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Abstract

The thesis consists of two parts. The first part discusses a new method for quantifying functional

conservation of DNA elements. Evolutionary conservation is an important tool for identifying

functional DNA elements in genomes and provides a foundation for studying human diseases

using animal models. Conservation in DNA sequences does not necessarily imply conservation

in dynamic functional activities. Quantifying functional conservation, however, has been

constrained by limited availability of functional genomic data from well-matched samples across

species. Here we present FUNCODE, a solution to scoring functional conservation of DNA

elements by integrating data across species without requiring manually or exactly matched

samples. By using in silico sample matching, FUNCODE more accurately scores functional

conservation and offers scalability to new samples and ability to score different data modalities.

Applying it to the Encyclopedia of DNA Elements (ENCODE), we systematically scored

human-mouse conservation of DNA regulatory elements based on chromatin accessibility. We

further demonstrate utility of FUNCODE in finding new cis-regulatory elements, identifying

discoveries translatable across species, and cross-species single-cell genomic data integration.

The second part of the thesis studies inference of cell state dynamics using lineage barcode

data. Natural and induced somatic mutations that accumulate in the genome during

development record the phylogenetic relationships of cells; however, whether these lineage

barcodes can capture the dynamics of complex progenitor fields remains unclear. Here, we

introduce quantitative fate mapping, an approach to simultaneously map the fate and quantify

the commitment time, commitment bias, and population size of multiple progenitor groups

during development based on a time-scaled phylogeny of their descendants. To reconstruct

time-scaled phylogenies from lineage barcodes, we introduce Phylotime, a scalable maximum

likelihood clustering approach based on a generalizable barcoding mutagenesis model. We

validate these approaches using realistically-simulated barcoding results as well as
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experimental results from a barcoding stem cell line. We further establish criteria for the

minimum number of cells that must be analyzed for robust quantitative fate mapping. Overall,

this work demonstrates how lineage barcodes, natural or synthetic, can be used to obtain

quantitative fate maps, thus enabling analysis of progenitor dynamics long after embryonic

development in any organism.
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Chapter 1

Scoring cross-species functional conservation of
DNA elements via unsupervised sample matching
Other anchors: Chaoran Chen, Yi Wang, Ruzhang Zhao

Corresponding author: Hongkai Ji

Introduction

Comparative genomics, which involves comparing the genome sequences across different

species, has been a powerful tool for studying evolution and identifying functional DNA

elements in genomes [1,2]. Negative (purifying) selection on DNA elements with important

functions often results in conserved DNA sequences across species, whereas positive selection

may result in divergence of DNA sequence in a species from other species with a shared

ancestor. While DNA sequence conservation has been widely used for identifying functional

DNA elements, recent studies show that DNA sequence conservation does not necessarily

imply conservation of a DNA element’s functional activities which can be highly context (i.e.

tissue or cell type) dependent. [3–5] The boom of functional genomic data in the past decade

has enabled comparison of context-dependent biochemical activities of DNA elements across

species, giving birth to comparative functional genomics and creating an unprecedented

opportunity to examine the conservation of context-dependent activities, also known as

functional conservation of DNA elements.

One important task of comparative functional genomics is to measure the degree of

conservation of each DNA element with regard to each data modality (e.g., gene expression,

chromatin accessibility, histone modification, DNA methylation, etc.). Measuring the
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conservation of biochemical activities of DNA elements not only provides a foundation for

understanding the evolution of functional genomes but also has important practical utility for

studying human diseases using animal models. While animal models are widely used to study

diseases when conducting experiments on human subjects is impractical, using such models

relies on the assumption that the functional activities of human DNA elements (e.g. genes,

regulatory elements, etc.) are conserved in the animal model when there is sequence homology,

an assumption not always easy to check. Knowing which DNA elements have conserved

functional activities across species therefore can inform the design of animal models and

interpretation of findings from such models in terms of their translatability to human diseases.

Majority of the regulatory elements are context-dependent. Traditional conservation scores such

as PhastCons [6] and PhyloP [7] derived from static DNA sequences are incapable of reflecting

changes in tissue or cell type specificity of individual elements. While there are existing methods

to systematically score functional conservation of DNA elements [8], the scores do not directly

reflect concordances of functional activities.

As part of the Encyclopedia of DNA Elements (ENCODE) consortium, we present FUNCODE, a

scalable computational framework for scoring functional conservation of DNA elements that

does not require manual matching of samples across species using prior knowledge. Applying

FUNCODE to ENCODE human and mouse DNase-seq and ATAC-seq data, we systematically

scored the conservation of chromatin accessibility of human and mouse regulatory elements.

Through comparisons with existing conservation scores, we demonstrate the unique value of

FUNCODE and showcase its applications in annotating cis-regulatory elements, prioritizing

candidates for animal studies, integrating single-cell genomic data, and interpreting disease

associated genetic variants.
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Results

A scalable computational framework for scoring functional conservation

In order to characterize functional conservation of DNA elements between two species, we

developed a computational framework, FUNCODE, that does not rely on manually matched

samples (Fig. 1.1). Given a set of functional genomic (e.g. DNase-seq) samples from each

species, FUNCODE characterizes conservation of functional genomic signals for homologous

DNA elements between the two species. First, DNA elements with sequence homology between

the two species are identified based on the Blastz [9] pairwise genome alignment. Second,

functional genomic data are extracted from each species for DNA elements that are aligned

between species. Third, aligned elements with highly variable functional genomic signals across

samples in both species are identified and used as features to integrate samples from both

species by embedding them into a common low-dimensional space using canonical correlation

analysis (CCA). Fourth, in the low-dimensional sample embedding, mutual nearest neighbors

within a defined distance are identified between two species using Seurat to create in silico

pseudo-matched samples [10].  Finally, the pseudo-matched samples are used to compute DNA

elements’ conservation scores (Fig. 1.1a).

A DNA element can have functional genomic signals that are variable across different contexts

(tissues or cell types) as well as ubiquitous baseline signals that are context-independent. The

conservation of context-dependent variable signals can be characterized via the correlation of

the signals across pseudo-matched samples. However, the conservation of context-independent

baseline signals may not be captured by correlation. For example, a housekeeping promoter

may have high activity in all cell types. However, this activity may be a constant (or has low

variability) across cell types, leading to zero (or low) correlation between two species even
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though it represents conserved function (Fig. 1.1b).  For this reason, FUNCODE computes two

conservation scores for each element to characterize the conservation of context-dependent

variable activities (CO-V) and the conservation of constitutive baseline activities (CO-B),

respectively (Fig. 1.1b). DNA elements in a given species can then be categorized as: (i)

elements without alignable sequence in the other species, (ii) elements with aligned sequence

in the other species (i.e. alignable elements) but not functionally conserved (i.e. low CO-V and

low CO-B scores), or (iii) alignable elements with functional conservation (i.e. high CO-V or high

CO-B score) (Fig. 1.1c).

Unlike the conventional methods that evaluate conservation on the basis of manually matched

samples between species, FUNCODE matches samples in a data-driven way. Such an

approach has multiple advantages. First, accurate manual sample matching can be difficult due

to incomplete knowledge. For example, it is not always clear how to map a mouse

developmental time point to a specific human age, or whether a human sample and a mouse

sample matched by tissue or cell type are truly equivalent as the experimental procedure of

tissue or cell type isolation are often different. FUNCODE circumvents this issue as it does not

rely on prior knowledge to match samples. Second, manual sample matching has difficulty

scaling up to a large number of new samples. Our data-driven approach is easily scalable to

new samples, making it more convenient to update conservation scores as more data become

available. Third, with its scalability and ability to align samples without requiring exact matches,

FUNCODE can include many more samples to compute conservation scores compared to

methods that rely on a relatively small number of expert-annotated exact matches.
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Figure 1.1. Overview of FUNCODE demonstrated using chromatin accessibility conservation.

(a) FUNCODE workflow. Human regulatory elements or DNase I hypersensitive sites (DHSs)

are aligned to the mouse genome based on pairwise sequence alignments. Functional genomic

data are co-embedded into common low dimensional space from which in-silico matches are

identified. Heatmaps show example DHSs (rows) with concordant (conserved) or discordant

(repurposed) context-dependent activities. (b) Two types of functional conservation scores are

computed for each DHS. Conservation score for context dependent variable activities (CO-V)

and conservation scores in n constitutive baseline activity (CO-B). (c) Classification of DHSs. A

pair of DHS is alignable if they can be mapped by pairwise sequence alignment. A pair of

aligned DHS can be high CO-V or high CO-B (both classified as functionally conserved) or be

non-conserved.

Systematic characterization of DNA elements with conserved chromatin

accessibility between human and mouse

Using FUNCODE, we systematically scored the conservation of chromatin accessibility (CA)

between human and mouse for the DNase I hypersensitive sites (DHSs) compiled by ENCODE.

The conservation scores, referred to as CACO scores, will be made available via the ENCODE

data portal. To derive CACO, 835 human (689 DNase-seq, 137 ATAC-seq) and 120 mouse (88

DNase-seq, 32 ATAC-seq) samples were integrated after removing assay specific effects (Fig.

1.1a, Fig. S1.1 Supplementary data 1.1-3, Methods). They were used to score 1.8 million

human DHSs alignable to mouse among a total of 3.6 million human DHSs, and 1.1 million

mouse DHSs alignable to human among a total of 1.8 million mouse DHSs [11] (Fig. 1.2a). As

examples, Fig. 1.2b-d show three DHSs that contain human SNPs associated with multiple

sclerosis based on genome-wide association studies (GWAS) . The CACO scores are shown as
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two genome browser tracks. The DHS in Fig. 1.2b has highly conserved context-dependent

activity (high CACO-V). The DHS in Fig. 1.2c has conserved constitutive baseline activity (high

CACO-B). The DHS in Fig. 1.2d is not conserved (low CACO-V and low CACO-B).

Figure 1.2. Examples of FUNCODE chromatin accessibility conservation (CACO) scores at

three loci with GWAS SNPs associated with multiple sclerosis. (a) DHS with conserved

context-dependent activities (high CACO-V elements), high activities are observed for T cell and

spleen in both species. (b) DHS with conserved constitutive baseline activities (high CACO-B

elements) near promoter of TBX6/Tbx6 gene. (C) DHS without functional conservation (low

CACO-V and low CACO-B elements). Regulatory activities in B cell and T cell are missing in the

mouse tracks.

7



To assess the statistical significance of conservation, we constructed null distributions of CACO

scores by randomly pairing human and mouse DHSs (see Methods). We identified DHSs with

statistically significant functional conservation at a false discovery rate (FDR) cutoff of 0.1 (Fig.

1.3a,b). For human, 129,718 DHSs with conserved variable activity (high CACO-V elements)

and 88,585 DHSs with conserved baseline activity (high CACO-B elements) were identified,

accounting for 7.07% and 4.83% of alignable DHSs respectively. 16,796 DHSs showed

conservation in both variable and baseline activities (Fig. 1.3c). Using GREAT analysis, we

found that DHSs with conserved variable activity enriched GO terms related to ‘regulation of

transcription’ and DHSs with conserved baseline activities enriched GO terms related to

chromatin silencing and chromosome organization (Supplementary data 1.4).

Cross-referencing with the ENCODE annotated candidate cis-regulatory element (cCRE) [12],

we found that the majority of DHSs with conserved variable activity were distal and proximal

enhancer-like elements (dELS: 51.3% - 37.7%, pELS:19.6% - 16.4%), and the majority of DHSs

with conserved baseline activity were promoters and proximal enhancer-like elements (PLS:

33.1% - 31.8%, pELS: 41.5%-37.8%) (Fig. 1.3c). Different categories of cCRE showed different

levels of functional conservation. For example, 24.4% (26.2%) of human (mouse) cCRE with

promoter-like signature (PLS) had conserved variable activities and 56.1% (63.7%) had

conserved baseline activities. By contrast, among alignable DHSs not annotated as human

(mouse) cCREs, only 2.19% (2.93%)  and 0.173% (0.375%) showed conserved variable and

baseline activities respectively (Fig. 1.3d). Similarly, cCREs with proximal enhancer-like

signature (pELS) or distal enhancer-like signature (dELS) also showed higher levels of
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conservation compared to non-cCREs (Fig. 1.3d).

Figure 1.3. Functionally conserved regulatory elements enriches candidate Cis-Regulatory

Elements (cCRE). (a) Distribution of CACO-V scores for aligned pairs and random pairs of DHS.

High CACO-V elements were called with false discovery rate (FDR) cutoff of 0.1. (b) similar for

CACO-B scores. (c) Breakdown of High CACO-V, high CACO-B and all regulatory elements by

candidate cis-regulatory elements (cCRE) categories. High CACO-V elements enrich proximal
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and distal enhancers. High CACO-B elements enrich promoters and proximal enhancers. (d)

Different cCRE categories show different levels of functional conservation.

Functional conservation identifies new candidate cis-regulatory elements

Among the functionally conserved DHSs, a significant fraction (17.1% human and 33.3% mouse

high CACO-V elements, 2.0% human and 6.2% mouse high CACO-B elements) have not been

annotated as cCREs (Fig. 1.3c), likely due to lack of sufficient functional genomic data within

each species to support the cCRE annotation. With the new information from cross-species

conservation, we speculate that many of these conserved “non-cCRE” DHSs likely are real

regulatory elements. Indeed, among human non-cCREs with low CACO-V scores and cCREs

with low CACO-V scores, only 8.2% and 20.0% were aligned to mouse sequences that were

annotated as mouse cCREs. By contrast, 72.6% human non-cCREs with high CACO-V scores

were aligned to mouse cCREs (8.8 and 3.6 fold enchement) (Fig. 1.4a). Similar phenomena

were observed for mouse and CACO-B scores (Fig. 1.4a), supporting our hypothesis that the

conserved DHSs not currently annotated as cCREs are likely real cCREs.

As histone modification H3K4me1 data were not used to define cCREs, we used it as an

independent data modality to further validate our hypothesis. We reasoned that if conserved

“non-cCRE” DHSs were real cCREs, they should more likely carry H3K4me1 signals and such

signals are likely also conserved (Fig. 1,4b,c). As FUNCODE can be conveniently generalized

to other data modalities, we applied it to ENCODE H3K4me1 ChIP-seq data (Supplementary

data 1.5-7) to compute conservation scores for this histone modification, referred to as

HICO-H3K4me1-V and HICO-H3K4me1-B. Non-cCREs with high CACO-V scores and cCREs

with high CACO-V scores indeed had comparable HICO-H3K4me1-V scores, both significantly

higher than the HICO-H3K4me1-V scores of cCREs and non-cCREs with low CACO-V scores
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(Fig. 1.4d). Similarly, non-cCREs with high CACO-B scores had higher HICO-H3K4me1-B

scores compared to cCREs and non-cCREs with low CACO-B scores (Fig. 4d). These data

indicate that many of the conserved “non-cCRE” DHSs are bona fide cCREs.

In total, we found 23,721 functionally conserved non-cCRE DHSs in human (21,944 with high

CACO-V, 1,530 with high CACO-B, 220 with conservation in both) and 47,061 conserved

non-cCRE DHSs in mouse (42,614 high CACO-V, 4,984 high CACO-B, 537 both). We label

them as FUNCODE-detected new cCREs (Supplementary data 1.8). Based on the orthogonal

HICO-H3K4me1 information at the non-conserved DHSs as the null, 84.6% of the new human

cCREs and 62.5 of the new mouse cCRE were estimated to have q values smaller than 0.1

(CACO-V: human 86.8%, mouse% 0.609; CACO-B: human 57.7%, mouse: 74.6%). Thus, by

borrowing information across species, FUNCODE can help identify new cCREs that were

missed by analyses within a single species.

Functional rather than sequence conservation at regulatory elements more

accurately predicts gene expression conservation

We next applied FUNCODE to ENCODE RNA-seq data (556 human and 186 mouse

experiments) to score gene expression conservation (GECO) between the two species for

16,468 unique human-mouse homologous gene pairs, identifying 4,955 genes with conserved

variable expression (high GECO-V) and 727 genes with conserved baseline expression (high

GECO-B) at FDR 0.1 (Fig. S1.2, Supplementary data 1.9-13).

We asked whether conserved chromatin accessibility of regulatory elements predicts conserved

gene expression of their target genes (Fig. 1.4e). We compared CACO with the recently

developed LECIF conservation score [8] and three sequence-based conservation scores,
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phastCons4Way (based on alignment of 4 genomes, Homo sapiens, Mus musculus,

Galeopterus variegatus, Tupaia chinensis) [6],  PhyloP4Way (based on alignment of 4 genomes,

same as PhastCons) [7], and a human-mouse pairwise similarity score measured by the

Percent Identical Base-pairs (PIB). We identified human-mouse DHS pairs whose candidate

target genes were also homologous genes (See Methods). For these homologous DHS-gene

pairs, GECO-V is correlated more with CACO-V than with LECIF and the three sequence-based

conservation scores, PhastCons, PhyloP, and PIB (Fig. 1.4f). Taken together, CACO more

accurately predicted the conservation of functional readout (gene expression) of regulatory

elements.

Next, we compared CACO-V computed using in silico sample matching with a modified

CACO-V computed using manually matched samples (CACO-V-Manual). For the latter, we

manually matched ENCODE samples from the same tissue and cell type, yielding n=22

(covering 156 human and 37 mouse experiments) human-mouse matched sample pairs which

were used to replace n=515 in silico matched sample pairs (covering 270 human and 126

mouse experiments) to recompute CACO scores (Supplementary data 1.14). Overall, CACO-V

outperformed CACO-V-Manual in predicting gene expression conservation (Fig. 1.4f),

demonstrating the advantage of unsupervised in silico sample matching over manual sample

matching.

12

https://paperpile.com/c/mUQGzy/bGxP3
https://paperpile.com/c/mUQGzy/6qrVm


13



Figure 1.4 Functional conservation scores identify functional non-cCRE and predict

context-dependent conservation of gene expression. (a)  non-cCRE with high CACO-V or high

CACO-B are more likely to be aligned to a cCRE in the other species compared to

non-conserved cCRE or non-cCRE. (b) An aligned region with high CACO-V score where the

human DHS is cCRE but the aligned mouse DHS is non-cCRE. Example tracks show that

tissue-specific activities of both chromatin accessibility and H3K4me1 ChIP-seq signals are

highly correlated. (c) A similar example where the human element is annotated as cCRE but the

aligned mouse element is not. (d) non-cCRE with high CACO-V or high CACO-B also have

higher HICO-H3K4me1-V or HICO-H3K4me1-B, respectively, compared to non-conserved

cCRE or non-cCRE. (e) Candidate target genes were assigned to a pair of aligned DHS they

are in the regulatory domains of homologous genes. Correlation between conservation scores

of regulatory elements and conservation scores of candidate target gene expression is

expected. (f) Correlation of different conservation scores with GECO-V for each consistent

cCRE category.

Functional rather than sequence conservation better identifies discoveries

translatable across species

One utility of conservation scores is to evaluate how likely findings in one species can be

translated to another species and hence guide the selection of candidate DNA elements for

designing animal models for human diseases. For this task, we compared CACO with the other

conservation scores via a cross-validation (CV) analysis.

We partitioned human-mouse sample pairs into training and test sets (Fig. 1.5a,

Supplementary data 1.15). In each fold of CV, conservation scores computed using the training

set were used to rank human DHSs. To evaluate the performance for identifying DHSs with
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conserved context-dependent variable activities, each test set contained two manually matched

human-mouse sample pairs representing two different cell types not included in the training

data. We asked how well the differential chromatin accessibility between the two test cell types

correlates between human and mouse among the top ranked DHSs. The top conserved DHSs

identified by CACO-V showed the highest human-mouse correlation in the test data,

substantially outperforming the conserved DHSs identified by LECIF and the three

sequence-based conservation scores (phastCons, PhyloP, PIB) (Fig. 1.5a). Thus, CACO-V

more accurately identified DHSs whose context-dependent activities in new test cell types are

conserved between human and mouse. Moreover, in silico sample matching (CACO-V)

substantially outperformed manual sample matching (CACO-V-Manual), demonstrating the

advantage of unsupervised sample matching which yields more pseudo-matched sample pairs

leading to increased power (Fig. 1.5a).

Similarly, to evaluate the performance for identifying DHSs with conserved baseline activities,

each test set contained one manually matched human-mouse sample pair representing one cell

type not included in training data. We identified loci with high chromatin accessibility in the test

cell type within each species and evaluated consistency of the high chromatin accessibility

between human and mouse, measured using Jaccard index, among the top ranked DHSs

identified by different conservation scores. CACO-B substantially outperformed LECIF,

phastCons, PhyloP, and IBP. Thus, CACO-B most accurately identified DHSs whose constitutive

baseline activities in new test cell types are conserved between human and mouse (Fig. 1.5b).
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Figure 1.5. Open chromatin conservation scores are predictive of reproducibility of signals

between human and mouse at Human GWAS loci. (a) For two pairs of manually matched

samples, highly variable DHS and high CACO-V score show higher correlation of fold change

between human and mouse compared to CACO-V-Manual and other conservation scores. Line

plot shows mean +/- SE of correlation. (b) For one pair of manually matched samples, DHS with

high CACO-B scores are more likely to be open in both species when open in one of the

species compared to scores based on one species only and other conservation scores. (c)

Association of GWAS disease/trait with tissue or cell types. (d) Loci with GWAS SNPs are more

likely to be high CACO-V after controlling for average chromatin accessibility. (e) Higher

correlation of fold changes of associated tissue to baseline are observed between human and

mouse for GWAS SNP DHS when ranked by CACO-V score compared to other conservation

scores.

Functional conservation as a resource for annotating human

phenotype-associated genetic variants

Using FUNCODE CACO scores, we annotated all human trait-associated SNPs in the

NHGRI-EBI Catalog of human genome-wide association studies (GWAS) overlapping with

alignable human DHSs, referred to as regulatory SNPs. Regulatory SNPs associated with

GWAS traits showed significantly higher CACO-V scores than regulatory SNPs not currently

associated with any GWAS trait after controlling for mean chromatin accessibility level (Fig.

1.5d).

For researchers who want to build mouse models to study human trait-associated SNPs, we

reasoned that it makes more sense to study regulatory SNPs with high CACO-V scores. To

verify this, we first associated GWAS traits with tissue-specific regulatory activities by testing the
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enrichment of tissue-specific loci for each trait (Fig. 1.5c, Methods). All the associated tissue

and traits were summarized in Supplementary data 1.16. For each GWAS trait, we then asked

if the tissue-specific signals in human regulatory SNP loci can be reproduced in the same tissue

in mice among conserved loci defined by different conservation scores. CACO-V scores were

computed by leaving out the tissue type to be evaluated. CACO-V substantially outperformed

the other conservation scores in predicting conserved tissue specificity (Fig. 1.5e). For example,

in the top 1,000 most conserved regulatory SNP loci according to different scores, 70% of the

loci with tissue-specific activities in human had the same tissue-specific activity in mouse if

ranked by CACO-V, compared to only 50-65% if ranked by LECIF, PhastCons, PhyloP, PIB, or

CACO-V-Manual. This shows FUNCODE allows better prioritization of GWAS SNPs for animal

studies.

For example, we observe that GWAS SNPs associated with multiple sclerosis were enriched in

DHS that were T cell specific. For those loci that had T cell specific activity, only a subset of

them have T cell specific activity in mouse, and can be identified by selecting loci with high

CACO-V scores. (Fig. 1.2) CACO-V score can be used to effectively prioritize a large number of

candidate regions as it does not require knowing the particular tissue of interest a priori.

Functional conservation as a tool for cross-species integration of single-cell

genomic data

FUNCODE can facilitate cross-species integration of single-cell genomic data. For instance, the

standard approach for integrating human and mouse single cell ATAC-seq (scATAC-seq) data

begins with selecting features (i.e., peaks or DHSs) informative for integration and then uses

these features to embed cells from two species into a common space. This integration protocol
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may be improved by additionally requiring features to be functionally conserved across species.

To demonstrate, we integrated published human and mouse sciATAC-seq data from four tissues

(lung, liver, heart, large intestine) [13,14]. Following the standard protocol [15], we ranked

alignable DHSs in each species by the number of cells with non-zero read count and identified

the top 300,000 DHSs as an initial feature set. We then filtered the initial feature set using

different conservation scores to obtain the final feature set for integration. As a control, a final

feature set was also constructed using the highest average rank in human and mouse in terms

of the number of cells with non-zero read count but without applying any conservation filter. We

applied Seurat [10] to integrate human and mouse data, using the same number of features

selected by different methods.

To evaluate the integration performance, cell type annotations independently provided by the

original publications were used as the gold standard. In the integrated low-dimensional space,

we transferred cell type labels from human to mouse using a mutual nearest neighbor approach

(See Methods) and evaluated the consistency between the transferred labels and the gold

standard true mouse cell type labels using Adjusted Rand Index (ARI). A high ARI indicates

high integration accuracy. Keeping the final feature number the same, the CACO-V filter yielded

the highest ARI. Its ARI was substantially higher than the standard approach without the

conservation filter and conservation filters by LECIF, sequence-based conservation scores

(phastCons, PhyloP, PIB) and CACO-V-Manual (Fig. 1.6a-d, Fig S1.3). As an example, most

mouse hepatocytes were correctly annotated as hepatocytes by CACO-V after label transfer,

but the percentage of correctly annotated hepatocytes decreased substantially using other

conservation scores or without using any conservation filter (Fig. 1.6e). Similarly, most mouse

endothelial cells were correctly annotated by CACO-V, but the annotation accuracy decreased

for other methods (Fig. 1.6e).
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The improved integration enables more accurate comparative analysis of regulatory programs

between species. For example, we analyzed differential chromatin accessibility between

hepatocytes and endothelial cells and tried to identify differential signals conserved between

human and mouse. As a ground truth, we first identified DHSs with conserved differential

chromatin accessibility using true cell type labels provided in the original publications. We then

asked how well one could recover this ground truth if the true mouse cell type labels were

unknown. To this end, human cell type labels were transferred to mouse cells based on the

integration, identifying mouse cells matching with the human cell types. Using the matching

results, we computed differential pseudo-bulk chromatin accessibility between the two cell types

in each species, and identified the conserved differential DHSs. We compared the list of

conserved differential DHSs from the integrated cell labels to the list based on the true cell type

labels, and found that conventional integration recovered a much lower fraction of the true

conserved differential DHSs compared to the integration based on CACO-V. Moreover, CACO-V

also outperformed LECIF, sequence-based conservation, and CACO-V-Manual (Fig. 1.6f).

Thus, applying the FUNCODE filter helped one better identify conserved gene programs

between human and mouse that would be missed by the conventional single-cell integration

protocol.
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Figure 1.6. CACO-V score facilitates integration of single cell ATAC-seq data across species.

(a-c) Visualization of Seurat integrated results when selecting top 48,160 features ranking by

CACO-V, PhastCons4Way or Shared. (d) Integration performance of different feature selection

methods as evaluated by Adjusted Rand Index (ARI) of label transfer accuracies. ARI=0 is

completely random. ARI=1 is perfect accuracy. (e) Transferred label composition for human

Hepatocytes and endothelial cells. Integration based on CACO-V transferred the most cells to

the correct mouse labels. (f) Percentage of peaks differential in both human and mouse can be

recovered the most based on integrated cell type labels using CACO-V scores.
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Discussion

In summary, FUNCODE provides a new framework for scoring cross-species functional

conservation of DNA elements without requiring manual sample matching. With its unsupervised

sample matching, FUNCODE can be conveniently applied to new samples, making the updates

of conservation scores easier when more data become available in the future. The data-driven

sample matching also enabled more effective use of existing samples, yielding scores that

better capture the functional conservation of DNA elements as demonstrated by our results.

One potential limitation of unsupervised sample matching is that it requires a diverse panel of

samples in each species to cover a common space of major tissue or cell types. This limitation,

however, will be mitigated by the continued growth of functional genomic data. The ENCODE

consortium, in particular, has generated data from diverse sample types in both human and

mouse, allowing this approach to be applied to a number of functional genomic data modalities.

In this study, we demonstrated and benchmarked FUNCODE using chromatin accessibility data.

For evaluating CACO scores, we also applied FUNCODE to H3K4me1 ChIP-seq and RNA-seq

data, demonstrating its generalizability to other data types. Systematic scoring of other

ENCODE data types using FUNCODE is ongoing and will be reported in a future ENCODE

Consortium publication.

In this study, we focused on identifying the most conserved DNA elements which showed both

DNA sequence conservation and functional conservation. As such, we only scored alignable

DNA elements between human and mouse and did not consider evolutionary turnovers where

functions of a DNA element in one species are transferred to a different DNA element without

sequence homology (i.e., non-alignable) in another species. Using the FUNCODE aligned

samples and by changing the input DNA element pairs from the alignable pairs to non-alignable

pairs, our framework in principle can also be applied to score the functional conservation of two
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non-alignable DNA elements. Systematic scoring of these turnover events will also be

addressed in the future ENCODE Consortium publication.

The FUNCODE pipeline along with conservation scores generated in this study, including

CACO, HICO-H3K4me1 and GECO scores, and CACO-annotated GWAS SNP catalog are

made available as an public resource that can be downloaded from ENCODE portal and github.
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Methods

Mapping of human DHS to mouse genome

List of DHSs for the GRCh38 genome was obtained from [11]. (ENCODE accession:

ENCFF503GCK) List of DHSs for the mm10 genome was obtained from the ENCODE data

portal. (ENCODE accession: ENCFF910SRW). To find regions of the mouse genome that align

to each human DHS, the pairwise alignment results produced by BLASTZ were obtained from

the UCSC genome browser.

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/vsMm10/hg38.mm10.net.axt.gz

First, each summit of the human DHS as specified in the ENCODE annotation was mapped to

the mouse genome. To ensure that mapped regions have the same width, the human and

mouse submit were each extended to 200bp wide.

Computing existing conservation scores for DHSs

PhastCons and PhyloP: Human hg38 PhyloP and PhastCons files in bigwig format were

collected from the UCSC genome browser

(https://hgdownload.cse.ucsc.edu/goldenPath/hg38/). The UCSC tool ‘bigWigAverageOverBed’

was used to compute the average PhastCons and PhyloP score over each DHS region. The

output gave the average PhastCons and PhyloP score over the DHSs. For comparisons in the

paper, PhastCons4way and PhyloP4way were used as these were the smallest set that

contained both human and mouse.

Percent Identical Base-pairs (PIB):
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The percentage of identical bases were computed based on the reference genome sequences

of the aligned regions. A fraction was computed by dividing the number of identical bases by the

length of the region in human genome.

LECIF: LECIF score in bigwig format was available for hg19 and mm10 in the github repo

(https://github.com/ernstlab/LECIF). The average LECIF score was computed for each DHSs.

For DHS defined on hg38, the regions were first liftOver to hg19.

ENCODE chromatin accessibility data processing

All ENCODE human and mouse DNase-seq and ATAC-seq data available by September, 2020

were collected via the ENCODE data portal, including 689 DNase-seq and 137 ATAC-seq

experiments from human, and 88 DNase-seq and 32 ATAC-seq experiments for mouse. Read

alignment files to genome assembly GRCh38 and mm10 were downloaded. For each sample,

the number of read centroids that overlap with each DHS were counted. For paired-end reads,

the read centroids were taken to be the average of the ‘5 end of the forward read and the ‘3 end

of the reverse read. For single end reads, the centroids were taken to be the midpoint of the

read.

The library size for each sample was computed as the total number of reads that aligned to the

genome. The counts and library sizes of the technical replicates were first averaged for each

ENCODE experiment. Then, counts of each experiment are normalized by dividing by the library

size, and subsequently multiplying by a factor of 1e8.
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Tissue and cell type annotations of ENCODE experiments

Supplementary data 1.1-2 includes the tissue and cell type annotations for the ENCODE

chromatin accessibility experiments collected.

Computing standardized variance for DHSs

Standardized variance for each DHS was computed by applying variance stabilizing

transformation (vst) following a similar procedure to the Seurat 3.0. First, variance and mean

were calculated for each DHS and log-transformed. A lowess curve was fitted to the

log10(variance) to log(mean) relation, from which the fitted value of a lowess model was taken

to be the expected standard deviation. Each feature was then standardized by subtracting the

mean and dividing by expected standard deviation. Samples with a standardized value of larger

than the square root of total sample size were clipped off. Finally standardized variance was

taken to be the variance of the standardized values. Unlike Seurat, which applied the ‘vst’

procedure to raw count data, standardized variances were always computed using library size

normalized data.

Assay effect correction between DNase-seq and ATAC-seq data

Assay effects between DNase-seq and ATAC-seq were first removed before cross-species

integration. We note here that it was important that this integration step adjusted the data in the

DHS feature space as opposed to the features in the low dimensional space. Correcting in the

DHS space allowed for assay effects on individual features to be corrected, making downstream

evaluations of conservation possible at individual locus. Using DNase-seq data as the reference

and ATAC-seq as the query batch, the normalized DHS data were corrected using the Seurat

26



anchor (v3.0) method. Anchors were identified across the two assays using 30 canonical

variables following CCA of the 10,000 shared variable features across assays with anchor

finding parameters ‘k.anchor=5’ and ‘k.filter=10’. Subsequently, the ‘IntegrateData’ function was

called to calculate the correction vectors for the ATAC-seq samples, which were the Gaussian

kernel weighted anchor differences. The weighting is set to use 20 canonical variables and can

include up to 20 neighbors (Figure S1.1).

Unsupervised integration of chromatin accessibility data between human

and mouse

Many unsupervised algorithms have been developed for integrating omics data across batches,

biological replicates, technologies, and species. [10,16,17] The strategies that showed most

success originated from the work of Haghverdi et al. [18]. The mutual nearest neighbor (MNN)

criteria has proven successful in cases where the cell state compositions differ across sources

of data to be integrated. To integrate two datasets, data were first mapped onto a common low

dimensional space. Subsequently, matched pairs were identified by applying a mutual nearest

neighbor criteria within the common space. Finally, the MNN pairs were used as reference

points or anchors for data adjustments. We also use the MNN procedure to identify in silico

matches of human and mouse samples. Instead of trying to batch correct, the MNN pairs were

used as matched sample pairs for evaluating consistent tissue-specific activities across species.

First, aligned DHS pairs with counts lower than 20 in any sample after normalization in either

human or mouse were excluded. Next, standardized variances were computed for each DHS for

human and mouse separately. To integrate between human and mouse, we focused on features

that have high standardized variance in both species. For this purpose, each DHS is ranked by

their standardized variance in both species. Features that ranked top 29% in both human and
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mouse (212,904 (11.6%) DHSs) were used as the initial set for integration. Further, the Seurat

v3 routine was employed to conduct dimension reduction and anchor finding. The Seurat v3

routine also computes an anchor score for each anchor pair with a value between zero and one

that measures the quality of the anchor pairs. The function `FindIntegrationAnchors` was

applied to further select top 10,000 variable features for the integration. The canonical

correlation analysis (CCA) was used for dimension reduction into top 30 dimensions, and the

parameters k.anchor = 5, k.filter = 20 and k.score = 30 were used for anchor finding and

scoring. These parameters needed to be adjusted as the default were set for single cell analysis

with a much larger number of cells compared to samples in our data. All anchor pairs identified

were available in Supplementary data 1.3. It should be noted that downstream computation of

conservation scores only make use of the anchors information and does not rely on actual

integrated data or UMAP-reduced data. Integration and UMAP was conducted, however, for

visualization in Fig. 1.1a. `IntegrateData` was applied to top 15 canonical variates with ‘k.weight’

set to 20, and UMAP is done on top 15 principle components (PCs).

Unsupervised integration of histone ChIP-seq data between human and

mouse

Histone ChIP-seq data were downloaded via ENCODE data portal. (Supplementary Data

S1.5-6) Unlike chromatin accessibility data, direct integration of H3K4me1 histone ChIP-seq

data between human and mouse produced poor results due to the limited number of samples

available (332 human experiments and 92 mouse experiments) and tissue types covered.

However, we observed that it was relatively easy to computationally integrate histone ChIP-seq

with chromatin accessibility data within each species as experiments were conducted on

consistent biosamples within each species. Taking advantage of this fact, and the success of
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unsupervised integration of chromatin accessibility, we first transferred Histone ChIP-seq data

targeting H3K4me1 to chromatin accessibility space using the Seurat procedure, and

subsequently integrated transferred data together with chromatin accessibility data across

species. The H3K4me1 samples after transfer and integration were finally used to identify

anchors between human and mouse.

To conduct the bridge integration, the CA is chosen as the reference data modality. A set of

integration features were first selected for the reference data modality across species. In this

case, the 10,000 features previously selected for CA integration were used. Histone ChIP-seq

data were summarized on the alignable DHSs and normalized using the same pipeline as

chromatin accessibility. Standardized variance was computed for each DHS and ranked. DHSs

that ranked as the top 13% most variable in both data modality were selected for integration.

Integration was conducted with the `FindTransferAnchors` function using CCA dimension

reduction. `k.anchor=8`, `k.filter=20` and `k.score=40` were used. This integration was

conducted for human and mouse histone data separately. To transfer all histone samples onto

the CA space, `TransferData` function was called with `k.weight=10` on the cross species

integration feature set. This procedure computes the equivalent of histone samples in the CA

space, particularly for features that would be integrated across species in the ensuing step.

Finally, to integrate both data modalities between human and mouse, transferred H3K4me1 data

were concatenated with the DNase-seq data, and integrated between human and mouse using

`k.anchor = 5`, `k.filter = 20`, `k.score = 30` and `k.weight = 20`. Using the integrated data

across species, anchors were identified again with ‘FindIntegrationAnhcors’ with `k.anchor = 4`,

`k.filter = 20`, `k.score = 25`. These anchor pairs and the normalized H3K4me1 data were used

for downstream computation of HICO-H3K4me1 scores. Anchors identified are available in

Supplementary data 1.7.
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Computation of conservation scores

Conservation (CO) scores were computed using the in-silico matched samples (anchors). For

aligned DHS , let be the vector of log normalized counts for human anchors and be the𝑖 𝑋
𝑖

𝑌
𝑖

vector of log normalized counts for mouse anchors, and be the anchor scores of each anchor𝑤

pair computed by Seurat. The scores were used as weights for incorporating the anchor quality

information. CO-V score is defined as the weighted Spearman’s correlation between and :𝑋
𝑖

𝑌
𝑖

CO-Vi wSpearman( ) =  𝑋
𝑖
,  𝑌

𝑖
;  𝑤

CO-C score is defined as the minimum of the weighted fraction of anchors above some data

derived species-specific cutoffs. The species specific cutoff is defined as the 80% quantile of all

mean DHS activities among the aligned DHSs in human and mouse, respectively.

CO-Ci =  min [𝑚𝑒𝑎𝑛(𝑋
𝑖

> 𝑐
ℎ
; 𝑤),  𝑚𝑒𝑎𝑛( 𝑌

𝑖
> 𝑐

𝑚
; 𝑤)]

If a sample has log-normalized count above the species-specific cutoff, it is considered a high

signal at the DHS. Intuitively, CO-C scores close to one indicate that the DHS is open in most of

the matched samples and is considered constitutively open.

To evaluate the significance of CO scores, human DHSs were randomly paired with a mouse

DHS that is alignable to some human DHS. First, a total of 100k human DHSs were randomly

sampled, and another 100k alignable mouse DHSs were randomly sampled and paired to the

human DHSs. Next, CO-C and CO-V scores were computed for all of the random pairs, and

empirical p values were computed based on the null distribution. The p values were further

adjusted for multiple testing with the Benjamini Hochberg procedure. A false discovery rate

cutoff of 0.1 was used for calling the conserved elements of each category. All scores and

annotations for DHSs were summarized in Supplementary Data 1.8.
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ENCODE candidate Cis-Regulatory Elements (cCRE) annotations of DHSs

ENCODE cCRE annotations were collected from the ENCODE data portal (human cCRE

ENCODE accession: ENCFF535MKS, ENCFF196MIP, ENCFF036NSJ, ENCFF262LCI,

ENCFF379UDA, mouse cCRE ENCODE accession: ENCFF116KIO, ENCFF810COU,

ENCFF701CRY, ENCFF996ZSG, ENCFF404GUR). Overlaps between alignable DHSs with

each of the cCRE categories were computed. A total of 13,083 aligned DHSs (1.59% of all

annotated cCREs) were annotated with more than one cCRE category. PLS annotation was

prioritized when a DHS overlaps both PLS and pELS (11,151 DHSs). Similarly, pELS was

prioritized when a region overlaps both pELS and dELS (1,340 DHSs). Further dELS was given

higher priority than DNase-H3K4me3, and CTCF-only had the lowest overall priority. As a result,

821,737 (44.8%) aligned human DHSs were annotated as one of the cCRE types, but only

362,645 (20.0%) of all the aligned mouse DHSs were annotated as one of the cCRE types.

913,965 (49.8%) were labeled as either human or mouse cCRE and 198,478 pairs (10.8%)

were labeled as cCRE of the same category, referred to as the consistent cCREs.

Gene Expression COnservation (GECO) scores

ENCODE RNA-seq data were collected from the ENCODE data portal. All human and mouse

polyA+ RNA-seq and total RNA-seq gene quantification data uniformly processed with the

ENCODE pipeline were downloaded. (Supplementary Data 1.9-10) Human and mouse

homologous gene annotations (HomoloGene) were downloaded from the Mouse Genome

Informatics. (www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt)

Only 16,468 unique homologous gene pairs were used. RNA-seq data were integrated using

Seurat v3 with top 3,000 genes that were highly variable in both species. CCA was first

performed, and top 30 dimensions were used. `k.filter` was set to 40 for anchor finding. For
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visualization in Figure S1.2a, log-normalized count data were integrated and top 30 principal

components from the integrated data were used for UMAP visualization. The anchors identified

were shown in Supplementary Data 1.11. Conservation scores for all homologous gene pairs

were available in Supplementary Data 1.12. The R package ‘enirchR’ was used for the gene

ontology analysis based on the set of high GECO-V genes and high GECO-C genes. [19] Gene

ontology results were available in Supplementary Data 1.13.

Gene context annotations

The GENCODE gene annotation was obtained from ENCODE (Human Accession:

ENCFF159KBI, Mouse accession: ENCSR884DHJ) The ‘GenomicFeatures’ package was used

for annotating exons, introns, CDS, 5’ UTR and 3’ UTR.  Promoters were defined to be 1,000 bp

upstream the transcription start site (TSS) [20]. A DHS was annotated with one of the gene

features if it overlaps more than 50% with the feature. If a DHS overlapped with none of the

gene features, it was annotated as intergenic.

Gene regulatory domain and DHS with consistent candidate target gene

Gene regulatory domains were defined similar to [21]. First, a basal domain was defined for

each gene that is from 5kb upstream the TSS to 1kb downstream the TSS. Next, each gene’s

basal domain was extended in both directions until either the basal domain of a neighboring

gene had been reached or until a maximum distance of 1MB was reached. The gene regulatory

domain of a gene contains at least its basal domain. A DHS is associated with a gene if it is

within its gene regulatory domain and a DHS can be associated with multiple genes. For a pair

of aligned human and mouse DHSs, all pairs of unique homologous genes that are associated
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with their respective DHS were first listed and distance of DHS to TSS were computed for each

homologous gene pair and ranked for human and mouse. Finally, the consistent candidate

target gene is chosen to be the gene with the smallest sum of human and mouse ranks (ties

allowed). 93.17% of all aligned DHSs have at least one consistent candidate target gene

identified, among which 6.1% had more than one consistent candidate target gene identified.

Manual matching of human and mouse tissue and cell types

Human and mouse samples were manually matched based on the experiment metadata. Two

samples were considered a match if their biosample terms, lifestages (embryonic, child, or

adult) and treatments were exactly the same. In total, 22 matched tissue or cell types were

identified (Supplementary data 1.14).

Leave-out samples for cross validation

For evaluating the CACO-V score, a pair of samples were left out at each fold, the pairs were

randomly selected from the set of all manually matched samples each time. Supplementary

data 1.15 shows the pairs of biosamples that were held out for each fold of the cross validation.

For evaluating the CACO-C score, each manually matched sample was left out at a time.

GWAS catalog data processing

All GWAS associations (v1.0) were downloaded from the NHGRI-EBI GWAS catalog. The data

was pruned following a previously reported procedure [22]. First, the GWAS SNPs were

grouped according to study (PubMed ID) and disease/trait. For each study and disease/trait
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combination, all SNPs were ranked by their p values. Next, each SNP was added to the final list

by checking if there were a SNP within 5,000 bp in the current list, that is, a SNP is omitted if

there existed a more significant SNP within 5,000 bp. Finally, the set that overlaps with HLA loci

was removed. After pruning, 127,061 unique SNPs were left, covering 4,729 unique

disease/trait.

GWAS disease/trait association with tissue and cell types

For each GWAS disease/trait, the associated SNPs were overlapped with alignable DHSs, and

the set of DHSs is referred to as the associated DHS. We focused on disease or trait with at

least 50 associated alignable DHSs. Then for each tissue a fold change (FC) and p-value

(Wilcoxon rank sum test) is computed comparing the tissue-specific activity to average activities

of all other tissues. The p values were corrected with the Benjamini Hochberg procedure for

multiple testing. A DHS was classified as tissue-specific if it had logFC > 0.5 and FDR < 0.05.

The fraction of associated DHSs that were specific to each tissue were then summarized into a

matrix. Finally, to identify GWAS disease or trait associated with each tissue, the percentages

for each tissue is standardized. The associated diseases or traits were selected as those with

z-scores larger than 2 (Figure 1.5c).

Single cell ATAC-seq data processing and integration

Bam files from the mouse sciATAC atlas [13] were collected from the website

(https://atlas.gs.washington.edu/mouse-atac/data/). The reads were aligned by the author to the

mm9 genome, hence the aligned mm10 regions were first liftOver to mm9, and read centroids

that overlapped each aligned GRCh38 region were counted. Fragment files from the human
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sciATAC atlas [3] were collected from the website (http://catlas.org/humanenhancer/). Read

centroids that overlapped each aligned GRCh38 region were counted. For the two atlas, four

common tissues were identified, including lung, liver, heart and large intestine. Specifically, the

following samples were included from the two studies:

Human samples:

"lung_SM-A62E9", "lung_SM-A8WNH", "liver_SM-A8WNZ", "liver_SM-A8WNZ",

"heart_lv_SM-IOBHO", "heart_lv_SM-JF1NY", "heart_atrial_appendage_SM-JF1NX",

"heart_atrial_appendage_SM-IOBHN", "colon_transverse_SM-A9HOW",

"colon_transverse_SM-A9VP4", "colon_transverse_SM-ACCQ1",

"colon_transverse_SM-BZ2ZS", "colon_transverse_SM-CSSDA", "colon_sigmoid_SM-AZPYO"

"colon_sigmoid_SM-JF1O8"

Mouse samples:

"Lung1_62216", "Lung2_62216", "Liver_62016", "HeartA_62816", "LargeIntestineA_62816",

"LargeIntestineB_62816"

The cell types as labeled by the respective publications were mapped between human and

mouse according to Supplementary data 1.17. Signals were binarized by setting all DHSs with

more than one read to one. For human samples, cells with fewer than 1,000  DHS detected

were first dropped.  Next, only cell types whose label could be matched across species were

kept. (77.3% of all human cells, 79.8% of all mouse cells) Finally, only cells with more than 900

DHSs detected were kept. Hepatocytes accounted for a larger fraction of all cells in mouse data

(22%) than in human data (13%). 2,500 mouse hepatocytes out of the total 4,913 were dropped

randomly before integration.

In order to select an initial set of features as candidates for data integration, each DHS was

ranked by the number of cells in which it was detected in, for human and mouse separately. Top

300,000 DHSs with the largest sum of human and mouse rank were selected. For the set of
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300,000 initial DHSs, a median of 100 (0.14%) human cells and 99 (0.46%) of mouse cells were

detected.

For the default integration (Shared), the initial features were further filtered with the overall rank

of the number of cells detected to 25,000 and 48,160 features. For all other methods, the initial

set of DHSs were ranked by the respective conservation scores. With each feature set, the data

were integrated with top 30 dimensions of CCA, and arguments k.anchor = 40, k.filter = 100 and

k.weight = 100.
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Chapter 2

Quantitative fate mapping: Reconstructing progenitor
field dynamics via retrospective lineage barcoding
Other authors: Claire M. Bell, Abel Sapirstein, Soichiro Asami, Kathleen Leeper, Donald J. Zack

Corresponding authors: Hongkai Ji, Reza Kalhor

Introduction

Embryonic development is the genesis of complex body plans in the animal kingdom. It starts

with the zygote, a single cell in a totipotent state, and ends with millions of specialized terminal

cells organized in tissues. In between, dividing cells assume increasingly diverse but

decreasingly potent intermediate progenitor states. Each progenitor state specifies the ensuing

states that its cells may take thus directing them toward their terminal fates. Collectively,

progenitor states orchestrate the formation of complex tissues by ensuring the emergence of all

terminal cell types in harmony. Therefore, delineating how progenitor states relate to each other

and terminal fates—the cell fate map—is critical for our understanding of normal and

dysregulated development as well as our ability to generate engineered tissues. However,

mapping cell fate is challenging due to the number of progenitor states involved, their

interdependent relationships, and the time lapse between terminal fates and most of the

progenitor states that help create them.

The recent advances in genome engineering and sequencing have inspired a new approach for

interrogating cell fates during development: retrospective lineage analysis using synthetic or

natural somatic barcodes [23,24]. These approaches rely on the somatic accumulation of

random mutations in the genome during development. Each mutation is inherited by the

descendants of the cell in which it occurs; each descendant can add new mutations to the

combination it inherited. This process marks each terminal cell with a combination of
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mutations—a barcode—that encodes its phylogenetic relationship to the other cells [25].

Synthetic lineage barcoding, which relies on gene editing technologies to induce mutations, has

been implemented in a variety of model systems including the zebrafish [26–29], fruit fly [30],

and mouse [31–33]. Natural lineage barcoding, which relies on naturally-accumulating somatic

mutations, has been primarily used in humans [34–37]. And while the mechanism, timing, and

extent of mutagenesis differ between various implementations, the functional outcome remains

the same: genomic barcodes that can retrospectively inform cell phylogeny within one organism

at a single-cell resolution. As cells' fate decisions are also somatically inherited to their

daughters through epigenetic mechanisms [38], these retrospective approaches hold unique

promise for mapping cell fate because, unlike single-cell molecular profiling approaches, they

can bridge time lapses between terminal cells and their progenitors that exist far earlier.

Moreover, unlike prospective lineage tracing approaches, they allow parallel analysis of multiple

progenitor groups and do not depend on the identification and manipulation of progenitors.

Despite this compelling potential, the full scope of the information that retrospective lineage

barcoding can provide about the fate of the intermediate progenitor states remains unclear for

several reasons. First, cell phylogeny is a function of cell divisions and most cell divisions in

higher organisms do not accompany fate decisions. In the roundworm C. elegans, a unique

model system in which almost all cell divisions give rise to daughters with different fates, the

phylogeny of terminal cells is identical to the fate of their progenitors [39]. In more complex

organisms, on the other hand, cell fate is often determined at the level of progenitor populations

which also undergo cell divisions that are not associated with fate decisions, leading to

divergences between phylogeny and fate [24,40,41]. As a result, adjacent liver hepatocytes of

identical progenitor state history may have the maximum possible distance on the phylogenetic

tree by being the descendants of different cells at the 2-cell stage. Second, while the progenitor

states and their fate remain largely stereotyped within species, the phylogenetic histories of the
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cell populations that assume those progenitor states can vary greatly from embryo to embryo

due to stochasticity in fate decisions [36]. Third, single-cell lineage barcodes can be obtained for

only a fraction of the cell population due to the practical limitations of single-cell sequencing.

Whereas most mammals have millions of cells in each tissue, current technologies can only

sequence thousands of single cells. Given the divergences between fate and phylogeny and the

variable nature of the latter, it remains unclear how phylogenies derived from small samples can

reliably inform organism-level fate maps. These considerations raise critical questions about the

value of measuring cell phylogeny through barcoding approaches in complex organisms: What

features of progenitor populations in embryonic development are reflected in the phylogeny of

sampled terminal cells? Can retrospective barcodes, synthetic or natural, be used to extract

these features and if so how?

To address these questions, here we systematically study the relationship between cell fate and

cell phylogeny as derived using lineage barcodes. First, we examine how phylogeny of cells can

be used to understand the dynamics of the progenitor states that gave rise to them. We define

quantitative fate maps that specify the fate dynamics of a progenitor field—a collection of

progenitor states [42] that give rise to a set of observed cells (Figure 2.1). We then establish a

generative model of cell phylogenies based on predetermined quantitative fate maps (Figure

2.1A). Using generated phylogenies, we develop a strategy, ICE-FASE, to map the order of

progenitor states and quantify their commitment time, commitment bias, and population size

from phylogeny, thus reconstructing the original quantitative fate map (Figure 2.1B). We find

that successful quantitative fate map reconstruction requires time-scaled cell phylogeny wherein

branch lengths correlate with interdivision times. It further requires adequate representation of

progeny of each progenitor state among the terminal cells of the phylogenetic tree. These

results demonstrate that phylogeny of a small number of cells can inform progenitor dynamics at

the organism level. Second, we examine whether phylogenies inferred from lineage barcodes
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can reconstruct quantitative fate maps. We establish a barcoding mutagenesis model and

parametrize it using experimental data from synthetic barcoding in mice. We then use the model

to simulate realistic lineage barcodes based on time-scaled cell phylogenies (Figure 2.1C). To

recover time-scaled phylogenies from lineage barcodes, we establish a generalizable and

scalable method, Phylotime, that clusters cells based on temporal distances estimated from

maximum likelihood of the mutagenesis model (Figure 2.1D). We demonstrate that Phylotime,

coupled with ICE-FASE, enables quantitative fate map reconstruction from lineage barcodes

(Figure 2.1D,B). Finally, we validate our methods in an experimental system with cultured stem

cells grown based on preset fate parameters (Figure 2.1E,D,B). Overall, our results

demonstrate how lineage barcodes from single time-point measurements can be used to

decipher quantitative fate maps that capture the fate dynamics of progenitor populations long

after their differentiation.

Figure 2.1. Graphical outline of this study, establishing quantitative fate mapping. Quantitative

fate maps specify progenitor state dynamics and are used to generate time-scaled cell

phylogenies and lineage barcoding results in terminal cells (blue arrows). Phylotime and

ICE-FASE enable quantitative fate mapping by reconstructing first time-scaled phylogenies and

then quantitative fate maps from lineage barcode data (brown arrows). are dynamic{𝑡
𝑖
,  𝑠

𝑖
,  𝑏

𝑖
}

parameters of each progenitor state: commitment time, population size, and commitment bias.
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An in vitro system is used to experimentally verify model assumptions (gray arrow and brown

arrows).

Results

Modeling cell phylogeny based on quantitative fate maps

To study the relationship between cell phylogeny and fate dynamics, we began by establishing

the quantitative fate map, a model that specifies a developmental process wherein dividing cells

assume increasingly diverse but decreasingly potent progenitor states over time before arriving

at their terminal fates. Each progenitor state is defined by its potency, which is the set of

terminal states it is capable of producing, and is associated with a commitment event, when its

cells transition to less potent downstream states. The commitment event confers each

progenitor state three additional defining parameters: i) commitment time, defined as the time

when a progenitor state’s cells commit to the downstream states, ii) population size, defined as

its number of cells at commitment time, and iii) commitment bias, defined as the proportions of

its population committing to each downstream state. Progenitor states ultimately give rise to

terminal states, which are the states of cells at the point they are sampled or observed. In

summary, a quantitative fate map defines the fate dynamics of a progenitor field—a collection of

progenitor states [42] that give rise to a set of observed cells.

We next constructed a panel of 125 test quantitative fate maps covering diverse developmental

scenarios (Figure 2.2). Representing increasing field sizes, the maps are in three categories of

15, 31, or 63 progenitor states, producing 16, 32 or 64 terminal cell states, respectively. We

label progenitor and terminal states with “P”s and “T”s followed by numerals, respectively

(Figure 2.3A). Within each category, the topologies of the maps range from perfectly balanced

to highly unbalanced (Figure 2.2) as measured by the BSUM imbalance index [43]. In more
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unbalanced maps, progenitor states tend to split into increasingly unequal numbers of eventual

terminal states (see Methods). Progenitor states in each map commit to two downstream states

with prespecified ratios that were randomly drawn to cover a range of commitment biases within

each map (Figure 2.3A, Methods). Commitment time for each progenitor state is also preset

and randomly selected between to days subject to the topology constraints, based𝑡 = 1. 8  9. 8

on the beginning of fate restrictions and the end of organogenesis in mouse development

(Figures 2.2 and 2.3A, see Methods). Each fate map starts with a single founder cell at time

that divides according to the reported division rates during mouse development [44]. This𝑡 = 0 

cell division rate, which is the same for all progenitor states, together with their commitment

biases determine the progenitor population size at different points in time (Figure 2.3B, Figure

S2.1). Fate maps continue to days when terminal cells can be sampled for observation.𝑡 =  15

Supplementary Data 2.1 provides a complete accounting of each map. Together, these fate

maps represent a broad range of complex developmental scenarios.

Figure 2.2. A test panel of 125 quantitative fate maps covering a broad range of developmental

scenarios. The fate maps are categorized by three sizes of 16, 32, and 64 terminal cell types.

42

https://paperpile.com/c/mUQGzy/E0VAp


Three examples from each size are shown in each column. Within each size category,

topologies range from perfectly balanced (top row) to highly unbalanced (bottom row). Arrows

represent cell states, colored rectangles represent their commitment events. Rectangles at day

15 represent terminal states at the time of sample collection. Each map also specifies the cell

commitment bias and division rate for each progenitor state, neither of which are shown in this

figure.
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Figure 2.3. Simulating time-scaled phylogenetic trees of sampled cells based on a known

quantitative fate map. (A) Topology of a quantitative fate map specifies commitment time and

bias for each progenitor state. (B) Quantitative fate map is populated with cell numbers at each

time point based on cell division rates; these cells are apportioned to various states based on

commitment biases. A number of cells are sampled from each terminal state based on the

experimental sampling strategy as shown in the gray boxes on the bottom. (C) Sampling of

terminal states dictates the fraction of progenitor population at each time point that are ancestral

to sampled cells at all points in time. (D) Phylogeny of sampled cells is created by merging

sampled terminal cells into ancestral nodes. Nodes are colored based on the terminal and

progenitor states in A.

We next established a generative model of cell phylogenies for terminal cells based on a

quantitative fate map. Generating the entire tree of cell divisions for billions of terminal cells

(Figure 2.3B) is computationally impractical. To overcome this problem, our model draws

inspiration from coalescent theory in population genetics [45,46]. It starts with a subset of

terminal cells that are sampled from terminal states and merges them going backward in time to

create their phylogeny in three steps (see Methods). First, terminal cells are randomly sampled

in each state based on either fixed or proportional sampling (Figure 2.3B). Under fixed

sampling, a fixed number of cells are sampled from each terminal state, similar to experiments

where target terminal cell types are first identified and then collected using sorting or other

methodology. Under proportional sampling, each terminal cell state is sampled based on its

share of the total population, similar to experiments where cells are sampled without prior

knowledge of their states (see Methods). This step establishes the number and state of terminal

nodes in the phylogenetic tree. Second, the number of progenitor cells ancestral to sampled

terminal cells at all earlier times is generated. To do so, starting from the number of sampled

cells of each state in the terminal point in time ( ), the number of their ancestors in the𝑡 =  15
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prior time point ( ) is drawn based on the total cell number at each time point. This𝑡 − ∆𝑡

process is repeated recursively until reaching the founder at (Figure 2.3C, see Methods𝑡 = 0

for details). This step establishes the number of ancestors, or internal nodes, in the phylogenetic

tree at each time point. Finally, nodes at each point in time are randomly connected to their

progenitors in the earlier time point to create the branches of the phylogenetic tree. At the times

of commitment events, cells of less potent states are connected with the combined pool of their

ancestors. This leads to terminal cells gradually merging into increasingly common ancestors

according to the  numbers of ancestors over time established in the previous step. This

sequence of merges forms the topology of the phylogeny and the times between merges form

branch lengths (Figure 2.3D). This approach generates time-scaled phylogenies for sampled

cells based on their progenitors’ fate map in a computationally efficient manner.

We applied our model to generate time-scaled phylogenies of sampled cells for each

quantitative fate map in our test panel. For each map, we used both fixed and proportional

sampling; for each sampling, we simulated two phylogenies. In all cases, an average of one

hundred cells were sampled from each terminal state in each map. Together, these results

represent 2,500 experiments (125 maps x 2 sampling strategies x 10 replicates) wherein

phylogeny is determined for a small fraction of terminal cells derived from complex fate

landscapes. With the benefit of knowing their underlying fate maps, we will use these 2,500

phylogenies in the ensuing sections to establish quantitative fate mapping algorithms and

evaluate the reach and limitations of retrospective phylogenetic reconstruction approaches.

Reconstructing fate map topology using time-scaled cell phylogeny

These simulated time-scaled phylogenies, in their topologies and branch lengths, embody the

order and timing of cell divisions that connect sampled cells (Figure 2.4A). Going from the root

of a tree towards its terminal branches, nodes become gradually restricted in their potency, as

can be observed by the diversity of their terminal progenies (Figure 2.4A,B). When and which
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cell fate restrictions happen are clues to cell fate commitments. Therefore, to derive fate map

topology from time-scaled phylogenies, we focused on putative cell fate restriction events. First,

we annotated each node in the phylogenetic tree with the states of its observed terminal

descendants, which we refer to as the node’s observed fate (Figure 2.4B). Next, we compared

the observed fate of each node with that of its two daughter nodes to identify nodes with both

descendants having a more restricted fate (Figure 2.4B). For instance, if an internal node leads

to terminal cell types T7, T8, and T9 but cells of type T7 and T8 are only seen in one of its

branches and T9 only in the other, this node implies divergence of the terminal cell types T7 and

T8 from T9. We refer to these nodes as FAte SEparation (FASE) between respective terminal

fates. The prior example constitutes  a T7–T9 and a T8–T9 FASE. The temporal distribution of

FASEs that connect a pair of terminal cell types provides a measure of their developmental

distance: cell types whose lineages separated early in development would be connected by

FASEs that are closer to the root in the phylogenetic tree whereas those whose lineages

separated later in development would be connected by FASEs that are closer to terminal

branches (Figure 2.4C). Therefore, we defined the distance between terminal cell fates T1 and

T2 as the mean temporal distance of T1–T2 FASEs to their terminal cells and compiled a

pairwise distance matrix between all terminal cell types (Figure 2.4D, see Methods). Applying a

distance-based clustering method (UPGMA) to this matrix, we obtained the topology of the fate

map (Figure 2.4E). This fate map topology connects observed terminal cell states through a

hierarchy of inferred progenitor states, each with the potency to give rise to two or more terminal

cell types. We label these inferred progenitor states by “iP” followed by a numeral. To

summarize, this strategy, which we call the FASE algorithm, produces a hierarchy of “inferred”

progenitor states based on specific patterns of potency that result in the observed terminal

states.
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Figure 2.4. Reconstructing fate map topology from time-scaled phylogeny of sampled terminal

cells. (A) A time-scaled phylogenetic tree of sampled terminal cells. Terminal cells of different

states have been labeled by different colors. FAte SEparation (FASE) events between terminal

states T1 and T2 (purple) as well as those between T7 and T9 (teal) have been labeled as

examples. (B) A zoomed-in section of the tree in panel A where each internal node is labeled by

its observed fate and T7–T9 FASEs have been labeled by teal circles. (C) Boxplot showing the

distribution of T1–T2 and T7–T9 FASE times in the tree in A, from which the distance between
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terminal states was derived. (D) Heatmap showing the FASE distance matrix for all pairs of

terminal states in the phylogenetic tree in panel A. Dendrogram on top shows the hierarchical

clustering results of the heatmap. (E) The fate map topology reconstructed by hierarchical

clustering of the FASE distance matrix. Squares denote observed terminal states, diamonds

denote inferred progenitor states. (F) Scatter plots showing the distance between fate map

topologies inferred from the time-scaled phylogenetic tree and the true fate map topology in all

2,500 simulated phylogenies. The algorithm using FASE times for topology inference is

compared to one using the Shared Progenitor Score (SPS) as a measure of similarity. Results

are broken down in different plots by the total number of terminal states, the experimental

sampling strategy, and by fate map imbalance on the x-axes. Solid lines show trend lines

obtained through locally weighted smoothing (LOESS).

We applied the FASE algorithm to reconstruct fate map topology for each simulated phylogeny

in our panel. For comparison, we also used the shared progenitor score (SPS) [32]. In each

case, we compared the reconstructed topology to its corresponding true fate map using the

Kendall-Colijin (KC) metric with its tuning parameter ( ) set to zero (KC0) [47]. A KC0 distanceλ

of zero indicates identical topologies; KC0 distances larger than zero indicate increasing

differences between topologies. The results show that our FASE strategy faithfully reconstructs

fate map topology in almost all tested phylogenies, outperforming SPS across the board (Figure

2.4F). Under fixed sampling, the FASE algorithm predicts perfectly accurate topologies in 16

and 32-terminal cell state fate maps irrespective of imbalance. It only shows modest decrease in

accuracy with high degrees of imbalance under proportional sampling (Figure 2.4F). Moreover,

fixed sampling outperforms proportional sampling, likely because it ensures better

representation of small terminal populations. This result suggests that a fixed sampling strategy

is more robust in lineage topology reconstruction using barcoding approaches than a

proportional sampling strategy. Taken together, these results establish a robust and scalable

49

https://paperpile.com/c/mUQGzy/ucY7f
https://paperpile.com/c/mUQGzy/mBvnq


method to reconstruct fate map topology from the phylogeny of sampled cells that scales to

complex fields.

Quantitative characterization of progenitor states using cell phylogeny

The fate map topology derived from the lineage of sampled cells effectively identifies a series of

inferred progenitor states (iPs) each with a distinct potency and fate restriction pattern (Figure

2.4E). As the internal nodes of time-scaled phylogenies correspond to cells in these progenitor

states, we sought to use them to further characterize the dynamics of these progenitor states at

the cell population level. We therefore assigned each internal node in the phylogenetic tree to

an inferred progenitor state or a terminal state based on fate map topology: given the observed

fate of the internal node, we assigned it to the least potent progenitor state that contains the

node's observed fate (Figure 2.5A). For example, a node with an observed fate of [T11, T13,

T14] can be assigned a more potent inferred state (iP11) capable of  [T9, T10, T11, T12, T13,

T14] if the now-reconstructed topology of the fate map indicates that iP11 differentiates into

fates [T13, 14] and [T9, T10, T11, T12] (Figure 2.5B). To assess the fidelity of these

assignments, we compared the inferred states of internal nodes in all phylogenies to their true

states which are known, as these phylogenies were simulated. Where derived fate map

topology differed from the truth, only correctly resolved progenitor states were considered. A

progenitor state is correctly resolved if there exists a corresponding state in the true fate map

with the same potency and commitment pattern (Figure 2.5C). The only error was assigning an

internal node to a progenitor state less potent than its true state, which occurred, on average,

for 19% of all nodes in each time-scaled phylogeny among the 2,500 experiments (Figure

2.5C,D). These errors are caused by failures to sample all the different terminal states a

progenitor cell has led to and emerges when the number of sampled cells is small relative to the

terminal population (Figure 2.5E). Since the sampling fraction of each progenitor state is known

in simulated experiments (Figure 2.3C), we further examined its effect on resolving progenitor
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states. We found that a great majority of progenitor states in our panel were correctly resolved if

more than 25% of their population at the time of commitment were represented among sampled

terminal cells. Conversely, only a minority of progenitor states with less than a 25% sampling

fraction were correctly resolved. Going forward, we will distinguish progenitor states with more

than 25% sampling as adequately-sampled and the rest as under-sampled.

To derive the commitment time of each progenitor state, we focused on when its inferred nodes

transition to less potent states by defining a set of Inferred Commitment Events (ICEs). An ICE

is a node whose inferred state is more potent than both of its descendants (Figure 2.5B,F). For

example, in Figure 5B, when an internal node is assigned to iP7 (capable of T9 through T16)

and splits into nodes with assigned states of T16 and iP10, we count this node as an ICE for

iP7. The temporal distribution of each progenitor state’s ICEs indicate when the progenitor

commits to its downstream fates (Figure 2.5G). Unlike FASEs, which are defined for each pair

of terminal fates, ICEs are defined with respect to inferred progenitor states. If a node is an ICE,

it is also a FASE for at least some pair of terminal states, but the opposite is not necessarily

true. ICE uses information from the fate map topology to identify a more confident set of nodes

that represent state transitions. We thus defined the commitment time for a progenitor state as

the mean of its ICE times (Figure 2.5G). Across all progenitor states, these ICE times captured

the relative timing of commitment events as indicated by a high rank correlation (Spearman’s

ρ=0.850 for fixed sampling and ρ=0.928 for proportional sampling for progenitor states that were

correctly resolved in fate map topology) (Figure 2.5H). However, across progenitor states that

were adequately sampled, the ICE times captured the exact timing of commitments as indicated

by a low root mean square error (RMSE=0.296 days for fixed sampling and RMSE=0.245 days

for proportional sampling). Fixed and proportional sampling performed comparably, though fixed

sampling performs better for under-sampled progenitors. These results establish ICE times as
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estimates for the commitment times of the progenitor states from time-scaled phylogenies of

sampled cells.
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Figure 2.5. Obtaining progenitor state commitment times from phylogenies of sampled cells. (A)

The time-scaled phylogenetic tree in Figure 4A where internal nodes are colored according to

their inferred progenitor state. (B) A zoomed-in section of the tree in panel A where each

internal node is labeled by its inferred progenitor state or terminal state. Asterisks signify ICE

nodes. (C) Heatmap showing the agreement between inferred states and true states of all

internal nodes in the tree shown in panel A. (D) Histogram showing the average accuracy of

progenitor state assignment to internal nodes of the phylogenetic tree across the panel of 2,500

phylogenetic trees. On average, 81% of nodes were correctly assigned to a progenitor state, the

rest were assigned to states with less potency. (E) Schematic showing how undersampling can

lead to a node being assigned a progenitor state with less potency than its true state. (F) The

tree in panel A where nodes corresponding to Inferred Commitment Events (ICEs) for inferred

progenitor states iP9 and iP5 are shown in brown and pink, respectively. (G) Distribution of ICE

times for all inferred progenitor states in the tree from panel A, representing each progenitor

state’s commitment time. The ICE times for iP5 and iP9 are boxed in red. (H) Scatterplots

showing the correlation between actual commitment time of each progenitor state to the value

inferred from the phylogenetic tree across all 2,500 simulated phylogenies broken down by

experimental sampling strategy. Dots are colored based on progenitor sampling fraction and

according to the key on the right. Trendlines (LOESS) for adequately-sampled and

undersampled progenitor states are shown in blue and red, respectively. indicates Spearman’sρ

correlation coefficient. The blue value corresponds to progenitors with sampling fraction better

than 25%; the red value to those with sampling fraction equal to or less than 25%.

We next assessed whether population size and commitment bias of a progenitor state can be

obtained from time-scaled phylogenies. We define progenitor population size as the number of

cells in a progenitor population immediately before they commit to their downstream fates and

commitment bias as the ratio of these cells that commit to each downstream fate. To estimate
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population size for a progenitor state, we identified the subset of all branches in the

phylogenetic tree that, first, are present at the progenitor state’s inferred commitment time and,

second, connect nodes assigned as either the progenitor state itself or any of its upstream or

downstream states (Figure 2.6A,B, see Methods). These branches represent cells of the

progenitor state that are present at its time of commitment. We then counted the number of

incoming nodes to these branches as the population size (Figure 2.6C). For commitment bias,

we calculated the ratio of branches that end in each of the downstream fates irrespective of their

parental state (Figure 2.6D, see Methods). Applying this algorithm to our panel of time-scaled

phylogenies, we found that the ability to estimate population size and commitment bias for a

progenitor state depend heavily on its sampling fraction as well as the sampling method.

Population size estimates of adequately-sampled progenitor states agree well with their actual

size (Spearman’s ρ=0.975 for fixed and ρ=0.943 for proportional sampling) (Figure 2.6E). For

undersampled progenitor states, on the other hand, population size estimates are capped at the

number of their sampled terminal progeny, thus performing poorly for the proportional sampling

scheme (Spearman’s ρ=0.594) and being completely non-informative for the fixed sampling

scheme (Spearman’s ρ=-0.06) (Figure 2.6E). Commitment bias estimates showed a different

behavior: proportional sampling allowed for estimation with a minor effect from progenitor’s

sampling fraction (Spearman’s ρ=0.929 and ρ=0.718 for adequately and undersampled

progenitor states, respectively) (Figure 2.6F). Fixed sampling strategy, on the other hand,

produced reasonable estimates only for adequately-sampled progenitor states’ commitment

biases (Spearman’s ρ=0.815) and was uninformative for undersampled progenitor states

(Spearman’s ρ=0.050) (Figure 2.6F). These observations demonstrate the importance of

sampling fraction for accurate characterization of progenitor states. They further indicate more

effective estimation of population size and commitment bias with proportional sampling

schemes, ostensibly due to the correlation between the size of terminal populations and that of

their progenitor. Together, these results establish a strategy for estimating progenitor population
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size and commitment bias from time-scaled phylogenetic trees and define critical parameters for

robust estimation.
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Figure 2.6. Obtaining progenitor population size and commitment bias from phylogeny of

sampled cells. (A) The time-scaled phylogenetic tree from Figure 4A is shown and branches

corresponding to inferred progenitor state iP5 that are present at its commitment time are

colored based on the state they commit to according to the key shown on the fate map to the

right. (B) Same as A, but for iP9. (C) Barplots showing the inferred population size of each

progenitor state in A based on the nodes before its branches at its commitment time. (D)

Barplots showing the inferred post-commitment population size of each progenitor state in A

immediately after its commitment time based on the nodes after its branches at its commitment

time and stacked according to the downstream state they lead to. (E) Scatterplots showing the

correlation between true population size of each progenitor state to the value inferred from the

phylogenetic tree across all 2,500 simulated phylogenies broken down by experimental

sampling strategy. Dots are colored based on progenitor sampling fraction and according to the

key on the right. Trendlines (LOESS) for adequately-sampled and undersampled progenitor

states are shown in blue and red, respectively. indicates Spearman’s correlation coefficient.ρ

(F) Scatterplots showing the correlation between actual commitment bias of each progenitor

state to the value inferred from the phylogenetic tree across all 2,500 simulated phylogenies

broken down by experimental sampling strategy. Dots are colored based on progenitor sampling

fraction and according to the key on the right. Trendlines (LOESS) for adequately-sampled and

undersampled progenitor states are shown in blue and red, respectively. indicates Spearman’sρ

correlation coefficient.

Robustness of phylogeny-based quantitative fate map estimates

So far, we have established the central role of progenitor state sampling fraction as an indicator

of the ability to infer quantitative fate map parameters. However, this parameter cannot be

directly observed from cell phylogeny or other data collected from sampled terminal cells
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(Figure 2.3C). Hence, it is important to find a proxy for the true sampling fraction of each

progenitor state that can be derived from sampled cells alone. Here, we introduce one such

proxy: estimated progenitor state coverage (PScov), which is defined as the terminal sample

size of a progenitor state divided by its estimated progenitor population size. By terminal sample

size, we refer to the sum of the number of sampled cells of all the terminal states that the

progenitor state is capable of. Intuitively, this statistic indicates how many terminal descendents

are being sampled per each progenitor cell. We found that a high PScov is indeed predictive of

high sampling fraction, auROC = 0.973 (Confidence Interval: 0.972 – 0.974) (Figure S2.2A).

For example, the majority of states that are sampled more than 25% also have a PScov larger

than 2.5 (Figure S2.2B). Therefore, this estimated progenitor state coverage makes it possible

to assess the robustness of quantitative fate map parameters for each progenitor state based

solely on the phylogeny of terminal cells.

Modeling and simulating lineage barcoding in development

The results above indicate that time-scaled phylogenies of sampled cells can identify progenitor

states of common fate and their dynamics. The time-scaled phylogenies that were used thus far

were known—representing the exact sequence and timing of events as simulated. In actual

experiments, phylogeny must be inferred from lineage barcodes. However, such inferred

phylogenetic trees are inherently error-prone for two reasons. First, exhaustive phylogenetic

tree search to guarantee optimality is not computationally practical for hundreds of terminal

cells, and practical heuristic algorithms do not guarantee optimality [48–50] despite the recent

advances in distributed computing [51]. Second, barcoding strategies employ a limited number

of mutation sites which encode a limited amount of information; how close any inferred

tree—including the optimal tree—is to its true phylogeny remains uncertain. We therefore asked:

can phylogenies inferred from lineage barcodes be accurate enough to recreate quantitative

fate maps despite their errors? To address this question, in this and the ensuing two sections,
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we will: i) describe a model to generate realistic barcoding outcomes in cells, ii) establish a

scalable strategy for inferring time-scaled phylogenies from barcodes, and iii) evaluate the

feasibility of quantitative fate mapping using barcode-inferred phylogenies.
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Figure 2.7. Lineage barcoding model and agreement of simulated barcoding outcomes to those

observed in MARC1 mice. (A) A phylogenetic tree with a single barcoding site shown as a box

and its allelic state denoted with color according to the key on the right. The barcoding site is

inherited from each cell by its daughters. Only the unmutated allele (gray) can change, mutated

alleles (colored), once formed, are inherited from a cell by all its daughters. (B) Accumulation of

mutations over time upon barcoding activation across a population of cells. (C) Mutation events

(crosses) take place according to a Poisson point process. (D) Mutation events convert the

unmutated allele to one of many possible mutated alleles ( ) (Mut1 to Mutj), each𝑀𝑢𝑡
1
, ..., 𝑀𝑢𝑡

𝐽 

with an emergence probability (m1 to mj). (E) Line-plots showing the mutated fraction of MARC1

barcoding sites over time in observed (left) and simulated (right) embryos for fast, mid, and slow

categories of mutation rates. Means ± SEM are shown. Each barcoding site is colored according

to its mutation rate using the color scale shown in panel G. (F) Boxplots showing the number of

mutant alleles for each MARC1 barcoding site over time in observed (left) and simulated (right)

embryos for fast, mid, and slow categories of mutation rates. Each barcoding site is colored

according to its mutation rate using the color scale shown in panel G. (G) Line-plots showing the

average mutant allele diversity as a function of barcoding site mutation rate for observed (blue)

and simulated (purple) embryos. Means ± SEM are shown. (H) Line-plots showing the

prevalence of a mutant allele among all mutant alleles as a function of its rank in observed

(blue) and simulated (purple) embryos. For example, a rank of one denotes the most abundant

allele. Means ± SE are shown.

First, we established a general mutagenesis model. The model comprises barcoding sites that

are present in each cell and inherited to its daughters (Figure 2.7A). Barcoding sites are

unmutated in the founder cell at the beginning (i.e., ) and once activated, start𝑡 = 0

accumulating heritable mutations over time (Figure 2.7A,B). Each site mutates independently
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from other sites in the system according to a Poisson point process with a constant rate after

activation. Each mutation event converts an unmutated active copy of the site into one of many

possible mutated inactive alleles, each with a distinct emergence probability and unable to

mutate further (Figure 2.7C,D and Methods). Therefore, the parameters of the barcoding model

are the number of sites, their mutation rates, and each site's mutant allele emergence

probabilities.

This model is broadly applicable to synthetic and natural barcoding systems; here, we

parameterize it based on the MARC1 (Mouse for Actively Recording Cells!) system [31] wherein

extensive embryonic barcoding data are available [52]. In MARC1 mice, somatic mutations are

induced in tens of independent homing guide RNA loci (hgRNAs) [53] starting at the 2-cell

stage. We estimated the mutation rates of MARC1 hgRNAs (i.e., , rate of the Poisson process)λ

using embryonic time course data [52] (Figure S2.3A,B, see Methods). We estimated

emergence probabilities of mutant alleles for each hgRNA by adapting the inDelphi algorithm

that predicts CRISPR-Cas9 mutations [54]. We compared and verified inDelphi’s predictions

against published MARC1 data [52] (Figure S2.3B, Supplementary Data 2.2, see Methods). To

test this MARC1 barcoding model, we simulated barcoding in whole-mouse embryos for E3.5 to

E16.5 in samples of 2,000 cells (or fewer when there were fewer than 2,000 cells in the

organism) and compared the results to that of experiments (see Methods). Overall, we

observed broad agreement between experimental and simulated barcoding results (Figure

2.7E–H). First, the distribution of mutated fractions over the course of embryogenesis agrees

between simulated and experimental results for hgRNAs with a range of mutation rates (Figure

2.7E). Second, the total number of distinct mutant alleles (i.e. the mutant allele diversity) during

embryogenesis were consistent between experiments and simulations (Figure 2.7F). Third, in

both systems, as the hgRNA mutation rates increase, the diversity of mutated hgRNA alleles

increase because there are more mutagenesis events; however, at the fastest mutation rates,
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barcoding sites reach 100% mutated when there are fewer total cells, and the total diversities

drop as a result (Figure 2.7G). Fourth, the composition of mutant alleles within embryos agree:

for both simulated and observed embryos, after ranking all mutant alleles based on their

frequencies, alleles of similar rank account for similar percentages of the mutated cells (Figure

2.7H). Taken together, these results suggest that our simulation is comparable to actual lineage

barcoding experiments and produces realistic barcoding results.

Finally, based on the above stochastic barcoding model and the MARC1 system’s parameters,

we simulated mutagenesis in our panel of 2,500 phylogenies assuming 50 hgRNA sites per cell

(see Methods). The results are 2,500 simulated barcoding experiments where, similar to real-life

experiments, the barcode and terminal state information is known for the sampled panel of

single cells (Figure 2.8A; Supplementary data 2.4).

Reconstructing time-scaled phylogenies from single-cell lineage barcodes

To infer quantitative fate maps in each simulated barcoding experiment, single-cell barcodes

must be converted to a time-scaled phylogenetic tree. However, many current methods for

phylogenetic reconstruction based on lineage barcodes lack a mutagenesis model specific to

lineage barcoding. As a result, their inferred phylogram branch lengths are often in arbitrary

units. Those strategies that do involve a barcoding mutagenesis model [55] depend on

optimization techniques that are not scalable to thousands of sampled cells as we have

simulated in each experiment. To address this gap, we developed a method to infer phylogenies

with branch lengths measured in actual time units that readily scales to thousands of cells. We

first compute a maximum likelihood estimate of the time that separates a pair of cells from their

most recent common ancestor (time to MRCA) for all pairs of terminal cells (Figure 2.8B, see

Methods). We apply UPGMA hierarchical clustering [56] to the pairwise temporal distance

matrix to obtain a time phylogenetic tree (Figure 2.8C). We call this approach, which scales in

polynomial time, PHYlogeny reconstruction using Likelihood Of TIME (Phylotime).
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To evaluate Phylotime’s performance in reconstructing time-scaled phylogenies, we first

compared MRCA times estimated in our simulated barcoding experiments to that derived from

the corresponding true trees (Figure 2.8D) and found that the two are highly correlated

(Pearson’s R = 0.98). We then applied Phylotime to all 2,500 simulated barcoding experiments

to obtain inferred-phylogenetic trees (Figure 2.8C; Supplementary Data 2.4 for all trees) and

compared the topology and branch lengths of the Phylotime-reconstructed trees to the true

trees, using KC0 distance for topology and KC1 distance for combined topology and branch

length (Figure 2.8E,F). KC1 is the Kendall-Colijin metric weighted by branch length by setting its

parameter to one [47]. A KC1 distance of zero between two trees indicates identical topology

and branch lengths and distances larger than zero indicate increasing differences in branch

length and topology. The results show that Phylotime’s solutions converge to the true phylogeny

with an increasing number of barcoding sites(Figure 2.8E,F) and produce time-scaled

phylogenies that are by far the most accurate according to KC1 error (Figure 2.8F). Only a

Hamming distance based method and Cassiopeia [57], a heuristic approach based on

maximum parsimony, were compared because other common methods do not scale to this

number of terminal cells and barcoding sites. Expectedly, given their scale, none of the trees

were perfectly reconstructed compared to the truth, recapitulating errors that are inherent to tree

inference. Despite this, Phylotime’s results provide a test panel of inferred time-scaled

phylogenetic trees, with generally accurate topology and branch length for fate map

reconstruction.
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Figure 2.8. Accurate reconstruction of time-scaled phylogenetic trees using Phylotime. (A) The

output of a simulated barcoding experiment shown as a barcode matrix with each hgRNA

barcoding siteas a column and each cell as a row. Colors correspond to mutant alleles; black is

an unmutated allele. The color bar on the right shows the state of each terminal cell. (B)

Heatmap showing the pairwise time to most recent common ancestor (MRCA) for all cells in A.

(C) Time-scaled phylogenetic tree reconstructed by applying a clustering algorithm to the matrix

in B. Colors on the terminal branches signify the observed state of the cell. (D) Scatter plot

showing the correlation between the Phylotime-inferred and true cophenetic distances between

all pairs of cells in A. Trendline is shown. (E) Error of phylogenetic reconstruction using

Phylotime, Hamming distance with UPGMA, and Cassiopeia, with 25, 50, or 100 barcoding sites
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when considering only tree topology (KC0 distance) across the panel of 2,500 simulated

barcoding experiments. Means ± SEM are shown (N=2,500). (F) Error of phylogenetic

reconstruction using Phylotime, Hamming distance with UPGMA, and Cassiopeia, using 25, 50,

or 100 barcoding sites when considering both tree topology and branch length. Cassiopeia

phylogenies were scaled to the same total time as the reference trees. Means ± SEM are shown

(N=2,500).

Quantitative fate map inference based on lineage barcodes

We next assessed if time-scaled phylogenetic trees inferred from lineage barcodes can faithfully

reproduce quantitative fate maps despite their inherent uncertainties. We applied the ICE-FASE

algorithm to all 2,500 time-scaled phylogenetic trees that were inferred using Phylotime from

simulated barcoding experiments to derive quantitative fate maps. We then compared various

parameters of these fate maps against those obtained by applying ICE-FASE to the true

phylogeny. We found that inferred phylogenies perform almost as well as true phylogenies at

estimating fate map topology, regardless of map complexity and imbalance, or the sampling

strategy (Figure 2.9A). Similarly, for commitment times, population sizes, and commitment

biases of progenitor states that were properly identified in the reconstructed topologies, we

found that Phylotime-inferred phylogenies perform similar to true phylogenies with proportional

sampling in most conditions (Figure 2.9B–D), though a drop off was observed in population size

and commitment time detection with fixed sampling (Figure 2.9C–D). Taken together, these

results show that the ICE-FASE algorithm can faithfully reconstruct quantitative fate maps and

infer parameters of the progenitor states using barcode-inferred phylogenies. This finding

indicates that quantitative fate mapping is feasible despite errors inherent to phylogenetic

reconstruction. More broadly, these results show that quantitative fate mapping may be

accomplished with current lineage barcoding technologies.
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Figure 2.9. Successful quantitative fate mapping using barcode-reconstructed time-scaled

phylogenetic trees. (A) Scatter plots showing fate map topology reconstruction error as a

function of its imbalance in all the fate maps described in Figure 1 broken down by fate map
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size and experimental sampling strategy. Trendlines (LOESS) are shown. (B) Barplots showing

Spearman’s correlation between true commitment time and inferred commitment time of all

progenitor states in 2,500 simulated experiments for progenitor states that were adequately

sampled (TRUE) and undersampled (FALSE), broken down by fate map size and experimental

sampling strategy. Results using true simulated phylogenies (light blue) or Phylotime-inferred

phylogenies (dark blue) are shown. (C) Barplots showing Spearman’s correlation between true

population size and inferred population size of all progenitor states in 2,500 simulated

experiments for progenitor states that were adequately sampled (TRUE) and undersampled

(FALSE), broken down by fate map size and experimental sampling strategy. Results using true

simulated phylogenies (light blue) or Phylotime-inferred phylogenies (dark blue) are shown. (D)

Barplots showing Spearman’s the correlation between true commitment bias and inferred

commitment bias of all progenitor states in 2,500 simulated experiments for progenitor states

that were adequately sampled (TRUE) and undersampled (FALSE), broken down by fate map

size and experimental sampling strategy. Results using true simulated phylogenies (light blue)

or Phylotime-inferred phylogenies (dark blue) are shown.

In vitro validation of quantitative fate map inference using lineage barcodes

The above results prove in principle that lineage barcodes from a subset of terminal single cells

can be used to retrospectively reconstruct quantitative fate maps of their progenitors. These

quantitative fate maps not only define progenitor states based on their fate but also provide

information about the times they were present, their numbers, and their commitment biases.

This quantitative fate map reconstruction strategy constitutes a new method in the

developmental biology toolbox to assess developmental systems, such as mammals, wherein

multipotent progenitor populations dynamically commit to downstream fates. However, in silico

models inevitably make simplifying assumptions. Our models have assumed that cells
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proliferate at fixed intervals with constant rate and without death, or that all the lineage barcodes

can be measured without error. Therefore, we sought to validate our quantitative fate mapping

strategy on an in vitro experimental model. However, there is no known biological system where

these quantitative parameters for a set of progenitor states are established, making it difficult to

experimentally test this novel approach. To address this gap, we created an experimental

system in which quantitative fate map parameters can be controlled and then interrogated using

lineage barcodes. We established a clonal human induced pluripotent stem cell (iPSC) line with

32 hgRNA barcoding sites distributed in its genome as a non-tandem array (Supplementary

data 2.1). The line also includes doxycycline inducible Cas9 expression for barcoding activation

(see Methods). 24 of the 32 hgRNAs were active and accumulated random mutations upon

doxycycline induction (Figure S2.4).

Using this barcoding cell line, we designed a growing and splitting scheme in culture that mimics

the cell fate commitment hierarchies that we have so far only simulated in silico (Figure 2.10A).

In two experiments, starting from single cells, we initiated barcoding and passaged the growing

cell population into an increasing number of branches at known times, numbers, and split ratios

(Figure 2.10B, Figures S2.5,S2.6, see Methods). The experiments were similar except that in

one experiment (E1), progenitor state #3 (P3) was split two days before progenitor state 4 (P4),

whereas in the other (E2), P4 was split two days before P3. In effect, these experiments

represent quantitative fate maps with the last set of cultured populations as the terminal cells

and their prior ancestors as the progenitor populations. Finally, we sequenced barcodes from

192 single cells in each terminal population (see Methods). After data processing and filtering

out low quality cells, we obtained on average 158 cells per terminal population (Figure

S2.7A,B). E1 and E2 had medians of 27 and 26 hgRNAs detected per cell, respectively (Figure

2.10C). We imputed the alleles of undetected hgRNAs using the machine learning software

“xgboost” [58] (see Methods) As a reference, we conducted parallel simulations on the two fate
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maps that represent the ground truths, with cell division rates derived from the progenitor

population sizes at each split. The lineage barcodes are simulated with hgRNA mutation rates

and allele emergence probabilities obtained from time-course measurements and inDelphi

predictions, respectively. We then applied Phylotime and ICE-FASE to both simulated and

experimental data. The experimental data reconstructed the topology correctly in both E1 and

E2 (Figure 2.10D), and so we refer to the inferred states by their true state names hereafter.

The PScov ranged from 1.68 to 2.36 in all non-founder (P5) progenitor states, indicating that the

progenitor states were generally undersampled in these experiments. Nevertheless, in addition

to the correct topology, the inferred fate maps recovered the correct orders of fate commitment

in both experiments (Figure 2.10D). Moreover, the inferred maps successfully recovered the

difference between E1 and E2, which was the relative order of commitment for P3 and P4

progenitor states (Figure 2.10D). This result suggests that our strategy can identify specific

quantitative fate map differences in different systems. However, due to undersampling, we did

not expect to recover the exact times of commitment and progenitor population size.

Nevertheless, we wanted to evaluate if these estimates would approach the truth with increased

sampling. We thus subsampled the experimental data to lower numbers of cells per terminal

state, repeating the process 50 times at varying sample sizes. In parallel, we carried out

simulations with the same sample sizes. We then classified inferred fate maps based on their

topology and correctness of relative ordering (Figure 2.10E) and found that the fraction of

correct topologies and relative order of commitment increased in a similar fashion as more cells

were sampled in both simulated and experimental sets. Additionally, commitment times and

population sizes of P3 and P4 approached the actual amount with increasing sampling in

simulated and experimental sets alike (Figure 2.10F,G). Together, these observations validate

our barcoding models used for simulation and indicate that our quantitative fate mapping

strategy, ICE-FASE, and Phylotime are robust to the simplifying assumptions made in their
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models. These results also suggest that developmental differences, ostensibly caused by

genetic or environmental factors, can be detected using quantitative fate mapping.
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Figure 2.10. Validation of quantitative fate mapping strategy using an in vitro system. (A)

Implementation of the split-passage scheme in cultured iPSCs. (B) The two quantitative fate

maps that were implemented using the passage-split scheme in A. The red box highlights the

differences between progenitor state order. (C) Heatmap of lineage barcodes from hundreds of

sequenced single cells in each experiment are shown (E1 shown on the left, E2 on the right)

and used to reconstruct a time-scaled phylogeny which is shown to the left of the map. The

state of each cell is marked on the bar to the left of the phylogram and the color code is

according to panel B. (D) Reconstructed quantitative fate maps from E1 and E2 single-cell

barcode results. The red box highlights the differences between progenitor state ordering. (E)

Barplot showing the fraction of correctly ordered topologies among a number of subsampled

replicates in both simulation and experiment at a number of different sample sizes. (F) Boxplot

for comparing commitment time estimates and true commitment times for progenitor states 3

and 4 at different sample sizes in simulation and experiment. The yellow lines indicate the

ground truth. (G) The same comparison for progenitor population size. The yellow lines indicate

the ground truth.

Discussion

In this study, we set out to determine how cell phylogeny—as estimated by lineage barcoding

approaches—can be used to understand the dynamics of progenitor states that drive the

development of animals. This is a timely problem as advances in genome engineering and

sequencing technologies make it possible to estimate cell phylogeny with high throughputs

using synthetically-induced or naturally-occurring somatic mutations. However, phylogeny of

terminal cells is inherently stochastic and has a complex relationship with the fate of progenitor

states. Moreover, retrospective strategies can only sample a fraction of the cells in an organism

and are subject to inherent and complex errors in phylogenetic reconstruction.
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To address these challenges, we established a robust and practical approach for

phylogeny-based analysis of cell fate called quantitative fate mapping. This approach uses

terminal cells’ lineage barcode and type information to quantitatively characterize the progenitor

field—the collection of progenitor states [42]—that gave rise to them. Our approach first

estimates a time-scaled phylogenetic tree based on single-cell barcodes using the Phylotime

algorithm. It then combines the phylogenetic tree with the terminal fate of the sampled cells to

identify nodes associated with fate decisions and uses their timing to reconstruct an initial map

of progenitor states. Finally, it infers the progenitor state of all internal nodes of the phylogenetic

tree and uses these assignments to estimate the commitment time, population size, and

commitment bias of progenitor states (ICE-FASE algorithm). While other strategies have been

described to infer the lineage relationship of terminal cells in specific biological systems, our

quantitative fate mapping approach is unique in that it evaluates the dynamics of progenitor

states, can be applied to any retrospective strategy, and scales to large and complex fate and

lineage landscapes. Other strategies to infer progenitor dynamics from cell lineage have

focused on reversible cell state transitions or single progenitor states [59–61]. Moreover, we

have demonstrated that this strategy can tolerate the errors that are inherent to phylogenetic

reconstruction and used in silico experiments based on realistic barcoding parameters to

validate its performance. Importantly, we have used experiments with cultured stem cells to

show that our strategy is robust to our simplifying assumptions.

A key finding of our quantitative fate mapping strategy is that time-scaled

phylogenies—phylogenetic trees wherein branch length corresponds to actual time—can be

used as chronometers of progenitor population dynamics. The few currently available lineage

reconstruction strategies that can create time-scaled phylogenetic trees require NP-hard

searches in the tree space that become computationally untenable for adequately large

sampling depths. To reconstruct time-scaled phylogeny at scale, we developed the Phylotime
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algorithm which obtains the time since the most recent common ancestor of each pair of cells

with maximum likelihood estimation and uses the estimates to reconstruct time-scaled

phylogenies. Phylotime performs in polynomial time making it readily applicable to large trees

with thousands of terminal branches. Phylotime can be readily adopted for other systems where

multiple barcoding sites create recurring mutant alleles in parallel..

This work also establishes a foundation for obtaining meaningful estimates of fate dynamics in a

single animal from phylogeny of a small number of cells. Unlike the phylogenetic tree itself,

these estimates can be directly combined to create species-level insights or make comparisons

between different species. Critically, our results show that only when a progenitor population’s

progeny is adequately sampled can its existence, potency, and quantitative parameters be

meaningfully estimated from a single time-scaled phylogeny; estimates in severely

undersampled progenitor states are not meaningful and will not be improved by combining

multiple animals. To assess if estimates are robust, we defined progenitor population sampling

fraction as the fraction of the actual progenitor population whose descendants are observed

among terminal cells. We observed that statistically meaningful characterization typically

requires sampling fractions larger than 25%. To meet this criterion, the number of terminal

descendants that are sequenced should have the same order of magnitude as the progenitor

population size (PScov larger than 1). We propose this as a fundamental rule for retrospective

lineage analysis approaches. Accordingly, the growing capacity of single-cell sequencing

technologies bodes well for quantitative fate mapping since the average progenitor state is less

than 1,000 cells during and prior to organogenesis [44,62]. For larger progenitor populations the

sampling barrier may be overcome by strategically bottlenecking the number of sampled

progenitors. For example, in the neocortex where progenitors develop into known and limited

anatomical positions, bottlenecking can be accomplished by sampling a limited number of

cortical columns. Alternatively, prospective lineage tracing approaches may be employed to
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label a subset of a progenitor population, for instance with fluorescence, and only sample their

terminal progeny [61].

Sampling strategy is also a critical parameter in experimental design. Our results show that

analyzing a fixed number of cells from each terminal state can be more beneficial for

characterizing the topology of the fate map especially with more unbalanced topologies, and, to

a lesser extent, determining the commitment time of progenitor states. Sampling in accordance

with the abundance of each terminal state can be beneficial for determining commitment bias

and population size of progenitor states.

Quantitative fate maps obtained in this fashion represent a fate landscape that can capture

emergent features of the developmental system that gave rise to the sampled cells. They

complement the state manifolds obtained using direct molecular analysis of progenitor

populations (e.g., single-cell RNA sequencing) [62–64] in multiple ways. Firstly, they provide

information about the long-term fate of progenitors. Secondly, they can capture variation

between embryos of the same species. Finally, they enable analyzing progenitor populations

with respect to a specific subset of their progeny which may be of particular interest, for example

due to relevance to a specific genetic or environmental signal.

The limitations of this study are born out of the assumptions of its models. For instance,

progenitor states examined here differentiate into only two downstream states. While this

assumption does not alter the general conclusions of our study, our strategy can be modified to

accommodate other scenarios when necessary. A trifurcation of a progenitor state into three

downstream states, for example, can be resolved as two progenitor states with no distance

between them on the fate map. Additionally, our models assume parameters of cell division and

barcoding mutagenesis tailored to mouse development. These parameters can be adjusted to

analyze other organisms, other stages of development, and other developmental systems such

as organoids. Importantly, we have not made any assumptions about the mechanisms of
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differentiation and commitment (e.g., asymmetric versus symmetric cell divisions). As such, the

models are agnostic to these parameters and quantitative fate mapping performance may even

be enhanced should information about these mechanisms be incorporated. Another limitation of

the current model is that it does not consider cell death in progenitor or terminal populations.

However, cell death rates would be indirectly reflected in fate map parameters such as

population size. Moreover, given some priors about its rate, cell death rates can be incorporated

into the model.

In summary, this work provides a framework for high-throughput quantitative fate mapping that

can be used both with synthetic lineage barcoding technologies and with naturally occurring

somatic mutations. These quantitative fate maps describe progenitor populations that gave rise

to sampled cells and characterize their fate dynamics. Robust fate mapping relies on adequate

representation of each progenitor population among sampled cells as well as the ability to infer

phylogenetic trees with branch lengths that represent time. This work expands the scope of

barcoding approaches beyond lineage tracing to quantitative fate mapping which can allow for

the characterization of genetic and environmental effects during development.

Methods

Definition of quantitative fate map (QFM)

The quantitative fate map describes cell division and fate commitment dynamics at the cell

population level. At t = 0, there is one cell of the root (most potent) state. In between fate

commitments, at doubling times specific to each progenitor state, cells double to give rise to the

next set of cells at the next time point. At each time point when there is a fate commitment

event, cells transition to one of the two downstream states that are less potent. They do so by

first doubling, and have the resulting daughter cells randomly assigned to one of the less potent

states according to a commitment bias of . Suppose cells commit to downstream states PX𝑝 𝑁
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and PY. At the commitment time, the cells of the more potent type double once again and𝑁

cells become type PX and cells become type PY. Cells of types PX and PY[2𝑁𝑝]  2𝑁 − [2𝑁𝑝]

continue to divide with their respective doubling times until another fate commitment event

occurs or the target time of sample collection has been reached.

In summary, parameters of the quantitative fate map include: topology of fate commitment and

the following parameters for each progenitor state: doubling time, commitment time and

commitment bias. Progenitor population size, defined as the number of progenitor cells at a fate

commitment event can be derived from the fate map topology and doubling time. In this work,

our interest is in inferring fate map topology, along with commitment time, commitment bias and

progenitor population size for each progenitor state.

Definition of time-scaled phylogeny

A time-scaled phylogeny is defined as a rooted, ultrametric phylogenetic tree where branch

lengths are in the unit of time. Nodes in the time-scaled phylogeny represent cell division. The

root node represents the most recent common ancestor (MRCA) of all terminal cells. The length

of the root edge is the time until the cell division of the root MRCA. Cophenetic distance is

defined for each pair of terminal cells, which is the distance between the cells along the

phylogenetic tree. The depth of a node in the phylogenetic tree is defined as the distance of a

node to the root plus the length of the root edge. The ultrametric property requires that all tips

are equidistant from the root, that is, have the same depth. The total time of a time-scaled

phylogeny is defined as the depth of its tips.

Model of sampled cell phylogenies based on quantitative fate maps

To generate a phylogeny of a set of sampled cells based on the quantitative fate map, the

following steps were employed. First, the number of sampled progenitor cells at each time point

were drawn by propagating backward in time, from the terminal cells to the single zygote. At
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each step, from some time point to the next time point , suppose cells have divided into𝑗 𝑗 + 1 𝑛

cells, and cells were sampled from the time point . is defined as the number of2𝑛 𝑆
𝑗+1

𝑗 + 1 𝐶
𝑗 

merges among the sampled progenitor cells at time point , then it can be shown that𝑗 + 1 𝐶
 𝑗

follows a hypergeometric distribution with the following probability mass function (pmf):

𝑝(𝐶
𝑗 

=  𝑧 | 𝑆
𝑗+1 

=  𝑘 ) =  ( 𝑛
𝑧( ) 𝑛−𝑧

𝑘−2𝑧( ) 2(𝑘−2𝑧))/ 2𝑛
𝑘( ).

To get the number of sampled progenitor cells in generation , we compute .𝑗 𝑆
𝑗

= 𝑆
𝑗+1

− 𝐶
𝑗

Recursively drawing the number of sampled progenitor cells at the previous time point from the

above distribution, the progenitor sample sizes at each time point could be generated. At each

time point when one cell type commits to two different downstream types, the sample sizes of

the first time point of the downstream types were summed, which becomes the sample size of

the last time point of the more potent cell type. This process is repeated until the sample size of

the zygote is drawn, which is always one.

Next, the exact cell phylogeny is generated based on the progenitor sample sizes from the last

step. Given that there were merges at time point , cells are chosen at random𝐶
𝑗 

= 𝑆
𝑗

− 𝑆
𝑗+1

𝑗 𝐶
𝑗 

from cells at time point to be merged. Each merge gives rise to a sampled cell at time .𝑗 + 1 𝑗

This process allows cells to be recursively merged at each time from terminal population to the

zygote. The merges alongside their timing makes up a time-scaled phylogeny.

Realistic cell division rates during early mouse developement

Before t = 4.2 days, interdivision time was set to 0.6 days. After day 4.2 interdivision time was

set to 0.35 day. The number of cells resulting from these division rates were compared to the

previously reported numbers in [44]. Figure S2.1 compares the number of cells in our simulation

based on these doubling times to the estimates of the number of cells in a developing mouse.
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Construction of fate map panel

To generate a series of fate map topologies with varying levels of imbalance, 10,000 random

tree topologies were generated using rtree function from the “ape” package in R [65], and

computed for each category of 16, 32 and 64 terminal states the BSUM index of each tree.

Next, the trees were classified into groups with incremental values of BSUM 5. Finally, one tree

from each group was randomly selected. The most balanced tree was also appended to each

category. The most unbalanced tree for a fixed number of terminal states is pectinate, which is

included with this procedure.

Next, the timing of commitment events (bifurcations) given fate map topologies was generated.

To make commitment times comparable across the different categories of fate maps,

commitment events were spaced out across a common time window (1.8 - 9.8 days), subject to

the constraint of each topology. To do so, a random node order on the topology was first drawn.

Specifically, a permutation of the nodes of each daughter was generated at each bifurcation,

and subsequently combined [66]. The ordering ranked each commitment event from earliest to

latest. Next, the intervals between consecutive commitment events were taken as the

parameters, and we minimized the values of these parameters, subject to the constraints of fate

map topology and allowing for at least one cell doubling in between two consecutive

commitments, using linear programming optimization. The remaining duration of the interval in

addition to the minimum length was then distributed into each interval according to a symmetric

Dirichlet distribution with . Finally, the commitment biases in each fate map were drawnα = 5

from a Beta distribution with .α = β = 5

Fate map topology reconstruction with FASE

To determine if a node is a FAte SEparation (FASE), all unique terminal types of the progeny of

each node were listed. The node was classified as a FASE (for at least some pair of terminal
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types) if any of its daughter nodes had observed fates that are less potent. We identified FASE

nodes across all nodes in the phylogenetic tree. Next, for each FASE, all pairs of terminal states

that a FASE separated were listed. Now for a pair of terminal fates, the mean depth of the

FASEs that separated the terminal fates were computed, referred to as the FASE time. If no

FASE existed for a pair of terminal states, the FASE time was taken to be zero. Finally, the

distance between a pair of terminal states was equal to two times the difference of total time and

the FASE time. To get the topology from the full distance matrix, the upgma function from the

“phangorn” package [67] was applied, which is a wrapper of hclust in base R.

Node state assignment for time-scaled phylogeny

Each bifurcation in the fate map topology corresponds to the commitment event of a progenitor

state. One characteristic of the progenitor state is its potency: the set of terminal states it can

lead to. Each node in the time-scaled phylogeny also had an observed potency determined by

the set of states its progeny covers. The progenitor state of a node of the phylogeny was

assigned based on its potency: the node was assigned a state that had the same potency as

itself. If no such state exists in the fate map, then it was assigned a least potent state in the fate

map that was more potent than the node.

Commitment time inference with Inferred Commitment Events (ICE)

To infer commitment time of a progenitor state, a set of ICEs were identified. A node in the

time-scaled phylogeny was considered an ICE if both daughters had a different assigned state

than itself. Each ICE was associated with a progenitor state. The depths of all ICEs associated

with a state defined the ICE times. The mean of ICE times was used as an estimate for the

commitment time. In cases where inferred commitment times of the downstream state is earlier

than that of the upstream state, the commitment time of the downstream state was set to that of

the upstream state.
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Progenitor population size and commitment ratio inference

To identify the population present at the commitment time of a progenitor state, a set of

branches in the time-scaled phylogeny needed to be identified. First, a set of extended states

was defined. The extended states included the state itself, its upstream states up to root and its

downstream states down to the terminal states. Next, a state path was constructed for each

branch that spanned the commitment time of the progenitor state: the state path included a

number of connected states on the fate map topology, which started at the state of the incoming

node and ended at the outgoing node of the edge. A branch was considered associated with the

progenitor state if its state path overlapped with any of the extended states. To estimate the

progenitor population size, the collection of incoming nodes of the associated branches were

counted.

Next, to quantify the bias of a progenitor state’s commitment, each associated branch was

further classified into one of the three categories based on if it was committed to one or the

other immediate downstream states, or if it was uncommitted. The classification was made

based on the state path; if the state path covered one of the two immediate downstream states,

it was classified accordingly. Otherwise, it was classified as uncommitted. To  estimate the

commitment bias, the ratio of associated branches committing to one side versus the other was

used.

Estimation of mutagenesis parameters in MARC1 mice

To get posterior estimates of mutation rates of MARC1 hgRNAs (i.e., , rate of the Poissonλ

process), a grid search was conducted to match empirical distributions of mutated fractions

among simulated and observed data across a number of embryonic time points. Previously

reported hgRNAs formed three classes: the ‘slow’ class generated mutations on the order of

0.001 mutations/day, ‘mid’ class generated ~0.1 mutations/days, and fast class generated  ~1.0
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mutations/day during early mouse development. The ‘slow’ and ‘fast’ estimates expectedly had

large uncertainties as most observed fractions are close to 0 or 100 percent mutated.

Alternatively, a naive estimate of mutation rate can also be used. If mutated fractions were𝐹
𝑖

observed at time in animal for , then is a naive estimate.𝑇
𝑖

𝑖 𝑖 = 1, ..., 𝑁 λ
^

= 1
𝑁

𝑖=1

𝑁

∑ − 1
𝑇

𝑖
log(1 − 𝐹

𝑖
)

For mutant alleles of a barcoding site, estimating the probabilities of individual repair outcomes

created by Cas9 DNA break-repair (mutant emergence probabilities) was challenging. Normally,

the fraction of cells carrying a particular mutant allele among all cells with a mutated allele

(within-animal estimates) is a good estimator of the allele emergence probabilities. However,

when cells divide and mutate starting from a small field size, these fractions are largely affected

by the time of the mutagenesis events, as early events result in larger clones carrying the same

exact mutation. On the other hand, when hgRNA genotypes are observed for multiple animals,

the fraction of animals that carry a particular genotype, once normalized, and when the

probability is small, can be good estimates to the mutation probabilities (across-animal

estimates) (Figure S2.3B,C). In this case, the estimation accuracy depends on the number of

animals analyzed. From the MARC1 time course data, the within-animal estimates were

calculated for each animal and averaged, and the across-animal estimates were calculated

based on 173 embryos from 2 mouse lines. To get a more complete profile of possible mutant

alleles and their occurrence probabilities for each hgRNA, we adapted the inDelphi machine

learning algorithm to predict CRISPR-Cas9 mutation results [54] for hgRNAs. We observed that

the inDelphi-predicted probabilities agreed well with the across-animal estimates from MARC1,

but poorly with within-animal estimates (Figure S2.3B). Further, the fact that the majority of the

low probability mutations were not observed in any mouse suggests that the limited number of

hgRNA mutation events during mouse development does not sufficiently cover a large portion of
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the mutational profiles. These conclusions were further validated by simulating multiple animal

lineage barcode data based on inDelphi-predicted mutational profiles and comparing the within-

and across-animal estimates from the simulated data of the true parameters (Figure S2.3C).

InDelphi predictions of hgRNA allele emergence probabilities

The emergence probabilities of hgRNA mutant alleles were computed by inDelphi. inDelphi is a

machine learning algorithm to predict heterogeneous insertions and deletions resulting from

CRISPR/Cas9 double-strand break. [54] In this study, inDelphi model trained with the mouse

embryonic stem cell mutation dataset was used to predict the probabilities of hgRNA mutants

from MARC1 mice. The original 64 hgRNA sequences in MARC1 mice were used as inputs.

Since Cas9 nuclease cuts 3 bp upstream of the Protospacer Adjacent Motif (PAM, NGG

sequence)1, the possible mutations from the cut site at -3 bp from the PAM sequence were

computed. To take into account the repeated targeting of hgRNAs, inDelphi is first applied to

predict a set of first-round mutations. Subsequently, the resulting first-round mutations were

used as inputs to the next round of inDelphi predictions. Notably, only mutant sequences with

>16 bp protospacer and PAM were subject to the second round analysis as gRNA without >16

bp spacer sequence loses its activity [68]. Here, the probabilities of the next generation mutants

were computed by multiplying the probabilities of the mutant in the current round by the

probabilities of the mutant in the previous round. Repetitive application of inDelphi produces

exponentially growing numbers of potential mutant alleles. Therefore, the analysis was limited to

three cycles, resulting in first to third generations of mutants. The same mutation can be created

in multiple rounds, in such cases, the probabilities from multiple rounds were summed. Finally,

probabilities of all mutant alleles were normalized to have a sum of one.
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Simulation of lineage barcodes from time-scaled phylogeny

To simulate lineage barcodes mimicking barcoding in MARC1 mice, 50 hgRNAs that were of the

‘mid’ or ‘fast’ fast category were randomly sampled from the MARC1 pool of hgRNAs for each

simulation (Supplementary Data 2.4). The corresponding estimated mutation rates and

inDelphi predicted allele emergence probabilities were used as input to the mutagenesis model.

Phylotime for reconstructing time-scaled phylogeny from lineage barcodes

Our approach to reconstructing time-scaled phylogenetic trees for thousands of cells is based

on a maximum likelihood estimation of pairwise temporal distances between cells. Given a pair

of terminal cells (Figure S2.8), the branch length parameter was estimated, which is the time𝑡
𝑁

1

since the most recent common ancestor (MRCA) of the two cells. For a barcoding site with a𝑖

mutation rate of , and probabilities of mutating into alleles ,λ
𝑖 

𝑎
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identical alleles in both cells. The second term is the probability of observing the allele in each
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where denote the allele observed for and “0” denotes an unmutated allele.𝑀
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Because barcoding sites in our model were independent, the likelihood for the set of alleles

observed in all barcoding sites was then the product of their individual likelihoods:

(Eq. 2)𝑝
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To get estimates of pairwise distance, or equivalently, time until MRCA between two cells ( ),𝑡
𝑁

1

we first plugged in estimates of mutation rates and allele emergence probabilities. Here, naive

estimates of mutagenesis parameters were plugged in. The estimates of mutation rates were

obtained by , where is the mutated fraction and is the total time from theλ
^

=− 1
𝑇 log(1 − 𝐹) 𝐹 𝑇

start of the experiment to the sample collection. Mutant allele emergence probabilities were set

according to a uniform prior by default, that is for . Alternatively, better𝑎
𝑗 

= 1/𝐽 𝑗 = 1, ..., 𝐽

estimates such as the across-animal estimates or inDelphi predictions may be used and are
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expected to improve Phylotime performance. To get the optimal value of , the following score𝑡
𝑁

1

equation was solved using the Newton-Raphson method:

(Eq. 3)
𝑑log(𝑝
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 𝑁
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The distance between the two cells is . Once all pairwise distances were computed2 (𝑇 − 𝑡
 𝑁

1 

)

with the above method, we applied UPGMA hierarchical clustering [56] to derive a phylogenetic

tree wherein branch lengths represent actual time. We called this approach Phylotime.

Stem Cell Culture

Human induced pluripotent stem cells (iPSCs) from the EP1 line [69] were cultured in mTeSR1

(STEMCELL Technologies) on plates coated with Matrigel Growth Factor Reduced Basement

Membrane Matrix (Corning). Cells were maintained at 37°C and 10% CO2/5% O2 conditions with

daily media changes. When up to 80% confluent, cells were passaged by dissociation with

Accutase (Sigma Aldrich) and seeded in mTeSR1 media supplemented with 5 µM blebbistatin

(Sigma Aldrich).

Knock-in of an Inducible Cas9 Cassette

EP1 iPSCs were modified to express Cas9 protein under doxycycline induction. CRISPR/Cas9

was used to target and insert both a reverse tetracycline-controlled transactivator (rtTA)

construct and a tetracycline-dependent Cas9 construct into each of the two copies of the AAVS1

safe harbor locus. The following plasmids were used to generate the cell line:

Cas9/AAVS1 gRNA- modified pSpCas9(BB)-2A-Puro (PX459) V2.0 (Addgene Plasmid #62988

[70] with T2A replaced with P2A) with gRNA sequence caccGGGGCCACTAGGGACAGGAT
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Cas9 donor- modified Puro-Cas9 donor (Addgene Plasmid #58409 [71] with puromycin

resistance replaced with blasticidin resistance)

AAVS1 donor- AAVS1-Neo-M2rtTA (Addgene Plasmid #60843 [72])

Cells were grown to 80% confluency and then dissociated with Accutase for 13 minutes to

generate a single cell suspension. 50,000 cells were resuspended in mTeSR1 media with 5 µM

blebbistatin and seeded into one well of a 24-well plate coated in Matrigel. The following day,

350 ng of Cas9/AAVS1 gRNA plasmid and 500 ng each of Cas9 donor and AAVS1 donor

plasmids were combined and added to 48 ul Opti-MEM (Gibco). 2 ul of Lipofectamine Stem

Transfection Reagent (Thermo Fisher) were added to the transfection mix, which was then

vortexed and incubated for ten minutes at room temperature. The entire transfection mix was

added to one well of cells. Media was replaced the following day. 40 hours after transfection,

cells were transiently selected for 24 hours with 0.95 ug/mL puromycin, 5 ug/mL blasticidin, and

200 ug/mL G418 sulfate. Surviving cells were cultured to at least 30% confluency, and then

dissociated to a single cell suspension for clonal expansion. 500-1000 cells were seeded in one

well of a 6-well plate and cultured for 7-10 days before clonal colonies were picked and

screened for the intended insertions. PCR was performed with the following primers to confirm

knock-in of the Cas9 and rTTA constructs:

Cas9_F: CACCTTGTACTCGTCGGTGA

rtTA_F: GCTGATTATGATCCTGCAAGC

AAVS1_RHA_R: GGAACGGGGCTCAGTCTGA

Positive colonies were cultured and clonally expanded once more, with a second round of

colony picking and PCR screening to ensure clonality of the final cell line.
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Lentiviral Infection with an Array of hgRNAs

50,000 cells from the doxycycline-inducible Cas9 line were seeded into one well of a 24-well

plate. The following day, 300 ng of Super PiggyBac Transposase (SBI System Biosciences),

700 ng of PiggyBac-hgRNA L21 library ([31]), and 50 ng of PiggyBac-hgRNA L21 + puro library

were combined and added to 48 ul Opti-MEM (Gibco). 2 ul of Lipofectamine Stem Transfection

Reagent (Thermo Fisher) were added to the transfection mix, which was then vortexed and

incubated for ten minutes at room temperature. The entire transfection mix was added to one

well of cells. edia was replaced the following day. Transfected cells were selected with 0.95

ug/mL puromycin for one week.

Selected cells were dissociated to single cell suspensions, and 500-1000 cells were seeded in

one well of a 6-well plate and cultured for 7-10 days before clonal colonies were picked.

Colonies were screened for hgRNA insertions using qPCR. Genomic DNA from each colony

was amplified with the following pairs of primers:

Sox11_F: TGATGTTCGACCTGAGCTTG

Sox11_R: TAGTCGGGGAACTCGAAGTG

hgRNA_F: ATGGACTATCATATGCTTACCGT

hgRNA_R: TTCAAGTTGATAACGGACTAGC

For each colony, the cycle threshold value for hgRNA amplification was subtracted from that of

Sox11 amplification. Colonies with the largest cycle threshold value difference, indicating the

highest number of hgRNA insertions, were cultured and clonally expanded once more. Colonies

were picked one additional time to ensure clonality of the final cell line.
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Determining cell line hgRNA array identity and function

Cell line hgRNA identities and functions were determined by performing a doxycycline time

course experiment. Genomic DNA was extracted from cells after 0, 4, 8 and 11 days of

doxycycline treatment and Cas9 induction. hgRNA sequencing libraries were prepared,

sequenced, and analyzed as per the published pipeline [52]. The percent of reads for each

hgRNA identifier sequence that were mutated was calculated at each time point (Figure S2.4),

determining the relative activity for every hgRNA.

In vitro quantitative fate map experiments

Single cells from the Cas9-hgRNA iPSC cell line were FACS sorted into a 96-well plate coated

with Matrigel and containing mTeSR plus medium supplemented with 5 µM blebbistatin, 10%

CloneR (StemCell Technologies), and 1 µM Pifithrin-α hydrobromide (Tocris), 1X

Antibiotic-Antimycotic (Gibco), and 0.2 ug/uL doxycycline. Supplemented media was replaced

every other day. Wells were assigned to follow specific quantitative fate maps, and were

passaged at times, sizes, and ratios as determined by the fate maps. To passage small

numbers of cells, media was aspirated from wells and 30-100 ul of Accutase (depending on the

size of the well) was added and incubated for 8 minutes. The Accutase and cell suspension was

directly added to supplemented media in the wells the cells were passaged to. Passaged cells

were incubated for 2 hours to allow cells to attach to the Matrigel coating, after which a 50%

media exchange was performed to decrease the amount of Accutase remaining with the cells.

At the end of the experiments when the cells were passaged into their terminal wells,

doxycycline treatment was ended so that barcode editing would discontinue.

Determining progenitor population size from in vitro experiment

Brightfield images were taken of cells at P5, P4, and P3 for E1 and E2 before passaging

(Figure S2.6) To estimate the cell numbers at each state, images were analyzed in ImageJ.

90

https://paperpile.com/c/mUQGzy/yLZcX


Outlines were drawn for 5 different cells, and the average area noted. The total area of the

colony or colonies was then measured, and divided by the average cell area to estimate the

total number of cells present in each image.

Sequencing single cell lineage barcodes

Cells were dissociated into single cell suspensions and diluted in PBS pH 7.4. Single cells were

FACS sorted into 1 ul each of QuickExtract DNA Extraction Buffer (Lucigen). DNA was extracted

by incubating cells for 10 minutes at 65°C followed by 5 minutes at 98°C. Single cell barcode

sequencing libraries were generated using serial PCR reactions as per the published protocol

([52]) with each cell treated as an individual sample. Libraries were sequenced on a MiSeq

System (Illumina).

Data processing for in vitro experiment data

Identifier and spacer sequence pairs were extracted for each sample using the initial step

(BLAST search) detailed in the published pipeline. [52] For cells that were sequenced more than

once, pair counts for unique “identifier+spacer” were first merged for each cell. The merged data

were then provided as input to the remainder of the pipelines for sequencing error correction

and filtering.

A total of 32 hgRNAs were identified from the filtered results, each observed in more than 921

cells. Sequencing errors among identifier sequences were first corrected. For each identifier

sequence that was not one of the 32 hgRNAs observed in the unmutated sample, if the identifier

sequence was within a hamming distance of 1 to any true identifiers, its spacer counts were

merged with that of the known hgRNA’s. After the correction, no other identifiers other than the

32 known hgRNAs were observed in more than 3 cells.
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Spacer sequencing errors were corrected next. First, the error reads within each cell and

hgRNA combination were corrected. In one of our sequencing runs, one cycle of sequencing

returned ‘N’ for all spacer sequences. These errors were computationally corrected: if there

existed another spacer sequence for the same identifier and cell that was exactly the same

except for the ‘N’ base pair, the count of the error spacer with the ‘N’ base was merged with the

other spacer. Next, the spacer sequencing errors across different cells were corrected. Again,

the error involving ‘N’ base pairs were further corrected across the cells using the same criteria

as the within cell correction.

Each allele was labeled as unmutated or mutated by comparing the spacer sequences to that of

the reference sequencing result, that is, if a spacer sequence was observed in the parent for the

same identifier, it was labeled as unmutated. One identifier “GCCAAAAGCT” did not amplify in

the parent data, and the sequence

“GAAACACCGGTGGTCGCCGTGGAGAGTGGTGGGGTTAGAGCTAGAAATAG” was identified

as the unmutated spacer based on alignments of its different observed alleles.

Noisy reads were further filtered for cell+hgRNA combinations that had more than one spacer

observed. If the most abundant spacer was at least four times more abundant than all the other

spacer reads observed, only the most abundant spacer was kept. All the spacer counts with

fewer than five total reads were also excluded.

After processing, 1197 cell+hgRNA combinations out of the total 54,012 (2.2%) still had more

than one spacer observed. If more than two spacers were observed for more than two hgRNAs

in a single cell, the cell was likely a doublet. 33 such cells were identified and filtered. Each cell

had a median 25 out of 32 hgRNAs detected. Each hgRNA was detected in a median of 83% of

all cells (Figure S2.7). Before reconstruction, non-informative cells and hgRNAs were filtered

out. Any hgRNA with a diversity of one, that is, all cells in which an hgRNA was observed had
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the same allele, was considered non-informative and was excluded. An allele was considered

informative if it was mutated and observed in more than one cell in each group, and cells with

less than three informative alleles were filtered out. In all, 970 out of 1051 cells for 31 hgRNAs

passed the filters for E1 and 943 out of 1032 cells for 29 hgRNAs passed filters for E2.

Imputation of missing hgRNA alleles with xgboost

As an intermediate step, the missing alleles were imputed before ICE-FASE could be applied to

the in vitro data. First, the missing percentages of all hgRNAs were computed, and hgRNAs

were imputed one by one going from the one with fewest cells missing to the most cells missing.

To impute missing alleles for a single hgRNA site, an ‘xgboost’ model with multinomial softmax

objective was trained using all the observed cells as training [58]. The model classified each

missing cell as one of the observed alleles. The design matrix was constructed where each

column is a mutant allele observed in one of the other hgRNAs. The parameters ‘max_depth=4’

and ‘nrounds = 20’ were used for the xgboost models.

Simulation and ground truth fate map of in vitro experiment

To conduct simulations that best resembled the in vitro experiment, the effective cell division

rates during the experiment were first determined. First, the division rate of P5 was chosen so

that the population size at the first split is the most consistent with what was observed. Next, we

assumed that cells were split in proportion to the volume of the suspension as P5 was split into

P3 and P4. The division rate of P3 and P4 were set so that their respective population sizes at

the split agreed with what was observed. The division rate for P1, P2 and all the terminal cells

were set to once every 20 hours. The exact division rate chosen and the population size at each

stage are detailed in Figure S2.5. Notice that the commitment happens one cell division prior to

the well split, so the ground truth commitment time is one cell division earlier than the spit time,

and the progenitor field size is half of what was observed in the well at the split.
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To simulate hgRNA barcodes from ground truth fate map, mutation rates were estimated from

the time course data of bulk mutated fractions from the iPSC line. For mutation profiles,

predictions from inDelphi (Supplementary Data 2.3) were used.
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Appendix

Chapter 1 Supplementary Figures

Figure S1.1. Assay effect correction between human DNase-seq and ATAC-seq. (a) UMAP

embedding of human DNase-seq and ATAC-seq samples before and after assay effect

correction. Heart and intestine tissues are highlighted as examples, samples were observed to

clustered more according to tissue than according to assay. (b) (a) UMAP embedding of mouse
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DNase-seq and ATAC-seq samples before and after assay effect correction. No significant

change in cell type clustering were observed.
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Figure S1.2. Computation of gene expression conservation scores. (a) UMAP visualization of

integrated human and mouse RNA-seq samples. (b) Scaled homologous gene expression

signals for in-silico matched RNA-seq samples. (c-d) Distribution of GECO-V and GECO-B

scores (red and yellow) for homologous gene pairs versus the null distribution based on

randomly paired genes (gray).
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Figure S1.3. Visualization of Seurat integrated results with different conservation scores. top

48,160 features were selected ranking by (a) CACO-V (b) CACO-V-Manual (c) LECIF (d)

Shared (e) PhyloP4Way (f) PhastCons4Way or (g) PIB
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Chapter 2 Supplementary Figures

Figure S2.1. Comparison between the total number of cells in simulation and the reported

number of cells in early mouse embryogenesis. Dots represent the number of cells from [44].

The line represents the number of cells in the simulation. The two cell division rates used for

simulation are shown.
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Figure S2.2. Progenitor state coverage statistics (PScov) reveal robustness of obtained

quantitative fate map parameters. (A) Area Under the Receiver Operating Characteristics

(auROC) curve for progenitor state coverage shows a high sensitivity and specificity in detecting

adequately sampled progenitor states. CI: confidence interval. (B) Scatter plot of progenitor

state sampling fraction as a function of its PScov among 2,500 simulated experiments.

Progenitor states with sampling fraction better than 0.25, which produced robust estimates of

progenitor states, tend to have coverage above 2.5, as highlighted by the red box. Trendline

(LOESS) is shown in blue.
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Figure S2.3. Agreement between inDelphi-based allele predictions and those observed in

simulation and mouse experiments. (A) Posterior probabilities of mutation rates for all MARC1

hgRNAs which originate from either the PB3 founder mouse or the PB7 founder mouse (Leeper

et al., 2021) as shown in either dark navy or purple on the color bar to the right. Also shown is

the initial characterization label of the hgRNA as either fast, mid, or slow (Leeper et al., 2021).
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(B) Comparison of mutant allele probability estimates of our modified inDelphi algorithm to those

estimated from MARC1 mouse embryos by taking either abundance within the embryo when the

allele is present (right) or fraction of embryos that present the allele (left). Blue dots represent

predicted alleles that were observed in MARC1 embryos, gray ones were predicted by modified

inDelphi but not observed in embryos. Alleles observed in embryos but not predicted by

inDelphi, which were a very small fraction, are not shown. Gray line has intercept 0, and slope

1. (C) Comparison of true mutant allele probability as estimated (x-axis) with their average

observed fraction in simulated mouse embryos (right) and fraction of simulated embryos that

showed the allele (left). Blue dots represent alleles that were observed in simulated embryos,

gray ones were possible in simulation by not observed in simulated embryos. Simulations were

conducted 100 times for 9 time points. Gray line has intercept 0, and slope 1. Panels B and C

show that the estimator based on allele occurrences across multiple samples outperforms

average allele fraction in both simulation and MARC1 mouse data.
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Figure S2.4. Mutated fraction of hgRNAs over time in the iPSC line. Color shows the estimated

mutation rate for each hgRNA according to the key on bottom right. The list on top right denotes

the color of each hgRNA on the plot.
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Figure S2.5. Cell division rates and progenitor population sizes in the ground truth fate maps for

in vitro experiments. Numbers on the top right corner of each progenitor state show its total

population size estimated from bright field images. Numbers on the bottom of each terminal

state show its estimated population size from bright field images. The estimated doubling times,

which represent cell division rates, estimated from population size at different times, are shown

on the top right of each map.
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Figure S2.6. Bright field images showing the P3, P4, and P5 progenitor population size

estimates (columns) for E1 and E2 experiments (rows). Scale bars for P5 images are 200

microns. Scale bars for P4 and P3 images are 400 microns.
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Figure S2.7. Amount of undetected hgRNA alleles. (a) Boxplot showing number of hgRNAs

detected (out of the total 32) in each terminal well of each experiment. (b) Histogram of the

fraction of cells in which each hgRNA was detected.
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Figure S2.8. Diagram showing a two-cell phylogram illustrating Phylotime likelihood

computation. is the most recent common ancestor (MRCA) of terminal Cell1 and Cell2.𝑁
 1
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Table S2.1. hgRNA identifier and spacer sequences amplified from the iPSC line.
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Chapter 1 List of supplementary data

The supplementary data are available from the github repo:

https://github.com/wefang/hg38_mm10_OpenChromatinCnsv

Supplementary data 1.1. List of DNase-seq and ATAC-seq samples for human.

Supplementary data 1.2. List of DNase-seq and ATAC-seq samples for mouse.

Supplementary data 1.3. List of Anchors identified for chromatin accessibility data.

Supplementary data 1.4. GREAT analysis for conserved elements.

Supplementary data 1.5. List of H3K4me1 Histone ChIP-seq data for human.

Supplementary data 1.6. List of H3K4me1 Histone ChIP-seq data for mouse.

Supplementary data 1.7. Summary table for all alignable DHS.

Supplementary data 1.8. List of Human RNA-seq experiments.

Supplementary data 1.9. List of mouse RNA-seq experiments.

Supplementary data 1.10. List of anchors for RNA-seq data.

Supplementary data 1.11. Gene ontology analysis for genes with conserved expression.

Supplementary data 1.12. Summary table for all homologous gene pairs.

Supplementary data 1.13. List of manually matched samples.

Supplementary data 1.14. List of samples held out for validation.

Supplementary data 1.15. GWAS disease and trait associations with tissue or cell types.

Supplementary data 1.16. Matched labels for human and mouse sciATAC-seq data.
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Chapter 2 List of supplementary data

Supplementary data and raw data is available from the github repo:

https://github.com/Kalhor-Lab/QFM-Data

Supplementary data 2.1. All quantitative fate maps.

Supplementary data 2.2. Mutation rate estimates for hgRNAs in MARC1 mice and iPSC line.

Supplementary data 2.3. inDelphi predicted mutant allele probabilities for hgRNAs in MARC1

mice and iPSC line.

Supplementary data 2.4. Simulated phylogenies, single cell lineage barcodes, Phylotime

reconstructed trees, fate map and set of MARC1 hgRNAs used for all experiments.
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