
TOWARDS END-TO-END NON-AUTOREGRESSIVE

SPEECH APPLICATIONS

by

Nanxin Chen

A dissertation submitted to The Johns Hopkins University in conformity with

the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

February 2022

© 2022 Nanxin Chen

All rights reserved

Abstract

In the speech research community, a very challenging topic researchers are

interested in is the sequence-to-sequence labeling problem. Speech is a

complicated signal, and many tasks aim to assign a sequence of various labels

to the signal. Before, the traditional hybrid approach models this problem as

a combination of different stages. A separate intermediate label sequence is

introduced at each stage, and a component is optimized to model the probabili-

ties. In contrast, end-to-end models have recently become increasingly popular.

Sequence-to-sequence models, a type of end-to-end model, take the sequence

as input and predict the target sequence directly, which is more intuitive. They

usually predict one label at each time, widely known as autoregressive mod-

els. Autoregressive models are easy to train and have an excellent theoreti-

cal explanation connecting the probability chain rule. This simplicity also re-

sults in inefficiency for the inference, particularly with those lengthy output

sequences. This becomes a severe problem in reality when the output sequence

is particularly long, like a sequence of characters.

ii

ABSTRACT

To speed up the inference procedure, researchers started to be interested in

another type of sequence-to-sequence model, known as non-autoregressive

models. In contrast to the autoregressive models, non-autoregressive mod-

els predict the whole sequence within a constant number of iterations. How-

ever, non-autoregressive model training is more challenging compared to au-

toregressive models.

In this dissertation, we propose two different types of non-autoregressive

models for speech applications: mask-based approach and noise-based ap-

proach. To demonstrate the effectiveness of the two proposed methods, we ex-

plored their usage for two essential topics: speech recognition and speech

synthesis. The two novel directions proposed in this dissertation provide a

good tradeoff between performance and decoding speed and are important for

the non-autoregressive speech research field. They allow researchers to apply

larger sophisticated networks in their research and companies can also use

those methods for businesses to provide service with better quality under time

and budget constraints. Some of the methods in this dissertation are not lim-

ited to speech applications and may facilitate neural network research in other

fields, like neural machine translation or image captioning.

Primary Reader and Advisor: Najim Dehak

Secondary Reader: Jesus Villalba Lopez, Hynek Hermansky

iii

Acknowledgments

First of all, I would like to thank Prof. Najim Dehak, my advisor, for his

excellent guidance throughout my whole Ph.D. study, on academic research

and daily life. Najim always teaches us how to be optimistic about things and

become successful working with different people. He made relentless efforts

to regularly arrange individual meetings even though he was really busy. His

suggestion is always helpful and insightful. I couldn’t finish this journey with-

out his open-mindedness. As a student, I was unsure about my research inter-

ests, and my thesis topic changed two times during the last two years. We had

several conversions about this, and Najim is always supportive.

I also want to thank Dr. Jesus Villalba Lopez, my second advisor. Jesus

shows us a great example of becoming a rigorous researcher, and he spent much

time working with his students. While he is more interested in methods with

clear mathematical foundations, he is very practical in research, running many

experiments to get the best performance. He is good at understanding things,

and we can all feel his passion for research.

iv

ACKNOWLEDGMENTS

I am also grateful to Dr. Laureano Moro Velazquez and Dr. Piotr Zelasko.

They both provided tremendous help for this thesis, and we had terrific cooper-

ation on multiple projects. I learned a lot from their attitudes toward research

and writing skills.

I also want to thank my girlfriend Alice, who gave me a lot of valuable sug-

gestions for the presentation. She was my only audience for the presentation

practice, and she is always happy to be my audience. I also owe much grati-

tude to Dr. Yu Zhang, my host in Google Brain, when I was doing an internship

there. Yu has much experience and helped me connect with great researchers,

like Dr. William Chan, Dr. Heiga Zen, Dr. Ron Weiss, and Dr. Norouzi Mo-

hammad. We had an incredible journey exploring non-autoregressive models

for speech synthesis, which is one of the main topics of this dissertation. I also

want to thank Dr. Roger Hsiao, Dr. Arnab Ghoshal, and other people from the

Apple Siri team, who helped me polish my internship project. It was my honor

to present my work to the senior vice president, Craig Federighi, who inspired

me to focus on user experience.

Finally, I want to thank all my lab mates and teammates during the JSALT

workshop. It is such a great opportunity to meet them and work together,

which I will never forget. I also want to mention Cheng-I Lai (Jeff), who grad-

uated from our lab and shared many interesting research ideas with me.

v

Contents

Abstract ii

Acknowledgments iv

List of Tables xi

List of Figures xiii

List of Algorithms xv

1 Introduction to Speech Applications and Models 1

1.1 Mathematical Definition of Speech Recognition 3

1.2 Mathematical Definition of Speech Synthesis 6

1.3 Hybrid Models . 8

1.3.1 Hybrid Models for Speech Recognition 9

1.3.2 Hybrid Models for Speech synthesis 10

1.4 End-to-end Models . 11

vi

CONTENTS

1.4.1 E2E Models for Speech Recognition 12

1.4.1.1 Transformer-based E2E ASR 12

1.4.2 E2E Models for Speech Synthesis 14

1.4.3 Autoregressive Training . 15

1.5 Disadvantages of Autoregressive Systems 17

1.6 Towards Non-autoregressive Speech Applications 20

1.6.1 Benefits of Non-Autoregressive Systems 21

1.6.2 Why Non-Autoregressive Systems are challenging to train 23

1.7 Non-Autoregressive Methods Proposal 24

1.7.1 Mask-based Approach . 24

1.7.2 Noise-based Approach . 26

1.7.3 Relationship between Two Methods 28

1.8 Datasets . 29

1.8.1 Speech Recognition . 29

1.8.2 Speech Synthesis . 30

1.9 Contribution of this Dissertation 30

2 The Literature of Non-autoregressive Systems for Speech Appli-

cations 33

2.1 Non-autoregressive ASR . 34

2.1.1 Hybrid Models . 34

2.1.2 Connectionist Temporal Classification 35

vii

CONTENTS

2.1.3 RNN Transducer (RNN-T) 38

2.1.4 Non-autoregressive End-to-end

Speech Recognition . 39

2.2 Non-autoregressive Text-to-speech 41

2.3 Summary . 42

3 Mask-based non-autoregressive Speech Recognition 43

3.1 Conditional masked language model (CMLM) 45

3.2 Factorized masked language model (FMLM) 46

3.2.1 Easy First Decoding . 48

3.2.2 Mask-predict . 50

3.2.3 Example . 52

3.2.4 Output sequence length prediction 54

3.3 Experiments and results . 54

3.4 Analysis . 60

3.4.1 Ablation Studies of External

Language Model . 60

3.4.2 Ablation Studies of Beam Search 63

3.4.3 Error Analysis of A-FMLM on CSJ 68

3.5 Summary . 68

4 Noise-based non-autoregressive Text-to-Speech 70

viii

CONTENTS

4.1 Score matching . 71

4.1.1 Diffusion Probabilistic Model 73

4.1.2 Noise Schedule and Conditioning on Noise Level 76

4.2 Network Architecture . 82

4.2.1 WaveGrad Vocoder . 82

4.2.2 WaveGrad 2: Phoneme-to-Wave model 87

4.2.2.1 Encoder . 87

4.2.2.2 Resampling . 89

4.2.2.3 Sampling Window 90

4.2.2.4 Hidden Features Augmentation 90

4.3 Noise Schedule . 91

4.4 Evaluation . 92

4.5 Results . 95

4.6 Ablation Studies . 97

4.6.1 WaveGrad: Speed-Quality Tradeoff 97

4.6.2 WaveGrad 2: Sampling Window Size 100

4.6.3 WaveGrad 2: Network Size 101

4.6.4 WaveGrad 2: Hidden Features Augmentation 102

4.6.5 WaveGrad 2: Multi-task Learning and Speed-Quality Trade-

off . 103

4.7 Summary . 104

ix

CONTENTS

5 Noise-based non-autoregressive ASR 105

5.1 Align-Refine . 106

5.2 Align-Denoise . 108

5.2.1 Noise Distribution . 110

5.3 Experiments . 114

5.3.1 Network Architecture . 114

5.3.2 Results . 115

5.4 Discussion . 120

5.4.1 Alignment mismatch . 120

5.4.2 Combining with beam search and external language model 121

5.5 Summary . 124

6 Conclusion 126

Bibliography 131

x

List of Tables

1.1 Autoregressive training examples 16

2.1 Examples of CTC decoding . 36

3.1 Comparison of baselines, previous work, A-CMLM and A-FMLM
on AISHELL . 56

3.2 Comparison of baselines, previous work, A-CMLM and A-FMLM
on CSJ . 58

3.3 Comparison of baselines, previous work, A-CMLM and A-FMLM
on WSJ . 58

3.4 Comparison of baselines, previous work, A-CMLM and A-FMLM
on Tedlium2 . 60

3.5 Comparison of A-FMLM with and without external LM on AISHELL. 61
3.6 Comparison of A-FMLM with and without external LM on CSJ. . 61
3.7 Comparison of A-CMLM with and without external LM on WSJ. . 62
3.8 Comparison of A-CMLM with and without external LM on Tedlium

2. 62
3.9 Performance comparison on Tedlium2 test with or without beam

search . 65
3.10 Performance comparison on AISHELL with or without beam search 66
3.11 Performance comparison on CSJ with or without beam search . . 66
3.12 Performance comparison on WSJ test with or without beam search 67

4.1 Mean opinion scores (MOS) of various models and their confi-
dence intervals . 96

4.2 Objective and subjective metrics of the WaveGrad Base models. . 99
4.3 Comparison between different sampling window sizes for Wave-

Grad 2 . 100
4.4 Comparison between different network sizes for WaveGrad 2 . . . 101

xi

LIST OF TABLES

4.5 Impact of augmentation on the learned WaveGrad 2 representa-
tions . 102

4.6 Impact of multi-task (MT) learning and number of iterations for
WaveGrad 2. 104

5.1 Align-Denoise training examples 112
5.2 Word error rates (WERs) and real time factor (RTF) for WSJ (En-

glish) . 116
5.3 Character error rates (CERs) for Corpus of Spontaneous Japanese

(CSJ) . 118
5.4 Character error rates (CERs) for AISHELL with Align-Denoise . 118
5.5 Word error rates (WERs) for Tedlium2 119
5.6 Mis-aligned example for Align-Denoise 121
5.7 Align-Denoise with/without beam search and external language

model on WSJ . 122
5.8 Align-Denoise with/without beam search and external language

model on CSJ . 122
5.9 Align-Denoise with/without beam search and external language

model on AISHELL . 123
5.10 Align-Denoise with/without beam search and external language

model on TEDLIUM2 . 123

xii

List of Figures

1.1 Speech recognition and synthesis 2
1.2 Encoder-Decoder architecture . 12
1.3 Autoregressive model: slow inference 18
1.4 Autoregressive model: mismatch between training and inference 19
1.5 Autoregressive model: unidirectional decoding 20
1.6 Comparison between autoregressive and non-autoregressive sys-

tems . 21
1.7 Diagram of mask-based approach 25
1.8 Example of mask-based approach decoding for speech recognition 25
1.9 Example of noise-based approach training 26
1.10 Example of noise-based approach decoding 27

3.1 An illustration of the easy first inference procedure 51
3.2 Illustration of inference procedure 53
3.3 How the sequence length is predicted for A-CMLM/A-FMLM. . . 55
3.4 How the number of refinement iterations impacts the result with-

out beam search using mask predict 64
3.5 How the number of refinement iterations impacts the real time

factor (RTF) without beam search using mask predict 65
3.6 Error analysis of autoregressive and non-autoregressive on dif-

ferent output sequence length bins 69

4.1 A directed graphical model of the diffusion probabilistic model . . 76
4.2 WaveGrad network architecture . 83
4.3 A block diagram of the Upsampling Block (UBlock) 84
4.4 A block diagram of the downsampling block (DBlock). 85
4.5 A block diagram of feature-wise linear modulation (FiLM) module 85
4.6 WaveGrad 2 network architecture 88
4.7 Plot of different noise schedules for WaveGrad and WaveGrad 2. . 92

xiii

LIST OF FIGURES

5.1 Visualization of the Align-Denoise training 113

xiv

List of Algorithms

1 Training procedure for A-FMLM . 49

2 Training algorithm for WaveGrad 80

3 Sampling algorithm for WaveGrad 81

xv

Chapter 1

Introduction to Speech

Applications and Models

Communication is the procedure of transmitting information, and it is cru-

cial in human-to-human interactions. Speech is a convenient human vocal com-

munication system with language, one of the most natural ways for people to

communicate. For example, in comparison, there exist some languages don’t

have writing system. Those facts may explain why speech is widely adopted

for human-computer interaction.

Even though for human beings, it is easy to communicate with speech from

a very young age [1], the development of speech technologies for machines al-

ready has taken a long time. The communication process includes two stages,

receiving and sending. For speech, these are the process of recognition and

1

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Alice wants to send a

private message to Bob.

Recognition

Synthesis

Figure 1.1: Speech recognition and synthesis.

generation, as shown in Figure 1.1.

Speech recognition is the process of recognizing human speech from audio.

The verb ‘recognize’ here indicates extracting the content (text) information

from the speech. Getting the text information is the first vital step towards

understanding. While the ability to recognize seems natural to humans, it is

still challenging for machines to achieve high recognition quality under some

instances, for example, noisy environment [2], spontaneous speech [3]. Recog-

nition speed is another concern to apply for large-scale applications.

Speech synthesis is the process of generating audio from text information.

This is how the computer gives feedback to humans during the conversation.

Recently with the development of deep learning [4–9], many proposed systems

are able to generate high fidelity audio which is clear, natural and easy to

follow. Since the fidelity has been improved a lot, there are increasing demands

to speed up the generation process and fit it into small portable devices.

2

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Those two are the main focus of this dissertation. While the understanding

plays an important role in the interaction, the analysis is usually based on the

text instead of using the speech directly. Thus it is out of the scope of this

thesis. Currently, most successful approaches tackle speech recognition and

synthesis by probability and statistical modeling. To help to understand it,

it is better to start the introduction with mathematical definitions, which are

given in the following sections.

1.1 Mathematical Definition of Speech

Recognition

If we denote the speech observation as x and the text sequence as y, then

the speech recognition problem is finding the most appropriate text sequence y

given the observation x. To represent the observation and the outcome, there

are different choices in the literature.

For the speech observation x, common choices include Mel-frequency cep-

stral coefficients [10] (MFCC), filter bank features (FBANK), perceptual linear

predictive [11] (PLP), and raw waveform samples. For the output sequence y,

there are different choices, and they are usually chosen empirically based on

the corpus. While words may consider intuitively to be the unit of the lan-

guage, they are not used widely when the lexicon is not included because of

3

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

the large dictionary size and difficulties in modeling unseen ones. Instead,

end-to-end systems embrace different forms y of word factorizations, such as

characters [12], subwords [13].

In the earliest stage of speech recognition research, templates are built for

individual words in the dictionary, and the recognition is designed as a pro-

cedure of matching between observations and templates using dynamic time

wrapping [14] (DTW):

argmax
k

P (yk|x) (1.1)

where yk is a single word from the dictionary and x is a small speech segment.

This method is proposed for the isolated word recognition and to get individ-

ual x, a pre-processing step is needed to find the boundary of individual words.

Overall, this method isn’t working well for real-life speech because most speech

is continuous instead of isolated words. Also, mathematically, recognizing in-

dividual words ignores the latent structure of the human language, which is

crucial to determine words with similar pronunciation.

The Dragon system [15] introduces Hidden Markov Model (HMM) and mod-

ular design, which soon becomes the dominant approach among the speech

recognition community. The problem of speech recognition is factorized as the

combination of acoustic model, lexicon, language model, and decoder. Different

groups of researchers are working on individual components, and the improve-

ment of those components leads to the performance boost of speech recognition

4

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

in different ways.

For the continuous speech recognition, the goal is to find the optimal se-

quence y given the observation x

argmax
y

P (y | x) ∝ P (x | y)P (y) (1.2)

where the decomposition follows Bayes’ Rule. The first term P (x | y) involves

acoustic model and lexicon, while the second term P (y) is modeled by the lan-

guage model.

Acoustic model builds the connection between input observations x and lin-

guistic units like phonemes. Various statistical models are proposed, including

Gaussian Mixture Models (GMM), sub-space GMM [16] and deep neural net-

work [17] (DNN). Lexicon is similar to a dictionary which includes the map-

ping between phoneme sequences and words. Language model estimates how

likely a text sequence y appears and we have seen a shift from adopting N-

gram model [18], to recurrent neural network [19] (RNN) and Transformer

network [20].

This decomposition has been challenged in recent years with the availabil-

ity of large amount of labelled data and development of neural machine trans-

lation (NMT) models [21] which surpassed the traditional statistical machine

translation (SMT) models [22] with a very similar decomposition. Applying

similar methodologies to the speech recognition, end-to-end speech recogni-

tion [23] becomes increasingly popular nowadays. Most end-to-end approach

5

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

still embraces a similar decomposition as equation 1.2 where P (y) is the lan-

guage model trained on external data. However end-to-end approach greatly

simplifies the whole process since P (x | y) is estimated directly by the neural

network. End-to-end approach leads to state-of-the-art performance on multi-

ple datasets [24].

1.2 Mathematical Definition of Speech

Synthesis

The research of speech synthesis can be traced back to eighteen century [25].

A Hungarian pioneering, Wolfgang Ritter von Kempelen, built a mechanical

speaking machine by wood to mimic human speech production. It includes a

pressure chamber as lungs, a leather tube as the vocal tract and a metal reed

as the vocal cords. It can produce different vowels by changing the shape of the

tube. The related observations and experiments are published in his book [26].

Later research followed this direction, and different studies focused on the

physiology of speech production. Two methods were proposed to simulate the

vocal tract resonance characteristic: articulatory synthesis [27, 28] and for-

mant synthesis [29, 30]. Articulatory synthesis models articulation processes

in the human vocal tract while formant synthesis uses mathematical models

such as additive synthesis to create the signal. The latter one is an example

6

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

of parametric synthesis which uses parameters to describe the characteristics

of the vocal tract without the need for waveform samples. In contrast, a differ-

ent approach, concatenative synthesis utilizes the waveform database to create

continuous speech. The main focus is on selecting the proper pre-recorded unit

from the database based on the context analysis and concatenating them to

get smooth audio. The selection process relies on a large number of resource

materials that require many hours of work and are pretty expensive. The con-

catenation process is crucial for obtaining smooth transitions to avoid acoustic

glitches. Even with the proper setup, concatenative synthesis still suffers from

coverage issues when the unit is not seen in some context.

In recent years, with the development of statistical models, especially neu-

ral networks, the naturalness and expressiveness of statistical parametric syn-

thesis have been greatly improved [4–9]. In contrast, statistical models extract

parametric representations of speech from the database and model them by

a set of generative models. Those spectral and excitation parameters are es-

timated based on contextual information. They are typically estimated by a

Maximum Likelihood criterion

θ = argmax
θ

p(x | y, θ) (1.3)

where θ is a set of parameters, x is a set of training data, and y is a set of

word sequences or phoneme sequences. To generate the speech, we can either

7

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

sample from the model p(x | y) or take the one with maximum probability:

x = argmax
x

p(x | y, θ) (1.4)

In comparison, the statistical parametric synthesis can be extended naturally

to the unseen context and the quality heavily depends on the expressiveness of

the model p(x | y). The statistical parametric synthesis also allows flexibility

in changing its voice characteristics and speaking styles by naturally intro-

ducing additional parameters. Because of these reasons, statistical parametric

synthesis is the most popular approach among the text-to-speech research com-

munity, and concatenative synthesis is not discussed in this thesis.

1.3 Hybrid Models

Hybrid models are a combination of multiple models and they were broadly

adopted for speech applications. Hybrid models split the whole task into multi-

ple sub-tasks and train different parts separately. The split process usually in-

volves domain knowledge and human experience. Intermediate labels are often

required in order to do the sub-task training. By optimizing the performance

of the individual component, the combined system usually works reasonably

well, specially with a limited amount of training data.

8

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.3.1 Hybrid Models for Speech Recognition

As mentioned in equation 1.2, the training of hybrid speech recognition sys-

tem involves the posterior P (x | y) and the prior P (y). The former probability

can be further factorized as

P (x | y) =
∑︂
q

P (x,q | y) (1.5)

=
∑︂
q

P (x | q,y)P (q | y) (1.6)

=
∑︂
q

P (x | q)P (q | y) (1.7)

where q is the phone state sequence which builds the connection between word

sequence y and actual sound x. The last equation introduces conditional in-

dependence assumption that given the phone states sequence, observation x

and word sequence y are independent. P (q | y) measures the pronunciation of

different words and is usually given by the Lexicon. P (x | y) estimates prob-

abilities of acoustics given the phone states which is modelled by the Acoustic

Model. To combine scores from acoustic model and language model, Weighted

Finite State Transducers [31] is typically used. However for decoding, proper

weights are still needed to balance these two since they are trained separately

on different data.

9

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.3.2 Hybrid Models for Speech synthesis

The resolution of waveform samples is much higher than the resolution of

word or phoneme sequences. Thus in order to generate the waveform, similar

to speech recognition, the most popular speech synthesis system relies on an

intermediate representation between samples and phoneme sequences. This

representation is largely chosen by experience, for example, mel-spectrogram

or linear-spectrogram features. By introducing this intermediate feature, text-

to-speech is divided into two sub-tasks:

Character-to-features (C2F) predicts linear spectrogram or mel-spectrogram

features from given input text/phoneme sequence and speaker identity. Many

C2F models have been proposed in the literature, including autoregressive sys-

tems such as Tacotron [32], Tacotron 2 [33], and non-autoregressive systems

like FastSpeech [34], non-attentive Tacotron [35].

Vocoder generates the waveform given spectrogram features as input. Be-

cause of the high resolution of waveforms, for instance, 16000 or 24000 samples

per second, in general, the waveform generation is the slowest part in speech

synthesis. WaveNet [36] is the first neural model that reaches high quality, and

it can be used as a neural vocoder. However, the generation speed of WaveNet

is extremely slow due to the autoregressive characteristic and large network

architecture. WaveRNN [37] uses much simpler architecture, and the perfor-

mance is close to the WaveNet. Nevertheless, it is still an autoregressive model,

10

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

so the sample needs to be computed one by one.

1.4 End-to-end Models

For hybrid models, errors may accumulate along different sub-tasks since

individual components are trained without input errors. Also, labels at dif-

ferent stages are required as the target for the sub-task training, which can

be both expensive and time-consuming to get. End-to-end models, in contrast,

introduce a standalone model for the task without dividing it into separate

problems, which simplifies both training and inference.

For the two important topics discussed in this thesis, speech recognition

and speech synthesis, both of them take a sequence as input and predict an-

other sequence with various lengths. The length of the input sequence and

output sequence can be quite different. Encoder-Decoder sequence-to-sequence

(Seq2Seq) model is proposed in [38] to handle the problem of mismatch length.

As shown in Figure 1.2, it consists of the encoder and decoder, which han-

dles input and output sequence separately. Encoder and decoder usually ex-

change information via the attention mechanism [39] between them. End-

to-end sequence-to-sequence models play an essential role in speech applica-

tions and have become increasingly popular with the development of comput-

ing hardware as well as a large amount of available data.

11

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Encoder Decoder

x0 x1 x2 x3 x4 y0 y1 y2 y3<sos>

ŷ0 ŷ1 ŷ2 ŷ3<eos>

Figure 1.2: Encoder-Decoder architecture.

1.4.1 E2E Models for Speech Recognition

In recent years, end-to-end models have started to catch up with or even

surpass the hybrid speech recognition system [24]. End-to-end models directly

estimate P (x | y) in equation 1.2 without the need of lexicon. It predicts the

probabilities of characters or subwords directly based on the input speech and

contextual information. However, language model P (y) is still included for

most cases which is trained separately on a large text corpus.

1.4.1.1 Transformer-based E2E ASR

The transformer model is a sequence-to-sequence encoder-decoder model

originally introduced for neural machine translation [39]. Transformer applies

attention-based modules to learn sequential information instead of recurrent

connection employed in the recurrent neural networks. To transfer information

12

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

from the encoder to the decoder, it adopts the cross attention similar to the one

included in the recurrent-based E2E ASR model.

The main disadvantage of the Transformer-based E2E ASR system is the

decoding speed. While the hidden dimension, in general, is much higher than

the sequence length in neural machine translation [39]; this observation doesn’t

hold to speech applications. Speech recognition typically uses Mel-spectrogram

features as input, and the input sequence length highly depends on the frame

size and frame shift. For example, World Street Journal (WSJ) [40] is a com-

monly used corpus for speech recognition and the lengthiest audio in the train-

ing set includes 2,433 frames when the frame shift is 10ms. For the output

sequence, it totally depends on the output tokens used. On the same dataset,

the longest training sample includes 253 characters.

A practical solution is to include down-sampling operators in the encoder to

reduce the sequence length. Even with the down-sampling in the encoder, the

autoregressive systems still suffer from the slow decoding problem since the

generation speed always depends on the output sequence length. For instance,

for WSJ, 253 characters require 253 predictions since the model needs to pre-

dict one character by one character. Each prediction requires one forward pass

of the decoder.

13

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.4.2 E2E Models for Speech Synthesis

End-to-end text-to-speech combines character-to-features with the vocoder,

and it is promising to deploy in reality since only one model is needed. However,

it is challenging because of two different reasons. First, the mapping between

characters/phonemes and intermediate features, usually known as the align-

ment, is not easy to model. To get the alignment, it requires the participation

of speech recognition models. That indicates errors are usually included. Dur-

ing the generation, the alignment is not available which needs to be provided

by the model prediction. Second, the resolution of intermediate features and

samples are quite different. A lot of upsampling is needed to synthesize the

waveform and details are required.

FastSpeech 2 [41] is a popular End-to-End speech synthesis framework. It is

conditioned on multiple additional features to address the variations in speech,

including pitch, energy and duration. To make the end-to-end training possi-

ble, multitask training is also introduced to predict intermediate features and

waveform samples simultaneously.

EATS [42] requires less conditioning signals but the training objective is

much more complicated, which combines multi-resolution adversarial loss, dy-

namic time warping loss and length prediction loss. Even though additional

information is not extracted during training, the objective becomes difficult to

tune and dynamic time warping loss is slow to compute due to the dynamic

14

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

programming and non-smooth optimization.

1.4.3 Autoregressive Training

The Sequence-to-sequence model predicts sequences with various lengths.

In general, it is challenging to predict the output sequences directly since they

have very high complexities. For some instances, like text-to-speech or Man-

darin recognition, the output vocabulary size is enormous. In addition to the

large vocabulary size, some sequences are quite long. Besides, those two se-

quences have quite different latent structures: one sequence is a text sequence

while another measures the amplitude of the waveform or represents certain

features extracted from the samples. The differences between those two signals

make the training even more challenging.

To make sequence-to-sequence training possible, autoregressive models are

widely adopted for speech applications. For the autoregressive model, only one

token is predicted each time instead of multiple tokens, reducing the complex-

ity of the output space.

For the Transformer-based E2E ASR, the decoder takes the text sequence

as input. It predicts the next token, based on contextual information from the

input text and the input audio. The input sequence is ’shifted’ to guarantee

that the input and output share the same length. The start-of-sentence token

(sos) is added before the input sequence and the end-of-sentence token (eos) is

15

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

appended after the output sequence. Some examples are included in Table 1.1.

Table 1.1: Autoregressive training examples from one sentence. Each training
sentence provides multiple training examples with variable length. In this ta-
ble, three of them are included. Input sequence to the decoder always have the
same length as the output sequence. Bold words are special tokens indicating
the start or the end of the sentence. By adding these two special tokens, in-
put sequence and output sequence is shifted by one position. During inference,
tokens are predicted one by one starting from sos, shown in the second case.

Input
sos

Output
Alice

Input
sos Alice wants to send a private

Output
Alice wants to send a private message

Input
sos Alice wants to send a private message to Bob

Output
Alice wants to send a private message to Bob eos

For Text-to-Speech (TTS), Wave-Tacotron [43] handles longer-term depen-

dencies autoregressively by conditioning each flow on preceding blocks. Sam-

ples within each block are estimated by the flow, which enables parallel train-

ing and synthesis. Dependencies between blocks are more difficult to solve

since it must synthesize the fine-time structure in the waveform as well as

produce a coherent long-term structure like prosody and semantics. Text-to-

speech is a multimodal generation problem with many variations like speaking

style and phonation modes. Conditioning on the whole history resolves many

uncertainties about the fine-time structure and long-term structure, which is

16

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

also preserved by the conditional dependence assumption. This makes the au-

toregressive model training easy and stable. Different blocks still need to be

generated sequentially for the inference, which might be inefficient for some

real applications.

1.5 Disadvantages of Autoregressive Sys-

tems

As discussed in the last section, autoregressive models are widely adopted

by the speech community. However, from the previous introduction, there are

several clear disadvantages of those autoregressive approaches:

• Slow. Autoregressive systems have to decode token-by-token, which is

extremely slow for long utterances. For speech recognition, sentences

should be able to be recognized in parallel in many cases, but autore-

gressive models need to recognize character by character or word by word

as shown in Figure 1.3. It becomes even a serious issue for speech synthe-

sis since high-fidelity audio requires a high sampling rate, for example,

16,000 or 24,000 samples per second.

• Mismatch between training and inference. During training, teacher forc-

ing is utilized to speed up the computation. However, during inference,

17

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Decoder

ŷ0 ŷ1 ŷ2 ŷ3<sos>

ŷ0 ŷ1 ŷ2 ŷ3 <eos>

Figure 1.3: Autoregressive model: slow inference. Dashed line represents

feeding the network prediction as the decoder input, which indicates one for-

ward pass through the whole decoder.

errors accumulate when the utterance becomes longer. Those decoding

mistakes introduce mismatches, which are not covered during training

as explained in Figure 1.4. These mismatches make the inference per-

formance unpredictable. A special issue of speech recognition decoding is

the usage of beam search, which is not included in the training.

• Uni-directional. Autoregressive systems consider only uni-directional in-

18

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Decoder

y0 y1 y2 y3<sos>Training

Decoder

ŷ0 ŷ1 ŷ2 ŷ3<sos>Inference

ŷ0 ŷ1 ŷ2 ŷ3 <eos>

Figure 1.4: Autoregressive model: mismatch between training and inference.

For training, ground truth sequence y is used while the network prediction ŷ

is the only choice for inference. y and ŷ can be quite different.

formation from the start of the output sequence to the current position.

One example is included in Figure 1.5. This limited information is prob-

ably not enough to make decisions. For instance, in speech recognition,

uni-directional information introduces high uncertainties, which results

in prediction errors. Those errors cannot be fixed when bi-directional in-

formation becomes available without beam search.

• Not intuitive and not similar to how the human brain works. Humans

cannot recognize some words at the beginning of the recognition, but they

can still determine them based on the context. The state-of-the-art au-

toregressive ASR systems work quite differently and need to determine

each token or rely on the beam search.

19

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Decoder

y0 y1 y2<sos>

ŷ3

Figure 1.5: Autoregressive model: unidirectional decoding.

1.6 Towards Non-autoregressive Speech

Applications

Autoregressive systems are easy to train but slow to decode. To bridge

the gap between training and inference, a natural idea is to make the train-

ing process more challenging, which should be close to the inference. Non-

autoregressive models are a different type of model which predicts the whole

sequence directly. This improves inference speed by a large margin because a

constant number of passes through the decoder is needed, which doesn’t de-

pend on the length of the output sequence. To predict the whole sequence,

non-autoregressive models also take the whole sequence as input. Intuitively,

the input sequence is incomplete, noisy, and contains many mistakes, while the

20

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

output sequence is expected to be more accurate than the input sequence. An

example of comparison between autoregressive and non-autoregressive models

is shown in Figure 1.6.

Decoder

ŷ0 ŷ1 ŷ2 ŷ3<sos>

ŷ0 ŷ1 ŷ2 ŷ3 <eos>

Autoregressive

Decoder

ŷk0 ŷk1 ŷk2 ŷk3

ŷk+1
0 ŷk+1

1 ŷk+1
2 ŷk+1

3

Non-autoregressive

Figure 1.6: Comparison between autoregressive and non-autoregressive sys-

tems. They usually share the same encoder, so the encoder is omitted in this

figure. For non-autoregressive systems, since the whole sequence is fed into

the decoder, there is no need to use special tokens. Instead, it uses multiple

iterations to decode the utterance and the result ŷk+1 of k + 1-th iteration de-

pends on iteration k.

1.6.1 Benefits of Non-Autoregressive Systems

Compared to the autoregressive systems, non-autoregressive systems have

the following advantages:

• Fast. Tokens can be predicted in parallel in certain order iteratively.

So the inference complexity is linear with respect to the input utterance

21

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

length. For example, in speech recognition, different sentences can be de-

coded in parallel. This brings even large benefits to the speech synthesis

since each second of audio requires 16,000 to 24,000 samples.

• Similar training and inference objective. In both training and inference,

the network make predictions based on partial or some initial decoding

results. This makes training and inference objectives similar. Also, non-

autoregressive systems are able to avoid the post-processing stages such

as beam search, which unifies training and inference.

• Bi-directional contextual information is taken into consideration. Non-

autoregressive systems decode tokens simultaneously, which introduce

bi-directional information. Errors made in the early stage can be resolved

in the later iterations.

• More intuitive and similar to the human brain. Different non-autoregressive

systems have different similarities, which are covered in the following

sections.

22

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.6.2 Why Non-Autoregressive Systems are chal-

lenging to train

Non-autoregressive systems introduce strong conditional independence as-

sumptions. Usually, results decoded in the same iteration are assumed to

be conditional independent. This assumption is too strong in general. For

instance, if nearby tokens are decoded together, the network may not have

enough contextual information to decide them. One extreme example is that

there might be multiple correct decoding sequences with the same length due

to the ambiguity introduced by sub-word decomposition. That indicates it is

better to decode nearby tokens in different iterations. Thus, multiple itera-

tions might be helpful.

Another challenge is to decide the sequence length in advance. Insertion-

based non-autoregressive systems [44, 45] can dynamically grow the canvas

size, while the masking-based approaches require predicting the output se-

quence length in advance before the first decoding iteration. One possibility is

to set the output sequence length to something related to the input sequence

length. In such cases, the length of the final output is dynamically changed

based on the predictions.

23

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.7 Non-Autoregressive Methods Proposal

In this dissertation, two different non-autoregressive directions are pro-

posed to address concerns in the last section: mask-based and noise-based.

These two directions are explored in other field, like machine translation [46],

image generation [47]. It is the first time to be used for non-autoregressive

speech applications.

1.7.1 Mask-based Approach

The mask-based approach introduces a special token ⟨MASK⟩ to indicate

that the position hasn’t been decided yet. During training, ground truth se-

quences are masked randomly, and the model is optimized to predict the origi-

nal unmasked tokens. The inference starts from a sequence with all ⟨MASK⟩ s

and gradually recovers the whole sequence based on partial results. The pro-

cedure of training and inference is illustrated in Figure 1.7.

One inference example is shown in Figure 1.8. The decoding is finished

within K = 3 iterations, which indicates three passes through the decoder. The

encoder only needs to be computed once.

24

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Decoder

y0 ⟨MASK⟩ y2 ⟨MASK⟩ ⟨MASK⟩

y0 y1 y2 y3 y4

Training

Decoder

ŷk0 ŷk1 ŷk2 ŷk3 ŷk4

ŷk+1
0 ŷk+1

1 ŷk+1
2 ŷk+1

3 ŷk+1
4

Inference

Figure 1.7: Diagram of mask-based approach. ⟨MASK⟩ is a special token indi-

cates that the corresponding position is not decided yet. Inference starts from

ŷ0 which contains only ⟨MASK⟩ .

Iteration k

0 1 2

⟨MASK⟩

⟨MASK⟩

⟨MASK⟩

⟨MASK⟩

⟨MASK⟩

It

is

so

past

⟨EOS⟩

⟨MASK⟩

⟨MASK⟩

so

⟨MASK⟩

⟨EOS⟩

Its

is

fast

⟨MASK⟩

is

so

fast

⟨EOS⟩

It

Decoder Decoder Decoder

Figure 1.8: Example of mask-based approach decoding with K = 3 iterations

for speech recognition. Shade indicates confidences from the model prediction.

25

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

Figure 1.9: Example of noise-based approach training for speech synthesis.

1.7.2 Noise-based Approach

The noise-based approach adds noise to the ground truth sequence, and

the network is learned to predict the original uncorrupted signal. Different

amounts of noise are added during the training, so the model is expected to

learn the denoising process with any portion of noise. During inference, start-

ing from an initial signal with a certain amount of noise, the network refines

the signal iterative to reach high quality.

Network training for noise-based speech synthesis approach is shown in

Figure 1.9. Noise is injected into the clean waveform, and the model is trained

to recover it from the corrupted one. This denoising process requires an under-

standing of the global structure.

Inference example is included in Figure 1.10. It starts from the pure Gaus-

sian noise (n = 0), and the network denoises the input signal. The decoding

finishes within K = 6 iterations.

26

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

Figure 1.10: Example of noise-based approach decoding with K = 6 iterations.

27

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.7.3 Relationship between Two Methods

Mask-based and noise-based are two different ways to introduce the distur-

bances on the target sequence:

• Mask-based approach introduces special ⟨MASK⟩ token, which can be con-

sidered as a discrete noise

• Noise-based approach directly adds perturbations, which can be both con-

tinuous and discrete

Recovering from these disturbances helps the network to model the data dis-

tribution or conditional distribution.

In both cases, the network predicts the directions to higher log-likelihood re-

gions. The mask-based model predicts the discrete edits (substitutions) on the

discrete sequence. Those edits are directions to modify the discrete sequence

to regions of higher log-likelihood, analogous to the gradient. The noise-based

approach introduces perturbations to broaden the support of the data distribu-

tion, and the target is closely related to the gradient.

The major difference between the two proposed methods is the percentage

of sequence updated during each iteration. Mask-based models tend to deter-

mine some tokens, and only some tokens are updated in each iteration. The

number of changes they made usually depends on the number of iterations.

For instance, if four iterations schedule is adopted, roughly one-quarter of the

28

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

predictions are selected after one pass. Noise-based models update the whole

sequence every time to get a less noisy one. This matches the training process

where different noise levels are introduced to sample noisy sequences.

1.8 Datasets

Comprehensive studies are conducted on the proposed methods. To verify

their effectiveness, we rely on multiple datasets widely adopted by the aca-

demic or industry.

1.8.1 Speech Recognition

For the speech recognition, all systems are tested on four different datasets:

150-hours AISHELL dataset [48], 581-hours Corpus of Spontaneous Japanese

(CSJ) dataset [49], 81-hours Wall Street Journal (WSJ) dataset [40] and 210-

hours Tedlium2 dataset [50]. For the language, AISHELL includes Mandarin,

while CSJ contains Japanese. Both WSJ and Tedlium2 are English datasets.

Tedlium2 comes from real TED talks, which are noisier. The diversity of those

corpora provides more convincing conclusions.

29

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

1.8.2 Speech Synthesis

For the speech synthesis task, we used Google’s proprietary speech dataset

consisting of 385 hours of high-quality English speech from 84 professional

voice talents for training models. A female speaker in the training dataset is

chosen for testing, who had also been used in previous studies [33,51–53]. The

test set included 1,000 sentences that cover different varieties of phonemes.

1.9 Contribution of this Dissertation

In the previous sections, we identified several disadvantages of autoregres-

sive systems and the barrier of switching to the non-autoregressive models.

Those are the topics covered in this dissertation, which makes the following

contributions:

1. We propose mask-based speech recognition approaches, which include

Conditional Masked Language Model (CMLM) and Factorized Masked

Language Model (FMLM).

(a) CMLM is inspired by the previous work [46], and it is the first at-

tempt of non-autoregressive end-to-end speech recognition.

(b) FMLM is proposed based on observations, and it reduces the number

of required iterations.

30

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

(c) They reach similar performance as the autoregressive baseline on

Mandarin dataset while the performance is slightly worse on Japanese

and English dataset.

2. We propose noise-based speech synthesis approaches which are non-autoregressive

and support a dynamic trade-off between fidelity and inference speed.

(a) WaveGrad is a vocoder that generates waveform samples from the

input mel-spectrogram features.

(b) WaveGrad 2 is a phone-to-wave model which is the combination of

WaveGrad decoder with Tacotron-2 [33] based encoder.

(c) Both outperform other non-autoregressive baselines and bridge the

performance gap between autoregressive systems and non-autoregressive

systems. The mean opinion score difference is less than 0.1.

3. We adapted the noise-based approach idea to the speech recognition and

proposed Align-Denoise, which favors a single pass decoding and can be

considered as an extension to the existing CTC model.

(a) The method significantly speeds up both the training and inference

with no performance drop.

The methods proposed in this paper could be applied to lots of resource-limited

scenarios, like smartphones, tablets, voice assistants. They can reduce power

31

CHAPTER 1. INTRODUCTION TO SPEECH APPLICATIONS AND
MODELS

consumption by reducing the inference time and providing better latencies.

32

Chapter 2

The Literature of

Non-autoregressive Systems for

Speech Applications

Fast inference is a major concern for deploying neural network-based mod-

els to real-world applications. In recent years, non-autoregressive systems

have attracted more and more attention from the speech research community

due to the fast and straightforward inference scheme. This chapter briefly

reviews some previous essential work to better understand the literature of

non-autoregressive systems for speech applications.

33

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

2.1 Non-autoregressive ASR

2.1.1 Hybrid Models

The hybrid speech recognition system introduced in Chapter 1.3.1 can be

considered as a non-autoregressive system if both the acoustic model and lan-

guage model are non-autoregressive. For example, the combination of deep

neural network acoustic model [17] and n-gram language model [54] is non-

autoregressive.

Common choice of acoustic model includes deep neural network (DNN) [17],

time-delay neural network [55], long short term memory (LSTM) [56], bidirec-

tional long short term memory (BLSTM) [57], Transformer [58], etc. Different

architectures have different receptive fields, which impacts the accuracy of the

acoustic unit prediction. For example, BLSTM outperforms LSTM by a large

margin [57] since it provides bidirectional information which uses future con-

text information.

The language model instead models how likely one text sequence appears.

n-gram model is commonly used for many speech recognition applications, and

different approaches [59, 60] have been proposed to improve it. Language

model also benefits from advanced neural architecture, like recurrent neural

network [61] (RNN), long short term memory [62] (LSTM), gated recurrent

unit [63] (GRU), Transformer [64], etc. However, all those advanced models

34

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

are autoregressive: they condition on all or part of the previous tokens to pre-

dict the probability of the next token. The autoregressive characteristic makes

the inference slow since tokens are predicted one by one.

The dependencies between tokens are handled by the Weighted Finite State

Transducers [31] (WFST). Scores from ASR components, like acoustic model,

lexicon, language model, are unified in the WFST framework, which provides

flexibility for the implementation. For the inference, to find the optimal path

from the WFST, usually, the beam search process is used to greedily maintain

a certain number of most possible paths in the repository.

In summary, the hybrid model relies on a powerful language model to achieve

high quality, but they are usually autoregressive. The beam search process in-

troduces extra complexities which make the inference process slow. Also, it

results in discrepancies between training and inference, which are harmful for

optimization.

2.1.2 Connectionist Temporal Classification

For the end-to-end model, a real question is how to handle the mapping be-

tween frames and tokens. Commonly, multiple frames correspond to the same

token, and the number of frames varies a lot due to different speeds, speak-

ers, etc. Connectionist Temporal Classification [65] (CTC) is a fundamental

approach designed for the end-to-end model, and it is also the cornerstone of

35

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

more advanced non-autoregressive systems.

CTC is proposed to handle the noisy and unsegmented input signal, for

example, speech. Speech is continuous, and the boundary between different

words or sub-words is usually not available. CTC is a general neural network

output whose objective function does not require any duration or segmentation

information.

CTC learns a direct mapping from the input frames to the vocabulary in

addition to a special token ϵ. This special blank token ϵ represents observing

a ‘blank’ or no label. To handle different alignment from various possible du-

rations of the same word, CTC introduces a many-to-one mapping B between

frame predictions and label sequence by removing all blank and repeated to-

kens from the prediction. Several examples are included in Table 2.1.

Table 2.1: Examples of CTC decoding. Mapping function B removes all blank
and repeated tokens from the model prediction. From the second and the third
case, to differentiate between ‘ll’ and ‘l’, one ϵ is needed in the middle.

Model Prediction Result
hhhhellll_lo hello

hhe__lll_llo hello

hhe__llllllo helo

Given the many-to-one mapping B, CTC maximizes the probability of all

appropriate alignment π. One alignment π is appropriate if B(π) = y. In other

words, CTC optimizes the probability of all possible paths which are mapped to

36

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

the label sequence y after applying the mapping B. By marginalizing over all

possible alignments π, CTC does not require any segmentation and duration

information during training.

To model the probability of individual alignment π given the input sequence

x, CTC uses conditional independence assumption:

P (π | x) =
∏︂
t

P (πt | x) (2.1)

So basically prediction of each frame πt is independent conditioning on the

input sequence x. The objective function of CTC is

maxP (y | x) = max
∑︂

π:B(π)=y

P (π|x)

= max
∑︂

π:B(π)=y

∏︂
t

P (πt | x) (2.2)

During training, given the label sequence y, dynamic programming known as

the forward backward algorithm [65] can efficiently optimize the probability of

all possible paths. However the optimization for inference is not feasible and

it usually relies on the approximation. One simple and practical solution is to

use the greedy decoding

πt = argmaxP (πt | x) (2.3)

and then the prediction can be computed accordingly using B mapping

y = B(π) (2.4)

37

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

The principal issue of CTC is the absence of dependence between predic-

tions, as shown in Equation 2.1. To incorporate the external language model

and beam search, the conditional independence assumption is usually artifi-

cially broken by the inclusion of a language model. This results in a discrep-

ancy between how models are trained and tested. In reality, CTC models ex-

hibit fast decoding but relatively poor performance [66].

2.1.3 RNN Transducer (RNN-T)

CTC makes a strong conditional independence assumption, and it requires

that the output length be smaller than the input length. RNN Transducer [67]

(RNN-T) elegantly solves both problems associated with CTC by introducing

two sub-networks:

• Predictor takes previous outputs and produces features in an autore-

gressive manner that can be used for predicting the following output.

• Joiner combines outputs from both encoder and predictor to predict the

next token.

By allowing multiple outputs for each input, RNN-T outperforms CTC in many

experiment results [66].

However, RNN-T makes both training and inference slow by using the au-

toregressive predictor. Since the predictor requires the history, outputs can

38

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

not be estimated simultaneously, limiting its usage for real applications. Also,

the memory usage of RNN-T is quite large due to the computation of weights

between each input frame and each output.

2.1.4 Non-autoregressive End-to-end

Speech Recognition

Non-autoregressive systems are proposed to speed up the inference process.

For the hybrid system, the bottleneck of the inference usually comes from the

beam search and the external language model. Even though both acoustic and

language models can be non-autoregressive, the beam search still slows down

the inference procedure and is not powerful enough to handle the dependencies

between tokens.

A more exciting direction for speech recognition is the end-to-end

non-autoregressive models. End-to-end non-autoregressive models predict char-

acters or subwords directly, which does not require the participation of any

other models. By adopting powerful advanced models, we further show it is

possible to avoid the beam search during decoding.

Conditional Masked Language Model (CMLM) and Factorized Masked Lan-

guage Model (FMLM) [68] are the first attempts on the end-to-end

non-autoregressive speech recognition, which is covered in Chapter 3. CMLM

39

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

is inspired by the previous work [46] on Neural Machine Translation, and we

explored its usage on the speech recognition task. We further proposed a novel

FMLM to bridge the gap between training and inference based on the observa-

tion. Our work verifies the possibility to make the non-autoregressive system

work with speech recognition, and we show similar or slightly worse perfor-

mance on different datasets.

Mask-CTC [69] is an extension to the proposed CMLM. The training proce-

dure is the same as CMLM, but the CTC greedy decoding result is adopted as

the initialization for inference. Mask-CTC proposes different criteria to select

some predictions, which are refined in the following iterations.

There is another direction of non-autoregressive speech recognition which is

based on CTC, including Imputer [70], Align-Refiner [71]. Those models work

directly on CTC alignment, and they need to apply the mapping B at the end

of the decoding. Imputer [70] applies a similar conditional masked language

model (CMLM) objective on the CTC alignment, and fixed block-based decoding

order is proposed. Align-Refiner [71] relies on the CTC greedy decoding, and

it optimizes the decoder (refiner) to reduce the word error rate after refining

multiple steps.

40

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

2.2 Non-autoregressive Text-to-speech

Two popular directions of non-autoregressive models have been explored:

The flow-based approach and the GAN-based approach.

Flow-based models [72–77] is a generative model which is constructed by

a sequence of invertible transformations. The model explicitly learns the data

distribution p(x) by leveraging normalizing flow [78,79] and therefore the loss

function is simply the negative log-likelihood. Normalizing flow maps proposed

simple distribution p(z) to the data distribution p(x) via a series of invert-

ible transformations such as invertible 1 by 1 convolution [80], coupling-based

flows [72]. Those transformations require to be invertible in order to estimate

the likelihood, and their Jacobian determinants need to be easy to compute for

efficiency. Those require specialized architectures, which limit the expressive

power.

Generative Adversarial Network [53,81–87] (GAN) based approach uses the

combination of two sub-networks. The first sub-network, generator, maps the

simple distribution p(z) to the data distribution we are trying to model. The

second sub-network, discriminator, differentiates between real samples and

samples from the generator network. The discriminator provides the train-

ing signal to the generator during the training and the generator is optimized

to improve the quality to fool the discriminator. Text-to-speech is a multi-

41

CHAPTER 2. THE LITERATURE OF NON-AUTOREGRESSIVE SYSTEMS
FOR SPEECH APPLICATIONS

modal problem and there usually exists multiple possibilities corresponding

to the same input sequence. GAN is a good fit for the speech synthesis prob-

lem because it differentiates distributions instead. However, GAN-based ap-

proaches usually require additional losses, for example, losses on different res-

olutions [53] or STFT-based losses [42]. Also, GAN training is not stable with-

out proper hyperparameters.

2.3 Summary

With the development of deep learning, the performance of many speech

applications gets considerable improvement. Based on that, more and more re-

searchers and engineers have started to focus on improving the current state-

of-the-art autoregressive systems. Non-autoregressive is a very promising di-

rection, which involves more parallel computation. This dissertation proposes

two novel methods to improve the existing non-autoregressive speech applica-

tions.

42

Chapter 3

Mask-based non-autoregressive

Speech Recognition

The first attempt of non-autoregressive speech recognition combines a state-

of-the-art autoregressive ASR system with mask-based training. The autore-

gressive system discussed in this dissertation is the joint training of connec-

tionist temporal classification and attention [88]. This chapter starts with

the introduction of autoregressive system and walks through the process to

make the autoregressive system non-autoregressive by introducing the mask-

based idea. Two variations are discussed for the network training, which are

named conditional masked language model (CMLM) and factorized masked

language model (FMLM). Experiments include results on different datasets

and ablations related to the external language model and beam search, which

43

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

are broadly used for autoregressive systems.

The Mask-based non-autoregressive model is built on the base of the current

autoregressive end-to-end speech recognition system. A general sequence-to-

sequence autoregressive model consists of an encoder and decoder. The encoder

takes the t-th input frame speech features xt like the log Mel filter bank coeffi-

cients as input and produces the corresponding hidden representations

ht = ht(x) (3.1)

The decoder predicts a next token yl based on the previous history y<l and all

hidden representations h = (h1,h2, · · ·):

P (yl | y<l,x) = Pdec(yl | y<l, fl(h)) (3.2)

where f is a l-dependent function on all hidden representations h. A com-

mon choice for f is an attention mechanism, which can be considered to be a

weighted combination of all hidden representations:

f att
l (h) =

∑︂
t

wl,tht (3.3)

where t enumerates all possible hidden representations in h. The weight wl,t is

usually determined by a similarity between the decoder hidden state at l and

hidden representation ht.

44

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

3.1 Conditional masked language model

(CMLM)

The first training framework that we considered is inspired by the work

from non-autoregressive neural machine translation [46]. The idea is to re-

place y<l with partial decoding results we got from previous computations. A

new token ⟨MASK⟩ is introduced for training and decoding, similar to the idea

of BERT [89]. Let LM and LU be the sets of masked and unmasked tokens,

respectively. The posterior of the masked tokens given the unmasked tokens

and the input speech is approximated by,

P (yLM
| yLU

,x) =
∏︂
l∈LM

Pdec(yl | yLU
, fl(h)) . (3.4)

where the conditional independence assumption still holds like equation 2.1

for CTC. However, the main difference is the introduction of the partition LM

and LU. In the case of CTC, the unmasked part LU is empty, so all tokens are

conditionally independent. In our case, we carefully choose the split and adopt

predictions with high confidence. By embracing an iterative decoding strategy,

we gradually increase the size of the set of unmasked tokens LU and decrease

the size of the masked part LM by selecting predictions, starting from the empty

set LU and the whole set LM.

During training, some random tokens are replaced by this special ⟨MASK⟩ token.

45

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

The network is asked to predict the original unmasked tokens based on input

speech and context. The total number of mask tokens is randomly sampled

from a uniform distribution of the whole utterance length. Ground truth to-

kens are randomly selected to be replaced with this ⟨MASK⟩ token. Intuitively,

when we mask more tokens, the model will rely more on the input speech.

In contrast, if we mask fewer tokens, the model will leverage more the lan-

guage context, similarly to a language model. This combines the advantages of

both speech recognition and language modeling. With the assumption that pre-

dictions of masked tokens are conditionally independent given unmasked to-

kens, masked tokens can be estimated simultaneously as the product in equa-

tion (3.4).

Because of the connection between this objective function and mask-based

pre-training [89], we named this approach Audio-Conditional Masked Lan-

guage Model (A-CMLM).

3.2 Factorized masked language model

(FMLM)

During the training of A-CMLM, ground truth tokens at LU in (3.4) are pro-

vided to predict the masked part. However, during inference, none of those

tokens are given. Thus the model needs to predict without any context infor-

46

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

mation. This mismatch might be harmful to the final performance.

Inspired by [90, 91], we formalize the idea to mitigate the training and in-

ference mismatch as follows. Let Zi ⊂ [0, 1, ..., L − 1] be a length-(K + 1) sub-

sequences of indices such that

Z0 = ∅

ZK = [0, 1, ..., L− 1]

∀i Zi ⊂ Zi+1

(3.5)

where L is the output sequence length and K is the number of iterations. For

both training and inference, the objective can be expressed as

P (y | h) =
K∏︂
i=1

∏︂
l∈Zi∩Zi−1

Pdec(yl | yZi−1
, fl(h)) (3.6)

where Zi−1 are the set of indices not included in Zi−1, Zi ∩ Zi−1 are the indices

for decoding in iteration i. For example, to decode an utterance of length 5 with

3 iterations, one possibility is:

Z0 = ∅

Z1 = 0

Z2 = 0, 1, 2

Z3 = 0, 1, 2, 3, 4

(3.7)

Similar to A-CMLM, ⟨MASK⟩ tokens are added to decoder inputs when corre-

sponding tokens are not decided yet. A special case is the autoregressive case:

K = L and Zi = [0, 1, ..., i− 1].

47

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

For the inference, one can only rely on the confidence from the model predic-

tions. Ideally, Zi should be decided based on confidence scores for the training

to match the inference case. During training, we sort all posteriors from itera-

tion i−1 and choose the most confident ones. The size of Zi is also sampled from

the uniform distribution between 0 and L to support different possibilities for

decoding. To speed up, we set K = 2 during training so that the optimization

objective can also be written as

P (y | h) =
∏︂
l ̸∈Z1

Pdec(yl | yZ1 , fl(h))

×
∏︂
j∈Z1

Pdec(yj | fj(h))
(3.8)

Comparing with equation (3.4), A-CMLM training only includes first term if

Z1 = LU and doesn’t optimize the probability
∏︁

j∈LU
Pdec(yj | fj(h)) for the first

iteration. However, during inference, some explicit factorization is still needed

based on the confidences.

Pseudo-code of the A-FMLM algorithm can be found in Algorithm 1.

3.2.1 Easy First Decoding

During inference, a multi-iteration process is proposed. Autoregressive

models typically use left-to-right decoding. In [46], they propose mask-predict

for non-autoregressive neural machine translation. In comparison, we pro-

pose a novel, simple decoding method for non-autoregressive speech recogni-

48

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

input : minibatch size n, dataset D, encoder network fenc, decoder

network fdec

output: Posterior P

Sample X = x1, ..., xn, Y = y1, ..., yn from D;

h = fenc(x);

ŷ(0)[:] =⟨MASK⟩ ;

P (y1|h) = fdec(ŷ
(0),h);

mask = zeros(n,max length);

ŷ(1)[:] =⟨MASK⟩ ;

for i=1,...,n do

probs = Pi(y
1|h);

indices = argsort(probs.max(−1));

Zi ∼ Uniform(1, length(probs));

mask[i, indices[Zi :]] = 1;

ŷ(1)[i, indices[Zi :]] = y[i, indices[Zi :]];

end

P (y2|y1,h) = fdec(ŷ
(1),h);

P = mask ∗ P (y1|h) + (1−mask) ∗ P (y2|y1,h);
Algorithm 1: Training procedure for A-FMLM

49

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

tion: easy first.

The idea of this strategy is to predict the most confident tokens first, similar

to easy-first parsing [92]. In the first iteration, the decoder is fed with predic-

tions ŷ
(0)
l = ⟨MASK⟩ tokens for all l since we do not have any partial results.

After getting decoding results P (y1
l |.)1, we keep those most confident ones and

update them in yl:

ŷ
(1)
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmaxV P (y1

l |.) l ∈ largestC(maxV P (y1|.))

ŷ
(0)
l otherwise

(3.9)

where V is the vocabulary, C = ⌈L/K⌉ is the number of largest predictions that

we keep. Conditioned on this new ŷ(1), the network is required to make new

predictions if there are still masked tokens. One example is shown in Figure

3.1.

3.2.2 Mask-predict

This is studied in [46]. Similarly to Section 3.2.1, we start with ŷ
(0)
t =

⟨MASK⟩ . In each iteration k, we check the posterior probability of the most

probable token for each output t (i.e., maxV P (yk
t |.)) and use this probability as a

confidence score to replace least confident ones in an utterance by ⟨MASK⟩ tokens.

The number of masked tokens in an utterance is ⌈L ∗ (1− k/K)⌉ for k-th itera-
1We omit the dependencies of the posterior to keep the notation uncluttered.

50

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Iteration k

0 1 2

⟨MASK⟩

⟨MASK⟩

⟨MASK⟩

⟨MASK⟩

⟨MASK⟩

It

is

so

past

⟨EOS⟩

⟨MASK⟩

⟨MASK⟩

so

⟨MASK⟩

⟨EOS⟩

Its

is

fast

⟨MASK⟩

is

so

fast

⟨EOS⟩

It

Decoder Decoder Decoder

Figure 3.1: An illustration of the easy first inference procedure. In the first

iteration, all input tokens are ⟨MASK⟩ . Shade here presents the certainties

from network outputs. For example, token “so” is confident enough in the first

iteration to be decided and it will never change in the future for easy first

decoding.

tion:

ŷ
(k)
t =

⎧⎪⎪⎨⎪⎪⎩
⟨MASK⟩ t ∈ smallestC(maxV P (yk

t |.))

argmaxV P (yk
t |.) otherwise

(3.10)

where C = ⌈L ∗ (1 − k/K)⌉. For instance, if K = 10, we mask 90% tokens in

the first iteration, 80% in second and so on. After getting prediction results, we

update all tokens previously masked in ŷ(k−1):

P (yk
t |.) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (yk

t |.) ŷ
(k−1)
t = ⟨MASK⟩

P (yk−1
t |.) otherwise

(3.11)

The difference between mask-predict and easy first is that mask-predict will

accept all decisions but it reverts decisions made earlier if it is less confident.

Easy first is more conservative and it gradually adopts decisions with the high-

51

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

est confidence. For both strategies, predictions become more and more accurate

since it can utilize context information from both future and past directions.

This is achieved by replacing input y<t with all yt since left-to-right decoding

is no longer necessary.

3.2.3 Example

As shown in Figure 3.2, part (a) shows easy first and part (b) demonstrates

mask-predict. In this example sequence length is 4 but after adding ⟨EOS⟩

token to the end of the sequence we have L = 5 and K = 3. When K = 2 the

two strategies become the same. In the first iteration, the network is inputted

with all ⟨MASK⟩ . Top ⌈5/3⌉ = 2 tokens get kept in each iteration, and based

on partial results network predicts again on all rest ⟨MASK⟩ tokens.

For easy first, it always ranks confidence from the last iteration and then

keeps top-2 confident predictions. Based on partial results, it will complete the

rest.

For mask-predict, it maintains confidence scores from multiple iterations.

It chooses the least confident ones from all scores to mask. The last iteration

chooses to change its previous prediction of “so” because its confidence is less

than other predictions from the second iteration.

The left-to-right inference procedure can be considered as a particular case

when K = L and instead of taking the most confident one, the prediction of the

52

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Figure 3.2: Illustration of inference procedure. To predict the whole sequence

with K = 3 passes, initially, the network is fed with all ⟨MASK⟩ tokens. Shade

here presents the certainties from network outputs. Part (a) shows the easy

first process. Since token “so” is confident enough in the first iteration to be

decided, it will never change in the future. Part (b) shows the mask-predict

process. The last iteration goes back to the word ”so” because it is less confident

in the first iteration than other predictions in other iterations.

53

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

next token is always adopted.

3.2.4 Output sequence length prediction

In [46], they introduced a special token ⟨LENGTH⟩ in input to predict out-

put sequence length in neural machine translation. For ASR, length prediction

is more difficult since the output length varies much more w.r.t. the speech

duration. In this dissertation, a more straightforward approach is proposed:

we asked the network to predict end-of-sequence token ⟨EOS⟩ at the end of the

sequence as shown in Fig. 3.2.

During inference, we still need to specify the initial length. We manually set

it to a constant value depending on the input length for the first iteration. So

the first input sequence to the decoder contains only ⟨MASK⟩ tokens, and the

length depends on the input audio length. After that we estimate the sequence

length from the first iteration ⟨EOS⟩ prediction. Specifically, we look for the

location of the first ⟨EOS⟩ token and truncate the sequence after that. One

example is included in Figure 3.3.

3.3 Experiments and results

In all experiments, the encoder included 12 blocks with convolutional lay-

ers at the beginning for down-sampling. The decoder consisted of 6 blocks,

54

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Decoder

⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩ ⟨MASK⟩

Alice wants to send a private message to Bob <EOS> <EOS>

Alice wants to send a private message to Bob <EOS>

Truncate

Figure 3.3: How the sequence length is predicted for A-CMLM/A-FMLM. Ini-

tially we estimate the length based on the input sequence length. After first

iteration prediction, we truncate the sequence according to the position of the

first ⟨EOS⟩ token.

and each block included four attention heads, 256 hidden units, and 2048 feed-

forward units. The network was trained for 50/100/300/150 epochs with 1/2/1/1

NVIDIA GTX1080TI GPUs for AISHELL/CSJ/WSJ/Tedlium2. In comparison

to autoregressive baselines, we observed that, in general, non-autoregressive

models take more iterations to converge. Warmup [39] is used for the first

25,000 steps. The real-time factor is measured on the same machine with In-

tel(R) Xeon(R) CPU E5-2640 v3 CPU for decoding. For AISHELL/CSJ/WSJ,

we used a character-based model while byte pair encoding [93] is adopted for

Tedlium2. For all experiments, we perform post-processing based on beam

search and language model shallow fusion on top of our proposed methods

to make fair comparisons with the conventional autoregressive methods. The

55

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

same language model is used for both proposed non-autoregressive systems

and the autoregressive baseline.

The results of AISHELL are given in Table 3.1. For A-CMLM, no improve-

ment was observed for more than three decoding iterations. For A-FMLM,

experiments show that one decoding iteration is enough to get the best perfor-

mance. All decoding methods result in performance very close to state-of-the-

art autoregressive models. Especially A-FMLM matched the performance of

autoregressive baseline, but real-time factor reduced from 1.44 to 0.22, which

is around 7x speedup. The reason is that our non-autoregressive systems only

perform major decoder computation a constant number of times K, compared

to the autoregressive model, which depends on the length of output sequence

L. It also outperformed two different hybrid systems in Kaldi by 22% and 11%

relative, respectively. From our observations, the computation time for the

proposed method is dominated by the beam search, so the real-time factor is

similar for a different number of iterations.

Table 3.1: Comparison of baselines, previous work, A-CMLM and A-FMLM on
AISHELL. Easy first is used for all proposals since it shows better performance
from experiment results.

System Dev
CER(↓)

Test
CER(↓)

Real Time
Factor(↓)

Baseline
Autoregressive Transformer 6.0 6.7 1.44
Kaldi nnet3 - 8.6 -
Kaldi chain - 7.5 -

Previous work

56

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

CAT [94] - 6.3 -
Unsupervised Pre-training [95] - 6.7 -
A-CMLM + Mask-predict (K=3) [46] 6.4 7.2 0.24

Proposal
A-CMLM (K=1) 6.8 7.6 0.22
A-CMLM (K=3) 6.4 7.1 0.22
A-FMLM (K=1) 6.2 6.7 0.28
A-FMLM (K=2) 6.2 6.8 0.22
A-FMLM (K=3) 6.2 6.8 0.32

CSJ results are given in Table 3.2. Here, we observed a larger difference

between non-autoregressive and autoregressive models. Multiple iterations of

different decoding strategies are not helping to improve. Still, the proposed

A-FMLM outperformed A-CMLM with up to 11x speedup compared to the au-

toregressive baseline.

We also compare with our implementation of Imputer [70]–another non-

autoregressive model. To make the model size comparable, we use eight blocks,

including four attention heads, 256 hidden units, and 2048 feed-forward units.

Since Imputer estimates the alignment, we changed the down-sampling rate

from 4 to 2 to fit it into the memory. In comparison, the results from Imputer

model are slightly better than the ones of our models, but the real-time factor is

almost two times larger. Imputer depends on the input frame length, while our

model depends on the output token level. Since there are many more frames

than output tokens, the proposed model’s inference is faster and easier.

57

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Table 3.2: Comparison of baselines, previous work, A-CMLM and A-FMLM on
CSJ.

System Eval1
CER(↓)

Eval2
CER(↓)

Eval3
CER(↓)

Real Time
Factor(↓)

Baseline
Autoregressive Transformer 5.9 4.1 4.6 9.50
Kaldi 7.5 6.3 6.9 -

Other non-autoregressive
methods

CTC 8.0 5.4 7.2 1.47
Imputer (DP)
our implementation 7.0 4.7 5.9 1.48

Proposal
A-CMLM (K=1) 8.8 6.7 7.4 0.94
A-CMLM (K=3) 9.3 7.0 8.3 0.98
A-FMLM (K=1) 7.1 5.2 6.2 0.88
A-FMLM (K=2) 7.3 5.3 6.2 0.88

Performance of our systems on Wall Street Journal (WSJ) is given in Ta-

ble 3.3. For WSJ, we tried both subwords and characters-based tokenization.

Overall, using characters gives a better word error rate than using subwords.

This can be explained by a small training set, and characters work better

for out-of-vocabulary words. A-CMLM slightly outperforms A-FMLM on this

dataset, and overall autoregressive baseline is still better.

Table 3.3: Comparison of baselines, previous work, A-CMLM and A-FMLM
on WSJ. For char-based and BPE-based models, different external language
models are used for beam search.

System dev93
WER(↓)

eval92
WER(↓)

Baseline

58

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Autoregressive Transformer (char) 7.8 5.3
Kaldi

Other non-autoregressive methods
CTC [69] 22.2 17.9

Proposal (char)
A-CMLM (K=1) 11.0 8.0
A-CMLM (K=3) 17.8 14.7
A-FMLM (K=1) 13.6 10.2
A-FMLM (K=2) 13.6 10.2

Proposal (BPE, 100)
A-CMLM (K=1) 12.9 10.9
A-CMLM (K=3) 14.6 17.1
A-FMLM (K=1) 13.7 11.4
A-FMLM (K=2) 13.7 11.4

A-CMLM also get 13.0/10.7 WER on Tedlium2 as reported in Table 3.4,

which is slightly better than A-FMLM. The difference is about one percent

difference. All results are slightly worse than the autoregressive baseline.

59

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Table 3.4: Comparison of baselines, previous work, A-CMLM and A-FMLM on
Tedlium2.

System dev
WER(↓)

test
WER(↓)

Baseline
Autoregressive Transformer (BPE, 500) 11.7 9.9

+ beam search(40) 10.4 9.0
+ external language model 9.3 8.1

Kaldi 7.5 6.3

Other non-autoregressive methods
CTC [96] - 16.6

Proposal (BPE, 500)
A-CMLM (K=1) 13.0 10.7
A-CMLM (K=3) 14.6 12.0
A-FMLM (K=1) 14.1 11.9
A-FMLM (K=2) 14.1 11.9

3.4 Analysis

3.4.1 Ablation Studies of External

Language Model

In this section, we analyze the contribution of the external language model.

In contrast to neural machine translation, the state-of-the-art end-to-end au-

toregressive model still includes an external language model to get the best

performance. For a fair comparison, we also used the same external LM for

the proposed non-autoregressive models. Table 3.5, Table 3.6, Table 3.7 and

60

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Table 3.8 show the performance comparison.

From the results, the contribution of the external language model depends

on the amount of text data. The external language model indicates a separately

trained language model, which is trained on a text corpus. For some corpus like

AISHELL and CSJ, additional text data are not available. For Tedlium2 and

WSJ, some additional text data is not included in the ASR training pairs.

When the additional text corpus is not available, the performance difference

is not significant. From Table 3.5, it improves the performance on AISHELL

while the performance is similar on CSJ shown in Table 3.6. The difference be-

tween the two datasets can explain this. AISHELL has less training data and

utterance length is shorter, which provides less contextual information. CSJ

includes a larger training set, and utterance length is longer in comparison.

Table 3.5: Comparison of A-FMLM with and without external LM on
AISHELL.

System Dev
CER

Test
CER

A-FMLM (K=1) with LM 6.2 6.7
A-FMLM (K=1) without LM 6.9 7.9

Table 3.6: Comparison of A-FMLM with and without external LM on CSJ.

System Eval1
CER

Eval2
CER

Eval3
CER

A-FMLM (K=1) with LM 7.1 5.2 6.2
A-FMLM (K=1) without LM 7.4 5.2 5.9

61

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

When additional text data can be used to train the external language model,

the performance difference is much more significant. For WSJ, as shown in Ta-

ble 3.7, the word error rate almost increases by 100% when the external LM is

not used. From our observation, the language model helps detect the boundary

of words, leading to a large word error rate improvement on this dataset. For

Tedlium2 results in Table 3.8, external LM improves the performance by 4%

absolutely.

Overall, the external language model improves beam search performance,

especially when additional text data is available. The proposed non-autoregressive

models also benefit from the development of the language model.

Table 3.7: Comparison of A-CMLM with and without external LM on WSJ.

System dev93
CER

dev93
WER

eval92
WER

eval92
WER

A-CMLM (K=1) with LM 4.0 11.0 2.9 8.0
A-CMLM (K=1) without LM 5.9 21.6 4.8 19.1

Table 3.8: Comparison of A-CMLM with and without external LM on Tedlium
2.

System dev
WER

Test
WER

A-CMLM (K=1) with LM 13.0 10.7
A-CMLM (K=1) without LM 17.0 14.8

62

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

3.4.2 Ablation Studies of Beam Search

In this part, we are exploring how beam search improves decoding perfor-

mance. For non-autoregressive speech recognition models, some tokens need to

be predicted without enough contextual information. Especially for tokens that

are predicted in the first iteration, they are estimated solely on the input audio.

This results in large uncertainties at the beginning of the inference when the

context is not available.

There are two different ways to overcome this problem. One solution is to

use the beam search and external language model to combine the context infor-

mation from the text. Predictions made by the model are purely conditioned on

the input speech, but beam search reduces uncertainties by searching over the

whole sequence. The external model further combines the contextual text in-

formation, which leads to further improvement. This is adopted for all previous

experiments.

Another solution is to make some errors first and then correct them relying

on the noisy context. Intuitively, this requires correcting mistakes made before

and a large number of iterations. This suggests mask predict is preferred in

this scenario and more iterations are needed. Experiments are conducted us-

ing CMLM model with mask predict decoding on Tedlium2 test. To make the

comparison fair, external language models are not used for all experiments in

this section. The results are shown in Figure 3.4.

63

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Number of iterations

E
rr

or
ra

te
Substitution
Deletion
Insertion
Word Error Rate

Figure 3.4: How the number of refinement iterations impacts the result with-

out beam search using mask predict

From the graph, it can be observed that beam search is not necessary, but it

greatly reduces the number of iterations needed. Without beam search, more

iterations, in general, improve the performance by up to 40 iterations. Substi-

tution errors are reduced from 33.7% to 9.1% by using 40 iterations. Instead,

insertion and deletion errors are pretty stable when the number of iterations

increases. This suggests that position predictions are quite accurate for the

trained models, but there are substitution errors at the beginning of decod-

ing. Mask predict decoding is able to correct errors which results in continuous

improvement.

The real-time factor (RTF) for different number of iterations is given in

Figure 3.5. Clearly, the RTF is linear with respect to the number of steps when

64

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

the beam search is not used. This matches one’s expectations.

Final results for Tedlium2 are summarized in Table 3.9. Clearly, more it-

erations without beam search are three times faster than the beam search ap-

proach, and the performance difference is relatively small (about 0.4, 2.6% rel-

atively). Comparing to Table 3.8, one can observe that external language model

is much more important than beam search on this dataset.

5 10 15 20 25 30 35 40
0

5 · 10−2

0.1

0.15

0.2

Number of iterations

R
ea

lT
im

e
Fa

ct
or

Figure 3.5: How the number of refinement iterations impacts the real time

factor (RTF) without beam search using mask predict

Table 3.9: Performance comparison on Tedlium2 with or without beam search.

System Sub Del Ins Err RTF

A-CMLM
Without beam search (40 iters) 8.9 4.6 1.7 15.2 0.2
With beam search (1 iter) 9.4 4.0 1.5 14.8 0.6

AISHELL results are presented in Table 3.10. For this dataset, no improve-

ments are observed beyond one iteration even with mask predict because of the

65

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

short output sequence length. The difference between with beam search and

without beam search is about 0.4, and beam search is twice slower.

Table 3.10: Performance comparison on AISHELL with or without beam
search.

System Dev
CER(↓)

Test
CER(↓) RTF

A-CMLM
Without beam search (1 iter) 7.4 8.4 0.03
With beam search (1 iter) 7.0 8.0 0.08

Similar trends are observed on CSJ shown in Table 3.11. Overall the perfor-

mance differences between with and without beam search are minimal when

a sufficient number of iterations are used. With 35 iterations, the real-time

factor reduced from 0.41 to 0.21.

Table 3.11: Performance comparison on CSJ with or without beam search.

System Eval1
CER(↓)

Eval2
CER(↓)

Eval3
CER(↓) RTF

A-CMLM
Without beam search (35 iters) 9.8 7.6 8.0 0.21
With beam search (1 iter) 9.8 7.5 7.9 0.41

Finally, WSJ results are pretty interesting, included in Table 3.12. Without

an external language model, beam search on network predictions improved a

little on character error rate, making the word error rate much worse. Beam

search failed to detect the boundary of words such that word error rate isn’t

improved. In contrast, the refinement introduced by mask predict can utilize

66

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

contextual information to make the right decisions.

Table 3.12: Performance comparison on WSJ with or without beam search.

System dev93
CER/WER(↓)

eval92
CER/WER(↓) RTF

A-CMLM
Without beam search (40 iters) 5.9/19.2 4.8/16.6 0.44
With beam search (1 iter) 6.2/21.6 5.0/19.1 0.73

In conclusion, beam search dramatically reduces the number of steps re-

quired to get a reasonable word error rate. With beam search, only one itera-

tion is enough as reported by the previous results. Without beam search, mask

predict can still get good WER performance by using enough iterations. Those

results clearly reveal that mask predict with a sufficient number of iterations

is preferred over beam search. Without an external language model, beam

search alone doesn’t improve the performance much and makes the inference

process much slower. They are suitable for different applications. When the

response time is sensitive, and the decoder network is not very large, mask

predict approach without beam search is a good fit for the performance and

efficiency tradeoff. When the performance is the primary concern, beam search

with an external language model still provides the best performance and faster

inference speed than autoregressive models.

67

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

3.4.3 Error Analysis of A-FMLM on CSJ

To analyze the performance difference between our autoregressive and non-

autoregressive systems, we plot the relationship between output sequence length

and character error rate (CER) in Fig. 3.6. The most considerable performance

difference happens when the output sequence is short (less than ten tokens).

This is reasonable since context is quite limited for non-autoregressive systems

to simultaneously make predictions. However, this can be easily fixed by doing

left-to-right autoregressive decoding for such short sequences.

Overall, the performance gap exists on all bins but relatively stable, which

suggests that our non-autoregressive systems can handle both long sequences

and short sequences.

3.5 Summary

This section explores two novel models: conditional masked language model

(CMLM) and factorized masked language model (FMLM). Autoregressive mod-

els rely on beam search and external language models to achieve the best per-

formance. The proposed models also benefit from the external language model

from experiments, especially when additional unpaired text data is available.

The beam search could be introduced to reduce the number of iterations. Only

a single iteration is required to achieve the best performance.

68

CHAPTER 3. MASK-BASED NON-AUTOREGRESSIVE SPEECH
RECOGNITION

Figure 3.6: Error analysis of autoregressive and non-autoregressive on differ-

ent output sequence length bins. Percentage indicates the ratio of data in this

bin.

69

Chapter 4

Noise-based non-autoregressive

Text-to-Speech

While the mask-based approach works well for speech recognition, some

initial experiment results suggest that this approach doesn’t work for speech

synthesis. This is due to the characteristics of speech synthesis. Speech syn-

thesis is a one-to-mapping problem: multiple possible speech sequences can

correspond to the same text sequence due to variations in speech, such as pitch,

duration, sound volume, and prosody. It is challenging to model the long-range

dependencies between samples and determine some samples simultaneously in

the early iteration when the contextual information is not provided. Instead,

we proposed another approach that is based on the iterative refinement from

the denoising perspective. The proposed methods, WaveGrad and WaveGrad 2,

70

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

are built on the idea of score matching [97,98] and diffusion probabilistic mod-

els [99], which enables flexible inference schedules with a different number of

iterations for various applications.

This chapter starts with a brief introduction to the general concept of score

matching. The diffusion probabilistic model is built on the idea of score match-

ing, and it relies on discrete steps. In this dissertation, a continuous training

objective is proposed, which supports a flexible number of steps during genera-

tion. Two different models are discussed, WaveGrad and WaveGrad 2, that gen-

erate waveform from mel-spectrogram features and phoneme sequence. Vari-

ous ablation studies reveal the important factors of model training and how

the number of generation steps impacts the quality.

4.1 Score matching

We begin with a brief review of the Stein score function, Langevin dynamics,

and score matching. The Stein score function [97] is the gradient of the data

log-density log p(x) with respect to the datapoint x:

s(x) = ∇x log p(x). (4.1)

Given the Stein score function s(·), one can draw samples from the corre-

sponding density, x̃ ∼ p(x), via Langevin dynamics, which can be interpreted

71

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

as stochastic gradient ascent in the data space:

x̃i+1 = x̃i +
η

2
s(x̃i) +

√
η zi, (4.2)

where η > 0 is the step size, zi ∼ N (0, I), and I denotes an identity matrix.

A generative model can be built by training a neural network to learn the

Stein score function directly, using Langevin dynamics for inference. This ap-

proach, known as score matching [97,98], has seen success in image [100,101]

and shape generation [102]. The denoising score matching objective [98] takes

the form:

Ex∼p(x) Ex̃∼q(x̃|x)

[︃⃦⃦⃦
sθ(x̃)−∇x̃ log q(x̃ | x)

⃦⃦⃦2

2

]︃
, (4.3)

where p(·) is the data distribution, and q(·) is a noise distribution.

Recently, a weighted denoising score matching objective is proposed in [100],

in which data is perturbed with different levels of Gaussian noise, and the score

function sθ(x̃, σ) is conditioned on σ, the standard deviation of the noise used:

∑︂
σ∈S

λ(σ)Ey∼p(x) Ex̃∼N (x,σ)

[︄⃦⃦⃦⃦
sθ(x̃, σ)−

x̃− x

σ2

⃦⃦⃦⃦2

2

]︄
, (4.4)

where S is a set of standard deviation values that one perturbs the data with,

and λ(σ) is a weighting function for different σ. WaveGrad and WaveGrad 2 are

a variant of this approach applied to learning conditional generative models of

the form p(x | y). The proposed approaches learn the gradient of the data

density, and use a sampler similar to Langevin dynamics for inference.

72

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

The denoising score matching framework relies on a noise distribution to

provide support for learning the gradient of the data log density (i.e., q in Equa-

tion 4.3, and N (·, σ) in Equation 4.4). The choice of the noise distribution is

critical for achieving high-quality samples [101]. WaveGrad and WaveGrad 2

rely on the diffusion model framework [47, 99] to generate the noise distribu-

tion used to learn the score function.

4.1.1 Diffusion Probabilistic Model

In Denoising Diffusion Probabilistic Models [47], the authors made the ob-

servation that diffusion probabilistic models [99] and score matching objec-

tives [98, 100, 101] are closely related. As such, we will first introduce WaveG-

rad as a diffusion probabilistic model [99].

We adapt the diffusion model setup from [47], from unconditional image

generation to conditional raw audio waveform generation. WaveGrad and Wave-

Grad 2 model the conditional distribution pθ(x0 | y) where x0 is the waveform

and y is the conditioning features corresponding to x0, such as phoneme se-

quence, linguistic features derived from the corresponding text, ground-truth

Mel-spectrogram extracted from x0, or acoustic features predicted by a Tacotron-

style text-to-speech synthesis model [33]):

pθ(x0 | y) :=
∫︂

pθ(x0:N | y) dx1:N , (4.5)

73

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

where x1, . . . ,xN is a series of latent variables, each of which are of the same

dimension as the data x0, and N is the number of latent variables (iterations).

The generative distribution pθ(x0:N | y) is called the denoising process (or re-

verse process), and is defined through the Markov chain:

pθ(x0:N | y) := p(xN)
N∏︂

n=1

pθ(xn−1 | xn,y), (4.6)

where each iteration is modelled as a Gaussian transition:

pθ(xn−1 | xn,y) := N (xn−1;µθ(xn, n,y),Σθ(xn, n,y)) , (4.7)

starting from Gaussian white noise p(xN) = N (xN ; 0, I). The approximate pos-

terior q(x1:N | x0) is called the diffusion process (or forward process), and is

defined through the Markov chain:

q(x1:N | x0) :=
N∏︂

n=1

q(xn | xn−1), (4.8)

where each iteration adds Gaussian noise:

q(xn | xn−1) := N
(︂
xn;

√︁
(1− βn)xn−1, βnI

)︂
, (4.9)

under some (fixed constant) noise schedule β1, . . . , βN . We emphasize the prop-

erty observed by [47], the diffusion process can be computed for any step n in a

closed form:

q(xn | x0) = N
(︁
xn;
√
ᾱn x0, (1− ᾱn)I

)︁
, (4.10)

74

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

where αn := 1 − βn and ᾱn :=
∏︁n

s=1 αs. During training, we can optimize for

the variational lower-bound on the log-likelihood (upper-bound on the negative

log-likelihood):

− log pθ(x0 | y) ≤ Eq

[︃
− log

pθ(x0 | y)
q(x1:N | x0)

]︃
(4.11)

= Eq

[︄
− log p(xN)−

N∑︂
n=1

log
pθ(xn−1 | xn,y)

q(xn | xn−1)

]︄
. (4.12)

Following Equation 4.12, it would be natural to parameterize a neural net-

work to model the mean µθ and variance Σθ of the Gaussian distribution in

Equation 4.7, which would make it possible to directly optimize the KL-divergence

with Monte Carlo estimates. However, [47] found it beneficial to simply set Σθ

to a constant following the βn schedule, and to reparameterize the neural net-

work to model ϵθ, predicting the noise ϵ ∼ N (0, I) instead of µθ. Under this

reparameterization, the loss can be written as:

En,ϵ

[︂
C
⃦⃦
ϵ− ϵθ

(︁√
ᾱn x0 +

√
1− ᾱn ϵ,y, n

)︁⃦⃦2

2

]︂
, (4.13)

where

C =
β2
n

2σ2
nαn(1− ᾱn)

. (4.14)

In practice, [47] also found it beneficial to drop the C term, and thus leading to a

weighted variational lower bound of the log-likelihood. As noted by [47], ϵθ can

be interpreted as the score function or the gradient of the data density, and thus

the objective resembles score matching as in Equation 4.4 [100]. Additionally

75

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

xN xn+1 xn x0

Denoising→

pθ(xn | xn+1,y)

← Diffusion

q(xn+1 | xn)

Figure 4.1: A directed graphical model of the diffusion probabilistic model,

adapted from [47]. The diffusion process q(xn+1 | xn) iteratively adds Gaussian

noise to the signal starting from the waveform x0; while the denoising process

pθ(xn | xn+1,y) iteratively removes noise from the signal starting from Gaus-

sian noise xN .

under the parameterization of [47], ϵθ conditions on the discrete index n, we will

discuss this further in the text. We also found that substituting the original L2

distance metric with L1 offers better training stability. Figure 4.1 visualizes

the diffusion and denoising processes.

4.1.2 Noise Schedule and Conditioning on Noise

Level

In the score matching setup, [100, 101] noted the importance of the noise

distribution during training. The noise distribution is crucial since it pro-

76

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

vides support for model gradient distribution. The diffusion framework can

be viewed as a specific way to provide support to score matching. In the diffu-

sion framework, the noise schedule is parameterized by β1, . . . , βN , as described

in the previous section. This is typically determined via some hyperparam-

eter heuristic, e.g., a linear decay schedule [47]. We found the choice of the

noise schedule to be critical towards achieving high fidelity audio in our exper-

iments, especially when trying to minimize the number of inference iterations

N to make inference efficient. A schedule with superfluous noise may result in

a model unable to recover the high-frequency detail of the waveform, while a

schedule with too little noise may result in a model that converges poorly dur-

ing inference. [101] provides some insights about how to tune the noise sched-

ule under the framework of score matching. We will connect some of these

insights and apply them to WaveGrad under the diffusion framework.

Another closely related problem is determining the hyperparameter N , the

number of diffusion/denoising steps. A large N would equip the model with

more computational capacity and may improve sample quality. However, using

a small N would result in faster inference and lower computational costs. [100]

adopted N = 10 to generate 32 × 32 images, while [47] used 1,000 iterations to

generate high resolution 256 × 256 images. In our case, WaveGrad generates

audio sampled at 24 kHz, containing 24,000 samples per second.

We found that tuning both the noise schedule and N in conjunction with

77

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

each other was critical to attaining high fidelity audio, especially when N is

small. If these hyperparameters are poorly tuned, the training sampling pro-

cedure may provide deficient support for the distribution. Consequently, our

sampler may converge poorly during inference when the sampling trajectory

encounters regions that deviate from the conditions seen during training. How-

ever, tuning these hyperparameters can be costly due to the large search space,

as a large number of models need to be trained and evaluated. We make em-

pirical observations and discuss this in more details in Section 5.4.

We address some of the issues above in our WaveGrad implementation.

First, compared to the diffusion probabilistic model from [47], we reparame-

terize the model from conditioning on the discrete iteration index n to condi-

tioning on the continuous noise level ᾱ. This reparameterization allows us (1)

not to rely on discrete indices; (2) to enable the model to directly condition on

the amount of noise. The loss becomes

Eᾱ,ϵ

[︁⃦⃦
ϵ− ϵθ

(︁√
ᾱn x0 +

√
1− ᾱn ϵ,y,

√
ᾱ
)︁⃦⃦

1

]︁
, (4.15)

A similar approach was also used in the score matching framework [100, 101],

wherein they conditioned on the noise variance.

There is one minor technical issue we must resolve in this approach. In the

diffusion probabilistic model training procedure conditioned on the discrete it-

eration index (Equation 4.13), we would sample n ∼ Uniform({1, . . . , N}), and

then proceed to compute its corresponding αn. In the case of the directly con-

78

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

ditioning on the continuous noise, we need to determine a sampling procedure

that directly samples ᾱ. Recall that ᾱn :=
∏︁n

s (1 − βs) ∈ [0, 1], while we could

simply just sample from the uniform distribution ᾱ ∼ Uniform(0, 1), however,

we found this to provide poor empirical results. We instead use a simple hier-

archical sampling method that mimics the discrete sampling strategy. We first

define a noise schedule with S iterations and compute all its
√
ᾱs:

l0 = 1, ls =
√︂∏︁s

i=1(1− βs). (4.16)

We first sample a segment s ∼ U({1, . . . , S}), which provides a segment (ls−1, ls),

and then sample from this segment uniformly to compute
√
ᾱ. The complete

WaveGrad training algorithm with our sampling procedure is illustrated in

Algorithm 2.

One benefit of the proposed WaveGrad model is that it needs to be trained

only once, yet inference can be run over a large space of trajectories without

retraining. To be more specific, once we train a model, we can use an arbitrary

different number of N iterations during inference, making it possible to explic-

itly trade-off between inference computation and output quality using the same

model. This also makes fast hyperparameter search possible, as we will illus-

trate in Section 5.4. The complete WaveGrad inference algorithm is explained

in Algorithm 3 which is a gradient-based sampler akin to Langevin dynamics.

79

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

input: data distribution q(x0), conditioning signal y, predefined

schedule l with S steps, network ϵθ

repeat

x0 ∼ q(x0);

s ∼ Uniform({1, . . . , S});
√
ᾱ ∼ Uniform(ls−1, ls);

ϵ ∼ N (0, I);

Take gradient descent step on;

∇θ

⃦⃦
ϵ− ϵθ(

√
ᾱx0 +

√
1− ᾱ ϵ,y,

√
ᾱ)

⃦⃦
1

until converged;
Algorithm 2: Training algorithm for WaveGrad. WaveGrad directly condi-

tions on the continuous noise
√
ᾱ, and l is from a predefined noise schedule.

80

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

input : conditioning features y

output: data sample x0, inference schedule α

xN ∼ N (0, I);

for n = N, . . . , 1 do

z ∼ N (0, I) if n > 1, else z = 0;

xn−1 =
1√
αn

(︂
xn − 1−αn√

1−ᾱn
ϵθ(xn,y,

√
ᾱn)

)︂
+ σnz;

end

return x0;
Algorithm 3: Sampling algorithm for WaveGrad. WaveGrad follows a

gradient-based sampler similar to Langevin dynamics to generate sam-

ples [47]. σn is the noise term in Langevin dynamics introduced in iteration

n.

81

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

4.2 Network Architecture

4.2.1 WaveGrad Vocoder

A vocoder predicts waveform samples conditioning on the input linear or

Mel-spectrogram features. Because of the high resolution of the waveform

(e.g., 16kHz or 24kHz), the vocoder is usually the bottleneck part of the text-

to-speech system. We start our non-autoregressive model from the vocoder.

To convert the Mel-spectrogram signal (80 Hz) into raw audio (24 kHz), five

upsampling blocks (UBlock) are applied to gradually upsample the temporal

dimension by factors of 5, 5, 3, 2, 2, with the number of channels of 512, 512,

256, 128, 128 respectively. Additionally, one convolutional layer is added before

and after these blocks.

The UBlock is illustrated in Figure 4.3. Each UBlock includes two residual

blocks [103]. Neural audio generation models often use large receptive field

[4, 53, 85]. The dilation factors of four convolutional layers are 1, 2, 4, 8 for

the first three UBlocks and 1, 2, 1, 2 for the rest. Upsampling is carried out

by repeating the nearest input. For the large model, we use 1, 2, 4, 8 for all

UBlocks.

As an iterative approach, the network prediction is also conditioned on noisy

waveform
√
ᾱn x0 +

√
1− ᾱnϵ. Downsampling blocks (DBlock), illustrated in

Figure 4.4, are introduced to downsample the temporal dimension of the noisy

82

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

xn

y

ϵn

DBlock (512, /5)

DBlock (256, /3)

DBlock (128, /2)

DBlock (128, /2)

5× 1 Conv (32)

3× 1 Conv (768)

UBlock (512, ×5)

UBlock (512, ×5)

UBlock (256, ×3)

UBlock (128, ×2)

UBlock (128, ×2)

3× 1 Conv (1) √
ᾱ

FiLM

FiLM

FiLM

FiLM

FiLM

Figure 4.2: WaveGrad network architecture. The inputs consists of the mel-

spectrogram conditioning signal y, the noisy waveform generated from the pre-

vious iteration xn, and the noise level
√
ᾱ. The model produces ϵn at each iter-

ation, which can be interpreted as the direction to update xn.

83

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

+

Feature-wise Affine
LReLU

3× 1 Conv
Feature-wise Affine

LReLU
3× 1 Conv

+

Upsample
1× 1 Conv

LReLU
Upsample
3× 1 Conv

Feature-wise Affine
LReLU

3× 1 Conv

FiLM

Figure 4.3: A block diagram of the Upsampling Block (UBlock). We upsample

the signal modulated with information from the FiLM module.

84

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

Downsample
LReLU

3× 1 Conv
LReLU

3× 1 Conv
LReLU

3× 1 Conv

1× 1 Conv
Downsample

+

Figure 4.4: A block diagram of the downsampling block (DBlock).

+

3× 1 Conv 3× 1 Conv

3× 1 Conv
LReLU

√
ᾱ DBlock

γ ξ

Figure 4.5: A block diagram of feature-wise linear modulation (FiLM) module.

We condition on the noise level
√
ᾱ of diffusion/denoising process, and pass it

to a positional encoding function.

85

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

waveform. The DBlock is similar to UBlock, except that only one residual block

is included. The dilation factors are 1, 2, 4 in the main branch. Downsampling

is carried out by convolution with strides. Orthogonal initialization [104] is

used for all UBlocks and DBlocks.

The feature-wise linear modulation (FiLM) [105] module combines informa-

tion from both noisy waveform and input Mel-spectrogram. We also represent

the iteration index n, which indicates the input waveform’s noise level, using

Transformer-style sinusoidal positional embeddings [39]. To condition on the

noise level directly, n is replaced by
√
ᾱ and a linear scale C = 5000 is applied.

The FiLM module produces both scale and bias vectors given inputs, which are

used in a UBlock for feature-wise affine transformation as

γ(D,
√
ᾱ)⊙ U + ξ(D,

√
ᾱ), (4.17)

where γ and ξ correspond to the scaling and shift vectors from the FiLM mod-

ule, D is the output from corresponding DBlock, U is an intermediate output

in the UBlock, and ⊙ denotes the Hadamard product.

An overview of the FiLM module is illustrated in Figure 4.5. The struc-

ture is inspired by spatially-adaptive denormalization [106]. However, batch

normalization [107] is not applied in our work since each minibatch contains

samples with different levels of noise. Batch statistics are not accurate since

they are heavily dependent on sampled noise levels. Experiment results also

verified our assumption that models trained with batch normalization generate

86

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

low-quality audio.

4.2.2 WaveGrad 2: Phoneme-to-Wave model

We further proposed WaveGrad 2, a more end-to-end model which directly

estimates waveform from phoneme sequence. WaveGrad 2 includes three mod-

ules illustrated in Figure 4.6:

• The encoder takes a phoneme sequence as input and extracts abstract hidden

representations from the input context.

• The resampling layer changes the resolution of the encoder output to match

the output waveform time scale, quantized into 10ms segments (similar to

typical Mel-spectrogram features). This is achieved by conditioning on the

target duration during training. Durations predicted by the duration predic-

tor module are utilized during inference.

• The WaveGrad decoder as introduced in Section 4.2.1 predicts the raw wave-

form by refining the noisy waveform iteratively. In each iteration, the de-

coder gradually refines the signal and adds fine-grained details.

4.2.2.1 Encoder

The design of the encoder follows that of Tacotron 2 [33]. Phoneme tokens

are used as inputs, with silence tokens inserted at word boundaries. An end-

87

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

Phoneme

Encoder

Phoneme Duration Duration LossDuration Predictor

Resampling

Sampling window

WaveGrad Decoder

L1 loss

Figure 4.6: WaveGrad 2 network architecture. The inputs consists of the

phoneme sequence. Dashed lines indicates computation only performed dur-

ing training.

88

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

of-sequence token is added after each sentence. Tokens are first converted

into learned embeddings, which are then passed through 3 convolution lay-

ers with dropout [108] and batch normalization layer [109]. Finally, long-term

contextual information is modeled by passing the output through a single bi-

directional long short-term memory (LSTM) layer with ZoneOut regulariza-

tion [110].

4.2.2.2 Resampling

The length of the output waveform sequence is very different from the length

of encoder representations. In Tacotron 2 [33], this is resolved by the atten-

tion mechanism. To make the structure non-autoregressive and speed-up in-

ference, we adopt the Gaussian upsampling introduced in the non-attentive

Tacotron [35]. Instead of repeating each token according to its duration, Gaus-

sian upsampling predicts the duration and influence range simultaneously.

These parameters are used in the attention weights computation, which purely

relies on the predicted position. The ground truth duration is used instead dur-

ing training, and an additional mean square loss is measured to train the du-

ration predictor. This is labeled as Duration Loss in Figure 4.6. Ground truth

duration is not needed during inference and predicted duration is adopted in-

stead.

89

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

4.2.2.3 Sampling Window

Since the waveform resolution is very high (24,000 samples per second in

our case), it is not feasible to compute the loss on all waveform samples in an

utterance because of the high computation cost and memory constraints. In-

stead, after learning the representations on the whole input sequence, we sam-

ple a small segment to synthesize the waveform. Due to the introduction of the

resampling layer, the encoder representations and waveform samples are al-

ready aligned. Random segments are sampled individually in each minibatch

and the corresponding waveform segment is extracted based on the upsam-

pling rate (300 in our setup). The entire encoder sequence (after resampling)

is used during inference, introducing a small mismatch between training and

inference.

4.2.2.4 Hidden Features Augmentation

We explored applying a variant of SpecAugment [111] to the conditioning

input to the decoder (the resampled encoder output). The augmentation is ap-

plied to the learned hidden representations instead of the spectrograms. This

can be viewed as a form of correlated block dropout. Thirty-two consecutive

frames were randomly selected to be masked and we applied it twice. The

intuition is that the WaveGrad decoder can recover the masked part by condi-

tioning the contextual information. This enforces the encoder to learn robust

90

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

representations which include more context information.

4.3 Noise Schedule

We tested different noise schedules during the training of WaveGrad and

WaveGrad 2 models. For 1000 and 50 iterations, we set the forward process

variances to constants increasing linearly from β1 to βN , defined as Linear(β1,

βN , N). We used Linear(1× 10−4, 0.005, 1000) for 1000 iterations and Linear(1×

10−4, 0.05, 50) for 50 iterations. For 25 iteration, a different Fibonacci-based

schedule was adopted (referred to as Fibonacci(N)):

β0 = 1× 10−6 β1 = 2× 10−6

βn = βn−1 + βn−2 ∀n ≥ 2.

(4.18)

When a fixed schedule was used during training, the same schedule was

used during inference. We found that a mismatch in the noise schedule de-

graded performance. Different noise schedules and corresponding
√
ᾱ are plot-

ted in Figure 7.

To sample the noise level
√
ᾱ, we set the maximal iteration S to 1000 and

precompute l1 to lS from Linear(1×10−6, 0.01, 1000). Then each
√
ᾱ is sampled by

sampling s first and then sample from uniform distribution between ls and ls+1.

Unlike the base fixed schedule, our models support using a different schedule

during inference; thus “Manual” schedule was also explored to demonstrate

91

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

100 101 102 103
0

0.2
0.4
0.6
0.8
1

Iteration Index n

√
ᾱ
n

√
ᾱn with various noise schedules.

1000 (Linear)
50 (Linear)
25 (Fibonacci)
6 (Manual)

Figure 4.7: Plot of different noise schedules for WaveGrad and WaveGrad 2.

the possibilities with WaveGrad vocoder. For example, the 6-iteration inference

schedule was explored by sweeping the βs over following nine possibilities:

1× 10−6, 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1

2× 10−6, 2× 10−5, 2× 10−4, 2× 10−3, 2× 10−2, 2× 10−1

...

9× 10−6, 9× 10−5, 9× 10−4, 9× 10−3, 9× 10−2, 9× 10−1

(4.19)

where each line contains one possible schedule.

Again, we did not need to train individual models for such hyper-parameter

tuning. Here we used Log-mel spectrogram mean squared error metrics (LS-

MSE) as a metric for tuning.

4.4 Evaluation

The following vocoders were used as baselines in the experiment of vocoders:

(1) WaveRNN [52] conditioned on Mel-spectrograms predicted by a Tacotron 2

92

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

model in teacher-forcing mode following [33]; The model used a single long

short-term memory (LSTM) layer with 1,024 hidden units, five convolutional

layers with 512 channels as the conditioning stack to process the Mel-spectrogram

features, and a 10-component mixture of logistic distributions [112] as its out-

put layer, generating 16-bit samples at 24 kHz. It had 18M parameters and

was trained for 1M steps. Preliminary experiments indicated that further re-

ducing the number of units in the LSTM layer hurts performance. (2) Parallel

WaveGAN [85] with 1.57M parameters, trained for 1M steps. (3) MelGAN [83]

with 3.22M parameters, trained for 4M steps. (4) Multi-band MelGAN [84]

with 2.27M parameters, trained for 1M steps. (5) GAN-TTS [53] with 21.4M

parameters, trained for 1M steps.

All models were trained using a proprietary speech dataset consisted of

385 hours of high quality English speech from 84 professional voice talents.

Following the original papers, Parallel WaveGAN, MelGAN, and Multi-band

MelGAN were conditioned on the Mel-spectrograms computed from ground

truth audio during training. They were trained using a publicly available im-

plementation at https://github.com/kan-bayashi/ParallelWaveGAN. Note that the

hyper-parameters of these baseline models were not fully optimized for this

dataset. Conditioning Mel-spectrograms for the test set were predicted using a

Tacotron 2 model, which were passed to these models to synthesize audio sig-

nals. Note that the Tacotron 2 model was identical to the one used to predict

93

https://github.com/kan-bayashi/ParallelWaveGAN

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

Mel-spectrograms for training WaveRNN and GAN-TTS models.

For the WaveGrad vocoder, two network size variations were explored: Base

and Large. The WaveGrad Base model took 24 frames corresponding to 0.3

second audio as input during training. Our network is fully convolutional,

non-autoregressive and highly parallelizable. We set the batch size to 256

and models were trained on Google Tensor Processing Unit (TPU) v2 Pods for

12 hours. The base model contained 15 million parameters. For the Wave-

Grad Large model, we repeated each UBlock/DBlock twice, one with upsam-

pling/downsample and another without. Each training sample included 60

frames corresponding to a 0.75 second audio segment. We kept the same batch

size and trained the model on TPU v3 Pods. The WaveGrad Large model con-

tained 23 million parameters.

We include Wave-Tacotron [43] as the phoneme-to-wave baseline to compare

with the proposed WaveGrad 2 model. For Wave-Tacotron and the proposed

WaveGrad 2 models, we used a subset of the training set that included all the

test speaker’s audio. This subset included 39 hours of speech. Preliminary

results suggested that WaveGrad 2 trained on a single-speaker dataset gave

better performance, especially when the network size was small.

We report subjective listening test results rating speech naturalness on a

5-point Mean Opinion Score (MOS) scale to compare these models. Subjects

were asked to rate the naturalness of each stimulus after listening to it. Fol-

94

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

lowing previous studies, a five-point Likert scale score (1: Bad, 2: Poor, 3:Fair,

4: Good, 5: Excellent) was adopted with rating increments of 0.5. Each subject

was allowed evaluate up to six stimuli. MOS is reported by the average and

standard deviation.

4.5 Results

Subjective evaluation results are summarized in Table 4.1. Models condi-

tioned on discrete indices followed the formulation from Equation 4.13, and

models conditioned on continuous noise level followed the formulation from

Equation 4.15. For vocoders, WaveGrad models matched the performance of

the autoregressive WaveRNN baseline and outperformed the non-autoregressive

baselines. Although increasing the model size slightly improved naturalness,

the difference was not statistically significant. Using six iterations, the Wave-

Grad Base model achieved a real-time factor (RTF) of 0.2 on an NVIDIA V100

GPU while still achieving a MOS above 4.4. As a comparison, the WaveRNN

model achieved an RTF of 20.1 on the same GPU, 100 times slower.

For the phoneme-to-wave models, WaveGrad 2 models almost matched the

performance of the autoregressive Tacotron 2 + WaveRNN baseline and outper-

formed other baselines with non-autoregressive vocoders. When the number of

iterations reduces from 1000 to 50, the mean opinion score is still pretty good,

95

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

which almost matches the performance of the combination of Tacotron 2 and

GAN-TTS, outperforms the Wave-Tacotron model. The phoneme sequence is

much weaker than the Mel spectrogram features as the conditioning signal,

which explains why we cannot further reduce the number of steps for infer-

ence.

Table 4.1: Mean opinion scores (MOS) of various models and their confidence
intervals. All models except WaveRNN are non-autoregressive. WaveGrad,
Parallel WaveGAN, MelGAN, and Multi-band MelGAN were conditioned on
the Mel-spectrograms computed from ground truth audio during training. Wa-
veRNN and GAN-TTS used predicted features for training. MT: Multi-task
training.

Model MOS (↑)
Tacotron 2 + WaveRNN 4.49 ± 0.04

Tacotron 2 + Parallel WaveGAN 3.92 ± 0.05
Tacotron 2 + MelGAN 3.95 ± 0.06
Tacotron 2 + Multi-band MelGAN 4.10 ± 0.05
Tacotron 2 + GAN-TTS 4.34 ± 0.04

Tacotron 2 + WaveGrad
Base (6 iterations, continuous noise levels) 4.41 ± 0.03
Base (1,000 iterations, discrete indices) 4.47 ± 0.04
Large (1,000 iterations, discrete indices) 4.51 ± 0.04

Wave-Tacotron 4.08 ± 0.06

WaveGrad 2
Large (1000 iterations) + MT + SpecAug 4.43 ± 0.05
Large (50 iterations) + MT 4.32 ± 0.05

Ground Truth 4.58 ± 0.05

96

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

4.6 Ablation Studies

Different experiments are conducted to analyze the impact of different hy-

perparameters. We first conduct experiments on the inference schedule with

WaveGrad vocoder and demonstrate how WaveGrad provides the trade-off be-

tween fidelity and speed naturally. Then various hyperparameters are explored

for the phoneme-to-wave WaveGrad 2 model.

4.6.1 WaveGrad: Speed-Quality Tradeoff

To understand the impact of different noise schedules and to reduce the

number of iterations in the noise schedule from 1,000, we explored different

noise schedules using fewer iterations. We found that a well-behaved inference

schedule should satisfy two conditions:

1. The KL-divergence DKL (q(yN | y0) ∥ N (0, I)) between yN and standard nor-

mal distribution N (0, I) needs to be small. Large KL-divergence intro-

duces mismatches between training and inference. To make the KL-

divergence small, some βs need to be large enough.

2. β should start with small values. This provides the model training with

fine granularity details, which we found crucial for reducing background

static noise.

In this section, all the experiments were conducted with the WaveGrad Base

97

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

model. Both objective and subjective evaluation results are reported. The ob-

jective evaluation metrics include

1. Log-mel spectrogram mean squared error metrics (LS-MSE), computed

using 50 ms window length and 6.25 ms frame shift;

2. Mel cepstral distance (MCD) [113], a similar MSE metric computed using

13-dimensional mel frequency cepstral coefficient features;

3. F0 Frame Error (FFE) [114], combining Gross Pitch Error and Voicing

Decision metrics to measure the signal proportion whose estimated pitch

differs from ground truth.

Since the ground truth waveform is required to compute objective evaluation

metrics, we report results using ground truth Mel-spectrograms as condition-

ing features. We used a validation set of 50 utterances for objective evaluation,

including audio samples from multiple speakers.

The test set included 1,000 sentences. Subjects were asked to rate the nat-

uralness of each stimulus after listening to it. Following previous studies, a

five-point Likert scale score (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent) was

adopted with rating increments of 0.5. Each subject was allowed to evaluate

up to six stimuli. Test stimuli were randomly chosen and presented for each

subject. Each stimulus was presented to a subject in isolation and was eval-

uated by one subject. The subjects were paid and native speakers of English

living in the United States. They were requested to use headphones in a quiet

98

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

room.

We experimented with different noise schedules and number of iterations.

These models were trained with conditioning on the discrete index. Subjective

and quantitative evaluation results are in Table 4.2.

We also performed a detailed study on the WaveGrad model conditioned on

the continuous noise level in the bottom part of Table 4.2. Compared to the

model conditioned on the discrete index with a fixed training schedule (top of

Table 4.2), conditioning on the continuous noise level generalized better, espe-

cially if the number of iterations was small. It can be seen from Table 4.2 that

degradation with the model with six iterations was not significant. The model

with six iterations achieved real time factor (RTF) = 0.2 on an NVIDIA V100

GPU and RTF = 1.5 on an Intel Xeon CPU (16 cores, 2.3GHz). As we did not

optimize the inference code, further speed-ups are likely possible.

Table 4.2: Objective and subjective metrics of the WaveGrad Base models.
When conditioning on the discrete index, a separate model needs to be trained
for each noise schedule. In contrast, a single model can be used with different
noise schedules when directly conditioning the noise level. This variant yields
high fidelity samples using as few as six iterations.

Iterations (schedule) LS-MSE (↓) MCD (↓) FFE (↓) MOS (↑)
WaveGrad conditioned on discrete index

25
(Fibonacci) 283 3.93 3.3% 3.86 ± 0.05

50
(Linear (1× 10−4, 0.05)) 181 3.13 3.1% 4.42 ± 0.04

1000
(Linear (1× 10−4, 0.005)) 116 2.85 3.2% 4.47 ± 0.04

WaveGrad conditioned on continuous noise level

99

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

6
(Manual) 217 3.38 2.8% 4.41 ± 0.04

25
(Fibonacci) 185 3.33 2.8% 4.44 ± 0.04

50
(Linear (1× 10−4, 0.05)) 177 3.23 2.7% 4.43 ± 0.04

1000
(Linear (1× 10−4, 0.005)) 106 2.85 3.0% 4.46 ± 0.03

4.6.2 WaveGrad 2: Sampling Window Size

Memory usage is a major concern for end-to-end training. Long sequences

corresponding to multi-second utterances may not fit into memory since the

main computation bottleneck comes from the WaveGrad decoder, which oper-

ates at the waveform sample rate. To make training efficient, we sample a

small segment from the resampled encoder representation and train the de-

coder network using this segment instead of the whole sequence.

Two different window sizes were explored: 64 and 256 frames, correspond-

ing to 0.8 and 3.2 seconds of speech, respectively. The results are shown in

Table 4.3. The use of the large window gave better MOS compared to the small

window. In all following experiments, we use the large window for training.

Table 4.3: Comparison between different sampling window sizes for WaveG-

rad 2. All models use 1,000 iterations for inference.

100

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

Model Window Size MOS (↑)

Encoder(512) + WaveGrad(Base) 0.8 sec 3.80 ± 0.07

Encoder(512) + WaveGrad(Base) 3.2 sec 3.88 ± 0.07

4.6.3 WaveGrad 2: Network Size

We carried out ablations using different network sizes. The encoder only

needs to be computed once, thus increasing the hidden dimension has a small

impact on the inference speed. On the other hand, the WaveGrad decoder needs

to be executed multiple times depending on the number of iterations.

Subjective evaluation results are presented in Table 4.4. It can be seen from

the table that the larger encoder size increased the number of parameters by a

large margin and led to a slight quality improvement. However, the improve-

ment was smaller compared to using a larger WaveGrad decoder, indicating

that having a larger decoder is crucial.

Table 4.4: Comparison between different network sizes for WaveGrad 2. All

models use 1000 iterations for inference.

Model Model size MOS (↑)

Encoder(512) + WaveGrad(Base) 37M 3.88 ± 0.07

101

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

Encoder(512) + WaveGrad(Large) 40M 4.19 ± 0.06

Encoder(2048) + WaveGrad(Base) 188M 4.05 ± 0.07

Encoder(2048) + WaveGrad(Large) 193M 4.37 ± 0.05

Table 4.5: Impact of augmentation on the learned representations. All models

use 1000 iterations for inference.

Model SpecAug MOS (↑)

Encoder(2048) + WaveGrad(Large) N 4.37 ± 0.05

Encoder(2048) + WaveGrad(Large) Y 4.40 ± 0.05

4.6.4 WaveGrad 2: Hidden Features Augmenta-

tion

We explored applying a variant of SpecAugment [111] to the conditioning

input to the decoder (the resampled encoder output). The augmentation is ap-

plied to the learned hidden representations instead of the spectrograms. This

can be viewed as a form of correlated block dropout. Thirty-two consecutive

frames were randomly selected to be masked and we applied it twice. The

102

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

intuition is that the WaveGrad decoder can recover the masked part by condi-

tioning the contextual information. This enforces the encoder to learn robust

representations which include more context information. Results are shown in

Table 4.5. We did not observe large improvements with this regularization.

4.6.5 WaveGrad 2: Multi-task Learning and Speed-

Quality Tradeoff

Inspired by FastSpeech 2s [41], we explored leveraging Mel-spectrogram

features to enhance encoder training. The encoder is encouraged to extract

representations that can directly predict the spectrogram features. We added

a separate Mel-spectrogram decoder after the resampling layer to predict the

Mel-spectrogram features. This decoder included one upsampling block and

the mean squared error (MSE) was measured as an additional loss on the

whole sequence. During inference, we dropped this decoder similar to Fast-

Speech 2s [41].

As shown in Table 4.6, there was no significant performance difference with

multi-task training. This suggests that multi-task learning is not beneficial for

the end-to-end generation. We also explored reducing the number of iterations

from 1000 to 50 and found a small performance degradation (about 0.07 points).

103

CHAPTER 4. NOISE-BASED NON-AUTOREGRESSIVE TEXT-TO-SPEECH

Table 4.6: Impact of multi-task (MT) learning and number of iterations for

WaveGrad 2.

Model MT Iter MOS (↑)

Encoder(2048) + WaveGrad(Large) N 1000 4.37 ± 0.05

Encoder(2048) + WaveGrad(Large) Y 1000 4.39 ± 0.05

Encoder(2048) + WaveGrad(Large) Y 50 4.32 ± 0.05

4.7 Summary

This section proposed two non-autoregressive text-to-speech models based

on iterative refinement: WaveGrad and WaveGrad 2. WaveGrad is a vocoder

model which relies on the predicted mel-spectrogram features given by another

separately trained model. WaveGrad 2 is a phoneme-to-wave model which gen-

erates waveform directly from the input phoneme sequence. Both WaveGrad

and WaveGrad 2 offer a flexible trade-off between quality and speed by adjust-

ing the number of refinement steps during inference.

104

Chapter 5

Noise-based non-autoregressive

ASR

The noise-based non-autoregressive method has enormous successes for both

spectrogram-to-wave and phoneme-to-wave generation. Inspired by those ap-

proaches, a natural question is how to apply a similar denoising idea to the

topic of speech recognition. In this chapter, a novel noise-based non-autoregressive

speech recognition approach, Align-Denoise, is proposed. Align-Denoise is built

on the idea of denoising autoencoder [115] and previous work Align-Refine [71].

This chapter starts with the introduction of previous work, Align-Refine. It

then discusses how Align-Denoise is designed to speed up the training proce-

dure of Align-Refine. Align-Denoise reduces the training complexities of Align-

Refine and requires only a single iteration to reach comparable performance.

105

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

Ablation studies discuss some phenomena observed during training and how

external language model or beam search improve Align-Denoise’s performance.

5.1 Align-Refine

Here we first review the previous approach, Align-Refine [71]. The Align-

Refine model can be considered as an extension to the classical model Connec-

tionist Temporal Classification (CTC) [65]. CTC overall simplifies the speech

recognition decoding by assuming conditional independence between predic-

tions,

p(a | x) =
T−1∏︂
t=0

p(at | x) (5.1)

where T is the number of frames, x are the features of the input audio, a are the

alignments that can be mapped to the final result y. To measure the likelihood

efficiently and exactly, CTC uses dynamic programming to marginalize over all

possible alignments. However, this independence assumption is too strong for

speech recognition since it ignores the dependence between tokens at different

positions. Consequently, dependencies related to the language model cannot be

easily learned by CTC training.

To alleviate the conditional independence assumption, a common solution

is to provide an additional conditional signal which provides a priori alignment

106

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

information:

p(a | x, â) =
T−1∏︂
t=0

p(at | x, â) (5.2)

where â contains alignment related information. Previous works explored dif-

ferent forms of â. Imputer [70] uses a partial result as the conditional signal,

and the unfinished positions are labeled by the special token MASK. In com-

parison, Align-Refine and this work condition the likelihood on noisy alignment

â which may provide more information than the partial result.

Align-Refine optimizes a non-causal decoder to refine the initial decoding

result from the encoder. Instead of training separate models for each step,

Align-Refine applies the same decoder iteratively on the previous predicted

alignment, starting from the encoder’s prediction. During training, this re-

cursive refinement has been unfolded for K iterations but there are no gradi-

ent flows between different iterations. Thus Align-Refine requires K forward

passes through the decoder but during back-propagation, they are treated in-

dependently.

Align-Refine can be viewed as a special denoising autoencoder [115]. The

goal of the denoising autoencoder is to learn the mapping from the noisy sample

to the clean one:

Ea∼p(a) Eã∼q(ã|a)

[︃⃦⃦⃦
fdec(a | x, ã)− a

⃦⃦⃦2

2

]︃
(5.3)

to optimize the network fdec where q(ã | a) is the noise distribution. For the

case of ASR, additional conditional signal x is available and the CTC objective

107

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

is used instead:

Ex∼p(x) Eã∼q(ã|x,a) LCTC [fdec(a | x, ã),y] . (5.4)

The noise distribution in Align-Refine has been simplified to the form q(ã |

x) and is a collection of sequences {fenc(x), fdec(fenc(x)), ..., fK
dec(fenc(x))} where

fenc(x) is the decoding result from the encoder, f i
dec(fenc(x)) is the result after

applying the decoder i times.

5.2 Align-Denoise

The noise distribution q(ã | a,x) used in Align-Refine requires K forward

passes through the decoder. This increases the training time by a large margin,

and it is impossible to increase the number of iterations K to an arbitrary

number since it is limited by the GPU memory. Another important factor is

that the ground-truth alignment a is not used in the noise distribution. In this

case, we may not have enough training samples to cover the space near a if the

initial proposal is far away from a.

Align-Denoise speeds up the training process of Align-Refine by incorpo-

rating the ground-truth alignment a. Instead of taking a fixed number of

steps from the initial proposal generated by the encoder, Align-Denoise sam-

ples alignments that combine the ground-truth alignment and the initial pro-

posal.

108

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

The initial proposal aenc is generated by the encoder using greedy decoding,

aenc = argmax fenc(a | x) (5.5)

which can be estimated efficiently by taking argmax separately at each position

due to the conditional independence assumption.

The posterior alignment provided by the encoder given the ground truth

transcription y is

P (at = k | x,y, fenc) =
∑︂

a:ϕ(a)=y at=k

fenc(a | x) (5.6)

where ϕ is the mapping function from CTC alignment to the label sequence.

The posterior can be estimated by a dynamic programming algorithm known

as the forward-backward algorithm [116]. This posterior is the probability of

at = k among all acceptable alignments and the condition of acceptable align-

ments is ϕ(a) = y. Alternatively, it can be viewed as a weighted finite-state

acceptor (WFSA) that represents all possible alignments with frame-level la-

bel likelihoods.

The ground-truth alignment can be derived from the posterior by

agt = g(x,y, fenc) = argmax
k

P (at = k | x,y, fenc) (5.7)

During training, noisy alignments ã are sampled from the special noise dis-

tribution following our alignment policy. Similar to Align-Refine, the label

posterior is computed by marginalizing over all possible alignments a which

109

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

correspond to the target label sequence,

P (y|x, ã, fdec) =
∑︂

a:ϕ(a)=y

fdec(a | x, ã) (5.8)

=
∑︂

a:ϕ(a)=y

T−1∏︂
t=0

fdec(at | x, ã) (5.9)

The factorization of
∏︁T−1

t=0 fdec(at | .) is due to the conditional independence as-

sumption, which results in non-autoregressive decoding.

Finally, the encoder and decoder are jointly trained by minimizing this mod-

ified CTC loss,

LCTC =− Ex,y∼p(x,y)Eagt=g(x,y,fenc)

Eã∼q(ã|x,agt) [logP (y|x, ã, fdec)] (5.10)

where p(x,y) is the data distribution, agt are the ground truth alignments ob-

tained by (5.7); and q(ã | agt,x) is the noisy distribution that generates noisy

alignments given the ground truth alignments.

5.2.1 Noise Distribution

The key idea behind Align-Denoise is to design an alignment policy that

can generate noisy transcripts, similar to the intermediate results encountered

during inference. Given that the input sequence is discrete, we add noise to the

posterior instead and sample from it.

110

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

If the greedy decoding aenc, obtained from the encoder in (5.5), is adopted as

the initialization, our goal is to find a mapping from aenc to the true alignment

agt. This is achieved by adding the noise to the encoder posterior given ground

truth labels,

Pgt(at = k) = P (at = k | x,y, fenc) (5.11)

given by (5.6). From now on, we will denote Pgt(at = k) as ground truth pos-

terior. The errors made by the encoder correspond to the set of indices r ∈ R

such that

aenc,r ̸= agt,r (5.12)

To sample the noisy alignment ã, we keep the correct predictions from the

greedy encoder result consistent and sample the rest frames:

Vt(k) ∼ N (
√
α ∗ Pgt(at = k), (1− α) ∗ σ2

t (k) ∗ 1t ∈ R) (5.13)

ãt = argmax
k

Vt (5.14)

where α is sampled from [0, 1] to control the global noise level like Chapter 4, Vt

is the sampled per-frame distribution of labels. Intuitively, we choose frames

based on the correctness of the initial proposal and sample frame-level labels

based on combined uncertainties σt from CTC decoding and forward-backward

algorithm. For a specific position, the amount of noise in sampling comes di-

rectly from model’s uncertainty.

To mimic the error made by the encoder greedy decoding, the noise variance

111

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

is defined as the combination of both greedy result and true posterior,

σ2
t (k) = max(Pgt(at = k), λ× Penc(at = k)), (5.15)

with

Penc(at) = fenc(at | x). (5.16)

From now on, we will denote Penc(at) as the encoder posterior. λ controls the

weight of the greedy decoding result. When λ is large, the input is mainly

determined by the encoder result so that it may contain more errors. When λ

is small, the input is close to the ground-truth alignment which includes fewer

mistakes.

Figure 5.1 includes visualization of the proposed Align-Denoise training

process. CTC losses are measured on both initial proposal and decoder pre-

diction following other previous work [71,88].

Table 5.1: Training samples generated by our policy. The noise distribution
is a Gaussian distribution whose variance is controlled by the confidence from
the encoder initial proposal (enc) and posterior from the forward-backward al-
gorithm. Training samples inherit some predictions errors from the initial pro-
posal.

posterior ______SSOO_ MR.. WANNNG TEL__LS PEOPLLE HEE IIS FFIFFTYYY___
enc ______SSOO_ MR.. WIGNNNTTELLLLS PEOPLLE HE IIS FFIFFTYYY____

sample 1 ______SSOO_ MR.. WINNNG TELL_LS PEOPLLE HE IIS FFIFFTYYY____
sample 2 ______SSOO_ MR.. WANNNT_TELL_LS PEOPLLE HE’ IIS FFIFFTYYY___
sample 3 ______SSOO_ MR.. WAHNNGTTEL_ELS PEOPLLE HE IIS FFIFFTYYY____
sample 4 ______SSOO_ MR.. WANNNG_TELLLLS PEOPLLE HE IIS FFIFFTYYY____
sample 5 ______SSOO_ MR.. WENNNGTTELLLLS PEOPLLE HE IIS FFIFFTYYY____

Table 5.1 demonstrates how our policy generates different training samples.

112

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

Encoder(fenc)

Hello world

aenc : HHEELLLLOO WWERRLDagt: HHEEL LLOO WWORRLD

HHEELLLLOO WWORRLD

Decoder(fdec)
HHEEL LLOO WWORRLD

Forward-backward Greedy

Sample(eq 5.14)

CTC Loss

Figure 5.1: A visualization of the Align-Denoise training. Two signals are

estimated from the encoder output: the initial proposal aenc from greedy decod-

ing and the ground-truth alignment agt from the forward-backward algorithm.

The noisy transcript is sampled by mixing these two sequences. The decoder, a

non-causal Transformer decoder, conditions on this and the encoder to improve

the alignment. The connection between encoder and decoder is omitted.

The encoder greedy result makes several mistakes, for example, the words

‘Wang’ and ‘tell’. The training examples keep some of them, and the model

is optimized to correct.

113

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

5.3 Experiments

To evaluate the effectiveness of the proposed model, we conduct speech

recognition experiments to compare different encoder-decoder models. The per-

formance of the proposed model is evaluated based on character error rates

(CERs) and word error rates (WERs) without relying on external language

models and beam search unless specified.

All models are tested on the 150-hours AISHELL dataset [48], 581-hours

Corpus of Spontaneous Japanese dataset [49], 81-hours Wall Street Journal

(WSJ) dataset [40] and 210-hours Tedlium2 dataset [50]. For the network in-

puts, we use 80 Mel-scale filterbank coefficients with three-dimensional pitch

features and apply SpecAugment [111] during model training. Our experiment

setups match previous works [70,71].

5.3.1 Network Architecture

For all experiments, we adapt the same encoder-decoder architecture as

Mask CTC [117] and Align-Refine [71], which consists of Transformer self-

attention layers with four attention heads, 256 hidden units, and 2048 feed-

forward inner dimension size. The encoder includes 12 self-attention layers

with convolutional layers that downsample the input features by a factor of 4.

The decoder contains six non-causal self-attention layers.

114

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

We set the dropout rate to 0.1 and the weight of the initial proposal loss

to 0.3. Each minibatch includes 48 sequences, and gradients are accumulated

from 8 batches. The model is trained for 100/100/500/300 epochs for AISHELL,

CSJ, WSJ and Tedlium2 respectively with a standard inverse square-root learn-

ing rate schedule and a linear warmup of 25000 steps.

5.3.2 Results

Table 5.2 shows the results for WSJ based on WERs and real-time factors

(RTFs) that were measured for decoding the eval92 subset on a single CPU

thread. By comparing the results for non-autoregressive models, we can see

that the proposed method outperforms all other non-autoregressive baselines

using just a single iteration. λ = 0.3 gives the best result, whereas the perfor-

mance of λ = 0.1 is worse in comparison. When λ is small, the input alignment

is too close to the ground truth, giving the network limited opportunities to

improve it. However, during inference, the initial proposal contains more mis-

takes. Such mismatch can explain the reason why a small λ is not preferred,

which is verified by the result.

Since we use the same architecture, the real-time factor of Align-Denoise

matches Align-Refine with k = 1 iteration. Compared to the Align-Refine,

the proposed Align-Denoise also speeds up the training. Align-Refine requires

K = 4 forward passes through the decoder, which consists of 6 transformer

115

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

blocks. The proposed approach requires just a single forward pass through the

decoder since noisy alignments are sampled from frame-level Gaussian dis-

tributions instead of using the greedy results from multiple forward passes.

The performance overall is better than the autoregressive baseline with beam

search. However adding external language model helps a lot since it introduces

additional training data.

Table 5.2: Word error rates (WERs) and real time factor (RTF) for WSJ (En-
glish).

Model Iterations dev93(↓) eval92(↓) RTF(↓)
Autoregressive

CTC-attention [88] L 14.3 11.8 0.97
+ beam search L 13.8 11.6 4.62
+ external LM L 7.8 5.3 5.72

Align-Denoise
λ = 0.5 1 13.8 11.3 0.05
λ = 0.3 1 13.5 10.8 0.05
λ = 0.1 1 14.4 11.4 0.05

Previous work
CTC [69] - 22.2 17.9 0.03
CTC [70] - – 15.2 –
Imputer (IM) [70] 8 – 16.5 –
Imputer (DP) [70] 8 – 12.7 –
Mask CTC [69] 1 15.7 12.5 0.07
Mask CTC [69] 10 15.5 12.2 0.07
Align-Refine [71] 1 14.1 11.6 0.05
Align-Refine [71] 5 13.7 11.4 0.07

Our results on CSJ are demonstrated in Table 5.3. With a single itera-

tion, the proposed model, Align-Denoise, outperforms all other systems includ-

ing the autoregressive transformer baseline with external language model and

116

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

beam search. Both external language model and beam search are not used for

Align-Denoise, which greatly speeds up the inference process.

117

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

Table 5.3: Character error rates (CERs) for Corpus of Spontaneous Japanese
(CSJ).

Model Iterations Eval 1(↓) Eval 2(↓) Eval 3(↓)
Autoregressive

CTC-attention [88] L 6.7 4.7 5.0
+ beam search(20) L 6.3 4.3 4.6
+ external LM L 5.9 4.1 4.6

Align-Denoise
λ = 0.3 1 5.4 4.0 4.2

Previous work
Kaldi - 7.5 6.3 6.9
CTC 1 8.0 5.4 7.2

On AISHELL, the results of Align-Denoise are reported in the Table 5.4.

Align-Denoise matches autoregressive baseline without beam search and ex-

ternal language model, while it is slightly worse when beam search and ex-

ternal language model is included. Considering the fact that Align-Denoise is

non-autoregressive and requires only a single iteration, the decoding speed is

much faster.

Table 5.4: Character error rates (CERs) for AISHELL with Align-Denoise.

Model Iterations Dev
CER

Test
CER(↓)

Autoregressive
CTC-attention [88] L 5.7 6.2

+ beam search(10) L 5.2 5.7
+ external language model L 5.2 5.7

Kaldi nnet3 - - 8.6
Kaldi chain - - 7.5

Align-Denoise

118

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

λ = 0.3 1 5.7 6.2

Finally, results of Tedlium2 are given in Table 5.5. Align-Denoise outper-

forms autoregressive baseline when the beam search and external language

model are not used. However, Align-Denoies is slightly worse than the autore-

gressive baseline with beam search setting beam size to 40. This suggests that

for this noisy dataset based on TED talks, beam search is still helpful in reduc-

ing uncertainties. The external language model further enhances the perfor-

mance of autoregressive models. Incorporating an external language model to

Align-Denoise can be achieved by introducing extra complexities during infer-

ence, going from simple greedy decoding to more complicated methods like FST

decoding. This slows down the whole decoding process, especially compared to

the greedy decoding, where predictions for individual frames can be estimated

in parallel. The performance comparison is included in the following ablation

studies.

Table 5.5: Word error rates (WERs) for Tedlium2.

Model Iterations Dev(↓) Eval(↓)
Autoregressive

CTC-attention [88] L 11.7 9.9
+ beam search(40) L 10.4 9.0
+ external language model L 9.3 8.1

Align-Denoise
λ = 0.3 1 10.7 9.8

Previous work

119

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

Kaldi - 9.0 9.0
CTC [96] 1 - 16.6

5.4 Discussion

5.4.1 Alignment mismatch

There exist some cases where aenc and agt are mis-aligned. One example

is given in Table 5.6. In the initial proposal from the encoder, the last ‘S’ in

the word prices has been repeated twice – which does not change the decoding

result. However, it makes the alignment mismatched and there is not enough

character space to recognize the word thing. The only way to correct this is to

remove the extra ‘S’ and move the whole segment to the left. Similar problems

have been observed in other non-autoregressive approaches [69] that predict

tokens directly instead of the alignment. Reducing the downsampling rate in

the encoder could mitigate this kind of error at the cost of decoding speed.

120

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

Table 5.6: Mis-aligned example for Align-Denoise. This is part of the sentence

and the original sentence is the meteoric rise in prices is the worst thing

that could happen to the collectible car hobby.

aenc PPRICESS ISS THE WORSTTHAN THAT COUD HAVEPENN

agt PPRICES IS THE WORST THING THAT COULD HAP_PEN

5.4.2 Combining with beam search and external

language model

The proposed model, Align-Denoise, already conditions on some contextual

information. However, it is still possible to combine the Align-Denoise system

with the beam search and external language model to gain further improve-

ment since it is usually trained on some additional text corpus. But this makes

the inference process much slower. Before the inference process makes predic-

tions simultaneously and after that nearby tokens are merged according to the

CTC mapping rules. After, beam search and language model require left-to-

right search which involves a lot of sequential operations.

Overall, consistent improvements are observed on most datasets. On WSJ,

as shown in Table 5.7, no improvements are observed with only beam search.

Instead, beam search makes the inference process seven times slower. When

we used the word-based language model combined, we got about 1.5% absolute

121

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

improvement, which is promising. But the real-time factor increased to 1.0,

which is 20 times slower than the simple parallel decoding strategy.

Table 5.7: Align-Denoise with/without beam search and external language
model on WSJ.

Model dev93 WER eval92 WER RTF
Autoregressive

CTC-attention [88] 14.3 11.8 0.97
+ beam search 13.8 11.6 4.62
+ external LM 7.8 5.3 5.72

Align-Denoise
λ = 0.3 13.5 10.8 0.05

+ Beam search 13.5 10.8 0.37
+ external LM 12.1 9.2 1.06

CSJ results are shown in Table 5.8. No significant improvements are ob-

served on this dataset when beam search is used with an external language

model. It is also 20 times slower than the original Align-Denoise decoding for

the running time.

Table 5.8: Align-Denoise with/without beam search and external language
model on CSJ.

Model Eval 1 CER Eval 2 CER Eval 3 CER RTF
Autoregressive

CTC-attention [88] 6.7 4.7 5.0 0.21
+ beam search(20) 6.3 4.3 4.6 3.86
+ external LM 5.9 4.1 4.6 4.46

Align-Denoise
λ = 0.3 5.4 4.0 4.2 0.05

+ Beam search 5.4 3.9 4.2 0.46
+ external LM 5.3 3.9 4.2 0.96

122

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

In Table 5.9, the performance improvement for AISHELL is quite consid-

erable while the real-time factor is five times slower. Similarly, without an

external language model, no improvements are observed.

Table 5.9: Align-Denoise with/without beam search and external language
model on AISHELL.

Model dev CER test CER RTF
Autoregressive

CTC-attention [88] 5.7 6.2 0.10
+ beam search(10) 5.2 5.7 0.73
+ external language model 5.2 5.7 1.44

Align-Denoise
λ = 0.3 5.7 6.2 0.07

+ Beam search 5.7 6.2 0.14
+ external LM 5.5 6.0 0.33

For TEDLIUM2, the improvements with beam search and external lan-

guage model is up to 8% relatively in Table 5.10 but the inference speed is

250 times slower. This is mainly due to the long output sequence and large

language model.

Table 5.10: Align-Denoise with/without beam search and external language
model on TEDLIUM2.

Model Dev WER Eval WER RTF
Autoregressive

CTC-attention [88] 11.7 9.9 0.30
+ beam search(40) 10.4 9.0 12.11
+ external LM 9.3 8.1 24.50

Align-Denoise
λ = 0.3 10.7 9.8 0.05

+ Beam search 10.8 9.8 1.60

123

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

+ external LM 9.9 9.0 12.98

In summary, Align-Denoise doesn’t benefit from beam search alone. How-

ever, adding beam search and external language model are always beneficial

for the proposed non-autoregressive Align-Denoise system. Sometimes the im-

provement is quite large but the decoding speed is always much slower. The

real-time factor for Align-Denoise is quite consistent and less than 0.07 while

adding those makes it 5-250 times slower depending on the dataset. Over-

all, Align-Denoise is a good tradeoff between performance and decoding speed

while still benefits from the development of beam search and language model

research.

5.5 Summary

Align-Denoise is a non-autoregressive speech recognition model which re-

solves the performance gap between autoregressive baseline and non-autoregressive

methods. Align-Denoise uses only a single iteration for the decoding, which

matches the autoregressive baseline with a much faster speed. The introduc-

tion of an external language model improves both autoregressive baseline and

Align-Denoise, while the improvement on Align-Denoise is more limited. While

the combination of the non-autoregressive and external language models is an

124

CHAPTER 5. NOISE-BASED NON-AUTOREGRESSIVE ASR

interesting area to explore in the future, it makes the whole process much

slower, as observed in the discussion section. The speed deterioration makes it

less attractive, so it is not discussed in the dissertation.

125

Chapter 6

Conclusion

This dissertation investigates the possibility to apply non-autoregressive

end-to-end approaches to two critical speech applications: speech recognition

and speech synthesis. Non-autoregressive approaches provide a new direction

to speed up the state-of-the-art end-to-end systems by reducing the number

of iterations through the decoder to constant, without much degradation in

performance. Two novel directions are discussed in this dissertation.

The first direction is based on masked language models like BERT [89].

Two new non-autoregressive training frameworks are proposed, which we call

A-CMLM and A-FMLM, which is inspired by the previous work on neural

machine translation [46]. A-CMLM applies a conditional language model to

speech recognition. Besides decoding strategies like left-to-right, mask-predict,

a new decoding strategy is proposed. Based on the connection with a classi-

126

CHAPTER 6. CONCLUSION

cal dependency parsing [92], this decoding strategy is named easy first. In-

spired from easy first, a new training framework, A-FMLM, is further pro-

posed, which utilizes factorization to bridge the gap between training and in-

ference. In experiments, in comparison to classical left-to-right order these two

show great speedup with reasonable performance on four different corpora.

From ablation studies, one can observe that the external language model is

very helpful, especially when it is trained on an additional text corpus.

The second direction utilizes a denoising objective to refine the initial result

with errors.This dissertation explores this direction in both speech recognition

and speech synthesis. For speech recognition, Align-Denoise is proposed, which

uses a single iteration to reach high performance, without the need for beam

search and external language model. Align-Denoise reaches a similar perfor-

mance as the autoregressive baseline without an external language model, and

it also benefits from the introduction of the external language model. Align-

Denoise achieves 20x real-time generation, up to 480x faster than the autore-

gressive baseline with the external language model.

For text-to-speech, two different tasks are studied in this dissertation: vocoder

and phoneme-to-wave. The most popular TTS approach uses two stages to syn-

thesize the audio. In the first stage, the phoneme sequence is transformed

into Mel-spectrogram features. In the second stage, a vocoder is trained and

used to predict waveform samples from the Mel-spectrogram features. Usu-

127

CHAPTER 6. CONCLUSION

ally, the vocoder is the challenging and slowest part. WaveGrad is a novel neu-

ral vocoder that supports a different number of steps to generate high-fidelity

audio. Our experiments demonstrated that only six iterations are required

to generate high-quality samples. We further extend the vocoder to the full

phoneme-to-wave model, WaveGrad 2, which generates waveform directly from

the phoneme sequence. WaveGrad 2 dramatically reduces the performance gap

between autoregressive and non-autoregressive systems and is able to match

the state-of-the-art autoregressive system with enough iterations.

To sum up, here are the major contributions of this dissertation:

• A new masking-based framework is proposed for speech recognition, which

includes two novel methods, Audio-Conditional Masked Language Model

(A-CMLM) and Audio-Factorized Masked Language Model (A-FMLM).

• A-CMLM is the first attempt of non-autoregressive end-to-end speech

recognition and achieves similar performance on AISHELL, slightly worse

performance on TEDLIUM2, CSJ, and WSJ.

• A-FMLM is proposed based on observations, and it reduces the number of

required iterations.

• A new possibility is explored, which uses a large number of refinement

steps to avoid the beam search, and acceptable performance is observed

with large speedup

128

CHAPTER 6. CONCLUSION

• Noise-based speech synthesis approaches which are non-autoregressive

and support a dynamic trade-off between fidelity and inference speed.

• WaveGrad is a vocoder that generates waveform samples from the input

mel-spectrogram features. WaveGrad starts from Gaussian white noise

and iteratively updates the signal via a gradient-based sampler condi-

tioned on the mel-spectrogram. WaveGrad is non-autoregressive, and re-

quires only a constant number of generation steps during inference. Ex-

periments reveal that the model can generate high-fidelity audio samples

using as few as six iterations. WaveGrad is simple to train, and implicitly

optimizes for the weighted variational lower-bound of the log-likelihood.

The empirical experiments demonstrated WaveGrad to generate high fi-

delity audio samples matching a strong autoregressive baseline.

• WaveGrad 2 is a phone-to-wave model which is the combination of Wave-

Grad decoder with Tacotron-2 [33] based encoder. The generation proce-

dure provides a trade-off between fidelity and speed by varying the num-

ber of refinement steps. Experiments demonstrate that WaveGrad 2 is

capable of generating high fidelity audio comparable to solid baselines.

Ablation studies exploring different model configurations found that in-

creased model size is the most important factor in determining WaveG-

rad 2 synthesis quality.

129

CHAPTER 6. CONCLUSION

• the noise-based approach idea is adapted to the speech recognition and

proposed Align-Denoise, which favors a single pass decoding and can be

considered as an extension to the existing CTC model. Align-Denoise

reaches comparable results with baselines on multiple datasets without

beam search and external language model, which gives a very consistent

real-time factor less than 0.07.

These claims have been validated by empirical results on several data sets,

including both public available ones and proprietary ones.

130

Bibliography

[1] J. Sachs and J. Devin, “Young children’s use of age-appropriate speech

styles in social interaction and role-playing,” Journal of child language,

vol. 3, no. 1, pp. 81–98, 1976.

[2] Z. Zhang, J. Geiger, J. Pohjalainen, A. E.-D. Mousa, W. Jin, and

B. Schuller, “Deep learning for environmentally robust speech recogni-

tion: An overview of recent developments,” ACM Transactions on Intelli-

gent Systems and Technology (TIST), vol. 9, no. 5, pp. 1–28, 2018.

[3] S. Watanabe, M. Mandel, J. Barker, E. Vincent, A. Arora, X. Chang,

S. Khudanpur, V. Manohar, D. Povey, D. Raj et al., “Chime-6 challenge:

Tackling multispeaker speech recognition for unsegmented recordings,”

in CHiME 2020-6th International Workshop on Speech Processing in Ev-

eryday Environments, 2020.

[4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:

131

BIBLIOGRAPHY

A generative model for raw audio,” in 9th ISCA Speech Synthesis Work-

shop, 2016, pp. 125–125.

[5] J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner, A. C. Courville,

and Y. Bengio, “Char2Wav: End-to-End Speech Synthesis,” in ICLR,

2017.

[6] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,

Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,

R. Clark, and R. A. Saurous, “Tacotron: Towards End-to-End Speech

Synthesis,” in INTERSPEECH, 2017.

[7] F. Biadsy, R. J. Weiss, P. J. Moreno, D. Kanevsky, and Y. Jia, “Par-

rotron: An End-to-End Speech-to-Speech Conversion Model and its Ap-

plications to Hearing-Impaired Speech and Speech Separation,” in IN-

TERSPEECH, 2019.

[8] Y. Jia, R. J. Weiss, F. Biadsy, W. Macherey, M. Johnson, Z. Chen,

and Y. Wu, “Direct Speech-to-Speech Translation with a Sequence-to-

Sequence Model,” in INTERSPEECH, 2019.

[9] S. Vasquez and M. Lewis, “MelNet: A Generative Model for Audio in the

Frequency Domain,” arXiv preprint arXiv:1906.01083, 2019.

[10] P. Mermelstein, “Distance measures for speech recognition, psychologi-

132

BIBLIOGRAPHY

cal and instrumental,” Pattern recognition and artificial intelligence, vol.

116, pp. 374–388, 1976.

[11] H. Hermansky, “Perceptual linear predictive (plp) analysis of speech,”

the Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1738–

1752, 1990.

[12] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech recognition with

word-based rnn language models,” in 2018 IEEE Spoken Language Tech-

nology Workshop (SLT). IEEE, 2018, pp. 389–396.

[13] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved training of end-to-

end attention models for speech recognition,” in INTERSPEECH, 2018.

[14] T. K. Vintsyuk, “Speech discrimination by dynamic programming,” Cy-

bernetics, vol. 4, no. 1, pp. 52–57, 1968.

[15] J. Baker, “The dragon system–an overview,” IEEE Transactions on

Acoustics, speech, and signal Processing, vol. 23, no. 1, pp. 24–29, 1975.

[16] D. Povey, L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal,

O. Glembek, N. K. Goel, M. Karafiát, A. Rastrow et al., “Subspace gaus-

sian mixture models for speech recognition,” in 2010 IEEE International

Conference on Acoustics, Speech and Signal Processing. IEEE, 2010, pp.

4330–4333.

133

BIBLIOGRAPHY

[17] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks

for acoustic modeling in speech recognition: The shared views of four

research groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp.

82–97, 2012.

[18] J. T. Goodman, “A bit of progress in language modeling,” Computer

Speech & Language, vol. 15, no. 4, pp. 403–434, 2001.

[19] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky, “Rnnlm-

recurrent neural network language modeling toolkit,” in Proc. of the 2011

ASRU Workshop, 2011, pp. 196–201.

[20] K. Irie, A. Zeyer, R. Schlüter, and H. Ney, “Language modeling with deep

transformers,” Proc. Interspeech 2019, pp. 3905–3909, 2019.

[21] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” international conference on learn-

ing representations, 2014.

[22] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,

N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens et al., “Moses: Open

source toolkit for statistical machine translation,” in Proceedings of the

45th annual meeting of the association for computational linguistics com-

134

BIBLIOGRAPHY

panion volume proceedings of the demo and poster sessions, 2007, pp.

177–180.

[23] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N.-

E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al., “ESPnet: End-

to-end speech processing toolkit,” Proc. Interspeech 2018, pp. 2207–2211,

2018.

[24] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang, M. Someki,

N. E. Y. Soplin, R. Yamamoto, X. Wang et al., “A comparative study

on transformer vs rnn in speech applications,” in 2019 IEEE Automatic

Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019,

pp. 449–456.

[25] H. Dudley and T. H. Tarnoczy, “The speaking machine of wolfgang von

kempelen,” The Journal of the Acoustical Society of America, vol. 22,

no. 2, pp. 151–166, 1950.

[26] W. von Kempelen, Le mécanisme de la parole, suivi de la déscription

d’une machine parlante. Imprimé chez B. Bauer, 1791.

[27] C. Scully, “Articulatory synthesis,” in Speech production and speech mod-

elling. Springer, 1990, pp. 151–186.

[28] C. H. Shadle and R. I. Damper, “Prospects for articulatory synthesis: A

135

BIBLIOGRAPHY

position paper,” in 4th ISCA Tutorial and Research Workshop (ITRW) on

Speech Synthesis, 2001.

[29] R. Carlson, B. Granström, and I. Karlsson, “Experiments with voice mod-

elling in speech synthesis,” Speech communication, vol. 10, no. 5-6, pp.

481–489, 1991.

[30] R. H. Mannell, “Formant diphone parameter extraction utilising a la-

belled single-speaker database,” in Fifth International Conference on

Spoken Language Processing, 1998.

[31] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers

in speech recognition,” Computer Speech & Language, vol. 16, no. 1, pp.

69–88, 2002.

[32] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,

Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-

end speech synthesis,” Proc. Interspeech 2017, pp. 4006–4010, 2017.

[33] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,

Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis by condi-

tioning wavenet on mel spectrogram predictions,” in 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2018, pp. 4779–4783.

136

BIBLIOGRAPHY

[34] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fast-

speech: Fast, robust and controllable text to speech,” Advances in Neural

Information Processing Systems, vol. 32, 2019.

[35] J. Shen, Y. Jia, M. Chrzanowski, Y. Zhang, I. Elias, H. Zen, and

Y. Wu, “Non-attentive tacotron: Robust and controllable neural tts

synthesis including unsupervised duration modeling,” arXiv preprint

arXiv:2010.04301, 2020.

[36] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:

A generative model for raw audio,” in 9th ISCA Speech Synthesis Work-

shop, 2016, pp. 125–125.

[37] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,

E. Lockhart, F. Stimberg, A. Oord, S. Dieleman, and K. Kavukcuoglu,

“Efficient neural audio synthesis,” in International Conference on Ma-

chine Learning. PMLR, 2018, pp. 2410–2419.

[38] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in neural information processing sys-

tems, 2014, pp. 3104–3112.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” in NIPS, 2017.

137

BIBLIOGRAPHY

[40] D. B. Paul and J. M. Baker, “The design for the wall street journal-based

CSR corpus,” in Proceedings of Workshop on Speech and Natural Lan-

guage, 1992.

[41] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,

“Fastspeech 2: Fast and high-quality end-to-end text to speech,” in

International Conference on Learning Representations, 2021. [Online].

Available: https://openreview.net/forum?id=piLPYqxtWuA

[42] J. Donahue, S. Dieleman, M. Binkowski, E. Elsen, and K. Simonyan,

“End-to-end adversarial text-to-speech,” in International Conference on

Learning Representations, 2021.

[43] R. J. Weiss, R. Skerry-Ryan, E. Battenberg, S. Mariooryad, and D. P.

Kingma, “Wave-tacotron: Spectrogram-free end-to-end text-to-speech

synthesis,” in ICASSP 2021-2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.

5679–5683.

[44] L. Ruis, M. Stern, J. Proskurnia, and W. Chan, “Insertion-Deletion

Transformer,” in EMNLP: Workshop of Neural Generation and Trans-

lation, 2019.

[45] W. Chan, N. Kitaev, K. Guu, M. Stern, and J. Uszkoreit, “KER-

138

https://openreview.net/forum?id=piLPYqxtWuA

BIBLIOGRAPHY

MIT: generative insertion-based modeling for sequences,” CoRR, vol.

abs/1906.01604, 2019.

[46] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Mask-Predict:

Parallel Decoding of Conditional Masked Language Models,” in EMNLP,

2019.

[47] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”

Advances in Neural Information Processing Systems, vol. 33, pp. 6840–

6851, 2020.

[48] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An open-source

mandarin speech corpus and a speech recognition baseline,” in 2017

20th Conference of the Oriental Chapter of the International Coordinat-

ing Committee on Speech Databases and Speech I/O Systems and Assess-

ment (O-COCOSDA). IEEE, 2017, pp. 1–5.

[49] K. Maekawa, “Corpus of spontaneous japanese: Its design and evalua-

tion,” in ISCA & IEEE Workshop on Spontaneous Speech Processing and

Recognition, 2003.

[50] A. Rousseau, P. Deléglise, Y. Esteve et al., “Enhancing the ted-lium cor-

pus with selected data for language modeling and more ted talks.” in

LREC, 2014, pp. 3935–3939.

139

BIBLIOGRAPHY

[51] A. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel Recurrent Neural

Networks,” in ICML, 2016.

[52] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,

E. Lockhart, F. Stimberg, A. Oord, S. Dieleman, and K. Kavukcuoglu,

“Efficient neural audio synthesis,” in International Conference on Ma-

chine Learning. PMLR, 2018, pp. 2410–2419.

[53] M. Bińkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen,

N. Casagrande, L. C. Cobo, and K. Simonyan, “High fidelity speech syn-

thesis with adversarial networks,” in International Conference on Learn-

ing Representations, 2020.

[54] T. R. Niesler and P. C. Woodland, “A variable-length category-based

n-gram language model,” in 1996 IEEE International Conference on

Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 1.

IEEE, 1996, pp. 164–167.

[55] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network

architecture for isolated word recognition,” Neural networks, vol. 3, no. 1,

pp. 23–43, 1990.

[56] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recur-

rent neural network architectures for large scale acoustic modeling,”

Proc.Interspeech, pp. 338–342, 01 2014.

140

BIBLIOGRAPHY

[57] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with

deep bidirectional lstm,” in 2013 IEEE workshop on automatic speech

recognition and understanding. IEEE, 2013, pp. 273–278.

[58] Y. Wang, A. Mohamed, D. Le, C. Liu, A. Xiao, J. Mahadeokar, H. Huang,

A. Tjandra, X. Zhang, F. Zhang et al., “Transformer-based acoustic mod-

eling for hybrid speech recognition,” in ICASSP 2020-2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2020, pp. 6874–6878.

[59] A. Pauls and D. Klein, “Faster and smaller n-gram language models,” in

Proceedings of the 49th annual meeting of the Association for Computa-

tional Linguistics: Human Language Technologies, 2011, pp. 258–267.

[60] M. Suzuki, N. Itoh, T. Nagano, G. Kurata, and S. Thomas, “Improve-

ments to n-gram language model using text generated from neural lan-

guage model,” in ICASSP 2019-2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.

7245–7249.

[61] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Re-

current neural network based language model,” in Eleventh annual con-

ference of the international speech communication association, 2010.

[62] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for

141

BIBLIOGRAPHY

language modeling,” in Thirteenth annual conference of the international

speech communication association, 2012.

[63] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder-decoder

for statistical machine translation,” in Conference on Empirical Methods

in Natural Language Processing (EMNLP 2014), 2014.

[64] J. Vig and Y. Belinkov, “Analyzing the structure of attention in a trans-

former language model,” in Proceedings of the 2019 ACL Workshop Black-

boxNLP: Analyzing and Interpreting Neural Networks for NLP, 2019, pp.

63–76.

[65] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-

ist temporal classification: labelling unsegmented sequence data with

recurrent neural networks,” in Proceedings of the 23rd international con-

ference on Machine learning, 2006, pp. 369–376.

[66] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li, H. Liu,

S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural transducers for

end-to-end speech recognition,” in 2017 IEEE Automatic Speech Recog-

nition and Understanding Workshop (ASRU). IEEE, 2017, pp. 206–213.

[67] A. Graves, “Sequence transduction with recurrent neural networks,”

CoRR, 2012.

142

BIBLIOGRAPHY

[68] N. Chen, S. Watanabe, J. Villalba, and N. Dehak, “Non-Autoregressive

Transformer Automatic Speech Recognition,” in arXiv, 2019.

[69] Y. Higuchi, S. Watanabe, N. Chen, T. Ogawa, and T. Kobayashi, “Mask

ctc: Non-autoregressive end-to-end asr with ctc and mask predict,” Proc.

Interspeech 2020, pp. 3655–3659, 2020.

[70] C. Saharia, G. E. Hinton, M. Norouzi, N. Jaitly, and W. Chan, “Im-

puter: Sequence modelling via imputation and dynamic programming,”

in ICML, 2020.

[71] E. A. Chi, J. Salazar, and K. Kirchhoff, “Align-refine: Non-autoregressive

speech recognition via iterative realignment,” in Proceedings of the 2021

Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Online, Jun. 2021,

pp. 1920–1927.

[72] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based genera-

tive network for speech synthesis,” in ICASSP 2019-2019 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2019, pp. 3617–3621.

[73] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,

G. Driessche, E. Lockhart, L. Cobo, F. Stimberg et al., “Parallel wavenet:

143

BIBLIOGRAPHY

Fast high-fidelity speech synthesis,” in International conference on ma-

chine learning. PMLR, 2018, pp. 3918–3926.

[74] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave generation in

end-to-end text-to-speech,” in International Conference on Learning Rep-

resentations, 2018.

[75] S. Kim, S.-G. Lee, J. Song, J. Kim, and S. Yoon, “Flowavenet: A generative

flow for raw audio,” in International Conference on Machine Learning.

PMLR, 2019, pp. 3370–3378.

[76] H. Kim, H. Lee, W. H. Kang, S. J. Cheon, B. J. Choi, and N. S. Kim,

“Wavenode: A continuous normalizing flow for speech synthesis,” arXiv

preprint arXiv:2006.04598, 2020.

[77] N.-Q. Wu and Z.-H. Ling, “Waveffjord: Ffjord-based vocoder for statistical

parametric speech synthesis,” in ICASSP 2020-2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2020, pp. 7214–7218.

[78] D. Rezende and S. Mohamed, “Variational inference with normalizing

flows,” in International conference on machine learning. PMLR, 2015,

pp. 1530–1538.

[79] L. Dinh, D. Krueger, and Y. Bengio, “NICE: non-linear independent com-

144

BIBLIOGRAPHY

ponents estimation,” in 3rd International Conference on Learning Repre-

sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop

Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[80] D. P. Kingma and P. Dhariwal, “Glow: generative flow with invertible

1x1 convolutions,” in Proceedings of the 32nd International Conference

on Neural Information Processing Systems, 2018, pp. 10 236–10 245.

[81] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,”

in International Conference on Learning Representations, 2018.

[82] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and

A. Roberts, “Gansynth: Adversarial neural audio synthesis,” in Interna-

tional Conference on Learning Representations, 2018.

[83] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Zhen Teoh, J. Sotelo,

A. de Brebisson, Y. Bengio, and A. Courville, “Melgan: Generative ad-

versarial networks for conditional waveform synthesis,” Proceedings of

the 33rd Annual Conference on Neural Information Processing Systems,

2019.

[84] G. Yang, S. Yang, K. Liu, P. Fang, W. Chen, and L. Xie, “Multi-band

melgan: Faster waveform generation for high-quality text-to-speech,” in

2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021,

pp. 492–498.

145

BIBLIOGRAPHY

[85] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast wave-

form generation model based on generative adversarial networks with

multi-resolution spectrogram,” in ICASSP 2020-2020 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2020, pp. 6199–6203.

[86] J. Yang, J. Lee, Y. Kim, H.-Y. Cho, and I. Kim, “Vocgan: A high-

fidelity real-time vocoder with a hierarchically-nested adversarial net-

work,” Proc. Interspeech 2020, pp. 200–204, 2020.

[87] O. McCarthy and Z. Ahmed, “Hooligan: Robust, high quality neural

vocoding,” arXiv preprint arXiv:2008.02493, 2020.

[88] S. Kim, T. Hori, and S. Watanabe, “Joint ctc-attention based end-to-end

speech recognition using multi-task learning,” in 2017 IEEE interna-

tional conference on acoustics, speech and signal processing (ICASSP).

IEEE, 2017, pp. 4835–4839.

[89] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” in Pro-

ceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[90] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V.

146

BIBLIOGRAPHY

Le, “Xlnet: Generalized autoregressive pretraining for language under-

standing,” Advances in neural information processing systems, vol. 32,

2019.

[91] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou,

and H.-W. Hon, “Unified language model pre-training for natural lan-

guage understanding and generation,” Advances in Neural Information

Processing Systems, vol. 32, 2019.

[92] Y. Goldberg and M. Elhadad, “An efficient algorithm for easy-first non-

directional dependency parsing,” in Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Associa-

tion for Computational Linguistics. Association for Computational Lin-

guistics, 2010, pp. 742–750.

[93] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shino-

hara, and S. Arikawa, “Byte pair encoding: A text compression scheme

that accelerates pattern matching,” Technical Report DOI-TR-161, De-

partment of Informatics, Kyushu University, Tech. Rep., 1999.

[94] K. An, H. Xiang, and Z. Ou, “Cat: A ctc-crf based asr toolkit bridging the

hybrid and the end-to-end approaches towards data efficiency and low

latency,” Proc. Interspeech, pp. 566–570, 2020.

[95] P. Ramachandran, P. Liu, and Q. Le, “Unsupervised pretraining for se-

147

BIBLIOGRAPHY

quence to sequence learning,” in Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, Copenhagen, Den-

mark, Sep. 2017, pp. 383–391.

[96] Y. Higuchi, H. Inaguma, S. Watanabe, T. Ogawa, and T. Kobayashi, “Im-

proved mask-ctc for non-autoregressive end-to-end asr,” in ICASSP 2021-

2021 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2021, pp. 8363–8367.

[97] A. Hyvärinen and P. Dayan, “Estimation of non-normalized statistical

models by score matching.” Journal of Machine Learning Research, vol. 6,

no. 4, 2005.

[98] P. Vincent, “A connection between score matching and denoising autoen-

coders,” Neural computation, vol. 23, no. 7, pp. 1661–1674, 2011.

[99] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli,

“Deep Unsupervised Learning using Nonequilibrium Thermodynamics,”

in ICML, 2015.

[100] Y. Song and S. Ermon, “Generative modeling by estimating gradients of

the data distribution,” in Proceedings of the 33rd Annual Conference on

Neural Information Processing Systems, 2019.

[101] ——, “Improved techniques for training score-based generative models,”

148

BIBLIOGRAPHY

Advances in neural information processing systems, vol. 33, pp. 12 438–

12 448, 2020.

[102] R. Cai, G. Yang, H. Averbuch-Elor, Z. Hao, S. Belongie, N. Snavely, and

B. Hariharan, “Learning gradient fields for shape generation,” ECCV,

2020.

[103] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in CVPR, 2016.

[104] M. A. Saxe, L. J. McClelland, and S. Ganguli, “Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,” interna-

tional conference on learning representations, 2014.

[105] V. Dumoulin, E. Perez, N. Schucher, F. Strub, H. d. Vries, A. Courville,

and Y. Bengio, “Feature-wise transformations,” Distill, vol. 3, no. 7, p.

e11, 2018.

[106] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic Image Synthesis

with Spatially-Adaptive Normalization,” in CVPR, 2019.

[107] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift,” in ICML, 2015.

[108] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: a simple way to prevent neural networks from overfit-

149

BIBLIOGRAPHY

ting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–

1958, 2014.

[109] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International conference

on machine learning. PMLR, 2015, pp. 448–456.

[110] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke,

A. Goyal, Y. Bengio, A. C. Courville, and C. J. Pal, “Zoneout: Regularizing

rnns by randomly preserving hidden activations.” in ICLR (Poster), 2017.

[111] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.

Le, “SpecAugment: A Simple Data Augmentation Method for Automatic

Speech Recognition,” in Proc. Interspeech 2019, 2019, pp. 2613–2617.

[112] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++:

Improving the pixelcnn with discretized logistic mixture likelihood and

other modifications,” international conference on learning representa-

tions, 2017.

[113] R. Kubichek, “Mel-Cepstral Distance Measure for Objective Speech

Quality Assessment,” in IEEE PACRIM, 1993.

[114] W. Chu and A. Alwan, “Reducing F0 Frame Error of F0 Tracking Algo-

150

BIBLIOGRAPHY

rithms under Noisy Conditions with an Unvoiced/Voiced Classification

Frontend,” in ICASSP, 2009.

[115] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings

of the 25th international conference on Machine learning, 2008, pp. 1096–

1103.

[116] L. E. Baum et al., “An inequality and associated maximization technique

in statistical estimation for probabilistic functions of markov processes,”

Inequalities, vol. 3, no. 1, pp. 1–8, 1972.

[117] S. Karita, N. E. Y. Soplin, S. Watanabe, M. Delcroix, A. Ogawa, and

T. Nakatani, “Improving Transformer-based end-to-end speech recogni-

tion with connectionist temporal classification and language model inte-

gration,” in Proceedings of Annual Conference of the International Speech

Communication Association (INTERSPEECH), 2019.

151

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	Introduction to Speech Applications and Models
	Mathematical Definition of Speech Recognition
	Mathematical Definition of Speech Synthesis
	Hybrid Models
	Hybrid Models for Speech Recognition
	Hybrid Models for Speech synthesis

	End-to-end Models
	E2E Models for Speech Recognition
	Transformer-based E2E ASR

	E2E Models for Speech Synthesis
	Autoregressive Training

	Disadvantages of Autoregressive Systems
	Towards Non-autoregressive Speech Applications
	Benefits of Non-Autoregressive Systems
	Why Non-Autoregressive Systems are challenging to train

	Non-Autoregressive Methods Proposal
	Mask-based Approach
	Noise-based Approach
	Relationship between Two Methods

	Datasets
	Speech Recognition
	Speech Synthesis

	Contribution of this Dissertation

	The Literature of Non-autoregressive Systems for Speech Applications
	Non-autoregressive ASR
	Hybrid Models
	Connectionist Temporal Classification
	RNN Transducer (RNN-T)
	Non-autoregressive End-to-end Speech Recognition

	Non-autoregressive Text-to-speech
	Summary

	Mask-based non-autoregressive Speech Recognition
	Conditional masked language model (CMLM)
	Factorized masked language model (FMLM)
	Easy First Decoding
	Mask-predict
	Example
	Output sequence length prediction

	Experiments and results
	Analysis
	Ablation Studies of External Language Model
	Ablation Studies of Beam Search
	Error Analysis of A-FMLM on CSJ

	Summary

	Noise-based non-autoregressive Text-to-Speech
	Score matching
	Diffusion Probabilistic Model
	Noise Schedule and Conditioning on Noise Level

	Network Architecture
	WaveGrad Vocoder
	WaveGrad 2: Phoneme-to-Wave model
	Encoder
	Resampling
	Sampling Window
	Hidden Features Augmentation

	Noise Schedule
	Evaluation
	Results
	Ablation Studies
	WaveGrad: Speed-Quality Tradeoff
	WaveGrad 2: Sampling Window Size
	WaveGrad 2: Network Size
	WaveGrad 2: Hidden Features Augmentation
	WaveGrad 2: Multi-task Learning and Speed-Quality Tradeoff

	Summary

	Noise-based non-autoregressive ASR
	Align-Refine
	Align-Denoise
	Noise Distribution

	Experiments
	Network Architecture
	Results

	Discussion
	Alignment mismatch
	Combining with beam search and external language model

	Summary

	Conclusion
	Bibliography

