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Abstract 
 

In a diverse range of environments, each replete with unique physical 

phenomena, humans are capable of acting and achieving with volition. To do so we 

capitalize upon structures that exist in the physical world, rapidly drawing associations 

and forming conceptual relationships between items and occurrences. In this dissertation 

work, I examine how structures in the domains of space and time impact the 

representations of information that we form and hold in working memory, in the service 

of goal-driven behavior. Three key findings arise from the studies I present herein.  

First, representation of spatial structures in working memory is supported by 

oscillatory neural activity that differs between individuals based upon biological sex. The 

peak of posterior alpha frequency oscillatory activity is modulated in support of 

visuospatial representation maintenance more so in females than males. Among males 

but not females, successful representation of relative spatial structure is positively tied to 

an individual’s peak frequency of alpha oscillatory activity.   

Second, the interaction of spatial and temporal structures across perceptual 

modalities impacts representation in working memory. Shared temporal structure 

between a stream of visual targets and a stream of sounds promotes representation of 

the spatial structure of those sounds. This integration of perceptual information occurs 

whether helpful or harmful, differentially impacting performance.   
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Third, the representation of spatial information in working memory is impacted 

by a particular form of temporal structure — rhythm. The presence of rhythmic versus 

arrhythmic temporal structure within a visuospatial stream does not increase the 

precision of working memory representation, but rather increases the speed with which 

representations may be formed. Rhythmic structure spontaneously and consistently 

facilitates working memory performance. Arrhythmic structure may hinder temporal 

processing but can be behaviorally compensated for with the application of controlled 

attention to the temporal domain. A novel paradigm, designed and utilized to study 

effects of rhythmic temporal structure upon visuospatial working memory is described. 
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Chapter 1 

Introduction 

Information is everywhere in our environment. Limitations in our capacity to 

attend and retain, constrain what information we can access. Conceptualizing and 

extracting structure from our environment enables us to reduce a sea of potential 

information into drops that we can make use of. Relationships and regularities are two 

types of informational structures we can utilize. In space, we can attend to relationships 

that are formed between objects, creating singular structure from disparate things. In 

time, we can attend to events that are discrete, coincidental, or sequential – structures 

that may shape the way we conceptually bind events together. When extracting 

information from our environment to accomplish an immediate goal, it may be the case 

that our propensity to attend to these types of structure can in some contexts facilitate 

our performance, yet in others lead us astray.  

Through a series of studies in this dissertation work, I explore the question of how 

different structures in and of information impact working memory performance. I 

constrain the scope of this examination to a small subset of informational structures that 
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may arise – namely those arising from relationships in space, regularities in time, and the 

intersection of the two. 

1.1 Background 

The human brain is a powerful organ. It has evolved such that complex forms of 

cognition arise from the multitude of ongoing operations it carries out. The joint 

processes described holistically as “working memory,” are of particular importance as 

they enable us to achieve goal-driven behavior. Key among these processes are our 

abilities to control and constrain what we focus upon, and to manipulate, convert, and 

update what we are holding in mind. These are general descriptions of processes that we 

are capable of - which may be applied given a broad range of inputs. Of interest, though, 

is how the structure of those inputs may impact the way these processes are carried out. 

Information exists “out there” in the world. The activation of specific neural circuitries 

and networks, and the result of the computations they carry out, are what enable that 

information to be “represented” within the brain (Marr, 1982). It may be the case, that 

where we focus our attention, and what representations we form, are impacted by the 

structures of, and in, the information available to us.  

In the physical world, two (among many) dimensions in which information may be 

structured are those of space, and time. Proximity and positioning in space, for example, 

each provide cues as to whether connections or relationships may be present between 

seemingly disparate things. Cues such as these may be processed in a seemingly 

automatic fashion, with or without conscious effort or awareness (Morton et al., 2017). 
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Similarly, in the ever-progressing stream of experience, proximity and position in time 

may serve as cues as well (Michalka et al., 2015; Rohenkohl et al., 2014). 

A defining feature across various working definitions, models, and theories of 

working memory is its limitation in capacity (Courtney, 2004; Cowan et al., 2005; Kane et 

al., 2004; Oberauer, 2002). Evidence has pointed towards two primary factors for this 

limitation. The first arises from the focal nature of attention - a key mechanism of working 

memory (Cowan et al., 2005; Oberauer, 2019; Shipstead et al., 2012). The second from 

the neural mechanisms by which information is temporarily maintained in the brain (de 

Vries et al., 2020; Lisman & Idiart, 1995; Liu et al., 2020; Miller et al., 2018; Stokes, 2015). 

These subjects are reviewed in detail in Chapter 2. 

What we “hold,” or represent, in working memory, is strongly impacted by what 

we attend to (Oberauer, 2002). Some information we choose to attend to – it may be 

aligned with our goals; other information we cannot help but attend to – it may claim our 

attention in spite our goals  (Egeth & Yantis, 1997). How we represent information in 

working memory, may result from the use of automatic, conscious, and unconscious 

strategies (Courtney et al., 1998). Neural processes that support either filtering relevant 

from irrelevant information, or amplification of some representations and suppression of 

others, for example, are critical and occur automatically (Desimone & Duncan, 1995; Ikkai 

et al., 2014). Consolidating, chunking, converting, and associating separate pieces of 

information, are all descriptors of strategies we have conscious access to, that enable us 

to maximize what we store in a limited capacity system (Cowan, 2001; Gonthier, 2020; 

Miller, 1956).  
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It may be the case that different structures of and within information, impact both 

what we represent and how we do so. In the series of studies described herein, I present 

evidence in support of this indeed being the case. 

 

1.2 Overview of Studies 

1.2.1 Sex differences in the representation of structure  

In the first study I present, “Modulation of Peak Alpha Frequency Oscillations 

during Working Memory is greater in Females than Males,” focus is placed upon the 

question how? Specifically, how does the automatic processing of different structures in 

spatial information differ across individuals?  

Oscillatory neural activity within the alpha range of frequencies, has been well tied 

to the suppression of irrelevant information during working memory (Blacker et al., 2016; 

Ikkai et al., 2014). Further, the specific frequency of peak activity within the alpha range, 

has been directly tied to working memory performance (Klimesch et al., 1993, 2003). 

During the course of a lifespan from early development through aging, different 

trajectories in the maturation, stabilization, and decline of peak alpha frequency have 

been documented between females and males (Aurlien et al., 2004; Chiang et al., 2011). 

Sex-specific cyclical variation in peak alpha frequency among females, has also been well 

described (Bazanova et al., 2014; Wuttke et al., 1975).  

These prior findings led to the hypothesis of this study: alpha frequency activity 

differentially supports working memory for different structures of information based 



5 
 

upon sex. Utilizing an in-laboratory dataset in which participants performed a series of 

visuospatial working memory tasks while undergoing electroencephalography (EEG) 

recording, I found support for this hypothesis. Females and males were equally adept in 

task performance, with similar levels of accuracy in representing different spatial 

information structures. How task performance was supported, however, differed. Among 

females, considerable modulation of peak alpha frequency in support of task 

performance was observed. Among males, peak alpha frequency was particularly tied to 

working memory performance for relational structures between spatial objects. These 

findings were published (Ghazi et al., 2021) and are presented in Chapter 3. 

1.2.2 Bimodal structure impacts representation 

In the second study I present, “Bimodal Spatial and Temporal Influences on 

Working Memory Performance,” I investigate the manner in which structures that are 

situated not just in space, but also in time, can impact working memory performance. In 

this study and the next, temporal structure is parameterized by way of manipulating 

information occurrences within dynamic streams that unfold over time. In the previous 

study, evidence was presented for sex differences in the neural implementation of 

representing structure. This study marks a shift in focus towards examination of spatial 

and temporal structures impact on behavior.  Specifically, when presented with multiple 

sources and structures of information that seemingly interact, what can we learn of the 

representations gated into working memory by analyzing resulting behavior?  

What we attend to has an impact on what representations we will hold in working 

memory (Oberauer, 2002; Shipstead et al., 2012). Even if engaged with and focused on 



6 
 

performing visual task, sounds can capture and draw our attention involuntarily (Hughes, 

2014; Marsh et al., 2020). This draw is not always negative, however. The effects of 

processing seemingly uninformative sounds are sometimes beneficial – speeding up 

performance, for example (Van der Burg et al., 2008). This type of positive effect may 

arise from specialized cells and networks in the brain that rapidly process spatial and 

temporal conjunctions across multiple sensory modalities (Knudsen, 2011).  The 

processing of conjunctions across modalities, can also facilitate formation of more holistic 

representations of information (Kondo et al., 2017). 

In this study it was hypothesized that the intersection of structures in bimodally 

perceived domains of space and time have differential effects on working memory 

performance. When bimodal structures coincide and provide information in compliment 

to one another, representation in working memory will be facilitated. When structures 

coincide but are in conflict, representation will be negatively impacted. This hypothesis 

was tested by presenting bimodal stimulus streams that varied in temporal synchrony and 

spatial congruence to participants and comparing the resulting outcome on their 

behavioral performance.  As predicted, both positive and negative effects in task 

performance were observed, with evidence pointing towards the integration of bimodal 

information having impacted representation. Interestingly, however, negative effects 

were of greater magnitude than positive effects, indicating distraction may have had a 

substantial role in this outcome. This study and its findings are presented in Chapter 4. 
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1.2.3 Representation in the face of rhythm 

The final study presented herein is “Spatial Working Memory in the Presence or 

Absence of Visual Rhythm.”  

It has been well demonstrated via studies of attention and perception, that 

individuals attend to the temporal informational structure that is naturally present in 

rhythmic stimuli (Breska & Deouell, 2014; Buzsáki et al., 2013). Temporal informational 

structures of this form contribute both to prediction and expectation. Irrespective of 

specific interval durations, each can facilitate perception and detection of stimuli that 

occur when predicted or expected (Breska & Deouell, 2014; Nobre & van Ede, 2018).  

While behavioral effects driven by prediction and expectation arising from 

temporal structure have been thoroughly described in literature focusing solely on 

attention, far fewer studies have been reported that examine their impact on working 

memory.  This is interesting given that it is not uncommon for working memory paradigms 

to utilize temporal presentation parameters that are, indeed, rhythmic (e.g. Berch et al., 

1998; Corsi, 1972; Gmeindl et al., 2011). In this study, a novel visuospatial working 

memory paradigm was designed to text explicitly if, and if so, how, rhythmic temporal 

structure impacts working memory performance. 

Two separate experiments were performed in which behavioral performance of a 

visuospatial working memory task was assessed for streams of spatial information 

presented with either rhythmic, or arrhythmic, temporal structure.  I present evidence 

that rhythmic and arrhythmic temporal structures can impact the timing of 
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representation accessibility in visual working memory. The observed effects, however, 

and the degree to which they were reduced based upon attention being explicitly applied 

to the temporal domain, indicate that the absence of rhythm can be overcome by 

processes of control. This study and its findings are presented in Chapter 5. 
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Chapter 2 

Human Working Memory 

 

2.1 Introduction 

Humans have remarkable abilities, empowered by the brain. Not only can we 

extract and distill information from without and within, we can convert and manipulate, 

analyze and examine, retain or discard. Conceiving of the brain as a highly complex and 

sophisticated organ that processes information, we can describe some of the 

computations that are carried out by the brain as processes that form “representations” 

of information (Marr, 1982). Once formed, representations can be stored, accessed, and 

further processed – abilities which give rise to complex thoughts and behaviors. While 

potential information in the environment takes many forms, as humans we have access 

to only a constrained range. Beyond limitations arising from what our sensory systems 

are capable of detecting, there are further bottlenecks of access through which some, but 

not all, information may pass. Some information may be prioritized, some discarded, 

some focused upon, some passed over entirely. The need or motivation to accomplish or 

perform can impact which information is prioritized for further processing and 

representation. In turn, the representations we ultimately form, store, and access, impact 
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our future thoughts and behavior. Because our final output of thought and behavior is 

contingent upon what subset of information passes through these “bottlenecks” to 

ultimately be represented within the brain, it is important to understand how and 

whether information itself impacts this process.  

To reason about links between input information and output human behavior, it 

is necessary to understand the cognitive processing that occurs between input and 

output. In other words, to reason about why a particular behavioral outcome resulted, it 

would be useful to consider the processes and processing leading up to it. Critical among 

the set of processes in the brain that enable access to and utilization of representations 

in the service of complex thought or behavior is working memory. In this review, then, 

while other cognitive processes are also considered, processes related to working 

memory are the subject of central focus. Of particular relevance to this dissertation are 

the cognitive control processes and properties of the stimulus input that facilitate the 

selection of the specific information allowed access to working memory, and its 

maintenance or updating.  

 

2.2 Models of Working Memory 

Working memory is a descriptive but singular term that encompasses a set of 

cognitive processes and mechanistic operations carried out within the brain (Miller et al., 

2018). These processes include dynamic processing and conversion of information 

representations and the transient “short-term” storage of them (Courtney et al., 1997; 
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Cowan, 2008; Goldman-Rakic, 1995; Oberauer, 2002). At any given moment in the awake 

and conscious individual it might seem that a myriad of ongoing conversions from 

information as it exists in the environment, to information as represented by the brain, 

are taking place. In reality, only a small subset of the information available in our 

environment receives more than brief cursory neural processing (Kondo et al., 2017; 

Pressnitzer, 2011). Once represented in the brain, however, that information can then be 

both consciously and unconsciously made use of; it can be considered, manipulated, 

incorporated, or simply held to aid in the accomplishment of a goal. 

Human memory has been the subject of scientific study for well over a century, 

but the term working memory wasn’t coined and explicitly studied until about 60 years 

ago (Baddeley, 2010). Various models and conceptions of working memory began to be 

put forward in the 1960s and have continued to be reworked and adapted since. In 1968, 

Atkinson and Shiffrin first described an individual’s “short-term memory store” as their 

working memory - a receiver of informational inputs from external sensory, and internal 

long-term memory sources. They proposed a framework within which targeted research 

questions could be built, and indeed were in the years that followed. At the core of their 

framework was the conception that all types of memory operated within two key 

dimensions – storage and control. While mechanisms of storage were deemed fixed and 

permanent, control processes were deemed dynamic and changing. Control processes 

were responsive to the goals of an individual, the instructions they followed, and the 

history of personal experience from which they might learn, adapt, and modify their 

behavior (Atkinson & Shiffrin, 1968). In this early conception, based upon a then limited 



15 
 

body of research, control and storage seemed woefully entangled. In the years and 

decades to follow, these two fundamental dimensions of memory would be teased apart 

and themselves subdivided into constituent mechanisms via cognitive and neuroscientific 

models. 

2.2.1 Cognitive Models 

In 1974, a multicomponent model of working memory was proposed (Baddeley & 

Hitch, 1974). Following Atkinson & Shiffrin, this model also gave a prominent role to 

attentional control processes in the short-term handling of information. Indeed, at visual 

center in the multicomponent model is a “central executive” that directs, allocates, and 

controls attentional processing. Unique in their model, at the time, was the designation 

of specific components for the handling of information dependent upon modality. For 

example, people often engage in an internal repetition or rehearsal of verbal information 

they are trying to hold in mind. The “Phonological loop” component was conceived of as 

being dedicated to the processing and temporary storage of auditory or verbalizable 

information; a system in which internal verbal rehearsal took place. A separate “Visuo-

Spatial sketch pad” component was proposed as a system where processing and 

temporary storage of primarily visual information occurred. Whereas previously, working 

memory processes might have simply been conceived of as part of a unitary short-term 

memory system, this model accounted for findings in which the amounts of information 

and means of storing it differed based upon information modality (Cowan, 2008). It was 

apparent that all information was not being processed in the same way - working memory 

performance seemed to vary based upon information type. 
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Following the multicomponent model, an Embedded Processes model of working 

memory was described (Cowan, 1999). In this conception, processes of attention and 

long-term memory were assigned such critical roles in the working memory system, that 

storage mechanisms of working memory seemed to be an aspect of long-term memory 

rather than something separate from it. This view, or simply the language describing it, 

were modified to later clarify Cowan’s conception of working memory as encompassing 

short-term memory storage coupled with the processing of those representations being 

temporarily stored (Cowan, 2008). 

The concentric model of working memory, proposed not long after by Oberauer 

(Oberauer, 2002), built upon Cowan’s conception, further centralizing and highlighting 

the role of attention. In the concentric model, working memory is described as a system 

of simultaneous storage and processing, whereby processing of only a small selection of 

representations at a given time can occur. This distinction was supported by empirical 

findings indicating that storing information in memory does not necessarily impact 

separate concurrent processing, but active processing of information already stored, 

does. Hence, passive storage versus active processing of that which is already stored, have 

distinct impacts. In this model a near infinite quantity of “inactive” representations can 

be housed in a long-term memory storage. A small subset of stored representations 

(approximately four) can be “activated” such that they are rendered accessible for 

processing. Of those accessible representations, only a single one of them can occupy the 

central “focus of attention” at a given time. The focus of attention enables intensive, 

conscious processing, to be carried out. With such strong emphasis placed on accessibility 
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for processing in this model, the role of “selection” of representations strongly impacts 

the outcome of working memory processing.  

2.2.2 Neuroscientific Models 

During the same span of time within which the above cognitive models were 

developed, neuroscientists were attempting to reveal the neural processes and pathways 

of working memory. In 1995, Patricia Goldman-Rakic reviewed findings then to date of 

the cellular ensembles and subregions in pre-frontal cortex (PFC) shown to have a critical 

role in working memory processes. It had been demonstrated that circuits involved in 

working memory were comprised of both excitatory and inhibitory neurons, and that 

dopamine might be an important neurotransmitter in initiating circuit level activity 

(Goldman-Rakic, 1995). At this time significant advances had been made in mapping both 

local circuits and long-range pathways between cortical and sub-cortical regions of the 

mammalian brain in non-human species (reviewed in Deacon, 1989). Insights gained from 

studies in humans and non-human primates in particular pointed towards the significance 

of PFC as a controller and coordinator in working memory processing. 

Informed by these findings, and soon thereafter, a theoretical framework 

formalizing the critical role of PFC in cognitive control was presented (Miller & Cohen, 

2001). That prefrontal cortex was anatomically situated to be extensively and vastly 

connected with other brain regions, coupled with behavioral and neuroimaging findings, 

pointed toward its critical role in cognitive control processes. As working memory 

specifically involves control over stored information, this framework has direct 

application. In the Integrative Theory of Prefrontal Cortex Function (Miller & Cohen, 2001), 
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a primary function of PFC in control processes related to working memory is to maintain 

goal representations. Maintenance of an abstract type of representation such as a goal 

was conceived to be carried out via combined mechanisms that allowed both flexibility in 

formation and updating of goals, as well as stable holding of them until a desired outcome 

was achieved. The numerous dopamine delivery pathways to PFC provided a mechanism 

by which circuits might be “opened” to instantiate a representation, and “closed” again 

to maintain it. This opening and closing was described as “gating” of information, and this 

terminology used explicitly in subsequent “Gating models” of working memory (Badre, 

2012; O’Reilly & Frank, 2006).  

Though some areas in PFC had been found to be generally active during control 

and maintenance processes (e.g. Cohen et al., 1997; Courtney et al., 1997), some regions 

within PFC were also found to be selective for specific types of representations. Dorsal 

and ventral pathways for processing of visual information based upon, respectively, 

whether that information was primarily spatial- or object-based had then been well 

described (Ingle et al., 1982; Mishkin & Ungerleider, 1982). The what versus where visual 

information pathways (Ungerleider et al., 1998) motivated studying whether parallel 

organization existed in PFC. Indeed similar divisions in representation processing within 

PFC were found, with dorsal regions of bilateral superior frontal sulcus exhibiting 

increased activation for spatial over identity information, and the more ventral middle 

and inferior frontal gyri exhibiting increased activation for identity information over 

spatial (Courtney, Petit, Maisog, et al., 1998). Comparative analysis of studies in humans 

with those in non-human primates further reinforced representation-specific 
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organization in primate PFC, with dorsal PFC processing of spatial information and more 

ventral PFC processing of object information (Courtney, Petit, Haxby, et al., 1998). 

Divisions of labor between PFC regions do not stop at what and where.  Activity patterns 

across different neuronal populations within PFC pointed towards their specialization for 

specific types of processing, be it the features of items, their spatial positioning, or their 

broader semantic classification (reviewed in Goldman-Rakic, 1995). For a given type of 

informational input into working memory, an extensive amount of detail pertaining to 

that input can be extracted. In 2004, Courtney synthesized the then findings to date of 

the functional organization within and between PFC and other cortical regions based 

upon information type. Complex mappings and cross-regional activations for information 

processing were extensively discussed in this review (Courtney, 2004). Rising to the 

surface, was the importance of the holistic processing made possible via interactions 

between regions specialized by information-representation-type.  

Efforts to further understand working memory processes through the lens of brain 

structure and function were fruitful. Building upon Miller and Cohen’s synthesis of 

findings related to PFC function, and incorporating evidence about dopamine circuity and 

connectivity between the PFC and basal ganglia, O’Reilly and Frank presented a detailed 

model of working memory function (O’Reilly & Frank, 2006). Whereas many of the models 

discussed above focused upon synthesizing behavioral evidence to tease apart 

mechanisms, the model they proposed was motivated by a computational approach and 

perspective. In their prefrontal cortex and basal ganglia model of working memory – the 

PBWM model – an “actor-critic architecture” is instantiated via ongoing interaction 
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between specific cortical and sub-cortical regions. This model is strongly grounded in the 

physiology of the brain yet motivated by what O’Reilly and Frank describe as a key 

problem a working memory system must solve: determining what information to 

maintain versus what to forget.  

O’Reilly and Frank use the term, introduced earlier, “gating” as an analogue to 

mechanisms of representation transfer in and out of short-term storage within PFC. A 

situation that allows working memory representations to be passed into PFC is analogous 

to an open gate. Temporary storage of said representations, with fidelity, takes place 

when this gate is “closed.”  Should the need to discard or overwrite stored 

representations arise, the gate is opened again. In formalizing the PBWM model, O’Reilly 

and Frank delve into how a neural system in particular might not only carry out gating, 

but also learn and adapt in the timing of when to open versus shut the gate. Note that the 

anthropomorphizing analogies and descriptions are used for conceptual understanding 

rather than implication of neural substrates as having some type of “agency” in these 

processes. In presenting reasoning for the PBWM model, it is argued that the same neural 

substrate cannot both carry out the act of storing representations as well as judge and 

teach itself if it did so to the desired effect. Hence, two separate but interacting systems 

are required. An “actor” – instantiated in PFC –allows information to be stored, discarded, 

or updated. A “critic” – instantiated in Basal Ganglia – learns from the outcome of the 

actor’s actions, and then trains the actor via dopamine signaling pathways accordingly 

(O’Reilly & Frank, 2006). What is not covered in these models, however, is the nature of 
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the information and the timing of its arrival at the gate, that might make it more or less 

likely to be stored or maintained. 

 

2.3 From Perception to Memory:  

Reducing Information Load 

Organisms with sensory capacities have means by which information in the 

environment can be transduced into forms that are meaningful, relevant, and useful. 

Within humans, perception is ongoing via the senses of vision, audition, and interoception 

among others. Working memory involves processing of information represented in the 

brain. Perceptual processes are an impactful precursor which contribute to how those 

information representations are formed. There is not, however, a simple and 

straightforward way to discretize the continuum between sensation, perception, and 

working memory representation into stages of processing. In part, this is because of how 

rapidly feed-forward signals are sent from the earliest regions of sensory processing to 

cortical regions of goal-oriented control, and because of the ongoing feed-back signaling 

from goal-oriented control regions which in turn bias early-stage sensory processing. 

Simply introspecting on one’s own lived experience makes it apparent that not all 

information “out there” and potentially available is actually being perceived. In 1964, 

Anne Treisman reviewed a then prominent model proposed by Broadbent which 

attempted to account for this (Treisman, 1964). In Broadbent’s Filter and Information 

Flow model, sensory organs are able to transduce a vast amount of information, but that 
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information is immediately directed through a filtering process in which some 

information passes through to be further processed while other information is filtered 

out. Filtration was conceived of as a means by which powerful but limited neural 

resources would be dedicated toward the processing of a subset of information selected 

from the larger pool of what is fundamentally perceived.  

Studies demonstrating, for example, that participants have a difficult time 

distinguishing separate auditory messages that originated from the same spatial location, 

or that people become habituated and less responsive to the same information presented 

repeatedly, provided support for the idea of a filtering system which selects based upon 

physical properties of incoming information. Treisman (Treisman, 1964) discussed 

evidence indicating that physical properties are actually not filtered out, but more 

conceptual properties may be.  For instance, studies had shown that though focusing 

attention on one channel of auditory information (e.g., words presented to one ear), 

participants were able to report physical property features about information from a 

separate, unattended channel, but were not able to report or identify semantic content 

such as words (Treisman, 1964). If filtration means the complete removal of information 

so that it cannot be further processed, key inferences can be made from this kind of 

example. First, if filtration is indeed what was occurring, then it took place between, 

rather than before, the processing of physical features and semantic meaning. Second, 

the information being filtered out at this “between stage” resided in a channel not 

explicitly being attended to. This pointed towards attention being a process that might 

preserve information, keeping it from being filtered out. 
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2.3.1 Biased Competition 

Filtration of information occurs not just early, but continually during processing 

and has a significant impact on working memory. Desimone and Duncan (1995) described 

filtration in the visual domain as the outcome of ongoing “biased competition” occurring 

throughout neural resources dedicated to early visual and later conceptual processing. 

The concept of “gating,” discussed earlier in the context of working memory processing 

within PFC, is also employed by Desimone and Duncan to describe how bias might be 

accomplished within the brain. They describe two forms of circuity gating, wherein 

resources that process some subset of incoming information can be cut off, or the 

influence of a particular cell population performing some processing operation reduced 

(Desimone & Duncan, 1995). An alternate means of generating bias is through processing 

that might generate response gain, or increased neural response, within a particular 

population of neurons such that its signal dominates that of another population. Further 

stimulating neurons in a population that are already in a state of “preparatory activation” 

might lead to this, and has been demonstrated to occur with the direction of internal 

attention (Stokes & Duncan, 2014). Amplification or gain in itself, however, does not 

necessarily produce bias (Hillyard et al., 1998). Competition in both early and later stages 

of processing can be biased by attention. Attention is understood to play a critical role in 

resolving competition – the act of directing attention to one of two identical stimuli, for 

example, can break a competitive tie (Beck & Kastner, 2014; Desimone & Duncan, 1995). 

Desimone and Duncan place significant focus on how the application of attention 

to a visual object representation can bias competition. Competitive processing, however, 
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is not restricted to vision, but is understood to occur throughout the brain (Miller & 

Cohen, 2001). Beginning with processes of perception, competition is necessitated by the 

availability of a finite number of neural resources with processing capabilities that are 

constrained by time. Access to increased neural resources, for example having a brain 

with greater versus lesser volume or containing more versus fewer neuronal cells, does 

not resolve this constraint (Deacon, 1990).  At every stage of processing, biases tilt favor 

towards some information at the expense of others. Fecteau and Munoz (2006) frame 

this as a competition for priority. Dependent upon context, dependent upon stimuli, and 

dependent upon goals – priorities differ. Competition begins at perception – where cells 

in early sensory cortices may be tuned and therefore preferentially responsive to specific 

types of stimuli. Rather than resolving at this early stage of processing, however, 

competition impacts subsequent stages as well (Beck & Kastner, 2014). Because these 

processes can have a compounding influence with an ultimate impact on behavior, 

understanding what types of factors may contribute to positive or negative directions of 

bias in processing is important. 

In studies of attention, biases have been found to arise from properties that are 

specific to the stimuli within an environment, or factors that are internal and specific to 

an individual. When stimulus-specific properties are responsible for generating 

attentional bias, these have been termed as “bottom-up” factors (Desimone & Duncan, 

1995; Egeth & Yantis, 1997). In the visual domain an example of a temporal and spatial 

bottom-up factor is “newness” – or the appearance of something novel in a scene. For 

example, it has been shown that when performing a visual search task, participants are 
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faster to report targets that abruptly appear in previously unoccupied locations and 

slower to report targets that replaced pre-existing stimuli (Yantis & Jonides, 1984). This 

impact on behavioral performance – an individual responding faster – is understood to 

be the result of bottom-up factors influencing cognitive processes. The “salience” of a 

particular stimulus can also generate a bias in processing where the more salient an 

object, the more positive bias may be generated for its processing. Salience, in this 

context, is defined as “physical, bottom-up distinctiveness… that depends on the 

relationship of one object with respect to other objects in the scene” (Fecteau & Munoz, 

2006). 

If one is using the descriptor bottom-up it is not uncommon to apply the opposing 

term top-down to capture all other biasing factors that are internally generated and 

specific to the individual doing the processing. Specifically, factors under the “volitional 

control” of an individual are described as top-down (Theeuwes, 2018). Usage of these 

terms, bottom-up and top-down, however, has been critiqued for comprising an 

oversimplified and misleading “theoretical dichotomy” (Awh et al., 2012). This critique 

arises because these terms have been long and frequently used (e.g. Buschman & Miller, 

2007; Gazzaley et al., 2005; Gazzaley & Nobre, 2012; Shinn-Cunningham et al., 2005), but 

may lack a satisfactory degree of precision in light of more recent evidence that effects 

related to the recent history and context of experience exert bias that aren’t quite ”top-

down,” and aren’t quite “bottom-up.” Further contributing to this worry is that some 

sources of bias may be attributed to top-down causes by default, simply because they 

don’t seem to fit the definition of bottom-up (Awh et al., 2012). Rather than using top-
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down as an umbrella catch-all term without distinguishing between control processes and 

effects of history, then, herein I will simply distinguish between biasing factors that are 

exogenous, or generated from without, from those that are endogenous, or generated 

within the individual (Rohenkohl et al., 2011; and e.g. van Ede et al., 2017). 

In studies of working memory, participants are typically given explicit instructions 

regarding what content they should attempt to remember. In Courtney et al. (1998), for 

example, participants viewed square images containing different faces, located in 

different positions on-screen over the course of many trials. Participants were instructed 

to remember the face they saw on some trials, while on other trials the face was not 

important - they were to instead remember the location of the face image (Courtney, 

Petit, Maisog, et al., 1998). For the two different types of trial described in this example, 

participants had different goals regarding the type of information to remember for 

performing the task at hand. Goals and motivations, even if prompted by external 

instruction, generate endogenous biasing in information processing (Awh et al., 2012; 

Theeuwes, 2014).  

2.3.2 Selective Attention 

Exogenous and endogenous factors exert continual impacts on processing, having 

a particular impact on which items are “selected” for attending to. Desimone and Duncan 

(1995) defined selectivity as “the ability to filter out unwanted information.” In the 

attention domain selection is understood as the prioritization of some information over 

others (Myers et al., 2017). Neither is more correct than the other. There are two sides in 

the competition for selection: some information is subjected to further processing; other 
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information less. The selection of some information representations over others is 

conceptualized as being directed by an internally generated “priority map” that 

incorporates both exogenous and endogenous factors (Bisley & Goldberg, 2010; Wolfe, 

2021). The parietal lobe in particular is thought to be a region in which exogenous and 

endogenous representations converge and undergo signal gain or attenuation subject to 

the influence of a priority map. The outcome impacts direction of attention (Bisley & 

Goldberg, 2010), which the parietal lobe has a significant role in enacting (Yantis et al., 

2002).  

Selective attention has long been understood to have a critical role in working 

memory processes. The so-called “focus of attention” features prominently in both the 

embedded processes model (Nelson Cowan, 1999) and the concentric model (Oberauer, 

2002) of working memory described earlier, for example. In Oberauer (2019) a 

“Taxonomy of Attention” is presented which distinguishes between attention that is 

selective and driven by goals or intentions, from attention that is the result of capture by 

the salient or unexpected.  Selective attention in particular is understood to be limited in 

the “number of channels” of information that can be attended to in parallel (Oberauer, 

2019). This limitation in attentional capacity is strongly linked to limitations in working 

memory storage capacity ( Cowan et al., 2005), and reflects a now deeper understanding 

of the stages at which information may become filtered. 

In Broadbent’s mid-20th century Filter and Information Flow model, discussed 

earlier, selective attention could be applied to only a single item of information at a time. 

An updated understanding, is that multiple low-level channels of processing can occur in 



28 
 

parallel, but more rich processing is indeed restricted to items that are selectively 

attended to (Lachter et al., 2004). In frameworks that refer to an early sensory or 

perceptual representation as a “trace,” the application of selective attention to a trace is 

thought to initiate the consolidation of that trace into a short-term working memory 

representation (Jolicœur & Dell’Acqua, 1998; Ricker, 2015). These frameworks can lead 

to the conceptualization of information flowing from perception and into memory as a 

linear sequence, with information either being selected and consolidated, or lost. 

Processes of selection, however, may occur both before and after information is encoded 

into working memory, differentiated by behavioral goal (Panichello & Buschman, 2021). 

In the context of working memory, selective attention is understood to play a role not just 

in determining what information should be encoded in working memory, but also in 

prioritizing among or selecting between those representations that have already been 

stored (van Ede & Nobre, 2021). 

As discussed earlier, selective processing can involve the amplification, or the 

suppression, of information. In the visual domain it has been well demonstrated that 

neural populations oscillating within a specific range of frequencies can serve to suppress 

the processing of certain stimuli. In studies of the human brain, the range of 

approximately 8-14 Hz, has long been identified as the alpha range of frequencies 

(Klimesch, 1996; Lopes da Silva et al., 1973; Nunez & Srinivasan, 2006). In the fully-

developed and neurotypical human adult, the peak of alpha oscillatory activity typically 

averages at a frequency near 10 Hz (Hanslmayr et al., 2011; Nunez et al., 2001). When 

populations of neurons are oscillating in complementary phase, they are said to be 
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“synchronized,” and the amplitude of the oscillatory signal produced by the electric field 

they generate increases. When amplitude of this signal decreases as the result of a 

reduction in the number of populations firing in phase at a particular frequency, this is 

described as “desynchronization” (Pfurtscheller & Lopes da Silva, 1999). These processes 

are explained because the synchronization of alpha oscillatory activity – or alpha rhythms 

– measured from posterior brain regions has been implicated as a mechanism of 

suppression (Klimesch et al., 2007).  

In studies employing electroencephalography (EEG) as a measurement device, 

patterns of change in alpha frequency oscillations, or rhythms, have been of particular 

interest for understanding exogenous and endogenous impacts on how information is 

selected.  For example, posterior alpha rhythms exhibit a large decrease in amplitude 

when the eyes are opened after having been closed – a phenomenon coined the “Berger 

Effect” (Başar, 2012; Bazanova et al., 2017). When the eyes are closed, alpha 

synchronization is observed; when opened, desynchronization. Because this change is not 

dependent upon the input of stimuli to the retina, however, and because alpha 

desynchronization is also observed with increases in cognitive load, the phenomenon is 

argued to relate to endogenous processes of attention and attentional control (Bazanova 

& Vernon, 2014; Klimesch et al., 2007). Further, in studies of non-human primates, alpha 

oscillations in the frontal eye field (FEF) have been found to provide a temporal structure, 

or rhythm, which anchors the periodic direction and re-direction of endogenous attention 

(Gaillard et al., 2020).   
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2.3.3 Strategies 

In 1956, Miller wrote an engaging and influential article describing an interesting 

finding arising from “experiments on the capacity of people to transmit information.”  The 

finding, in brief, was that people seemed capable of retaining and recalling over a brief 

period of time approximately 7 discrete pieces of information. Interestingly, this quantity 

of approximately 7 could be comprised of basic and fundamental “bits” of information, 

or they could be comprised of what he described as “chunks.” Miller described the 

conversion of multiple bits of information into a single chunk as a process of recoding 

(Miller, 1956), but it also became commonplace to refer to this type of information-

quantity-reduction strategy simply as “chunking.” Without prompting or instruction, 

people spontaneously chunk information. A common classroom example of chunking is 

the act of simplifying a 7-digit phone number for ease of remembering. Instead of 

remembering 7 discrete single-digit numbers, remember two chunks: one three-digit 

number and one four-digit number (396-4900 instead of 3-9-6-4-9-0-0). 

While the total number of chunks an individual can hold in short-term memory is 

rather small, a single chunk can potentially contain an arbitrarily large quantity of 

information (Halford et al., 1998; Miller, 1956; Simon, 1974). Chunking operations in 

which individuals incorporate representations they hold in long-term memory such as 

semantic, conceptual or even episodic memories, can significantly improve accuracy or 

even expand the amount of content that can be held within a single chunk (Hinault et al., 

2017b; Roediger, 1980). An interesting study is discussed in Simon (1974) to illustrate 

these benefits in which novice and expert chess players were given lengthy chess piece 
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placement sequences to remember. While the novices could recall only a handful of piece 

placements, the expert players were able to accurately reproduce very long sequences. 

Examination of the timing of reproduction for each group revealed that the experts were 

making longer pauses in their reproductions after larger sequences of piece placements 

than were novices. This was taken as evidence the experts had the ability to recode a 

longer sequence of piece placements into a single chunk than could the novices, thereby 

allowing them to retain a greater amount of information short-term (Simon, 1974).  

Many years after the publication of Miller’s “Magical Number Seven,” Cowan (2001) 

reviewed findings gleaned from four decades of research that followed. The evidence was 

definitive that despite the possibility of storing much content into a single chunk, there 

remain significant limitations in the amount of information one can actively hold in mind 

at a given time. Twenty years later, today, further accumulating evidence (Cowan, 2010; 

Vogel et al., 2001) has contributed to widespread scientific acceptance of working 

memory as a “limited capacity” system. It is noted that scientific agreement on this point 

is not universal, however. Other researchers have framed inaccuracies in remembering 

as stemming from limitations in precision rather than capacity, for example (Bays et al., 

2009). While for Miller, that number defining capacity limits was seven, others settled on 

a lesser amount (e.g. five in Simon, 1974), and for Cowan that limit was approximately 

four (Cowan, 2001). If more is better, strategies to maximize the amount of information 

able to be held in a limited capacity system, then, are advantageous.  

It has been suggested that recoding is such a common and significant process in 

working memory that models which don’t account for recoding processes are incomplete 
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(Bor & Owen, 2007). This follows from the early and influential multicomponent model of 

working memory (Baddeley & Hitch, 1974), described earlier, which explicitly included 

components within which cognitive strategies employed to aid in information retention 

and recall are carried out. Telling in this model, is that entirely separate components were 

modeled dependent upon both the modality and type of information being processed. 

Visual and spatial information processing and recoding was modeled as occurring in the 

visuo-spatial sketchpad. Auditory and verbal information processing and recoding was 

modeled as occurring in the Phonological loop. This is because there is systematic 

difference in how information is processed, dependent upon modality and information 

type.  

Different recoding, or other strategic information conversion approaches, can 

facilitate working memory dependent upon what one is trying to remember. Rehearsal, 

for example, is a frequently employed strategy for remembering without conversion of a 

representation (Mızrak & Oberauer, 2021). For information that can be verbalized, such 

as words or numbers perceived via vision or audition, one can simply repeat them over 

and over silently “in mind” to aid with recall (e.g. Hinault et al., 2017a). For navigating via 

landmarks to reach a destination, one might mentally visualize each important landmark 

in sequence, “rehearsing” a path of travel. Rehearsal can also be combined with other 

strategies, as on its own it may not be as effective as others (Roediger, 1980).  

Strategies may be more or less effective not just based upon information modality, 

but upon the manner in which information is presented. When viewing spatial 

information that is presented sequentially, for example, people have been found hold 
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their gaze in a central, idealized location, as opposed to shifting their focus around. This 

has been argued to facilitate spatial recoding (Patt et al., 2014). Across a range of age, 

and regardless of formalized math instruction, people extract what are described as 

“geometrical primitives,” or the constituent components of simple shapes, from spatial 

sequences (Amalric et al., 2017). People have also been demonstrated to use these 

geometric primitives to create structure from complex spatial configurations (Al Roumi et 

al., 2021). Without necessarily forming shapes, memory for sequential spatial information 

has been shown to be facilitated when people group items based upon proximity, 

clustering nearest neighbors (Gmeindl et al., 2011). Differences in the timing of sequential 

presentation of spatially related objects has also been shown to impact how people chunk 

or recode (Bor et al., 2003). Further, passive strategies may be more effective than 

chunking when information is presented sequentially at a fast rate (Cowan et al., 2005). 

 

2.4 The Storage and Processing of Representations 

In 1967, Murdock used the term ‘sensory stores’ to specify a critical but distinct 

aspect of short-term memory which evidence showed to differ based upon perceptual 

modality. For example, short-term memory recall for lists of verbal information was 

repeatedly found to be greater when the information was initially perceived through 

audition than through vision. Murdock proposed a model in which a sensory store stage 

of memory was where sensory processing occurred and differed in a modality-specific 

manner. In this model short-term memory was comprised of a primary memory, where 
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errors of displacement (confusing or swapping to-be remembered items) occurred, and a 

secondary memory where interference between items might occur (Murdock Jr, 1967). 

Murdock’s focus on different memory stores and the errors these stores are prone to, is 

at its root getting at the important question of which representations, even briefly, are 

stored. Representations biased for processing, and selectively attended to, are more likely 

to be available to be stored than those that are discarded, suppressed, or filtered out.  

Several years after Murdock’s attribution of memory errors to the characteristics 

of primary or secondary memory stores, Craik and Lockhart (1972) argued that the level 

of processing a perceived item was subjected to, provided a better account.  Lesser 

processing might account for both the rapid forgetting of much sensory input and the 

frequent errors arising in short-term memory; greater processing the deep and vast 

associations and semantic meanings people were able to rapidly form after perception of 

information. In this conception the brain did not have regions of storage per se but rather 

regions of processing (Craik, 2002). They proposed that processing could be distinguished 

by degree or “level.” An item processed solely by attention, for example, was being 

subjected to only the same, single, level of processing. Additional distributed, or deeper, 

subjection to processing such as association or rehearsal was described as processing at 

multiple levels. This subjection of information to multiple levels of processing was 

conceived as leading to greater memorability (Craik & Lockhart, 1972).  

Evidence from neuroimaging studies of recent decades has provided evidence of 

deep, distributed, and continual processing of representations occurring throughout the 

brain in support of working memory (Christophel et al., 2017). Sensory representations 
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initially formed in sensory cortices may continue to be “held” in those same sensory 

regions when a task demands memory of specific sensory features (Scimeca et al., 2018). 

Control over those sensory representations may then be executed via a network including 

PFC and parietal regions specialized for processing of specific representation types or 

classes (Blacker & Courtney, 2016; Courtney et al., 1996; Ester et al., 2015; Roth & 

Courtney, 2007; Walsh et al., 2011; Yee et al., 2010). If task demands prompt strategic 

recoding or conversion, the network involved in representation transformation may place 

greater demands upon subregions of lateral PFC (Bor et al., 2003; Bor & Owen, 2007). 

Working memory related activity throughout lateral PFC in particular has been found to 

occur in a “hierarchical gradient” based upon the level of abstraction relevant for task 

demands (Nee & D’Esposito, 2016). More anterior regions integrating highly abstracted 

representations; posterior areas more specific and action directed (Nee & D’Esposito, 

2016). Representations can be stored “silently” for short periods of time, via what have 

been posited as weighting changes in synaptic strength (M. G. Stokes, 2015). However, 

representations stored in this manner must be “reactivated” for manipulation and 

conversion — hallmark features of working memory (Trübutschek et al., 2019). 

2.4.1 Interference and Oscillatory Activity 

While control regions contribute to processing a wide range of representations 

with fidelity, errors in discriminability can arise when the same substrate is utilized for 

both perceptual and memory based processing of items that are separate but similar in 

sensory features (Teng & Kravitz, 2019). Errors between perception and memory can be 

further exacerbated when separate but highly similar items are being encoded in a narrow 
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window of time (Fischer & Whitney, 2014). These kinds of errors - swap errors between 

similar items, or proactive interference arising from close proximity in time, are described 

as forms of internal distraction in working memory (Lorenc et al., 2021) 

More pervasive, however, may be the threat of interference arising from external 

sources in the environment. Because the number of items that can be simultaneously 

attended to is limited (Cowan et al., 2005),  mechanisms to prevent distraction and 

interference in working memory processes are critical. Alpha frequency oscillations, 

described earlier in the context of attentional selection, are understood be part of such a 

mechanism. The inhibition-timing hypothesis, for example, posits that endogenous, 

inhibitory control (including distractor suppression) is achieved via alpha oscillatory 

activity (Klimesch et al., 2007). A specific and repeated observation, for example, is an 

increase in posterior alpha oscillatory power during maintenance of representations in 

working memory, ipsilateral to the visual field those maintained stimuli were initially 

perceived in. Further, the degree of alpha power change that occurs in support of working 

memory maintenance has also been shown to differ based upon the type of 

representation being held (Blacker et al., 2016; Ikkai et al., 2014). This increase in alpha 

power – or synchronization as explained earlier – has been interpreted as suppression of 

sensory cortices to reduce the potential for processing of new, irrelevant stimuli 

(Klimesch, 2012).  

Expanding upon this (and lending support for the claim that gating processes are 

a prevalent mechanism occurring throughout the brain) is the gating by inhibition 

hypothesis of Jensen and Mazaheri (2010). They discuss alpha oscillations for their role in 
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context with oscillations occurring in other frequency ranges. Here, alpha oscillations are 

not considered in isolation, but rather as part of a partnership wherein they modulate the 

periods within which fast-spiking (> 60Hz) gamma oscillations can occur. During the 

trough phases of an alpha frequency oscillatory cycle, gamma oscillations can occur in 

bursts. As the alpha cycle phase reaches its peak, gamma oscillations are inhibited. 

Gamma and alpha oscillations are juxtaposed, therefore, such that increases in gamma 

activity reflect active information processing in local networks, while increases in alpha 

activity reflect pulsed, functional inhibitions of said processing (Jensen & Mazaheri, 2010).  

This “cross-frequency coupling” between alpha and gamma oscillations is not 

specific to their particular pairing. Rather, their pairing is representative of a general 

mechanism of organizing communication across brain regions (Fries, 2005). Cross-

frequency coupling between theta and gamma oscillations in networks tied to the 

hippocampus, for example, also facilitate working memory processing (Lisman & Jensen, 

2013). Coupling that facilitates memory exists not just within regions, but across regions 

of the brain as well.  Popov et al., for example, demonstrated an inverse power 

relationship between coupled theta oscillations in PFC and alpha oscillations in posterior 

parietal cortex that supported working memory performance of a challenging task (Popov 

et al., 2018). Hinault et al., identified specific networks by which alpha and gamma 

frequency coupling across anatomically distant regions supports working memory control 

processes. They demonstrated that poorly tuned coupling resulting from white matter 

degradation in these networks, slows down processing and impacts behavioral 

performance (Hinault et al., 2020). 
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2.5 Open Questions 

In a recent review on the subject of declarative memory formation, de Sousa, 

Chowdhury, and Silva present evidence that memories are formed, organized and 

structured based upon temporal, spatial, and conceptual relationships (de Sousa et al., 

2021). Another study focused on episodic memory argues that we form a type of 

“knowledge structure” labeled as a “cognitive map” based upon experiences situated in 

time and space (Morton et al., 2017). Indeed, humans are organisms that move through 

and interact with space. We experience life as a continuum that temporally unfolds. And 

often, the meaning we extract from our environment is informed based upon 

relationships between the two. Interestingly, because our studies are often built around 

the isolation and manipulation of single variables within the laboratory setting, we have 

a great deal to learn about how these dimensions of time and space can impact working 

memory. The studies presented in the following chapters shed some light on this subject. 

A number of researchers have focused their examination on differences that are 

specific to individuals, to understand how those differences may give rise to differences 

in behavior (e.g. Jarrold & Towse, 2006; Unsworth & Engle, 2007). Within paradigms that 

have been well studied at the group level, there remain interesting questions to pursue 

regarding how individuals may differ in either task performance or the underlying neural 

which supports their performance. In Chapter 3, I present a study in which a key 

difference between individuals — biological sex — is targeted as a factor of interest in 

spatial working memory. 
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Additional questions arise when we consider the impact of structures which 

intersect in space and time. Structure can exist not just within a single modality, but also 

across modalities. While many studies have focused upon examining working memory 

given a single input modality of information – such as audition or vision – there remain 

many open questions regarding possible interactions between the two. In Chapter 4, I 

pursue such a question, studying working memory performance in the presence of 

structures across space, time, and modality. 

While some of the earliest studies of human capabilities utilized sequences of 

verbal information presented in continuous streams to test the limits and bounds of 

memory, relatively few paradigms exist for the study of nonverbal, visuospatial 

information presented as such. We do know that the temporal distance or proximity of 

information we are attending to can sometimes result in working memory errors (Fischer 

& Whitney, 2014; Kiyonaga et al., 2017; Makovski & Jiang, 2008; Ricker, 2015). However, 

these examples have typically demonstrated effects of interference relative to low-level 

features of objects such as object color or orientation. Further, depending upon the 

context, these same effects of interference could also be considered adaptive, even 

helpful (Kiyonaga et al., 2017). Unknown, is whether temporal factors may impact 

working memory performance beyond low-level features, perhaps interfering or aiding 

with recognition of entire objects themselves. In Chapter 5, I present a novel visuospatial 

paradigm designed specifically for this study. This paradigm is utilized to answer questions 

about working memory for visuospatial information presented with an understudied form 

of temporal structure — that of rhythm.  
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Chapter 3 

Modulation of Peak Alpha Frequency 
Oscillations during Working Memory is 
greater in Females than Males 
 

3.1 Introduction 

Oscillatory activity within the alpha range of frequencies, canonically defined as 8-

14Hz, has been studied for its role in facilitating working memory (Klimesch, 1999; Roux 

& Uhlhaas, 2014). One critical characteristic of alpha activity – its peak frequency – has 

been tied to differences in working memory performance and is well known to differ 

across individuals based upon genetics, age, and the type of cognitive activity in which an 

individual is engaged (Knyazeva et al., 2018; Mierau et al., 2017; Posthuma et al., 2001). 

Despite these known differences, individuals are often treated as members of a single 

homogenous study group; their separate data points represented solely by group-level 

statistics. Here, we show that by accounting for an individual’s binary sex (female or male) 

differences in task-related modulation of peak alpha frequency, and its relationship to 

working memory performance become apparent. 
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3.1.1 Alpha Oscillations and Working Memory 

Oscillatory activity is thought to be one of the mechanisms by which functional 

organization and structured communication in the brain are achieved (Basar & Düzgün, 

2016; Buzsáki et al., 2013; Voytek & Knight, 2015). In working memory, the power of alpha 

oscillations has been related to performance (Klimesch, 1999), working memory 

maintenance (Herrmann et al., 2004), and working memory capacity (Tuladhar et al., 

2007). Working memory by definition reflects rapid and short-lived processes that are 

subject to interference (Courtney et al., 2007). An ascribed functional role of alpha 

oscillations arising during working memory maintenance, is to facilitate preservation of 

maintained information. This facilitation is achieved through minimization of potential 

interference by dampening incoming external sensory stimuli when previously encoded 

information is being maintained (de Vries et al., 2020; Ikkai et al., 2014; Jensen & 

Mazaheri, 2010). The role of these oscillations may not simply be reactive, but proactive, 

as their phase and power have been found to shift in advance of anticipated distractors 

during a working memory task (Bonnefond & Jensen, 2012).  Increases in posterior alpha 

power in particular, are hypothesized to reflect neural processes that protect information 

being held in working memory from interference by current sensory inputs (Klimesch 

2012; Ikkai et al. 2014; Roux and Uhlhaas 2014). Causal manipulations using transcranial 

alternating current stimulation and transcranial magnetic stimulation at alpha 

frequencies supports this hypothesis (Borghini et al., 2018; Riddle et al., 2020).  
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3.1.2 Peak Alpha Frequency 

The alpha oscillatory activity of a neurotypical young to middle-age adult, 

measured when they are awake in a resting state, will on average exhibit a peak of power 

near the frequency of 10 Hz (Clark et al., 2004; Haegens et al., 2014; Posthuma et al., 

2001). This apex of the power frequency distribution, known as the Peak Alpha Frequency 

(PAF),  is known to be somewhat variable across individuals, however  (Doppelmayr et al., 

1998). Developmental studies have found that PAF increases throughout childhood and 

adolescence and only stabilizes at a frequency average near 10 Hz in late adolescence to 

early adulthood (Chiang et al., 2011; Smith, 1941). With aging, PAF will typically drift lower 

once again, with the average PAF of those near 70 years old being closer to 8 Hz (Dustman 

et al., 1999; Scally et al., 2018). The typical developmental trajectory of increasing working 

memory performance and capacity, followed by subsequent advanced-age declines (e.g. 

Hamilton, Coates, and Heffernan 2003; Hinault et al. 2020; Reuter-Lorenz and Park 2010; 

Park et al. 2002), occur in seeming parallel to these described increases and decreases in 

PAF. 

PAF can also shift on a timescale of moments, rather than that of a lifespan. During 

engagement in a cognitive task, PAF may shift to higher or lower frequencies, and do so 

differently across different brain regions. For example, Haegens et al. (2014) found that 

average posterior PAF increased when participants were performing an n-back working 

memory task compared to when they were at rest. They also found PAF increased with 

greater task difficulty. Sauseng et al. (2005) contrasted occipital and prefrontal PAF during 

sequential split-halves of a working memory task maintenance period. During working 
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memory maintenance, PAF measured over posterior regions was consistently higher than 

PAF measured pre-frontally. When the task demanded information also be manipulated, 

however, for the first half of the analyzed time period prefrontal and posterior PAF were 

aligned. Their findings support different functional roles of alpha oscillations dependent 

upon the region from which they arise and the networks with which they are associated. 

Faster posterior alpha oscillations seemingly support working memory maintenance, 

while prefrontal supports working memory control. 

3.1.3 Influences of Sex on PAF 

Sex-linked differences in PAF have been reported starting in childhood and 

continuing on into advanced age. A developmental study of children, for example, found 

that males reached a higher and more stable average PAF than females by the age of 11 

(Matthis et al., 1980). A more recent study found this difference continued up until the 

age of 16 (Chiang et al., 2011). A large study that utilized a clinical database with EEG 

recordings from patients ranging in age from infancy to the late 80s, found that from  20 

years of age and continuing up to 85, females had higher alpha frequencies than males 

(Aurlien et al., 2004).  

Studies from the 1970s onwards have demonstrated predictable sex-linked 

variance in PAF.  Wuttke et al. (1975), for example, measured resting state alpha 

frequencies in two groups of women: one naturally cycling, and one taking hormone-

based oral contraceptives. In the naturally cycling group, alpha frequencies were found 

to increase and decrease with the cyclical fluctuation of sex-hormones that occur across 
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menstrual phases. In the group taking oral contraceptives, which prevent natural sex-

hormone level fluctuations, alpha frequencies remained relatively constant over time 

(Wuttke et al., 1975). Becker et al. (1982) also examined the connection between sex-

hormones and resting-state alpha changes across the menstrual cycle in females, but also 

included cognitive task performance as a variable of interest. Their psychological battery 

included tests of short-term and working memory. Replicating the findings of Wuttke et 

al. (1975), they found that mean alpha frequency increased and decreased cyclically in 

conjunction with fluctuating hormone levels, yet they found no difference in cognitive 

performance tied to these fluctuations (Becker et al., 1982).  

3.1.4 PAF and Cognitive Performance 

The lack of relationship between sex-linked PAF fluctuations and performance 

described above might be surprising considering the positive associations between PAF 

and behavior previously reported. Higher resting state anterior PAF has been linked to 

higher Reverse Digit Span performance, for example, independent of age in a large 

gender-balanced study (Clark et al., 2004). In another study comprised of 12 males and 4 

females, the researchers employed a split-half analysis of working memory performers 

and found that the average PAF of the good performer group was 1.25Hz greater than 

that of poor performer group (Klimesch et al., 1993). Additional evidence for positive 

correlations between PAF and speed of information processing, and PAF and memory 

performance have also been reported (Bazanova & Vernon, 2014; Klimesch et al., 1990). 

Moreover, shifting PAF higher or lower using sensory entrainment has been shown to 

causally influence cognitive performance (Ronconi et al., 2018). 
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In other cases, however, the relationship between PAF and performance is less 

clear. Angelakis et al. (2004), for example, reported no PAF-performance relationships in 

a small gender-balanced experiment. In a follow-up experiment where PAF and task 

performance were measured on two separate days in 13 females and 6 males, they found 

correlations of posterior PAF with performance on one day, but not the other (Angelakis 

et al., 2004). A possible contributor to the discrepant findings between all of these studies 

considered may be the neglect of a key factor – biological sex. Indeed, there is a gap in 

the literature regarding potential sex differences in PAF, particularly potential differences 

while under cognitive load. 

3.1.5 Study Question 

We hypothesized that during working memory, females and males may 

differentially modulate oscillatory neural activity to support task performance. As 

discussed above, females of reproductive age exhibit predictable sex-specific variation in 

PAF, yet this variation does not necessarily impact their task performance. In some studies 

that included both male and female participants, relationships between PAF and 

performance have been found. It is possible, therefore, that cognitive and neural 

processes related to alpha oscillatory activity underlying working memory, are utilized 

differently in females versus males, particularly as they contribute to task performance. 

These differences may be tied to sex differences in PAF modulation, or differences in the 

relationship between individual variability in PAF and working memory performance.  
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3.2 Methods 

To test our hypothesis, we re-analyzed data from a study that employed a task in 

which both female and male participants maintained different types of spatial 

information in working memory – either precise locations of individual stimuli or spatial 

locations of the stimuli relative to each other– while undergoing EEG (Blacker et al., 2017). 

Brain activity during working memory for these different types of information has been 

found to differ, both neuroanatomically as measured with fMRI (Blacker & Courtney, 

2016) and electrophysiologically as measured with EEG (Blacker et al., 2016). We 

hypothesized, therefore, that there might be sex differences in the neural activity 

underlying working memory for both precise and relative locations, only precise, only 

relative, or neither.    

Analysis of neural activity recorded by EEG during key working memory periods – 

particularly maintenance and baseline– enabled us to compare PAF across both time 

periods and task conditions. It also enabled examination of a possible differential 

relationship between PAF and behavioral performance for females versus males. A recent 

meta-analysis reported a small female advantage in visuospatial working memory 

(Grissom & Reyes, 2019) whereas previous meta-analyses have found a small male 

advantage in certain types of spatial tasks (Hyde, 2014). The paradigms employed in those 

studies, however, differ from the paradigm used here, and behavioral similarities 

between females and males are the more typical finding (Hyde, 2005). Hence, we 

predicted there would be no difference between females and males in behavioral 
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performance. We did, however, predict differences between these groups in PAF, given 

the prior evidence outlined above. Further, we predicted that within-group differences in 

PAF or task-related modulation of PAF might be tied to behavioral performance, but that 

this activity-behavior relationship might be different in females versus males.  

3.2.1 Participants 

Study participants were young adults recruited from both the college student 

population and the local community. Participants ranged in age from 18 to 31 years. 

Binary grouping of participant sex as female or male was based upon self-report. 

Any participants with below chance behavioral performance in the primary task, or 

incomplete EEG data, were excluded. After these criteria were applied, data from a total 

of 110 participants (33 males and 77 females) remained and were analyzed. Groups were 

not statistically different in age (p > 0.3; mean (SD): males 21.8(3.4), females 21.1(3.2) 

years).  

3.2.2 Working Memory Task    

A visuospatial working memory task (Figure 1) was performed while continuous 

EEG was recorded. Conditions (Task-types) were distinguished based upon the number of 

sample stimuli presented and what aspects of those stimuli were relevant. Instructions 

differed for each of the four Task-types but are described here first based upon their 

similarities to aid comprehension. In Precise location trials the specific locations of the 

sample stimuli were relevant, whereas in Relative trials, the locations of the sample 

stimuli relative to each other were relevant. For both Task-types, either two or three 
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colored circle stimuli were presented for 500ms during the sample period. Instructions 

for each of the four Task-types are as follows: In 2-Sample Precise trials, participants were 

instructed to imagine a single line connecting the two sample stimuli, and then, after a 

2000ms delay, determine if the test stimulus, a single black circle, was located upon that 

imagined line. In 3-Sample Precise trials, participants were to determine if the test 

stimulus occupied the same location as any one of the sample stimuli. In 2-Sample 

Relative trials, participants were to maintain the vertical relationship between the sample 

stimuli and determine if the test stimuli, also two, colored circles, held the same 

relationship. In 3-Sample Relative trials, the vertical spatial relationship between any two 

of the three sample stimuli might be relevant at test. All stimuli were displayed in the 

same single quadrant of the screen during a trial. Participants were instructed to maintain 

fixation on a central cross for the duration of each trial.  

Participants were able to indicate a match or non-match response by keypress as 

soon as the test stimuli were displayed, and for up to an additional 1000ms after. 

Feedback for each trial was presented via a 100ms color change in the on-screen fixation 

cross and was immediately followed by the start of the next trial.  

Prior to the EEG recording session, participants completed 88 practice trials, 22 in 

each condition. During EEG recording, participants completed 8 blocks of 64 trials for a 

total of 512 trials. Task-type trial order was pseudorandomized within each block. For 

further, detailed task methods, see Spatial Locations and Relations Task (Blacker et al., 

2017; Hinault et al., 2019).  
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3.2.3 EEG Collection, and Pre-Processing 

EEG Recording was performed at a sampling rate of 512Hz with a 138Hz cutoff 

filter. A 47-electrode equidistant montage was utilized and re-referenced to the average 

of all channels offline (for further details of EEG acquisition, see Blacker et al. 2017). The 

Fieldtrip software package (Oostenveld et al., 2011) was utilized for raw EEG data 

cleaning, processing, and analysis. Per the Fieldtrip pipeline, raw data were segmented, 

cleaned, and sorted by trial condition prior to spectral decomposition for analysis of 

induced power in the time-frequency domain. Detailed steps of this procedure follow.  

Prior to segmentation, the continuous raw EEG data was high-pass filtered at 

0.5Hz, de-meaned, and low-pass filtered at 30Hz. Then, data from each of the 47 channels 

were divided into temporally overlapping 7.5 second segments that included the 5.5 

second trial period and the 2 seconds preceding trial onset. This is described as 

overlapping due to the final 2 seconds of one segment being the same as the starting 2 

seconds of the subsequent segment. This standard approach of buffering via extended 

segmentation (Cohen, 2014) ensured preservation of signal during the Baseline time 

period (ref Figure 1). Independent Components Analysis with 40 primary components 

(Oostenveld et al., 2011) was utilized to identify, and target for removal, artifacts resulting 

from blinks, eye movements or excessive facial muscle activity (e.g. jaw clenching). 

Following this algorithm-based cleaning, visual inspection of the EOG channels placed 

above the left and right eyes was performed to identify ocular artifacts. Trials containing 

voltage shifts greater than 18.75µV in the EOG channels were removed from the data. 
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Finally, any remaining trials with large (e.g., an order of magnitude greater) voltage spikes 

not filtered out by independent component analysis were removed. 

Clean, segmented data were sorted based upon trial condition. Only correct trials 

were selected for analysis. In preparation for subsequent frequency-based analyses, 

spectral decomposition was performed. Cleaned, sorted, correct trial data underwent 

spectral analysis at a frequency resolution of 0.5Hz from 2.0Hz to 20.0Hz via complex 

wavelet convolution with a 2.0 second sliding window, zero-padded with a Hann/hanning 

multi-taper time frequency transformation based upon multiplication in the frequency 

domain. The Hann taper is well-suited for broad-band low frequency estimation and does 

not introduce edge artifacts (Cohen, 2014). This approach allowed for measurement of 

power at precise and specific frequency increments, with sufficient frequency resolution 

for direct comparative analyses between the defined time periods of interest. Spectral 

analysis resulted in a 3-dimensional data matrix of power organized by time, frequency, 

and channel. This matrix was utilized for the analyses described below.   

3.2.4 Peak Alpha Frequency 

The Center of Gravity method was used for calculating Peak Alpha Frequency 

(PAF), (Goljahani et al., 2012; Klimesch, 1999). In this method upper and lower frequency 

bounds and a time period are used as constraints within which to establish the specific 

frequency at which the power of alpha oscillations is maximal. This method was selected 

for its potential to increase the signal-to-noise ratio when calculating PAF during a 

cognitive task (Klimesch, 1999; Klimesch et al., 1993). The canonical alpha range of 8-14Hz 
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was used to define the frequency boundaries within which PAF was calculated and three 

time periods of interest were selected.  

As discussed in the introduction, alpha power arising from posterior brain regions 

is understood to facilitate working memory maintenance. Posterior electrode channels 

are a common target for measurement of PAF (e.g., Haegens et al. 2014). Additionally, 

this study incorporated a visual working memory paradigm in which there have been prior 

findings related to alpha oscillatory activity over posterior regions (Blacker et al., 2016). 

For the purposes of this study, therefore, of the 47 channels recorded, 14 posterior 

channels were selected a priori for PAF calculation and used in entirety for calculation of 

PAF during each time period of interest. Channels and time periods are shown in Figure 

1. A priori channel selection allowed for direct comparison of participants based upon 

female or male grouping (see recommendations in Rippon et al. 2014) whereas a data 

driven approach might suffer confounds resulting from unforeseen sex-linked group 

differences in electrode distribution or gross brain anatomy. 

Channels and time periods for analysis were selected with the aim of minimizing 

inclusion of (if not excluding) signal not primarily related to alpha and working memory 

processes of particular interest in this study. Mu band activity, for example, overlaps with 

the alpha frequency range but originates in relation to motor response and is typically 

measured over motor and pre-motor regions (e.g. Hadley 1941). Mastoid channels and 

the central topmost channel, which due to their position may be detecting activity related 

to motor response rather than working memory maintenance, were thus not included in 

the selection of posterior channels. Additionally, the time periods of interest (ref. Figure 
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1) did not include the Test or Response periods during which stimuli differed across 

conditions and participants were preparing for, or making, a button press response.  

Three separate measures of PAF within the range of 8.0Hz to 14.0Hz at a 

frequency resolution of 0.5Hz for each participant were made: during Baseline, 

Maintenance, and across the Pre-Test Task period (which included the Baseline and 

Maintenance periods as shown in Figure 1). Two discrete time periods of interest during 

the task, labeled Baseline and Maintenance were targeted for comparative PAF analyses. 

Baseline was defined as the last 500ms of fixation, prior to the presentation of the cue 

and sample stimuli. The length of this time window allowed for measurement of 

approximately four oscillatory cycles at the lowest frequency of interest here (8Hz) – a 

number of cycles within the typically recommended range (Cohen, 2014).  This Baseline 

period covers a pre-stimulus range of time similar to the baseline periods of other studies 

(e.g. Hinault et al. 2019; Blacker et al. 2016). Maintenance was defined as the last 1500ms 

of the delay, prior to the presentation of test stimuli. As the name of the time period 

suggests, this period allows for analysis of PAF as it relates to the maintaining of 

information in working memory. The naming and definitions of these time periods of 

interest is in line with previous working memory research that utilizes EEG (e.g., Hinault 

et al. 2019; Bae and Luck 2018; Blacker et al. 2016; Manza, Hau, and Leung 2014; and see 

Roux and Uhlhaas 2014).  

As stated earlier, spectral analysis results in a 3-dimensional matrix. Within that 

matrix, power is organized by the channel measured, the frequency at which oscillation 

is occurring, and the time of measurement. Following the Center of Gravity method 



62 
 

(Klimesch, 1999), to attenuate noise from any single one of the 14 posterior channels 

selected, a weighted averaging of power across channels was performed prior to PAF 

calculation. To compute weights for the weighted averaging process, power across the 14 

channels of interest was first summed at a single time point. The proportion of a single 

channel’s contribution to that sum was deemed its weight at that time point. At each time 

point, and for each 0.5Hz frequency increment within the range of 8Hz to 14Hz, the vector 

of power for each channel and the vector of weights for each channel were multiplied 

together. The average of this product was then taken. These steps were performed for all 

frequencies and time periods of interest.  The frequency at which the largest weighted 

average of power existed within the time period of interest was denoted the Peak Alpha 

Frequency.  

3.2.5 Statistical Analysis 

Dependent variables relevant to our predictions included Accuracy (proportion of 

correct responses), Response Time, PAF, and PAF Modulation. Both parametric and non-

parametric analytical approaches were employed with these measures defined as 

outcome variables. To test our predictions regarding task performance, PAF, and PAF 

Modulation, group level distributions were statistically compared using a robust and non-

parametric approach: the Kolmogorov-Smirnov test (Rousselet et al., 2017). Modulation 

of PAF between the Baseline and Maintenance time periods was calculated as 

[Maintenance PAF – Baseline PAF] in units of Hz.  



63 
 

In addition to null hypothesis testing for a difference in distributions, shift 

functions (Doksum, 1974; Doksum & Sievers, 1976) were computed. This method 

quantifies how two distributions differ by comparing corresponding quantiles of each 

distribution and delivering a function showing how one of the distributions would need 

to change, or “shift,” to match the other. All shifts between quantiles are statistically 

tested as a group with correction for multiple comparisons, providing a robust measure 

of where and how distributions differ (Doksum & Sievers, 1976; Rousselet et al., 2017).  

All shift functions calculated herein computed differences between the Male and Female 

distributions as a function of the Female distributions. Further description and illustration 

of this method are provided in detail elsewhere (Rousselet et al., 2017). 

Parametric group level comparisons of Accuracy, Response Time and PAF 

Modulation by Task Type were performed with separate 2 (Sex) x 4 (Task-type) ANOVA 

tests. This 2x4 analysis was more appropriate than a 2x2x2 ANOVA design because task 

instructions differed for each Task-type dependent upon load and thus load was not an 

independent factor. In addition to this statistical rationale, our previous findings pointed 

towards a qualitative difference in the neural effects of load for Precise versus Relative 

conditions in this paradigm (Blacker & Courtney, 2016).  For completeness, however, we 

also analyzed the data using a 2x2x2 ANOVA. The results of the two analyses were 

essentially identical. In the results below, we present the 2x4 ANOVA results. In cases 

where violations of sphericity were present, correction was applied and reported. Tukey’s 

Honestly Significant Difference (HSD) method at an alpha level of 0.05 was used in post-
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hoc analyses. For models of task performance and PAF modulation, main effects of Sex, 

Task-type, and their interaction were fit.   

To test our prediction of differential relationships between behavior and PAF, and 

behavior and PAF Modulation, between females and males, hierarchical multiple 

regression and correlational analyses were performed. Accuracy (proportion correct) and 

Response Time were the behavioral measures of interest and the outcome variables for 

all equation-based analyses. Baseline, Maintenance, and Pre-Test Task period PAF—

encompassing both the Baseline and Maintenance time periods—was utilized in 

modeling. Separate two-step hierarchical regressions were performed for each group due 

to the prediction of different relationships by Sex in which PAF impacts behavior. In the 

first step, Task Performance (Accuracy and Response Time were each modeled 

separately) was predicted by Task-type. In the second step, PAF (Pre-Test Task PAF, 

Baseline PAF, and Maintenance PAF were modeled separately) was added into the model 

as an interacting factor. An ANOVA test was then used to determine if the first and second 

models differed significantly. In post-hoc correlational analyses, PAF from each of the 

three time periods of interest was used. The False Discovery Rate (FDR) method was used 

for multiple comparisons corrections of p-values. 

Statistics were calculated in R (R Core Team, 2018) using the dplyr (Wickham et 

al., 2018), the car (Fox et al., 2012), the ez (Lawrence & Lawrence, 2016), and the lme4 

(Bates et al., 2015) packages. Distribution analyses were performed using Robust 

Graphical Methods For Group Comparisons (the rogme package), per the methods 
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described in (Rousselet et al., 2017). Figures were produced in R with the ggplot2 

(Wickham, 2016) and the rogme packages. 

 

3.3 Results 

Behavioral results are presented first. They are followed by results of analyses of 

PAF calculated from correct trials of all conditions (Precise and Relative, 2- and 3-Sample 

stimuli), and then results of analyses with PAF calculated separately for each Task-type. 

3.3.1 Task Performance 

Behavioral measures of central tendency are reported in Table 1. Two separate 

2x4 (Sex x Task-type) ANOVAs were performed with Accuracy and Response Time as 

outcome variables. Main effects of Task-type were present for Accuracy: F(3,324) = 

356.35, p<0.0001, 2= 0.546, and Response Time: F(3,324) = 182.68, p<0.0001, 2= 0.217. 

Accuracy was lower for the higher load (3-Sample) conditions. Response time was greater 

for the Relative task conditions as has been previously observed (Ikkai et al., 2014).  No 

main effects of Sex, nor interaction between Condition and Sex were present. Post-hoc 

analysis of Accuracy indicated significantly different groupings between 3-Sample Precise 

and 3-Sample Relative Task-types, and each in comparison to the 2-Sample Task-types 

together. No differences were present by Sex. Post-hoc analysis of Response Time 

indicated significantly different groupings between 2-Sample Precise compared to 3-

Sample Relative and 3-Sample Precise Task-types, with no differences by Sex. 
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Group distributions and shift functions of Accuracy and Response Time across all 

correct trials are shown in Figure 2 and Figure 3, respectively. Two-sample, two-sided 

Kolmogorov-Smirnov tests indicated no difference between female and male Accuracy 

distributions: D=0.09, p > 0.5; or Response Time distributions: D=0.17, p > 0.4.  

3.3.2 Peak Alpha Frequency within each Time Period 

PAF was extracted for each participant during the time periods of interest. 

Measures of central tendency for PAF by Task-type and Sex are presented in Table 2. 

Separate 2x4 (Sex x Task-type) ANOVA tests were performed with PAF from the different 

time periods as outcome variables. Baseline PAF test results indicated no main effect of 

Sex: F(1,108) = 0.99, p>0.3, Task-type: F(3,324)=0.34, p > 0.7, nor an interaction between 

them: F(3,324) = 0.99, p>0.3. With PAF during Maintenance as the outcome variable, test 

results indicated no main effect of Sex: F(1,108) = 0.24, p > 0.6, no significant main effect 

of Task-type: F(3,324) = 1.82, p > 0.1, nor an interaction between them: F(3,324)=1.06, p 

> 0.3. 

Two-sample, two-sided Kolmogorov-Smirnov tests were performed to test for 

differences between female and male distributions both averaged across, and within 

specific task conditions, during the Baseline and Maintenance time periods. Test results 

indicated no significant differences between group distributions at Baseline nor during 

Maintenance, p > 0.1 in all instances. 
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3.3.3 Modulation of Peak Alpha Frequency 

PAF Modulation measures of central tendency by Task-type are shown in Table 2. 

As predicted, the results of a 2x4 ANOVA (Sex x Task-type) with Modulation as the 

outcome variable shows a main effect of Sex: F(1,108) = 5.31, p<0.025, η2 = 0.03. No main 

effect of Task-type: F(3,324)=1.56, p>0.1, or interaction between Sex and Task-type: 

F(3,324)=0.63, p>0.5, was present. Females exhibited greater Modulation of PAF than 

males, across Task-types. 

Considering that males Modulated PAF less than females, it would be expected 

that PAF at Baseline would be more highly correlated with PAF during Maintenance 

among males compared to females. This was the case. For males, Pearson’s r = 0.82, for 

females: r = 0.58. The difference between male and female correlations is significant: z = 

4.71, p < 0.0001. Distributions of Modulation of PAF (the difference, calculated within 

each individual, between PAF during the Maintenance versus Baseline time periods) are 

shown in Figure 4. A two-sample, two-sided Kolmogorov-Smirnov test indicates a 

statistically significant difference between the female and male distributions of 

Modulation: D = 0.29, p<0.05.  

3.3.4 Peak Alpha Frequency and Behavior  

To test our prediction of a relationship between PAF and task performance, 

regression analyses using behavioral measures (Accuracy and Response Time) as outcome 

measures predicted by PAF during the time periods of interest were performed. Separate 
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correlational analyses were then performed to further examine the relationship between 

PAF and Accuracy for each Task-type.  

Females exhibited greater Modulation of PAF than Males (above results) yet did 

not have an apparent behavioral advantage in performance across task conditions. It is 

possible that different relationships between PAF, Modulation of PAF, and task-

performance exist for males versus females. Female and male groups were modeled 

separately, based upon the prediction of different PAF-behavior relationships between 

them. 

In all second-step hierarchical models with Response Time as the outcome 

variable, the addition of PAF as a predictor did not improve model fit above and beyond 

Task-type alone. This was the case for both males and females, and PAF from each time 

periods of interest. For the female group, the addition of PAF to Task-type as a predictor 

of Accuracy did not improve model fit over Task-type as a sole predictor. This was the 

case for PAF during all three time periods of interest (Baseline, Maintenance, and the Pre-

Test Task period). For the male group, however, model fit improved significantly when 

PAF was incorporated as a predictor of Accuracy. In males, Accuracy predicted by the 

interaction of Task-type and Baseline PAF was a better fit than Accuracy predicted by 

Task-type alone: F(2,124)=3.30, p<0.05. The second-step model incorporating Baseline 

PAF was a significant predictor of Accuracy: F(7,124)=36.6, p<0.0001, R2=0.66. The 

second-step model incorporating Maintenance PAF as an interacting predictor in males, 

exhibited a trending difference over Task Type as the sole predictor: F(2,124)=2.22, 

p<0.08. This second-step model was also a significant predictor of Accuracy in males: 
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F(7,124)=34.9, p<0.0001, R2=0.64. As expected, then, given that the Pre-Test Task period 

incorporates both the Baseline and Maintenance period, the second-step model adding 

Pre-Test Task period PAF also proved a significantly better fit than the first-step model: 

F(2,124)=4.07, p<0.01. This second-step model was a significant predictor of Accuracy in 

males: F(7,124)=37.8, p<0.0001, R2=0.66. 

Further examining this relationship between Accuracy and PAF in males, separate 

correlational analyses were performed. Correlations by group, separately for each task 

condition and corrected for multiple comparisons, between Accuracy and PAF during the 

three time periods of interest are shown in Table 3. In Precise Conditions, there was no 

significant correlation between Accuracy and PAF for either females or males. A 

significant positive correlation between PAF and Accuracy among males was present in 

the 3-Sample Relative Condition (r=0.49, p<0.05) and trending in the same direction in 

the 2-Sample Relative Condition (r=0.42, p=0.11) during the Pre-Test Task time period of 

interest. There was no correlation between these measures in females (r=-0.01, p>0.05). 

A significant difference was present between male and female group correlations in the 

3-Sample Relative Pre-Test Task time period (z=2.51, p=0.01).  

 

3.4 Discussion 

The present study presents evidence for sex-differences in the modulation of PAF 

during visuospatial working memory. Across four different Task-types, females 

modulated PAF more than males. In males, PAF during task performance could be 
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described as more constant. In males, overall PAF across Baseline and working memory 

Maintenance periods was more highly correlated with task performance than it was in 

females.  

While PAF has been described as a “stable neurophysiological trait” in adults 

(Grandy et al., 2013), this phrase is not an accurate descriptor as it applies to adult 

females. In females, resting-state PAF varies predictably in relation to the menstrual cycle, 

as discussed in the Introduction. Additionally, the difference between resting-state and 

task-related PAF has also been found to vary across individuals and within individual 

females across the menstrual cycle (Bazanova et al. 2014). In the present study, we find 

that females, as a group, also modulate PAF between time periods during performance 

of a task. 

What the cognitive function of this modulation may be, however, is not clear. 

Modulation did not render a behavioral advantage for females. Between females and 

males, there was no statistical difference in task performance – either for Accuracy or 

Response Time – and group performance distributions were quite similar. A recent meta-

review that focused on sex differences in visuo-spatial working memory found small 

effects of a female advantage for specific location memory and a male advantage for 

other visuo-spatial tasks (Voyer et al., 2017). The present task, however, which contrasts 

working memory for precise and relative spatial locations, did not find a female or male 

advantage for either task. Another recent review (Grissom & Reyes, 2019) examined the 

evidence for sex and gender differences in executive function in both animal models and 

human behavior. They highlight the importance of considering motivation, reward, and 
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strategy usage when evaluating whether small effects should reasonably be attributed to 

differences in sex or gender. In the present study, there are main effects of task condition 

in both accuracy and response time (Table 1), with lower accuracy and slower response 

times, generally, in 3-Sample compared to 2-Sample conditions. No speed-accuracy trade-

off was present across conditions, nor were there different patterns of behavior by sex 

group that might indicate differences in motivation or response to reward.  

In females, there was no significant relationship between either PAF Modulation 

and task performance, or overall PAF and task performance. For males, though, indication 

of a relationship between PAF and task performance was present. Specifically, in males, 

Accuracy within Relative, but not Precise, Task-types was positively correlated with PAF.  

As reviewed in the Introduction, a study with predominantly male participants 

found that the better performing half of participants had higher PAFs than the worse 

performing half (Klimesch et al., 1993). In a study comprised solely of males, a positive 

correlation was found between PAF and an aspect of “non-verbal intellect” as assessed 

by a standardized test (Bazanova and Aftanas 2008). It would be prudent for future 

research, given the sex-specific findings here and the findings of prior studies, to account 

for sex as a factor when examining PAF and potential relationships with cognitive 

processes or task performance. 

In the paradigm utilized here, Task-types varied—in working memory load 

demand and in the type of information required to be maintained. During both the 

Baseline and Maintenance time periods, only a fixation cross was visually present on 
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screen. The amount of information a Participant needed to hold in mind, however, 

increased considerably in the Maintenance period compared with Baseline. Across Task-

types, rules needed to be maintained, but with each trial, new stimuli-specific information 

needed to be maintained. There was no effect of Task-type on either PAF during 

Maintenance, or Modulation of PAF. However, the significant positive correlation in males 

between PAF, particularly during Baseline and performance on the higher-load Relative 

Task-type raises interesting questions. 

The Baseline time period preceded the presentation of stimuli pertaining to the 

current trial and followed the inter-trial interval of the preceding trial. It was not a period 

of true “rest,” but rather a brief pause in which the cognitive demands of one trial have 

passed and the demands of a new trial are pending. How alert and attentive an individual 

participant was during this time period prior to the more demanding high-load Relative 

trials may have had an impact on trial performance. Some studies dividing alpha activity 

into upper and lower bands have associated a reduction in the lower range of alpha power 

with attentional processes – specifically alertness and expectancy (Klimesch et al. 1998; 

and see reviews: Klimesch 1999, Bazanova and Vernon 2014). That PAF falls at a higher 

frequency for some individuals might be explained by reduced lower alpha power due to 

increased alertness and expectancy.  

PAF provides only a single metric of the power distribution of alpha oscillatory 

activity and does not allow for conclusions to be drawn regarding the origin of variations 

in those distributions. We do not know, for example, whether PAF Modulation in females 

reflects a change in the rate of oscillations occurring within a single circuit or network, or 
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whether it reflects a decrease in the activity of one circuit or network and an increase in 

the activity of another. A recent study utilizing MEG, examined changes in the frequency 

of localized oscillatory activity as they contributed to working memory performance 

(Noguchi & Kakigi, 2020). They found better working memory performers exhibited more 

“flexible modulation” of localized frequency based on memory load demands. Of the 24 

participants they studied, 18 were female. The results of the current study indicate the 

peak frequency of alpha oscillatory activity across time periods changes more in females 

than in males, but the relationship between peak frequency and performance was only 

observed in males. Perhaps females were able to more rapidly modulate attention (and 

thus PAF) across the different time periods of each trial, whereas males had a more 

constant attention state across trials. It is important for future research to consider sex in 

order to understand whether the alpha frequency distribution or its modulation is 

differentially related to cognitive task performance according to sex. 

Throughout we have used the term “sex” as a potential factor of influence on 

neural activity. In instances where there is indication that sex-hormones are an 

associated, and perhaps even causal factor in differences between females and males, 

the term sex-difference may be appropriate. Gender as a term, however, encompasses 

many of the developmental events and life experiences that arise, in part, from the 

juxtaposition of biological sex and identity. Gender undoubtedly impacts experience, 

thinking, strategy, and behavior – and potentially the neural activity underlying them. In 

the present study, we did not find differences in task performance between females and 

males that might point towards differences in strategy, motivation, or other factors in 



74 
 

which gender has been shown to impact behavior. A limitation of the present study, 

however, is the smaller sample size of male participants compared to female. Echoing the 

recommendations espoused by experts in sex and gender research (e.g. Rippon et al. 

2014; McCarthy and Arnold 2008; Rubin, Atwood, and Olson 2020; Jordan-Young and 

Rumiati 2012), future studies that attempt to disentangle effects of sex from those of 

gender would greatly increase our broader understanding of individual differences. 

Studies able to incorporate larger participant groups, balanced in number, would be ideal. 

We hypothesized that females and males have different cognitive or neural 

processes related to oscillatory brain activity by which behavioral outcomes are 

accomplished. The results of our analyses of peak alpha frequency, measured while 

participants performed multiple variants of a spatial working memory task, provides 

support for this hypothesis. Researchers in cognitive neuroscience are more often coming 

to recognize the importance of studying oscillatory activity based upon frequency bands 

defined for each individual based on PAF. It is critically important that researchers also be 

aware of the implications of the potential for sex differences in task-related modulations 

within those frequency bands. Only by accounting for factors of sex, when appropriate, 

can we hope to move towards a deeper understanding of the brain basis of behavior. 
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3.5 Figures 

 

Figure 1: Working Memory Task and Timeline, selected time periods and channels for analysis of EEG. The 
four distinct Task-types included two or three sample stimuli within Precise and Relative conditions. All 
Task-types required a match/non-match decision based upon the specific instructions for the Task-type. 
Visualization is organized for clarity but note that sample load is not an independent factor from 
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condition; instructions differed for each of the four Task-types. A: 2-Sample Task-type examples. In the 
Precise spatial Task-type, the test stimulus (black) matched if positioned upon an imaginary line segment 
(held in working memory) connecting the centers of the two sample stimuli. In the Relative spatial Task-
type, the vertical spatial relationship of the colored test stimuli was relevant, but not their specific 
positions. In the example shown, the red sample stimulus is positioned higher than the blue sample 
stimulus. At test, a red stimulus above a blue stimulus would be a match, regardless of their particular 
vertical or horizontal positions.  B: 3-Sample Task-type examples. With three sample stimuli, in the Precise 
Task-type, the test stimulus was a match if it occupied the exact spatial position of any one of the sample 
stimuli. In the Relative Task-type, test stimuli could be any two of the three sample stimuli colors, but were 
always in a different spatial location (though within the same visual quadrant); only the vertical spatial 
relationship between the corresponding color stimuli was relevant. C: Timeline for each Task-type and time 
periods of interest for EEG analysis. Baseline: 500ms prior to cue and visual sample stimuli presentation 
(the cue indicated whether a precise or relative judgment would be required). Maintenance: 1500ms 
during the working memory delay prior to presentation of test stimuli.  D: EEG channel montage. All 
recorded channels are depicted. The 14 channels indicated in black were selected a priori for PAF analyses. 
All 14 selected channels were included in the analysis for each time period of interest. 
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Table 1: Measures of central tendency—Medians, Means, and Standard Deviations (SD)—in Task Performance by Group: 
females (F) and males (M), shown for each Task-type. Main effects of Task-type are present for Accuracy (p<0.05) and 
Response Time (p<0.05). No main effect of Sex or interaction between Task-type and Sex are present. 
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Figure 2: Accuracy Distributions by group and comparison by Shift Function. A: Stripchart of Accuracy 
distributions by group. B: Stripchart shown in A with quantiles (vertical black bars) and differences 
between distribution quantiles characterized.  When the difference between quantiles (Females–Males) is 
negative, the connecting line between corresponding quantiles is purple; when positive, orange. The 
heavier weight vertical black bar denotes the median (5th quantile) of each distribution. C: Shift function 
between Male and Female distributions. Range of the x-axis corresponds to the shaded region of the 
Female distribution in B. Y-axis shows the difference between group distributions by quantile: as in B, 
purple indicates a negative difference; orange indicates a positive difference. Points indicate how much 
the Male distribution would need to shift at a particular quantile to match the corresponding quantile in 
the Female distribution. Vertical lines at each point represent a bootstrapped 95% confidence interval 
about the difference. Note that difference points all near zero and confidence intervals at every quantile 
difference point cross over zero: there is no significant difference in Accuracy across Task-types between 
Females and Males. Two-sample, two-sided Kolmogorov-Smirnov test: D=0.09, p > 0.5. 
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Figure 3: Response Time distributions by group and comparison by Shift Function. A: Stripchart of 
Response Time distributions (mean Response Time across Trial-types) for Males and Females. B: Stripchart 
shown in A with quantiles and differences between distribution quantiles characterized (see Figure 2 
caption for detailed explanation). C: Shift function between Male and Female distributions. Note that 
bootstrapped 95% confidence intervals at each quantile difference point cross zero. There is no significant 
difference in Response Time across Task-types between Females and Males. Two-sample, two-sided 
Kolmogorov-Smirnov test: D=0.17, p > 0.4. 
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Table 2: Measures of central tendency—Medians, Means, and Standard Deviations (SD)—in Peak Alpha 
Frequency (PAF) by Group: females (F) and males (M). PAF during the Baseline and Maintenance time 
periods (as shown in Figure 1), and PAF Modulation are all presented in units of Hz. 

 

 

 

Figure 4: Distributions of PAF Modulation by Sex. Comparison between Male and Female distributions by 
Shift Function. A: Stripchart of PAF Modulation distributions (mean Modulation across Trial-types) for 
Males and Females. B: Stripchart shown in A with quantiles and differences between distribution quantiles 
characterized (see Figure 2 caption for detailed explanation). C: Shift function between Male and Female 
distributions. The Female distribution exhibits a positive shift at each quantile compared with the Male 
distribution. The difference is greatest in higher quantiles. Two-sample, two-sided Kolmogorov-Smirnov 
test: D=0.29, p < 0.05. Females exhibit significantly more positive PAF Modulation than Males. 
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Table 3: Correlations between Accuracy and Peak Alpha Frequency (PAF) during the Pre-Test Task 
Period, Baseline and Maintenance time periods (as shown in Figure 1). Accuracy means by Trial-type are 
shown in Table 1. Pearson’s r correlation statistics are shown along with p-values indicating significance 
of difference from zero. All p column values of “–“ indicate a multiple-comparison-corrected p > 0.25. 
Values shown in parenthesis indicate the value of p without correction for multiple comparisons. Neither 
Males nor Females show a pattern of PAF correlating with Accuracy in Precise condition trials. For 
Males, there is indication of a positive correlation between PAF and Accuracy in Relative trials. A 
significant difference between Male and Female correlations—indicated in bold—is present for the 3-
Sample Relative condition during the Pre-Test Task Period (z=2.56, p=0.01). 
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Chapter 4 
 

Bimodal Spatial and Temporal Influences on 

Working Memory Performance 
 

 

In the previous chapter I presented evidence for sex-based differences in the 

neural mechanisms underlying working memory for visual objects situated in space. In 

the present and following chapter, I move into an examination of differences in behavior 

that arise when visual working memory is employed for objects and locations not only 

structured in space, but also structured dynamically in time.  

This chapter presents a study motivated by questions of how working memory for 

visuospatial information is impacted when more than visual information is present. In 

typical daily life not just visual, but also auditory, streams of information are present and 

available to be perceived. The task design employed to answer the questions posed 

herein is based upon the well-known Corsi Blocks paradigm - typically utilized to assess 

visuospatial working memory span (Berch et al., 1998; Corsi, 1972). In the Corsi Blocks 

paradigm, visuospatial targets are presented one at a time in a serial sequence such that 
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the spatial location of each target randomly varies while the temporal rate of 

presentation is constant. In the study herein, auditory stimulus streams (sequences) were 

presented in conjunction with visuospatial streams. In different task conditions, the 

presentation parameters of the auditory stimuli were manipulated such that their spatial 

and temporal features were either similar to, or different from, the spatial and temporal 

features of the visual stimuli. 

The present study was motivated by the hypothesis that when streams of 

information in separate modalities interact, performance of a unimodal working memory 

task will be affected. Specifically, when spatialized visual and auditory stimulus streams 

temporally coincide, integration of information from both streams is thought to occur. 

When these streams do not temporally coincide, integration may be less, and cross-modal 

suppression might instead be facilitated. I hypothesized that dependent upon the 

congruence between bimodal streams, either positive or negative effects on visuospatial 

working memory performance will result. 

 

4.1 Introduction 

The environments we exist within offer up rich and ongoing sensory information, 

yet we typically pay attention to and make use of only a small subset of that information. 

Selective attention has a critical role in working memory processes, which we rely upon 

to achieve goal-driven tasks (van Ede & Nobre, 2021). What we attend to, therefore, can 



90 
 

have a large impact on the outcome of our performance. Where we allocate our 

attention, matters. In a busy city filled with talking people and rumbling vehicles, perhaps 

sounds coming from our left and right matters most in our determining whether to step 

out into the street. In a wooded forest with squirrels bounding over dry leaves and snakes 

creating a rustle as they carve out paths over the ground, if we are hoping to spot a rare 

bird perhaps only sounds from above will catch our interest. In a quiet library, where the 

turning of pages or clicking of fingers on a keyboard pose small violations to an otherwise 

silent atmosphere, if our goal is to remain focused on our studies, we may try to shift 

attention away from any sound in an effort to do so. During those moments in which our 

attention is focused and our working memory engaged, when both sights and sounds are 

available and potentially relevant, what information do we utilize? And to what effect on 

our performance? Herein we explore these questions as they relate to performance in a 

visuospatial working memory task when spatially parameterized stimuli in both visual and 

auditory modalities are present.  

Sounds and sights may each provide us with potentially task-relevant information, 

though via different sensory modality streams. In cases where both modality streams 

seem to be reinforcing the same relevant information, it may be advantageous to 

integrate the two. For example, if there are cues available to us that different streams 

originate from the same singular source, by way of multimodal integration we may 

conceptually bind information from those streams together (Talsma et al., 2010). 
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Multisensory inputs that share temporal and spatial features, in particular, are likely to 

be integrated and processed as singular unified events (Welch, 1999). 

This type of multimodal binding occurs automatically and without conscious effort 

— we do not have to think about it for it to happen. In part, this is because the brain has 

classes of neurons which are specialized for the rapid computation and processing of 

conjunctive events. Some multisensory neurons in superior colliculus, for example, are 

tuned to respond to temporal conjunctions between input from different modalities 

(Meredith et al., 1987). Cellular networks within the cerebellum, support discrimination 

between temporal occurrences (Ivry & Spencer, 2004).  In primary sensory cortices, there 

exist unimodal and crossmodal neurons which become stimulated when neurons in other 

sensory regions are activated. These cells promote amplified responses to input in their 

native sensory modality when those inputs occur in temporal conjunction with inputs 

from other modalities (Allman & Meredith, 2007; Allman et al., 2008). At the population 

level, neuronal activity in primary auditory cortex can have a modulatory effect on activity 

in visual cortex (Mercier et al., 2013). These circuits of activity have been directly linked 

to facilitation of behavior (Stein et al., 1989). 

Note that the terms “multimodal” and “bimodal” are used to indicate the 

presence of stimuli in different sensory modalities. At times, bimodal stimuli – such as a 

sight and a sound – may be attributed, correctly, to a singular source. At other times, 

however, bimodal stimuli may arise from difference sources. While the brain is well 
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adapted to rapidly bind discrete percepts together, to facilitate comprehension of them 

(Talsma et al., 2010), the stimuli themselves exist separately from any unifying 

representations we may form.   

Past studies have found that when visual and auditory stimuli are available to us, 

the combination can benefit behavioral performance in visual tasks. A simple sound “pip” 

presented along with a busy visual scene, for example, can speed up a visual search for a 

target (Van der Burg et al., 2008). An oddball sound, embedded in a stream and presented 

in synchrony with a visual array can speed up visual detection (Vroomen & De Gelder, 

2000). People are faster to detect location changes of bimodal visual and auditory stimuli, 

than of stimuli in either modality alone (Schröger & Widmann, 1998). At other times, 

however, the presence of multimodal streams can lead to errors. A single visual stimulus 

accompanied by a rapid succession of discrete sounds, for example, can generate the false 

perception of multiple visual stimuli despite the presentation of only one (Mishra et al., 

2007; Shams et al., 2000). When participants must determine a direction of stimulus 

movement, if both visual and auditory stimuli are presented together, moving in opposite 

directions, the conflicting presentation has a negative impact on performance. 

Interestingly, however, it is only the case that performance is worse when reporting the 

direction of sound presented with conflicting visual information, but not vice-versa (Soto-

Faraco et al., 2004). Errors in word perception can occur when the sound of words and 

the mouth movements of a speaker are in conflict (McGurk & Macdonald, 1976). Engaging 
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in a separate visual task while still viewing a speaker and listening to mismatches, though, 

eliminates these errors (Alsius et al., 2005).  

The presence of sound may have different effects on performance in a visual task 

dependent upon either the demands of the task or the features of the sound. In a study 

by Marsh et al., for example, participants were presented with a visual sequence of seven 

Navon letters to encode into verbal working memory while an irrelevant stream of sounds 

was simultaneously presented. When the focal demands of the task were increased – 

described in this study as high working memory load – performance suffered far less from 

the presence of an auditory stream than when working memory load was low. In a follow-

up experiment, however, participants were exposed to a sound stream that continually 

changed while trying to encode a visually presented verbal sequence. The presence of 

this dynamically changing sound had a negative impact on performance regardless of 

working memory load (Marsh et al., 2020).  

We have some degree of control over what information we prioritize and 

selectively attend to among multiple modality streams. Over time, repetitive and 

irrelevant sounds can be endogenously suppressed, for example, reducing the amount of 

attention directed to them (Todorovic et al., 2011). However, we are never able to flip a 

cognitive switch that can selectively cut off input from one modality entirely (Lorenc et 

al., 2021; Myers et al., 2017). Simple, irrelevant sounds that temporally co-occur with a 

visual target can alter subjective visual perception (Barry E. Stein et al., 1996). Covert 
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shifts of attention can be induced by auditory stimuli in modalities we are not actively or 

purposefully attending to (Driver & Spence, 1998). In these examples, unrelated 

information arising from separate modality streams can have crossmodal effects that 

arise from their juxtaposition. If one is performing a visuospatial task in which visual and 

auditory stimuli co-occur in synchrony, then, information from the auditory modality, 

despite being irrelevant, may indeed impact performance.  

Seemingly automatic integration effects, however, can be modulated by 

attentional strategies. If bimodal streams co-occur but we deem them independent of 

one another based on conceptual or contextual knowledge, there are different ways in 

which we might process the information arising from each. For instance, if both streams 

might be independently relevant, we might shift attention between the two modality 

streams. Doing so, however, may lead to slowing of our responses, or to errors when the 

streams contain conflicting information (Lukas et al., 2010). Another approach we might 

take is to actively focus on one modality while passively experiencing or trying to suppress 

the other. With this approach, however, we may miss potentially helpful information 

from the unattended stream (Gherri & Eimer, 2011), or make errors as a result of 

conflicting information seeping through (Marsh et al., 2015). Errors of this latter form are 

just one example of an outcome resulting from intersensory bias – posited to be a means 

of reconciling discrepant perceptual information (Welch, 1999; Welch & Warren, 1980). 

In studies where there are discrepancies in locational information between visual and 

auditory streams, a bias toward the location derived from the visual content has often 
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been found (reviewed in Welch & Warren, 1980). Visual dominance has also been found 

in a number of studies in which stimuli are presented in singular instances, rather than in 

streams (Colavita, 1974; Diaconescu et al., 2013; Egeth & Sager, 1977; Lukas et al., 2010). 

It may also be the case that different people process bimodal streams of 

information differently. In a study of visuospatial working memory by Gmeindl & 

Courtney (Gmeindl & Courtney, 2011), for example, participants completed a within-

subjects task contrasting performance in the presence versus absence of sound. In the 

sound condition, while participants performed a visuospatial task in which a serial 

sequence of targets was presented, discrete noise bursts were presented in synchrony 

with the onset of each new visual target. Further, the spatial presentation of each noise 

burst was randomized such that the sound was either central, or completely or partially 

lateralized, in its presentation. Different results were found for different participants: in 

neurotypical individuals, the presence of the auditory stream indeed resulted in worse 

performance compared to silence – the spatially random sound was distracting. For 

individuals with a clinical multiple sclerosis diagnosis, however, performance was actually 

facilitated in the sound condition compared to when no sound was present (Gmeindl & 

Courtney, 2011).  

If immersed in a primarily visual task, we might consider all sounds to be a 

distraction – as in the case of unexpected noises occurring while studying in a library. But 

yet in some instances, and for some individuals, even potentially conflicting sounds may 
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be helpful. If an event does indeed negatively impact or interfere with performance, 

objectively it can be classified as “distracting.” A sound causing distraction can typically 

be attributed to one of two things: either the sound pulled attentional resources away 

from where they were previously allocated, or it interfered with ongoing task-related 

processing of information (Hughes, 2014). Trying to remember an ongoing stream of 

visual information in the presence of an auditory stream that is continually changing, as 

in Gmeindl & Courtney (2011), is an example of the latter. As demonstrated in that study, 

however, distraction is not always clearly predictable. 

Many studies that have informed our understanding of the behavioral impact of 

bimodal visual and auditory stimulus presentation have focused on effects of perception 

or attention in particular (Egeth & Sager, 1977; Van der Burg et al., 2008; Villena-González 

et al., 2016). In studies examining the impact of bimodal stimulus streams upon working 

memory, the effects upon memory for verbal information in particular have been well 

studied (Hughes et al., 2013; Hughes & Marsh, 2019; Marsh et al., 2015). The effects of 

bimodal presentation upon working memory for visuospatial information, however, have 

been far less examined. Within the described visuospatial working memory study that 

employed spatially random auditory distractors (Gmeindl & Courtney, 2011), distraction, 

rather than bimodal integration or interference in particular, was the subject of focus. 

The question, therefore, of how bimodal visual and auditory streams may affect 

visuospatial working memory performance remains an open one. 
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Summarizing what has been discussed above, temporal coincidence between 

bimodal stimuli in particular can encourage either multimodal binding or integration 

(Talsma et al., 2010). Further, if bimodal stimuli share properties such as spatial location, 

information from both modalities may be relevant and improve performance on a spatial 

task. On the other hand, distraction and impaired working memory performance can arise 

due to effects of incongruency between a target and an unrelated stimulus (Diaconescu 

et al., 2011, 2013; Lorenc et al., 2021). Studies that present visual and auditory stimulus 

streams concurrently have demonstrated that when task goals warrant attending 

primarily to the visual stream, an auditory stream that is changing unpredictably in space 

is likely to capture attention and impact performance (Gmeindl & Courtney, 2011; Marsh 

et al., 2020; Welch, 1999). But yet, many studies have found that for processing of spatial 

information in particular, vision is the dominant sense (Diaconescu et al., 2013; Egeth & 

Sager, 1977; Lukas et al., 2010). Further, processing of repetitive auditory stimuli with 

constant parameters (such as tone) and predictable timing, can be suppressed (Todorovic 

et al., 2011). Thus, it remains unclear under what circumstances irrelevant and potentially 

conflicting auditory stimuli will or will not interfere with working memory for spatial 

information in the visual modality. 

We hypothesized that streams of sound providing spatial information will be 

integrated in working memory during performance of a visuospatial task, but only when 

those sounds temporally co-occur with visual targets. Further, we hypothesized that this 

synchrony-induced integration will have differential effects on performance dependent 
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upon spatial congruence. We predicted auditory stimuli that temporally co-occur with 

visual stimuli will facilitate performance when the spatial information provided by both 

are congruent, but hinder performance when the spatial information of each is 

incongruent, and therefore in conflict. 

 

4.2 Methods 

To test these hypotheses, we adapted the working memory paradigm utilized in 

Gmeindl & Courtney (2011). The task in this study was itself a modified version of the 

Corsi Blocks paradigm (Corsi, 1972), which has been employed for decades in the 

assessment of an individual’s visuospatial working memory span (Berch et al., 1998; 

Monaco et al., 2013). Generally, in this paradigm, a sequence of squares (‘blocks’) are 

selected from an array and presented as memory targets, with one target square 

identified at a time. Participants must remember every target presented and reproduce 

the sequence following a brief delay.  

This visuospatial working memory task is described in detail below. As in Gmeindl 

& Courtney (2011), spatial manipulations of sound stimuli were achieved by lateralizing 

their presentation using interaural intensity differences with headphones. 

4.2.1 Participants 

Young adult participants were recruited from the Johns Hopkins University 

student community for participation and were compensated via course credit. 
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Participants ranged in age between 18 and 28 years, and included 30 females (mean age 

= 19.8, SD = 1.20) and 30 males (mean age = 19.9, SD = 1.98), categorized based upon 

binary self-report of gender. Participants were screened via self-report for typical hearing 

in both ears, normal or corrected-to-normal vision, and lack of attention or memory 

related clinical diagnoses or traumatic brain injury.  

4.2.2 Stimuli and Task 

Auditory stimuli 

A single auditory stimulus was utilized for the task. This sound stimulus was a 

300ms segment of pink noise, with a 10ms rise and fall at onset and offset, respectively. 

Pink noise, unlike white noise, has a decaying power frequency spectrum and therefore 

is akin to naturally occurring sounds, without being generally associated with any specific 

semantic meaning. As pink noise has been shown to elicit a strong exogenous response 

(Wetzel et al., 2016), it was deemed an adequately salient, yet semantically neutral, sound 

stimulus with which to test our hypotheses. Two versions of this stimulus were created, 

one with 100% left-, the other 100% right-channel lateralization. Sounds were created in 

Audacity® sound editing software (Audacity Team, 1999). Auditory stimuli were 

presented through Sennheiser HD 201 over-ear binaural headphones, at a volume well 

above threshold.  
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Visual Stimuli 

Visual stimuli consisted of 10 square “blocks” presented on a neutral gray colored 

background. Each block was dark gray in color and occupied approximately 3.6° in visual 

angle of both height and width. Viewing distance was fixed at approximately 59cm from 

the screen using a fixed-position chinrest. A configuration of five blocks was created 

wherein each block was separated by greater than 2.0° of visual angle in all directions. 

This five-block configuration was repeated on the left and right sides of the visual space, 

with a horizontal separation of approximately 7.0° of visual angle between them. On 

designation of a particular block as a target, the color of the block changed to cyan blue 

on the next screen refresh. 

Task 

In Figure 5 the on-screen configuration of visual stimuli is shown (A). For each trial 

a random sequence of six visual targets was selected from among the ten blocks within 

the visual array to be the Sample Sequence. A memory set size of six targets was 

determined to result in a suitable range of performance based upon pilot testing in this 

population. Targets were identified by an abrupt color change from grey to cyan blue, 

lasting 500ms. The visual inter-stimulus interval was 500ms, following which the next 

target in the sequence was presented. Following presentation of the entire Sample 

Sequence there was a 2.5s delay before presentation of the Test Sequence. The Test 

Sequence was comprised of six visual targets that were either identical to, or different 

from, the Sample Sequence. On every trial, participants were to determine whether all 
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targets within the Sample Sequence and Test Sequence matched in both location and 

order of presentation. Participants were cued to the onset of both the Sample Sequence 

and Test Sequence by a centrally presented fixation cross that lasted for a duration of 1s. 

Response was prompted by the display of “MATCH?” on screen until a keypress was 

made. No time limit was placed on responding. After a response was made, a 1s inter-

trial interval preceded the start of the next trial. No feedback was provided. 

During presentation of the Sample Sequence, on some trials an auditory stimulus 

(described above) was presented at the same time as each of the visual targets – with the 

onset of each occurring synchronously. In other trials, the onset of the auditory stimulus 

just preceded, or shortly followed, the onset of the visual stimulus. These trials are 

described as temporally asynchronous. Asynchronous auditory stimulus onsets randomly 

occurred either 100ms, 200ms, or 300ms before, or after, onset of each visual target.  

Synchronous and asynchronous trials were further defined by the spatial 

congruence between visual and auditory stimuli. In some trials, auditory stimuli were 

lateralized congruently with the spatial lateralization of the visual stimuli. These are 

described as congruent trials. In other trials, referred to as incongruent trials, the 

lateralization of each auditory stimulus was opposite of its corresponding visual stimulus 

in the sequence. These spatial relationships between auditory and visual stimuli are 

shown in section A of  Figure 5.  



102 
 

During the Test Sequence, only visual stimuli were presented, with three possible 

Test Types. One third of the Test Sequences matched the Sample Sequence in both the 

identity of all 6 targets and their order of presentation. One third of the Test Sequences 

mismatched the Sample Sequence in identity. In this Test Type a single target block was 

randomly selected from among those outside of the Sample Sequence and displayed in 

the third or fourth (randomly determined on each trial) position of the Test Sequence. 

The final third of Test Sequences were a mismatch in order. For mismatched order trials, 

the third and fourth targets within the Test Sequence were swapped in their ordinal 

positions. No instructions were provided to participants regarding trial types or auditory 

stimuli.  

The task included a total of 75 trials. Sixty of the trials were bimodal, with both 

auditory and visual stimuli presented during the Sample Sequence. Fifteen trials were 

unimodal; only visual stimuli were presented. The 60 bimodal trials were divided among 

four conditions. As previously described, there were four Sample Conditions: 

Synchronous-Congruent, Synchronous-Incongruent, Asynchronous-Congruent, and 

Asynchronous-Incongruent. Thus, there were 15 trials per Sample Condition, equally split 

among the three Test Types (5 Match, 5 Order-mismatch, and 5 Identity-mismatch trials).  

The task was programmed in Python 3 (Python Software Foundation, 2008) 

utilizing the PsychoPy 3.2 (Peirce, 2007) library of code and software for delivery.  
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4.2.3 Procedure 

After providing consent and receiving verbal and on-screen instructions and 

training, participants performed the task in a private booth seated in front of a computer 

screen with headphones on. For each participant, trials from each described Sample 

Condition were intermixed in a pseudorandomized order. Trials were separated into five 

experimental blocks with self-paced breaks permitted between blocks. On completion of 

the task, participants were given a demographics questionnaire and a then guided by the 

experimenter through a brief exit interview. The duration of the entire study session was 

approximately one hour. 

4.2.4 Design 

The study utilized a within-subjects, repeated-measures design. Randomized 

presentation of trials over the duration of the experiment, rather than a blocked design, 

was utilized to minimize habituation to any specific temporal or spatial occurrence of 

sound. Accuracy (proportion of correct responses) was the primary dependent variable 

of interest.  

In bimodal trials, auditory and visual stimuli were presented only during the 

Sample Sequence to allow for study and interpretation of effects as they relate specifically 

to processes of working memory encoding. The Test Sequence always included only visual 

stimuli. Unimodal trials, in which only visual stimuli were presented during the Sample 
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Sequence, provided a baseline with which to further compare and interpret results 

related to our hypotheses. 

To test our hypotheses, parametric group-level comparisons were performed 

using omnibus ANOVA tests with Accuracy as the primary outcome variable. A 2x2 

(Synchrony x Congruence) ANOVA test was performed to isolate the effects of different 

bimodal Sample Conditions. A 2x2x3 (Synchrony x Congruence x Test Type) ANOVA test 

was performed to determine whether additional effects of Test Type were present and 

interacting with Sample Conditions. In cases where violations of sphericity were present, 

corrected statistics are reported. A 1-way ANOVA comparing all five Sample Conditions (4 

bimodal, 1 unimodal) was performed. ANOVA tests were followed, when relevant, with 

paired t-tests to examine underlying effects. Multiple comparisons correction of t-test 

statistics was performed via the False Discovery Rate method (Benjamini & Hochberg, 

1995).  

Usage of a Yes/No recognition memory response procedure allowed for analysis 

of condition-specific responses using basic signal detection methods. Match trials in 

which participants responded “Yes” were marked as Hits. Mismatch trials in which 

participants responded “Yes” were marked False Alarms. Proportions of Hits and False 

Alarms were utilized to calculate d’ as a measure of an individual’s sensitivity to detect a 

match; β their criterion in making a Yes/No decision (Green & Swets, 1974).  
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All statistical analysis was performed in R (R Core Team, 2018) with the dplyr 

(Wickham et al., 2021), ez (Lawrence, 2016), and psycho (Makowski, 2018) packages. 

Figures were produced in R with the ggplot2 (Wickham, 2016), hrbrthemes (Rudis, 2018), 

and cowplot (Wilke et al., 2019) packages. 

 

4.3 Results 

Of the data collected, one participant was excluded from further analysis due to 

an attentional disorder and three due to failure to perform the task (below 60% overall 

Accuracy). Data analyzed was from 56 participants (27 female, 29 male). 

Our working hypotheses was that incongruence of spatial information between 

auditory and visual stimuli has a differential effect on spatial working memory dependent 

on whether sounds are synchronous with visual stimuli. A 2x2 (Congruence x Synchrony) 

omnibus ANOVA with Accuracy as the outcome variable resulted in a trending main effect 

of Congruence, F(1,55) = 3.33, p<0.075, 
2
G < 0.01, and a significant interaction between 

Synchrony and Congruence, F(1.55) = 10.28, p<0.005, 
2
G = 0.03. This interaction can be 

seen in Figure 6. Follow-up paired t-tests were performed contrasting Accuracy between 

conditions. After correction for multiple comparisons, the difference in Accuracy between 

Synchronous-Congruent versus Synchronous-Incongruent conditions was highly 

significant, t = 3.7, p < 0.002, 95% C.I. [0.027,0.092]. That is, performance when bimodal 
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stimuli synchronously co-occurred and exhibited spatial congruence was significantly 

greater than when stimuli synchronously co-occurred but were in spatial conflict. When 

sounds were presented asynchronously with the visual stimuli, the Accuracy difference 

between Congruent and Incongruent Conditions was not significant. 

Comparison of Accuracy between Synchrony conditions when bimodal streams 

were spatially congruent was only a trending effect, t = 1.78, p < 0.08, 95% C.I. [-0.004, 

0.071]. For spatially congruent stimuli streams, temporal synchrony resulted in a marginal 

improvement of performance compared to temporal asynchrony. Alternatively, 

comparison of Accuracy between Synchrony conditions when bimodal streams were in 

spatial conflict remained significant after correction, t = -2.46, p < 0.03, 95% C.I. [-0.082, -

0.008]. Performance was better, despite the spatial conflict, when bimodal streams were 

temporally asynchronous compared to synchronous. Temporal synchrony coupled with 

spatial conflict resulted in the worst performance. These results are shown in Figure 6. 

A coarse comparison of visuospatial working memory performance in the context 

of bimodal (auditory and visual) versus unimodal (visual only) stimuli was performed by 

t-test between Accuracy in the unimodal condition versus Accuracy averaged across all 

bimodal conditions. No overall difference in performance was present, t = 1.13, p > 0.2. A 

detailed comparison was performed via one-way ANOVA contrasting Accuracy across all 

conditions. The overall effect of Condition on Accuracy was significant: F(4,220) = 3.74, p 

< 0.006, 
2
G = 0.032. Among the five Conditions, most relevant to our hypothesis were the 
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direct contrasts of unimodal versus bimodal temporally synchronous conditions. Put 

otherwise — the comparison in performance of the visual task when no-sound versus 

synchronously occurring sound was present. These contrasts were performed via paired 

t-tests, corrected for multiple comparisons. Accuracy in the case of Synchronous-

Incongruent bimodal stimuli was significantly worse than Accuracy for unimodal visual 

stimuli only, t = -2.73, p < 0.02, 95% C.I. [-0.078, -0.012]. Accuracy for Synchronous-

Congruent bimodal stimuli, while numerically greater, was not statistically different from 

Accuracy given unimodal stimuli, t = 1.062, p > 0.2. 

Throughout the course of the experiment, participants were presented with trials 

of three different Test Types. The sequence presented during the Test period either 

matched the Sample Sequence or mismatched it in Identity or Order. To determine how 

Test Type contributed to the above effects on performance, a 2x2x3 (Synchrony x 

Congruence x Test Type) ANOVA was performed. In addition to the same effects of the 

previously reported 2x2 ANOVA, a main effect of Test Type, F(2,110) = 38.06, p < 0.001, 


2
G = 0.16, was present. A 3-way interaction did not exist. However, significant 

interactions between Congruence and Test Type, F(2, 110) = 4.04, p < 0.03, 
2
G < 0.01, and 

between Synchrony and Test Type, F(2,110) = 4.19, p < 0.03, 
2
G < 0.01, were present. 

These results are shown in Figure 7. Mean Accuracy is over 90% across conditions for 

Identity-mismatch Test Type trials. Mean Accuracy for both Match and Order-mismatch 
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Test Type trials ranged between 70-85%. Again, the contrasts most relevant to our 

hypothesis were between the different spatial Congruence Conditions when stimuli were 

Synchronous. While the pattern of performance in Synchronous conditions was the same 

for both Match and Order-mismatch Test Types, the difference between Congruent and 

Incongruent spatial Conditions given an Order-mismatch Test Type was borderline 

marginal, t = 1.67, p = 0.1, 95% C.I. [-0.011, 0.118]. The difference between these 

conditions given a Match Test Type, however, was large, t = 3.84, p < 0.001, 95% C.I. 

[0.050, 0.158]. 

Average sensitivity in detecting a Match, operationalized as d’, was computed and 

compared across Conditions. A significant difference in sensitivity was present based 

upon Condition: F(4,220) = 3.48, p < 0.01, 
2
G = 0.03. Sensitivity was similar between 

Unimodal (visual stimuli only) and Bimodal Asynchronous Sample Condition trials. In 

Bimodal Synchronous trials, however, participants exhibited reduced sensitivity for 

spatially incongruent compared to congruent stimuli: t = -3.81, p < 0.001, 95% C.I. [-0.607, 

-0.188].  

The decision criterion, β, was found to significantly differ across Conditions, 

F(4,220) = 3.12, p < 0.02, 
2
G = 0.03, but the effect is not driven by Conditions of Temporal 

Synchrony. Between the Synchronous conditions, there was little change in the average 

decision criterion, β, between spatial conditions, or compared to Unimodal visual-only 

stimuli: t < 1.0, p > 0.3 for each comparison. Participants were not increasingly biased to 
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respond Yes or No in the presence of synchronous sound. These results are shown in 

Figure 8.  

 

4.4 Discussion 

People utilize signals of timing and spatialization to selectively allocate attention 

and make inferences about the environment (Nobre & van Ede, 2018; Theeuwes, 2014). 

These signals are sources of information. Studies of perception and attention have found 

that distinct signals arising from different sensory modalities can have a strong effect on 

behavior, particularly when those signals occur at the same time. In the present study, 

we present evidence that these effects extend to visuospatial working memory. 

A significant difference in performance resulted when bimodal streams had 

synchronous compared to asynchronous temporal structure. We consider two possible 

ways by which information representation in working memory may have been affected, 

that account for this difference. First, by way of multimodal binding. Second, by way of 

reinforcement or interference.  

 Within synchronous trials, because auditory and visual information temporally 

coincided it may be the case that the two modality streams were representationally 

bound together (Talsma et al., 2010). For each target presented, then, the representation 

of that target’s location would be formed based upon both visual and auditory 

information. In the case of spatially congruent bimodal streams, only accurate target 
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location information would be available for representational binding, facilitating memory. 

In the case of spatially incongruent bimodal streams, only the visual stream would provide 

accurate location information while the auditory stream would be misleading. Binding 

auditory and visual streams in these instances would diminish the precision with which 

location was represented, hindering memory.  

While this account does fit the resulting behavior observed, with Accuracy in task 

performance being greater for Synchronous-Congruent trials compared to Synchronous-

Incongruent trials, there are reasons this might be questioned.  While both visual and 

auditory streams shared similarity in that they exhibited spatial and temporal structure, 

for example, they were not unified in any other obvious means – such as semantic 

connection. Pink noise, rather than an instrumental tone or an animal call was specifically 

utilized in this study for its lack of semantic meaning. Further, auditory stimuli were 

always presented through headphones. Previous studies have demonstrated that binding 

between auditory and visual stimuli is less likely when the two do not emanate from “out 

there” in space (Soto-Faraco et al., 2004). Another account then, is that bimodal streams 

were represented separately.  

As reviewed in Chapter 2, decades ago it was demonstrated that people were able 

to remember and report fundamental features of sounds presented to them even when 

explicitly focusing their attention elsewhere (Treisman, 1964). In the present study, the 

spatial location of auditory stimuli may have been a sufficiently low-level feature for 
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participants to perceive and encode, even if not explicitly directing attention to the 

auditory modality. When drawing upon memory during task performance, then, 

representations formed from visual stimuli may have been predominant, but auditory 

representations that had been separately formed and stored also had influence. 

In considering the patterns of performance tied to different Test Types, of note is 

that the highest accuracy was achieved across conditions when sample and test target 

identities mismatched (see Figure 7). Rather than separately encoding sample and test 

sequences, and then internally comparing representations between the two, reliance 

upon recognition memory is a far less demanding approach. An entirely mismatching 

target, then, would be readily identified as unfamiliar. In Match and Order-mismatch Test 

Types, performance was far lower.  

Previous studies have demonstrated that visuospatial working memory in 

particular is more prone to errors of order in representing sequences of information than 

are other forms of working memory (e.g. Gmeindl et al., 2011). While the direction of 

difference between Accuracy in Synchronous-Congruent and Synchronous-Incongruent 

trials holds when it comes to Order-mismatch Test trials, the effect is marginal. There is a 

stronger effect of temporal structure in the case of Congruent trials, however, which is 

interesting. Performance is by far worst for trials in which bimodal stimuli were spatially 

congruent, but temporally asynchronous. Although the bimodal stimuli occurring in 

closest temporal proximity within Asynchronous-congruent trials were indeed spatially 
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congruent, they may have been spatially incongruent relative to sequentially neighboring 

targets. Put otherwise, a single auditory stimulus in these trial types may have been 

spatially incongruent with an earlier, or later, visual stimulus. It is possible, then, that this 

effect may have arisen from proactive interference occurring across modalities. When 

auditory stimuli were asynchronous with visual stimuli, each auditory stimulus onset 

occurred randomly either before or after onset of each visual stimulus. In cases where 

the auditory stimulus was presented early, perceiving it may have generated interference 

in processes of consolidation related to the preceding visual target. In cases where the 

auditory stimulus was presented “late,” it may have interfered with subsequent visual 

target encoding. When spatial incongruence was present with earlier or later targets, 

errors in memory for order may have resulted.  

The largest Congruence-based difference within Synchronous trials arose within 

Match Test Type trials (Figure 7). Indeed, in the case of Synchronous-Incongruent trials, 

participants exhibited the lowest sensitivity to detect a match (Figure 8A). As can be seen 

in Figure 8B, however, this was not due to a shift in decision Criterion to make a Yes/No 

response. Put otherwise, spatial conflict between synchronous bimodal stimuli did not 

lead participants to become more or less conservative in selecting a response than they 

were for Synchronous-Congruent or Asynchronous-Incongruent conditions. Only among 

Asynchronous-Congruent trials was there a comparatively marked shift in decision 

Criterion indicating a bias towards a Yes response.  
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As demonstrated by the behavioral differences across Sample Conditions and Test 

Types discussed, performance of a visuospatial working memory task was strongly 

influenced by the presence of information in the auditory modality. Synchronous inputs 

from different modalities may have generated some competition for attention. Even 

though visual dominance has been repeatedly demonstrated (e.g. Egeth & Sager, 1977), 

there could at times be an outcome of competitive selection that favors dedicating neural 

resources to processing information arising from the auditory modality (Desimone & 

Duncan, 1995; Knudsen, 2007). In the case of a dynamically changing auditory stream, 

change in the properties or features of specific sounds may lead to exogenous generation 

of bias and ultimately outcompete a visual stream for allocation of attention. On the other 

hand, endogenous signals, particularly those related to control processes, may win the 

resource “tug of war”, keeping attention oriented in the most goal-appropriate direction. 

The sound stimulus used in the present study did not change within a trial, but the timing 

and lateralization of its presentation did. The impact was not so great as to drastically 

harm performance – Accuracy across Conditions was great than 70%, but it clearly had an 

effect. 

If the sound itself was consistently distracting, performance in Bimodal compared 

to Unimodal conditions should have suffered. This was not the case. Only when the sound 

was synchronous and spatially incongruent was there an effect of distraction – 

performance was worse in this case than in other Bimodal Conditions and worse than 

when no sound was present at all. Indeed d’, sensitivity, was also lowest in this 
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circumstance. This reinforces the similar finding when examining Accuracy by Test Type – 

given Synchronous and Incongruent sound, participants were least capable of 

distinguishing matches.  

 

4.5 Conclusion 

We hypothesized that the spatial information provided by bimodally presented 

visual and auditory stimuli would have the greatest impact on working memory 

performance when those stimuli occurred together in time. Indeed, this is exactly what 

we found. The effect, however, was not strictly beneficial. Instead, it differed based upon 

the congruence or incongruence of the spatial information provided by each sensory 

stream. While it may not be the case that information from each modality was integrated 

into a single representation, then stored in working memory, there is strong indication 

that representation arising from the perception of each modality did indeed impact 

performance. Temporal and spatial structure within, and across modalities, effect 

working memory representation. Future neuroimaging studies might shed light on the 

neural processing underlying this behavior. 
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4.6 Figures 

 

 

Figure 5: Overview of Task Conditions and Trial Timeline. A: Example of a Sample Sequence in which both 
visual and auditory stimulus streams are presented. Graphic depiction demonstrates the spatial 
relationship between visual targets (upper) and auditory (lower) stimuli in Congruent and Incongruent 
conditions. On every trial, six unique visual targets (cyan blue squares), selected at random, were 
presented. Ellipses and overlapping screens represent portions of the sequence presented during the 
experiment but not included in this visualization. B: Trial Timeline. Shaded rectangular regions indicate 
time periods of stimulus stream presentation. During presentation of the Sample Sequence, both visual 
and auditory stimulus streams were presented. During presentation of the Test Sequence, only visual 
stimuli were presented. In all task conditions, Participants were instructed to remember the Sample 
Sequence. After presentation of the Test Sequence, participants made a Yes or No response by keypress 
to indicate whether Sample and Test sequences matched. No instruction was given regarding the auditory 
stimuli.  
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Figure 6: Accuracy (proportion correct) within bimodal trials by Sample Condition. Error bars indicate 
standard errors of the mean. Performance across Conditions in which bimodal stimuli were spatially 
Congruent are shown in deep turquoise; spatially Incongruent are shown in salmon. A significant 
interaction is present between Synchrony and Congruence, F(1.55) = 10.28, p < 0.005. Follow-up contrast 
statistics are shown.  
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Figure 7: Performance (Accuracy) across bimodal trials by Sample Condition and Test Type. Trials were 
evenly split between the three Test Types. While the general pattern of Accuracy within Synchronous-
Congruent trials being higher than Accuracy within Synchronous-Incongruent trials holds across Test 
Types, the difference between these conditions was greatest among trials in which the Test and Sample 
sequences matched.  
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Figure 8: Comparison of participant sensitivity, d’, (A) and decision criterion, β, (B) across unimodal and 
bimodal Conditions. Main effects of Condition are present for both d’ and β outcome variables. The 
largest difference in sensitivity is present between the Synchronous-Congruent and Synchronous-
Incongruent Bimodal conditions, indicating greater and lesser sensitivity, respectively, to detect Matching 
Sample and Test sequences. This reinforces the results shown in Figure 7. As shown in (B), however, this 
was not driven by a change in decision criterion — these two conditions did not generate significantly 
more or less bias to make a Yes/No response. That β was lowest for Asynchronous-Congruent trials 
indicates that participants were more biased to respond Yes, further shedding light on the differences in 
Accuracy by Test Type (Figure 7) within this condition. 
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Chapter 5 

Spatial Working Memory in the Presence or 

Absence of Visual Rhythm  
 

5.1 Introduction 

Rhythmic temporal structures abound. They arise from within our environments, 

and within our bodies, creating ebbs and flows in the occurrence of events over time 

(Jones, 1976; Winfree, 1967; Zalta et al., 2020). Sequences of information can be 

described as streams of events with temporal structure. While rhythmically structured 

streams have been utilized in the study of a range of cognitive processes, whether and 

how rhythmic structure impacts working memory for streams of information remains an 

open question. 

The simplest form of rhythm – an isochronous beat – can arise spontaneously, as 

with the pattern of our footsteps, or by design, as with the ticking of a clock. A repeated 

event that itself has a fixed duration, separated by repeated intervals of equal length, is 

what defines isochronous rhythmic structure (Nobre & van Ede, 2018). Perceptually, a 

series of discrete events may also be characterized as a rhythm if their sequence 
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generates an emergent recurring temporal pattern or structure (Nobre & van Ede, 2018; 

Parncutt, 1994; Ravignani et al., 2018). Beyond merely being defined as such, sequences 

with isochronous temporal structure are indeed perceived as being “rhythmic” (Breska & 

Deouell, 2017). On the other hand, repeated events whose instances are separated by 

intervals with lengths that vary, such that their sequence fails to form a perceptually 

discernible pattern, have temporal structure described as arrhythmic.  

Within the brain, rhythms are ubiquitous. Rhythmic oscillatory activity facilitates 

communication within and between neural populations (Fries, 2015). Oscillations 

occurring at lower frequencies in particular organize the output of local computations 

across regions (Miller et al., 2012). Within the so-called ”attention network” of the 

primate brain, rhythmic activity in the theta-beta range of frequencies (~4-20 Hz) 

generated from the thalamus and prefrontal and parietal cortices, rhythmically 

modulates the cycling between attentional shifting and sampling (Fiebelkorn & Kastner, 

2019).  This utilization of the term “rhythm” in reference to oscillations in the brain, is a 

characterization of continuous, periodic ebbs and flows. The similar structures over time 

between continuous events that change in their intensity or magnitude, and discrete 

events with clear onsets and offsets, can each be described as rhythmic.  

Representation of a temporal structure such as rhythm, may require constituent 

representations of time, formed across brain regions. It has been argued that requisite 

representations of time are those of interval and phase (Gallistel, 2011). While an interval 
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is a representation of a temporal span between two events, phase accounts for where a 

given moment within that span resides (Gallistel, 2011; van Wassenhove, 2016). 

Representation of phase can be derived from two separate computations: “how long it 

will be, and how long it has been” (Gallistel, 2011). The latter requires a judgment 

regarding the amount of time lapsed from a starting point to the present — a 

representation of interval that has already occurred. The former, determining an amount 

of time from the present to a future point in time, requires a prediction about an interval 

to come. Representing temporal intervals enables a wide range of human functions from 

those reliant on perceptual judgments to the execution of control over movement (Buhusi 

& Meck, 2005; Ivry & Hazeltine, 1995). In the brain, both the basal ganglia and the 

cerebellum have been found necessary for interval representation (Buhusi & Meck, 2005; 

Ivry, 1996; Ivry & Keele, 1989). Performance of tasks requiring representation of a series 

of discrete instances which jointly form an “event structure,” is more variable in 

individuals with cerebellar lesions (Ivry & Spencer, 2004), indicating the cerebellum is 

important for processing stimuli streams with rhythmic or arrhythmic temporal 

structures. Recent evidence narrows this scope, however, pointing towards the 

cerebellum as critical for representation of single intervals; the striatum (within the basal 

ganglia) for representation of rhythms (Breska & Ivry, 2018).  

Rhythm has been long studied in the auditory sensory domain. Perception and 

comprehension of rhythms that range from simple to complex, for example, have been 

long studied in the field of music cognition (Haegens & Zion Golumbic, 2018; Palmer & 
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Krumhansl, 1990; Parncutt, 1994). Evidence for exogenous neural entrainment by 

auditory rhythms in music has been found (Doelling et al., 2019; Doelling & Poeppel, 

2015). It has also been found that individuals can exploit the regularity of temporal 

rhythm to help them identify targets within a stream (see Experiment 1 in Barnes & 

Johnston, 2010). Rhythmic perception is not only function within audition, however, but 

also vision. 

Isochronous rhythmic structuring of visual stimuli enables inference and 

prediction about intervals yet to come (reviewed in Nobre & van Ede, 2018; Shalev et al., 

2019). In Breska and Deouell (2014), for example, sequences of simple visual stimuli were 

presented in isochronous rhythm followed by a target that participants make a speeded 

response to. The interval between the final sequence stimulus and the target was 

manipulated such that for some trials its length could be validly predicted by the temporal 

structure generated by the sequence, while for other trials its length was not predictable. 

A large effect of rhythmic validity was found: participants were faster to respond to 

targets occurring after an interval that could be anticipated given the preceding sequence 

compared to when that interval was shorter or longer than expected. Further, rhythmicity 

had a greater effect on both behavior and evoked neural activity (measured by EEG) 

compared to when a non-temporal feature, in this case stimulus color, was used to guide 

behavior (Breska & Deouell, 2014).  In another study with similar contrasts between 

temporal and color cues it was found that rhythm in particular induces both exogenous, 
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stimulus-driven, and endogenous, control-driven effects on attention, and that these 

separately impact behavior (Rohenkohl et al., 2011). 

Valid predictions regarding the duration of a single interval can facilitate working 

memory performance. In a study by van Ede et al., participants were presented with two 

lateralized oriented colored bars during an encoding period. The color of each bar was 

associated with either a short or long delay interval before being probed to reproduce the 

remembered stimulus orientation. Participants were more accurate in their reproduction 

when probed after an expected, versus unexpected, delay interval. Analysis of oscillatory 

activity (measured with EEG) during the task revealed significant modulation of posterior 

alpha power contralateral to the anticipated target dependent upon the expectation of 

being probed (van Ede et al., 2017). This study demonstrated that in working memory, 

expectation of a temporal interval can be utilized to prioritize the selection of some 

encoded items over others for reproduction at a specific time. As increases in alpha power 

contralateral to an attended target have been interpreted as a mechanism of suppressing 

irrelevant sensory inputs (Okazaki et al., 2014), their findings may point towards 

preparatory suppression to prevent distraction. Indeed, it has recently been put forward 

that distractors which occur at temporally predictable intervals can be more effectively 

suppressed than those that are unpredictable, supporting maintenance of items with 

fidelity in working memory (Gresch et al., 2021). Taken together, there is indication that 

a single, predictive temporal interval can facilitate working memory performance.  
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Rhythm, however, is a structure that emerges from sequences of intervals. In van 

Ede et al (2017), described previously, it was demonstrated that temporal expectation 

can facilitate working memory retroactively. This was accomplished by using expectation 

to guide internal attention and prioritizing processing of some encoded representations 

over others at a given time. In Rohenkohl et al., (2011), also described earlier, rhythm was 

shown to have independent, additive exogenous and endogenous effects on attention. 

Might rhythm — a predictable series of intervals — generate proactive benefits for 

working memory? If so, are effects exogenously driven, or do they vary based upon 

endogenous control? 

It has been well established in the domains of attention and perception, that 

expectations generated by rhythmic structures can speed responses, enhance sensitivity 

to detect stimuli, and increase precision (reviewed in Haegens & Zion Golumbic, 2018; 

Nobre & van Ede, 2018). Because perception and attention are critical to working memory 

(Cowan et al., 2005; Oberauer, 2002, 2019; Ricker, 2015), and attention and working 

memory have been shown to fluctuate together (deBettencourt et al., 2019), benefits 

arising from rhythmic temporal structure may extend to working memory for streams of 

information.  It may be the case that there is greater precision in encoding for stimuli 

presented with rhythmic compared to arrhythmic temporal structure, leading to greater 

accuracy in task performance. It may also be the case that rhythmically presented stimuli 

are encoded into working memory more rapidly than stimuli presented arrhythmically, 

leading to faster preparedness to respond.  
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5.2 Methods 

To test the hypothesis that rhythmic temporal structure facilitates working 

memory for streams of information, we designed a study contrasting visuospatial working 

memory performance given stimulus streams with rhythmic or arrhythmic temporal 

structure. A novel task (described below and shown in Figure 9) was designed to test for 

effects of rhythmic temporal structure upon working memory processing for visuospatial 

information. To shed light on the specific processing that may be associated with rhythm, 

and to examine the extent of the exogenous impact rhythm might have upon working 

memory, we conducted two separate experiments. The first experiment contrasted task 

performance for the short-term memory of target locations presented either rhythmically 

or arrhythmically. In the second experiment, in additional to the requirement for memory 

of location, memory for target order in rhythmically or arrhythmically presented 

sequences was imposed. 

5.2.1 Participants 

Participants were recruited from the Johns Hopkins University student population 

and compensated via course credit. Musical experience of participants is noted for each 

experiment; it did not significantly differ between experiments. Gender labels are based 

upon participant self-report of birth sex and gender identity, in accordance with recent 

recommendations (Rubin et al., 2020). 
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Thirty-one individuals were recruited for Experiment 1. Data from two individuals 

were excluded from analysis due to atypical perception. Data from one individual was not 

available for analysis due to technical failure during the experiment. Analyzed data was 

collected from 18 cis-females and 10 cis-males, aged 19.7 (SD=1.1), and 19.8 (SD=1.2) 

years, respectively. Approximately 64% of participants reported having musical 

experience or training, with an average of 8.3 (SD=4.5) years of experience. 

Twenty-nine individuals participated in Experiment 2 with two excluded due to 

technical failure during the experiment. Data available for analysis was collected from 17 

cis-females and 10 cis-males aged 19.5 (SD=0.9), and 20.1 (SD=2.0) years, respectively. 

Approximately 70% of participants were musicians, with an average of 8.3 (SD=2.6) years 

of experience.  

5.2.2 Stimuli and Task  

Overview 

The visuospatial working memory paradigm designed for this study, utilized in 

both Experiment 1 and 2, is depicted in Figure 9. The task required working memory for 

the spatial locations of targets configured in an arrangement that discouraged shape or 

eye movement recoding strategies. Targets were presented in a sequence, with either 

Rhythmic or Arrhythmic temporal structure determined by Condition. 

The total number of targets presented was variable across trials. The task, no 

matter the number of targets displayed, was always to remember and reproduce the 
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locations of the final three targets presented – the terminal target set. A set size of three 

was held fixed as this falls within an expected working memory capacity range among 

neurotypical young adults (Cowan, 2010). The positioning of the target set at the end of 

the sequence provided time for temporal structure to be perceived. Half of the trials had 

an isochronous rhythmic structure and half had an arhythmic structure. 

Experiments 1 and 2 differed in the specific task instruction given to participants. 

In Experiment 1, Participants were instructed that the final three target locations could 

be reproduced in any order. In Experiment 2, Participants were instructed to reproduce 

the final three target locations in the same order as presented. In all other aspects both 

Experiments were identical, as described below. 

Visual Stimuli 

During the experiment, a geometric framework was presented visually on screen 

for the duration of each trial. Targets — colored shapes — appeared one at a time within 

the bounds of this framework, forming a sequence. Visual targets each occupied a distinct 

location within the boundaries of the framework. No framework edges or regions were 

shared between targets. As the sequence of targets was displayed, only a single target 

was presented at any given time. 

The geometric framework was arranged circumferentially around a central 

fixation. The fixation cross occupied approximately 1° of visual angle in diameter, and the 

geometric framework’s inner- and outermost extents fell between 2° and 10° of visual 
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angle in diameter. This framework was displayed for the entirety of each trial, excepting 

when feedback was given. Participants were instructed to hold their gaze at the central 

fixation cross throughout stimulus presentation. Viewing distance was fixed at 

approximately 59cm from the screen using a fixed-position chinrest. 

Cue Sequence 

A 500ms fixation period occurred at the start of each trial, followed by a cue 

sequence. A visual cue: a colored circle stimulus occupying 1.2° of visual angle and 

presented centrally overlaying the fixation cross, and an auditory cue: a 320Hz tone with 

a 50ms rise and 100ms fall, were presented together, three times. Each cue presentation 

lasted 250ms, followed by an interval of a condition-specific length. The Auditory stimulus 

was created with Audacity® sound editing software (Audacity Team, 1999) and delivered 

through Sennheiser HD 201 over-ear binaural headphones, with presentation volume 

fixed at a level well above threshold. The combined visual + auditory cue was presented 

a total of three times, comprising the cue sequence within each trial. This sequence 

provided a cue regarding the impending start of the sample sequence, but also provided 

a valid indicator of its temporal structure. Both auditory and visual cues were presented 

to increase the salience of this structure. 

Sample Sequence 

Immediately following the cue sequence, a visual sample sequence of targets was 

displayed without any accompanying sound. Within 86% of the trials, the total number of 
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targets displayed within the sample sequence was 6, 7, or 8, with equal probability. Within 

the remainder of trials, labeled as “catch trials,” a total of 4 targets were displayed. Each 

target in the sequence was presented onscreen for a duration of 250ms. The final three 

targets, the terminal target set of every sequence, were the targets to be maintained in 

working memory. The length of the sample sequence was pseudorandomized within 

experimental blocks. Participants were not provided with advance notice of the total 

length of any given sequence.  Any target set being maintained in working memory would 

require updating until the end of the sample sequence was reached. Catch trials were 

included to promote attending to and encoding of targets throughout the duration of the 

sample sequence, and to discourage the adoption of a strategy to ignore early targets. 

Catch trials, however, were excluded from analysis as their short overall duration may 

have limited the potential for the temporal structure of the sequence to have any effect. 

No overt cue regarding the end of the sample sequence was provided beyond the passage 

of time: after the final target in the sequence was presented there was a 2,500ms delay. 

Response  

After the delay period, visual cues marked the beginning of the response period. 

The most prominent among these cues was the disappearance of the central fixation 

cross. In addition, all possible target locations within the framework took on a subtle glow 

to indicate they were active and available for selection. Finally, the mouse cursor, invisible 

during all other times of the trial, became visible. Participants had a total of 5s to input 

their response and select the locations of each of the three remembered targets. Small 
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changes in the brightness of target locations indicated that the response had been 

registered. At the end of the response window, a feedback message was displayed for 2s 

to confirm a complete response of three locations had been provided or to indicate that 

time had run out. 

5.2.3 Design 

Half of trials in the experiment were defined by their Rhythmic temporal structure, 

the other half were Arrhythmic. All trials with Rhythmic temporal structure adhered to 

the following parameters of the Rhythmic condition (RHY). In RHY trials, all intervals, 

beginning with the cue sequence and continuing through the sample sequence 

presentation, had a fixed length of 750ms. In all conditions, target stimuli were presented 

for a duration of 250ms. Hence, in the RHY condition, stimulus onset asynchrony (SOA) 

was fixed at 1s. Two Arrhythmic conditions were defined, within which all intervals fell 

within the range of 250ms-1,250ms, varying in steps of 50ms. Intervals in the Arrhythmic 

conditions were predefined such that, altogether, their sequential presentation did not 

form a discernible temporal pattern. The order of the final two intervals – those occurring 

between the three memory targets of the terminal target set – distinguished the two 

Arrhythmic conditions. In the Arrhythmic Short-Long (ASL) condition, the terminal 

intervals were 250ms and 1,250ms. In the Arrhythmic Long-Short (ALS) condition, the 

same interval values were utilized with their order reversed: 1,250ms then 250ms. In 

Arrhythmic conditions, the minimum SOA was 500ms, the maximum 1,500ms. Across 

conditions, then, while the total duration of the sample sequence varied, the sum 



136 
 

duration of intervals between target stimuli of the terminal target sequence was held 

constant at 1,500ms (RHY: 750ms, 750ms, ALS: 1,250ms, 250ms, ASL: 250ms, 1,250ms). 

The length of the Delay period immediately following the terminal sequence presentation 

(see timeline in Figure 9B) was also held constant across conditions at 2,500ms.  

Eighteen terminal target sets were predefined. Within half of the sets, all targets 

were spatially “distant” from one another – separated by one or more spaces belonging 

to other targets. The other half of the terminal target sets were labeled spatially 

“adjacent.” In these sets two, but not all three, of the targets were nearest radial 

neighbors. Examples of these configurations are shown in Figure 10F. It has been 

previously demonstrated that spatial “chunking” or grouping strategies based upon 

spatial proximity are often employed in spatial working memory tasks (Bor et al., 2003; 

Gmeindl et al., 2011). Further, individuals readily form predictions regarding upcoming 

target locations when spatial patterns emerge within a sequence (Amalric et al., 2017; 

Wang et al., 2019). Predefining target sets in this manner was performed with the aim of 

limiting the possible contribution of space-based prediction, while allowing for 

comparison between spatial configurations based upon proximity. Target sets were 

distributed across three broader groups to ensure that within a given experimental block, 

the same target sets were not presented in both Rhythmic and Arrhythmic conditions or 

repeated within conditions in successive blocks. The order of specific target presentation 

within each set was randomized.  
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5.2.4 Procedure  

After obtaining consent, the experiment was conducted with participants seated 

in front of a computer screen in a private booth, positioned using a chinrest, with 

headphones on. Participants received on-screen instructions and training, followed by the 

primary task. Participants completed six blocks of 14 trial each. Trial order was 

pseudorandomized within each block for each participant. Feedback on block-level task 

performance (proportion of correct target location responses) was provided after the 

completion of each block. Participants were given the opportunity for self-timed breaks 

between blocks. On completion of the experiment, Participants completed 

questionnaires and were then debriefed by the Experimenter. The entire study session 

lasted approximately one hour. 

5.2.5 Analysis 

Different outcome variables of interest related to task performance were defined. 

Decision Time (DT) was operationalized as the time lapse between the start of the 

response window to the Participant’s first target selection (e.g. van Ede et al., 2017). To 

facilitate across-participant comparisons in Experiments 1 and 2, DT was normalized 

(DTnorm) for each Participant per the methods of (Golob & Mock, 2019) as follows. Across 

all trials for each participant, their maximum (DTmax) and minimum (DTmin) was identified. 

For each trial, the following formula was applied: DTnorm = (DTtrial – DTmin)/ (DTmax – DTmin). 

DT normalized per this method results in a value ranging from 0 to 1.0. The value 0 

represents the fastest DT for that participant, the value 1.0 the slowest.  
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Target reproduction was analyzed in two ways. Reproduction of target location 

was deemed correct for a single trial if the report included the correct locations of all 

three terminal targets presented, independent of order. Reproduction of target order was 

judged based upon whether targets were reported in the same, or different, serial order 

compared to sample sequence presentation.  

Parametric group-level comparisons of performance across conditions both 

within, and between, Experiments 1 and 2 were performed using omnibus ANOVA tests. 

Normalized Decision Time and Response Proportions (Location and Order) were the 

outcome variables of interest. To examine within-subjects effects separately for 

Experiments 1 and 2, 1-way ANOVA tests were performed. To examine between-subjects 

effects across Experiments, 2-way ANOVA tests were performed. ANOVA tests were 

followed, when relevant, with paired t-tests to examine underlying effects. Multiple 

comparisons correction was performed via the False Discovery Rate method (Benjamini 

& Hochberg, 1995). 

Statistical analyses were carried out in R (R Core Team, 2018) with the dplyr 

(Wickham et al., 2021) and ez (Lawrence, 2016) packages. Figures were produced in R 

with the ggplot2 (Wickham, 2016), viridis (Garnier et al., 2021), hrbrthemes (Rudis, 2018), 

and cowplot (Wilke et al., 2019) packages. 
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5.3 Results 

The results of within-experiment analyses are presented first, followed by those 

of analyses performed across Experiments. Catch trials were removed from the data prior 

to analysis. Statistics reported below reflect task performance averaged over trials with 

sample sequences in which 6, 7, or 8 targets were presented. 

5.3.1 Experiment 1 

Participants were well able to perform the task. Across conditions, the mean 

proportion of trials in which Participants correctly identified all three terminal targets 

exceeded 80%. With proportion of correct-identity report as the outcome variable, no 

within-participant differences were present across Rhythmic and Arrhythmic conditions: 

F(2,54) = 0.16, p > 0.5. The proportion of correct-location trials in which targets were 

reported in the same order ranged between 45-70%. With proportion of correct-order 

report as the outcome variable, a small but insignificant difference was present across 

conditions: F(2,54) = 1.96, p > 0.1.  

To determine if memory target configuration had an effect on performance, 

separate analyses were performed based upon the presence of spatial grouping (adjacent 

or distant) within target sets. Results are shown in Figure 10. A main effect of spatial 

grouping on the report of target order was present: F(1,27) = 5.97, p < 0.03, 
2
G < 0.02, 

but did not interact with Condition: F(2,54) = 0.49, p > 0.5. In RHY and ALS conditions in 
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particular, the proportion of targets reported in the same order as presented was lower 

when targets were spatially adjacent versus distant (see Table 4).  

Within spatially adjacent target sets, two (but not three) targets neighbored one 

another. The order of individual target presentation was randomized across trials, 

therefore, in some trials adjacent targets were presented sequentially as the first and 

second targets (early sequential grouping), in others they were the second and third 

targets (late sequential grouping). Response patterns for trials in which spatially adjacent 

targets were presented in sequence early, compared to late, are shown in Figure 10E.  

Targets that were adjacent in space and time more frequently elicited responses that 

reflected order-based grouping. This was the case across conditions. 

When analysis was performed with normalized Decision Time as the outcome 

variable, a main effect of condition was found: F(2,54) = 5.50, p < 0.01, 
2
G = 0.05. This 

analysis was repeated with unscaled Decision Time to the same effect. Direct contrasts 

indicated that Decision Time was significantly faster in the Rhythmic condition than in 

both Arrhythmic conditions. RHY vs. ALS: t = 2.36, p < 0.03, RHY vs ASL: t = 3.21, p < 0.01. 

These results are shown in Figure 11.  

5.3.2 Experiment 2 

Despite the difference in instruction from Experiment 1, participants in 

Experiment 2 were also well able to perform the task. As in Experiment 1, on average, 

participants correctly reproduced target identities in more than 80% of trials across 



141 
 

conditions, with no significant effect of condition: F(2,52) = 0.34, p > 0.5. Experiment 2 

instructed reproduction of targets in the same order as presented, and indeed 

participants were able to do so in more than 80% of trials, with no significant effect of 

condition: F(2,52) = 0.38, p > 0.5. With the increased reproduction in correct order, the 

effect of spatial grouping that was present in Experiment 1 disappeared in Experiment 2: 

F(1,26) = 1.85, p > 0.1. Interestingly, the effect of Condition upon normalized Decision 

Time that was present in Experiment 1, also dissappeared in Experiment 2: F(2,52) = 1.31, 

p > 0.2. Due to the high proportion of same-order reproduction trials, too few trials 

remained for conclusive analysis of spatial and sequential grouping sample patterns on 

reproduction patterns. Detailed task performance results for both Experiments 1 and 2 

are shown in Table 4. 

5.3.3 Between-Experiment Outcomes 

Data from both Experiments 1 and 2 was combined for between-subjects analyses 

assessing the effect of Experiment. There was no main effect of Experiment upon 

reproduction of target location: F(1,53) = 1.89, p > 0.5. As expected due to the difference 

in task instruction, a large effect of Experiment was present in reproduction of order: 

F(1,53) = 36.4, p < 0.0001, 
2
G = 0.37. No main effect of Experiment was present on 

normalized Decision Time: F(1,53) = 0.61, p > 0.4. A trending interaction between 

Condition and Experiment, F(2,106) = 2.41, p < 0.1, was present  due to the comparatively 

slower Decision Times in Arrhythmic conditions within Experiment 1. Direct comparions 
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of Decision Time in Arrhythmic conditions between Experiments 1 and 2, however, were 

not significant: t < 1.5, p > 0.1 for all contrasts. 

 

5.4 Discussion 

In an experimental context, it is commonplace for stimuli to be presented so that 

they are consistently separated – in time or in space. Arranging visual stimuli in spatial 

configuration with equidistant concentrical spacing, for example (e.g. paradigm in 

deBettencourt et al., 2019). In the well-known Corsi Blocks (Berch et al., 1998; Corsi, 1972) 

visuospatial working memory paradigm, while targets are randomly positioned in space, 

during presentation they are identified at a rate of one per second – in an isochronous 

rhythm. One motivation in defining these presentation parameters, is the desire to 

minimize potentially confounding effects or limit the amount of “noise” in a dependent 

variable. In applying this approach to temporal presentation parameters, however, 

rhythm, is introduced, even if unintentionally. In the present study, we hypothesized that 

rhythmic temporal structure within a stimulus stream is a factor which impacts 

visuospatial working memory performance. So, we tested this explicitly.  

Rhythm, particularly as a parameter of music, is well studied in the auditory 

domain but less so in the visual domain. In the auditory domain, the presence of rhythm 

is relatively quickly perceived and extracted from the structure of a sequence (Jacoby & 

McDermott, 2017). Indeed people are biased towards reorganizing auditory sequences 
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so that they conform to a fundamentally rhythmic temporal structure (Ravignani et al., 

2018). Though there is a bias for specifically temporal processing in the auditory domain 

(Michalka et al., 2015),  as reviewed earlier rhythm can nevertheless impact the 

processing of visual stimuli. 

By focusing upon working memory for visual information residing solely in the 

spatial domain, we aimed to isolate temporal effects specifically arising from the 

processing of rhythmic temporal structure. The ability to perceive complex rhythmic 

structure is thought to be fundamental to our capacity for processing language, but this 

capacity is not decoupled from the processing of other acoustic features and cues 

(Haegens & Zion Golumbic, 2018). In the present study we avoided specific inclusion of 

language – using spatial rather than verbal memory targets and a complex visual 

framework designed to minimize the usefulness of verbal strategies such as naming 

specific targets or associating their concentric arrangement with numbers on a clockface. 

A concern in contrasting performance following Rhythmically versus 

Arrhythmically presented stimulus streams, is the possibility that temporal effects specific 

to Rhythm might be introduced. Serial dependence in vision, for example, causes discrete 

samples of past and present instances to be biased towards one another, in facilitation of 

perception as a continual experience (Fischer & Whitney, 2014). Serial dependence has 

been shown to cause errors of “intrusion” in short-term memory, attributed to proactive 

interference, by which one encoded stimulus interferes with another (Kiyonaga et al., 
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2017; Makovski & Jiang, 2008). Serial dependence has been demonstrated to greatest 

effect in the biasing of encoding fundamental stimulus properties such as color or 

orientation (Fischer & Whitney, 2014). In both Experiments 1 and 2, however, across 

conditions, similar performance was present in the report of target location. As each 

target was both distinct in shape and discrete in location, it may be less likely that 

intrusion effects or errors of degree resulting from this type of blending in serial 

perception were possible.  

We found that across experiments and temporal structure conditions, participants 

were well, and similarly, able to encode and reproduce the locations of the three terminal 

targets. This was the case across sequence lengths, and target arrangements, as shown in 

Table 4. The critical effect of temporal structure in these experiments was upon the 

temporal measure of behavioral performance assessed: Decision Time. Across both 

experiments, Decision Time was fastest in the case of Rhythmic compared to Arrhythmic 

temporal structure. However, with the additional requirement for memory of target 

order imposed (Experiment 2), Decision Times in Arrhythmic conditions sped up when 

compared to when only identity report was required (Experiment 1). 

Despite the seeming increase in task demand of Experiment 2, and the faster 

Decision Times in Arrhythmic conditions, no speed-accuracy trade-off was present: 

proportions of trials in which target identities were correctly reported were similar across 

conditions in both Experiments. Further, when participants were free from task 
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constraints regarding target order in Experiment 1, they spontaneously reported targets 

in sequential order on nearly half of trials – far above chance (~17%). Among remaining 

trials with two of the targets spatially adjacent, response patterns indicate that 

organization of encoded items in working memory was also strongly driven by spatial 

parameters (Figure 10E). Utilization of spatial recoding strategies in working memory for 

visual streams of information has been demonstrated in the past work of our group 

(Gmeindl et al., 2011) as well as that of others (Bor et al., 2003). Further, it has been 

shown elsewhere that temporal and spatial parameters can interact, to additive 

perceptual benefit in a spatial task (Rohenkohl et al., 2014), and that “temporal 

segmentation” can alter conceptual grouping (Jones, 1976). In the present study, patterns 

of response indicate that spontaneous recoding occurs based upon both spatial 

(proximity) and temporal (order) factors. However, the lack of difference in response 

patterns between Arrhythmic conditions in particular, in which the short and long interval 

lengths might have encouraged opposite patterns of temporal segmentation, suggests 

temporal effects on recoding are limited to order. 

The differences in Decision Time based upon different temporal structures can be 

interpreted as either Rhythmic facilitation, or Arrhythmic trapping. It has previously been 

argued that people don’t begin reproduction of a list of items until all items are in an 

activated state in memory (Anderson et al., 1998). One possibility is that the perception 

of a rhythmically structured stream speeds up processing of it. Prior work in the 

reproduction of rhythmic auditory sequences has found that people when people hear 
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simple rhythms, they reproduce them at a faster rate than presented (Parncutt, 1994).  

Because rhythms generate strong temporal expectation (Nobre & van Ede, 2018) and 

certainty regarding the timing of an upcoming event (Grabenhorst et al., 2021), the path 

may be cleared, so to speak, for neural resources to be more rapidly dedicated to 

encoding items into working memory.  

On the other hand, a stream with arrhythmic temporal structure may have an 

effect of “trapping” by temporarily halting further processing. Whereas rhythm promotes 

certainty, arrhythmicity may increase uncertainty - promoting instead, a reluctance to 

“commit” to encoding until uncertainty is reduced. In Experiment 1 participants exhibited 

a propensity to reproduce targets in serial order, despite the lack of explicit requirement 

to do so, but they employed spatial recoding strategies a large proportion of the time as 

well. In Experiment 2, the specific serial order requirement may have increased the overall 

demand of the task, requiring a greater degree of focused attention. In past studies, 

higher compared with lower attentional loads have been shown to reduce the impact of 

distractors (Konstantinou et al., 2014; Lavie & De Fockert, 2005). Further, control 

processes play a strong role in input gating – restricting what items become encoded in 

working memory (Lorenc et al., 2021). Though uncertainty is not necessarily an object 

encoded from the sensorium, it is possible that higher demands upon a limited pool of 

attentional resources limit the amount of internal attention that can be allocated to 

focusing upon that uncertainty.    



147 
 

Though the present study is agnostic in ascribing to any particular model of 

temporal cognition, it has been pointed out that the cognitive and neural underpinnings 

of interval processing may differ from those underlying the processing of other temporal 

structures (Ivry & Richardson, 2002). In the present results, though the difference 

between Decision Time in ALS versus ASL conditions is not significant, there is a consistent 

pattern across Experiments 1 and 2 that may point towards an effect of the final interval 

duration: Decision Time was slowest when the final interval was longest. It has been 

argued that the perception of time is subject to “autoscaling,” whereby the same 

computations are carried out in the representation of different periods of time by scalar 

adjustments in reference frame (Gallistel, 2011; Gibbon et al., 1984). Early work on 

temporal perception in animals, describes “scalar-timing” as a property of time 

perception which enables prediction of when an impending, meaningful event will occur 

(Gibbon, 1977). Accordingly, the longer compared with shorter final interval in the ASL 

condition, may have generated a relatively longer period of uncertainty, reflected in the 

slower Decision Times specific to this condition.  

 

5.5 Conclusion 

Temporal structures that may impact cognitive processes can be classified in a 

number of ways (Nobre & van Ede, 2018). While previous research in the field of visual 

working memory has examined the effects of some types of temporal structure: those of 
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relative, discrete intervals for example, the impact of rhythmic temporal structure on 

visual working memory has remained an open question. In the present study, we 

contrasted working memory for visually presented spatial information presented such 

that it had rhythmic, or arrhythmic, temporal structure. While individuals were successful 

in performing the task regardless of temporal structure, they were consistently faster 

when presented with Rhythmically versus Arrhythmically structured information. 

Arrhythmic temporal structure may impair consolidation of order and identity 

information into working memory, but that impairment may be alleviated when 

attentional demand is increased. Future studies might test the effect of increasing task 

demands to explore the bounds of beneficial impacts on performance that rhythmic 

structures yield. 
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5.6 Figures 
 

 

Figure 9: Task and general Timeline of a single trial. A) Sequence of events in a trial. At the start of each trial (upper 
left) an auditory and visual cue sequence provided valid context regarding the temporal structure within the trial. The 
cue sequence was immediately followed by presentation of the sample sequence (upper right). The sample sequence 
varied in length. The final three targets of the sample sequence comprised the terminal target set – whose locations 
were to be remembered and reproduced during the response window. All cue and target stimuli were presented for a 
duration of 250ms. During all intervals between cue or target stimulus presentation, the geometric framework and 
fixation were displayed for a duration defined by Rhythmic (750ms) or Arrhythmic (range between 250ms-1,250ms) 
condition parameters. The final two intervals occurring within the terminal target set summed to 1,500ms across all 
conditions. Following the 2,500ms delay period, participants had 5s to reproduce the three terminal target locations.  
B) Relative timeline of events in each trial. 
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Figure 10: Behavioral Performance by terminal target set Grouping across Rhythmic (RHY), and Arrhythmic (ALS, ASL) Conditions for Experiments 1 and 2. 
A, B: Proportion of trials in which the correct Location of all three terminal targets was reported. C, D: Proportion of correct Location trials in which all three 
terminal target locations were reproduced in the same Order as presented. Chance order of report = 0.17. Note that in Experiment 1, a main effect of spatial 
grouping is present, F(1,27)=5.97, p < 0.025 (C). Participants reproduced target locations in the same order as presented more so when targets were spatially 
distant compared to when adjacent.  
E: Response order patterns in Experiment 1 for correct target location trials not reproduced in the same order as presented, separated by the presence of 
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spatial and order grouping among targets. Response Order numbers indicate the actual serial position of a particular target as presented (see examples in F), 
compared to the serial position of targets selected by the Participant during response. The upper and middle bar plots are specific to spatially adjacent target 
sets which were also adjacent in order, the lower plot depicts response patterns within trials with spatially distant target sets. When spatially adjacent terminal 
targets were presented in adjacent order early in the sequence (Top), response patterns in which the first and second targets were grouped together (2-1-3, 3-
2-1, 3-1-2) predominated. When spatially adjacent terminal targets were in adjacent order late in the sequence (Middle), response patterns in which the 
second and third targets were grouped together (2-3-1, 3-2-1, 1-3-2) predominated. These can be compared with response order among spatially distant target 
sets (bottom), in which all possible response pattern is well represented.  
F: Visual examples of spatially adjacent and distant terminal targets arrays. Distant target sets were always separated radially by one or more target areas. 
Within adjacent sets, two (but not all) of the three targets were radial nearest neighbors. Note that during sequence presentation within the experiment, only a 
single target was ever present at a time (as shown in Figure 9) – single arrays of the terminal target set are shown here for ease of visualization. Numbering 
within the adjacent target sets demonstrates two possible sequence orders of target presentation. In the early example, adjacent targets are presented in the 
first and second serial positions. In the late example, adjacent targets are presented in the second and third positions. Hence, grouping within working memory 
could occur based upon spatial proximity and/or presentation order, in addition to temporal proximity as determined by Condition. 
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Figure 11: Decision Time by Rhythmic (RHY), and Arrhythmic (ALS, ASL) Conditions for Experiments 1 and 2. A main effect of Condition, 
F(2,106) = 4.61, p < 0.02, is present across experiments, with the largest differences resulting from Experiment 1. Decision Time is faster 
when working memory was employed for stimuli with rhythmic compared to arrhythmic temporal structure. In Experiment 2, when 
attending to and encoding target order was required, compared to Experiment 1, Decision Time was faster in Arrhythmic conditions, 
pointing towards the distracting effect of arrhythmic structure having been ameliorated when task demands included the report of order.  
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Table 4: Behavioral measures of central tendency across all analyzed factors for Experiments 1 and 2. 

    Experiment 1 Experiment 2 
Condition Terminal 

Intervals 
Spatial 
Grouping 

Sequence 
Length 

Decision 
Time 

Proportion Same Report 
mean (sd) 

Decision 
Time 

Proportion Same Report  
mean (sd) 

ms norm. Order & ID ID only ms norm. Order & ID ID only 

Rhythmic Equal distant  1081.9 
(95.98) 

0.20 (0.07) 0.59 (0.18) 0.89 (0.07) 1222.2 
(223.0) 

0.20 (0.07) 0.85 (0.14) 0.87 (0.11) 

adjacent  1074.0 
(111.0) 

0.19 (0.05) 0.53 (0.21) 0.85 (0.11) 1259.3 
(224.9) 

0.21 (0.08) 0.82 (0.14) 0.86 (0.12) 

 6 1095.0 
(134.8) 

0.20 (0.06) 0.59 (0.25) 0.86 (0.14) 1247.3 
(253.3) 

0.20 (0.08) 0.84 (0.16) 0.87 (0.16) 

 7 1060.7 
(101.1) 

0.19 (0.08) 0.53 (0.19) 0.87 (0.09) 1241.7 
(201.0) 

0.21 (0.08) 0.83 (0.15) 0.87 (0.13) 

 8 1078.4 
(139.5) 

0.20 (0.06) 0.55 (0.22) 0.87 (0.10) 1233.3 
(236.4) 

0.20 (0.08) 0.82 (0.17) 0.85 (0.15) 

Arrhythmic S-L distant  1153.5 
(177.9) 

0.24 (0.10)  0.56 (0.25)  0.88 (0.13) 1311.6 
(362.7) 

0.23 (0.11) 0.83 (0.16) 0.87 (0.15) 

adjacent  1139.5 
(193.4) 

0.23 (0.09)  0.53 (0.25)  0.87 (0.16) 1248.6 
(300.1) 

0.20 (0.10) 0.81 (0.15) 0.86 (0.13) 

 6 1121.6 
(181.1) 

0.23 (0.12) 0.57 (0.27) 0.88 (0.16) 1274.4 
(340.1) 

0.22 (0.12) 0.81 (0.14) 0.85 (0.13) 

 7 1171.4 
(196.9) 

0.24 (0.09) 0.54 (0.28) 0.85 (0.19) 1282.8 
(392.8) 

0.21 (0.12) 0.86 (0.17) 0.88 (0.17) 

 8 1146.3 
(216.36) 

0.24 (0.12) 0.52 (0.28) 0.88 (0.16) 1269.6 
(304.6) 

0.22 (0.10) 0.79 (0.17) 0.85 (0.15) 

L-S distant  1105.1 
(173.3) 

 0.22 (0.12)  0.63 (0.22)  0.89 (0.15) 1217.9 
(225.8) 

0.19 (0.08) 0.85 (0.14) 0.87 (0.14) 

adjacent  1145.5 
(178.1) 

 0.23 (0.09)  0.55 (0.27)  0.87 (0.13) 1250.9 
(300.0) 

0.20 (0.08) 0.82 (0.17) 0.84 (0.15) 

 6 1143.1 
(236.9) 

0.23 (0.13) 0.67 (0.29) 0.92 (0.12) 1198.7 
(272.1) 

0.18 (0.09) 0.85 (0.19) 0.87 (0.16) 

 7 1086.4 
(138.2) 

0.20 (0.09) 0.60 (0.24) 0.89 (0.14) 1265.4 
(265.7) 

0.21 (0.08) 0.81 (0.19) 0.83 (0.18) 

 8 1148.6 
(170.8) 

0.24 (0.09) 0.49 (0.25) 0.83 (0.19) 1238.0 
(314.4) 

0.20 (0.10) 0.83 (0.18) 0.85 (0.17) 
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Chapter 6 

Conclusions and Future Work  
 

6.1 Discussion 

In the Cognitive Sciences, the “levels of understanding” as described by 

Marr (Marr, 1982) have provided a framework by which to approach study of the 

brain and cognition. These levels are threefold and interdependent — achieving 

some understanding at one level can facilitate study that leads to understanding at 

another. The Computational level is most abstract, describing the ultimate problem 

that a complex system has evolved to solve. Study at the Algorithmic level sheds 

light on the processes and constraints of the system that carries out said 

Computation. The final and most fundamental level, that of Implementation 

describes the physical system that gives rise to the other levels (Krakauer et al., 

2017; Marr, 1982).   

In this dissertation work, I have considered working memory to be naturally 

positioned at Marr’s level of Computation. As reviewed in Chapter 2, working 

memory has been modeled in various ways and from different angles. Each model 
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captures at least some portion of the emergent properties that result from 

numerous processes, continually interacting across the brain, which together give 

rise to goal-driven control over representations in the here and now. The work I 

present here, however, is agnostic to any specific model. Though this work may 

inform the work of others, and may be built upon in the future, it in itself does not 

necessarily increase insight or understanding at the level of Computation. 

This work, rather, has been guided by more pragmatic aims. Chief among 

them, is the aim to increase the specificity with which working memory as a 

cognitive construct is examined. Toward this aim, I have placed emphasis on 

identifying and discretizing among different structures of information that may 

serve as inputs to working memory, in an effort to identify and reveal instances in 

which processes and behavior may differ based upon them. Further, I have 

targeted sex, a biologically determined factor which differs across individuals, and 

presented findings that indicate understanding the brain activity underlying 

behavior may in some instances require more specificity regarding the particular 

human being studied. 

In Chapter 3, I presented evidence for systematic and predictable 

differences in the neural processes underlying working memory for spatial 

information between females and males. It is important to note that the ultimate 

outcome of behavior, did not differ between these groups: females and males 

perform equally well. The neural activity that enabled them to do so is what 

differed. Among the prior research that informed and motivated this study, were 
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studies having found a strong relationship between cyclical sex-hormone 

fluctuations and cyclical peak alpha frequency fluctuations (e.g., Bazanova et al., 

2014). In follow up, then, a future study in which an assay of key sex-hormones is 

conducted along with EEG and behavioral measures might provide evidence as to 

whether hormones are causally linked to the sex-based differences that were 

found.   

In the laboratory it is commonplace to place constraints on the number of 

factors that are independently varied. In daily life, however, humans contend with 

and adapt to continuously changing environments and unexpected events. In 

Chapter 4, I took a step towards the study of young adult human behavior in an 

environment with a modest level of complexity by presenting multimodal stimuli 

while individuals performed a visual task. The effect on behavior resulting from an 

interaction between spatial and temporal structures across modalities in this study, 

shows that we attend to and integrate multimodal information present in our 

environment even when doing so is detrimental.  

In other research that has focused upon how the brain changes as we age, 

it has been shown that in later adulthood as we become more senior, we become 

less adept at filtering out irrelevant information during early stages of processing 

(Cabeza et al., 2018; Reuter-Lorenz & Park, 2010). In follow-up to the study 

presented here, a study explicitly including participants across the aging spectrum 

from young to later adulthood, performing a similar multimodal task while 

undergoing neuroimaging, could reveal whether irrelevant information is 
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subjected to different degrees of processing across the aging spectrum, to different 

effects upon behavior. Such a study may shed further light on the findings of 

(Gmeindl & Courtney, 2012), in which differential effects on visuospatial working 

memory performance arose from the presence of sound, perhaps based upon 

aging-related factors. 

The focus of the work I have presented here has been on a specific 

classification of working memory — that which represents information which is 

both visual and spatial in nature. It is necessary to highlight this classification 

because goal-driven behaviors that require visuospatial information as inputs may 

differ from those which are reliant upon or require other types of informational 

forms. For example, it has been shown previously (Gmeindl et al., 2011), that 

different methods of consolidating and reorganizing information may be 

automatically employed when working memory is engaged to handle spatial versus 

verbal information.  

In Chapter 5, I present the design of a novel visuospatial working memory 

task, utilized to study the effects of rhythmic temporal structure upon working 

memory. I show that rhythmic and arrhythmic temporal structures have particular 

impact upon temporal aspects of performance. Further, I presented behavioral 

evidence indicating that spatial information may be reorganized differently based 

upon both temporal structure and the specific goals an individual has. These 

findings have real life implications, particularly among individuals who regularly 

perform visuospatial tasks. In the field of radiology, for example, a core function of 
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the medical professional is the identification of suspicious visual targets within 

images. Understanding how visuospatial content may be reorganized, and in result 

have an impact on behavior, may be key in developing methods of image 

presentation or best practices for the review of images to best support the most 

desirable outcomes on performance. 

The dissertation work I have presented increases understanding primarily 

at Marr’s level of Algorithm. As such, it serves as one single contribution in answer 

to a larger call that has been made of the neuroscience community: for improved 

characterization of behavior that will better guide study at the level of 

Implementation and inform broader understanding at the level of Computation  

(Krakauer et al., 2017). Importantly, I have shown that some differences between 

individuals should not be overlooked. Further, I have demonstrated that while we 

are adept at representing various types of information, our working memory for 

spatial information in particular, is susceptible to and influenced by the structures 

present within it. 
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