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Abstract

Epilepsy affects over 60 million people worldwide. Epilepsy diagnosis depends on

abnormalities in scalp electroencephalography (EEG) signals but their presence varies

from 29-55%, resulting in a delayed diagnosis. Additionally, artifacts mimicking

abnormalities and conditions imitating epileptic seizures contribute to a misdiagnosis

rate of 30%.

Antiepileptic drugs (AEDs) are the mainstay of epilepsy treatment, but around

30% of patients do not respond to AEDs. Surgical treatment is a hopeful alternative

but outcomes depend on precise identification of the epileptogenic zone (EZ), the brain

region(s) where seizures originate, and success rates range from 20-80%. Localization

of the EZ requires visual inspection of intracranial EEG (iEEG) recordings during

seizures which is costly and time-consuming and, in the end, clinicians ignore most of

the data captured.

Diagnosis and management of epilepsy rely on detecting sporadic EEG signatures.

Thus, there is a great need to more quickly and accurately identify the underlying

cause and location of seizures in the brain. We developed and tested the source-sink

index (SSI) as an interictal (between seizures) EEG marker of epileptogenic activity.

We hypothesized that seizures are suppressed when the EZ is inhibited by neighboring

regions. We developed an algorithm that identifies two groups of nodes from the

EEG network: those inhibiting their neighboring nodes ("sources") and the inhibited

nodes themselves ("sinks"). Specifically, dynamical network models were estimated

from EEG data and their connectivity properties revealed top sources and sinks in
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the network. We tested and validated a twofold application of SSI, as: i) an iEEG

marker of the EZ, and ii) a scalp EEG marker of epilepsy. We found that SSI highly

agreed with the annotated EZ in successful outcome patients but identified untreated

regions in failure patients. Further, SSI outperformed high frequency oscillations, a

frequently proposed interictal EZ marker, in predicting surgical outcomes. When

used to predict diagnostic outcomes, SSI showed significant improvement over the

gold standard’s reported sensitivity and specificity. Our results suggest that SSI

captures the characteristics of regions responsible for seizure initiation. As such, it is

a promising marker of epileptogenicity that could significantly improve the speed and

outcomes of epilepsy management and diagnosis.
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is one of the most common neurological disorders and affects over 60 million

people worldwide [1]. It is characterized by unprovoked, recurrent seizures, which

are described as a sudden alteration of neurologic function caused by excessive,

hypersynchronous electrical activity of neurons in the brain [2]. Epilepsy can take

many forms which manifest in different types of seizures. Seizures are defined based

on their initial manifestations as focal, generalized, unknown or unclassifiable [3, 4].

Focal seizures originate in one or a few regions of the brain before spreading to other

brain regions and are limited to one hemisphere [3], whereas several regions in both

hemispheres are activated simultaneously at the onset of generalized seizures. In

seizures of unknown onset, the initial signs remain unknown, but other symptoms

are known, and finally, unclassifiable seizures are seizures with unknown onset and

manifestations [4]. Although seizures are the main characteristic of epilepsy, a single

seizure event is not necessarily synonymous with epilepsy. In fact, approximately

8-10% of the population will experience a seizure during their lifetime, but about 2-3%

of individuals go on to develop epilepsy [5].
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1.2 Challenges in diagnosing epilepsy

When an individual first presents with a seizure, evaluation and management of

the patient depend primarily on clinical analysis and scalp electroencephalography

(EEG) findings as clinicians work through a comprehensive evaluation process to make

a diagnosis and simultaneously exclude other possible causes for the seizure event.

Namely, the diagnosis of epileptic seizures and epilepsy depends on various factors

such as a thorough clinical history, recounting of events by the patient or family,

neurological examination, MRI scan, and a 20-30 minute scalp EEG recording [5–8].

Scalp EEG plays a central role in confirming epilepsy as the correct diagnosis, but

is only useful if abnormalities, such as interictal (i.e., between seizures) epileptiform

discharges (IEDs) or focal slow activity, are present in the signals. Unfortunately,

the presence of EEG abnormalities varies from 29-55% [9, 10], thus often requiring

multiple repeated EEG recordings and resulting in delayed diagnosis for a significant

number of epilepsy patients. After a single unprovoked seizure, the risk for another

is 40-52% [11] and consequently, if the epilepsy syndrome is left untreated as correct

diagnosis is being confirmed, patients experience an increased risk of seizure recurrence

and status epilepticus.

Conversely, artifacts that obscure the EEG and diminish its readability are present

in almost all EEG recordings. These artifacts commonly lead to misinterpretation of

the EEG as being abnormal [12] and overinterpretation of EEG is a major contributor

to misdiagnosis [13]. In addition, seizures are a symptom of an underlying disease

process and they can occur with a variety of conditions involving the central nervous

system (CNS) [14]. Before determining whether paroxymal events are the result of an

epileptic syndrome, two alternatives must be considered. First, some non-neurological

conditions may trigger an epileptic seizure. Febrile seizures are, for example, relatively

common during early childhood and conditions such as sleep deprivation, hypoglycemia,
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CNS infection or head traumas may all trigger a single seizure event [15]. The second

alternative are non-epileptic events that mimic epileptic seizures, such as vasovagal

syncope, parasomnias and movement disorders. These events most commonly involve

psychogenic non-epileptic seizures (PNES), but as many as 25-35% of patients who

undergo prolonged EEG monitoring have PNES [10, 16, 17]. Overall, many conditions

can imitate epileptic seizures and misdiagnosis rates reach nearly 30% [10]. A false-

positive diagnosis not only comes with mistreatment of the actual underlying disease

and unnecessary exposure to side effects of anti-epileptic medications, but carries with

it all the handicaps of an epilepsy diagnosis and may have severe psychological, social

and economic consequences [16–19].

1.3 Management of epilepsy

1.3.1 Anti-epileptic drugs

Once an individual has been diagnosed with epilepsy, the first step involves identifica-

tion of the epileptic syndrome and seizure types so that adequate treatment options

can be provided to the patient [15]. Anti-epileptic drugs (AEDs) have the ability to

protect against onset and spread of seizures while still allowing normal functioning

of the nervous system and generally serve as the first treatment of choice for most

patients with epilepsy. For around two thirds of epilepsy patients, the use of AEDs

is sufficient to keep their seizures under control. However, the remaining 30% have

drug resistant epilepsy and continue to experience seizures despite appropriate AED

treatment [20–23].

1.3.2 Drug resistant epilepsy

Drug resistant epilepsy (DRE) is defined as a failure of adequate trials of two or more

tolerated, appropriately chosen AEDs to achieve freedom from seizures [21] and is

a significant determinant of low quality of life in epilepsy patients. Patients with
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DRE commonly experience comorbid illnesses, an increased risk of mortality and are

frequently hospitalized, accounting for 80% of the $16 billion spent annually treating

epilepsy patients [24–27]. The burden of DRE, however, is much greater than direct

financial costs. In combination with physical consequences of uncontrolled seizures,

DRE is a debilitating illness where individuals lose their independence and is strongly

associated with an increased risk of behavioral, psychological and cognitive issues.

Patients often experience social stigma and exclusion and have restricted educational,

employment and driving opportunities, all of which may have great emotional, social

and even financial impact and ultimately contribute to a reduced quality of life in

these individuals [24, 28–30].

1.4 Treatment options for DRE patients

When seizure control is not achieved with medication, other alternatives including

surgery, neurostimulation or ketogenic diet, must be considered [31]. The most

effective treatments for DRE are interventions that surgically remove or disconnect

the epileptogenic zone (EZ), which is defined as the minimal area of brain tissue that

is responsible for initiating seizures and whose removal (or disconnection) is necessary

for complete seizure-freedom. [32]. A successful surgical outcome depends on the type

of epilepsy and the ability to precisely identify and completely remove the EZ, but

current surgical success rates vary significantly, rendering between 20-80% of patients

seizure free, depending on a variety of clinical factors [33, 34].

1.4.1 Pre-surgical evaluation

The objective of resective surgery is the complete removal, inactivation or disconnection

of the EZ, with preservation of eloquent cortex (i.e., brain areas that directly control

language, motor or sensory functions). Before surgery, patients undergo a thorough

evaluation process to determine the location and extent of the EZ. First, scalp EEG
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recordings and an MRI scan are obtained, and a detailed assessment of seizure

semiology is performed to hypothesize the location of the EZ and determine if the

epilepsy is focal, multi-focal or generalized. Second, functional testing with functional

MRI (fMRI), PET, SPECT, and in some cases MEG, may be performed to further

define the EZ boundaries and provide additional evidence of epilepsy type. If seizures

are focal and arising from an area in or near a visible lesion on the MRI scan, then

patients may go directly to surgery. If seizures are focal but the non-invasive methods

are discordant or inconclusive in localizing the EZ (e.g., imaging findings are not

consistent with scalp EEG findings), invasive monitoring with intracranial EEG (iEEG)

is often needed [35].

Fig. 1-1 provides an overview of the clinical workflow of invasive monitoring.

First, intracranial electrodes are placed either directly onto the surface of the brain

(electrocorticography - ECoG [36]), or inside the brain penetrating cortical and deep

brain structures (stereoelectroencephalography - sEEG [37]). Following electrode

implantation, the patient remains in the hospital for several days to weeks waiting

Figure 1-1. Clinical workflow of invasive monitoring during pre-surgical evaluation.
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for a sufficient number of seizure (ictal) events because the current clinical standard

primarily entails visually analyzing multiples of these events, looking for abnormal

epileptic activities to localize the EZ [38]. Specifically, two types of iEEG analyses

are performed by highly qualified epileptologists [39]. Ictal (seizure) recordings are

inspected to identify various epileptic signatures such as repetitive spikes, rhythmic

slow waves or rapid fast intracortical frequencies [38, 40, 41]. Based on these findings,

a multidisciplinary team of clinicians then form a hypothesis on which electrodes are

recording from the EZ. Ictal iEEG data are of higher value for localization purposes,

but interictal (between seizure) iEEG data are also inspected to identify abnormal

electrographic spikes. The area of cortex that generates interictal spikes is referred to

as the irritative zone and channels on which such spikes are observed are denoted as

possible EZ nodes [35]. However, it is often difficult to distinguish between propagated

and locally generated discharges in iEEG recordings, making interictal spikes an

unreliable iEEG marker for the EZ [38]. Thus, the gold standard predominantly

relies on inspecting seizure events and as such, most of the iEEG recordings captured

invasively from patients are not being utilized to localize the EZ.

1.5 Limitations of current clinical practice

Current diagnostic and management procedures in patients with epilepsy rely on

detecting sporadic EEG signatures that may or may not be present when recordings

are performed. In fact, to emphasize what was said above, the yield of abnormalities

necessary to confirm epilepsy diagnosis on a patient’s first scalp EEG recording is less

than 50% on average and moreover, scalp EEG is prone to artifacts that can imitate

epileptic EEG signatures. The result is a delayed diagnosis or misdiagnosis of the

underlying condition, both of which may lead to serious consequences. Additionally,

EZ localization primarily depends on seizure recordings, but waiting for seizures

to occur results in prolonged monitoring times, which is both costly and risky to
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DRE patients, and worse, in some patients no seizures are captured during invasive

monitoring in which case the EZ cannot be localized from the iEEG data. Finally,

current surgical success rates are only around 50% on average and many surgical

candidates opt out of this potentially curative procedure [42].

1.6 Thesis aims

There is a great clinical need to more quickly and accurately identify the underlying

cause and location of seizures in the brain. The fundamental limitation of the current

gold standard is its dependence on the presence of epileptic signatures in the EEG

signals (scalp and invasive) during visual inspection. We aim to address some of the

limitations of current clinical practice by developing a computational tool that com-

putes an EEG marker called the source-sink index (SSI) based on a novel hypothesis

on how seizures are triggered and suppressed in the epileptic brain. As such, the SSI is

designed to detect the internal properties of an epileptic brain (e.g., abnormal network

connectivity) not visible during visual inspection, which, unlike epileptiform activity,

are always present in EEG signals. We developed and tested the source-sink index as

an EEG marker through the following aims:

Aim 1: To develop and validate source-sink algorithm

(Aim 1.1) We hypothesize that seizures are suppressed when the EZ is effectively

inhibited by neighboring nodes. To test the hypothesis, we will develop an algorithm

that identifies two groups of nodes from an interictal EEG network: those that are

continuously inhibiting a set of their neighboring nodes (denoted as "sources") and

the inhibited nodes themselves (denoted as "sinks"). Specifically, the tool i) estimates

patient-specific dynamical network models (DNMs) from minutes of interictal EEG

data, ii) uses connectivity properties of the models to reveal top sources and sinks

in the EEG network and iii) quantifies the connectivity characteristics of each node
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by a source-sink index (SSI). A high SSI indicates that the node is a top sink highly

influenced by top sources and top sinks in the network. Hypothesis: Epilepsy patients

will have a high SSI in one or more regions (i.e., the source-sink phenomena is present

in the EEG network), but non-epileptic patients will have a lower index across all

regions, indicating that the regions are neither top sources nor top sinks. Further, the

regions with the highest SSI in epilepsy patients belong to the EZ.

Aim 2: To apply the source-sink algorithm to interictal in-
tracranial EEG to localize the epileptogenic zone

(Aim 2.1) We will validate the SSI as an iEEG marker of the EZ in a retrospective

analysis of 65 DRE patients who underwent sEEG implantation followed by surgical

treatment, and whose outcome is known. For each patient, we will apply our methods

from Aim 1 to construct an iEEG DNM and compute SSI for each network node

(iEEG channel) to identify pathological nodes that correspond to the EZ. (Aim 2.2)

We will evaluate performance by i) comparing the EZ channels identified by our

algorithm to those identified by clinicians and ii) predicting surgical outcomes as a

function of source-sink features by employing the random forest and logistic regression

frameworks. Hypothesis: iEEG channels that belong to the clinically annotated EZ

will have a high SSI in patients with successful surgical outcomes, but lower in patients

with failed outcomes.

Aim 3: To test further application of the source-sink algorithm
to other modalities

(Aim 3.1) 57 patients (27 epilepsy patients and 30 non-epileptic patients with PNES)

will be used to test the SSI as an interictal scalp EEG marker of epilepsy. All patients

will have normal EEGs, i.e. with no epileptic abnormalities present in the scalp EEG

recordings. As scalp EEG is prone to artifacts, we will first perfom artifact removal

before applying our methods from Aim 1 to construct an interictal DNM for each

8



patient and compute SSI for each EEG channel. (Aim 3.2) We will then split the data

into a training and a test set and use the training set to construct a logistic regression

model that predicts whether a patient has epilepsy or not from the SSI distribution

across all EEG channels. Finally, we will apply the model to the test patients and

evaluate performance by comparing the predicted diagnostic outcome to the actual

clinical diagnosis of each patient. Hypothesis: Epilepsy patients will have a high SSI

in one or more EEG channels but non-epileptic patients will have lower SSI across all

channels.
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Chapter 2

Detecting sources and sinks from
EEG recordings

2.1 Source-sink hypothesis: Sources and sinks in
the epileptic brain network

The clinical gold standard for pre-surgical evaluation of epilepsy patients primarily

involves visual inspection of seizure events to localize the EZ. In contrast, we performed

our analysis exclusively on interictal, seizure-free data. This leads to a fundamental

question: how can one identify where seizures start in the brain without ever observing

a seizure? Our source-sink hypothesis states that pathologic epileptogenic regions

(denoted as "sinks") are persistently being inhibited by neighboring regions (denoted

as "sources") during interictal periods to suppress seizures.

The concepts of sources and sinks within a network is well established and has

been applied to many analyses of network systems [43]. As schematically represented

in Fig. 2-1, a source node in our application is a region in the brain network that

is highly influential to other nodes but is not being influenced by other nodes. In

contrast, a sink node is a region that is being highly influenced by the activity of other

nodes but is not influential itself. During rest (i.e., when patients are not having a

seizure, Fig. 2-1, top), our conjecture is that seizure onset is prevented by a strong

inhibition exerted on the EZ by its neighboring brain regions (sources), which restricts
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the discharge and propagation of the seizure activity. In other words, EZ regions are

sinks that cannot influence the rest of the network. When an epilepsy patient has a

seizure however (Fig. 2-1, bottom), the EZ is triggered and the EZ nodes transition

into sources as they work together as a collective group to initiate and spread seizure

activity.

Figure 2-1. Source-sink hypothesis. Top: During interictal periods, epileptogenic nodes
(shaded red region) are sinks that are strongly inhibited (influenced) by neighboring regions
(sources) to prevent seizures. Bottom: During ictal (seizure) periods however, epileptogenic
nodes become sources as they work together as a tightly coupled group to initiate and
spread epileptogenic activity to other regions of the brain.
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2.1.1 Biological evidence supporting the source-sink hypothesis

From a cytological perspective, the source-sink hypothesis is supported by evidence

that seizures are prevented when the EZ is effectively inhibited by other brain regions.

Glutamate, the primary excitatory neurotransmitter in the brain, has been implicated

as a neurotoxic agent in epilepsy and studies have also suggested that a relative

imbalance between glutamate and the inhibitory neurotransmitter GABA plays a

central role in epilepsy [44]. Healthy brain function requires a balance between

glutamate uptake and release to maintain the concentration of extracellular glutamate

within a homeostatic range [45]. Several studies have demonstrated the existence

of elevated levels of extracellular glutamate in animal models of epilepsy [46] and

in human epilepsy patients [47]. In addition, the presence of sodium dependent

glutamate transporters (GLTs) is thought to be crucial to prevent accumulation

of neurotoxic levels of glutamate in the extracellular space by clearing unbound

extracellular glutamate [47]. Findings suggest that fluctuations in the expression of

GLTs may play a role in the expression of epileptogenicity [48]. In fact, previous studies

have shown an increased number of GLTs in human dysplastic neurons and posit

that this enables a "protective" inhibitory mechanism surrounding the epileptogenic

cortex [49]. Taking this evidence together, the inhibitory (the sink phenomena) and

the excitatory (the source phenomena) events within the potential EZ may have a

biological substrate in the differential expression of glutamate transporters within the

EZ. Finally, the inhibitory hypothesis is further supported by studies of microglia, a

type of glial cells in the brain, which showed that microglia suppress (inhibit) neuronal

activity and that the lack of these cells causes increased synchrony of neurons leading

to seizure progression in the brain [50].
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2.1.2 iEEG studies supporting the source-sink hypothesis

iEEG studies also provide evidence that support our source-sink hypothesis. Several

studies have demonstrated a high inward directed influence to the EZ at rest [51–53].

In a recent study by Narasimhan et al. [51] the authors state that high inward

connectivity may reflect inhibitory input from other regions to prevent the onset and

spread of seizure activity, but the direction of these signals may flip when seizure

activity begins. This conjecture is further supported by iEEG studies in neocortical

epilepsy demonstrating functional isolation of epileptogenic areas at rest [54] and that

increased synchronization in seizure-onset regions may be suggestive of an inhibitory

surround [55, 56]. Specifically, Kini et al. showed that in patients with good (but not

poor) post-surgical outcomes, removal of these regions causes an decreased network

synchronizability at seizure onset, suggesting a greater resistance to the propagation

of seizure activity throughout the network [55]. This was further demonstrated in a

study by Schevon et al., where they demonstrated how hypersynchronous recruitment

in seizure-onset regions leads to a seizure, but that desynchronized firing in the

surrounding areas reflects a protective inhibitory restraint opposing epileptic spread

[56]. It has also been hypothesized that widespread network inhibition seen in temporal

lobe epilepsy may have evolved to prevent seizure propagation [55] and that a reduction

of the inhibitory influence may lead to increased excitability and propagation of seizure

activity [57].

In this work, we formalize the above evidence and build dynamical network models

(DNMs) of the interictal EEG activity to identify sources and sinks of the network from

DNM connectivity parameters. Source-sink indices are computed for each network

node (see below) to i) identify pathological nodes most likely belonging to the EZ

using invasive EEG data and ii) identify epileptogenic brain networks using scalp EEG

data.
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2.2 Dynamical network models

The DNMs are generative models that characterize how each EEG channel dynamically

influences the rest of the network. The interictal DNM takes the form of a linear

time-varying (LTV) model that mathematically describes how each observed brain

region (i.e., EEG channel signal) interacts with the other regions. The LTV DNM is

composed of a sequence of linear time invariant (LTI) DNMs derived from smaller

windows of the data. Specifically, we split the EEG data into 500-msec windows and

construct an LTI model in each window. Each LTI model takes the following form:

x(t + 1) = Ax(t) (2.1)

where x(t)ϵRNx1 is the state vector and represents the EEG channels, AϵRNxN is

the state transition matrix, which describes how the EEG channels interact and how

their activity evolves over time and N is the total number of EEG channels. The

DNMs are generative and thus can simulate the EEG data given the initial state at

t = 0, x(0), and importantly, systems theory can be employed to uncover the dynamics

and properties of the DNMs which we will use to ultimately assist in accurately

localizing the EZ and identifying epileptogenic networks. In our previous work, we

showed how LTV DNMs can be derived using least squares estimation and that they

accurately reconstruct iEEG (ECoG and sEEG) time series [58]. See Fig. 2-2 for an

example of actual versus reconstructed iEEG data using the DNMs.

In these models, element Aij describes how the present activity of EEG channel j

influences the future activity of channel i. More generally, the i-th row of A dictates

the EEG network’s cumulative functional effect on node i, while the j-th column

determines the functional effect that the activity of node j exerts on the entire network.

Although the sensitivity of iEEG recordings is higher than that of traditional

EEG and they provide a much more direct measure of local neuronal population

activity, each iEEG channel records the activity of about half a million neurons [59].
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Figure 2-2. A. ECoG implantation of patient. B) 10 second snapshot of actual (orange)
versus simulated (blue) signals of four iEEG channels from one depth electrode. All four
channels belong to the clinically annotated EZ. Interictal spikes, present in two signals
(AD1-2), are accurately captured by the network model.

Consequently, the DNMs (scalp EEG and iEEG) cannot distinguish between excitatory

and inhibitory connections in the EEG network. Instead, we only quantify the strength

of the connection between two nodes, hereafter referred to as the amount of "influence"

one node has on another.

2.3 Sources and sinks in the EEG DNM

We define two special groups of nodes in the EEG network. A node is a source (blue

nodes in Fig. 2-3A) if its activity has a high influence on the activity of other nodes

in the network, but it is not highly influenced by other nodes. In contrast, a node is a

sink (pink nodes in Fig. 2-3A) if it is being highly influenced by the activity of other

nodes but does not have a high influence on others. This is reflected by the rows and

columns, respectively, of the state transition matrix of the DNM (A in eq. 2.1 and Fig.

2-3C). Sources are channels that generally have high values (in magnitude) in their

columns (high influence on others) but low values across their rows (low influence from

others), whereas sinks exhibit the opposite pattern, high row values and low column
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Figure 2-3. A. A N-channel scalp EEG (top) and iEEG (bottom) network example. B.
Signals obtained from the EEG channels. C. Corresponding A matrix, estimated from the
EEG signals. D. 2D source-sink representation of the EEG network with sink index (sinki),
source influence (sourcei) and sink connectivity (conni) labeled.

values. In the context of the source-sink hypothesis stated above, our conjecture is

that the EZ nodes are sources right before a seizure, as they unite and effectively

influence other nodes in the network to start and spread the seizure activity, but

become sinks at rest, when other regions are working diligently to prevent the seizures

from spreading by exerting strong influence (inhibition) on the EZ.

2.4 Computing source-sink indices

2.4.1 Identifying top sources and sinks in the interictal EEG
network

To identify the top sources and sinks in each DNM, we quantify the extent of each

EEG channel’s source or sink behavior by computing the amount of influence to and

from the channel as follows. The total influence channel i receives from the rest of

the network in 500-msec window w of the EEG data is defined as the sum of the

absolute values across its row in Aw or in other words, it is equal to the 1-norm of its

row. Similarly, we define the total influence from channel i to the rest of the network

as the 1-norm of its column in Aw. Once we have the total influence to and from

each channel, we place the EEG channels in the source-sink 2D space (Fig. 2-3D) by

ranking the row and the column norms of all channels against each other (where rank
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1/N indicates the smallest 1-norm and rank 1 is the largest 1-norm) to obtain each

channel’s row rank (rr) and column rank (cr). When drawn in the source-sink space

in Fig. 2-3D, sources are channels located at the top left (blue circles), whereas sinks

(pink circles) are located at the bottom right.

2.4.2 Definition of source-sink indices

Once the top sources and sinks are identified, we compute a source-sink index (SSI)

for each channel. The SSI is a product of three metrics subject to the source-sink

hypothesis. For each channel i, we quantify the following metrics:

Sink Index: The first criterion from our source-sink hypothesis requires an EEG

channel to be a top sink in the EEG network to be considered an EZ channel. The

sink index captures how close channel i is to the ideal sink, which is defined as a

channel whose row rank (rr) is equal to 1 and column rank (cr) is equal to 1/N (see

Fig. 2-3D, pink star). The sink index of channel i is computed as:

sinkw
i =

√
2 − ||(rrw

i , crw
i ) − (1,

1
N

)|| (2.2)

The larger the sink index, the more likely the channel is a sink.

Source Index: Similar to the sink index, the source index captures how close a

channel is to the ideal source (rr = 1/N and cr = 1, blue star in Fig. 2-3D). The

source index is defined as:

sourcew
i =

√
2 − ||(rrw

i , crw
i ) − ( 1

N
, 1)|| (2.3)

The larger the source index, the more likely channel i is a source.

Source Influence: The second criterion from our source-sink hypothesis for a channel

to be considered an EZ channel is that it is highly influenced by the top sources of

the EEG network. The source influence index quantifies how much the top sources
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influence channel i and is defined as:

inflw
i =

N∑
j=1

abs(Aij) ∗ sourcej (2.4)

A high value of inflw
i suggests that channel i receives strong influence from the top

sources in the interictal DNM.

Sink Connectivity: The third and final criterion from our source-sink hypothesis

for a node to be considered an EZ node is that it is highly connected to other sinks so

that it can collaborate to generate a seizure. The sink connectivity index quantifies

the strength of connections from the top sinks to channel i:

connw
i =

N∑
j=1

abs(Aij) ∗ sinkj (2.5)

The higher the sink connectivity, the stronger influence channel i receives from the

top sinks in the network. All metrics are normalized by maximum value.

Source-Sink Index (SSI): Finally, a source-sink activation index is computed for

each EEG channel in each window as:

ssiw
i = sinkw

i ∗ inflw
i ∗ connw

i (2.6)

In line with the source-sink hypothesis, SSI is high if all three indices are high.

Therefore, we expect EZ nodes to have a high source-sink index and non-EZ nodes to

have a lower source-sink index during interictal periods.
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Chapter 3

Source-sink analysis for localization
of the epileptogenic zone on
interictal intracranial EEG data

3.1 Introduction

3.1.1 Computational approaches to identify iEEG markers
to assist in EZ localization

In recent years, epilepsy has been increasingly conceptualized as a network disorder

rather than a single source of pathology in the human brain [60–63]. Intracranial

EEG offers a unique opportunity to observe rich epileptic cortical network dynamics,

which are most visible to the naked eye during seizures. However, the need for seizure

occurrence makes localization of the EZ a costly and time-consuming process and

the prolonged invasive monitoring poses an increased risk to DRE patients [36]. The

process is also subjective, as no consensus objective iEEG markers are used in the

clinical workflow to specifically assist in the identification of the EZ although many

attempts have been made to automate the process.

In line with the standard of care visual analysis, most of the proposed localization

methods depend on seizure data (e.g., [61, 64–73]). Nevertheless, using interictal data

has been of high interest as well, as this could significantly speed up the invasive

monitoring process. A large number of computational studies have applied network-
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based measures to identify the EZ [61, 72–77]. However, such measures (e.g., degree

distribution or nodal centrality) are not explicitly designed to capture the connectivity

patterns of the EZ because they are not derived from the dynamics of the iEEG

signals. Moreover, many different networks may result in identical metrics. Others

have looked at spectral properties of individual iEEG channels, including detection

of high frequency oscillations (HFOs) [74, 78–82] and/or interictal spikes [83–85].

However, the reliability of HFOs as an iEEG marker of the EZ is debatable [86]

and by treating each channel independently, these methods fail to capture network

properties of the brain. Additionally, a majority of the aforementioned methods

depend on epileptiform signatures being observable in the signals rather than detecting

the underlying dynamical properties of the epileptic network.

In this study, we aim to leverage interictal iEEG data to implement EZ localization.

We hypothesize that when a patient is not having a seizure, it is because the EZ

is being inhibited by neighboring regions. Based on this hypothesis, we tested the

SSI (derived in chapter 2) as an interictal iEEG marker of the EZ by i) estimating

patient-specific DNMs from interictal iEEG data and ii) using source-sink connectivity

properties of the models to identify pathological nodes (iEEG channels) in the network

that correspond to the EZ. We applied our algorithm to interictal iEEG snapshots

from 65 patients treated across 6 clinical centers and evaluated performance by i)

comparing the EZ channels identified by our algorithm to those identified by clinicians

and ii) predicting surgical outcomes as a function of source-sink features by employing

the random forest and logistic regression frameworks. Additionally, we compared

the performance of the source-sink features to that of HFOs, a frequently proposed

interictal iEEG marker of the EZ.
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3.2 Materials and methods

3.2.1 Patient population

Sixty-five adults (mean age 33.5±13.0 (mean ± s.d.) years) with drug resistant epilepsy

who underwent intracranial EEG monitoring with stereotacticly placed depth electrodes

(sEEG) and received subsequent surgical treatment were selected retrospectively for

the study. Post-sEEG surgical treatments included resective surgery (39 patients),

laser ablation (17 patients) or responsive neurostimulation (RNS, 9 patients). Patients

were treated at one of the following institutions: Cleveland Clinic (CC), Johns Hopkins

Hospital (JHH), University of Kansas Medical Center (KUMC), University of Miami

Hospital (UMH), National Institutes of Health (NIH) or University of Pittsburgh

Medical Center (UPMC). All patients had a minimum of one year follow-up after

their last treatment procedure to determine treatment outcomes. Patients who had

a follow-up period of less than one year and patients who did not receive treatment

following pre-surgical evaluation (e.g. due to non-localizable EZ or EZ located in

eloquent cortex) were excluded from the study. Patient population statistics are

summarized in Table 3-I. The study was approved by the Institutional Review Board

(IRB) at each clinical institution; Cleveland Clinic’s IRB, Johns Hopkins Medicine

Table 3-I. Dataset demographics

Number of
patients

Gender
(M/F)a

Age
(years)

Surgical outcome
(S/F)b

MRI findings
(NL/ABN)c

CC 29 15/14 30.5 ± 12.3 13/16 26/3
KUMC 9 4/5 39.7 ± 16.9 4/5 6/3

JHU 5 2/3 35.3 ± 18.3 3/2 0/5
UMH 8 6/2 35.3 ± 12.7 1/7 5/3
NIH 9 7/2 33.1 ± 9.3 4/5 5/4

UPMC 5 3/2 36.6 ± 12.0 3/2 4/1
Total 65 37/28 33.5 ± 13.0 28/37 46/19

a M=males, F=females,
b S=successful outcome, F=failed outcome,
c NL=MRI normal, ABN=Abnormal findings on MRI
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IRB, University of Kansas Medical Center IRB, University of Miami Human Subject

Research Office, National Institutes of Health IRB, and the University of Pittsburgh

IRB. All clinical decisions were made independently of this study.

3.2.2 Data collection

3.2.2.1 sEEG recordings

The sEEG data were recorded using either Nihon Kohden (Nihon Kohden America,

Foothill Ranch, CA, USA) or Natus (Natus Medical Inc., Pleasanton, CA, USA)

monitoring and diagnostic systems at a typical sampling frequency of 1 or 2 kHz. A

small subset of recordings was recorded at a sampling frequency of 500/512 Hz. The

placement of each electrode was determined by the clinical team at each center based

on patient history and available non-invasive data. For each patient, a minimum of

20 seconds and a maximum of 16 minutes of interictal snapshots (average duration

5.3±4.2 minutes) were randomly selected for analysis. Interictal periods were sampled

at least one hour away from seizures without application of specific selection criteria

(such as the presence or absence of epileptiform activity).

3.2.2.2 Clinical annotations of the EZ

At each epilepsy center, an EZ hypothesis was formulated independently of this

study by the clinical team based on the comprehensive patient data (non-invasive

and invasive) gathered throughout the presurgical evaluation process. Epileptologists

describe the anatomical location and extent of the EZ by means of visual analysis of the

invasive data by identifying regions involved at seizure onset. The clinically annotated

EZ (CA-EZ) is defined as the anatomical area(s) to be treated (resected, ablated or

stimulated) and includes sEEG channels demonstrating the earliest electrophysiological

changes (generally characterized by low voltage fast activity) at the beginning of an

ictal event (referred to as the seizure onset zone), as well as channels involved in early
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propagation of the seizure activity.

3.2.2.3 Clinical classification of surgical outcomes

Post-surgical clinical outcomes were classified by the clinical experts at each center

according to the Engel Surgical Outcome Scale [87] and the International League

Against Epilepsy (ILAE) classification system [88]. Successful surgical outcomes were

defined as free of disabling seizures (Engel class I and ILAE scores 1-2) and failure

outcomes as not free of disabling seizures (Engel classes II-IV and ILAE scores 3-6) at

12+ month post operation. Out of the 65 patients in the dataset, 28 patients had a

successful surgical outcome whereas 37 patients experienced seizures after receiving

treatment (failed outcome).

Previous outcome studies have shown that patients with visible lesions on MRI

have higher success rates as seizures likely originate from the lesion or its vicinity thus

making the EZ more easily localizable [89]. In contrast, non-lesional patients, and

patients with extra-temporal or multi-focal epilepsy have higher rates of non-seizure

free outcomes [40, 90–92]. To better define the clinical complexity of each patient, the

clinical team assigned patients to three additional categories as follows: 1) lesional

(visible lesions on MRI) or non-lesional, 2) mesial temporal or extra-temporal, and 3)

focal or multi-focal.

3.2.3 Data pre-processing

The data were bandpass filtered between 0.5 and 300 Hz with a fourth order But-

terworth filter, and notch filtered at 60 Hz with a stopband of 2 Hz. A common

average reference was applied to remove common noise from the signals. Finally, sEEG

channels not recording from grey matter or otherwise deemed "bad" (e.g., broken or

excessively noisy or artifactual) by the clinical team’s visual inspection were discarded

from each patient’s dataset. The continuous sEEG recordings were divided into
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non-overlapping 500-msec windows for modeling and feature extraction (see details

below). All data processing and analysis were performed using MATLAB R2020b

(MathWorks, Natick, MA). Models for predicting surgical outcomes were built using

Python3.6+ (Python Software Foundation, Wilmington, DE).

3.2.4 Source-sink analysis to localize the EZ

For each patient, the interictal sEEG recording was split into 500-msec non-overlapping

windows and DNMs were estimated in every window w of the data to obtain a sequence

of A matrices over time, Aw, wϵ[1, 2, . . . , T ], where T is the number of windows. In

Aw (Fig. 2-3C), row i represents the amount of influence sEEG channel i receives

from the rest of the network in window w, and column j represents how the activity

of channel j influences the activity of all other channels in the network.

3.2.4.1 Computing dynamic and constant interictal SSIs

Next, we computed SSI for every channel in each window w using eqs. 2.2-2.6 resulting

in a series of SSIs across windows. Unlike seizure activity, interictal activity is relatively

stationary, with little deviation from a baseline value over time. As a result, there is

little variation in the sequence of Aw matrices and consequently in the source-sink

behavior of individual channels across windows during interictal periods. Thus, we

also defined a single, constant, A matrix to represent each patient’s interictal DNM

as:

A = 1
T

T∑
w=1

abs(Aw) (3.1)

Finally, in addition to computing the dynamic source-sink metrics across windows

using Aw we also computed a set of constant SSIs for each patient using A in eq. 3.1.
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3.2.5 Quantifying temporal stability of source-sink metrics

Because of the stationarity of the interictal activity over time, we expect SSIs to be

consistent and independent of the timing or duration of the interictal snapshot used for

each patient. To verify that the channels reported to clinicians with the largest SSIs

were consistent over time, we quantified the temporal stability of the source-sink indices

(eq. 2.2-2.6) for each patient as follows. Let Am be the set of iEEG channels with

the highest 10% of SSI values for each constant metric m = {sink, infl, conn, ssi},

computed from A averaged across the entire interictal recording (eq. 3.1), and let

Bws
m be the set of the top 10% of channels with highest values for each metric m

computed from the average A of a smaller window wϵ[1, . . . , W ] of length ws, where W

is the number of non-overlapping windows of length ws across the patient’s interictal

recording. Finally, let Cws
m be a set of randomly selected channels of the same size as

Am and Bws
m . Then, in each window w, we computed the percentage of channels in

Bws
m that were also Am, i.e.

ABws
m = |Am ∩ Bws

m |
|Am|

∗ 100 (3.2)

Similarly, we computed ACws
m as the percentage of channels in Am that were also

in Cws
m . Finally, we computed the average percentage of channels captured across

all windows for each metric to obtain a distribution of values across patients, and

compared to the average expected percentage of channels captured for randomly

selected channels as described in Statistical Analysis below. We chose this analysis as

a means to quantify whether the results presented back to clinicians, i.e., the channels

with the largest SSIs, remained consistent across time.
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3.2.6 Predicting surgical outcomes using source-sink indices

To evaluate the source-sink indices as interictal iEEG markers of the EZ, we tested

their efficacy in predicting surgical outcomes by i) using them as features in a random

forest (RF) classifier following the same procedure as Li et al. [64] (see Fig. 3-1 for

a schematic of the experimental design), and ii) building a simple logistic regression

(LR) model. We compared performance against that of clinicians as well as HFOs,

the most commonly proposed interictal iEEG marker of the EZ.

In recent years, the RF prediction algorithm [93] has risen considerably in popularity.

The models can however become rather complex and are more focused on prediction

rather than explanation [94]. LR models on the other hand, are simple statistical

models that use a logistic function to model a binary variable. In the context of

Figure 3-1. Schematic of the experimental design for predicting surgical outcomes. Top:
From just minutes of each patient’s iEEG data, we compute a set of constant source-sink
indices for each iEEG channel. We summarize the indices by computing the mean and
standard deviation of each index across i) EZ channels and ii) non-EZ channels and use as
features in the RF classifier to compute a probability of success (ps) for the patient. Finally,
we apply a threshold to ps to predict surgical outcome and compare to the actual outcome
of the patient. Bottom: A simplified diagram of the clinical workflow from pre-surgical
evaluation to surgical treatment of DRE patients. The clinical team visually inspects hours
of interictal and ictal iEEG data, in addition to various non-invasive data to come to a
consensus on which electrodes are recording from the EZ. Lastly, surgery is planned to
remove the EZ. Post-operatively, patients are followed for 12+ months and categorized as
either success or failure based on their surgical outcome.
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low-dimensional data, LR models are frequently used, particularly in scientific fields

(e.g., medicine), where the focus is on both prediction and explanation [94] as they

are simple and easily interpretable. In order to further explore the predictive value of

the source-sink metrics, we chose to also build a LR model in comparison to the RF.

Below, we briefly describe the modeling procedure using the RF classifier (see [64] for

more details). Details of methodology and results for the logistic regression model are

provided in Appendix II.

We modeled the probability of a successful surgical outcome ps, as a function of the

three source-sink index metrics (eq. 2.2-2.6) using a sparse oblique RF classifier, known

as SPORF [95, 96]. Specifically, we computed the distribution of constant feature

values in two sets of channels: i) the CA-EZ and ii) all other channels not labeled as

CA-EZ (CA-NEZ). Feature distributions of each set of channels were summarized with

the mean and standard deviation, resulting in 12 possible features presented to the

RF classifier. Next, we performed a tenfold nested cross-validation (CV), considering

a set of hyperparameters, and performed statistical analysis (described below) on the

final classification performance to determine the most robust feature representation.

Finally, we compared the predicted surgical outcome to the actual outcome of each

patient.

The probability of success, ps, can be conceptualized as a confidence score of the

CA-EZ. In success patients, we assume that the CA-EZ was accurately identified

and removed. Thus, if the source-sink indices are accurate markers of the EZ, we

expect their values to be high in the iEEG channels corresponding to the CA-EZ, and

consequently ps will be high. In contrast, if seizures continue (failed outcome), the

CA-EZ was most likely not sufficient and ps should have a low value. In general, the

prediction of surgical outcomes using any feature conditioned on the CA-EZ enables

us to evaluate the overall value of the feature as a potential EZ marker.
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3.2.7 Predicting surgical outcomes using HFOs

We compared the predictive value of the source-sink indices to that of HFOs, which

have been actively explored as interictal biomarkers of the EZ. HFOs are defined as

spontaneous events occurring on individual iEEG channels that clearly stand out from

the background activity and are divided into three subgroups based on their frequency:

ripples (80-250 Hz), fast ripples (250-500 Hz) and very-fast ripples (>500 Hz) [97, 98].

High rates of HFO events detected in the ripple and fast ripple frequency bands have

been associated with seizure onset regions [99], and removal of tissue with high rates

of HFOs has been associated with good surgical outcome [82, 100, 101]. We detected

HFOs in the interictal data segments using the root-mean-square detector developed

by Staba et al. [102] as described next.

First, the raw iEEG signals were re-referenced to a bipolar montage and artifactual

segments were removed using an automated extreme value detector [103, 104]. Neural

data in each channel were then bandpass filtered between 100-450 Hz (for data sampled

at 1000 Hz or above) or between 100-200 Hz (for data sampled at 500 or 512 Hz) with

a finite impulse response filter (passband frequency range of 100-450 Hz or 100-200 Hz

with a stopband of 10 Hz). Signals were filtered both forwards and backwards in time

to avoid phase distortion. The root-mean-square (RMS) of each point was computed,

and segments of data in which the RMS value exceeded 5 standard deviations above

the mean for at least 6 msec were recorded. After this initial detection, segments

were defined as HFO events if the amplitude of at least 6 rectified peaks (three full

oscillations) exceeded a threshold of 3 standard deviations above the mean of the

rectified signal. HFO events were computed for each channel independently. We note

that we did not perform parameter optimization when implementing this detector

though optimization has been shown to impact performance [105, 106].

HFO rate (number of HFOs per minute per channel) is some of the most commonly
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used metrics to test the value of HFOs as a biomarker of the EZ (e.g., [53, 78, 82,

85, 99–102, 107], to name a few). Thus, we chose to compare the performance of

the source-sink indices to that of HFO rate. We computed each channel’s HFO rate

(HFOs/minute) by counting the total number of detected HFOs and dividing by the

length of the patient’s interictal iEEG snapshot in minutes. Finally, we modeled

the probability of a successful surgical outcome, ps, as a function of the HFO rate

following the exact same paradigm as for the source-sink indices described in section

3.2.6 above.

3.2.8 Clinical annotations of CA-EZ and SSI correspondence

To further evaluate the SSI as an iEEG marker of the EZ, the clinical team at each

center reviewed the source-sink results for each patient and ranked the correspondence

between the CA-EZ and the nodes that had high SSIs. Specifically, for each patient,

clinicians at the corresponding center were presented with a 2D map of the source-sink

space (Fig. 2-3D) which shows the location of each implanted iEEG channel in the

source-sink space, as well as the strongest connections from the top sources and sinks

and where they point to. The clinical team then compared the source-sink results

to the clinically annotated EZ regions and rated the clinical correspondence between

the two sets as either: 1) agreement, defined as a) strong agreement if there was as

a significant overlap with the clinically annotated EZ or b) some agreement if there

was some overlap with the CA-EZ regions or the channels with the highest SSI were

within the same functional network as the CA-EZ, or 2) no agreement, defined as no

overlap with CA-EZ regions.

3.2.9 Statistical analysis

Temporal stability of SSIs: To determine the temporal stability of the interictal

snapshots we first obtained distributions of ABws
m and ACws

m across patients by com-
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puting the average percentage of captured channels over all windows for each patient.

We repeated the analysis for five different window sizes, ws = {1, 2, 3, 5, 10} minutes.

Randomly selected channels (in Cw
ms) were resampled in each window of each window

size. Then, we compared ABws
m and CBws

m for each m and each ws using a paired

two-sample t-test with the null hypothesis that the two distributions have equal means

and the alternate hypothesis that the means are different.

Predictive power of SSIs: Each RF model (source-sink and HFO) was validated

using a stratified shuffle tenfold CV as done in [64], by creating ten random splits of

the entire dataset into training and test sets. In each such split, the hyperparameters

were tuned using the training data (70% of the dataset), and performance was then

evaluated on the test set by applying a varying threshold to the model’s output and

computing a receiver operating characteristic (ROC) curve. The ROC curve plots

true positive rates against false positive rates for various threshold values and the area

under the curve (AUC) is a measure of discriminative power of the indices. The AUC

ranges from 0.5 to 1, with 0.5 indicating that the model has no discrimination capacity

to distinguish between the successes and failures and an AUC of 1 indicating that the

model is able to perfectly distinguish between the two outcome classes. Thus, the

larger the AUC, the more predictive the model is. We then selected the threshold that

maximized prediction accuracy in each split and evaluated performance by comparing

each patient’s predicted outcome to the actual outcome.

In addition to the AUC, we used four metrics to measure model performance:

a) prediction accuracy, which is the fraction of patients whose outcome the model

predicted correctly, b) precision, which is the proportion of predicted successful

outcomes that were actually successful, c) sensitivity, which measures the proportion

of actual successful surgeries that were identified correctly and d) specificity, which

refers to the proportion of failed surgeries that the models predicted correctly. We
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report results of the ten CV folds (mean ± standard deviation) below.

Finally, we compared the performance metrics of the source-sink indices to those

of HFO rates using a paired two-sample t-test. In all t-tests performed, the null

hypothesis was that the two metrics being compared came from distributions with

equal means and equal but unknown variances. The alternative hypothesis was that

the metrics came from distributions with unequal means. Lastly, outcome predictions

(ps) of the two models were compared using a McNemar’s test for paired nominal data.

For all tests, a p-value < 0.05 was considered to be statistically significant.

3.3 Results

3.3.1 The source-sink index highlights CA-EZ regions in
patients with successful outcomes

From each patient’s interictal DNM (eq. 2.1), we quantified each implanted iEEG

channel’s source-sink characteristics by computing its SSI (eq. 2.6) and associated

source-sink metrics (eq. 2.2-2.5) in every 500-msec sliding-window of the interictal

recording (see Fig. 3-2A for examples of 1-minute snapshots of iEEG data and the

corresponding spatiotemporal source-sink index heatmaps for three patients with

different surgical outcomes). A high SSI (red/orange values) indicates that the channel

is a top sink that is both highly connected to other sinks and strongly influenced by

the top sources of the network. In Fig. 3-2A the channels are arranged from the

highest to lowest constant interictal SSI on the y-axis and the red labels correspond to

the CA-EZ regions. Fig. 3-2B shows the constant interictal SSI of each iEEG contact,

overlaid on each patient’s implantation map. In patient 1, the iEEG channels with the

highest SSI matched the channels identified as the EZ by clinicians (three out of three).

In this patient, all three CA-EZ channels were included in the surgical treatment

(laser ablation) which led to a complete seizure freedom. In patient 2 however, only

two out of thirteen CA-EZ regions had high SSI values whereas the other iEEG
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channels with high values were not a part of the CA-EZ and thus were not treated

during surgery. This patient did not become seizure free post-treatment. Finally,

patient 3 demonstrates an interesting case. This patient had two surgeries; first a laser

ablation of superior frontal and cingulate gyri (contacts on L’ and G’ electrodes) which

resulted in seizure recurrence, and later a resection of pre- and post-central as well as

supplementary motor areas (M’ electrode) which led to a complete seizure freedom.

Interestingly, when the iEEG channels first identified as CA-EZ (CA-EZ1, red labels

in Fig. 3-2A, bottom panel) are considered, none of these channels were amongst

the channels with the top 10% highest interictal SSIs. However, the majority of the

channels with highest SSI corresponded to the second identified CA-EZ (CA-EZ2,

M’ electrode and orange labels in Fig. 3-2A, bottom panel) that ultimately led to a

successful outcome in this patient.
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Figure 3-2. Three patient examples. Patient 1 (top) had a successful surgical outcome.
Patient 2 (middle) had a failed surgical outcome. Patient 3 (bottom) had two surgeries.
After the first surgery, the patient continued to have seizures (failed outcome) but became
seizure free (successful outcome) after the second surgery. A. A 1-minute interictal
iEEG snapshot (left) and the resulting SSI of every channel in that same window (right).
Channels are arranged from highest to lowest constant interictal SSI. CA-EZ channels
are colored red. For patient 3, the CA-EZ2 channels, treated in the second surgery, are
colored orange. Only the top 30% of channels are shown for better visualization purposes,
and all channels not shown have low SSI values. In the success patient (top), CA-EZ
channels have the highest SSIs, whereas only 2 out of 13 CA-EZ channels have a high SSI
in the failure patient (middle). In patient 3 (bottom), the CA-EZ that rendered the patient
seizure free corresponds to the highest SSIs. B. Stationary SSI of each channel overlaid on
the patients’ implantation maps. Red/orange boxes outline the CA-EZ channels. C. 2D
source-sink space. Top sources are located in the top left and top sinks in the bottom right.
CA-EZ channels are colored red. CA-EZ2 in patient 3 is colored orange in the bottom
panel. The most influential connections from sources (blue arrows) point to the sinks and
the strongest connections from sinks (pink arrows) point to other sinks in patient 1 (top),
whereas the top sources point to nodes other than top sinks in the failure patient (middle).
Top sinks also point to these other nodes.
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3.3.2 Temporal stability of sources and sinks during interic-
tal periods

To test the sensitivity of the source-sink analysis to duration and timing of the interictal

snapshot, we quantified the interictal stationarity of each source-sink metric and the

SSI (eqs. 2.2-2.6) for five different window sizes, ws = {1, 2, 3, 5, 10} minutes. For each

ws, we split each patient’s recording into non-overlapping windows of length ws and

computed the average percentage of channels with 10% highest values of the constant

metric captured across all windows (ABws
m ), as well as ACws

m , the average percentage

of top channels that were captured by chance (Fig. 3-3). ACws
m was computed for

ten different sequences of randomly sampled channels in each window. As Fig. 3-3

shows, over 90% of the top channels were captured on average for all source-sink

metrics—independent of the timing or duration of the interictal snapshot—compared

to a much fewer channels (around 10%) captured by chance (p ≪ 0.05 for all metrics).

This suggests that given any snapshot of interictal data, even as short as 1 minute,

the results would be highly comparable to those obtained from the entire interictal

snapshot for each patient.

3.3.3 Identifying channels with highest SSI

Because of the strong stationarity of the source-sink metrics across the interictal

recordings, we computed a constant, overall A matrix using eq. 3.1 to represent each

patient’s interictal DNM. From this A matrix, we identified the top sources and sinks

in the iEEG network by computing the total influence to and from each channel and

placing the channels in the 2D source-sink space (see Fig. 3-2C for three patient

examples) based on their influence row and column ranks. In this space, sources

are channels located at the top left, whereas sinks are located at the bottom right.

In patients with successful surgical outcomes, the CA-EZ channels are expected to

be a subset of top sinks (Fig. 3-2C, top). The blue and pink arrows represent the
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Figure 3-3. Temporal stability of source-sink indices. Darker colors represent distributions
of source-sink indices whereas lighter colors represent channels captured by chance. On
average, over 90% of channels are captured for all indices, independent of timing or
duration of the interictal snapshot selected. Increasing the window size does not change
the percentage of captured top channels significantly. In comparison, only around 10%
of top channels are captured by chance. The asterisks indicate a statistically significant
difference.

strongest connections (top 5%) from the top sources and sinks, respectively, and the

channels they point to. The most likely candidates of the true EZ, based on the

source-sink hypothesis, are the subset of top sinks that are highly connected to other

sinks and strongly influenced by the top sources. In general, the top sources and

sinks point to the CA-EZ channels in success patients (Fig. 3-2C, top), whereas they

may also connect to other channels in patients with failed surgical outcomes (Fig.

3-2C, middle). In patient 3 (Fig. 3-2C, bottom), who continued to have seizures after

the first surgery (failed outcome), the first set of treated channels (CA-EZ1) are not

amongst the top sinks in the iEEG network, whereas the majority of CA-EZ2, the set

of clinically annotated EZ channels that led to seizure-freedom post-surgery, are top
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sinks. In addition, the latter set of channels are highly influenced by the top sources

and sinks in the network and thus are considered likely candidates of the true EZ by

the source-sink algorithm.

3.3.4 Source-sink metrics outperform HFOs in predicting sur-
gical outcomes

As stated above, the SSI, and consequently the three metrics (sink index, source

influence and sink connectivity) used to compute the SSI, are significantly higher in

CA-EZ channels compared to the rest of the iEEG network in patients with successful

surgical outcomes but not necessarily in failure patients (psuccess
SSI = 8.26 × 10−7 and

pfailure
SSI = 0.151, see other p-values in Appendix I, Table I-I). Taking advantage of

this assumption, we built a RF model to predict the probability of a successful

surgical outcome for each patient using i) the source-sink metrics and ii) HFO rate

for comparison. The resulting test-set ROC curves are shown in Appendix I, Fig. I-1.

In addition to the RF models, we also built a simple LR model using the source-sink

metrics for comparison, and found that it performed very similarly. We report results

of the RF model below. Results of the LR model are shown in Appendix IIB.

Figs. 3-4A and B show the predicted probabilities of success across all CV-folds,

using the source-sink and the HFO model, respectively. The results are categorized

by the clinical centers and the dots are color-coded based on each patient’s surgical

outcome. A decision threshold of α = 0.5 (blue line) was applied to the estimated

probabilities to predict each patient’s outcome. Using the source-sink indices (Fig.

3-4A), the majority of success patients (red dots) are above the blue line, with ps > 0.5

whereas most failure patients (black dots) are below the blue line, with a lower ps value.

In contrast, there was not a clear separation between success and failure patients using

HFO rate (Fig. 3-4B).

Fig. 3-4C compares the performance of the source-sink metrics and HFOs in
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Figure 3-4. A. Predicted probability of success (ps) by the source-sink model across all
CV folds. Each dot represents one patient and dots are color-coded by surgical outcome.
The dashed blue line represents the decision threshold applied to ps to predict outcomes.
For the source-sink model, the majority of success patients (red dots) have ps values above
the threshold whereas failure patients (black dots) generally have ps values below the
threshold. B. Predicted probability of success (ps) by the HFO model across all CV folds.
S=success, F=failure. For the HFO model, there is not as clear separation between the
success and failure patients, with both groups having ps above and below the decision
threshold, thus resulting in a lower prediction accuracy. C. Performance comparison of
the source-sink metrics (red) to HFO rate (black). Boxes show distributions of each
metric across the ten CV folds. The source-sink model outperformed HFOs in terms of all
performance metrics. The asterisks indicate a statistically significant difference.

predicting surgical outcomes.The source-sink metrics outperformed HFO rate in terms

of AUC, precision and sensitivity (pAUC = 0.0096, pprecision = 0.0023 and psensitivity =

2.03 × 10−4) whereas both models had a comparable specificity (pspecificity = 0.7846),
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although it was slightly higher on average for the source-sink model. The source-sink

metrics obtained a test-set AUC of 0.86 ± 0.07 compared to an AUC of 0.71 ± 0.10

using HFO rate. The source-sink model also outperformed HFOs in terms of average

precision, which weighs the predictive power in terms of the total number of patients,

with an average precision of 0.88±0.06 compared to 0.71±0.09 for the HFO rate. Using

the source-sink indices, a threshold of α = 0.5 applied to the estimated probability of

a successful outcome for each subject (ps) rendered a test-set accuracy of 79.0 ± 9.1%,

compared to a considerably lower accuracy of 65.5 ± 11.4% using HFOs and an even

lower surgical success rate of 43% in this dataset. The biggest performance difference

between the two models was in terms of sensitivity (true positive rate) where the

source-sink model outperformed HFO rate by more than 50% with a sensitivity of

0.78 ± 0.09. However, both models performed similarly in predicting failed outcomes

correctly, where the source-sink model had a slightly higher specificity of 0.80 ± 0.16

on average, compared to 0.77 ± 0.20 for the HFO model.

Note that HFO rate was computed across the entire interictal snapshot provided

for each patient. The longer the snapshot, the more likely it is to capture HFOs. In

contrast, although the source-sink metrics were also computed by averaging across the

same recordings for each patient, we showed above that the results remain consistent

independent of both timing and length of the recording.

3.3.5 The source-sink metrics are highly correlated with treat-
ment outcomes

The source-sink metrics are also highly correlated with treatment outcomes. The

separation between the ps distributions of success versus failure patients is greater for

the source-sink model compared to the model using HFO rate, and consequently so

is the model’s ability to discriminate between the two outcome possibilities. In fact,

we compared the performance of the two models with a contingency table (confusion
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matrix) and observed that the source-sink model was statistically better with a p-value

of p = 0.007. Fig. 3-5A compares the predicted probability of success (ps) on the

test set in success versus failure patients of the source-sink metrics (red) and HFOs

(black). Each box represents the distribution of ps values across all CV folds. When

further broken down by Engel class (Fig. 3-5B) or ILAE score (Fig. 3-5C), we

observed a decreasing trend of ps as the outcome score (and thus also the severity of

post-operative seizure outcome) increased using the source-sink metrics. Note that we

define successful outcomes as Engel class I but as ILAE score of 1 or 2 (and failed

outcome as Engel II-IV or ILAE 3-5). In contrast we did not see this clear separation

of ps values using the HFO model, which had a much greater overlap between classes.

Finally, in comparison to the RF classifier, we also built a simple LR model to

predict surgical outcomes using the source-sink metrics. Results of the LR model are

shown in Appendix IIB. Despite being a simpler model (and as such not necessarily

expected to perform as well), we found that the performance of the LR model was

comparable, and only slightly worse than the performance of the RF model.

3.3.6 Generalizability of the SSI

We compared ps for three categories that describe the clinical complexity of each

patient. Although lesional patients frequently have better localizable EZ and thus

tend to have higher chances of successful outcomes, we saw no correlation to the

predicted probability of success in our models (see distributions of ps color-coded by

lesional versus non-lesional patients in Appendix I, Fig. I-2A). Similarly, patients

with extra-temporal epilepsy (ETLE) generally have lower success rates compared

to patients with mesial-temporal epilepsy (MTLE), but our tool was not sensitive to

whether patients had ETLE or MTLE (Fig. I-2B). Patients with multi-focal epilepsy

are often more difficult to treat because the seizures can originate from more than

one brain area. This was reflected in our data where only one multi-focal patient had
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Figure 3-5. A. Distributions of ps as predicted by the source-sink model (red) and HFO
model (black). There is a clear separation between the distributions for successful cases
versus failed cases for the source-sink model whereas the distributions obtained using HFO
rate significantly overlap and consequently the predictive value of HFO rates is lower. B.
Distributions of ps stratified by Engel Class (Engel 1 = successful outcome, Engel 2-4 =
failed outcome). For the source-sink metrics, there is a general trend of decreasing ps

values as the Engel class (and thus also severity of surgical outcome) increases. In contrast,
this does not hold for the HFO rate. C. Distributions of ps stratified by ILAE scores follow
a similar trend to those observed for the Engel class in B. Note that for ILAE scores, we
define ILAE 1-2 as successful surgical outcomes but failed outcomes as ILAE 3-5.

a successful surgical outcome and in turn, the predicted success probability of the

source-sink model (Fig. I-2C) was commonly lower for these patients. Although we

expect the tool to generalize across epilepsy types (focal or multi-focal), more data

will be needed so that all groups are represented equally (i.e., multi-focal patients

with successful and failed surgical outcomes) before conclusions can be made.

Next, we analyzed the success probability with respect to treatment method (Fig.

I-2D). Patients who are surgical candidates (i.e., the seizure focus can be localized

and treated) generally undergo either resective surgery or laser ablation. In patients

with poorly localizable or multiple seizure foci, or when the EZ is located in eloquent

cortex, surgical resection may not be an option. In these cases, many patients opt

for RNS treatment instead. Because of the higher clinical case complexity, patients

who receive RNS treatment are not expected to achieve complete seizure freedom, but
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rather a reduction in seizure frequency [108–110]. This was reflected in the predicted

probability of success by the source-sink model, which was overall lower for RNS

patients compared to patients that received surgical treatment. In contrast, there was

no observable correlation between ps and surgical resection or laser ablation.

Finally, we compared the distribution of ps across clinical centers. As Fig. I-

3 shows, the range of ps values was similar across centers and consequently, the ps

distributions were not skewed by values from any particular center (e.g., outlier patients

in each surgical outcome distribution are from various centers). This robustness of

performance across different clinical centers suggests that the model generalizes well

to different datasets.

3.3.7 Top SSI regions have high correspondence to CA-EZ
in success patients but lower in failure patients

The treating neurologist at each center was given the 2D source-sink maps for each

patient from the corresponding center and asked to rate the correspondence between

the CA-EZ and regions with top SSIs. Fig. 3-6 shows the clinical correspondence

scores between the two sets of EZ regions for success versus failure patients across

all centers. Correspondence scores of "some" or "strong" agreement were lumped into

"agreement" for visualization purposes. In general, there was more agreement between

the CA-EZ and regions with high SSIs in patients with successful outcomes compared

to patients with failed surgical outcomes, which means that the source-sink analysis

often highlighted other, non-treated potential onset regions, in failure patients. In fact,

clinicians agreed with the algorithm in 26 out of 28 (93%) success patients, whereas

only 54% of patients with failed outcomes were considered in agreement. When

categorized by Engel scores (where Engel 1 is considered success and Engel 2-4 failure),

the rate of agreement decreased as the Engel class increased, which likely also reflects

the increased difficulty of treatment in these patients. A similar trend was observed
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Figure 3-6. Clinical correspondence between CA-EZ and top SSI regions. A. Clinical
correspondence stratified by surgical outcome. For almost all success patients, clinicians
agree with the channels with highest SSI scores. The agreement is much lower in failure
patients. Note that in some failure patients, clinicians may not be able to treat all or a
proportion of the CA-EZ (e.g., if it is located in eloquent cortex). In those cases, the
source-sink algorithm may agree with clinicians even though the patient had a failed surgical
outcome. B. Clinical correspondence stratified by Engel class. The rate of agreement is
highest for Engel 1 (complete seizure-freedom) but decreases as the Engel class increases.
No-agreement scores follow the opposite trend. C. Clinical correspondence stratified by
ILAE scores follow an overall similar trend with increasing disagreement (and decreasing
agreement) as ILAE score increases.

for the ILAE scores, a different classification of post-surgical outcomes, with a higher

rate of disagreement corresponding to a higher ILAE score. Further, we also looked

at the distribution of clinical correspondence scores stratified by clinical complexity

(e.g., whether patients were lesional or non-lesional, epilepsy type, treatment method,

and more) and also categorized the scores by each clinical center. For all clinical

complexity categories considered, the proportion of each group was similar across all

correspondence scores, indicating that the tool is not sensitive to those factors. The

distribution of correspondence scores was also similar across all centers, indicating

that i) the tool generalized well across different datasets and ii) the overall scores

were not biased by any particular center. Clinical correspondence scores grouped by

clinical complexity and different centers are shown in Appendix III (Figs. III-1 and

III-2, respectively).
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3.3.8 CA-EZ regions are sinks at rest but become sources
during seizures in success patients

In addition to computing the source-sink metrics across interictal recordings, we also

investigated source-sink properties of the iEEG network during ictal periods. We did

not receive ictal snapshots from all centers, so only a subset of the patient population

(n = 29) was included in this part of the analysis. Fig. 3-7 demonstrates the source-

sink characteristics of the iEEG network as the brain moves from interictal state

towards a seizure in one success (left) and one failure (right) patient. For each patient,

we computed spatiotemporal heatmaps of each iEEG channel’s source-sink index (eq.

2.6) in 500-msec windows of one interictal and one ictal recording (Fig. 3-7A and B).

Note that the two snapshots are not consecutive in time as the interictal snapshot is

typically recorded hours before the seizure event. As Fig. 3-7A shows, the CA-EZ

channels have high SSI values in the success patient during rest, suggesting they

are tightly connected top sinks strongly influenced by top sources. However, during

and right after seizure, the same channels have a low source-sink index, that is, they

are exhibiting a strong source-like behavior, which further supports the source-sink

hypothesis. In contrast, only a small subset of CA-EZ channels (2 out of 13) are

amongst the top sinks in the patient with a failed surgical outcome (Fig. 3-7B) and

there is little modulation of the source-sink index of these channels.

The temporal SSI modulation is summarized in Fig. 3-7C and D. We computed

the average source-sink index for two groups of interest: i) CA-EZ channels, and

ii) all other channels not labeled as CA-EZ (CA-NEZ). Each curve was obtained by

computing the average SSI of each channel group, in each window. The curves were

smoothed by computing the index across 10-second windows instead of 500 msec. As

Fig. 3-7C shows, the CA-EZ channels have a much higher source-sink index compared

to the rest of the network during the interictal period in the success patient. However,

this does not hold true for the failure patient (Fig. 3-7D), where the mean SSI of the
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Figure 3-7. Source-sink characteristics as the brain moves from resting state towards a
seizure. Two patient examples. A. Source-sink index of every channel during interictal (left)
and ictal (right) periods, separated by the solid yellow line. Channels are arranged from
highest to lowest constant interictal SSI. CA-EZ channels are colored red. Only the top
30% of channels are shown for better visualization purposes, and all channels not shown
have low SSI values. B. Average source-sink index of CA-EZ versus CA-NEZ channels. In
this success patient the CA-EZ channels have a much higher SSI compared to CA-NEZ
channels during the interictal period. The SSI of CA-EZ channels drops significantly
during seizure, as these channels become sources to initiate and spread seizure activity. D.
Source-sink index of every channel over time. Only 2 out of 13 CA-EZ channels have a
high SSI in this failure patient. E. Average SSI of the two groups. In this failure patient
CA-EZ cannot be distinguished from CA-NEZ. E. Movement of CA-EZ channels in the 2D
source-sink space over time. CA-EZ channels are top sinks during the interictal period
(left), but move towards sources as the brain progresses towards a seizure. F. In this failure
patient, there is little movement of CA-EZ channels as the brain moves from interictal to
ictal state.

CA-EZ is not separable, or even slightly lower than the mean SSI of the CA-NEZ

channels.

Fig. 3-7E and F show an example of the 2D source-sink space for the success

and failure patient, respectively, computed in 10-second windows at different points

in time relative to seizure onset. Despite the temporal stability of the source-sink

metrics across interictal recordings, the source-sink properties of the iEEG network

modulate around seizure events. In success patients (Fig. 3-7E) we frequently observed
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a movement of CA-EZ towards top sources as the brain progresses towards a seizure.

Right before and at the onset of seizure however, the CA-EZ channels become sinks for

a short period, perhaps as the rest of the network makes one last attempt to prevent

the seizure from starting. During and right after seizure, the CA-EZ channels are

again exhibiting a strong source-like behavior. The same cannot be said about the

CA-EZ channels in failure patients (Fig. 3-7F), where there was little movement of

these channels in the source-sink space over time.

Finally, Fig. 3-8 compares the temporal SSI modulation in success versus failure

patients. For each patient, SSI was computed in four predefined windows: a) a

30-second window of the interictal recording, b) 60-30 seconds before the seizure event,

c) during the seizure event, and d) 60-90 seconds after the end of seizure. For each

set of channels (CA-EZ and CA-NEZ), values were normalized to the average SSI

of the entire network at rest (window a). At each time point, we then computed

the mean ± standard error of SSI across all success patients (n = 14) and all failure

patients (n = 15). In success patients (Fig. 3-8, top), the CA-EZ had a statistically

significantly higher source-sink index compared to the rest of the channels in the

network in all windows except after the end of seizure (pa = 0.0132, pb = 0.0029,

pc = 0.0015, pd = 0.4240). The same cannot be said about failure patients, as the

CA-EZ channels were not separable from the CA-NEZ channels at any time point

(pa,b,c,d ≫ 0.05).

3.4 Discussion

We proposed a novel source-sink index (SSI) as a dynamical-network-based interictal

iEEG marker to assist in the localization of the EZ. The index was developed based

on the hypothesis that seizures are suppressed when the epileptogenic regions are

effectively being inhibited by neighboring regions. We tested the source-sink index as

a marker of the EZ by computing SSI for all implanted iEEG channels and examining
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Figure 3-8. Temporal SSI modulation in CA-EZ versus CA-NEZ channels. Indices were
averaged over all CA-EZ and all CA-NEZ channels for each patient. Each curve shows
the mean ± standard deviation across 14 success patients (top) and 15 failure patients
(bottom). CA-EZ channels have a higher SSI compared to CA-NEZ channels in success
patients, but not in failure patients. The asterisks indicate a statistically significant
difference between CA-EZ and CA-NEZ channels. a = 30 second window of the interictal
recording, b = 60-30 seconds before the seizure event, c = during the seizure event, and d
= 60-90 seconds after the end of seizure

its properties at rest and during seizures.

We evaluated the predictive value of the SSI by i) rating the correspondence

between the hypothesized CA-EZ and regions with high SSIs and ii) building a

random forest to model the probability of a successful surgery as a function of the

source-sink metrics and compared the performance to that of HFOs, a commonly used

interictal iEEG feature. The analysis was performed on data from 65 patients treated

across 6 clinical centers. Out of 28 success patients in our dataset, the source-sink

algorithm agreed (rated as "strong" or "some" agreement) with clinicians in 26 (93%)

of patients. In contrast, only 54% of patients with failed outcomes were considered in
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agreement with clinicians, suggesting that in failure patients, the source-sink algorithm

highlighted other areas than the ones identified and treated by clinicians as potentially

epileptogenic. Further, in terms of predicting surgical outcomes, the source-sink

metrics outperformed HFO rate, with higher AUC, accuracy, precision and specificity

on average, predicting 79% outcomes correctly with a precision of 88%, compared to

a 65% accuracy and 71% precision of the HFO model.

3.4.1 Challenges

3.4.1.1 Validating iEEG markers of the EZ

At present, identification of the EZ is a complicated and subjective process that is often

unsuccessful, thus resulting in post-treatment recurrence of seizure activity in a large

proportion of patients. To increase the likelihood of a successful treatment outcome,

there is a great need to identify and validate reliable biomarkers that can determine the

extent and location of the EZ with high precision and accuracy. However, validation

of such markers remains challenging because the EZ is a theoretical concept that

cannot be directly measured [35] and thus no ground truth of its exact location exists.

Instead, the best estimate one can obtain is retrospectively, by assuming the EZ was

included in the resected cortex if surgical treatment renders the patient seizure free.

To complicate matters even further, a complete removal of the EZ is not the only basis

of a successful surgery (e.g., a disconnection of the EZ from the early spread regions

may also produce good outcomes) and although removing the EZ is typically necessary

to achieve lasting seizure freedom, it may not always be sufficient. Post-operative

outcome measures (e.g., Engel scores) are also based on subjective judgement and may

be interpreted differently from center to center. Consequently, results from different

centers cannot be compared easily [88]. Further, insufficient sampling of electrodes

may also lead to inaccurate results as there is no way for the iEEG marker to capture

the EZ if it is not covered, but this is a limitation of all computational approaches.
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In the case of the source-sink algorithm, the results may also be less accurate if the

sources, i.e., the regions inhibiting the EZ, are not covered.

3.4.1.2 Why the source-sink algorithm may disagree with clinicians in
success patients

For a majority of success patients, the source-sink algorithm was in agreement with

the clinicians regarding the location of the EZ (Fig. 3-6), and only 2 out of 28 success

patients were deemed in disagreement. In addition to completely removing the EZ, a

disconnection of the EZ from the rest of the epileptogenic network or removal of the

regions responsible for early spread of the seizure activity may also lead to a successful

surgical outcome. Thus, it is possible that in those patients, the treated areas may

have included the early spread regions instead of the onset zone and therefore are not

overlapping with the areas highlighted by the source-sink algorithm.

3.4.1.3 Why the source-sink algorithm may agree with clinicians in failure
patients

Surgical treatment may also fail for various reasons and in more complex cases,

removing the EZ may not be sufficient to achieve seizure freedom (e.g., a removal

of the primary focus in multi-focal patients may lead to post-surgical emergence of

seizures from a location that was previously not clinically evident). Consequently, the

source-sink algorithm may be in full or some agreement with the treated areas, even in

patients with failed outcomes. Additionally, incorrect or inaccurate localization of the

EZ and incomplete treatment of these regions most likely leads to seizure recurrence

after surgery. This can occur in cases where the implanted electrodes are not covering

the true EZ, in which case it is impossible (for clinicians and algorithms) to detect the

true EZ, or if the EZ is widely spread. Finally, in some patients, a complete resection

of the EZ cannot be performed without causing a new, unacceptable deficit to the

patient (e.g., if the EZ is located in eloquent cortex). Instead, palliative treatments,
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including RNS or deep brain stimulation, have been increasingly used in patients who

are not candidates for resective surgery. These treatments can be effective in reducing

seizure frequency, but only a minority of patients experience complete seizure control

[108–110].

3.4.1.4 Other interictal iEEG markers of the EZ

The current gold standard visual analysis of hundreds of iEEG recordings to localize

the EZ is time consuming and subject to individual expert biases. Although many

interictal iEEG markers of the EZ have been proposed, no computational tools are

used in the clinical workflow today to specifically assist in localizing the EZ. With

epilepsy increasingly understood as a network disorder, a profound knowledge of the

underlying network dynamics and interactions between brain regions is essential to

understand how the internal properties of the brain network can generate or prevent

seizures. An important limitation of the majority of proposed algorithms lies in the

fact that they fail to capture these internal properties of the iEEG network. Instead,

most existing methods either compute single-channel-based iEEG features (e.g., [74,

78, 80, 81, 83–85, 111–113]), thus not capturing dependencies between channels, or

they apply network-based measures ([61, 62, 72–77, 114–116] to name a few) to capture

pairwise dependencies (correlation or coherence) between the iEEG channels, but fail

to characterize the underlying dynamics of the network. Channel-based iEEG features

include various frequency-based features such as spectral power in frequency bands,

phase amplitude coupling, or power spectral entropy, to name a few, in addition to

features based on pattern recognition, such as spike counts or HFO rates. Network-

based measures (e.g., node centrality, degree distributions or distance measures) are

summary statistics computed from an adjacency matrix that is used to represent the

pairwise dependencies between any two channels in the iEEG network. The main

downside of networks-based metrics however, is that each network can be mapped to
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multiple adjacency matrices (because connectivity between two nodes can be defined in

numerous ways), and many different networks (adjacency matrices) can have identical

summary statistics. Thus, such metrics are not based on well formulated hypotheses

of the role of the EZ in the network and as such, they are not easily interpretable

either.

HFOs are some of the most studied iEEG features as a potential interictal marker

of the EZ (e.g., [78, 81, 82, 85, 97, 101, 117–129]). In the context of epilepsy, there

is evidence that regions that belong to the EZ have higher HFO rates compared to

non-epileptogenic regions [117] and studies have suggested that removal of regions that

generate high rates of HFOs correlates with good post-surgical outcome [82, 101, 118,

120–122, 128, 129]. However, there still remains considerable controversy surrounding

HFOs as a valid marker of the EZ. Other studies have not found a predictive value

in the removal of these regions [118, 122] and two meta-analyses of existing studies

concluded that the evidence of HFOs as a predictor of surgical outcome is weak

[119, 130]. Höller et al. conducted a systematic review of 11 studies that related the

resection of HFO-generating areas to post-surgical outcome [119]. Although their

meta-analysis confirmed a higher resection rate of ripples or fast ripples in success

versus failure patients, the effect sizes were small.

Furthermore, several studies have also questioned the reproducibility and reliability

of HFOs as a marker [86, 121, 122, 131, 132]. First, no consensus has been reached

on the exact features used to describe HFOs, because the exact underlying cellular

mechanism by which they are generated remains unknown [121]. Instead, researchers

rely on an empirical definition derived from visual observation [132], which gives rise

to variability in the features chosen to define HFOs among current studies. Second,

HFOs can also occur in non-epileptogenic regions and even in patients without epilepsy

[86]. These physiologic, non-epileptic HFOs have features that overlap with those of

pathological HFOs [133–135] and thus differentiation between the two types remains
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an unresolved issue in iEEG studies [136–139]. Similar inconclusive results hold in

completed prospective studies of HFOs in ictal recordings. A Cochrane review assessed

the ability of ictal HFOs to improve surgical outcomes [130]. They identified only

two small, prospective studies at the time and concluded that there is not enough

evidence so far to draw reliable conclusions regarding the efficacy of using HFOs in

epilepsy surgery decision making.

Finally, HFO rates are not stable over time. Gliske et al. tested the consistency of

channels exhibiting the highest number of HFOs across different 10-minute segments

of data [86]. They showed that the location of the highest HFO-rate channels varied

greatly when different segments were used, thus questioning the reliability of such

marker. In contrast, we showed above that the source-sink analysis returns consistent

results independent of recording length and is in fact, robust to any random selection

of interictal activity (Fig. 3-3). Further, we repeated the analysis with and without

the removal of large artifacts from the sEEG snapshots and found that the results

held regardless.

3.4.1.5 Translating an iEEG marker into the clinical workflow

In order to translate an iEEG marker of the EZ into clinical workflow, it is critical

to perform rigorous testing and validation to ensure the marker meets the stringent

criteria needed for it to serve as a reliable source of information for clinical decision

making. We sought to evaluate the performance of the SSI on a diverse group of

patients, reflecting different epilepsy etiologies, treatment methods and post-treatment

outcomes. We collected our iEEG data from six different clinical centers. As such,

our dataset is comprised of a heterogeneous patient population, spanning varying

case complexities (such as lesional or non-lesional, and temporal or extra-temporal

epilepsy), epilepsy types (focal and multi-focal) and clinical practices, while at the

same time reflecting the standard of care success rates of approximately 50% on
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average.

In order to properly validate any biomarker, it is important to determine the range

of conditions under which it will give reproducible and accurate results. Similarly, a

profound understanding of when the tool performs well and when and why it fails

is critical. For example, some patients present with a lower clinical case complexity

(such as a visible lesion on MRI or some types of temporal epilepsy) and have as

such higher chances of good surgical outcomes. A tool that performs well on these

patients is not guaranteed to translate well to more complex cases. Importantly, we

showed that the SSI is agnostic to the clinical complexity of each patient defined by

our clinical team as: 1) lesional (visible lesions on MRI) or non-lesional (see Figs.

II-4A and III-1A), 2) mesial temporal or extra-temporal (Figs. II-4B and III-1B), and

3) focal or multi-focal (Figs. II-4C and III-1C).
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Chapter 4

Source-sink analysis for diagnosis
of epilepsy on interictal scalp EEG
data

4.1 Introduction

4.1.1 Challenges with EEG interpretation

Scalp EEG remains an important tool in the diagnosis and treatment of epilepsy and

today millions of EEGs are performed each year in epilepsy centers, neurology clinics,

emergency rooms and ICUs for this purpose [8]. Despite nearly 100 years of using this

technique, visual analysis is still the gold standard in clinical EEG. Clinicians look for

abnormalities including spikes and sharp waves, formally called interictal epileptiform

discharges (IEDs), in addition to focal slowing of activity in the EEG waveforms, all

of which are known indicators of epilepsy [5, 6].

Although interobserver reliability is high in trained individuals, it is less so in clinical

units that do not specify in epilepsy (e.g., emergency rooms) and overall interobserver

reliability in interpretation of EEG recordings has been found to be only moderate [140].

In fact, errors in EEG interpretation are not uncommon, particularly in mistakenly

identifying normal variants as epileptiform discharges [141]. Additionally, scalp EEG

recordings are subject to several other limitations that may prevent detection of these
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abnormalities [9, 142–144]. First, routine EEGs are typically captured for a limited

amount of time (generally 20-30 minutes) while the patient is not seizing or is "at rest"

[6, 145]. Thus, such abnormalities may not occur in a short time window. In fact,

12-50% of patients with epilepsy have normal EEGs during their first visit, limiting

traditional visual interpretation focused on IED or focal slowing detection [6, 145] and

resulting in a need for one or more repeated EEGs and consequently a delayed diagnosis

(false negative) for a significant number of epilepsy patients. Second, artifacts, such as

those due to eye movement, eye blinks or muscle activity are often prevalent, which

may mask true IEDs, or be mistaken as false IEDs, leading to a misdiagnosis (false

positive) of the patient [144]. Third, scalp electrodes sample only about one-third of

the cortex. Discharges arising within sulci, in basal regions (e.g., orbitofrontal cortex),

and in interhemispheric regions (e.g., interhemispheric supplementary motor cortex)

are not detected [9]. Furthermore, epileptiform activity generated by deep nuclei such

as the amygdala and hippocampus may not be captured on scalp recordings [142].

Additionally, dipoles that are parallel to the scalp cannot be detected by electrodes.

Orientation of an epileptiform spike dipole must be orthogonal or nearly orthogonal

to the surface, decreasing the likelihood of it being captured on the EEG. The EEG

signals are also attenuated by bone, dura and scalp tissue, which further hampers the

ability to capture epileptiform activity from scalp recordings [143].

Interpretation of EEG recordings is mainly based on pattern recognition and

diagnosis of epilepsy is often complicated due to the variety of events which may

resemble a seizure. As a result, both false positive and false negative diagnoses

commonly occur and overall misdiagnosis rates of epilepsy are nearly 30% [10]. Thus,

there is a great clinical need to more quickly and more accurately diagnose whether a

patient who experienced a seizure has epilepsy or not from their first EEG recording.

Such a diagnostic tool can significantly reduce costs of misdiagnosis and enable both

non-epilepsy and epilepsy patients to receive effective treatment immediately.
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4.1.2 SSI as a biomarker for diagnosing epilepsy

To address several of the limitations of routine EEG in the management of epilepsy,

we aim to develop a tool that diagnoses epilepsy from resting-state scalp EEG by

testing the source-sink index (SSI) as a new biomarker of epilepsy. In this preliminary

study, we developed and tested a computational tool that i) estimates patient-specific

dynamical network models from a patient’s first scalp EEG recording and ii) uses

source-sink properties of the network to detect whether pathological connections are

present in the network. Due to the frequent occurrence of artifacts in scalp EEG, our

tool also automatically removes artifacts before performing the analysis and provides

an easy-to-interpret output.

Importantly, unlike the current clinical standard and other existing computational

approaches, which aim to detect abnormalities on individual EEG channels (e.g., [146–

150]), the SSI is not detectable by visual inspection. Instead, our tool characterizes

the internal properties of the brain necessary to reveal the abnormal epileptic network

connections and the underlying dynamics of seizure generation.

4.2 Materials and methods

4.2.1 Patient population

We selected 57 patients who underwent routine scalp EEG monitoring following a

seizure or seizure-like episode, and have already been diagnosed as having epilepsy

(focal or generalized) or not, for this study. The diagnosis of each patient was based on

an epilepsy monitoring unit (EMU) admission which recorded the patient’s habitual

clinical events. Patients who met the following criteria were included in the study:

(i) Men or women aged 12 years and older. (ii) Patients who underwent scalp EEG

monitoring as deemed appropriate by the ordering physician. (iii) Patients who are on

one AED or no medication. (iv) Patients who presented with a transient neurological
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symptom concerning for seizures and have been diagnosed with either epilepsy or

PNES (v) Patients with no abnormal findings on first scalp EEG. Patients were

excluded from the study if (i) their medical records were incomplete, (ii) clinical

follow-up was deemed inadequate, or (iii) first scalp EEG demonstrated abnormal

findings.

In our dataset, 27 patients were diagnosed with epilepsy and 30 patients did not

have epilepsy. All non-epileptic patients were diagnosed with PNES. Out of the

27 epilepsy patients, 20 patients had focal epilepsy and 2 patients had generalized

epilepsy. Information on epilepsy type was not available for the remaining 5 epilepsy

patients. Patients were treated at the Johns Hopkins Hospital or Johns Hopkins

Bayview Medical Center. The study was approved by the Johns Hopkins Medicine

Institutional Review Board (IRB). The use of de-identified data in conjunction with

relevant data from each patient’s medical record was approved by the IRB for research

purposes. All clinical decisions were made independently of this study.

4.2.2 Data collection

4.2.3 Scalp EEG recordings

The scalp EEG data were recorded using a standard 10-20 EEG montage at a sampling

frequency of 200 Hz. For each patient, the clinical team extracted a 15-30 minute

long resting-state (i.e., interictal, no seizures) EEG snapshot from the patient’s first

admission to the clinical center after experiencing a seizure or a seizure-like episode. All

continuous EEG recordings were reviewed at the time of their selection for the study

by a board-certified epileptologist and only EEGs with no findings of epileptiform

abnormalities were selected for the study.
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4.2.4 Classification of abnormal versus normal EEGs

Based on medical records and a review of EEG recordings, the clinical team classified

epilepsy patients into two groups; i) patients with abnormalities present in the first

EEG (abnormal EEG) and ii) patients with no abnormal findings (normal EEG). Since

patients with abnormal findings on EEG generally represent the most straightforward

cases to diagnose, epilepsy patients with abnormal EEGs were excluded and only

epilepsy patients with normal EEGs were included in the study. All non-epilepsy

patients had normal EEGs. Thus, in the final group of 57 patients, all patients had a

normal EEG, i.e., IEDs or focal slowing were not present in the signals.

4.2.5 Data pre-processing

The scalp EEG recordings were notch filtered around the power line frequency (60 Hz)

with a stopband of 2 Hz and bandpass filtered between 0.5 and 30 Hz with a fourth

order Butterworth filter. Electrodes placed on the midline sagittal plane of the skull

(Fz, Cz and Pz), along with the C3 and C4 electrodes, which were utilized as common

reference points during the EEG recording, were removed from the data set. The

continuous EEG recordings were divided into non-overlapping 500-msec windows for

modeling and feature extraction (see details below). All data processing and analysis

were performed using MATLAB R2020b (MathWorks, Natick, MA) and Python3.6+

(Python Software Foundation, Wilmington, DE).

4.2.5.1 Artifact removal

Before any analysis was performed, we applied artifact removal to remove both

major artifacts such as those caused by movement and muscle activity that obscured

majority of the EEG channels, as well as smaller artifacts not generated by brain

activity (e.g. artifacts caused by eye movements, eye blinks, cardiac activity, other

equipment and more). To remove artifacts, the filtered data was input into EEGLab,
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an interactive Matlab toolbox for processing EEG data [151]. Using EEGLab, we

performed independent component analysis (ICA) for artifact removal using the

Infomax algorithm presented in [152]. The output of the Infomax algorithm is a

predefined number of independent components computed from the EEG data. Each

component is labeled, with probability, as a brain signal or an artifact coming from

muscle, eye, heart, line noise, channel noise, or other. These labels are generated

by matching against an expertly labelled dataset of components using a pre-trained

artificial neural network. Any component labelled as artifact with a probability greater

than a predefined threshold of α > 70% was automatically removed from the data.

The resultant EEG data used for the remainder of the analysis had artifacts removed

with minimal to no decline in brain signal fidelity.

4.2.6 Source-sink analysis to diagnose epilepsy

Fig. 4-1 provides a simplified overview of the approach we took on scalp EEG to

diagnose patients with epilepsy. Analogous to the iEEG study in chapter 3, the

interictal EEG recording from each patient was split into 500-msec non-overlapping

windows and DNMs were estimated in every window w of the data to obtain a sequence

of A matrices over time, Aw, wϵ[1, 2, . . . , T ], where T is the number of windows.

Figure 4-1. A simplified schematic of the scalp EEG approach. Scalp EEG recordings
from each patient are put through the source-sink algorithm to build DNMs and compute
source-sink indices of all EEG channels. The output is a SSI activation heatmap that can
be used to determine whether a patient is likely to have epilepsy or not.
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4.2.6.1 Computing stationary interictal SSIs

We then computed one constant A matrix using eq. 3.1 to represent each patient’s

interictal EEG DNM. In A (Fig. 2-3C), row i represents the amount of influence

EEG channel i receives from the rest of the network in window w, and column j

represents how the activity of channel j influences the activity of all other channels in

the network. Next, we placed the EEG channels in the 2-D source-sink space shown in

Fig. 2-3D and computed SSI for each EEG channel as follows. First, we computed the

sink index (eq. 2.2) of every channel, which captures how close the channel is to the

ideal sink (2-3D, pink star). Then, we computed the source index (eq. 2.3) to capture

how close each channel is to the ideal source (2-3D, blue star). Note that the ideal

sink has a sink index of 1 and a source index of 0, whereas the ideal source has a sink

index of 0 and a source index of 1. Thus, the larger the sink index (and consequently,

the smaller the source index), the more likely the channel is a sink. Conversely, the

larger the source index (and thus, the smaller the sink index), the more likely the

channel is a source. Next, we computed the source influence and sink connectivity (eq.

2.4-2.5) of each channel, which quantify how much the channel is influenced by the

top sources and sinks, respectively. Finally, the SSI was computed for each channel

using eq. 2.6 and displayed in heatmap form as shown in Fig. 4-1.

The source-sink index (SSI) is high if the sink index, source influence and sink

connectivity metrics are high, which is in line with the source-sink hypothesis describing

how the epileptogenic zone is being "inhibited" by neighboring nodes when a patient

is not seizing. Therefore, as demonstrated in Fig. 4-2, we expect a high SSI in one or

more EEG channels in all epilepsy patients but a lower SSI across all EEG channels

in non-epileptic patients. It is important to note that scalp EEG does not carry

information about whether a channel covers an inhibitory or excitatory population of

neurons. However, we can determine the level of influence one channel has on another,

which is what the SSI captures.
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Figure 4-2. Source-sink hypothesis in scalp EEG. Left: Non-epilepsy patients have a
uniform distribution of low SSI values across all channels as no strong sources or sinks
exist in the network. Right: In epilepsy patients, the EZ nodes are sinks strongly inhibited
by neighboring sources during rest. Thus, one or a few EEG channels will have a higher
SSI in these patients.

4.2.7 Predicting diagnostic outcomes using the source-sink
index

To evaluate the SSI as an interictal EEG marker of epilepsy we tested its value in

predicting whether a patient has epilepsy or not (see Fig. 4-3 for a schematic of the

validation process). Specifically, we modeled the probability of having epilepsy, pe, as

a function of the SSI using a logistic regression model as follows.

From each patient’s SSI activation heatmap (SSI-map) we defined an SSI activation

distribution over the EEG channels as the SSI per channel, normalized by the total SSI

across all channels (see examples of SSI distributions in Fig. 4-3). We then computed

the Kullback-Leibler (KL) divergence [153] between the patient’s SSI distribution

and a baseline distribution. The KL divergence is a measure of how one probability
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distribution is different from a second, baseline or reference distribution. In our case,

we assumed the baseline distribution to be a non-epileptic SSI distribution, which

is uniform across all EEG channels. A uniform distribution represents equal, low,

activation everywhere, that is, no pathological sinks (a blue SSI-map) in the network.

The KL divergence was computed as:

KL(SS||B) =
∑
xϵX

SS(x) log
(

SS(x)
B(x)

)
(4.1)

where x represents the scalp EEG channels, SS(x) is the SSI activation distribution

and B(x) represents the baseline distribution SS(x) is compared against. A higher

KL value thus indicates that the patient’s SSI distribution is different from the non-

epilepsy baseline distribution, whereas a lower KL value means that the patient’s SSI

distribution resembles the distribution of a non-epilepsy patient.

Next, we partitioned the data into a training and a test set by assigning 70% of

Figure 4-3. Validation steps of the SSI as an EEG marker of epilepsy. From each patient’s
first EEG recording, we compute a set of stationary source-sink indices for each EEG
channel to generate a SSI activation map (SSI-map). The SSI-map defines an activation
distribution over the EEG channels that is then compared to a baseline distribution of a
healthy individual using KL divergence. Next, the probability of the patient having epilepsy
pe is computed as a function of the KL divergence. Finally, we apply a threshold to ps to
predict diagnostic outcome and compare to the actual diagnosis of the patient.
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the patients (n = 40) to the training set while also ensuring a balanced number of

epilepsy and non-epilepsy patients, and the remaining 30% (n = 17) were used for

testing. Then we constructed the following logistic regression model to compute the

probability of a patient having epilepsy, pe, as a function of the KL divergence:

log

(
pe

1 − pe

)
= β0 + β1 ∗ KL (4.2)

where KL is the KL divergence of the patient’s SSI distribution, computed from eq.

4.1.

The model was fit to the training data and validated on the test set by applying

a varying threshold to the model’s output and computing a ROC curve. We then

selected the threshold (α) that maximized prediction accuracy on the training data.

If pe > α, we predicted that the patient had epilepsy, else that the patient was non-

epileptic. Finally, we applied the model to the test dataset and evaluated performance

by comparing each patient’s predicted diagnostic outcome to the actual diagnosis of

the patient.

We used four metrics to measure model performance: a) AUC, which measures

the discriminative power of the SSI, b) prediction accuracy, which is the fraction of

patients whose diagnosis the model predicted correctly, c) sensitivity, which measures

the proportion of epilepsy patients that the model predicted correctly as having

epilepsy and d) specificity which refers to the proportion of non-epilepsy patients that

the model predicted correctly as not having epilepsy. Model performance results are

reported below.
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4.3 Results

4.3.1 SSI is high in one or a few channels in epilepsy patients
but lower in non-epilepsy patients

From each patient’s interictal EEG DNM (eq. 3.1) we computed SSI for all channels

to generate a SSI-map and obtain a SSI distribution. See Fig. 4-4A and B for an

EEG snapshot and the corresponding SSI-map and distribution for one non-epilepsy

and one epilepsy patient, respectively. In the non-epilepsy patient (diagnosed with

PNES), all channels had low, similar, SSI values, resulting in a fairly uniform SSI

distribution and a blue SSI-map. In contrast, four channels (O1-2 and T5-6) had

a higher SSI compared to the rest of the channels (warmer colors on the SSI-map)

in the epilepsy patient. Note however, that both patients’ scalp EEG recordings

had no visible epileptic abnormalities and were as such not useful to clinicians in

discriminating between the two conditions (epilepsy versus non-epilepsy).

4.3.2 SSI performs well in predicting epilepsy diagnosis

Based on the hypothesis that epilepsy patients have a high SSI in one or a few channels

whereas the SSI distribution of non-epileptic patients is uniform across all channels,

we built a logistic regression model to predict the probability of having epilepsy as

a function of KL divergence between each patient’s SSI distribution and that of a

uniform, non-epilepsy, baseline distribution. Fig. 4-5A shows the ROC curve obtained

by varying the threshold on the training set pe values. The area under the curve

(AUC) of the ROC ranges from 0.5 to 1, and the larger the AUC, the more valid the

SSI is as an EEG marker of epilepsy. The SSI model achieved an AUC of 0.92 on the

training set.

As Fig 4-5B shows, there was a significant separation between the distributions of

the estimated probability of epilepsy (pe) in non-epilepsy patients (left) and epilepsy
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Figure 4-4. Two patient examples. A. A scalp EEG snapshot and the corresponding
SSI-map and SSI activation distribution for a non-epilepsy (PNES) patient. All indices have
a fairly similar SSI resulting in a blue map. B. A scalp EEG snapshot and the corresponding
SSI-map and distribution for an epilepsy patient. Note that no abnormalities were present
in the EEG snapshot. In this epilepsy patient, four channels have higher SSI values than
the rest, as reflected by the warmer colors in the SSI-map.

patients (right), with a generally lower pe for non-epilepsy patients. The optimal

threshold (α = 0.64), when applied to pe rendered an overall accuracy of 84.2%.

Further, the model achieved a sensitivity of 81.5% and a 83.3% specificity.
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Figure 4-5. A. Training set ROC curve. The model was trained using 40 patients. The
optimal threshold (red star) yielded an overall accuracy of 84.2%. B. Predicted probability
of epilepsy (pe) groupped by actual diagnosis. Each dot represents one patient. The blue
line represents the optimal threshold applied to pe to predict diagnostic outcome.

4.4 Discussion

In this preliminary study, we tested the SSI as an interictal EEG marker to assist

in the diagnosis of epilepsy. The index was developed based on the hypothesis that

when an epilepsy patient is not having a seizure, it is because the epileptogenic

regions (sinks) are being strongly inhibited by other regions (sources) to prevent the

generation and spread of seizure activity. Subject to the source-sink hypothesis, our

conjecture was that the source-sink phenomena (i.e., top sinks strongly influenced

by top sources) occurring in an epilepsy patient’s brain would manifest as a strong

source-sink activation (high SSI in one or a few regions) on scalp EEG, whereas

no source-sink activation would appear in non-epilepsy patients. We evaluated the

diagnostic power of the SSI by building a logistic regression to model the probability

of having epilepsy as a function of the SSI. The analysis was performed on 57 patients

and the SSI model achieved an overall accuracy of 84%, as well as 82% sensitivity

and 83% specificity. Although preliminary, these results are promising as this is a

significant improvement over the reported sensitivity of 22-55% in diagnosing epilepsy,
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and specificity estimated at 70% [9]. It is also important to note that these normal

EEG recordings are not actionable by clinicians as there are no epileptic abnormalities

present in the signals.

4.4.1 Limitations of current computational approaches for
diagnosing epilepsy

Several computational algorithms have been developed to assist in EEG-based diagnosis

of epilepsy. In fact, a google scholar search revealed 4000 computational algorithms

focused on detecting IEDs and other abnormalities from EEG recordings ([146–150],

to name a few). As the data streams that require analysis may be vast, these tools

quickly identify the relevant regions of data, i.e., where events of interest occur, for

subsequent visual analysis. They reduce the time clinicians require to search through

large amounts of EEG data which often arises during 24-72 hour scalp EEG monitoring

or intracranial EEG monitoring, the latter which is done only for surgical candidates

[141, 154]. These algorithms, however, still rely on the presence of abnormalities in

the short-term EEG.

Others have set out to develop algorithms that do not depend on the presence of

epileptic signatures. The GeoSource software (Electrical Geodesic Inc) is a commercial-

ized tool that has the potential to assist in diagnosing epilepsy without abnormalities

as it uses source localization technology to identify "pathological sources" of EEG

activity inside the brain from scalp EEG recordings. The source localization problem,

also called the "EEG inverse problem", is as follows: given a set of electric potentials

(EEG signals) from discrete sites on the surface of the head (EEG electrodes), as well

as the associated positions of those measurements, and the geometry and conductivity

of regions within head, identify the location and magnitude of the current sources that

generated those signals within the brain [43]. Since there exists no unique solution

to the inverse problem, great care has to be taken to ensure appropriate choice of
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analysis parameters and moreover, the results are highly sensitive to both spatial

resolution and signal artifacts [155]. Further, GeoSource requires an extra hour of

work by a technician, and 20-30 minutes of physician time to review the technician’s

work and the data produced by the tool. Moreover, digital EEG analysis by source

localization is an advanced procedure that is mainly used at epilepsy surgery centers,

where staff are familiar with how to perform it. However, even at these centers, it is

rarely used as its sensitivity has failed to improve much over visual inspection of the

EEG. In contrast, using our tool it takes only minutes to compute a SSI-map, and

our preliminary study suggests that it may significantly improve both sensitivity and

specificity of diagnosis, even when the EEG has no abnormal epileptiform signatures.

4.4.2 Limitations of current clinical gold standard for diag-
nosing epilepsy

The current gold standard relies on identifying epileptogenic abnormalities in the scalp

EEG recordings. As such the utilization of scalp EEG recordings for diagnosing epilepsy

becomes a signal processing or pattern recognition problem, concentrating on finding

events of interest on individual channels (e.g., IEDs or focal slowing). Consequently, if

no abnormalities are captured during the short-term EEG (which commonly occurs [6,

145]), the EEG is of little value. Additionally, both physiological and non-physiological

sources of artifacts may occur to fool the interpreter into believing an abnormality

exists in the signals. To complicate matters even further, it is important to consider

that a normal EEG does not exclude epilepsy, as around 10% of patients with epilepsy

never show epileptiform abnormalities on EEG. Further, IEDs are present in a small

percentage of individuals who never develop epilepsy, and IEDs may also be found

in patients with other neurological disorders than epilepsy [156]. Thus, an abnormal

EEG with IED findings does not in itself confirm that an individual has epilepsy.
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4.4.3 Advantages of the SSI as an EEG marker of epilepsy

Instead of relying on the presence of visually observable abnormalities, we seek to

understand how the EEG observations are generated in the first place and how internal

network properties can trigger seizures or prevent seizures. Conceptually, our algorithm

finds EEG patterns which are below the threshold of traditional visual interpretation.

Dynamical network models (DNMs) derived from EEG data characterize the internal

properties of the brain, and are necessary to reveal the epileptic network connections

and the underlying dynamics of seizure generation. The main advantage of the SSI over

the current gold standard is that it exists throughout the entire interictal recording

and is as such always present in short-term monitoring.
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Conclusions and future work

4.4.4 Conclusions

We introduced the source-sink hypothesis, which states that seizures are suppressed

when the epileptogenic regions (sinks) are effectively being inhibited by neighboring

brain regions (sources). The source-sink hypothesis is supported by biological evidence

based on the levels of excitatory and inhibitory neurotransmitters, and particularly

glutamate and glutamate receptors in the brain [46–49] and iEEG studies that have

demonstrated strong inward (inhibitory) connectivity to the EZ regions during rest [51,

52, 55, 57]. Subject to the source-sink hypothesis, we then proposed a novel source-

sink index (SSI) as a dynamical-network-based interictal EEG marker that detects

abnormal pathological connections in the epileptic brain network. More specifically,

the SSI is a marker that detects a fundamental property of an epileptic brain, which,

unlike epileptiform activity, is not based on pattern recognition and thus always

detectable via computation. We proposed a twofold application of the SSI; i) as an

iEEG marker to assist in the localization of the EZ and ii) as a scalp EEG marker to

assist in the diagnosis of epilepsy.

To evaluate the SSI as an interictal iEEG marker of the EZ, we conducted a

retrospective study using iEEG data from 65 patients treated across 6 epilepsy centers.

The SSI agreed with clinicians in 93% of success patients but only 54% of failure

patients, suggesting that our tool was also highlighting other potentially epileptogenic

regions in failure patients. Further, in terms of predicting surgical outcomes, the
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source-sink metrics outperformed HFO rate, the most studied interictal iEEG marker

of the EZ, achieving a test set accuracy of 79% and average precision of 88%. Overall,

our results suggest that the SSI captures the characteristics of the regions responsible

for seizure initiation. The SSI is a promising iEEG marker of the EZ and could

significantly improve surgical outcomes by increasing the precision of EZ localization.

Furthermore, by removing the need to capture seizures, the tool has the potential to

substantially reduce invasive monitoring times, avoiding further risks to patients and

reducing costs to hospitals.

To test the value of the SSI as an interictal scalp EEG marker of epilepsy, we

modeled the probability of having epilepsy as a function of SSI. We applied our

model to 57 patients and achieved an overall test set accuracy of 84%, which is a

considerable improvement over the current gold standard. Although preliminary, our

results suggest that the SSI has the means to reliably detect a fundamental property

of an epileptic brain (e.g., abnormal network connectivity) and may be a promising

interictal EEG marker of epilepsy. Importantly, by not requiring the presence of IEDs

or other abnormalities to diagnose epilepsy, the tool has the potential to make the first

EEG consistently actionable and thus significantly improve the speed and accuracy of

epilepsy diagnosis, enabling patients to receive effective treatment immediately and

reducing the costs of misdiagnosis.

4.4.5 Future work

4.4.5.1 Intracranial EEG study

Due to the spatial resolution of the iEEG contacts, the DNMs cannot distinguish

between excitatory and inhibitory connections and thus the only information we can

glean from the models is the amount of influence between any two nodes in the network.

The high predictive performance of the SSI does however suggest that the sources are
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likely dominated by inhibitory influence, consistent with the source-sink hypothesis.

To better understand the excitatory or inhibitory nature of the connections, future

work may entail complementing the iEEG data with resting-state fMRI (rs-fMRI),

which has a poorer temporal resolution, but generally a higher spatial resolution

compared to iEEG [157]. Thus combining iEEG and rs-fMRI could provide a better

understanding of the directionality of the network connections [158].

In patients with electrodes targeting the hippocampal region, the hippocampal

contacts were frequently identified as top sinks in the iEEG network. The hippocampus

is a highly connected structure, with many bidirectional connections to surrounding

regions [159] both intra- and inter-hemispherically [160]. Further, studies of mesial

temporal lobe epilepsy (MTLE) have demonstrated the existence of strong connec-

tions within the hippocampal network bilaterally, in both epileptogenic as well as

non-epileptogenic hippocampi [159, 161, 162]. As such, the hippocampus is a structure

that is highly influenced by other regions and by its nature acts as a sink in the brain

network, regardless of its epileptogenicity. Moreover, we found that in MTLE patients,

contacts recording from the contralateral hippocampus commonly exhibited a stronger

sink-like behavior than the epileptogenic hippocampus. This connectivity asymmetry

across hemispheres is in line with findings of other studies, which have demonstrated

a decreased functional connectivity within the epileptogenic hippocampal networks

with a concurrent increased connectivity in contralateral hippocampal functional path-

ways, possibly reflecting compensatory mechanisms with strengthening of alternative

pathways in these patients [159, 163–165].

To that end, the connectivity patterns and natural sink-like behavior of the

hippocampus need to be taken into consideration as results of the source-sink analysis

are reviewed and interpreted. Although the tool performs well with the hippocampal

electrodes included in the datasets, as reflected by our results, there might be cases

where these electrodes could simply be removed before the analysis is performed. This
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would for example include cases where the hippocampi were sampled but were not

suspected to be involved in seizure onset and thus clinical experts would ignore these

electrodes in their standard of care analyses regardless. Our preliminary testing has

showed that inclusion or removal of hippocampal electrodes does not alter the source-

sink behavior of other contacts in the iEEG network and thus, a future augmentation

of the tool could include an option to remove the hippocampal electrodes before the

visual interpretation of the source-sink results is performed by clinicians.

We showed that the tool is agnostic to different clinical covariates describing case

complexity, such as epilepsy type, the presence of lesions and location of seizures.

We also showed that the tool is generalizable across centers and treatment methods.

However, the algorithm was developed and validated on adult patients only. Although

we expect the results to generalize to the pediatric population, an important next

step would be a robust evaluation of the SSI on interictal iEEG data from a large

population of children with DRE. Lastly, the results of our retrospective study suggest

that the SSI has a high value as an iEEG marker and could aid in the localization

of the EZ if integrated into the clinical workflow. In future work, we plan to set up

clinical trials to clinically validate the SSI in a large prospective study on new patient

data.

4.4.5.2 Scalp EEG study

Scalp EEG recordings are prone to artifacts from various sources that may affect

the results. Thus, great care has to be taken to properly remove artifacts from

the signals before performing the analysis. Our preliminary study required a semi-

automated removal of artifacts using EEGLab’s ICA tool [152]. For a deployable

portable tool that can provide results in minutes, it will be necessary to automate this

procedure. An extensive review that compared state-of-the-art automated algorithms

for artifact removal [166] noted that the best performing approach is highly dependent
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on the artifacts and the signal to noise ratio and may require combining more than

one algorithm to achieve best results [166, 167]. In our clinical setting, the most

common artifacts are due to eye movements, eye blinks and muscle artifacts (myogenic

activity) [166–168]. Future work will entail further exploration of existing automated

algorithms to determine whether they may be used for this purpose or if developing a

fully automated artifact removal algorithm to integrate into our processing pipeline

will be necessary.

Lastly, for any new biomarker to be clinically valuable, a detailed validation

is required to ensure its performance remains consistent across applications and is

generalizable. Although our preliminary results look promising, all patients in our

dataset were treated at a Johns Hopkins center. Further, all non-epilepsy patients

had PNES, whereas multiple other conditions may result in a seizure-like event. Thus,

we plan to extend the study to a larger patient population, seen at multiple centers

(including specialized epilepsy centers, emergency rooms and ICUs). In addition,

cross-validation of the SSI model for predicting epilepsy will be necessary to ensure

the reliability and robustness of SSI as a marker of epilepsy.

Finally, in future work, we plan to perform a meta analysis to analyze the rela-

tionship between SSI performance and the following: a) age of patients to ensure

generalizability across all age groups, b) duration of EEG recording, c) EEG arousal

state (sleep versus awake), d) diagnostic category (e.g., epilepsy, PNES, syncope,

or cardiac-related), e) medication status (on AEDs versus not on AEDs), and f)

epilepsy type (generalized versus focal) and epilepsy subtype based on coarse location

(brain lobe) of seizures. Although our source-sink hypothesis is solely based on the

characteristics of an epileptic brain network, we will explore and compare SSI distribu-

tions between non-epileptic patients diagnosed with PNES, syncope or cardiac-related

conditions to test if any properties of these distributions suggest that these disorders

may be distinguishable by the SSI. Further, within the epilepsy group, we will also
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compare the SSI distributions and location of scalp EEG electrodes with highest SSI

to the epilepsy subtype of patients (e.g. temporal lobe, frontal lobe) to test whether

the SSI may be useful in classifying epilepsy subtypes from scalp EEG.
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Appendix I

Additional results for predicting
surgical outcomes using the
random forest classifier

A Statistical analysis of SSI distributions

Table I-I. Comparison of SSI distributions in EZ versus non-EZ channels.

P-value
Success patients Failure patients

Sink index 1.1997 × 10−6 0.0076
Source influence 1.6217 × 10−7 0.3331
Sink connectivity 1.3070 × 10−7 0.0771
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B Test set ROC curves

Figure I-1. A. ROC curves for the source-sink model. Blue line shows the mean ROC
across the ten CV folds and the shaded gray area represents one standard deviation. The
resulting ROC of each CV fold is shown with a dashed green line. B. ROC for the HFO
model. The mean AUC of the HFO model is significantly lower than the mean AUC of the
source-sink model.
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C Probability of success stratified by clinical co-
variates

Figure I-2
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Figure I-2. Distributions of ps across all CV folds as predicted by the source-sink
model. The dots represent patients and are color-coded by different clinical covariates.
A. Although lesional patients generally have a higher chance of a successful outcome,
there is no correlation between ps and whether patients have a lesion or not. B. Similarly,
mesial-temporal epilepsy (MTLE) have higher success rates compared to extra-temporal
epilepsy (ETLE) patients, but we see no correlation with ps values. C. The tool is also
agnostic to whether seizures start in one (focal) or a few (multi-focal) regions. D. Patients
who receive RNS treatment are generally not expected to achieve complete seizure freedom.
This was reflected in our dataset, with only one RNS patient that had a successful surgical
outcome. Consequently, the predicted probability of success by the source-sink model was
overall lower for RNS patients compared to patients that received surgical treatment.

Figure I-3. Distributions of ps across all CV folds as predicted by the source-sink model.
The dots represent patients and are color-coded by different clinical centers. The tool
generalizes well across data from different clinical centers indicated by the even distribution
of ps values across all centers.

88



Appendix II

Predicting surgical outcomes using

logistic regression

A Methods

A.1 Modeling the probability of a successful outcome as a

function of source-sink indices

To further evaluate the source-sink metrics as interictal iEEG markers of the EZ, we

tested their efficacy in predicting surgical outcomes using a simple logistic regression

model. Specifically, we modeled the probability of a successful surgical outcome, ps,

as a function of the three source-sink index metrics (2.2-2.5) using logistic regression

as follows:

log

(
ps

1 − ps

)
= β0 + β1(sinkEZ − sinkNEZ) + β2(inflEZ − inflNEZ)+

β3(connEZ − connNEZ)
(II.1)

where sinkEZ is the average sink index over all CA-EZ channels and sinkNEZ is the
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average sink index over the rest of the implanted channels. Similarly, inflEZ is the

average source influence index over all CA-EZ channels and inflNEZ is the average

source influence index over the rest of the channels. Finally, connEZ is the average

sink connectivity index over all CA-EZ channels and connNEZ is the average sink

connectivity index over the rest of the channels in the network.

The model performance was evaluated on a held-out test data set (30%) using a

10-fold cross-validation, and the same training and test set partitions as for the RF

model, as described in section A.2 below.

A.2 Statistical Analysis

A.2.1 Predictive Power of SSIs

The LR model was validated using a 10-fold cross-validation (CV) by creating ten

random splits of the dataset into training and test sets. We used the same training

and test set splits as were used for the RF model for a fair comparison. In each

such split, 70% of the patients (n=45) were assigned to the training set while also

ensuring a balanced number of success and failure patients, and the remaining 30%

(n=20) were used for testing. The model was fit to the training data and validated on

the test set by applying a varying threshold to the model’s output and computing a

receiver operating characteristic (ROC) curve which plots true positive rates against

false positive rates for various threshold values. As we explained in section 3.2.9,

the area under the curve (AUC) is a measure of separability, i.e., it tells us how

well the model can distinguish between success versus failed outcomes. The larger

the AUC, the more predictive the model is. Next, we selected the threshold that

maximized prediction accuracy in each split and evaluated performance by comparing

each patient’s predicted outcome to the actual surgical outcome.

In addition to the AUC, we used four metrics to measure model performance:
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a) prediction accuracy, which is the fraction of patients whose outcome the model

predicted correctly, b) precision, which is the proportion of predicted successful results

that are actual successful surgeries, c) sensitivity, which measures the proportion of

actual successful surgeries that were identified correctly and d) specificity, which refers

to the proportion of failed surgeries that the models predicted correctly We report

results of the ten CV iterations (mean ± standard deviation) below.

B Results

B.1 Source-sink metrics perform well in predicting surgical

outcomes

As stated above, the SSI, and consequently the three metrics (sink index, source

influence and sink connectivity) used to compute the SSI, are significantly higher in

CA-EZ channels compared to the rest of the iEEG network in patients with successful

surgical outcomes but not necessarily in failure patients (psuccess
SSI = 1.16 × 10−4 and

pfailure
SSI = 0.0359, see other p-values in Supplementary Table I-I). Taking advantage

of this assumption, we built the logistic regression model in eq. II.1 to predict the

probability of a successful surgical outcome for each patient. The resulting ROC

curve (mean ± standard error) obtained from training the models is shown in Fig.

II-1A and Fig. II-1B shows the test set ROC for comparison. The AUC of the test

set was 0.85 ± 0.02 which was equal to the AUC of the training set, suggesting that

the model generalizes well across different datasets. Fig. II-1C shows distributions

of model coefficient estimates and associated p-values across the ten CV iterations.

Using the source-sink indices, the optimal threshold (α = 0.57 ± 0.16, see Fig. II-2),

when applied to the estimated probability of a successful outcome for each subject

(ps) rendered a test set accuracy of 73.5 ± 4.7% and an accuracy of 80.0 ± 1.8% on the
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Figure II-1. A. Training set ROC curve across the ten CV folds. The black line represents
the mean ROC curve and the shaded gray area represents standard error across the folds.
B. Test set ROC curve (mean ± standard error). Note that the AUC of the test set is equal
to that of the training set, indicating generalizability of the model across different datasets.
C. Model coefficient distributions across the ten CV folds (gray) and their associated
p-values (red).

training set. Further, the model yielded a test set precision of 0.81 ± 0.15, a sensitivity

of 0.62 ± 0.22 and a specificity of 0.83 ± 0.16. These results are highly comparable to

the results obtained using the RF model (see section 3.3.4). Additionally, as Fig. II-2

shows, the performance of the LR model on the test set was highly comparable to

that of the training set, suggesting robustness of performance on different data sets.
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Figure II-2. Model performance on the training set (gray) and test set (red). Boxes show
distributions of each metric across the ten CV folds. Although there is more variability
across the CV folds for the test set, the test set performance is comparable to that of the
training set which suggests robustness of performance on different data sets.

B.2 The source-sink metrics are highly correlated with treat-

ment outcomes

Fig. II-3A compares the predicted probability of success (ps) in success versus failure

patients using the mean model (averaged across all ten CV iterations) of the source-

sink metrics. The model performs well in discriminating between the two outcome

possibilities as reflected in the separation between the ps distributions of success versus

failure patients (p = 5.89 × 10−8). Similar to the RF model, we observed a general

pattern of decreasing ps as outcome scores (and thus also the severity of post-operative

seizure outcome) increased as shown in Figs. II-3B and II-3C.
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Figure II-3. Distributions of ps as predicted by the source-sink model. Each dot represents
one patient. A. There is a good separation of the distributions for successful cases versus
failed cases. B. Distributions of ps stratified by Engel Class (Success = Engel 1, Failure =
Engel 2-4). There is a general trend of decreasing ps values as the Engel class (and thus
also severity of surgical outcome) increases. C. Distributions of ps stratified by ILAE scores
follow a similar trend to those observed for the Engel class in B. For ILAE scores, ILAE
1-2 are considered a successful outcome whereas ILAE 3-5 correspond to failed outcomes.

B.3 Generalizability of source-sink indices

We compared ps for three categories that describe the clinical complexity of each

patient. Although lesional patients frequently have better localizable EZ and thus

tend to have higher chances of successful outcomes, we saw no correlation to the

predicted probability of success in our models (Fig. II-4A). Similarly, patients with

extra-temporal epilepsy (ETLE) generally have lower success rates compared to mesial-

temporal epilepsy (MTLE) patients, but our tool was also agnostic to whether patients

had ETLE or MTLE (Fig. II-4B). Patients with multi-focal epilepsy are often more

difficult to treat because the seizures can originate from more than one brain area.

This was reflected in our data where only one multi-focal patient had a successful

surgical outcome and in turn, the predicted success probability of the source-sink

model (Fig. II-4C) was commonly lower for these patients.

Next, we analyzed the success probability with respect to treatment method (Fig.

II-4D). Patients who are surgical candidates (i.e., the seizure focus can be localized

and treated) generally undergo either resective surgery or laser ablation. In patients
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with poorly localizable or multiple seizure foci, or when the EZ is located in eloquent

cortex, surgical resection may not be an option. In these cases, many patients opt

for RNS treatment instead. Because of the higher clinical case complexity, patients

who receive RNS treatment are not expected to achieve complete seizure freedom, but

rather a reduction in seizure frequency [108–110]. This was reflected in the predicted

probability of success by the source-sink model, which was overall lower for RNS

patients compared to patients that received surgical treatment. In contrast, there was

no observable correlation between ps and surgical resection or laser ablation.

Finally, we compared ps across clinical centers. As Fig. II-5 shows, the range of

ps values is similar across centers and outlier values of ps in each surgical-outcome

distribution are from various centers. As such, the distributions are not skewed by

ps values from any particular center, indicating generalizability of the model across

different datasets.
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Figure II-4
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Figure II-4. Distributions of ps as predicted by the source-sink model, color-coded by
different clinical covariates. Each dot represents one patient. A. Although lesional patients
generally have a higher chance of a successful outcome, there is no correlation between
ps and whether patients have a lesion or not. B. Although patients with mesial-temporal
epilepsy (MTLE) have higher success rates compared to extra-temporal epilepsy (ETLE)
patients, we see no correlation with ps values. C. The tool is also agnostic to whether
seizures start in one (focal) or a few (multi-focal) regions. D. Patients who receive RNS
treatment are generally not expected to achieve complete seizure freedom. This was
reflected in the predicted probability of success by the source-sink model, which was overall
lower for RNS patients compared to patients that received surgical treatment.

Figure II-5. Distributions of ps as predicted by the source-sink model, color-coded by
different clinical centers. Each dot represents one patient. The tool generalizes well across
data from different clinical centers.
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Appendix III

Clinical correspondence stratified

by clinical covariates

98



Figure III-1
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Figure III-1. Clinical correspondence stratified by clinical covariates. A. Lesional versus
non-lesional patients. The proportion of each group is similar across all scores, indicating
that the tool is not sensitive to whether patients have a visible lesion on MRI (which often
leads to a higher chance of surgical success). B. Mesial-temporal lobe epilepsy (MTLE)
versus extra-temporal lobe epilepsy (ETLE). The proportion of each group is similar across
all correspondence scores. C. Epilepsy type defined as either focal or multi-focal. The tool
is not sensitive to epilepsy type. D. The tool is agnostic to treatment methods. Note
however, that in this dataset all but one RNS patients are classified as failed outcomes.
RNS treatment is often used if the EZ is in eloquent cortex and as such, patients are not
expected to achieve complete seizure freedom.

Figure III-2. Clinical correspondence stratified by clinical centers. The distribution of
agreement scores is similar across centers.
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