
OVERCOMPLETE DEEP SUBSPACE
CLUSTERING

by

Jeya Maria Jose Valanarasu

A thesis submitted to Johns Hopkins University

in conformity with the requirements for the degree of

Master of Science in Engineering

Baltimore, Maryland

December, 2021

© 2021 Jeya Maria Jose Valanarasu

All rights reserved

Abstract

Deep Subspace Clustering Networks (DSC) provide an efficient solution to the

problem of unsupervised subspace clustering by using an undercomplete deep

auto-encoder with a fully-connected layer to exploit the self expressiveness

property. This method uses undercomplete representations of the input data

which makes it not so robust and more dependent on pre-training. To over-

come this, we propose a simple yet efficient alternative method - Overcomplete

Deep Subspace Clustering Networks (ODSC) where we use overcomplete

representations for subspace clustering. In our proposed method, we fuse

the features from both undercomplete and overcomplete auto-encoder net-

works before passing them through the self-expressive layer thus enabling

us to extract a more meaningful and robust representation of the input data

for clustering. Experimental results on four benchmark datasets show the

effectiveness of the proposed method over DSC and other clustering methods

in terms of clustering error. Our method is also not as dependent as DSC is on

where pre-training should be stopped to get the best performance and is also

more robust to noise.

Primary Reader and Advisor: Prof. Vishal M. Patel

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Tables v

List of Figures vii

1 Introduction 1

1.1 Subspace Clustering . 2

1.2 Deep Subspace Clustering . 2

1.3 Outline . 4

2 Related Works 6

3 Overcomplete Representations 9

3.1 Undercomplete Auto-encoder 9

3.2 Overcomplete Auto-encoder . 10

4 Overcomplete Deep Subspace Clustering 14

iii

4.1 Network Architecture . 14

4.2 Training Details . 16

5 Experiments 18

5.1 MNIST Dataset . 19

5.2 ORL Dataset . 20

5.3 COIL20 Dataset . 21

5.4 Extended YaleB Dataset . 21

6 Discussion 23

6.1 Ablation Study . 23

6.2 Reconstruction . 25

6.3 Robustness . 26

6.4 Number of Parameters . 27

7 Conclusion 29

Bibliography 30

iv

List of Tables

5.1 Comparison of clustering error with recent methods for the

MNIST dataset. 19

5.2 Comparison of clustering error with recent methods for the

ORL dataset. 20

5.3 Comparison of clustering error with recent methods for the

COIL20 dataset. 21

5.4 Comparison of clustering error with recent methods for the

Extended Yale B dataset. 22

6.1 Ablation study. The numbers correspond to the error in terms

of percentage. 24

6.2 Comparison of DSC and ODSC in terms of clustering error

percentage for MNIST data when added with different levels of

noise. The first row corresponds to the amount of noise added

to the data. 27

6.3 Comparison of DSC and ODSC in terms of clustering error

percentage while stopping pretraining at different epochs for

MNIST dataset. 27

v

6.4 Details of the DSC network. 28

6.5 Details of the ODSC network. 28

vi

List of Figures

3.1 Explanation of how receptive field changes in an (a) undercom-

plete network architecture, and in an (b) overcomplete network

architecture. 11

3.2 Feature maps captured using (a) Undercomplete network ar-

chitecture. (b) Overcomplete network architecture. The rows

represent the layer from which the feature maps were taken.

Row 1 corresponds to layer 1, Row 2 corresponds to layer 2 and

Row 3 corresponds to layer 3. 13

4.1 Overall approach for the proposed ODSC method. 16

6.1 Architecture for ablation study: (a) DSC - Undercomplete (DSC-

U). (b) DSC - Overcomplete (DSC-O). 24

6.2 (a) Input data. (b) Reconstructions using an undercomplete

deep auto-encoder. (c) Reconstructions using an overcomplete

deep auto-encoder. 25

vii

Chapter 1

Introduction

Clustering methods seek to segregate data into sub-groups (or clusters) which

are of similar characteristics. Recent technology advances have created a

tremendous rise in the amount of data resulting in larger datasets with many

objects, groups and dimensions. Performing clustering in high dimensional

data can be complicated as many of the dimensions are often irrelevant to

differentiate a data point from another. These dimensions can lead clustering

methods to unsatisfactory performance. One of the straightforward ways to

solve this issue of clustering high dimensional data is to remove the irrelevant

dimensions and focus on only the relevant dimensions. Clusters found in

lower dimensional space also tend to be more interpretable, allowing users to

have a better understanding and get better insight. Subspace clustering facili-

tates useful characteristics and has evolved into a useful clustering method

for high-dimensional data.

1

1.1 Subspace Clustering

Subspace Clustering [42] can be classically defined as a learning paradigm

which involves grouping a set of similar data points in an unsupervised way.

Let X ∈ RD×N be a matrix such that its columns are chosen from a union

of k subspaces of RD, ∪k
i=1{Si} of dimensions di where di << min{D, N},

then the task of subspace clustering is to categorize the columns of X into

their corresponding subspaces. Subspace clustering is widely popular for its

use in image clustering [6, 48], image segmentation [30, 47], motion segmen-

tation [7, 16], face clustering [12] and various other computer vision tasks.

As most of the data in real-world are high dimensional, there exists a re-

quirement to convert the high dimensional data into meaningful subspace

representations before clustering. A union of multiple subspaces can then

be clustered together into a single category. The use of multiple subspaces is

what differentiates subspace clustering from principal component analysis

(PCA) related methods where it is assumed that data is drawn from a single

low-dimensional subspace. Several methods have been proposed in the lit-

erature for solving the problem of subspace clustering using conventional

methods [7, 8, 26, 28, 29, 51, 52].

1.2 Deep Subspace Clustering

The first deep learning-based solution to the problem of subspace clustering,

called Deep Subspace Clustering Networks (DSC), was introduced in [15].

DSC achieved a huge boost in performance when compared to previous

2

conventional methods. DSC uses a convolutional autoencoder to learn a

non-linear representation of the data. The network has an undercomplete

(“encoder-decoder") architecture where the encoder gets trained to learn an

abstract low-dimensional representation of the input image while the decoder

learns to reconstruct the original image from those representations. This

deep representation learned by the encoder explicitly performs a non-linear

mapping of the data which helps in performing better subspace clustering.

Although DSC performs very well and has a huge margin of improvement

in terms of performance over the previous methods, there exists two main

issues with the method. This method is not so robust and its performance

drops considerably when there are potential degradations (i.e. noise) in the

data leading to noisy representations [59]. Another major issue with DSC

is that it depends a lot on where pre-training is stopped. Even if the pre-

training is stopped some epochs before or after the correct epoch where

clear reconstructions start to appear, the clustering becomes unstable and the

performance drops significantly.

In this thesis, we propose an alternative solution which improves the

performance while being able to obtain a robust representation and a sta-

ble training. We propose Overcomplete Deep Subspace Clustering Networks

(ODSC) where we make use of overcomplete representations which has greater

robustness in the presence of noise and has a flexibility to match structures

in the data. We induce overcomplete representations here by introducing an

overcomplete convolutional autoencoder which is trained in parallel to the

3

undercomplete autoencoder as in DSC. We then combine both the representa-

tions and use a self-expressive layer to learn pairwise affinities between the

data points. This simple trick of fusing both overcomplete and undercom-

plete representations make the training stable and not be over-dependent on

pre-training. We extensively analyze this issue by conducting various exper-

iments. The pre-trained ODSC autoencoder is also able to obtain far better

reconstructions compared to the pre-trained DSC autoencoder which only

shows that better representations are learned by the overcomplete network.

Even while maintaining the number of parameters to be the same as that of

DSC, we get a good improvement over the performance of DSC with added

advantages of more robustness and stable training. We evaluate our method

on four different benchmark datasets: MNIST [19], COIL20 [32], ORL [38] and

Extended Yale B [20]. Our experiments demonstrate that ODSC significantly

outperforms DSC and other conventional subspace clustering methods by a

large margin.

1.3 Outline

The rest of this thesis is organized into the following chapters:

In Chapter 2, we discuss existing works in the subspace clustering and

more recent works involving deep learning methods to solve subspace clus-

tering.

In Chapter 3, we present a background on overcomplete representations

and give details about undercomplete auto-encoder and the proposed convo-

lutional auto-encoder.

4

In Chapter 4, we propose a new network design and formally define

overcomplete deep subspace clustering networks for subspace clustering.

In Chapter 5, we study the performance of our proposed method in de-

tailed by performing experiments across four datasets.

In Chapter 6, we explore why the proposed method is better than the

previous methods by conducting an ablation study. We also discuss how our

method compares to previous methods in terms of number of parameters and

robustness.

Finally, we conclude the thesis in the Chapter 7. We briefly discuss the

takeaways from the thesis.

5

Chapter 2

Related Works

Subspace clustering was initially solved by methods which relied on linear

methods. These methods first construct an affinity matrix by measuring the

affinity for every pair of data points. Then methods like NCut (normalized

cuts) [39] or spectral clustering [33] were used on the affinity matrix. These

two problems are either solved sequentially [6, 8, 26, 28, 29] or in multiple

passes in an alternate manner [9, 11, 22, 23, 54]. An affinity matrix can be built

by exploiting the self-expressiveness property of data [6, 9, 13, 22, 26, 29], using

factorization methods [5, 14, 16, 31, 44] or by using high-order model-based

methods [4, 34, 37]. Out of these, self-expressiveness property-based methods

are more robust to corruption by noise. The property of self-expressiveness

corresponds to the ability to represent data points as a linear combination of

other points in the same subspace. Self-expressiveness can be formulated as

follows: Given a set of data points {xi}i=1,...,N which are taken from a collection

of linear subspaces {Si}i=1,...,N, define a matrix X whose columns are stacked

up with xi. The self-expressiveness property can then be represented as

X = XC, where C is the self-representation matrix. It has been shown that if

6

the subspaces are independent, then C is guaranteed to have a block diagonal

structure [13]. This means that if points xi and xj lie in the same subspace

then the corresponding coefficient cij in matrix C cannot be zero. To build an

affinity matrix for spectral clustering, matrix C can be used. This idea can be

mathematically represented as an optimization problem as follows:

min
C

∥C∥p +
λ

2
∥X − XC∥2

F s.t. (diag(C) = 0), (2.1)

where p = 0, 1 or nuclear norm. The diagonal constraint here avoids trivial

solutions for sparsity inducing norms. A major drawback of this clustering

approach is that this holds true only for linear subspaces. For solving cases

where data points do not lie in the linear subspace, several non-linear kernel-

based methods have also been proposed [35, 36, 46, 50] which require a pre-

defined kernel. However, these predefined kernels cannot be assured to

provide feature spaces that are well suited for subspace clustering.

Following the popularity of deep learning methods in various tasks of

computer vision and machine learning, deep learning was explored for sub-

space clustering in DSC [15]. DSC also introduced a novel self-expressive

layer for deep autoencoders so as to train an autoencoder such that its latent

representation is well-suited for subspace clustering. This idea of harnessing

the self-expressiveness property using a deep autoencoder resulted in a huge

boost in performance when compared to other conventional methods. Based

on this work, several extensions were proposed very recently exploring ad-

versarial learning [59], multimodal inputs [2], multi-level representations [17]

7

and self-supervised learning [53] for subspace clustering. Other spectral clus-

tering free techniques like distribution preserving DSC [58] and [55] have

also been proposed. More recently, works like Deep Latent Low-Rank Fusion

Network [57], Block-diagonal Adaptive representation [56], Multilayer Collab-

orative Low-Rank Coding Network [24] have also been proposed for subspace

clustering. In contrast to these methods, we focus completely on DSC and

show how it can be easily made very efficient and robust using overcomplete

representations.

8

Chapter 3

Overcomplete Representations

Overcomplete Representations [21] were first introduced as an alternative and

a more general method for signal representation. It involved using overcom-

plete bases (overcomplete dictionaries) so that the number of basis functions

is more than the number of input signal samples. This enables a higher

flexibility for capturing structure in data and thus it is shown to be more

robust. From [45], we can see that overcomplete auto-encoders acted as bet-

ter feature extractors for denoising. Interestingly, the idea of overcomplete

representations have been very much under-explored in deep learning.

3.1 Undercomplete Auto-encoder

All the major architectures widely used in deep learning use a generic “encoder-

decoder" architecture in which the encoder tries to extract an abstract version

of the input data and the decoder learns to take the latent low-dimensional

representation back to a high-dimensional output depending on the task at

9

hand. This generic "encoder-decoder" model is an example of undercom-

plete representations as the number of spatial dimensions is less in the latent

space when compared to the input data. This is accomplished in a deep con-

volutional undercomplete auto-encoder where the convolutional layers are

followed by max-pooling layers in the encoder and by upsampling layer in

the decoder. Max-pooling reduces the spatial dimensionality of the feature

maps while upsampling does the opposite. Note that this arrangement of an

undercomplete network’s encoder is what forces the initial layers of a deep

network to learn low-level features and the deep layers to learn high-level

features. This happens because the receptive field of the filters increases after

every max-pooling layer. With an increased receptive field, the filters in the

deep layers have access to more pixels in the initial image thus enabling them

to learn high-level features.

3.2 Overcomplete Auto-encoder

In this thesis, we propose using an overcomplete deep autoencoder, where the

encoder takes the input data to a higher spatial dimension. This is achieved by

using an upsampling layer after every convolutional layer in the encoder. Note

that, the dimensionality of the latent representations for any convolutional

network depends on the number of filters and the feature map size used

in a network. In [45], an overcomplete fully-connected network is defined

as a network which has more number of neurons for representation in its

hidden layers than in the initial layers. Similarly in this paper, we define an

overcomplete CNN as a network that takes the input to a higher dimension

10

in its deeper layers (spatially). Recently, overcomplete representations have

been explored for medical image segmentation [40, 41], image-deraining [49],

adversarial defence [27], pan-sharpening [3], and image reconstruction [10].

(a) (b)

Figure 3.1: Explanation of how receptive field changes in an (a) undercomplete
network architecture, and in an (b) overcomplete network architecture.

Replacing max-pooling layers with upsampling layers in the encoder

causes the receptive field size to be constrained in the deeper layers making

the deeper layers learn more fine details than the initial layers as seen in Fig

3.1. To understand this further, let I be the input image, F1 and F2 be the

feature maps extracted from the conv layers 1 and 2, respectively. The max-

pooling layer present in these conv layers of the undercomplete architecture

(as seen in Fig 3.1(a)) is the main reason why the receptive field is large in

the successive layers. Let the initial receptive field of the conv filter be k × k

on the image. The receptive field size change due to max-pooling layer is

dependent on two variables- pooling coefficient and stride of the pooling filter.

For convenience, the pooling coefficient and stride is both set as 2 (as in most

11

of the networks). Considering this configuration, the receptive field of conv

layer 2 (to which F1 is forwarded) on the input image would be 2 × k × 2 × k.

Similarly, the receptive field of conv layer 3 (to which F2 is forwarded) would

be 4 × k × 4 × k. This increase in receptive field can be generalized for the ith

layer in an undercomplete network as follows:

RF(w.r.t I) = 22∗(i−1) × k × k.

For the proposed overcomplete network, we have upsampling layer of

coefficient 2 replacing the max-pooling layer. As the upsampling layer actually

works exactly opposite to that of max-pooling layer, the receptive field of conv

layer 2 on the input image now would be 1
2 × k× 1

2 × k. Similarly, the receptive

field of conv layer 3 now would be 1
4 × k × 1

4 × k. This increase in receptive

field can be generalized for the ith layer in the overcomplete branch as follows:

RF(w.r.t I) =
(︃

1
2

)︃2∗(i−1)

× k × k.

This helps in the overcomplete network learn more low-level information

like edges and other finer details better. In Figure 3.2, we visualize some of the

feature maps learned by the undercomplete and overcomplete networks while

trained on the MNIST dataset. We can observe that the learned features in

the overcomplete network are more detailed and capture the edges perfectly

when compared to the features extracted from the undercomplete network.

Also, we can see that the features in the deep layers of an undercomplete

network are more coarse when compared to overcomplete network. In fact

12

the feature maps in the deep layers of an overcomplete network are more

fine detailed due to the large feature size. These differences show the superi-

ority of overcomplete representations from a convolutional neural network

perspective.

(a) (b)

Figure 3.2: Feature maps captured using (a) Undercomplete network architecture. (b)
Overcomplete network architecture. The rows represent the layer from which the
feature maps were taken. Row 1 corresponds to layer 1, Row 2 corresponds to layer 2
and Row 3 corresponds to layer 3.

13

Chapter 4

Overcomplete Deep Subspace
Clustering

Now that we have established how an overcomplete deep network can be

made to learn overcomplete latent representations of the data, we discuss how

it can be designed to solve subspace clustering.

4.1 Network Architecture

In ODSC, we propose using two encoders which get trained in parallel. One

is a generic encoder which has max-pooling layers after every convolution

layer. Another is an overcomplete encoder where we have an upsampling

layer after every convolution layer. For upsampling, after exploring both

learned convolution and using a bilinear interpolation method, we found

that both the methods resulted in equal performance. So, we chose to use

bilinear interpolation for upsampling in our architecture for simplicity. In the

latent space, we fuse both the latent representations before passing them to

the self-expressive layer. The latent overcomplete representations are passed

14

through a max-pooling layer before being fused with the latent representations

of the undercomplete encoder. The reason behind this fusion approach is that

even though overcomplete representations are better and more meaningful

for clustering when compared to the undercomplete representations, they are

relatively larger in the spatial sense and so we would need more parameters

in our self-expressive layer to accomodate them. This makes the training of

the network difficult as when we have more number of parameters we need

a lot of data to prevent overfitting. So, using fusion we are able to maintain

less number of parameters in the self-expressive layer as in DSC while also

being able to take the advantages of overcomplete representations. We pass

this latent space representation to the self-expressive layer.

The self-expressive layer is a fully-connected linear layer where the weights

of it correspond to the coefficients in the self-expression representation matrix

C. This layer learns the affinity matrix directly. For the decoder part, we

have a common decoder that consists of convolutional layers followed by

upsampling layers. We do not choose to use an overcomplete decoder here

because it leads to more parameters and does not contribute much in the

performance as the latent representations are what matters more for self-

expressive layer. The number of convolutional layers we use in both the

encoder and decoder varies with respect to the dataset. We decide on that

based on the total number of data available in each dataset. Using the affinity

matrix learned, we perform spectral clustering to get the clusters. Figure 4.1

illustrates the proposed network architecture and the ODSC method.

15

Pooling

+

Spectral Clustering

Affinity Matrix

Input Reconstruction

Decoder

Self-Expressive
Layer

Overcomplete Branch

Undercomplete Branch

Encoder

Figure 4.1: Overall approach for the proposed ODSC method.

4.2 Training Details

The autoencoder part of our network is initially trained separately for the task

of reconstruction in an unsupervised way. It is trained with a reconstruction

loss which is just the mean squared error (MSE) calculated between the recon-

struction by the autoencoder X̂ and the input image X. The reconstruction

loss Lr is formulated as follows:

Lr = ∥X − X̂∥2
F. (4.1)

We use Adam optimizer [18] with a learning rate of 0.001 to train the recon-

struction network for all the experiments. Note that the self-expressive layer

is not trained in this part. For subspace clustering, we start by loading these

pre-trained weights into the network. Then, we fine-tune the network by

16

using the self-expressive layer and a self-expressive loss term Lsel f , which can

be formulated as follows:

Lsel f (θ, C) = λ2∥C∥p +
λ3

2
∥Zθe − Zθe C∥

2
F, (4.2)

where θ represents the parameters of the network and θe specifically repre-

sents the parameters of the encoder. Z represents the latent representations

found in the self-expressive layer of the network and C represents the self-

representation coefficient matrix. We use L2 regularization on C (p = 2).

For training the network in the fine-tuning stage, we optimize the loss using

Adam optimizer on the combination of both of these losses. The final loss

LTotal is defined as follows:

LTotal =
λ1

2
Lr + Lsel f

LTotal =
λ1

2
∥X − X̂∥2

F + λ2∥C∥p +
λ3

2
∥Zθe − Zθe C∥

2
F, (4.3)

where λ1, λ2 and λ3 are the hyperparameters that control the amount of effect

each separate loss term can have over the total loss. These hyperparameter

settings are discussed in the next section separately for each dataset. The

whole training process is unsupervised as we do not make use of any labels.

We make use of only the input data and latent representations derived from the

input for training our network. After fine-tuning, we use the parameters of the

self-expressive layer to construct the affinity matrix for spectral clustering [33].

We follow the same heuristics used by SSC [7] for this step.

17

Chapter 5

Experiments

We perform all our experiments in Python using Tensorflow-1.14 [1] and eval-

uate our method using four datasets - MNIST [19], COIL20 [32], ORL [38]

and Extended Yale B [20]. Our method is compared with the following base-

lines: Low Rank Representation (LRR) [25], Low Rank Subspace Clustering

(LRSC) [43], Sparse Subspace Clustering (SSC) [7], Kernel Sparse Subspace

Clustering (KSSC) [36], SSC by Orthogonal Matching Pursuit (SSCOMP) [52],

Efficient Dense Subspace Clustering (EDSC) [13], SSC with the pre-trained

convolutional auto-encoder features (AE+SSC), EDSC with the pre-trained

convolutional auto-encoder features (AE+EDSC) and Deep Subspace Cluster-

ing (DSC) Networks [15]. In the following sections, we will discuss in detail

the hyperparameters we use for each dataset and the improvements we obtain

over the existing methods. The hyperparameters vary for each dataset because

the number of data in each dataset varies. Note that for fair comparison, in

all the experiments we either matched or used less number of parameters in

the self-expressive layer when compared to DSC by lowering the number of

filters used in a layer even though we use two encoders.

18

5.1 MNIST Dataset

The MNIST dataset has a collection of hand-written digit images from 0 to 9.

We randomly pick 100 images out of each class and use this collection of 1000

images for the task of subspace clustering. The size of the images is 28 × 28. It

can be noted that the MNIST dataset accounts for many deformations caused

by the style of hand-writing even among a single class making the task of

clustering difficult as it is an unsupervised setting. The network architecture

(ODSC) we use for this dataset has 2 convolutional blocks in the overcomplete

branch of encoder, 3 in the undercomplete branch of encoder and 3 in the

decoder. The details of what is present in each convolutional block were

explained in the previous section. The kernel size of the convolutional layer is

5 × 5 in the first layer and 3 × 3 in every other layer in the encoder and vice-

versa in the decoder. The number of filters is 20, 10 in the overcomplete branch

of encoder and 20, 10, 5 in the undercomplete branch in order, respectively.

In decoder, the number of filters are 5, 10, 20 in each convolutional block,

respectively. We set λ1 = 1.00, λ2 = 20.00 and λ3 = 0.1. The network is fine-

tuned for 100 epochs. The results in terms of clustering error are tabulated in

Table 6.2 where it can be seen that our ODSC method achieves an improvement

of 6.2 % when compared to DSC.

Table 5.1: Comparison of clustering error with recent methods for the MNIST dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC
Error 54.70 50.17 47.80 66.00 43.50 46.14 48.60 51.60 27.20 25.00 18.80

19

5.2 ORL Dataset

The ORL dataset has a collection of face images corresponding to 40 subjects

with 10 samples for each person. The whole collection of 400 images is used in

the experiment for subspace clustering. The images are resized to 32 × 32. It

can be noted that the ORL dataset consists of images under different lighting

conditions and with different facial expressions. Also, this dataset is relatively

smaller with just 400 images. The network architecture (ODSC) we use for this

dataset has 2 convolutional blocks in the overcomplete branch of encoder, 3 in

the undercomplete branch of encoder and 3 in the decoder. The kernel size of

the convolutional layer is 3 × 3 for all the convolution layers in both encoder

and decoder. The number of filters is 3, 3, and 6 for each block in encoder

and in 6, 3 and 3 for each block in the decoder in the same order respectively.

We set λ1 = 1.00, λ2 = 2.00 and λ3 = 0.1 . The network is fine-tuned for 800

epochs. The results in terms of clustering error are tabulated in Table 5.2 where

it can be seen that our proposed method ODSC achieves an improvement of

2.00 % compared to DSC.

Table 5.2: Comparison of clustering error with recent methods for the ORL dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC
Error 32.50 24.75 34.25 36.00 27.25 38.25 32.5 26.75 14.25 14.00 12.00

20

5.3 COIL20 Dataset

The COIL20 dataset has a collection of different object images. It consists of 20

classes and 1440 images. The images are resized to 32 × 32. The main chal-

lenge of this dataset is that different samples of the same object are captured

in different angles which makes even the images of the same object look very

different. The network architecture (ODSC) proposed for this dataset has 1

convolutional block in both the undercomplete and overcomplete branches of

encoder, 1 convolutional block in the decoder. The kernel size of the convolu-

tional layer is 3× 3 and the number of filters is 15 for all the convolution layers

in both encoder and decoder. We set λ1 = 1.00, λ2 = 1.00 and λ3 = 15.00. The

network is fine-tuned for 40 epochs. The results in terms of clustering error

for COIL20 are tabulated in Table 5.3. Our proposed method ODSC achieves

an improvement of 2.64 % over DSC for COIL20 dataset.

Table 5.3: Comparison of clustering error with recent methods for the COIL20 dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC
Error 14.86 12.40 24.65 45.90 14.86 31.01 31.25 22.08 6.95 5.14 2.5

5.4 Extended YaleB Dataset

The Extended YaleB Dataset has a collection of face images which are taken

under varying light conditions. It consists of 38 classes with 64 images per

class resulting in a total of 2432 images. The images are resized to 48 × 42 for

easy comparison with baselines. The network architecture (ODSC) we use for

this dataset has 2 convolutional blocks in the overcomplete branch of encoder,

21

3 in the undercomplete branch of encoder and 3 in the decoder. The kernel

size of the convolutional layer is 5× 5 in the first layer and 3× 3 in every other

layer in the encoder and vice-versa in the decoder. The number of filters is 2

across all the convolutional layers in the dataset. We set λ1 = 1.00, λ2 = 1.00

and λ3 = 6.30. The network is fine-tuned for 800 epochs. The results in

terms of clustering error are tabulated in Table 5.4. We note here that even

though ODSC achieves a better performance than other methods, this dataset

has already reached saturation in terms of performance so our margin of

improvement here is not as signifiacnt as that of the other datasets.

Table 5.4: Comparison of clustering error with recent methods for the Extended Yale
B dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC
Error 27.51 12.40 27.75 24.71 11.64 34.81 29.89 25.33 3.33 2.67 2.22

22

Chapter 6

Discussion

In this section, we first report a detailed ablation study and then discuss other

characteristics of the proposed method.

6.1 Ablation Study

For ablation study, we start with DSC which uses an undercomplete deep

auto-encoder. We represent this setup as DSC-U. Then, we change the deep-

autoencoder architecture to overcomplete and represent this setup as DSC-O.

The architectures of DSC-U and DSC-O are visualized in Figure 6.1. We then

show how our proposed method ODSC which has a fused encoder architecture

of both undercomplete and overcomplete encoder fares compared to the other

two. The results for all the four datsets can be found in Table 6.1. As can be

seen from this table, in general DSC-O performs better than DSC-U on all

datasets. The best performance is obtained when both DSC-U and DSC-O

are fused (i.e. ODSC). This experiment clearly shows the significance of the

proposed subspace clustering method.

23

Table 6.1: Ablation study. The numbers correspond to the error in terms of percentage.

Method DSC (U) DSC (O) ODSC
MNIST 25.00 21.60 18.8

ORL 14.00 12.75 12.00
COIL20 5.14 3.20 2.50
EYaleB 2.67 2.35 2.22

Input Reconstruction

Encoder

(a)

(b)

Encoder Decoder

Decoder

Figure 6.1: Architecture for ablation study: (a) DSC - Undercomplete (DSC-U). (b)
DSC - Overcomplete (DSC-O).

24

6.2 Reconstruction

In both DSC and ODSC, the networks are first trained for reconstruction.

Only from this process are the latent representations learned and are later

fed into the self-expressive layer during fine-tuning. It is evident that better

the latent representations, better the reconstructions. This is because only if

the latent representations are meaningful, the decoder will be able to make

a good reconstruction. In case of overcomplete architecture, as we project

the images to a higher dimension, the feature maps learn very fine details.

When visualized, these feature maps have a very good representation of the

input image (please refer Fig 3.2). Thus, for the overcomplete architecture we

were able to get far better reconstruction when compared to undercomplete

architecture. The reconstructions of both the types of architectures for the

MNIST and COIL20 datasets are visualized in Figure 6.2. From this figure, we

can see that the overcomplete network is able to achieve better reconstructions

and as a result the corresponding latent representations are more meaningful

than undercomplete representations.

(a) (b) (c)

Figure 6.2: (a) Input data. (b) Reconstructions using an undercomplete deep auto-
encoder. (c) Reconstructions using an overcomplete deep auto-encoder.

25

6.3 Robustness

The performance of DSC significantly depends on the right place where the

pretraining is stopped. The authors of DSC follow an approach of stopping

the pretraining process when the reconstructions start to look reasonable.

Stopping the training based on the reconstruction quality is not efficient.

Moreover, stopping pretraining a few epochs before or after the desired instant

leads to poor results in their case. A network with high dependence on this

would be unstable and inefficient during real-world implementation. To this

end, we show that overcomplete representations are more robust and so do

not depend much on things like where pretraining is stopped. Table 6.3 shows

the results for an experiment we carried out where we stopped the pretraining

at different epochs for both DSC and ODSC for the MNIST dataset. It can

be observed that the change in the performance for ODSC is minimal when

compared to that of DSC.

In real-world, data is often noisy. Hence we compare the performance

of different mehtods on noisy data. We add random noise to the MNIST

dataset and carry out clustering with both DSC and ODSC. The random noise

is added in different levels so as to study the increase in error for the methods

with respect to increase in noise. The results corresponding to this experiment

are tabulated in Table 6.2. It can be seen that ODSC gives a better performance

compared to DSC for all levels of noise. One major observation is that when

the noise level is taken from 0% to 50%, the error for DSC goes from 25.00 to

28.10, causing an increase of 3.10% error when the noise level is increased by

50%. However for the same increase in noise level, the increase in error for

26

ODSC is just 1.10%. This shows us that ODSC is more robust to addition of

noise when compared to DSC.

Table 6.2: Comparison of DSC and ODSC in terms of clustering error percentage for
MNIST data when added with different levels of noise. The first row corresponds to
the amount of noise added to the data.

Method 0% 10% 20% 30% 40% 50%
DSC 25.00 26.60 27.00 27.20 27.40 28.10

ODSC 18.80 19.60 19.70 20.00 19.90 19.90

Table 6.3: Comparison of DSC and ODSC in terms of clustering error percentage
while stopping pretraining at different epochs for MNIST dataset.

Pretraining Epoch 50 100 150 Avg
DSC 27.90 26.10 32.5 28.33

ODSC 21.50 18.80 21.80 20.7

6.4 Number of Parameters

Since ODSC has feature maps of a larger size when compared to DSC and also

has two branches in the encoder, it will contain more number of parameters if

we have the same number of filters as that of DSC. So, we reduce the number

of filters across each layer in ODSC to match the number of parameters of DSC.

We analyze this in detail for the architecture we used for ORL dataset as seen

in Tables 6.4 and 6.5. In Table 6.5, enc (U) corresponds to the undercomplete

branch of encoder while enc (O) corresponds to the overcomplete branch of

encoder. It can be seen that the number of parameters of ODSC is actually

less than that of DSC. From this, we show that ODSC giving better results

is not due to more number of parameters but due to the better properties

of overcomplete representations. Also, as we make sure that the number of

27

parameters in the self-expressive layer is the same for DSC and ODSC, so

that the change in parameters is not that different for any experiment. For

real-time usage, we note that we can have more number of parameters for

ODSC and might be able to get even better performance.

Table 6.4: Details of the DSC network.

layer enc-1 enc-2 enc-3 self-expressive dec-1 dec-2 dec-3 Total
kernel size 5 × 5 3 × 3 3 × 3 - 3 × 3 3 × 3 5 × 5 -
channels 5 3 3 - 3 3 5 -

Parameters 130 138 84 160000 84 140 126 160702

Table 6.5: Details of the ODSC network.

layer enc-1 (U) enc-2 (U) enc-3 (U) enc-1 (O) enc-2 (O) self-expressive dec-1 dec-2 dec-3 Total
kernel size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 - 3 × 3 3 × 3 3 × 3 -
channels 3 3 3 3 3 - 3 3 3 -

Parameters 30 84 84 30 84 160000 84 84 30 160510

28

Chapter 7

Conclusion

In this thesis, we proposed a new solution to the problem of subspace cluster-

ing using overcomplete representations. Using a combination of overcomplete

and undercomplete networks, we build an affinity matrix and perform spec-

tral clustering to get the clusters. We performed extensive experiments on

four benchmark datasets where our proposed method ODSC achieved better

results. Also, we show that the latent representations learned by our method

is more meaningful as we get better reconstructions and is also more robust to

noise. ODSC is also not that dependent on pre-training as DSC.

29

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Mahdi Abavisani and Vishal M Patel. Deep multimodal subspace cluster-

ing networks. IEEE Journal of Selected Topics in Signal Processing, 12(6):1601–

1614, 2018.

[3] Wele Gedara Chaminda Bandara, Jeya Maria Jose Valanarasu, and

Vishal M Patel. Hyperspectral pansharpening based on improved deep

image prior and residual reconstruction. arXiv preprint arXiv:2107.02630,

2021.

[4] Guangliang Chen and Gilad Lerman. Spectral curvature clustering (scc).

International Journal of Computer Vision, 81(3):317–330, 2009.

[5] João Paulo Costeira and Takeo Kanade. A multibody factorization

method for independently moving objects. International Journal of Com-

puter Vision, 29(3):159–179, 1998.

[6] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In 2009

30

IEEE Conference on Computer Vision and Pattern Recognition, pages 2790–

2797. IEEE, 2009.

[7] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm,

theory, and applications. IEEE transactions on pattern analysis and machine

intelligence, 35(11):2765–2781, 2013.

[8] Paolo Favaro, René Vidal, and Avinash Ravichandran. A closed form

solution to robust subspace estimation and clustering. In CVPR 2011,

pages 1801–1807. IEEE, 2011.

[9] Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan. Robust sub-

space segmentation with block-diagonal prior. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 3818–3825, 2014.

[10] Pengfei Guo, Jeya Maria Jose Valanarasu, Puyang Wang, Jinyuan Zhou,

Shanshan Jiang, and Vishal M Patel. Over-and-under complete con-

volutional rnn for mri reconstruction. arXiv preprint arXiv:2106.08886,

2021.

[11] Xiaojie Guo. Robust subspace segmentation by simultaneously learning

data representations and their affinity matrix. In Twenty-Fourth Interna-

tional Joint Conference on Artificial Intelligence, 2015.

[12] Jeffrey Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and

David Kriegman. Clustering appearances of objects under varying illu-

mination conditions. In 2003 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, 2003. Proceedings., volume 1, pages

I–I. IEEE, 2003.

31

[13] Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense subspace

clustering. In IEEE Winter Conference on Applications of Computer Vision,

pages 461–468. IEEE, 2014.

[14] Pan Ji, Mathieu Salzmann, and Hongdong Li. Shape interaction matrix

revisited and robustified: Efficient subspace clustering with corrupted

and incomplete data. In Proceedings of the IEEE International Conference on

computer Vision, pages 4687–4695, 2015.

[15] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid.

Deep subspace clustering networks. In Advances in Neural Information

Processing Systems, pages 24–33, 2017.

[16] Ken-ichi Kanatani. Motion segmentation by subspace separation and

model selection. In Proceedings Eighth IEEE International Conference on

computer Vision. ICCV 2001, volume 2, pages 586–591. IEEE, 2001.

[17] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar.

Multi-level representation learning for deep subspace clustering. In The

IEEE Winter Conference on Applications of Computer Vision, pages 2039–2048,

2020.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

32

[20] Kuang-Chih Lee, Jeffrey Ho, and David J Kriegman. Acquiring linear

subspaces for face recognition under variable lighting. IEEE Transactions

on pattern analysis and machine intelligence, 27(5):684–698, 2005.

[21] Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete

representations. Neural computation, 12(2):337–365, 2000.

[22] Chun-Guang Li and Rene Vidal. Structured sparse subspace clustering:

A unified optimization framework. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 277–286, 2015.

[23] Chun-Guang Li, Chong You, and René Vidal. Structured sparse subspace

clustering: A joint affinity learning and subspace clustering framework.

IEEE Transactions on Image Processing, 26(6):2988–3001, 2017.

[24] Xianzhen Li, Zhao Zhang, Yang Wang, Guangcan Liu, Shuicheng Yan,

and Meng Wang. Multilayer collaborative low-rank coding network for

robust deep subspace discovery. arXiv preprint arXiv:1912.06450, 2019.

[25] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi

Ma. Robust recovery of subspace structures by low-rank representation.

IEEE transactions on pattern analysis and machine intelligence, 35(1):171–184,

2012.

[26] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmen-

tation by low-rank representation. In Proceedings of the 27th international

conference on machine learning (ICML-10), pages 663–670, 2010.

[27] Shao-Yuan Lo, Jeya Maria Jose Valanarasu, and Vishal M Patel. Over-

complete representations against adversarial videos. In 2021 IEEE In-

ternational Conference on Image Processing (ICIP), pages 1939–1943. IEEE,

33

2021.

[28] Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. Correlation

adaptive subspace segmentation by trace lasso. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1345–1352, 2013.

[29] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and

Shuicheng Yan. Robust and efficient subspace segmentation via least

squares regression. In European conference on computer vision, pages 347–

360. Springer, 2012.

[30] Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of

multivariate mixed data via lossy data coding and compression. IEEE

transactions on pattern analysis and machine intelligence, 29(9):1546–1562,

2007.

[31] Quanyi Mo and Bruce A Draper. Semi-nonnegative matrix factorization

for motion segmentation with missing data. In European Conference on

Computer Vision, pages 402–415. Springer, 2012.

[32] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object

image library (coil-20). 1996.

[33] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering:

Analysis and an algorithm. In Advances in neural information processing

systems, pages 849–856, 2002.

[34] Peter Ochs and Thomas Brox. Higher order motion models and spec-

tral clustering. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 614–621. IEEE, 2012.

34

[35] Vishal M Patel, Hien Van Nguyen, and René Vidal. Latent space sparse

subspace clustering. In Proceedings of the IEEE international conference on

computer vision, pages 225–232, 2013.

[36] Vishal M Patel and René Vidal. Kernel sparse subspace clustering. In

2014 ieee international conference on image processing (icip), pages 2849–2853.

IEEE, 2014.

[37] Pulak Purkait, Tat-Jun Chin, Alireza Sadri, and David Suter. Clustering

with hypergraphs: the case for large hyperedges. IEEE transactions on

pattern analysis and machine intelligence, 39(9):1697–1711, 2016.

[38] Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochas-

tic model for human face identification. In Proceedings of 1994 IEEE

workshop on applications of computer vision, pages 138–142. IEEE, 1994.

[39] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.

IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–905,

2000.

[40] Jeya Maria Jose Valanarasu, Vishwanath A. Sindagi, Ilker Hacihaliloglu,

and Vishal M. Patel. Kiu-net: Overcomplete convolutional architectures

for biomedical image and volumetric segmentation. arXiv:2010.01663,

2020.

[41] Jeya Maria Jose Valanarasu, Vishwanath A Sindagi, Ilker Hacihaliloglu,

and Vishal M Patel. Kiu-net: Towards accurate segmentation of biomedi-

cal images using over-complete representations. In Medical Image Com-

puting and Computer Assisted Intervention–MICCAI 2020: 23rd International

35

Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23, pages

363–373. Springer, 2020.

[42] René Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(2):52–

68, 2011.

[43] René Vidal and Paolo Favaro. Low rank subspace clustering (lrsc). Pattern

Recognition Letters, 43:47–61, 2014.

[44] René Vidal, Roberto Tron, and Richard Hartley. Multiframe motion

segmentation with missing data using powerfactorization and gpca. In-

ternational Journal of Computer Vision, 79(1):85–105, 2008.

[45] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine

Manzagol. Extracting and composing robust features with denoising

autoencoders. In Proceedings of the 25th international conference on Machine

learning, pages 1096–1103, 2008.

[46] Shijie Xiao, Mingkui Tan, Dong Xu, and Zhao Yang Dong. Robust kernel

low-rank representation. IEEE transactions on neural networks and learning

systems, 27(11):2268–2281, 2015.

[47] Allen Y Yang, John Wright, Yi Ma, and S Shankar Sastry. Unsupervised

segmentation of natural images via lossy data compression. Computer

Vision and Image Understanding, 110(2):212–225, 2008.

[48] Ming-Hsuan Yang and Jeffrey Ho. Clustering appearances of objects

under varying illumination conditions, Sept. 5 2006. US Patent 7,103,225.

[49] Rajeev Yasarla, Jeya Maria Jose Valanarasu, and Vishal M. Patel. Explor-

ing overcomplete representations for single image deraining using cnns.

arXiv:2010.10661, 2020.

36

[50] Ming Yin, Yi Guo, Junbin Gao, Zhaoshui He, and Shengli Xie. Kernel

sparse subspace clustering on symmetric positive definite manifolds. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5157–5164, 2016.

[51] Chong You, Chun-Guang Li, Daniel P Robinson, and René Vidal. Oracle

based active set algorithm for scalable elastic net subspace clustering. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 3928–3937, 2016.

[52] Chong You, Daniel Robinson, and René Vidal. Scalable sparse subspace

clustering by orthogonal matching pursuit. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 3918–3927, 2016.

[53] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang

Zhang, Jun Guo, and Zhouchen Lin. Self-supervised convolutional sub-

space clustering network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5473–5482, 2019.

[54] Junjian Zhang, Chun-Guang Li, Honggang Zhang, and Jun Guo. Low-

rank and structured sparse subspace clustering. In 2016 Visual Communi-

cations and Image Processing (VCIP), pages 1–4. IEEE, 2016.

[55] Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang, and Hong-

dong Li. Neural collaborative subspace clustering. arXiv preprint

arXiv:1904.10596, 2019.

[56] Zhao Zhang, Jiahuan Ren, Sheng Li, Richang Hong, Zhengjun Zha, and

Meng Wang. Robust subspace discovery by block-diagonal adaptive

37

locality-constrained representation. In Proceedings of the 27th ACM inter-

national conference on multimedia, pages 1569–1577, 2019.

[57] Zhao Zhang, Jiahuan Ren, Zheng Zhang, and Guangcan Liu. Deep

latent low-rank fusion network for progressive subspace discovery. In

Proceedings of the International Joint Conferences on Artificial Intelligence,

2020.

[58] Lei Zhou, Bai Xiao, Xianglong Liu, Jun Zhou, Edwin R Hancock, et al.

Latent distribution preserving deep subspace clustering. In 28th Interna-

tional Joint Conference on Artificial Intelligence. York, 2019.

[59] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace

clustering. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1596–1604, 2018.

38

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Subspace Clustering
	Deep Subspace Clustering
	Outline

	Related Works
	Overcomplete Representations
	Undercomplete Auto-encoder
	Overcomplete Auto-encoder

	Overcomplete Deep Subspace Clustering
	Network Architecture
	Training Details

	Experiments
	MNIST Dataset
	ORL Dataset
	COIL20 Dataset
	Extended YaleB Dataset

	Discussion
	Ablation Study
	Reconstruction
	Robustness
	Number of Parameters

	Conclusion
	Bibliography

