by a factor 100).

7.6.2 Sky-location dependence

Figure 7.13 shows the dependence of the localization errors (top panel) and luminosity

distance errors (bottom panel) for a remnant source mass Ms = 107M⊙ with z = 1 and

(q, ι, ψ) = (2, 45◦, 60◦). In this case the best sky localization (top panel) and distance

determination (bottom panel) are achieved when the binary is near the equator.

This is in contrast with errors on the remnant mass, remnant spin, mass ratio and inclination,

which are smaller when the source is overhead. The reason is that sky localization and

distance determination hinge on measuring the relative amplitudes or phases between two

channels. For overhead binaries the SNR is close to optimal, but both channels have similar

amplitudes and phases. Consequently, localization is much better when the binary is close

to the equatorial plane, even though the SNR is not optimal.
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7.7 Conclusions

Massive BH binaries in the universe are expected to have a stronger influence on their

astrophysical environment. Partly because of observational bias, there is by now strong

observational evidence for BHs in the high-mass range, and mounting evidence that they

may form binaries. For example, the Catalina Real-time Transient Survey (CRTS) identified

111 candidate SMBH binaries with periodic variability [327], more than 90% of which have

masses ≳ 108M⊙. If even a small fraction of the high-mass BH binaries in the universe

merge, higher modes of the ringdown may be detectable by LISA.

The ability to localize high-mass BH binaries is particularly important. If binary BH

mergers are accompanied by electromagnetic signatures (like a “notch” in the IR/optical/UV

spectrum, or periodically modulated hard X-rays), such signatures are most likely in massive

binaries, with typical masses in the range 108M⊙–109M⊙ (see e.g. [328]). In particular,

Athena should be able to detect X-ray emission from such sources at z ≲ 2 [329, 330]. The

coincident detection of gravitational and electromagnetic waves may allow us to use BH

binaries as standard sirens at relatively large redshift [331, 332], potentially resolving the

apparent discrepancy between cosmological observations at early and late cosmological

time [333].

In this chapter we have shown that higher modes of the merger and ringdown are a treasure

trove of information on various properties of the binary, such as the mass ratio, inclination,

sky location and luminosity distance. This is particularly remarkable because the source

localization method we proposed here (while admittedly somewhat limited in scope) does
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not rely on modulations induced by LISA’s motion, and therefore it is independent of the

observation time.

For the reader’s convenience, we conclude this chapter with a short summary of our main

results.

In Sec. 7.2 we use Fisher matrix estimates for the remnant mass and spin from past work

[Eq. (7.15): see e.g. [213, 291, 334])], showing that the accuracy with which these parameters

can be measured improves by combining several modes.

In Sec. 7.3 we present one of our central results: since we know how the ringdown amplitudes

depend on mass ratio, we can obtain both the mass ratio and the inclination of the binary

from the measurement of three modes. The key insight comes from Eq. (7.17), which implies

that by taking appropriate ratios of the three dominant modes we can find both q and ι.

In Sec. 7.4 we assume that ι has been determined as described in Sec. 7.3, and we show that

multi-mode detections allow us to determine the sky localization and luminosity distance

without having to rely on modulations induced by LISA’s orbital motion. We define the ratio

between the signal amplitudes in two LISA channels of detectors Qℓm
A [Eq. (7.26)] and the

difference between their phases Qℓm
Φ [Eq. (7.27)]. The two ℓ = m = 2 quantities QA ≡ Q22

A

and QΦ ≡ Q22
Φ should typically be measured with the highest SNR, and they depend on

three angles: (θ, ϕ, ψ). For constant values of QA and QΦ, we can eliminate ψ and identify

contours in the sky (Fig. 7.7). A similar procedure can be applied to the relative channel

power QC [Eq. (7.30)] and the relative polarization power QP [Eq. (7.35)], leading to the

identification of additional “rings in the sky” (Fig. 7.8). Finally, the intersection of these
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two sets of “rings in the sky” identifies finite sets of points where the source may be located.

A similar strategy allows us to determine the luminosity distance (Sec. 7.5). In Sec. 7.6 we

discuss how parameter estimation accuracy depends on the binary’s mass ratio, inclination

and sky position.

Our analysis relies on several simplifying assumptions that should be relaxed in future work.

For example, we neglect the effect of spins on the mode amplitudes, which is reasonably well

understood (see e.g. [26] and references therein). Spins should not significantly affect the

errors on mass ratio q and inclination ι: these quantities depend on the amplitude ratios of

ℓ = m modes, which are only mildly dependent on spins, as first shown by [243, 245]. The

situation is different for the (2, 1) mode (crucial to estimate sky localization and luminosity

distance), which is very sensitive to spins. In this case, correlations between the spins

and other binary parameters could reduce the accuracy in sky localization and luminosity

distance. However, by focusing on the ringdown we have significantly underestimated the

information carried by the full inspiral-merger-ringdown signal, which should break some

of these correlations. For example, LIGO observations of the inspiral can most easily

measure the “effective spin” combination χeff = (qχ1 + χ2)/(q + 1) [188, 251], while the

(2, 1) mode depends most sensitively on the combination χ− = (qχ1 − χ2)/(q + 1) [10].

Combined measurement of the inspiral and of the ringdown could reduce the errors on

the individual spin components. These qualitative arguments should be supported by

explicit calculations using state-of-the-art inspiral/merger/ringdown models including higher

harmonics [303, 304, 305, 306, 307, 308], a task beyond the scope of this work.

After this work was submitted for publication, a related work appeared on the arXiv. The

204



CHAPTER 7. LISA PARAMETER ESTIMATION AND SOURCE LOCALIZATION
WITH HIGHER HARMONICS OF THE RINGDOWN

new study performs a full Bayesian analysis using a more realistic instrumental model and

complete inspiral-merger-ringdown waveforms, but it only focuses on two massive black

hole sources of fixed masses and redshift [28]. The conclusions of Ref. [28] concerning sky

localization with higher harmonics are consistent with ours: compare e.g. our Fig. 7.7 with

their Fig. 13.
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Appendix

7.A Localization from time evolution of antenna pattern

Most long-lived sources can be localized using the time variation of the LISA antenna pattern.

This method cannot be used for ringdown waveforms, because they are short-lived: a typical

ringdown decay time ranges from 1 minute for Ms ∼ 106M⊙ to ≈ 17 hours for Ms ∼ 109M⊙.

This is a problem for very massive BH mergers, where the inspiral occurs out of band and

we may have to rely only on merger-ringdown to localize the source.

Let us assume that the source direction remains constant in the Solar System frame during

the observation period. In the LISA frame, the position r of a GW source which has fixed

position rB in the Solar System is given by r = R · rB, where R(t) = C · B · A is a product

of three rotation matrices:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
cosωt sinωt 0

− sinωt cosωt 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

0 1
2

√
3
2

0 −
√
3
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

C =

⎛⎜⎜⎜⎜⎜⎜⎝
cosωt − sinωt 0

sinωt cosωt 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.60)
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Here ω = 2π/T is the LISA orbital frequency, and T = 1 yr. The source direction in the

barycentric frame can be written in polar coordinates as n̂B = (sin θB cosϕB, sin θB sinϕB, cos θB),

and the corresponding vector in the LISA frame is n̂L = R(t) · n̂B.

In the LISA frame, the apparent change in position of the source is given by

n̂(t) = R(t) · R(0)−1 · n̂(0) . (7.61)

If we apply this transformation to the source position vector we get

cos θ(t) = cos θ +

√
3

2
ωt cosϕ|sin θ| ,

ϕ(t) = ϕ+
1

2
ωt
(︂
1 +

√
3 cot θ sinϕ

)︂
, (7.62)

while if we apply it to the angular momentum vector of the binary L̂B = (sin θL cosϕL, sin θL sinϕL, cos θL)

we find that the inclination ι = cos−1(L̂B · n̂B) is constant, while the polarization angle,

given in terms of z (the direction perpendicular to the LISA plane) by

tanψ(t) =
−ẑ ·

(︂
n̂× (n̂× L̂)

)︂
ẑ · (n̂× L̂)

, (7.63)

changes at O((ωt)2). The waveform modes change as follows:

hℓm(t) =
[︁
Aℓm + ωtB1

ℓm + 1
2(ωt)

2 B2
ℓm

]︁
e−(t−t0)/τℓm

× cos
[︁
2πfℓmt+Φℓm + ωtΨ1

ℓm + 1
2(ωt)

2Ψ2
ℓm

]︁
,

(7.64)
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where the first-order corrections to the detector amplitude and phases are

B1
ℓm =

Aℓm

Ωℓm

1

ω

d

dt

(︃√︂
(F+(t)Y ℓm

+ )2 + (F×(t)Y ℓm
× )2

)︃
,

Ψ1
ℓm =

1

ω

d

dt

(︄
F×(t)Y ℓm

×
F+(t)Y ℓm

+

)︄
, (7.65)

and the second-order corrections are

B2
ℓm =

Aℓm

Ωℓm

1

ω2

d2

dt2

(︃√︂
(F+(t)Y ℓm

+ )2 + (F×(t)Y ℓm
× )2

)︃
,

Ψ2
ℓm =

1

ω2

d2

dt2

(︄
F×(t)Y ℓm

×
F+(t)Y ℓm

+

)︄
.

By computing Fisher matrices, we can show that the first-order corrections can be measured

with accuracy

δB1
ℓm =

√
2

π

Aℓm

ρℓm

T

τℓm
,

δΨ1
ℓm =

√
2

π

1

ρℓm

T

τℓm
,

δB2
ℓm =

√︃
2

3

1

π2
Aℓm

ρℓm

(︃
T

τℓm

)︃2

,

δΨ2
ℓm =

√︃
2

3

1

π2
1

ρℓm

(︃
T

τℓm

)︃2

. (7.66)

For long-lived sources, the evolution of antenna pattern can be used to find both the

inclination and the sky position. Recall however that our strategy in this chapter relies on

first using the ℓ = m = 2, 3, 4 modes to find the inclination, and then the (2, 1) mode to find

the sky position. The question is then whether first-order in ωt corrections to the dominant
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Figure 7.14: Fractional amplitude errors

for a source at z = 0.1. The markers in-

dicate the mass at which the given mode

goes out of band at fcut = 10−4 Hz (solid

markers) and fcut = 2× 10−5 Hz (hollow

markers).

mode amplitude δB1
22, which could be used to find the source position and orientation, can

be measured more or less accurately than the other subdominant amplitudes Aℓm themselves.

In Fig. 7.14 we plot the fractional error δB1
22/B1

22 and we compare it to δAℓm/Aℓm for some

of the dominant (ℓ, m) modes for sources of different mass at redshift z = 0.1. For q = 10

(bottom panel), δB1
22/B1

22 is larger than either δA44/A44 or δA21/A21 for all binaries with

M < 109M⊙, so the time evolution of the signal amplitude should not play an important role

in finding inclination. Furthermore, in this chapter, for q = 2 (top panel), δA21/A21 gets

larger than δB1
22/B1

22 when M ≳ 5× 108M⊙ and slight improvements in source localization

may be possible. Note however that these improvements would only be possible if we can
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control the low-frequency sensitivity down to fcut = 2× 10−5 Hz. Solid markers in Fig. 7.14

show that, if fcut = 10−4 Hz, the signal would get out of band before any improvement

occurs.

7.B Parameter estimation for sources with electromagnetic

counterparts

In this section we consider parameter estimation errors in the ideal situation where we can

associate an optical counterpart to the source, so that θ, ϕ and dL are known.

A single-mode detection is enough to solve for the remaining unknowns (q, ι, ψ). For example,

from the knowledge of (θ, ϕ) we can use Qℓm
A and Qℓm

Φ to measure ι and ψ, which can then be

used to solve for q. We need a Jacobian transformation from the basis Qℓm = {Qℓm
A , Qℓm

Φ }

to the basis {ι, ψ}, and we can propagate the uncertainty as usual:

cov({ι, ψ}ℓm) =
∂{ι, ψ}
∂Qℓm

· cov(Qℓm) ·
(︃
∂{ι, ψ}
∂Qℓm

)︃T

, (7.67)

where the covariance for Qℓm is

cov(Qℓm) =
∑︂
i=I,II

1

(ρiℓm)2

⎛⎜⎜⎝2 0

0 1

⎞⎟⎟⎠ . (7.68)
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The Jacobian for Qℓm → {ι, ψ} is

∂{ι, ψ}
∂Qℓm

=

(︃
∂Qℓm

∂{ι, ψ}

)︃−1

, (7.69)

which can be calculated from Eq. (7.26) and Eq. (7.27).

We can then compute the reduced error as

cov({ι, ψ}ℓm) =

(︄∑︂
ℓm

(cov({ι, ψ}ℓm))−1

)︄−1

. (7.70)

Once ι and ψ are known we can compute q from

Aℓm(q) =
AℓmdL

Ωℓm(ι, θ, ψ)M
, (7.71)

and error propagation gives

δq2 =

(︃
Aℓm(q)

A′
ℓm(q)

)︃2
[︄(︃

δM

M

)︃2

+
2

ρ2ℓm
+

(︃
δΩℓm

Ωℓm

)︃2
]︄
, (7.72)

where

Ω2
ℓm =

(︁
ΩI
ℓm

)︁2
+
(︁
ΩII
ℓm

)︁2
,

ρ2ℓm =
(︁
ρIℓm
)︁2

+
(︁
ρIIℓm
)︁2
, (7.73)

and

(δΩℓm)2 =
∂Ωℓm

∂{ι, ψ} · cov({ι, ψ}) ·
(︃
∂Ωℓm

∂{ι, ψ}

)︃T

. (7.74)
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Figure 7.15: Errors on q and ι for

a source with counterpart and Ms =

107M⊙, z = 1, u = 0.5, ϕ = 30◦, ψ =

60◦. In the upper panel we set ι = 45◦

while in the lower panel we set q = 2

(solid lines) and q = 10 (dashed lines).

In Fig. 7.15 we plot the relative error on mass ratio δq/q and the inclination error δι for a

source Ms = 107M⊙ at z = 1, assuming that the position and distance of the source are

known from an electromagnetic counterpart.

The upper panel of Fig. 7.15 shows that mass ratio errors coming from a measurement of the

(2, 2) and (4, 4) modes diverge as q → 1. This is because A′
22(q = 1) = A′

44(q = 1) = 0 and

hence the denominator in Eq. (7.72) diverges as q → 1. The observed divergence of the errors

for other modes and/or at other values of q are similarly due to the fact that A′
ℓm(q) = 0.

However, the solid black line shows that we can always measure q at the sub-percent level

(at least in principle) by combining information from all the modes.

The bottom panel of Fig. 7.15 shows that the inclination is harder to measure for face-on

binaries than for edge-on binaries. This could be explained from a closer look at Eq. (7.26)
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and Eq. (7.27). Note that QA and QΦ depend on inclination through the function sℓm. As

shown in Fig. 7.6, sℓm has a weak (strong) dependence on ι for face-on (edge-on) binaries,

leading to large (small) errors. These considerations also apply to modes with ℓ > 2, which

in addition have smaller SNRs, and therefore larger errors. The smaller SNR for edge-on

binaries also leads to the observed turnover for ι > 80◦.
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Simon Stevenson, Christopher P. L. Berry, Will M. Farr, and Ilya Mandel. Accuracy

of inference on the physics of binary evolution from gravitational-wave observations.

Mon. Not. Roy. Astron. Soc., 477(4):4685–4695, 2018.

[38] Krzysztof Belczynski, Vassiliki Kalogera, and Tomasz Bulik. A Comprehensive study

217

http://www.et-gw.eu/etdsdocument


BIBLIOGRAPHY

of binary compact objects as gravitational wave sources: Evolutionary channels, rates,

and physical properties. Astrophys. J., 572:407–431, 2001.

[39] Jarrod R. Hurley, Christopher A. Tout, and Onno R. Pols. Evolution of binary stars

and the effect of tides on binary populations. Mon. Not. Roy. Astron. Soc., 329:897,

2002.

[40] Sambaran Banerjee, Holger Baumgardt, and Pavel Kroupa. Stellar-mass black holes

in star clusters: implications for gravitational wave radiation. Mon. Not. Roy. Astron.

Soc., 402:371, 2010.

[41] Brunetto Marco Ziosi, Michela Mapelli, Marica Branchesi, and Giuseppe Tormen.

Dynamics of stellar black holes in young star clusters with different metallicities – II.

Black hole–black hole binaries. Mon. Not. Roy. Astron. Soc., 441(4):3703–3717, 2014.

[42] Michela Mapelli. Massive black hole binaries from runaway collisions: the impact of

metallicity. Mon. Not. Roy. Astron. Soc., 459(4):3432–3446, 2016.

[43] Fabio Antonini and Frederic A. Rasio. Merging black hole binaries in galactic nuclei:

implications for advanced-LIGO detections. Astrophys. J., 831(2):187, 2016.

[44] Bao-Minh Hoang, Smadar Naoz, Bence Kocsis, Frederic A. Rasio, and Fani Dosopoulou.

Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect.

Astrophys. J., 856(2):140, 2018.

[45] Carl L. Rodriguez, Sourav Chatterjee, and Frederic A. Rasio. Binary Black Hole

Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar

Evolution. Phys. Rev., D93(8):084029, 2016.

[46] Abbas Askar, Magdalena Szkudlarek, Dorota Gondek-Rosińska, Mirek Giersz, and
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Hinder, and Serguei Ossokine. Enriching the Symphony of Gravitational Waves from

Binary Black Holes by Tuning Higher Harmonics. Phys. Rev., D98(8):084028, 2018.

[306] Ajit Kumar Mehta, Praveer Tiwari, Nathan K. Johnson-McDaniel, Chandra Kant

Mishra, Vijay Varma, and Parameswaran Ajith. Including Mode Mixing in a Higher-

Multipole Model for Gravitational Waveforms from Nonspinning Black-Hole Binaries.

2019.

[307] Matteo Breschi, Richard O’Shaughnessy, Jacob Lange, and Ofek Birnholtz. Inspiral-

Merger-Ringdown Consistency Tests with Higher Modes on Gravitational Signals from

the Second Observing Run of LIGO and Virgo. 2019.

[308] Feroz H. Shaik, Jacob Lange, Scott E. Field, Richard O’Shaughnessy, Vijay Varma,

248



BIBLIOGRAPHY

Lawrence E. Kidder, Harald P. Pfeiffer, and Daniel Wysocki. Impact of subdominant

modes on the interpretation of gravitational-wave signals from heavy binary black hole

systems. 2019.

[309] Katerina Chatziioannou et al. On the properties of the massive binary black hole

merger GW170729. Phys. Rev., D100(10):104015, 2019.

[310] Ethan Payne, Colm Talbot, and Eric Thrane. Higher order gravitational-wave modes

with likelihood reweighting. 2019.

[311] K. G. Arun, Bala R. Iyer, B. S. Sathyaprakash, Siddhartha Sinha, and Chris Van

Den Broeck. Higher signal harmonics, LISA’s angular resolution and dark energy.

Phys. Rev., D76:104016, 2007. [Erratum: Phys. Rev.D76,129903(2007)].

[312] Miquel Trias and Alicia M. Sintes. LISA observations of supermassive black holes:

Parameter estimation using full post-Newtonian inspiral waveforms. Phys. Rev.,

D77:024030, 2008.

[313] K. G. Arun, Bala R. Iyer, B. S. Sathyaprakash, and Siddhartha Sinha. Higher harmonics

increase LISA’s mass reach for supermassive black holes. Phys. Rev., D75:124002,

2007.

[314] Edward K. Porter and Neil J. Cornish. The Effect of Higher Harmonic Corrections on

the Detection of massive black hole binaries with LISA. Phys. Rev., D78:064005, 2008.

[315] Kirsty J. Rhook and J. Stuart B. Wyithe. Realistic event rates for detection of

supermassive black hole coalescence by LISA. Mon. Not. Roy. Astron. Soc., 361:1145–

1152, 2005.

[316] Juan Calderón Bustillo, Sascha Husa, Alicia M. Sintes, and Michael Pürrer. Impact of

249



BIBLIOGRAPHY

gravitational radiation higher order modes on single aligned-spin gravitational wave

searches for binary black holes. Phys. Rev., D93(8):084019, 2016.

[317] Curt Cutler. Angular resolution of the LISA gravitational wave detector. Phys. Rev.,

D57:7089–7102, 1998.

[318] Emanuele Berti, Alessandra Buonanno, and Clifford M. Will. Estimating spinning

binary parameters and testing alternative theories of gravity with LISA. Phys. Rev.,

D71:084025, 2005.

[319] Halston Lim, Gaurav Khanna, Anuj Apte, and Scott A. Hughes. Exciting black hole

modes via misaligned coalescences: II. The mode content of late-time coalescence

waveforms. Phys. Rev., D100(8):084032, 2019.

[320] Anuj Apte and Scott A. Hughes. Exciting black hole modes via misaligned coalescences:

I. Inspiral, transition, and plunge trajectories using a generalized Ori-Thorne procedure.

Phys. Rev., D100(8):084031, 2019.

[321] Scott A. Hughes, Anuj Apte, Gaurav Khanna, and Halston Lim. Learning about black

hole binaries from their ringdown spectra. Phys. Rev. Lett., 123(16):161101, 2019.

[322] A. Sesana, A. Vecchio, and M. Volonteri. Gravitational waves from resolvable massive

black hole binary systems and observations with Pulsar Timing Arrays. Mon. Not.

Roy. Astron. Soc., 394:2255, 2009.

[323] Alberto Vecchio. LISA observations of rapidly spinning massive black hole binary

systems. Phys. Rev., D70:042001, 2004.

[324] Ryan N. Lang and Scott A. Hughes. Measuring coalescing massive binary black

holes with gravitational waves: The Impact of spin-induced precession. Phys. Rev.,

250



BIBLIOGRAPHY

D74:122001, 2006. [Erratum: Phys. Rev.D77,109901(2008)].

[325] Ryan N. Lang and Scott A. Hughes. Localizing coalescing massive black hole binaries

with gravitational waves. Astrophys. J., 677:1184, 2008.

[326] Travis Robson and Neil J. Cornish. Detecting Gravitational Wave Bursts with LISA

in the presence of Instrumental Glitches. 2018.

[327] Matthew J. Graham, S. G. Djorgovski, Daniel Stern, Andrew J. Drake, Ashish A.

Mahabal, Ciro Donalek, Eilat Glikman, Steve Larsen, and Eric Christensen. A

systematic search for close supermassive black hole binaries in the Catalina Real-Time

Transient Survey. Mon. Not. Roy. Astron. Soc., 453(2):1562–1576, 2015.

[328] Julian H. Krolik, Marta Volonteri, Yohan Dubois, and Julien Devriendt. Population

Estimates for Electromagnetically-Distinguishable Supermassive Binary Black Holes.

2019.

[329] Monica Colpi, Andrew C. Fabian, Matteo Guainazzi, Paul McNamara, Luigi Piro, and

Nial Tanvir. Athena-LISA Synergies White Paper.

[330] Sean McGee, Alberto Sesana, and Alberto Vecchio. Linking gravitational waves and

X-ray phenomena with joint LISA and Athena observations. 2018.

[331] Daniel E. Holz and Scott A. Hughes. Using gravitational-wave standard sirens.

Astrophys. J., 629:15–22, 2005.

[332] Nicola Tamanini, Chiara Caprini, Enrico Barausse, Alberto Sesana, Antoine Klein, and

Antoine Petiteau. Science with the space-based interferometer eLISA. III: Probing the

expansion of the Universe using gravitational wave standard sirens. JCAP, 1604(04):002,

2016.

251



BIBLIOGRAPHY

[333] L. Verde, T. Treu, and A. G. Riess. Tensions between the Early and the Late Universe.

In Nature Astronomy 2019, 2019.

[334] F. Echeverria. Gravitational Wave Measurements of the Mass and Angular Momentum

of a Black Hole. Phys. Rev., D40:3194–3203, 1989.

252


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Next-generation gravitational-wave astronomy
	Discovering the homeland of LIGO's binaries
	Black holes and bells

	I Discovering the homeland of LIGO binaries
	Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond
	Introduction
	Astrophysical populations
	Merger rate densities
	Detection rates
	Conclusions
	Detection rate calculations 

	The mass gap, the spin gap, and the origin of merging binary black holes
	Introduction
	Hierarchical mergers with a semianalytical cluster model
	Binary formation and mergers in clusters
	Mass segregation
	Formation of BH binaries
	Hardening and Merger
	Timescale comparison

	First-generation mergers
	Clusters that merge black holes

	Hierarchical mergers
	Retention in the cluster
	2g+1g or 2g+2g?

	Caveats 

	Filling the mass and spin gaps by hierarchical mergers
	The mass gap
	The spin gap
	Gap efficiencies
	One or both gaps?

	Inference with mass and spin gaps
	Measuring the mixing fraction and χmax with 1g mergers
	Mixing fraction errors
	Errors on χmax

	Measuring the mixing fraction with the gaps

	Conclusions
	Analytical approximations of χeff probability distributions
	Field binaries
	Cluster binaries
	First generation
	2g+1g and 2g+2g mergers



	Looking for the parents of LIGO's black holes
	Introduction
	Hierarchical black-hole mergers in the (χeff,χp) plane
	Effective spins
	Elliptical arcs
	Back-propagating GW190521

	The parents of hierarchical black-hole mergers
	Constraints on the remnant black hole spin
	Inferring the parents' mass ratio from the remnant spin
	Not all parents are equally likely
	Application to GW190412

	Conclusions


	II Black holes and bells
	Black Hole Spectroscopy: Systematic Errors and Ringdown Energy estimates
	Introduction
	Systematic Errors in Extracting Quasinormal Mode Frequencies
	Ringdown Energies and Starting Times
	Conclusions

	Multi-mode black hole spectroscopy
	Introduction
	Detectability and signal-to-noise ratio of higher-order ringdown modes
	Signal-to-noise ratio

	Horizon redshift, response redshift and detectability fraction
	Effect of spins on multi-mode ringdown observations
	Response redshift and detectability fraction

	Conclusions and outlook

	LISA parameter estimation and source localization with higher harmonics of the ringdown
	Introduction
	Plan of the chapter

	Remnant mass and spin
	Mass ratio and inclination
	Sky localization
	Localization contours using the amplitudes and phases of the dominant mode in different channels
	Localization contours using the amplitude of the (2, 1) mode
	Relative channel power
	Relative polarization power

	Errors

	Luminosity distance
	Error dependence on mass ratio, inclination and sky position
	Mass-ratio and inclination dependence
	Sky-location dependence

	Conclusions
	Localization from time evolution of antenna pattern
	Parameter estimation for sources with electromagnetic counterparts

	Bibliography


