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Abstract 

Understanding the impact of genetic mutations on complex phenotypes is 

essential towards understanding human phenotypes including diseases. 

Capturing the genetic regulation on gene expression and on epigenetic 

signatures such as chromatin accessibility provides insights into mechanisms 

and molecular architecture of genetic regulation on complex traits. During my 

graduate studies, I have focused on three major projects.  

 

My first work characterizes the effects of distal genetic variants on gene 

expression (eQTLs) across human tissues leveraging large-scale genomic 

datasets with whole-genome genotype data and mRNA-sequencing data (GTEx 

consortium et al. He as a co-first author. Nature, 2017). I further investigate the 

tissue-specific patterns of eQTL effects via latent factors by developing a 

constrained matrix factorization model called weighted semi-nonnegative sparse 

matrix factorization (sn-spMF)  (https://github.com/heyuan7676/ts_eQTLs). I 

demonstrate that the universal and tissue-specific eQTLs exhibit distinct patterns 

of cis-regulatory element enrichment and identify specific TFs that appear to 

drive tissue-specific genetic effects (He et al. Genome Biology, 2020). I continue 

to explore the genetics of chromatin accessibility which influences gene 

expression. I develop a pipeline to genotype each sample and jointly call 

chromosome accessibility QTLs (caQTLs) from all publicly available ATAC-seq 

https://github.com/heyuan7676/ts_eQTLs
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data, thus performing caQTL analysis on a scale that is not previously possible. I 

infer context specificity for the samples, and capture both global caQTLs and 

context-specific caQTLs, and demonstrate enrichment of caQTLs in eQTLs and 

in relevant TFBS (He et al. Biology of Genomes, CSHL. Oral Presentation. 

2021).  

 

Overall, my work has provided a deeper and better understanding of genetic 

regulation of gene expression and chromatin accessibility from various 

perspectives. I contribute statistical tools to better dissect the context-specificity 

of genetic regulation, and biological insights into the mechanisms of genetics on 

molecular phenotypes.  
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Chapter 1 Introduction 
 

Understanding genetic impacts on complex traits including diseases can greatly 

facilitate the development of disease treatment. In the last two decades, the rapid 

development of microarray technology next-generation sequencing technology 

have enabled accumulation of genotyping data on the population level, which has 

greatly facilitated the study into genetic association with complex traits, revealed 

by genome wide association studies (GWAS) (Figure 1-1) (Welter et al. 2014). 

However, most of the GWAS hits are found to be in non-coding regions on the 

genome. Thus understanding the genetic impact on gene expression remains a 

major challenge, complicated in part by challenges in assessing regulatory 

impact. 

 

Figure 1-1. Challenges of understanding genetic impact on complex traits revealed via GWAS. Genetics of 

molecular phenotypes including gene expression and proteins may bridge the gap. 

 

https://paperpile.com/c/9rO0sV/xtvE
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Coding DNA sequence are transcribed into mRNAs, and then are translated into 

proteins, which ultimately compose the human body. Thus, genetic impacts on 

gene expression can shed light on the functional consequences of the genetic 

variants, and bridge the gap between genetic variants and complex traits (Figure 

1-1). Genetic impact on gene expression can be captured by expression 

quantitative trait loci (eQTLs) (Figure 1-2). The local impact where the variant 

and the gene are on the same chromosome and locate near each other (usually 

within 1MB) are referred to as cis-eQTLs. And the variants and gene pairs on 

different chromosomes are referred to as trans-eQTLs. During the last decade, 

researchers have made great progress in capturing the genetic impact on gene 

expression via eQTLs, and have shown that eQTLs are enriched in GWAS 

variants, demonstrating the importance of understanding eQTLs to better 

understand the molecular mechanisms of complex traits (Montgomery and 

Dermitzakis 2011; Battle et al. 2014; Grundberg et al. 2012). 

 

Figure 1-2. Expression quantitative trait loci (eQTLs) that capture the genetic impact on gene expression. 

 

https://paperpile.com/c/9rO0sV/lchC+BHat+eoyM
https://paperpile.com/c/9rO0sV/lchC+BHat+eoyM
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Human tissues, composing of a variety of cell types, perform different yet 

collaborating functions. Understanding the genetics of gene expression across 

human tissues can provide important information on context-specific genetic 

regulation on gene expression, and thus inform the potential mechanisms of 

genetics of complex traits. Genotype-Tissue Expression (GTEx) project has 

collected genotype data and mRNA sequencing data from thousands of samples 

across more than 40 human tissues  (The GTEx Consortium 2015), providing the 

most comprehensive resource to study tissue-specific eQTLs. Systematically 

characterizing the patterns and mechanisms of genetic regulation of gene 

expression across tissues can shed light on understanding how these complex 

patterns of tissue specific gene regulation arise or what the functional 

consequences of such variability are. 

 

However, understanding the molecular mechanism of eQTLs remains a 

challenge. One hypothesis is that chromatin accessibility, a hallmark of active 

regulatory elements, can mediate genetic regulation of gene expression. 

Therefore, understanding the genetics of chromatin accessibility provides 

information on the molecular mechanisms through which genetic variants may 

affect complex traits. Assay for Transposase-Accessible Chromatin with high-

throughput sequencing (ATAC-seq) measures chromatin accessibility and has 

been widely applied over the last decade, providing numerous publicly available 

datasets in diverse cell types  (Buenrostro et al. 2013; Buenrostro, Wu, Chang, et 

al. 2015; Buenrostro, Wu, Litzenburger, et al. 2015). Thus far, there have been 

fewer studies of chromatin accessibility quantitative trait loci (ca-QTLs), linking 

https://paperpile.com/c/9rO0sV/2YO3+lP7rG
https://paperpile.com/c/9rO0sV/DHJC+NJBG+RzYp
https://paperpile.com/c/9rO0sV/DHJC+NJBG+RzYp
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genetic variation with chromatin state, due in part to limited cohort sizes and lack 

of matched genotype data. In theory, genotype information can be directly 

derived from ATAC-seq reads. The available public ATAC-seq data present a 

new opportunity for integrative, large-scale ca-QTL analysis across studies. 

 

Figure 1-3. Assumption of genetic impact on gene expression mediated by chromatin accessibility, and 

further result in impact on complex traits. 

 

Overall, this thesis studies three main questions: 1). Capture trans/distal-eQTLs 

across human tissues, as in Chapter 2; 2). Identify the tissue-specificity of eQTLs 

effect sizes, as in Chapter 3; and 3). Integrate public ATAC-seq data to capture 

caQTLs, both globally and in specific context, as in Chapter 4. Chapter 5 

includes summary and future directions. 
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Chapter 2 Distant regulatory effects of genetic 

variation across human tissues 

Contributions 

This chapter describes the trans-eQTL analyses from the GTEx project that I co-

led along with Brian Jo, Benjamin Strober, and Princy Parsana. My main 

contribution to this work includes: 

- Construction of the normalization pipelines for gene expression data to 

achieve high power of identifying trans-eQTLs 

- Investigation of impact of removing confounders on trans-eQTL 

identification 

- Characterization of trans-eQTLs in terms of the linkage disequilibrium (LD) 

block structure, and correlation with genotype structure 

This work was published in (GTEx Consortium et al. 2017). The text of this 

chapter is a slight modification of the published work that was written together by 

Brian Jo, Yuan He, Benjamin Strober, Princy Pasana, Barbara E. Engelhardt, 

Alexis Battle, and the eQTL manuscript working group (Jo et al. 2016; GTEx 

Consortium et al. 2017). The full list of collaborators is available in (GTEx 

Consortium et al. 2017).  

https://paperpile.com/c/9rO0sV/fEqx
https://paperpile.com/c/9rO0sV/hP06+fEqx
https://paperpile.com/c/9rO0sV/hP06+fEqx
https://paperpile.com/c/9rO0sV/fEqx
https://paperpile.com/c/9rO0sV/fEqx
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Abstract 

Understanding the genetics of gene regulation provides information on the 

cellular mechanisms through which genetic variation influences complex traits. 

Expression quantitative trait loci, or eQTLs, are enriched for polymorphisms that 

have been found to be associated with disease risk. While most analyses of 

human data have focused on regulation of expression by nearby variants (cis-

eQTLs), distal or trans-eQTLs may have broader effects on the transcriptome 

and important phenotypic consequences, necessitating a comprehensive study 

of the effects of genetic variants on distal gene transcription levels. In this work, 

we identify trans-eQTLs in the Genotype Tissue Expression (GTEx) project data 

(The GTEx Consortium 2015), consisting of 449 individuals with RNA-

sequencing data across 44 tissue types. We find 93 genes with a trans-eQTL in 

at least one tissue, and we demonstrate that trans-eQTLs are more likely than 

cis-eQTLs to have effects specific to a single tissue. We evaluate the genomic 

and functional properties of trans-eQTL variants, identifying strong enrichment in 

enhancer elements and Piwi-interacting RNA clusters. We observed that trans-

eQTLs exhibit stronger tissue-specificity. We also showed that trans-eQTLs can 

have broad effects on multiple target genes. 

Introduction 

Variation in the human genome influences complex disease risk through changes 

at a cellular level. Many disease-associated variants are also associated with 

gene expression levels through which they mediate disease risk. The majority of 

https://paperpile.com/c/9rO0sV/2YO3
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expression quantitative trait locus (eQTL) studies (The GTEx Consortium 2015; 

Nica et al. 2011; Battle et al. 2014; Dimas et al. 2009; Huang et al. 2009; 

Lappalainen et al. 2013) thus far have focused on local- or cis-eQTLs because of 

the relative simplicity of association mapping in human for both statistical and 

biological reasons (Stranger et al. 2007; Montgomery and Dermitzakis 2011). 

Trans-eQTLs, or genetic variants that affect gene expression levels of distant 

target genes, have received much less attention in comparison to cis-eQTLs, in 

part due to the considerable multiple hypotheses testing burden (Rockman and 

Kruglyak 2006). Far fewer replicable, strong effect trans-eQTLs have been 

discovered in human data as compared to cis-eQTLs, unlike in model organisms 

such as Saccharomyces cerevisiae or Arabidopsis thaliana (Stranger et al. 2007; 

Brem et al. 2002; Albert and Kruglyak 2015). However, a handful of replicable 

trans-eQTLs have now been identified in human tissues (Westra et al. 2013; 

Innocenti et al. 2011; Battle et al. 2014). Additionally, recent work has suggested 

that trans-eQTLs contribute substantially to the genetic regulation of complex 

diseases (Westra et al. 2013) motivating a careful examination of the role of 

trans-eQTLs across human tissues in disease etiology. 

 

Here, we identify trans-eQTLs in the Genotype-Tissue Expression (GTEx) data, 

which include 449 individuals with imputed genotypes and RNA-seq data across 

44 tissues for a total of 7,051 samples. We evaluate the tissue-specificity of 

trans-eQTLs, and we demonstrate replication of trans-eQTLs in a large 

independent RNA-seq study (Glass et al. 2013).  We show enrichment of trans-

https://paperpile.com/c/9rO0sV/2YO3+Wht9+BHat+3EEC+QV8J+IPlV
https://paperpile.com/c/9rO0sV/2YO3+Wht9+BHat+3EEC+QV8J+IPlV
https://paperpile.com/c/9rO0sV/2YO3+Wht9+BHat+3EEC+QV8J+IPlV
https://paperpile.com/c/9rO0sV/hr0S+lchC
https://paperpile.com/c/9rO0sV/jJwo
https://paperpile.com/c/9rO0sV/jJwo
https://paperpile.com/c/9rO0sV/hr0S+CQWZ+VrxI
https://paperpile.com/c/9rO0sV/hr0S+CQWZ+VrxI
https://paperpile.com/c/9rO0sV/dHUN+6Lra+BHat
https://paperpile.com/c/9rO0sV/dHUN+6Lra+BHat
https://paperpile.com/c/9rO0sV/dHUN
https://paperpile.com/c/9rO0sV/rgyi
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eQTLs for tests restricted to genetic variants associated with expression of 

nearby genes and trait-associated variants. We then explore properties of 

genetic variants with significant associations with distal gene expression levels 

including functional enrichment in cis regulatory elements and Piwi-interacting 

RNA clusters.  

Results 

We performed trans-eQTL association mapping in each of the 44 GTEx tissues 

independently (Figure 2-1). We applied a linear model controlling for ancestry, 

sex, genotyping platform, and unobserved factors in the expression data for each 

tissue that may reflect batch or other technical confounders (Shabalin 2012; 

Stegle et al. 2012) (see Methods). We tested for association between every 

protein coding gene or long non-coding RNA and all autosomal variants (minor 

allele frequency, MAF > 0.05), where the gene-variant pair was located on 

different chromosomes.  We developed a standardized pipeline for filtering 

detectable false positives from trans-eQTL identification in RNA-seq data (Figure 

2-2). For example, one major source of artifacts arises from mapping errors in 

sequencing data, for which true cis-eQTL variants appear to regulate distal 

genes due to sequence similarity between distant regions of the genome (Battle 

et al. 2014).  To correct for this, we eliminated from consideration genes with 

poor mappability, variants in repetitive elements, and trans-eQTL associations 

between pairs of genomic loci that show evidence of cross-mapping (see 

Methods). 

https://paperpile.com/c/9rO0sV/EKKM+Ubby
https://paperpile.com/c/9rO0sV/EKKM+Ubby
https://paperpile.com/c/9rO0sV/BHat
https://paperpile.com/c/9rO0sV/BHat
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To identify trans-eQTLs, we tested for association between every protein-coding 

or lincRNA gene and all autosomal variants where the gene and variant were on 

different chromosomes. To minimize false positives in trans-eQTL detection, we 

controlled for the same observed and inferred confounders as in the cis-eQTL 

analysis, and further removed genes with poor mappability, variants in repetitive 

regions, and trans-eQTLs between pairs of genomic loci with evidence of RNA-

seq read cross-mapping due to sequence similarity (Figure 2-2). Applying this 

approach, we identified 673 trans-eQTLs at a 10% genome-wide FDR. This 

includes 112 distinct loci (R2 ≤ 0.2) and 93 unique genes (94 total gene 

associations, including a trans-eGene detected in both testis and thyroid) in 16 

tissues (Figure 2-3, Chapter A - Table S1).  
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Figure 2-1. Illustration of the 44 tissues and cell lines included in the GTEx v6p project with the associated 

number of cis- (left) and trans-eGenes (right) and sample sizes. 
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Figure 2-2. Pipeline of trans-eQTL identification. 

 

 

 

Figure 2-3. Number of trans-eQTLs across the 44 tissues. 



 12 

 

 

We investigated whether trans-eVariants were each associated with numerous target 

genes, which may reflect broad effects of regulatory loci, as have been reported in 

model organisms. Disambiguating true broad regulatory effects from artefacts remains 

an important challenge. In our primary analysis, we applied aggressive correction of 

potential confounders, controlling for 15–35 probabilistic estimation of expression 

residuals (PEER) factors capturing 59–78% of total variance in gene expression levels 

(Shabalin 2012; Stegle et al. 2012) . However, PEER and related approaches may also 

remove variance in gene expression levels arising from regulatory pathways and broad 

trans effects (Figure 2-4). Indeed, several loci with numerous associations were found in 

uncorrected data, but disappeared after controlling for PEER factors (Figure 2-5). Even 

after PEER correction, we observed evidence of eVariants with multiple targets; at 

genome-wide significance, four separate loci were associated with more than one trans-

eGene each (Table 2-1).  

https://paperpile.com/c/9rO0sV/EKKM+Ubby
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Figure 2-4. Percentage of variance explained in mRNA expression data by PEER factors 

 

 

Figure 2-5. trans-eQTL signal before and after PEER correction.  
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In each heatmap, the x-axis is the variants position, and the y-axis is the genes’ position. The color 

represent the strength of trans-eQTL signal, with blue dots being the strong signals. 

Table 2-1. LD blocks of trans-eVariants that are associated with multiple genes. 

 

 

We observed examples of trans-eQTLs shared across a subset of related 

tissues, such as an association between rs60413914 and RMDN3, a gene with 

increased expression levels in brain regions as compared to other tissue types, 

and for which the trans-eQTL had moderate effects in all tested brain regions but 

no strong effect in other tissues (Figure 2-6). Despite the high tissue-specificity of 
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trans-eQTLs observed, we did observe a small number of tissue-shared trans-

eQTLs, including rs7683255, which was moderately associated in trans with 

NUDT13 across most tested GTEx tissues with a consistent direction of effect 

(Figure 2-6). 

 

 

Figure 2-6. Examples of trans-eQTLs with shared effect and tissue-specific effect. 

a) An example of a trans-eQTL (rs7683255–NUDT13) originally identified in sun-exposed skin (10%, 

P ≤ 1.1 × 10−10, indicated by asterisk) that has a global effect across tissues. The lines represent 95% 

confidence intervals of the effect sizes. A thicker line indicates that this variant–gene pair is called significant 

at P ≤ 0.05 in the corresponding tissue. b) An example of a trans-eQTL (rs60413914–RMDN3) that is 

genome-wide significant in putamen (basal ganglia) (10% FDR, P ≤ 1.2 × 10−13, indicated by asterisk) that 

has an effect in all five brain tissues tested but shows little effect in other tissues. c) Expression levels 

(RPKM) of RMDN3 in all donors across 44 tissues. Box plots depict the IQR, whiskers depict 1.5× IQR. 

 

Methods 

trans-eQTL mapping 
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Matrix eQTL (Shabalin 2012) was used to test all autosomal variants 

(MAF > 0.05) using the same expression filters as cis-eQTL mapping, but 

restricted to variants and genes lying on different chromosomes, in each tissue 

independently using an additive linear model. For trans-eQTL mapping, we 

tested variants for association with expression of only protein coding or lincRNA 

genes. We included as covariates the three genotype PCs, genotyping platform, 

sex, and PEER factors estimated from expression data in Matrix eQTL when 

performing association testing. The correlation between variant and gene 

expression levels was evaluated using the estimated t statistic from this model, 

and corresponding FDR was estimated using Benjamini–Hochberg FDR 

correction (Benjamini and Hochberg 1995) separately within each tissue and also 

using permutation analysis. We performed restricted trans-eQTL association 

tests by filtering the set of variants considered in three ways. First, we filtered the 

final VCF files using linkage disequilibrium pruning (R2 > 0.5, plink parameters –

indep 50 5 2), removing approximately 90% of variants. Second, from the original 

VCF file, we performed association mapping using only the most significant 

GTEx cis-eQTL per eGene per tissue. Third, from the original VCF file, we 

performed association mapping using only variants that had been found to have 

a trait association in a genome-wide association study (Welter et al. 2014) 

(P ≤ 2.0 × 10−5). The three association mapping analyses and FDR estimation 

were performed in each tissue separately. For all trans association tests, we 

applied stringent quality control to account for potential false positives due to 

RNA-seq read mapping errors, repeat elements, and population stratification. 

https://paperpile.com/c/9rO0sV/EKKM
https://paperpile.com/c/9rO0sV/s7PS
https://paperpile.com/c/9rO0sV/xtvE
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Trans-eQTL Quality Control 

Quality control for trans-eQTLs was performed as follows. Mappability of every k-

mer of the reference human genome (hg19) computed by the ENCODE 

project35 has been downloaded from the UCSC genome browser (accession: 

wgEncodeEH000318, wgEncodeEH00032)76. We have computed the exon- and 

untranslated region (UTR)-mappability of a gene as the average mappability of 

all k-mers in exonic regions and UTRs, respectively. We have chosen k = 75 for 

exonic regions, as it was the closest to GTEx read length among all available 

values of k. However, as UTRs are generally small regions, and 36 is the 

smallest among WWW.NATURE.COM/NATURE | 12 doi:10.1038/nature24277 

RESEARCH SUPPLEMENTARY INFORMATION all possible values of k, we 

have chosen k = 36 for UTRs. Finally, mappability of a gene is computed as the 

weighted average of its exon-mappability and UTR-mappability, weights being 

proportional to the total length of exonic regions and UTRs, respectively. We 

excluded from association testing any gene with mappability < 0.8. The set of 

genetic variants tested have also been reduced by first filtering out all variants 

with MAF < 0.05 in donors sampled for the tissue being tested (reducing the 

variant set to 6,226,121), and then filtering out all variants that are annotated by 

RepeatMasker to belong to a repeat region http://www. repeatmasker.org, 

release library version 20140131 for hg19. This filtering reduced the number of 

variants tested by roughly 53.6%, from 6,226,121 variants to 2,889,379. 

Genotyping in these regions remains subject to potential errors from probe 
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mislocalization due to sequence similarity across the genome. Furthermore, 

nearby linked variants can still capture signal from these regions for strong 

associations. Next, we aligned every 75-mer in exonic regions and 36-mers in 

UTRs of every gene with mappability below 1.0 to the reference human genome 

(hg19) using Bowtie (v 1.1.2) (Langmead et al. 2009). If any of the alignments 

started within an exon or a UTR of another gene, then that pair of genes are 

cross-mappable. We excluded from consideration any variant-gene pair where 

the variant is within 100 Kb of a gene that cross-maps with the potential trans-

eQTL target gene. While controlling for three genotype PCs should capture the 

most broad effects of ancestry, we additionally checked for residual evidence of 

strong correlation with a larger set of 20 genotype PCs (Chapter A - Figure S2). 

We observed a modest increase in correlation among trans-eVariants(Chapter A 

- Figure S3). While we opted not to apply further filtering, we have flagged any 

trans-eVariant with maximum correlation greater than 99% of the levels observed 

among random variants for use in downstream analyses that may depend on 

ancestry. 

Discussion 

Here, we presented an analysis of the trans regulation of gene expression by 

genetic variation, measuring association in expression data from 449 individuals 

and 44 human tissues in the GTEx project data. We identified 93 trans-eGenes 

from 18 tissues, and observed an enrichment for coincident cis regulatory effects 

and GWAS associations. We observed that trans-eQTL effects are moderately 

https://paperpile.com/c/9rO0sV/QHZF
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shared across tissues, but exhibit much greater tissue-specificity than cis-eQTLs. 

This increased tissue-specificity was also reflected in greater enrichment in 

overlap with enhancer elements. Testis trans-eVariants were highly enriched in 

Piwi-interacting RNA clusters, suggesting a possible general mechanism for 

these trans-eQTLs across tissues; it remains to directly assess the mediation of 

regulatory effects by Piwi-interacting RNAs and to determine the tissue specificity 

of the piRNA clusters.  

 

Trans-eQTL detection remains limited by power and relative effect size, and also 

by challenges in disentangling broad regulatory effects from artifacts in gene 

expression data (Montgomery and Dermitzakis 2011; Battle et al. 2014; 

Grundberg et al. 2012). While it is essential to aggressively control for these 

unobserved confounders in order to avoid false positives, this may obscure the 

effects of the broadest trans-eQTLs and master regulatory elements, as 

evidenced by the trans-eQTL signals diminish after PEER correction. However, 

in the GTEx trans-eQTL data, we observed evidence of trans-eVariants 

associated with multiple genes.   

 

This study represents the largest multi-tissue study of trans-eQTLs to date, 

allowing a more complete characterization of distal regulatory effects and a 

greater understanding of the genome-wide, tissue-specific consequences of 

genetic variation on gene expression relevant to complex human traits. 

 

https://paperpile.com/c/9rO0sV/lchC+BHat+eoyM
https://paperpile.com/c/9rO0sV/lchC+BHat+eoyM
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From the eQTLs across tissues, we observed interesting patterns of shared eQTL and 

tissue-specific eQTLs. This motivates me to capture and characterize tissue-specificity 

patterns underlying the eQTL effects across tissues. Several methods have been 

developed to capture the underlying tissue-specific architecture in eQTLs, including 

heuristic methods and statistical frameworks that perform meta-analysis. However, 

neither class of method addresses the inherent patterns of similarity of multiple tissues, 

which may be relevant to patterns of shared mechanism. Thus I continue to develop an 

interpretable statistical tool to capture the tissue-specificity patterns of eQTLs, while 

accounting for patterns of similarity for the tissues. 
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Chapter 3 Tissue-specific and tissue-sharing 
genetic effects revealed by latent factors across 
eQTLs in human tissues 

Contributions 

I led this project. My main contributions to this work include: 

- Design the study with Casey Brown and Alexis Battle 

- Perform all the analysis 

The work described in this chapter was published in (Y. He et al. 2020). The text 

of this chapter is a slight modification of the published work. 

 

Abstract 

Genetic regulation of gene expression, revealed by expression quantitative trait 

loci (eQTLs), exhibits complex patterns of tissue-specific effects. 

Characterization of these patterns may allow us to better understand 

mechanisms of gene regulation and disease etiology. We develop a constrained 

matrix factorization model, sn-spMF, to learn patterns of tissue-sharing and apply 

it to 49 human tissues from the Genotype-Tissue Expression (GTEx) project. The 

learned factors reflect tissues with known biological similarity and identify 

transcription factors that may mediate tissue-specific effects. sn-spMF, available 

at https://github.com/heyuan7676/ts_eQTLs , can be applied to learn biologically 

https://paperpile.com/c/9rO0sV/F3kX
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interpretable patterns of eQTL tissue-specificity and generate testable 

mechanistic hypotheses. 

Introduction 

From GTEx results, we observe that the cis-eQTLs exhibit patterns of tissue-

sharing and tissue-specificity. This aligns with the common sense that tissues in 

the human body carry out universal cellular processes in addition to performing 

highly specialized functions. These processes and functions are driven in large 

part by patterns of gene expression in each cell type. Characterizing the tissue 

sharing and tissue specificity of genetic effects on gene expression is therefore 

critical to understanding how genetic variation leads to phenotypic changes.  

 

Several methods have been developed to capture the underlying tissue-specific 

architecture in eQTLs across tissues. The simplest such method is based on the 

effect sizes or P values of eQTLs to identify eQTLs specific to individual tissues 

or cell types (Gutierrez-Arcelus et al. 2015; McKenzie et al. 2014). This method, 

while easily implemented, requires subjective thresholds and ignores the 

underlying similarity of tissues. Statistical frameworks have been developed to 

jointly analyze eQTLs from different datasets, such as eQTL-BMA and Meta-

Tissue (Flutre et al. 2013; Sul et al. 2013). These methods are more 

computationally demanding but potentially more accurate in their estimation of 

tissue specificity. However, neither class of method addresses the inherent 

patterns of similarity of multiple tissues in datasets such as GTEx, which may be 

https://paperpile.com/c/9rO0sV/L2i7+FBw7
https://paperpile.com/c/9rO0sV/xIsBi+BrOU
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relevant to patterns of shared mechanism. Manually identifying relevant 

groupings of tissues is not always obvious or feasible, and, furthermore, such 

groupings do not form mutually exclusive sets of tissues.   

 

Matrix factorization applied to eQTL statistics offers a more flexible and natural 

approach for identifying underlying patterns across eQTLs that may indeed better 

reflect biological mechanisms which likewise act across related, non-mutually 

exclusive subsets of tissues or samples (Strober et al. 2019). Recently, matrix 

factorization has been applied in a Bayesian setting to capture the structure of 

genetic regulation in human tissues, however specific modelling choices for 

factorizing eQTL effects in various domains remain to be comprehensively 

evaluated (Wang, Stephens. 2018). It is further unexplored what insights into 

regulatory mechanisms and functional consequences can be gained by 

evaluating these complex patterns of universal and tissue-specific eQTL effects. 

Results 

Matrix factorization of multi-tissue eQTL effects 

The effect of eQTL variants on gene expression varies across tissues, as has 

been previously observed (GTEx Consortium et al. 2017; Nica et al. 2011; Dimas 

et al. 2009). To better understand common patterns of genetic impact across 

tissues and to characterize the mechanisms that underlie tissue-specificity, we 

developed and applied a matrix factorization model called semi-nonnegative 

sparse matrix factorization (sn-spMF). The model overall seeks to decompose an 

https://paperpile.com/c/9rO0sV/iXGD5
https://arxiv.org/search/stat?searchtype=author&query=Wang%2C+W
https://arxiv.org/search/stat?searchtype=author&query=Stephens%2C+M
https://paperpile.com/c/9rO0sV/fEqx+Wht9+3EEC
https://paperpile.com/c/9rO0sV/fEqx+Wht9+3EEC
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input matrix of eQTL effect sizes in each tissue (regression parameters from a 

linear model for eQTL mapping) into underlying patterns of tissue-sharing and 

tissue-specificity. This model assumes that the effect size vector of one eQTL 

across tissues can be approximated as a linear combination (weighted sum) of 

learned “factors,” where every factor is a vector representing one common 

pattern of eQTL effect sizes across tissues (Figure 3-1). When many entries in 

the factor are small or zero, as our model will enforce, a factor points to a subset 

of tissues that are commonly affected by the same eQTLs. Then, for a given 

eQTL, the loadings, or “weights,” on each factor reflect how strongly that eQTL’s 

effects are explained by that factor (and corresponding non-zero tissues). Given 

a multi-tissue dataset of eQTL association statistics as input, we identified a set 

of explanatory tissue factors by minimizing an objective function combining two 

components: (1) a weighted squared error term that captures how well the 

learned weights and factors reconstruct the observed eQTL effect sizes and (2) a 

regularization term that encourages sparsity, or many zero entries, in both factors 

and weights through an L1 penalty (Figure 3-1). Since it has previously been 

shown that inconsistent directions of effect for eQTLs will often arise from allelic 

heterogeneity rather than true sharing (Wen, Luca, and Pique-Regi 2015; Casale 

et al. 2017), we constrained factors to be nonnegative. 

 

 

https://paperpile.com/c/9rO0sV/xjqN+Qi39
https://paperpile.com/c/9rO0sV/xjqN+Qi39
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Figure 3-1. Matrix factorization model to dissect eQTL effects across tissues. 

a) Simplified examples of the relationship between eQTL effect sizes and factors. eQTL1: the effect of an 

eQTL in the spleen can be represented by a spleen-specific factor. eQTL2: the effect of an eQTL in all nine 
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tissues can be summarized as a ubiquitous effect across all tissues. eQTL3: the effect of an eQTL in four 

brain tissues and three skin tissues can be summarized as the summation of brain-specific effect and skin-

specific effect. b) Learning factors underlying eQTL effects from GTEx. X matrix represents the effect size of 

eQTLs across tissues (see the “Methods” section). Patterns of tissue-sharing and tissue-specificity are 

observed in X. Matrix factorization is implemented to learn the factor matrix F, where each factor captures a 

pattern of eQTL effect sizes across tissues. c) Matrix W represents the weights for each eQTL across 

tissues. Each weight is the reciprocal of the standard error. d) The objective function in sn-spMF, where α 

and λ are sparsity penalty parameters, and D is the number of eQTLs. 

 

 

 

By optimizing the objective function using alternating least squares applied to the 

GTEx v8 data across 49 tissues, we learned a factor matrix F with 23 factors 

(see the “Methods” section, Chapter B: Figure S1, S2). These factors can be 

categorized into two major types: a ubiquitous factor, which captures eQTLs with 

largely consistent effects across all 49 tissues, and tissue-specific factors, which 

reflect effects only found among subsets of individual tissues. Tissue-specific 

factors include two subtypes: 8 factors representing combinations of tissues and 

14 factors representing single tissues. Each of the 8 multi-tissue factors involves 

closely related tissues. For example, factor 2 represents effects of eQTLs in 13 

brain regions; factor 15 represents effects in transverse colon and small intestine. 

For interpretability, each factor is named based on the tissues it represents 

(Chapter B: Figure S2). In total, 41 out of 49 tissues are represented by non-zero 

values in at least one tissue-specific factor. The 8 tissues that do not appear in 

any tissue-specific factor have significantly smaller sample sizes compared to the 

41 tissues captured by one or more factors (two-sided t test P value =0.024, 
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Chapter B Table S1), and thus, fewer eQTLs are detected that are unique to 

those tissues. 

 

Identification of ubiquitous and tissue-specific eQTLs using sn-spMF 

For each individual eQTL, we identified the relevant patterns of tissue-sharing 

and tissue-specificity by estimating the contribution from each of our learned 

factors to the eQTL’s effect sizes, using a second pass of weighted linear 

regression (see the “Methods” section). The observed patterns of tissue-sharing 

and tissue-specificity and how they are decomposed by matrix factorization are 

illustrated in the four following examples. First, an eQTL for GLT1D1 is highly 

specific to the liver and loads only on the corresponding liver factor (Figure 3-2). 

Second, an eQTL for AATF loads on the brain tissue factor and the tibial nerve 

factor to explain its combined effect size profile (Figure 3-2). Although this eQTL 

has small effects (or large variance) in some brain subregions, the model is able 

to identify a brain-wide effect as a likely explanatory factor for this eQTL. Third, 

an eQTL for U2AF1 with relatively consistent effects across tissues loads only on 

the ubiquitous factor (Figure 3-2). Finally, an eQTL for CD14 has consistent 

effects across all tissues in addition to a stronger effect specific to the testis 

(Figure 3-2). 
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Figure 3-2. Assignment of eQTLs to factors. 

Effect sizes and 95% confidence intervals of four eQTLs across 49 tissues are illustrated. The fitted linear 

combination of factors for the eQTL is displayed in gray scale at the right of each panel. Faded colors 

indicate factors with coefficients with FDR ≥ 0.05. Asterisk on the tissue indicates that this eQTL was 

significant with FDR < 0.05 in that tissue. a) A liver-specific eQTL (GLT1D1-rs1012994). b) An eQTL (AATF-

rs76014915) with activity in brain tissues and tibial nerve. c) A ubiquitous eQTL (U2AF1-rs234719). d) An 

eQTL (CD14-rs2563249) with ubiquitous and testis-specific effects 
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In summary, 1,076,761 eQTLs (20% of tested eQTLs) load on the ubiquitous 

factor; we refer to these eQTLs as “ubiquitous eQTLs” (u-eQTLs). For each 

tissue-specific factor, 76,976 to 431,585 eQTLs (1.5 to 8.1 % of tested eQTLs) 

have significant loadings; we call these eQTLs “tissue-specific eQTLs” (ts-

eQTLs) (Figure 3-3, Chapter B Table S2). Identified ts-eQTLs do not appear to 

result from genes with low levels of tissue-specific gene expression (Capture B - 

Figure S3). In total across factors, 2,821,650 eQTLs (53% of tested eQTLs) are 

found to use at least one tissue-specific factor (Figure 3-3). There are 638,784 

eQTLs that load on both the ubiquitous factor and tissue-specific factors (59% of 

the u-eQTLs and 22% of the ts-eQTLs, Figure 3-3), indicating that in addition to a 

broad, shared effect across tissues, these eQTLs have a much stronger effect on 

expression in a particular subset of tissues. eQTLs tend to load on a small set of 

tissue-specific factors, with 3,083,103 eQTLs (99% among the eQTLs loaded on 

at least one factor) using less than six tissue-specific factors (Figure 3-3). 
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Figure 3-3. Identification of tissue-specific and ubiquitous eQTLs. 

a) Fraction of tested eQTLs that load on each factor. b) Fraction of eQTLs that load on ubiquitous and 

tissue-specific factors. c) The overlap of tested eQTLs that loaded on the ubiquitous factor (u-eQTLs) and 

any tissue-specific factor (ts-eQTLs). d) Fraction of eQTLs that load on different numbers of tissue-specific 

factors. eQTLs that load with a specific number of ts-factors can fall into one of two categories: those with 

the ubiquitous factor and those with only ts-factors. The figure shows the fraction of tested eQTLs that load 

on each number of ts-factors with colors to show the contribution for each category. e) Fraction of eQTLs 

with activity in different numbers of tissues. The numbers of unique tissues represented in the set of factors 

for each eQTL are summed. 

 

The number of factors an eQTL loads on should provide a more biologically 

interpretable indication of the number of independent contexts in which an eQTL 

is active, rather than simply counting individual significant tissues. Datasets often 

contain multiple similar or even duplicate tissues, such as the thirteen brain 

regions in GTEx, or the two skin tissues that only differ by sun exposure. It may 
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be misleading to count a neuron-specific eQTL as active in thirteen tissues, not 

at all comparable to a very general eQTL active in thirteen highly distinct tissues. 

Here, we demonstrate that eQTLs tend to be active in just a few factors, tailing 

off rapidly, but these factors sometimes correspond to numerous tissues (Figure 

3-3), providing some interpretation for the familiar “U-shape” curve that has been 

reported previously (The GTEx Consortium 2015; GTEx Consortium 2020). 

However, we note that 8 tissues are not significantly represented by any tissue-

specific factor and, therefore, cannot be captured in this analysis (Chapter B 

Table S1). 

 

Matrix factorization improves biological interpretation over heuristic 

methods of determining tissue relevance 

The method most commonly used to identify ts-eQTLs is simply to apply heuristic 

thresholds based on effect sizes, P values, or meta-analysis results for individual 

tissues (Gutierrez-Arcelus et al. 2015; McKenzie et al. 2014; Sul et al. 2013; 

Dimas et al. 2009). If an eQTL statistic exceeds the chosen threshold for a given 

tissue, and remains below another threshold for other tissues, it is considered to 

be tissue-specific. None of these approaches consider common patterns of 

tissue-sharing and may obscure eQTL mechanisms shared across a subset of 

tissues (such as the brain or endothelium) unless they were manually predefined 

for investigation. Moreover, none of these approaches handle complex patterns 

of tissue-specificity, where an eQTL influences more than one tissue or 

predefined set, but is not universally shared. 

https://paperpile.com/c/9rO0sV/2YO3+lP7rG
https://paperpile.com/c/9rO0sV/L2i7+FBw7+BrOU+3EEC
https://paperpile.com/c/9rO0sV/L2i7+FBw7+BrOU+3EEC
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Based on heuristic thresholds on individual tissue P values (heuristic 1, see the 

“Methods” section), we identified 312,502 u-eQTLs and between 1374 and 

102,414 ts-eQTLs per tissue—far fewer eQTLs are confidently assigned to each 

category compared to results from sn-spMF (Chapter B: Figure S4; Chapter B 

Table S2). This difference is partly because standard heuristic methods allow 

only one pattern (a single tissue or a ubiquitous effect) to be assigned to each 

eQTL, while matrix factorization allows multiple factors and tissues to be involved 

in explaining the effect size of an eQTL (Chapter B: Figure S5). In addition, 

heuristic methods often miss small effects from similar tissues, while matrix 

factorization is able to aggregate effects for similar tissues (Figure 3-2). We also 

tried manually grouping together tissues with clear shared biology and applying 

heuristic thresholds based on these (heuristic 2, see the “Methods” section, 

Chapter B Table S3), resulting in 175,637 u-eQTLs and between 1460 and 

201,584 ts-eQTLs (Chapter B: Figure S6, S7). In subsequent sections, we show 

that matrix factorization allows for the identification of more biologically coherent 

eQTLs than heuristic approaches by comparing sn-spMF to the standard 

approach defined by heuristic1. We also show that manually defined tissue sets 

as in heuristic2 offer only small gains over heuristic1 and do not perform as well 

as matrix factorization either. 

 

Tissue-specific eQTL gene function 

To examine the functional relevance of ts-eQTL genes, we ran enrichment 

analysis using biological processes from the Gene Ontology (GO) project. We 
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first evaluated genes with ts-eQTLs and no u-eQTL. For sn-spMF, these eQTL 

genes are enriched for 546 unique GO terms at FDR < 0.05 (Chapter B: Figure 

S8), and the top enriched GO terms are relevant to the corresponding tissues 

(Chapter B: Figure S9, S10, S11). The ts-eQTL genes from heuristic methods, 

however, are less enriched in GO biological processes (at FDR < 0.05, 110 

enriched for heuristic1, 421 enriched for heuristic2, Chapter B: Figure S12). 

After initial enrichment analysis, we used a more stringent definition of tissue-

specificity to restrict the analysis to the genes most unique to each factor. For sn-

spMF, we selected genes appearing in less than 6 tissue-specific factors (on 

average 252 genes per factor). A total of 64 unique GO terms are enriched at 

FDR < 0.1. The enriched GO terms are related to the matched tissue(s) of the 

eQTLs (Figure 3-4). For example, five GO terms are enriched among liver-

specific genes including four metabolic processes (for steroid, drug, uronic acid, 

and flavonoid) and response to xenobiotic stimulus, each relevant to liver 

function. For heuristic1, we selected genes appearing in less than 7 tissues (on 

average 325 genes per tissue); for heuristic2, we selected genes appearing in 

less than 6 subsets of tissues (on average 243 genes per subset), such that the 

gene sets are of comparable sizes. No GO term is enriched among these gene 

sets for heuristic1, and one GO term is enriched for heuristic2 (Chapter B: Figure 

S12). These results indicate that sn-spMF is able to identify eQTL genes with 

biological functions relevant in the corresponding tissues more effectively than 

heuristic methods, even with comparably stringent definitions of tissue-specific 

eQTL genes providing similar numbers of genes for analysis. 
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Figure 3-4. Enriched GO terms for eQTL genes from sn-spMF at FDR < 0.1. 

Color represents the level of enrichment (− log10P value). The significantly enriched GO terms are annotated 

by numbers representing the odds ratio. To compute the OR for each factor, background genes include all 

genes tested for the represented tissues in the factor. GO terms and factors are ordered by hierarchical 

clustering. Examples of relevant GO terms in related tissues are annotated 

 

eQTL variant enrichment in cis-regulatory regions 

eQTL variants are enriched in cis-regulatory elements, including cell type-specific 

promoters and enhancers (GTEx Consortium et al. 2017; Albert and Kruglyak 

2015; Ongen et al. 2014). Consistent with prior observations, u-eQTL variants 

identified by sn-spMF are more enriched in promoters (OR =1.9, P value 

< 2.2×10−16) than ts-eQTL variants (OR =1.5, P value < 2.2×10−16), while ts-eQTL 

variants are more strongly enriched in enhancers (OR = 1.3, P value =8.5×10−12) 

than u-eQTL variants (OR =1.0, P value =0.40, Chapter B: Figure S13) 

(Heintzman et al. 2009; Ernst et al. 2011). Moreover, ts-eQTL variants are more 

likely than u-eQTLs to overlap enhancers whose activity is restricted to a small 

number of tissues (Chapter B: Figure S14). Compared to sn-spMF, heuristically 

defined ts-eQTLs exhibit comparable enrichment magnitude in enhancers (for 

heuristic1, OR = 1.3, P value = 7.8×10−8; for heuristic2, OR = 1.4, P value = 

4.2×10−5), but sn-spMF provides an order of magnitude more ts-eQTLs (Chapter 

B: Figure S4, S6). While heuristic methods identify highly tissue-specific eQTLs 

by selecting those with effects clearly limited to a single tissue or a subset of 

tissues, sn-spMF identifies many more eQTLs relevant to each tissue-specific 

factor, each related to a shared set of cis-regulatory elements. 

https://paperpile.com/c/9rO0sV/fEqx+VrxI+ZAJJ
https://paperpile.com/c/9rO0sV/fEqx+VrxI+ZAJJ
https://paperpile.com/c/9rO0sV/VXOk+9Swk
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eQTL enrichment in transcription factor binding sites 

To systematically assess whether eQTLs for each factor are enriched in binding 

sites for specific TFs, we performed enrichment analysis for each of the 579 TF 

motifs available in the JASPAR database (Khan et al. 2018). As a proxy for TF 

binding sites (TFBS) in individual tissues, we identified TF motif instances 

overlapping predicted enhancers and promoters (Ernst and Kellis 2017; 

Roadmap Epigenomics Consortium et al. 2015; Spitz and Furlong 2012; Whitfield 

et al. 2012). 

Enrichment analysis was performed separately for TFBS in promoters and TFBS 

in enhancers (see the ‘Methods’ section). In promoters, u-eQTLs and ts-eQTLs 

are enriched for TFBS of 136 and 181 unique TFs (median =21 across factors), 

respectively (FDR < 0.05, Figure 3-5). In enhancers, u-eQTLs and ts-eQTLs are 

enriched for TFBS of 39 and 264 unique TFs (median =41 across factors), 

respectively (FDR < 0.05, Figure 3-5). Among these 264 TFs, 244 (92%) are 

enriched for fewer than six tissue-specific factors (Figure 3-5). Zero to 23% 

(among factors, median 4%) of TFs are enriched in both promoters and 

enhancers (Chapter B: Figure S15). These results indicate that ts-eQTLs are 

more enriched in binding sites of particular TFs in enhancers than promoters, 

while u-eQTLs yield more enrichment in promoters than enhancers. The 

heuristic1 approach for identifying ts-eQTLs yields only 5 TFs enriched in 

promoters and 47 TFs enriched in enhancers. Similarly, there are fewer TFs 

enriched for heuristic u-eQTLs (59 in promoters, and 8 in enhancers, Figure 3-5, 

https://paperpile.com/c/9rO0sV/PTNE
https://paperpile.com/c/9rO0sV/1tcR+DOCZ+VNoc+Nesr
https://paperpile.com/c/9rO0sV/1tcR+DOCZ+VNoc+Nesr
https://paperpile.com/c/9rO0sV/1tcR+DOCZ+VNoc+Nesr
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Chapter B: Figure S16). Heuristic2 yields 9 TFs enriched in promoters and 51 

TFs enriched in enhancers for ts-eQTLs, and 97 TFs enriched in promoters and 

4 TFs enriched in enhancers for u-eQTLs. The relatively low enrichment of TFBS 

from heuristically identified eQTLs is presumably due to the much more limited 

number of eQTLs identified in each category. 
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Figure 3-5. Enrichment of TFBS for u-eQTLs and ts-eQTLs. 
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a) Number of TFs whose binding sites are enriched for eQTLs across factors at FDR < 0.05 for sn-spMF, 

flashr bf, and heuristic 1 methods. Enh, enhancers; TssA, active transcription start sites. b) Total number of 

TFs with binding sites enriched for either only u-eQTLs, or only ts-eQTLs, or both. c) Distribution of the 

number of tissue-specific factors each TF is enriched in. d)–f) Enrichment for example TFs among eQTLs 

across each factor (− log10(P value)) where the TF was expressed in corresponding tissues for d FOSL2, e 

GATA4, and f HNF4A. Black bars represent that the BH-corrected P value is < 0.05 

 

Impact of matrix factorization methodological choices 

In addition to our sn-spMF model, there are a variety of matrix factorization 

approaches available. Methodological choices include the selection of priors on 

loading and factor entries, which may encourage sparsity or other properties, 

nonnegativity constraints, and hyper-parameter selection. 

We compared our method to several matrix factorization methods using 

simulated data (see the “Methods” section). We ran singular value decomposition 

(SVD) and nonnegative matrix factorization (NMF) as they are commonly used in 

matrix factorization. We also implemented matrix factorization with various 

constraints, including sparse SVD (SSVD), penalized matrix decomposition 

(PMD), softImpute, and nonparametric Bayesian sparse factor analysis (NBSPA) 

(Yang, Ma, and Buja 2014; Witten, Tibshirani, and Hastie 2009; Bhattacharjee 

and Bayzid, n.d.; Knowles and Ghahramani 2011). PMD penalizes the two 

decomposed matrices using either one penalty parameter scaled by the 

dimensions for each decomposed matrix (PMD CV1) or two separate penalty 

parameters (PMD CV2). Finally, we applied flashr, a recent method which uses a 

Bayesian framework to automatically learn the sparse structure of effects across 

https://paperpile.com/c/9rO0sV/7glR+KPWG+v6vH+JFAT
https://paperpile.com/c/9rO0sV/7glR+KPWG+v6vH+JFAT
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tissues (Wang and Wang, n.d.). Flashr was run with default setting (flashr 

default), greedily adding factors followed by backfitting (flashr bf) and with 

nonnegative priors (flashr NN).To evaluate the performance of these methods on 

simulated data, we computed the correlation between the learned loadings and 

the true loadings, and the correlation between the learned factors and the true 

factors, as well as the precision and recall for true u-eQTLs and ts-eQTLs. We 

observed that sn-spMF and flashr NN achieve the most accurate loading matrix 

and factor matrix, and the highest precision and recall for correctly identifying u-

eQLTs and ts-eQTLs (Chapter B: Figure S17, S18), followed by other flashr 

approaches, NBSPA, and softImpute. Sparsity appears to confer some benefit in 

accuracy and interpretability of factors. 

Based on strong performance in simulation, we also applied flashr methods to 

the GTEx data, each capturing both ubiquitous and sparse factors (Chapter B: 

Figure S19). We first discuss flashr bf, which displayed the strongest 

performance of the flashr methods on GTEx, in detail. Each flashr bf factor is 

somewhat more dense (more non-zero entries) than sn-spMF factors (Chapter B: 

Figure S20, S21). We then identified flashr bf factors relevant to each eQTL 

using the same second pass linear regression pipeline as in sn-spMF. We thus 

identified 1,929,939 u-eQTLs and 69,594 to 929,009 ts-eQTLs. 

Flashr bf ts-eQTL genes are comparably enriched for GO biological processes as 

sn-spMF factors, far exceeding heuristic ts-eQTL genes, with 593 enriched 

pathways (FDR < 0.05). However, flashr bf eQTL variants are not strongly 

enriched in enhancers (OR =1.1, Chapter B: Figure S22). This appears to be due 

https://paperpile.com/c/9rO0sV/IyXy
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to the denser flashr bf factors not isolating tissue-specific effects from ubiquitous 

effects as strongly. Assessing TF enrichment, however, because analysis is 

restricted to variants within enhancers identified in relevant tissues, is still able to 

identify enrichment for 197 TFBS across flashr bf factors (Figure 3-5). While 

regulatory element enrichment appears sensitive to matrix factorization 

methodological choices, both versions of matrix factorization show advantages 

over heuristic approaches for identifying tissue-relevant eQTL genes and for 

identifying particular transcription factors whose binding sites are impacted by ts-

eQTL variants. Finally flashr bf, does not include nonnegativity constraints on the 

factors, thus complicating interpretation of latent patterns and tissue-specificity. 

For example, we found that factors that contain tissues with different signs do not 

correspond well to patterns in the actual eQTL effect sizes—only 19–35% of 

eQTLs that mapped to such mixed sign factors actually display opposite sign 

eQTL effects in the corresponding tissues (Chapter B: Figure S23). 

For thorough comparison, we also applied other matrix factorization methods 

including flashr with default parameter setting (flashr default), flashr with 

nonnegative prior (flashr NN), softImpute, and PMD to the GTEx dataset (see the 

“Methods” section, Chapter B: Figure S24 - S29). These methods did not offer 

performance gains over flashr bf or sn-spMF (Chapter B: Figure S20, S21, S22, 

S30; Chapter B Table S4, S5, S6, S7). In particular, flashr NN provided sparse, 

interpretable tissue factors but suffered from multicollinearity making it difficult to 

distinguish ts-eQTLs from u-eQTLs (Chapter B: Figure 25, (Stine 1995)). Overall, 

we conclude that the sparsity constraint on decomposed matrices is crucial to 

https://paperpile.com/c/9rO0sV/FRRM
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distinguish ts-eQTLs from u-eQTLs, and that depending on optimization 

approach, a nonnegativity constraint on factors can be helpful in interpreting the 

identified patterns of tissue-specificity. 

 

Transcription factors enriched in u-eQTLs and ts-eQTLs 

Given the limited systematic research on the consequences of genetic variation 

within tissue-specific TFBS, we examined the characteristics of TFBS enriched in 

ts-eQTLs for each factor and in u-eQTLs. We focused on the TFBS found within 

enhancers because of their generally increased tissue-specific functions 

(Chapter B: Figure S13, S14). Binding sites for TFs with broad activity are 

enriched for u-eQTLs, such as CCAAT/enhancer-binding proteins (CEBPB, 

CEBPD, CEBPG), T-box 1 (TBX1), and AP-1 Transcription Factor Subunit 

FOSL2 (Lynch, May, and Wagner 2011; Ko, Chang, and Wang 2015; 

Papaioannou 2014; Hess, Angel, and Schorpp-Kistner 2004) (Figure 3-5). The 

enrichment of these TFBS in u-eQTLs reflects their participation in a wide range 

of regulatory processes across tissues. 

The enrichment of binding sites for 264 TFs in ts-eQTLs demonstrates their role 

in regulating gene expression in particular subsets of tissues corresponding to 

each factor. Among these, binding sites for 172 TFs display enrichment in ts-

eQTLs for multiple factors with biologically plausible patterns across tissue 

groups. For example, hepatic nuclear factor HNF1A, known to be crucial for the 

development and function of the liver, pancreas, and gut epithelium, are enriched 

for the liver-specific eQTLs, pancreas-specific eQTLs, and ts-eQTLs for a factor 

https://paperpile.com/c/9rO0sV/uan5+kcQ8+ffp1+MoBa
https://paperpile.com/c/9rO0sV/uan5+kcQ8+ffp1+MoBa
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reflecting the colon and small intestine (Servitja et al. 2009; D’Angelo et al. 

2010). Furthermore, 92 TFBS are enriched in ts-eQTLs for one tissue-specific 

factor. Examples include binding sites for the well-characterized cardiac TF 

GATA4, which are enriched for heart-specific eQTLs (A. He et al. 2014; Ang et 

al. 2016) (Figure 3-5); hepatocyte nuclear factor HNF4A, which are enriched for 

liver-specific eQTLs (Hayhurst et al. 2001; Parviz et al. 2003) (Figure 3-5); and 

myogenic factor 4 MYOG, which are enriched for skeletal muscle-specific eQTLs 

(Hasty et al. 1993) (Chapter B: Figure S31). We continue to explore two TFs in 

more detail in the following sections. More examples of enriched TFs with 

previously characterized tissue-specific functions can be found in Chapter B: 

Figure S31 and Chapter B Table S8. 

 

Heart-specific eQTLs are enriched in GATA4 binding sites 

Previous studies have demonstrated the essential roles of GATA4 in heart 

morphogenesis (Kuo et al. 1997). In mouse studies, GATA4 has been shown to 

recruit the histone acetyltransferase p300 in a tissue-specific manner in the heart 

(A. He et al. 2014). This GATA4-p300 complex deposits H3K27ac at cardiac 

enhancers, thus stimulating transcription of genes necessary for heart 

development. In humans, missense mutations in GATA4 are associated with 

multiple heart diseases such as cardiac septal defects and cardiomyopathy 

(Chen et al. 2016; J. Li et al. 2014). However, common genetic variants affecting 

GATA4 TFBS have not previously been shown to be enriched for effects on 

expression in cardiac tissues. Binding sites of GATA4 in heart enhancers are 

https://paperpile.com/c/9rO0sV/NA6Q+4d9q
https://paperpile.com/c/9rO0sV/NA6Q+4d9q
https://paperpile.com/c/9rO0sV/L9Jh+Qlsm
https://paperpile.com/c/9rO0sV/L9Jh+Qlsm
https://paperpile.com/c/9rO0sV/XGxA+0GlK
https://paperpile.com/c/9rO0sV/lHBV
https://paperpile.com/c/9rO0sV/4bcz
https://paperpile.com/c/9rO0sV/L9Jh
https://paperpile.com/c/9rO0sV/yz02+NhXj
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enriched for heart-specific eQTLs (OR =1.7, P value =0.004, Figure 3-5), 

highlighting the importance of GATA4 in normal physiological conditions of the 

heart. Among the 48 genes loading on the heart-specific eQTL factor with 

variants located in TFBS of GATA4, we note that STAT3 has been reported to 

exhibit a crucial role in cardiomyocyte resistance to physiological stress stimuli 

(Haghikia et al. 2014). 

 

Liver-specific eQTLs are enriched in HNF4A binding sites 

Variants in liver-specific HNF4A binding sites are enriched for eQTLs loading on 

the liver-specific factor (OR =2.9, P value =3.3×10−5, Figure 3-5). The enrichment 

of HN4FA binding sites has not been previously identified among liver eQTLs. 

HNF4A is an essential TF during liver organogenesis and development (Hayhurst 

et al. 2001; Parviz et al. 2003) and harbors a missense mutation (rs1800961) 

strongly associated with liver relevant traits including high-density lipoprotein 

levels and total cholesterol (Willer et al. 2013; Scott and Mohlke 2016; Watanabe 

et al. 2019) (Chapter B: Figure S32). 

With the availability of Chromatin Immunoprecipitation followed by high-

throughput Sequencing (ChIP-seq) data for HNF4A in human liver tissues in 

ENCODE, we are able to directly map the genome-wide binding sites of HNF4A. 

Replicating the motif-based enrichment described above, liver-specific eQTLs 

are strongly enriched in HNF4A ChIP-seq peaks (OR =3.6, P value < 2.2×10−16). 

The enrichment is not as strong in ts-eQTLs for other tissues (OR =1.8 in the 

testis to 2.6 in the pancreas). Also, liver-specific eQTLs are significantly more 

https://paperpile.com/c/9rO0sV/QFQy
https://paperpile.com/c/9rO0sV/XGxA+0GlK
https://paperpile.com/c/9rO0sV/XGxA+0GlK
https://paperpile.com/c/9rO0sV/1fhs+zcrC+SOOY
https://paperpile.com/c/9rO0sV/1fhs+zcrC+SOOY
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enriched in HNF4A binding sites than are u-eQTLs (OR =1.7, P value 

<2.2×10−16). 

We hypothesized that variants in HNF4A binding sites lead to liver-specific 

eQTLs via differential binding of HNF4A. We quantified allele-specific binding 

(ASB) of HNF4A and, as a tissue-shared control, CTCF (see the “Methods” 

section). Liver-specific eQTLs are indeed significantly enriched for ASB of 

HNF4A (OR =1.4, P value =0.003), but not CTCF (OR =0.8, P value =0.4). This 

finding supports the possibility that the enrichment of liver-specific eQTLs in 

HNF4A motifs reflects altered binding affinity of HNF4A at these eQTL variants, 

providing a testable hypothesis for experimental validation. 

 

Example eQTL variant in HNF4A binding site relevant to liver phenotypes 

Among the liver-specific eQTLs identified by sn-spMF, rs9987289 exhibits 

significant ASB for HNF4A (Figure 3-6, Chapter B: Figure S33). The A allele is 

associated with increased HNF4A binding (ChIP-seq read ratio =7.7, two-tailed 

binomial test P value =8.8×10−5) and with significantly lower expression of the 

eGene TNKS (Figure 3-6). HNF4A may act as a repressor of TNKS, and these 

data suggest that the A allele of rs9987289 may act by increasing binding of 

HNF4A and therefore reducing expression levels of TNKS. Though HNF4A has 

been widely reported as a transcriptional activator, it has also been associated 

with transcriptional repression (DeLaForest et al. 2018; Qu et al. 2018; Tremblay 

et al. 2011; Ouyang et al. 2013) (Figure 3-6). Rs9987289 is located in a flanking 

active promoter (TssAFlank) region surrounded by enhancers in liver, while it is 

https://paperpile.com/c/9rO0sV/OvxS+NxdU+nwKF+SVoI
https://paperpile.com/c/9rO0sV/OvxS+NxdU+nwKF+SVoI
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found in quiescent or heterochromatin regions in all 13 non-liver tissues where 

HNF4A is expressed (Chapter B: Figure S34, S35). 

 

Figure 3-6. Example liver-specific eQTL, TNKS-rs9987289, in a TFBS of HNF4A that co-localizes with liver-

specific phenotypes. 

a. Effect size and 95% confidence interval of TNKS-rs9987289 across 49 tissues in GTEx. b Allele-specific 

HNF4A ChIP-seq reads over rs9987289 in the liver (see the “Methods” section, two-sided binomial test P 

value =8.8×10−5). c Normalized expression levels of TNKS in the liver among individuals with different 

genotypes at rs9987289. P value =3.4×10−4 from GTEx eQTL analysis. d Schematic illustration of 

hypothesized mechanism: allele-specific binding of HNF4A at rs9987289 and altered levels of expression of 

TNKS. e Manhattan plot (LocusZoom v0.4.8) (Pruim et al. 2010) of TNKS expression levels in the liver 

around rs9987289. f Manhattan plot for LDL GWAS around rs9987289. 

 

Furthermore, rs9987289 is significantly associated with several liver-related 

phenotypes, including low-density lipoprotein (LDL) cholesterol levels and high-

density lipoprotein (HDL) cholesterol levels (Willer et al. 2013) (Chapter B: Figure 

S36). The liver eQTL of TNKS and the association statistics for LDL are strongly 

co-localized (posterior probability of shared causal signal between LDL and the 

https://link.springer.com/article/10.1186/s13059-020-02129-6#Sec15
https://paperpile.com/c/9rO0sV/Hb31
https://paperpile.com/c/9rO0sV/1fhs
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eQTL =0.94, with rs9987289 having the highest posterior of being the shared 

causal variant) (Giambartolomei et al. 2014) (Figure 3-6). Though TNKS has 

been widely recognized for its role in controlling telomere length, there is 

emerging evidence of TNKS participating in liver metabolism (Cook et al. 2002; 

N. Li et al. 2019). 

 

Together, these results support the hypothesis that the tissue-specific regulatory 

effect of ts-eQTL variant rs9987289 in the liver may have phenotypic 

consequences: an active cis-regulatory element unique to the liver, allele-specific 

binding of liver TF HNF4A in hepatocytes, and finally co-localization of the eQTL 

effect with lipid GWAS hit. Such examples can provide testable hypotheses 

regarding multiple steps of the mechanism through which genetic variation may 

affect a high-level phenotype. 

 

Methods 

GTEx data 

GTEx Release v8 project has collected both genotype data from whole genome 

sequencing (WGS) and RNA sequence (RNA-seq) from 838 people. Here, we 

analyze GTEx data from 15,253 samples, consisting of 47 tissues and two cell 

lines (the GTEx Consortium 2020, in submission). GTEx v8 data release includes 

cis-eQTL analyses that test for association between gene expression and 

variants within 1 MB of the genes’ transcription start sites (TSS). Effect sizes of 

https://paperpile.com/c/9rO0sV/pUxy
https://paperpile.com/c/9rO0sV/EPbQ+xLkh
https://paperpile.com/c/9rO0sV/EPbQ+xLkh
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the eQTLs are represented by coefficients estimated in the linear model 

association tests. 

 

Preprocessing and input data 

To restrict the analysis to potential casual variants, we used cis-eQTLs that are in 

the 95% credible set for at least one tissue (Wakefield 2009). Specifically, for 

each eQTL gene, the credible set consists of eQTL variants that include the 

causal variant with 95% probability. In total, 5,301,827 eQTLs with 17,480 unique 

protein coding eQTL genes are included in the analysis. For these 5,301,827 

eQTLs, we collected the effect size and standard error from univariate cis-eQTL 

analysis across tissues, based on the linear model association test results from 

GTEx (GTEx Consortium 2020). Missing entries, corresponding to tissues where 

an eQTL variant-gene pair was not tested, were assigned weights of 0 and thus 

do not contribute to the objective function of sn-spMF. This avoids biasing 

towards shared eQTLs caused by removing data points with any missing data. 

Finally, the lead variants, within credible sets, with the most extreme geometric 

mean P values across tissues for the 17,480 eQTL genes were used as input 

(rows in matrix X and W) to learn the factor matrix (matrix F). Ultimately, only 

17,480 of the original 5,301,827 eQTLs are used to learn the factor matrix. 

However, the learned sn-spMF representation can then be used to analyze any 

tested eQTL variant. 

 

https://paperpile.com/c/9rO0sV/vsIM
https://paperpile.com/c/9rO0sV/lP7rG
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sn-spMF is able to learn the underlying patterns from a subset of representative 

eQTL summary statistics. In our case, we restricted to credible set variants with 

the strongest signals across tissues, as described above. Other users may 

choose another representative subset of variants of interest based on their 

preferred methods for selecting likely causal variants or lead variants, but 

regardless, sn-spMF does not require summary statistics for every tested variant 

to learn relevant factors. 

 

Lower-dimensional representation of eQTL effects 

eQTL effects across tissues can be represented by a matrix XD×T where D is the 

number of eQTLs and T is the number of tissues. Each entry is the regression 

parameter obtained from eQTL association testing of one variant/gene pair in 

one tissue, in the case of GTEx based on a standard linear model. Each row is 

then the effect of one eQTL across all tissues, and each column is the effect of 

all eQTLs for one tissue. The effect values are real-valued and can be positive or 

negative. A lower-dimensional representation of the effect matrix X can be written 

based on a factor matrix FT×K and a loading matrix LD×K such that X≈LFT . 

Weighted semi-nonnegative sparse matrix factorization algorithm sn-spMF 

In order to describe the eQTL effects, we designed a matrix factorization 

objective function with several features: (1) A penalty on a weighted sum of 

residuals: in order to account for uncertainty in effect size estimates, the residual 

for each data point was weighted by the reciprocal of its standard error. In this 
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way, data points with more certain eQTL effect sizes have more influence over 

optimal parameter estimates. Missing values in the input data were assigned a 

weight of zero and thus do not influence the value of the objective. (2) Sparsity: 

to alleviate over-fitting, an l1 penalty was applied to the decomposed matrices. 

(3) Semi-nonnegativity of the decomposed matrices: the factors capture the 

pattern of effects across tissues, and thus, it was a natural constraint to make the 

factors nonnegative for ease of interpretation. At the same time, because the 

input matrix has mixed signs, there was no such constraint on the loading matrix. 

The objective function was formulated as below: 

 

 

where F is nonnegative, W is the element-wise reciprocal of the standard error of 

the eQTLs, D is the number of data points (in this case the number of eQTLs), 

and α and λ are the penalty parameters. 

This objective function is biconvex, that is, convex only in F or in only L given the 

other, but not convex in both jointly. We used alternating least squares (ALS) 

with gradient descent to optimize the objective (Algorithm 1, implemented in R 

version 3.5.1), (Roslan 2011; M. Li and Kong 2019). At each iteration, we fixed F 

and updated L, and then fixed L and updated F. The update was finished when 

the Frobenius norm of difference in F between two iterations was < 0.01. In each 

update step, the optimization problem was a linear regression with constraints. 

https://paperpile.com/c/9rO0sV/9J5f+RhC5
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Since the solution to linear regression was guaranteed to minimize the sum of 

mean squared error and penalty, the cost function monotonically decreased. 

 

 

Model selection 

In the sn-spMF model, we need to set hyper-parameters including the rank of the 

decomposition (K) and the sparsity penalty (α, λ). We evaluated K within (Ongen 

et al. 2014; Roadmap Epigenomics Consortium et al. 2015; Hastie, Tibshirani, 

and Wainwright 2015; Ko, Chang, and Wang 2015), and α and λ within 

[4.9,24.5,49,245, 490]. These ranges were chosen by considering the number of 

tissues in GTEx to define plausible values for K and by manual inspection of 

solutions for widely varying α and λ to avoid high-resolution search for ranges of 

https://paperpile.com/c/9rO0sV/ZAJJ+DOCZ+5WDV+kcQ8
https://paperpile.com/c/9rO0sV/ZAJJ+DOCZ+5WDV+kcQ8
https://paperpile.com/c/9rO0sV/ZAJJ+DOCZ+5WDV+kcQ8
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these hyper-parameters that resulted in clearly implausible solutions, such as 

lack of sparsity or large numbers of empty, un-utilized factors. 

Within these chosen search spaces, we evaluated sn-spMF models for all 

combinations of K, α, and λ using (1) a previously defined criterion of matrix 

factorization stability and (2) independence of the learned factors, which 

represents adequate sparsity. Considering the stochastic nature of matrix 

factorization, Brunet et al. proposed a method looking for the most stable 

factorization result, and this method has been applied in various studies (Brunet 

et al. 2004; Wu et al. 2016). We obtained the consensus matrix C after 30 runs 

with random initialization for each model. The values in C are between 0 and 1, 

representing the proportion of runs in which a pair of tissues are assigned to the 

same factor. Using the C matrix, we computed the cophenetic correlation which 

is used to measure the degree of dispersion for the C matrix. Higher cophenetic 

correlation indicates a more stable factor matrix. 

Evaluating the runs for all combinations of hyper-parameter settings, we first 

eliminated some settings of K. Here, for each observed mean number of learned, 

non-empty factors K′ (which may be less than the input K), we aggregated across 

the different settings of λ and α and computed the median cophenetic correlation 

(Brunet et al. 2004). We eliminated from consideration any settings of K 

corresponding to a K′ with a median cophenetic correlation < 0.9. Next, among 

the remaining individual settings, we eliminated any cophenetic correlation < 0.9. 

Last, among these apparently stable settings, we selected the final hyper-

parameters based on the minimum Pearson correlation between pairs of factors, 

https://paperpile.com/c/9rO0sV/w4lo+41Ne
https://paperpile.com/c/9rO0sV/w4lo+41Ne
https://paperpile.com/c/9rO0sV/w4lo
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to encourage independent factors and a level of sparsity that matches 

independent signals in the data. Here, we computed the Pearson correlation for 

each pair of factors, took the Frobenius norm of the pairwise correlation matrix, 

and averaged this across the 30 randomly initialized runs for the same setting. 

Documented code and examples of the model-selection process are available on 

Github (https://github.com/heyuan7676/ts_eQTLs) 

 

Assignment of eQTLs to factors 

After we have learned the factors, we identify a set of relevant factors for each 

eQTL using weighted linear regression. Specifically, for each eQTL, a weighted 

linear regression of the form x=FL is fit, where x is the vector of eQTL effect sizes 

across tissues, F is the factors learned from sn-spMF, and L are the regression 

coefficients. Weights w are incorporated, where wt is the reciprocal of the 

standard error for the eQTL effect size xt in tissue t. Weighted linear regression 

using standard error in this manner is a common approach allowing data points 

with high uncertainty to have less influence on the regression parameter 

estimates (Rawlings, Pantula, and Dickey 2013). Statistical significance of each 

factor for the eQTL is determined according to P values based on the standard t 

test from this linear regression. To alleviate the multiple testing burden, we 

removed the eQTLs for which the variants were in perfect LD (R2=1) with variants 

from another eQTL before running regression for the remaining 3,601,800 eQTLs 

(Purcell et al. 2007). We applied the Benjamini-Hochberg correction to get the q 

value for every factor for each eQTL (Benjamini and Hochberg 1995). We then 

https://github.com/heyuan7676/ts_eQTLs
https://paperpile.com/c/9rO0sV/pGk8
https://paperpile.com/c/9rO0sV/xdAK
https://paperpile.com/c/9rO0sV/s7PS
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mapped the q value back to all 5,301,827 eQTLs where the SNPs are in an LD 

block with the tested SNPs for the same gene. We observed that occasionally, 

there were factors assigned negative regression coefficients when the actual 

observed effect sizes in the corresponding tissues were positive, or vice versa. 

This discrepancy arose due to collinearity between the factors, and in such 

cases, the discrepant factors were not included for downstream analysis. We 

also removed those factors that caused one tissue to have an oppositely signed 

small effect (absolute Z-score < 3, or P value > 0.00135) when compared to the 

factor where this eQTL has the strongest effect; such discrepancies may often 

reflect allelic heterogeneity or LD contamination rather than true opposite effects 

from the same causal variant (Wen, Luca, and Pique-Regi 2015; Casale et al. 

2017). 

 

Other matrix factorization methods 

We ran singular value decomposition (SVD) using the R function prcomp, and 

nonnegative matrix factorization (NMF) using the R package NMF (The package 

NMF: manual pages. CRAN. 2017). We ran sparse SVD (SSVD) using the R 

package ssvd (Kasim et al. 2016) (Yang D. ssvd: sparse SVD. 2013), penalized 

matrix decomposition (PMD) using the R package PMA (Witten, Tibshirani, and 

Hastie 2009) (Witten D, Tibshirani R, Gross S, Narasimhan B. PMA: Penalized 

Multivariate Analysis. 2019. ), and softImpute using the R package softImpute 

(Tomioka and Aihara 2007) (Hastie T, Mazumder R. softimpute: matrix 

completion via iterative soft-thresholded svd.). We ran flashr using the R package 

https://paperpile.com/c/9rO0sV/xjqN+Qi39
https://paperpile.com/c/9rO0sV/xjqN+Qi39
https://paperpile.com/c/9rO0sV/WNsm
https://paperpile.com/c/9rO0sV/KPWG
https://paperpile.com/c/9rO0sV/KPWG
https://paperpile.com/c/9rO0sV/Bw2i
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flashr (Wang and Wang, n.d.) (Stephens M, Wang W, Willwerscheid J. flashr: 

empirical Bayes matrix factorization.). 

SSVD is reported to be robust to tuning parameters, so we ran SSVD with the 

default settings. PMD penalizes the two decomposed matrices using either one 

penalty parameter scaled by the dimensions for each decomposed matrix (PMD 

CV1) or two separate penalty parameters (PMD CV2). We chose the tuning 

parameter by cross-validation, in both PMD CV1 and PMD CV2. softImpute has 

one parameter λ, and we chose it such that the factor matrix reaches the highest 

sparsity while preserving the rank. To run the default flashr, we ran flashr. To run 

flashr bf, we initialized the rank 1 factor and loading using flashr:::udvsiwhere the 

initial decomposition was done using softImpute (with penalty parameter λ=0). 

We then did a two-round fitting by first greedily adding factors 

(flash_greedy_workhorse) and then applying backfit (flash_backfit_workhorse). In 

flashr NN, initialization was also done using flashr:::udvsi, and nonnegative priors 

were imposed by setting 

ebnmparam=list(l=list(mixcompdist=′′normal′′,optmethod=′′mixSQP′′),f=list(mixco

mpdist=′′normal′′,optmethod=′′mixSQP′′)). 

Discussion 

In this study, we explored the genomic context and potential mechanisms 

underlying tissue-specific effects of genetic variation by applying a constrained 

matrix factorization model (sn-spMF) to multi-tissue eQTL data from the GTEx 

project. Using sn-spMF, we learned factors representing the common patterns of 

https://paperpile.com/c/9rO0sV/IyXy
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eQTL sharing across tissues, such as factors corresponding to ubiquitous effects 

across all tissues and effects shared among only brain tissues or among muscle 

tissues. This allowed us to explore eQTL effects shared across overlapping 

subsets of tissues that share cis-regulatory mechanisms due to shared cell types 

or developmental origin, without having to manually prespecify each such 

pattern. These learned factors enabled us to evaluate potential mechanisms 

relevant to genetic effects following these patterns of tissue-sharing. 

 

sn-spMF identified much larger sets of tissue-specific eQTLs than did heuristic 

methods. The ts-eQTLs from sn-spMF were also equally or more enriched for 

GO biological processes, transcription factor binding sites, and tissue-specific 

cis-regulatory elements than the heuristic ts-eQTLs. These results suggest that 

sn-spMF identifies larger numbers of ts-eQTLs that remain biologically coherent, 

offering an opportunity for novel mechanistic insights. Other versions of matrix 

factorization, such as flashr, also provide meaningful views of tissue-specificity. 

In particular, we note the flashr has the advantage of learning the parameters 

with less computational burden, compared to sn-spMF where a grid search is 

needed for tuning parameters. 

 

There can be other definitions of the manually selected subsets of tissues. 

However, it is not clear how to choose the relevant tissues and the thresholds 

before we have learned the latent patterns. For example, it is not clear whether 

whole blood and spleen should be grouped into one factor, or used as two 
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separate factors. Also, heuristic methods can be hard to implement in situations 

where we have little knowledge about the feature (in contrast to our knowledge of 

tissue similarity). For example, in a time-series data, it is typically unknown, a 

priori, how patterns change during the time course. 

 

The large set of ts-eQTLs provided by sn-spMF enabled a detailed evaluation of 

eQTLs in transcription factor binding sites that was not possible from heuristic 

approaches. We evaluated 76,976 to 431,585 ts-eQTLs for enrichment in 

promoter and enhancer elements, and were able to identify 181 and 264 TFs 

enriched among these, respectively. This list of 264 TFs enriched in ts-eQTL 

enhancers provides experimentally testable hypotheses about specific genetic 

variants within TFBS that alter expression in a tissue-specific fashion. 

 

Matrix factorization is inherently limited by the eQTL data used as input to the 

method—any tissue that is underpowered or not well represented in the original 

eQTL dataset is unlikely to be captured strongly by a ts-eQTL factor with sn-

spMF. Further, sn-spMF does not explicitly model linkage disequilibrium (LD) or 

consider allelic heterogeneity, rather it relies on the user to pre-select candidate 

causal variants using fine-mapping tools or other approaches. Additionally, many 

matrix factorization approaches, priors, and constraints remain to be explored 

that may capture different properties of the eQTL data than represented here. 

Different applications, such as time series or perturbation-response eQTL data, 
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may ultimately benefit from specialized matrix factorization formulations (Strober 

et al. 2019). 

 

In conclusion, we have developed a constrained matrix factorization model to 

learn patterns of eQTL tissue-specificity across 49 human tissues using data 

from GTEx v8. We observed improved enrichment of biologically relevant genes 

and cis-regulatory elements compared to heuristic methods. Matrix factorization 

also revealed the potential impact of ubiquitous TFs on ubiquitous eQTLs and 

provided a list of candidate TFs relevant to each tissue-specific set of eQTLs. 

 

With the enrichment of eQTLs in regulatory elements including enhancer, promoter, and 

TFBS, I came to realize that the chromatin status can be a very important factor for the 

genetic sequence to affect gene expression. Chromatin accessibility, an important 

hallmark of chromatin status, can play a crucial role in mediating genetic impacts on 

gene expression. This motivates me to think further about studying the genetic impacts 

on chromatin accessibility. With rapidly increasing datasets on chromatin accessibility, I 

move on to develop methods for capturing caQTLs and to study caQTLs to better 

understand genetic impact on complex traits.  

 

 

 

 

  

https://paperpile.com/c/9rO0sV/iXGD5
https://paperpile.com/c/9rO0sV/iXGD5
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Chapter 4 Multi-study chromatin accessibility 
QTL mapping reveals global and context-
specific regulatory mechanisms 

Contributions 

I designed and led this project. My main contributions to this work include: 

- Design the study 

- Perform most of the analysis 

- Lead discussion with collaborators from Battle Lab, Brown Lab, and 

Gencove 

Abstract 

Understanding the genetics of chromatin accessibility provides information on the 

molecular mechanisms through which genetic variants may affect complex traits, 

including cell type and context specificity of regulatory impact. We have 

developed a pipeline to genotype and jointly call caQTLs from all publicly 

available ATAC-seq data, thus performing caQTL analysis on a scale that is not 

previously possible. We apply the validated framework to identify caQTLs using 

3,938 samples and 403 studies from GEO. We cluster samples and identify 

caQTLs with global, tissue-specific, and context-specific effects. We investigate 

regulatory element and transcription factor binding site overlap to inform cell-type 

specific mechanisms in tissues with specific disease relevance. We observe that 

caQTLs are enriched in GTEx eQTLs, indicating that caQTLs can potentially 

explain the pathway for eQTLs. We also demonstrate that TFs with known 
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molecular roles are enriched in corresponding context, including the OCT4 that is 

enriched for pluripotency-specific caQTLs. Our analysis represents the largest 

caQTL resource currently available, informing mechanisms of genetic regulation 

of gene expression and disease. 

Introduction 

Genetic variants can affect cellular and molecular phenotypes on different levels, 

and further impact complex traits. Characterizing the genetic effects on gene 

expression, revealed by expression quantitative trait locus (eQTL), has been 

demonstrated to provide insights into the molecular basis of phenotypes (GTEx 

Consortium et al. 2017; GTEx Consortium 2020; Battle et al. 2014). Besides the 

genetic variants that directly affect open-reading frames, a vast majority of the 

eQTL variants are in non-coding regions. Understanding the molecular impact of 

the eQTL variants remains a major challenge. One hypothesis is that the genetic 

variants can affect complex traits through gene expression levels that are 

mediated by chromatin accessibility (Kumasaka, Knights, and Gaffney 2016; 

Degner et al. 2012). The genetics of chromatin accessibility, revealed by 

chromatin accessibility QTLs, or caQTLs, can help us better understand the 

molecular mechanisms behind complex traits. 

 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

technology has been widely used to capture chromatin accessibility (Buenrostro 

et al. 2013; Buenrostro, Wu, Chang, et al. 2015; Buenrostro, Wu, Litzenburger, et 

https://paperpile.com/c/9rO0sV/fEqx+lP7rG+BHat
https://paperpile.com/c/9rO0sV/fEqx+lP7rG+BHat
https://paperpile.com/c/9rO0sV/JFEU+jBpw
https://paperpile.com/c/9rO0sV/JFEU+jBpw
https://paperpile.com/c/9rO0sV/DHJC+NJBG+RzYp
https://paperpile.com/c/9rO0sV/DHJC+NJBG+RzYp
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al. 2015). There has been a rapidly accumulating amount of ATAC-seq data that 

are measured in various experiments, labs, and conditions. This allows us to 

integrate the publicly available ATAC-seq to boost power for caQTL analysis, and 

to explore context-specific caQTLs. ATAC-seq reads naturally carry the 

sequence information on nucleotide resolution, providing the possibility of 

uncovering variant genotypes. However, the accessible regions only compose a 

small part of the genome. Furthermore, most publicly available ATAC-seq 

datasets don’t come with matched genotype data.  

 

Here we developed and benchmarked pipelines to uncover variants genotype 

from ATAC-seq reads in accessible chromatin, and utilize imputation to infer 

genotype for variants that are located outside of the open regions (J. H. Li et al. 

2021; Wasik et al. 2021). To account for multiple samples that come from the 

same donor, we developed a method to automatically infer donor assignment 

from the called variants. We then jointly called caQTLs from a collection of 

publicly available ATAC-seq data. Furthermore, we inferred cell type or condition 

from the data and computed context-specific caQTLs. With the captured global 

and context-specific caQTLs, we continued to investigate potential mechanisms 

involving transcription factors.  

Results 

Benchmarking using Hapmap samples 

We benchmarked the GATK variant calling pipeline and Gencove pipeline to 

https://paperpile.com/c/9rO0sV/DHJC+NJBG+RzYp
https://paperpile.com/c/9rO0sV/db1i+c9wc
https://paperpile.com/c/9rO0sV/db1i+c9wc
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evaluate the performance of variant calling using ATAC-seq reads (J. H. Li et al. 

2021; Wasik et al. 2021; Brouard et al. 2019; Summa et al. 2017) (Methods). We 

observed that the Gencove pipeline with imputation greatly increases the number 

of variants called, while also increasing the genotype accuracy to over 0.88 

(Figure 4-1). We then randomly subsetted ATAC-seq reads and ran the Gencove 

pipeline to measure the effects of reads coverage on variant calling performance. 

We observed a marginal increase in accuracy along with deeper coverage, and 

the accuracy kept high at effective coverage as low as 0.04 (Figure 4-1).  

 

We then mapped caQTLs using genotypes called from ATAC-seq reads and 

compared to the caQTLs called using gold standard genotypes (Shabalin 2012) 

(Methods). We observed that the caQTLs called using ATAC-seq reads achieve 

99% accuracy, and over 90% recall (Figure 4-1, Methods). We also 

demonstrated that recall is greatly improved by the Gencove pipeline that 

includes the imputation step, when more improvements are achieved when 

testing variants in larger window sizes (Figure 4-1).  

 

caQTLs integrating GEO ATAC-seq samples 

In order to boost power for caQTL tests and to enable context-specific analysis, 

we collected 3,938 bulk ATAC-seq samples from the GEO database with 

diversified conditions (Barrett et al. 2006) (Figure 4-1, Chapter C - Figure S1). 

The distribution of effective coverage is within the range previously tested with 

the Hapmap samples, verifying the accuracy of genotype calling (Chapter C - 

https://paperpile.com/c/9rO0sV/db1i+c9wc+GgOk+KiNV
https://paperpile.com/c/9rO0sV/db1i+c9wc+GgOk+KiNV
https://paperpile.com/c/9rO0sV/EKKM
https://paperpile.com/c/9rO0sV/eiEj
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Figure S2, S3). A donor can contribute to multiple samples in GEO. We 

developed a pipeline to infer unique donors from the genotype correlation (Figure 

4-1, Method), and obtained 838 unique donors from GEO. Running caQTL 

analysis on these samples resulted in 40,231 caQTLs at FDR < 0.05 (Method).  
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Human ATAC-seq datasets were collected from GEO, and by first round of variant calling, or “Donor ID” 

variant calling, we are able to identify the unique donors in the dataset. By second round of variant calling, or 

“caQTL variant calling”, we are able to capture the variants’ genotype genome-wide, which is utilized for 

caQTL analysis. B. Variants called for the Hapmap samples using two pipelines - Gencove, and GATK 

HaplotypeCaller. C. Accuracy of variant genotype called by Gencove pipeline using randomly subsetted 

Figure 4-1. A. Overview of study design to jointly call genotype and caQTLs in multi-study. 
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reads for the samples. D. caQTLs called using ATAC-seq genotype across the Hapmap samples. E, F. 

Identify unique donors for the GEO samples using called variants genotype.  

 

Global and context-specific caQTLs 

We are able to capture the context-specific samples with the chromatin 

accessibility data (Figure 4-2). We observed that there are four clusters with quite 

homogeneous cell types, as indicated on the plot. The two remaining clusters are 

more mixed with cell types and conditions. Samples from these clusters were 

used for context-specific caQTL analysis. We conducted caQTL analysis for the 

five sample groups: four context specific groups based on the UMAP clustering, 

and the global group with all samples (Table 4-1). 

 

Table 4-1.  Number of caQTLs at FDR < 0.05 for the four context-specific sample groups, and for all the 

samples, and the global sample set. 

Sample group Number of 
donors  

Number of caQTLs at FDR < 0.05 

Neural associated cells 57 353 

Pluripotent stem cells 74 616 

Primary hematopoietic 
cells  

165 5,129 

Hematopoietic derived 
cells 

177 8,822 

Global 838 40,231 
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Figure 4-2. Global and context-specific caQTLs that are enriched in eQTLs, and in TFBS.  

A. Identify context-specificity for the GEO samples by clustering of the peak accessibility signals. B. 

Enrichment of caQTLs in GTEx eQTLs. C. A pluripotency-specific caQTL that is located in OCT4 binding 

sites, and OCT4 motif prediction site. 

 

caQTLs are enriched in eQTLs 

caQTLs could play an important role in mediating gene expression, and could 

potentially be able to explain some of the eQTL mechanisms. Here we observed 

that caQTLs are indeed enriched in the GTEx eQTLs (GTEx Consortium 2020) 

(Figure 4-2).  This demonstrates that the caQTLs can potentially explain the 

https://paperpile.com/c/9rO0sV/lP7rG
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eQTL effects.  

 

 

caQTLs are enriched in TFBS 

Next we explored the potential mechanism of caQTLs by examining enrichment 

of caQTL variants in TFBS (Table 4-2, Method). For the global caQTLs, we 

showed that the top five enriched TFs all are important factors in chromatin 

remodelling. For the hematopoietic derive specific QTLs, we showed several TFs 

with known effects in hematopoietic cells. Also, we observed that for the 

pluripotency specific caQTLs, OCT4 appears to be one of the enriched TFs. This 

is very interesting because OCT4 is a well known factor associated with 

pluripotency (Takahashi and Yamanaka 2006). We dug into an example of 

pluripotency specific caQTL that is located in the OCT4 binding site. We show 

that the variant is located in a peak, and is located in JASPAS’s predicted TF 

binding site for OCT4, which locates right in the motif  (Khan et al. 2018) (Figure 

4-2).    

 

Table 4-2. TFs enriched at FDR < 0.05 for caQTLs of the four context-specific sample groups, and for all the 

samples, or the global sample set. 

 Number of enriched 
TFs at FDR < 0.05 

Enriched TFs 

Global 175 CTCF, RAD21, STAG1, 
JARID2, BRD4 ... 

Hematopoietic derived 14 SPI1, ATF3, FOS, FOSL2, 

https://paperpile.com/c/9rO0sV/enCu
https://paperpile.com/c/9rO0sV/PTNE
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cells CTCF, SMAD3, CTCFL, 
MAFK, MYOD1, RAD21, 
SMC3, STAG1, TEAD4, USF2 

Pluripotent stem cells 13 OCT4, BHLHE40, CTCF, 
ZNF143, CREB1, CTCFL, 
RAD21, RCOR1, SMAD1, 
SMAD3, STAG1, TEAD4, 
USF2 

 

 

 

 

 

 

 

Methods 

Benchmarking on HapMap samples 

Data  

We downloaded ATAC-seq for 74 HapMap samples from ENA (Kumasaka, 

Knights, and Gaffney 2016). For the ATAC-seq data, we converted cram files to 

bam files, and removed the reads that map to mitochondrial genome. We 

obtained the genotype from the 1000 Genome Project on the GRCh38 genome 

assembly (Lowy-Gallego et al. 2019).  

 

Variant calling 

https://paperpile.com/c/9rO0sV/JFEU
https://paperpile.com/c/9rO0sV/JFEU
https://paperpile.com/c/9rO0sV/Xp6s
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For the ATAC-seq data, we performed two pipelines of variant calling, one using 

GATK HaplotypeCaller, and the other with Gencove’s low-pass sequencing 

pipeline. Using the GATK HaplotypeCaller, we performed alignment using 

Bowtie2, and removed duplicated reads and applied base quality score 

recalibration, followed by GATK HaplotypeCaller (Langmead and Salzberg 2012; 

Hwang et al. 2015; Brouard et al. 2019). We then extracted variants with at least 

3 reads. Then we compared the called genotype dosage to the gold standard 

genotype by computing the Spearman correlation and mean squared error 

(MSE).  

 

Peak calling 

We compared two peak calling methods: MACS2 and Genrich (Zhang et al. 

2008; Gaspar 2018). We also compared two strategies to merge peaks across 

samples: 1. Merge-call: Merge reads from all samples, and perform peak calling 

on all the reads. 2. Call-merge: Call peaks in each sample separately, and for 

each peak, we examined if it existed in at least three samples, and if it 

overlapped with another peak for at least 50% of the peak length. Iteratively we 

merged overlapping peaks across samples. We compared the caQTLs for each 

of the two tools and two methods (Chapter C - Fig S4), and observed that using 

MACS2 with merging strategy 2 resulted in the highest number of caQTLs called 

using the gold standard genotype at FDR < 0.05.  

 

Thus we applied peak calling for each of the sampling using MACS2, and 

https://paperpile.com/c/9rO0sV/zptV+cmw4+GgOk
https://paperpile.com/c/9rO0sV/zptV+cmw4+GgOk
https://paperpile.com/c/9rO0sV/eGMJ+ZGxQ
https://paperpile.com/c/9rO0sV/eGMJ+ZGxQ
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merged overlapping peaks across samples, which resulted in 2.9 million peaks. 

Peaks with CPM lower than 0.4 in at least 15 samples were removed (Chapter C 

- Figure S5). We then performed quantile normalization across samples, and 

removed 5 PCs from the peaks to account for unknown confounders. The 

normalized accessibility signals were used as input for caQTL analysis.  

 

caQTL analysis 

We performed caQTLs analysis using FastQTL. Bi-allelic variants that have 

MAF > 0.05 were used for QTL analysis. Variants that are within window size of 

500bp, 1kb, 10kb, and 100kb to the peaks’ middle point were tested. We then 

used the empirical p-value estimated by FastQTL to get peak-level p-values, and 

performed BH correction to control for FDR (Ongen et al. 2016). Both the ATAC-

seq called genotype and the gold standard genotype were used for caQTL 

analysis. We first obtained caQTLs called by gold standard genotype at FDR < 

0.05. Recall is computed as the proportion of test SNP-peak pairs that appear to 

be caQTLs at FDR < 0.05 using ATAC-seq called genotype. Similarly, we 

obtained caQTLs called by ATAC-seq called genotype at FDR < 0.05, and 

computed precision as the proportion of these SNP-peak pairs that appear to be 

caQTLs at FDR < 0.05 using gold standard genotype.  

 

ATAC-seq data from GEO 

Data 

https://paperpile.com/c/9rO0sV/MXd6
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We collected 4,478 human bulk ATAC-seq data from GEO, and obtained the 

metadata from SRA. 3,938 samples passed quality control in Gencove (Chapter 

C - Figure S1, S2, S3). 

  

Donor screening 

We used five studies from GEO that have clear donor ID annotation to evaluate 

the performance of the donor screening pipeline. The goal is to achieve the 

balance between accuracy and computational efficiency. In order to measure the 

assignment accuracy, we denoted samples from the same donor that were 

assigned to the same donor true positives, and samples from different donors 

that were assigned the same donor false positives. Similarly, we denoted 

samples from different donors that were assigned to the same donor false 

negatives, and samples from different donors that were assigned different donors 

true negatives. In the first round of screening, we used the donor results to 

decide the samples to perform deep variant calling using Gencove. Thus we’d 

like to make sure that samples come from different donors get selected (ie. true 

positive of one), while we can tolerate that we submit multiple samples per donor 

(ie. not perfect true negative values). 

 

We tested a different number of ATAC-seq reads randomly subsetted from fastq 

files, and observed that 5 million reads for datasets with reads of longer than 100 

bp, or 10 million reads for datasets with reads of shorter than 100bp, can clearly 

distinguish donor IDs from the genotype correlation. We then tested various 
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thresholding on minimum read depth to filter variants, and observed that using 

variants with at least five ATAC-seq reads achieved the best accuracy (Chapter 

C - Figure S6, S7, S8).  

 

Enrichment of caQTLs in eQTLs 

We used eQTLs across 49 human tissues from GTEx. For caQTLs from one 

sample group, and eQTLs from one tissue, we constructed the contingency table. 

In the table the first row includes caQTLs variants, and the second row includes 

randomly matched SNPs that were matched for MAF and distance to peaks. The 

columns indicate whether the variants were also found to be eQTL variants. 

Fisher’s exact test was performed for each of these contingency tables, and the 

P values were corrected using Benjamini-Hochberg (Benjamini and Hochberg 

1995).  

 

Enrichment of caQTLs in TFBS 

To examine the enrichment of TF binding sites in global and context-specific 

caQTLs, we constructed the 2×2 contingency tables for each TF. For each TF, 

we annotate its binding sites by ChIP-seq data that are collected by ReMAP 

(REF). In the contingency table for each TF, the first row includes caQTLs, and 

the second row includes randomly matched SNPs that were matched for MAF 

and distance to peaks. Fisher’s exact test was performed for each of these 

contingency tables, and the P values were corrected using Benjamini-Hochberg 

https://paperpile.com/c/9rO0sV/s7PS
https://paperpile.com/c/9rO0sV/s7PS


 73 

(Benjamini and Hochberg 1995). This was done for caQTLs derived from each of 

the five sample groups.  

Discussion 

Overall, we developed the pipeline of performing caQTL analysis integrating 

multi-study ATAC-seq datasets. We collected 3938 human ATAC-seq samples 

from GEO that come from a diversity of cell types and conditions. We performed 

a first round of “donor ID variant calling” to screen for donors that contribute to 

multiple samples, and a second round of deep and through “caQTL variant 

calling” to obtain genome-wide genotypes of the donors. With the accessibility 

and genotype information, we performed caQTL analysis. We were able to 

capture global and context-specific caQTLs using the diversity of samples from 

GEO. We also demonstrated enrichment of caQTLs in eQTLs and in relevant 

TFBS.  

 

There are a couple of key questions that still remain unclear in the field. First, are 

the eQTLs casually affecting gene expression via caQTLs? One hypothesis is 

that there are caQTL-dependent eQTLs and caQTL-independent eQTLs. eQTLs 

that fall into important TF motif regions in the open chromatin regions strongly 

overlap with caQTLs. Combining the caQTL study and eQTL studies can allow 

us to explore this question in more depth. Second, are caQTLs related to 

chromatin structure changes? Recent study has shown that genetic variants in 

enhancer regions affect gene expression changes via enhancer-promoter 

https://paperpile.com/c/9rO0sV/s7PS
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touching and looping processes (Nasser et al. 2021). Integrating HiC or HiChIP 

dataset with ATAC-Seq dataset can provide insight into this problem. Moreover, 

the boost of single cell data can shed light into these problems in specific cell 

types, context and conditions.  

 

 

 

 
  

https://paperpile.com/c/9rO0sV/lKxK
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Chapter 5 Conclusions and Future Directions 

My PhD work focuses on characterizing genetic impact on molecular phenotypes 

including gene expression and chromatin accessibility, to better reveal the 

molecular mechanism of genetics of complex traits. There are three major 

projects that I’ve worked on. 

 

I worked with the GTEx consortium and studied the effects of distal genetic 

variants on gene expression (eQTLs) across human tissues. While trans-eQTLs 

analysis has naturally restricted power because of the serious multiple testing 

burden, we developed pipeline to remove confounders and inaccurate tests, thus 

alleviating multiple testing burden. This study provides the criteria to perform 

trans-eQTL analysis, constructs the largest trans-eQTL analysis at that time, and 

sheds light on the genetic regulation in a tissue-wise manner.  

 

With the eQTLs across tissues, I further investigate the tissue-specific patterns of 

local eQTL effects via latent factors and examine the impacts of epigenetic 

signatures on eQTLs. I develop a statistical framework that identifies latent 

factors while considering similarity patterns in both the features(tissues) and the 

samples(eQTL effects). This tool is publicly available, and can be used to identify 

latent factors where the pattern of features is not as obvious as in the tissues, for 

example, in single cell data or time-series data. Besides the statistical tool, I 

show that chromatin status and transcription factors binding can play an 

important roles in tissue-specificity of eQTL effects. This could shed light on the 
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mechanism of tissue-specific genetic regulation on gene expression, and further 

on the complex traits.  

 

I continue to capture and characterize genetic regulation on chromatin 

accessibility (caQTLs), with the discovery that chromatin status can be crucial in 

mediating the effects of genotype mutations on gene expression. I integrate all 

public ATAC-seq datasets by developing a framework to jointly call genotype and 

QTL from the ATAC-seq reads. This work proves that ATAC-seq reads can be 

used to accurately derive genome-wide genotype data. With this pipeline, this 

study is expected to be the largest caQTL analysis consisting of thousands of 

samples. This strategy of deriving genotype data from sequencing reads can be 

extended to other sequencing technologies, including ChIP-seq, HiC, and a lot 

others. Furthermore, this framework can be tested in single cell datasets, which 

can potentially provide even larger and more context-specific sample sets.   

 

Overall, I investigate the genetics of gene expression and chromatin accessibility 

from various perspectives. The studies can shed light on understanding the 

impact of genetic mutations on complex phenotypes including diseases. One 

question remains – how to identify the casual mutations? I think, combining 

statistical inference and CRISPR screening will tell us the answer in the near 

future.  
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Appendix 

Chapter A 

Supplementary Tables 

 
Table S1. Each tissue with non-zero values is included as a row; the columns include the number of 
samples for that tissue, followed by the number of unique trans-eGenes and trans-eVariants identified in the 
genome-wide tests, and the number of unique trans-eGenes found using gene-level FDR calibration. 
Ultimately, the set of 673 trans-eQTLs identified in the genome-wide approach yielded 602 unique trans-
eVariants. 
 
 

 
Table S2. Long-range intra-chromosomal eQTLs (≥5 Mb from the TSS) 
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Supplementary Figures 

 
Figure S1. Number of trans-eQTLs and trans-eGenes as a function of PEER factors for six tissues. The 
number of trans-eQTLs and trans-eGenes are plotted as a function of PEER factors (increments of 5), for 
the following tissues: (a) esophagus mucosa, (b) skeletal muscle, (c) transverse colon, (d) thyroid, (e) sun 
exposed skin, and (f) testis. Different tissues show very different, and often not smoothly varying or 
monotonically increasing, numbers of trans-eQTLs identified with different numbers of PEER factors 
removed, as opposed to cis-eQTLs, which show a more consistent pattern. Along with the fact that we have 
insufficient statistical power or number of trans-eQTLs to tune the number of PEER factors directly without 
facing potential over-fitting to spurious signal, this figure shows the challenges of controlling for unobserved 
confounders in trans-eQTL study and supports our reasoning for not tuning the number of PEER factors 
directly for trans-eQTLs. 
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Figure S2. Correlation between trans-eVariants and genotype principal components. Distribution of the 
largest correlation between the top 20 genotype principal components and both the 93 trans-eVariants 
(single top variant per eGene) and 465 randomly selected variants matched for MAF. The two distributions 
are significantly different, with the trans-eVariants being enriched for higher correlation with genotype PCs 
(Wilcoxon rank sum test, P ≤ 0.029) . 
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Chapter B 

Supplementary Tables 
Supplementary Table 1. Tissues not captured in tissue-specific factors by sn-spMF 

Tissue Number of samples 

Adrenal gland 233 

Cells cultured fibroblasts 483 

Kidney cortex 73 

Minor salivary gland 144 

Ovary 167 

Prostate 221 

Uterus 129 

Vagina 141 

 
 
 
 
Supplementary Table 2. Number of u-eQTLs and ts-eQTLs captured by different methods 

 u-eQTLs ts-eQTLs 

sn_spMF 1,076,761 76,976 - 431,585 

heuristic_1 312,502 1,374 - 102,414 

heuristic_2 175,637 1,460 - 201,584 

flashr_backfitting 1,929,939 69,594 - 929,009 

flashr_default 1,785,127 55,295 - 701,035 

flashr_NN 243,467 54,306 - 338,615 

softImpute 1,936,985 62,012 - 1,006,031 

PMD_cv1 1,937,676 56,857 - 986,481 

PMD_cv2 1,945,235 84,409 - 1,181,099 

Explanation of table columns: u-eQTLs: number of eQTLs that load on the ubiquitous factor for each 
method. ts-eQTLs: number of eQTLs that load across tissue-specific factors for each method. 

 
 
 
Supplementary Table 3. Subgroups of tissues used to define heuristic_2 
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Subgroups Tissues 

1 49 tissues available in GTEx 

2 Adipose Subcutaneous, Adipose Visceral Omentum 

3 Adrenal Gland 

4 Artery Aorta, Artery Coronary, Artery Tibial 

5 Brain Amygdala, Brain Anterior cingulate cortex BA24, Brain Caudate basal ganglia, 
Brain Cerebellar Hemisphere, Brain Cerebellum, Brain Cortex, Brain Frontal Cortex BA9, 
Brain Hippocampus, Brain Hypothalamus, Brain Nucleus accumbens basal ganglia, 
Brain Putamen basal ganglia, Brain Spinal cord cervical c-1, Brain Substantia nigra 

6 Cells EBV-transformed lymphocytes 

7 Cells Cultured fibroblasts 

8 Colon Sigmoid, Colon Transverse 

9 Esophagus Gastroesophageal Junction, Esophagus Mucosa, Esophagus Muscularis 

10 Heart Atrial Appendage, Heart Left Ventricle 

11 Kidney Cortex 

12 Liver 

13 Lung 

14 Minor Salivary Gland 

15 Muscle Skeletal 

16 Nerve Tibial 

17 Ovary 

18 Pancreas 

19 Pituitary 

20 Prostate 

21 Skin Not Sun Exposed Suprapubic, Skin Sun Exposed Lower leg 

22 Small Intestine Terminal Ileum 

23 Spleen 

24 Stomach 

25 Testis 

26 Thyroid 
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27 Uterus 

28 Vagina 

29 Whole Blood 

 
 
 
 
 
 
 
Supplementary Table 4. Proportion of all tested eQTLs that have R2 between model-predicted an actual 
effect sizes above a specific threshold: 

 R2 > 0 R2  > 0.2 R2  > 0.6 

sn_spMF 59% 50% 21% 

flashr_backfitting 62% 51% 22% 

flashr_default 57% 47% 20% 

flashr_NN 43% 34% 10% 

softImpute 55% 44% 20% 

PMD_cv1 55% 42% 19% 

PMD_cv2 58% 45% 20% 

 
 

 
Supplementary Table 5. Enrichment of u-eQTLs and ts-eQTLs in cis-regulatory regions 

 OR in promoter OR in enhancer 

 u-eQTLs ts-eQTLs u-eQTLs ts-eQTLs 

sn_spMF 1.9 1.5 1.0 1.3 

heuristic_1 3.0 1.2 1.1 1.3 

heuristic_2 3.1 1.2 1.1 1.4 

flashr_backfitting 1.8 1.6 1.1 1.1 

flashr_default  1.8 1.6 1.1 1.1 

flashr_NN 2.1 1.5 0.9 1.1 

softImpute 1.8 1.7 1.1 1.1 

PMD_cv1 1.8 1.8 1.1 1.1 

PMD_cv2 1.8 1.7 1.1 1.0 

 
 
Supplementary Table 6. Number of enriched GO pathways for ts-eGenes 



 83 

 All ts-eGenes Strictly defined ts-eGenes 

sn_spMF 546 45 

heuristic_1 110 0 

heuristic_2 421 1 

flashr_backfitting 593 101 

flashr_default 642 93 

flashr_NN 453 7 

softImpute 659 90 

PMD_cv1 615 84 

PMD_cv2 556 102 

 
 
 
 
 
 
 
      
Supplementary Table 7. Number of enriched TFBS for u-eQTLs and ts-eQTLs in cis-regulatory regions 

 Promoter Enhancer 

 u-eQTLs ts-eQTLs u-eQTLs ts-eQTLs 

sn_spMF 136 181 39 264 

heuristic_1 59 5 8 47 

heuristic_2 97 9 4 54 

flashr_backfitting 143 178 99 165 

flashr_default 136 137 90 123 

flashr_NN 70 104 2 109 

softImpute 157 196 113 169 

PMD_cv1 147 191 107 166 

PMD_cv2 160 203 111 167 
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Supplementary Table 8. Enriched TFs with strong literature support 

TF Tissues Reference (DOI) 

BCL6 Adipose; Mammary 10.1073/pnas.1907308116 

SREBF1 Adipose; Mammary 10.1038/srep00178 

TWIST1 Adipose; Mammary 10.1016/j.cell.2009.01.051 

SMAD4 Artery tissues 10.1128/MCB.00577-07 

TWIST1 Artery tissues 10.1161/CIRCRESAHA.116.308870 

LHX2 Brain tissues 10.1523/JNEUROSCI.3145-15.2016 

OLIG1 Brain tissues 10.1038/nn.2600 

SOX1 Brain tissues 10.1016/s0306-4522(03)00158-1 

SOX2 Brain tissues 10.1242/dev.01204 

SOX6 Brain tissues 10.1038/nn.2387 

SOX9 Brain tissues 10.1523/JNEUROSCI.3199-16.2017 

XBP1 Brain tissues 10.2119/molmed.2016.00229. 

BCL6 Heart tissues 10.1016/S0008-6363(99)00007-3 

CLOCK Heart tissues 10.1161/hh1101.091190 

FOXO1 Heart tissues 10.1093/cvr/cvs426 

FOXP1 Heart tissues 10.1002/humu.22366 

ID2 Heart tissues 10.1016/j.cell.2007.04.036 

SOX6 Heart tissues 10.1073/pnas.97.8.4180 

SOX9 Heart tissues 10.1073/pnas.0401711101 

TWIST1 Heart tissues 10.1016/j.ydbio.2010.08.021 

XBP1 Heart tissues 10.1111/acel.12460 

CLOCK Liver 10.1074/jbc.M304564200 

FOXA1 Liver 10.1038/nature03649 

FOXO1 Liver 10.1038/nm.2049 

ID2 Liver 10.1074/jbc.M109.013961 

MAFG Liver 10.1016/j.cmet.2015.01.007 
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NFIL3 Liver 10.1016/j.metabol.2017.08.007 

NR5A2 Liver 10.1016/j.ydbio.2016.07.019 

XBP1 Liver 10.1074/jbc.M115.676239 

CLOCK Muscle Skeletal 10.1073/pnas.1014523107 

FOXO1 Muscle Skeletal 10.18632/oncotarget.12891 

PITX1 Muscle Skeletal 10.1016/j.ydbio.2006.06.055 

SOX6 Muscle Skeletal 10.1002/dvdy.21223 

SREBF1 Muscle Skeletal 10.1371/journal.pone.0050878 

TEAD1 Muscle Skeletal 10.1074/jbc.M113.515817 

ATF4 Pancreas 10.1016/j.cmet.2008.01.008 

CLOCK Pancreas 10.1038/nature09253 

FOXO1 Pancreas 10.1210/en.2015-1852 

FOXP1 Pancreas 10.1007/s00125-015-3635-3 

ID2 Pancreas 10.1007/s12020-008-9039-0 

NEUROD1 Pancreas 10.1101/gad.9.8.1009 

NKX6-1 Pancreas 10.1016/j.celrep.2013.08.010 

NR5A2 Pancreas 10.1016/j.ydbio.2016.07.019 

SOX6 Pancreas 10.1074/jbc.M700460200 

SREBF1 Pancreas 10.1194/jlr.M700533-JLR200 

TEAD1 Pancreas 10.1038/ncb3160 

XBP1 Pancreas 10.1038/sj.emboj.7600903 

FLI1 Whole Blood 10.1016/j.cub.2008.07.048 

FOXO1 Whole Blood 10.1038/ncomms11023 

NFIL3 Whole Blood 10.1136/annrheumdis-2018-213764 

RUNX1 Whole Blood 10.1038/emboj.2012.275 

 
 
 
 
 
 
 
 
 
 
 
 
 

https://dx.doi.org/10.1371%2Fjournal.pone.0050878
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Supplementary Table 9. Samples from Roadmap Epigenomics project mapped to GTEx tissues 

Roadmap sample ID Roadmap Tissue GTEx Tissues 

E063 Adipose Nuclei Adipose Subcutaneous, Adipose Visceral Omentum 

E066 Adult Liver Liver 

E065 Aorta Artery Aorta 

E067 Brain Angular Gyrus Brain Cortex 

E068 Brain Anterior Caudate Brain Caudate basal ganglia 

E069 Brain Cingulate Gyrus Brain Anterior cingulate cortex BA24 

E071 Brain Hippocampus Middle Brain Hippocampus 

E072 
Brain Inferior Temporal 
Lobe Brain Cortex, Brain Frontal Cortex BA9 

E073 Brain Mid Frontal Lobe Brain Cortex, Brain Frontal Cortex BA9 

E027 Breast Myoepithelial Cells Breast Mammary Tissue 

E075 Colonic Mucosa Colon Transverse 

E076 Colon Smooth Muscle Colon Transverse 

E106 Sigmoid Colon Colon Sigmoid 

E079 Esophagus 
Esophagus Gastroesophageal Junction, Esophagus 
Mucosa, Esophagus Muscularis 

E116 GM12878 Lymphoblastoid Cells EBV-transformed lymphocytes 

E095 Left Ventricle Heart Left Ventricle 

E096 Lung Lung 

E097 Ovary Ovary 

E098 Pancreas Pancreas 

E062 
Peripheral Blood 
Mononuclear Primary Cells Whole Blood 

E104 Right Atrium Heart Atrial Appendage 

E108 Skeletal Muscle Female Muscle Skeletal 

E107 Skeletal Muscle Male Muscle Skeletal 

E109 Small Intestine Small Intestine Terminal Ileum 

E113 Spleen Spleen 
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E110 Stomach Mucosa Stomach 

E111 Stomach Smooth Muscle Stomach 

 
 
 
Supplementary Table 10. DNase-seq data from ENCODE project 

ENCODE Accession ENCODE sample tissue GTEx tissue 

ENCFF958GWR, ENCFF954PTR Omental fat pad Adipose Subcutaneous, 
Adipose Visceral Omentum 

ENCFF042VKK, ENCFF085NOG, 
ENCFF108XQG, ENCFF217MXO, 
ENCFF315CSH, ENCFF367BEU, 
ENCFF587SIS, ENCFF675UKK, 
ENCFF688ZWO, ENCFF896DOA, 
ENCFF977OWF 

Adrenal gland Adrenal Gland 

ENCFF968IAI Ascending aorta  Artery Aorta 

ENCFF822UQG, ENCFF178BNR Coronary artery Artery Coronary 

ENCFF048ZGK, ENCFF267DGC Tibial artery  Artery Tibial 

ENCFF240ECT Caudate nucleus Brain Caudate basal ganglia 

ENCFF053XFC, ENCFF337NAS Cerebellar cortex Brain Cerebellar 
Hemisphere 

ENCFF732MQW,  ENCFF966DRW Cerebellum Brain Cerebellum 

ENCFF255NTQ, ENCFF611EHQ, 
ENCFF631HBT, ENCFF855HES 

Frontal cortex Brain Frontal Cortex BA9 

ENCFF026XWM Putamen Brain Putamen basal 
ganglia 

ENCFF421NEH, 
ENCFF469JHU 

Sigmoid colon Colon Sigmoid 

ENCFF134KRY, ENCFF159SOA, 
ENCFF161NFM, ENCFF384WXP, 
ENCFF791HOY, 
 

Transverse colon Colon Transverse 

ENCFF146AEB Esophagus muscularis 
mucosa 

Esophagus 
Gastroesophageal Junction, 
Esophagus Mucosa, 
Esophagus Muscularis 

ENCFF146VYU, ENCFF778BRJ, 
ENCFF794SOC, ENCFF855YGO 

Heart left ventricle Heart Atrial Appendage, 
Heart Left Ventricle 
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ENCFF172XNI Left cardiac atrium 

ENCFF207NXB, ENCFF289IMF Heart right ventricle 

ENCFF036JUB, ENCFF153WQN, 
ENCFF183AEI, ENCFF262FHU, 
ENCFF270GNM, ENCFF305WVB, 
ENCFF402THI, ENCFF484XHW, 
ENCFF578BEO, ENCFF765BJR, 
ENCFF812GJU, ENCFF845VOI, 
ENCFF871EKB, ENCFF916NTG, 
ENCFF932ATD 

Kidney Kidney Cortex 

ENCFF081JVT, ENCFF468NND, 
ENCFF512TSJ 

Liver Liver 

ENCFF475HWF Right lobe of liver 

ENCFF318TOW, ENCFF353SVP, 
ENCFF439ZRL, ENCFF484YOE, 
ENCFF588WQL, ENCFF601TZC, 
ENCFF642HTL, ENCFF671CWO, 
ENCFF676GRC, ENCFF690UKD, 
ENCFF796EIB, ENCFF929FIK, 
ENCFF944FSO 

Left lung Lung 

ENCFF449XXS, ENCFF486CWL, 
ENCFF791OUO 

Upper lobe of left lung 
 

ENCFF024SOP, ENCFF115HTH, 
ENCFF148PHO, ENCFF348CJE, 
ENCFF363XQF, ENCFF395KUT, 
ENCFF422YFH, ENCFF679QGU, 
ENCFF811RTH, ENCFF889NTH, 
ENCFF909JGU, ENCFF913NRZ, 
ENCFF962JWU, ENCFF978OUM, 
ENCFF992VNB 

Lung 

ENCFF157KGS, ENCFF277WMS, 
ENCFF281HKU, ENCFF352RNR, 
ENCFF516FXF, ENCFF586UYY, 
ENCFF604AQG, ENCFF628MPB, 
ENCFF785ORF, ENCFF796WDQ, 
ENCFF941EJJ 

Right lung 
 

ENCFF028CVN, ENCFF036PYG, 
ENCFF040WPR, ENCFF041NEG, 
ENCFF213IAV, ENCFF229KSL, 
ENCFF246TUN, ENCFF262NZB, 
ENCFF308QRZ, ENCFF334ENU, 
ENCFF349CIP, ENCFF475YRW, 
ENCFF615LEO, ENCFF755PMB, 

Muscle of arm 
 

Muscle Skeletal 
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ENCFF771EKC, ENCFF886DDL, 
ENCFF994YDK 

ENCFF016PCJ, ENCFF062LJL, 
ENCFF182YXK, ENCFF191MBC, 
ENCFF365RKF, ENCFF376WVL, 
ENCFF417IJL, ENCFF433VTN, 
ENCFF468TOZ, ENCFF735DNU, 
ENCFF758REB, ENCFF766PCO, 
ENCFF831RQP, ENCFF897TZA, 
ENCFF994ALS 

Muscle of back 
 

ENCFF011UBS, ENCFF031RMC, 
ENCFF058UNN, ENCFF067VHZ, 
ENCFF138LZU, ENCFF175BCP, 
ENCFF241QSX, ENCFF283UJD, 
ENCFF470XXM, ENCFF699XQF, 
ENCFF874GGX, ENCFF896ZUQ, 
ENCFF970QZI 

Muscle of leg 

ENCFF022UVJ, ENCFF383OJO, 
ENCFF443ZJX 

Muscle of trunk 
 

ENCFF614SOO, ENCFF643WVI Tibial nerve Nerve Tibial 

ENCFF111IXG, ENCFF342PZX, 
ENCFF701ZFB, ENCFF936ENC 

Ovary Ovary 

ENCFF398ENA, ENCFF535LEW Pancreas Pancreas 

ENCFF569WWH, ENCFF627DYO, 
ENCFF779JBV, ENCFF963BGI 

Body of pancreas 

ENCFF228ZTQ Lower leg skin Skin Not Sun Exposed 
Suprapubic, 
Skin Sun Exposed Lower 
leg 

ENCFF019PSW, ENCFF087XDG, 
ENCFF130CZB, ENCFF274NTF, 
ENCFF333MTL, ENCFF412ATV, 
ENCFF424PWV, ENCFF571UWP, 
ENCFF617TGM, ENCFF720DUQ, 
ENCFF731WZI, ENCFF758VXS, 
ENCFF885IBS 

Small intestine 
 

Small Intestine Terminal 
Ileum 

ENCFF376YIY, ENCFF534XLO Spleen 
 

Spleen 

ENCFF009YJE, ENCFF024HZS, 
ENCFF187BOF, ENCFF227HYU, 
ENCFF272WHU, ENCFF278ROU, 
ENCFF376EBF, ENCFF457SNJ, 
ENCFF523INF, ENCFF556WLI, 

Stomach Stomach 
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ENCFF631XSP, ENCFF694LGV, 
ENCFF709TJW, ENCFF716YVE, 
ENCFF749DUT, ENCFF751PUA, 
ENCFF765AZQ, ENCFF785AIA, 
ENCFF885VHR, ENCFF967LJZ, 
ENCFF988ZPF 
 

ENCFF018TWY, ENCFF102TYW, 
ENCFF618EIJ 

Testis Testis 

ENCFF440OAH, ENCFF460WME, 
ENCFF652DKF, ENCFF856OWH 

Thyroid gland 
 

Thyroid 

ENCFF514GYQ Uterus Uterus 

ENCFF018IDK, ENCFF329QLI Vagina Vagina 

ENCFF808CMV, ENCFF736PAW, 
ENCFF209WIT, ENCFF359WHG , 
ENCFF131SCF, ENCFF126JXB, 
ENCFF138YRO, ENCFF668TER, 
ENCFF839YTP, ENCFF835SMB, 
ENCFF410MHQ, ENCFF046KTX 

T cell Whole Blood 

ENCFF698QNG, ENCFF497QQN, 
ENCFF829UTZ, ENCFF355LDD, 
ENCFF238LUI, ENCFF541VKE, 
ENCFF841XRI, ENCFF507JIF, 
ENCFF444ZRC, ENCFF805PHJ 

B cell 

ENCFF860NPB, ENCFF007TSW, 
ENCFF335JED, ENCFF438EZP, 
ENCFF228QBR, ENCFF915XQC, 
ENCFF154TFX, ENCFF859JIA 

CD14 positive monocytes 

 
 
 
 
 
 
Supplementary Table 11. ChIP-seq data from ENCODE  

TF Experiment  

HNF4A ENCSR445QRF, ENCSR601OGE 

CTCF ENCSR254YRM 

 



 91 

Supplementary Figures 
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Chapter C 

Supplementary Figures 

 
Figure S1. Distribution of sample conditions for the GEO samples. Each color represents one 

condition.  

 

 

 
 

Figure S2. Distribution of number of snps covered by at least one read for the GEO ATAC-seq 
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data. 

 

 

 
Figure S3. Distribution of number of sequenced reads for the GEO ATAC-seq data. 

 

 
Figure S4. Number of caQTLs at FDR < 0.05 using four peak sets, in different window sizes.  
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Figure S5. Number of peaks with QTLs for peaks in different TPM bins, and different sample 

distributions.  

 

 

 

 
 

Figure S6. Capture the unique donors for samples from study PRJNA394987, using randomly 

subsetted 5M paired reads for each sample.  
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Figure S7. Capture the unique donors for samples from study PRJNA484802, using randomly 

subsetted 5M paired reads for each sample.  
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Figure S8. True negative values for capturing the unique donors for samples from study 

PRJNA394987, using randomly subsetted 5M paired reads for each sample.  
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