
HARNESSING ANTIBODY KINETICS TO IMPROVE EPIDEMIOLOGIC 
INFERENCE: CASE STUDIES IN CHOLERA AND SARS-COV-2 

 
 
 

 
 

by 
Forrest Kirby Jones 

A dissertation submitted to Johns Hopkins University in conformity with the 
requirements for the degree of Doctor of Philosophy 

 
 
 
 
 

Baltimore, Maryland 
April 2022 

 
 
 
 
 
 

©2022 Forrest Kirby Jones 
All rights reserved 

  



 

 ii 

ABSTRACT 

Serological surveillance can complement traditional surveillance systems, 

providing information about exposure to and protection from pathogens at the 

population-level. In this dissertation, I investigated how longitudinal serum 

samples could be leveraged to understand the potential of serological 

surveillance systems for SARS-CoV-2 and Vibrio cholerae. 

In mid-2020, we measured anti-receptor binding domain (RBD) IgG, IgA, 

and IgM antibodies using an enzyme-linked immunosorbent assay (ELISA) in 

longitudinally collected serum samples (<122 days after symptom onset) from 

343 PCR confirmed cases of coronavirus disease 2019 (COVID-19). Using 

samples from 1,548 pre-pandemic controls, we set a threshold to determine 

seropositivity with perfect specificity. The median time to seroconversion was 

approximately 12 days for all three isotypes. Anti-RBD IgA and IgM responses 

were short-lived while IgG responses decayed slowly. 

We also tested 305 serum samples from 48 culture confirmed cholera 

cases (collected 2-1083 days post-infection) and 3 uninfected household 

contacts in Bangladesh for serological biomarkers using a multiplex bead assay 

(MBA) (IgG, IgA, and IgM for 11 antigens), vibriocidal assay (Ogawa and Inaba 

serotypes), and ELISA (IgG and IgA for 2 antigens). While vibriocidal responses 

often had high initial fold-changes (52 and 50 fold-change on-average), several 

MBA-measured antibodies demonstrated robust responses with similar or longer 

half-lives. Combining all MBA antibody measures allowed for accurate 
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identification of previous cholera infections including a cross-validated AUC of 

92% for infections in the past 200 days. 

We also tested 248 serum samples from 51 Haitian volunteers vaccinated 

with killed whole-cell cholera vaccine for the same MBA markers. Both 

vaccination and infection stimulated anti-Ogawa OSP and anti-Inaba OSP 

responses. Classification models trained with anti-CT-B, anti-Ogawa OSP, and 

anti-Inaba OSP IgG measurements to detect individuals infected <200 days prior 

misclassified recently vaccinated people as recently infected shortly after 

receiving a second dose. In simulated cross-sectional surveys, we found that 

measuring additional markers or knowing vaccination status was sufficient to 

accurately adjust seroincidence estimates. 

I demonstrated how serological data can be used to measure incidence of 

previous infection with SARS-CoV-2 and V. cholerae. Integrated approaches for 

monitoring seroincidence and population-level immunity for more pathogens 

should be considered to advance surveillance systems. 
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CHAPTER 1: Introduction 

Public health surveillance systems are instrumental for governments to 

make data-driven decisions to control infectious diseases. They allow monitoring 

trends in spread and burden, predicting the trajectories of epidemics, and 

communicating strategically to the public. Traditionally, case-based surveillance 

(sometimes known as indicator-based surveillance or clinical surveillance) has 

been the backbone of infectious disease surveillance systems. However, case-

based surveillance typically misses mild and/or asymptomatic infections, often 

relies on health care seeking and access, may have infrequent laboratory 

confirmation, and may have biases dependent on the design of reporting 

systems. Serological surveillance may be able to help address some of these 

limitations. 

 Upon infection, many pathogens stimulate the immune system to 

generate antibodies that last long after the pathogen has disappeared from the 

body. As these antibodies are specific to the infecting pathogen, their presence 

may be indicative of prior infection or immunity. Serological surveillance (or 

serosurveillance), where antibody measurements are systematically collected 

among participants, can provide complementary information about prior rates of 

infection and population-level immunity.  

The purpose of serosurveillance is to make inference on population-level 

parameters surrounding transmission, burden, and immunity. This contrasts with 

measuring antibodies for the purposes of diagnosing past exposure or immunity 

at the individual-level (which may be fraught with scientific and ethical uncertainty 
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depending on the pathogen). Often, investigators wish to estimate the incidence 

of infection for an infectious disease by using serological data to estimate the 

proportion of the population with antibodies specific to a particular pathogen. 

Further statistical analysis can use these data to estimate fundamental 

parameters such as the proportion of cases missed by case-based surveillance 

systems, the infection fatality ratio, or the basic reproductive number. When a 

correlate of protection (from either infection or disease) is being measured, the 

proportion of the population that is immune can be estimated. This can be used 

to alert authorities to populations which are at risk for outbreaks. This type of 

strategic information could help forecast risk, improve planning of control 

measures, or optimize allocation of limited resources prior to a crisis. 

To implement serosurveillance, investigators often measure antibodies 

from blood samples though samples of other bodily fluids (such as saliva) can 

also be tested. The choice of sample type depends on feasibility of 

implementation, the accuracy of the test, and acceptability to participants. 

Sometimes samples have already been collected through routine mechanisms 

(e.g., during blood donations or emergency department visits) while other 

investigations actively collect samples from the general population or specific 

populations of interest (e.g., high risk groups). Sampling may be cross-sectional 

or longitudinal depending on the study or surveillance system goals, 

epidemiology of the pathogen, and the assay chosen. 

In this dissertation, I investigated the potential for serosurveillance of 

SARS-CoV-2 and V. cholerae. Though biologically unrelated, there are several 
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important qualities shared between these pathogens with regards to 

serosurveillance. Infection with either SARS-CoV-2 or V. cholerae leads to 

severe symptoms in a minority of individuals (1, 2), but does stimulate a 

detectable antibody response (3, 4). Additionally, reinfection can occur for both 

(5, 6). However, most importantly (when this work had begun in mid-2020), few 

serological studies or surveillance systems had been established for either 

pathogen (7–9). As with any pathogen, the degree of antibody waning, individual 

variability, assay misclassification, and cross-reactive immune responses needed 

to be considered for both pathogens before serosurveillance could be 

implemented. 

To address some of these challenges, I analyzed longitudinal serological 

data collected after infection (and vaccination for V. cholerae) to describe the 

course of antibody dynamics and assessed the accuracy of assays to detect 

previous infection. In Chapter 2, I characterized the persistence and decay of the 

antibody response to SARS-CoV-2 infection among COVID-19 patients. In 

Chapter 3, I compared the ability of traditional serological assays with a novel 

assay to identify V. cholerae infection during pre-defined time windows before 

sample collection. In Chapter 4, I developed strategies for conducting 

serosurveillance to estimate cholera incidence in partially vaccinated populations. 

Though the analyses for these two pathogens were done separately, this 

dissertation highlights the similar challenges posed for monitoring both 

pathogens and that future serosurveillance efforts might be worth integrating 

across pathogens. 
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Abstract 

We measured plasma and/or serum antibody responses to the receptor-binding 

domain (RBD) of the spike (S) protein of SARS-CoV-2 in 343 North American 
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patients infected with SARS-CoV-2 (93% of which required hospitalization) up to 

122 days after symptom onset and compared them to responses in 1548 

individuals whose blood samples were obtained prior to the pandemic. After 

setting seropositivity thresholds for perfect specificity (100%), we estimated 

sensitivities of 95% for IgG, 90% for IgA, and 81% for IgM for detecting infected 

individuals between 15 and 28 days after symptom onset. While the median time 

to seroconversion was nearly 12 days across all three isotypes tested, IgA and 

IgM antibodies against RBD were short-lived with median times to seroreversion 

of 71 and 49 days after symptom onset. In contrast, anti-RBD IgG responses 

decayed slowly through 90 days with only 3 seropositive individuals seroreverting 

within this time period. IgG antibodies to SARS-CoV-2 RBD were strongly 

correlated with anti-S neutralizing antibody titers, which demonstrated little to no 

decrease over 75 days since symptom onset. We observed no cross-reactivity of 

the SARS-CoV-2 RBD-targeted antibodies with other widely circulating 

coronaviruses (HKU1, 229 E, OC43, NL63). These data suggest that RBD-

targeted antibodies are excellent markers of previous and recent infection, that 

differential isotype measurements can help distinguish between recent and older 

infections, and that IgG responses persist over the first few months after infection 

and are highly correlated with neutralizing antibodies. 

Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 

causative agent of coronavirus disease 2019 (COVID-19), has spread rapidly 

around the world since being first identified in Wuhan, China, in December 2019 
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(1). On March 11th, 2020 the World Health Organization (WHO) declared 

COVID-19 a pandemic, which surpassed 1 million reported global deaths on 

September 28th, 2020 (2). 

Currently, our understanding of antibody responses following infection with 

SARS-CoV-2 is limited (3–5). Specifically, we lack detailed descriptions and 

precise estimates concerning the magnitude and duration of responses, cross-

reactivity with other coronaviruses and viral respiratory pathogens, and correlates 

of protective immunity following infection. A detailed characterization of antibody 

responses is needed to determine whether antibody-based tests can augment 

viral detection-based assays in the diagnosis of active or recent infection and to 

inform the design and interpretation of seroepidemiologic studies. 

In this study, we characterize the kinetics and antibody isotype profile to 

the receptor binding domain (RBD) of the spike (S) protein of SARS-CoV-2 in a 

longitudinal cohort of North American patients infected with SARS-CoV-2, most 

of whom were hospitalized for COVID-19, and in pre-pandemic controls. We also 

examined how well these responses correlated with neutralizing antibody activity 

directed at the S protein. Additionally, we evaluated the cross-reactivity of these 

responses with other coronavirus RBDs and characterize assay performance 

using dried blood spots as an alternative to serum or plasma. 
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Results 

Study cohorts 

Using an in-house enzyme linked immunosorbent assay (ELISA), we 

measured anti-RBD (Table A.1) antibody responses in two cohorts: 1) 

symptomatic patients who tested positive for SARS-CoV-2 by PCR (n = 343) and 

2) healthy (n = 1,515) and febrile controls (n = 33) collected prior to the SARS-

CoV-2 pandemic. Most SARS-CoV-2 positive cases were severe (93% 

hospitalized, 53% requiring ICU level care, 13% died), male (62%), and older 

(median age: 59) (Table 2.1, Figure A.1). Most pre-pandemic controls were 

younger (median age: 37) and female (66%). Plasma and/or serum was collected 

at multiple time points for most patients (63%; n=216), with 34% (n=118) having 

≥ 4 samples. Forty-two percent of cases had a sample collected between 0-7 

days after onset of symptoms (n=143), 55% had a sample between 8-14 days 

(n=189), 48% had a sample between 15-28 days (n=165), 35% had a sample 

between 29-45 days (n=121), 22% had a sample between 46-60 days (n=76), 

and 10% had a sample > 60 days (n=35). The last sample was collected 122 

days post-symptom onset. Twenty-six (8%) cases were immunosuppressed 

(e.g., on methotrexate, rituximab, etc.), and we did not expect them to mount a 

robust immune response. 
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Kinetics of anti-SARS-CoV-2 RBD antibody responses 

If followed for more than 14 days since symptom onset, most cases (92%) 

had at least one IgG measurement higher than seen among any pre-pandemic 

control (Figure 2.1). From days 5 to 14, there was a sharp rise in RBD-specific 

antibodies of all isotypes, and IgG measurements continued to rise until day 25 

after the onset of symptoms (Figure A.2A). The population average IgA and IgM 

responses peaked less than a week earlier than IgG and then declined toward 

concentrations measured in pre-pandemic samples (Figure A.2). IgG antibody 

responses also began to wane, but at a slower rate. Among 117 cases with ≥ 4 

measurements, the individual peak IgM measurement often occurred before that 

of IgG (before: 55%, simultaneous: 38%) and simultaneously with that of IgA 

(before: 28%, simultaneous: 53%) (Figure A.3). Among hospitalized patients, the 

population average trajectory differed little between severity levels; the average 

IgG concentrations among hospitalized cases admitted to the ICU were higher 

than hospitalized cases not admitted to the ICU (Figure A.2B). Concentrations of 

all isotypes were lower among immunosuppressed individuals (Figure A.2C). 

Accuracy of RBD antibodies for identifying recent SARS-CoV-2 infection 

Each antibody isotype was indicative of infection. The area under the 

receiver operating curve (AUC) for each antibody isotype increased to above 

98% during the period of 15-28 days after symptom onset (Table 2.2). The AUC 

remained high for IgG (99%) and IgA (98%) after 28 days but began to fall for 

IgM (93%). Using test cutoffs set to ensure no false positives within the pre-

pandemic samples (i.e., 100% within sample specificity), we found that the 



 

 11 

sensitivity of IgG antibodies rose from 7% (≤7 days) to 95% after 14 days of 

symptoms. The sensitivity of IgA and IgM rose to 90% and 81% 2-4 weeks post-

symptom onset but dropped after 4 weeks to 66% and 44%, respectively. 

Through ten-fold cross-validation, we found that the mean specificity for each 

isotype was 99.9% (fold-specific range: 99.4 - 100%). 

Combining multiple isotype measurements to improve accuracy 

We found the accuracy of serologic identification of recent infections could 

be slightly improved by adding measurements of IgM and/or IgA to IgG at the 

earlier phases of infection (Table A.2, Figure A.4). Using random forest models to 

flexibly combine measurements of different isotypes, we estimated a cvAUC of 

92% for IgG & IgM and 91% for IgG & IgA at 8-14 days post-symptom onset. 

These models provide an estimate of the contribution of each antibody isotype, 

as well as an approximation of the maximum predictive value of combined 

measures of anti-RBD IgG, IgA and IgM responses. While all isotypes 

contributed nearly equally to identifying recent infection antibody profiles in the 

early phase of illness, IgG responses were the most indicative of infection 8 or 

more days after the onset of symptoms (Figure A.5). Using the pre-determined 

thresholds for seropositivity for each antibody isotype, out of the 357 samples 

collected during early infection (< 14 days post symptom onset), we were able to 

correctly identify an additional 19 (5%) cases among the IgG negative samples 

by adding IgM, 21 (6%) by adding IgA, and 33 (9%) by adding both IgM and IgA. 

When accounting for class imbalance in the random forest procedure, similar 

results were obtained (Figure A.6, Figure A.7). 
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Estimation of time to seroconversion and seroreversion for each isotype 

Using the cutoffs defined earlier, we estimated the distribution of the time 

required to become seropositive (seroconversion) and return to becoming 

seronegative (seroreversion). Overall, 324 (94%) individuals had more than 1 

measurement for every 28 days of follow-up. Of the 159 cases with samples after 

20 days post-symptoms, most had evidence of seroconversion for all isotypes 

(IgG: 96%, IgM: 88%, IgA: 89%). The estimated median time to seroconversion 

from symptom onset was comparable across antibody isotype: 10.7 days (95% 

CI: 9.6-11.9) for IgG, 11.7 days (10.4-13.0) for IgA and 11.9 (10.5-13.4 days) for 

IgM (Figure 2.2). On average, we estimated the median time to seroconversion 

among hospitalized patients to be over four days earlier as compared to non-

hospitalized patients for all isotypes; men and those aged <65 years also 

seroconverted more quickly on average (Table A.3). 

Of seroconverted cases with samples 46 days post-symptoms or after, 

most eventually had IgM (45/61) and IgA (30/64) seronegative measurements. 

The median time to seroreversion for IgM was 48.9 days (95% CI: 43.8 – 55.6), 

with the first 5% seroreverting by 23.7 days (95% CI: 21.6 – 26.0). We estimated 

a slightly later median seroreversion time for IgA of 70.5 days (95% CI: 58.5 - 

87.5), with the first 5% seroreverting by 27.7 days (95% CI: 22.8–32.9, Figure 

2.2). Only 3 of 70 cases had evidence of seroreversion for IgG. All 3 patients who 

seroreverted for IgG required ICU level care; however 2 of the 3 did not have 

robust IgG responses (peak IgG measurement < 2 μg/mL, 1 of whom was 

immunosuppressed). 
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Association between RBD responses and the development of neutralizing 

antibodies targeting the S protein 

We measured pseudoneutralizing antibodies targeting the SARS-CoV-2 S 

protein in 88 samples from 15 individuals collected between 0 and 75 days post-

symptoms (Figure 2.3). These individuals were randomly selected from 

individuals in the full cohort that had multiple samples collected longitudinally with 

sufficient volume for the pseudoneutralization assay. Over the course of 

infection, all individuals tested developed detectable neutralizing antibodies 

(NAb). NAb titers were correlated with the concentration of anti-RBD IgG (r = 

0.87). Of note, similar to anti-RBD IgG responses, NAb titers plateaued and 

remained detectable at later time points despite the more rapid decline of IgA 

and IgM responses. 

Evaluation of cross-reactivity with other coronaviruses 

We evaluated antibody responses to RBDs derived from spike proteins of 

endemic human coronaviruses (CoVs) (i.e., HKU1, 229E, OC43, and NL63), 

severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle East 

Respiratory Syndrome coronavirus (MERS-CoV) (Figure A.8). Antibody 

responses to the endemic CoVs were comparable between pre-pandemic 

controls and individuals with COVID-19 at all phases of infection, demonstrating 

a lack of cross-reactivity. Although a few individuals with SARS-CoV-2 infection 

had increasing levels of antibodies to endemic CoVs over time, which could be 

explained by cross-reactive anamnestic responses/ immunologic memory, the 

majority stayed the same. Thus, overall, we did not observe a detectable cross-
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reactive response to the RBDs of the endemic human coronaviruses across the 

population of individuals infected with SARS-CoV-2. In contrast, we did observe 

significant cross-reactivity to SARS-CoV-1 RBD in individuals with COVID-19, but 

no significant cross-reactive responses to the MERS-CoV RBD. Of note, there 

were three pre-pandemic controls (samples collected prior to October 2019) with 

IgA cross-reactivity to SARS-CoV-1. 

Comparison of plasma responses to dried blood spots (DBS) 

Since DBS could be used in large serosurveys where venous blood may 

be logistically challenging to collect and process, we also evaluated the assay 

with simulated dried blood spot eluates in a subset of patients (n= 20 at two 

timepoints; 40 samples) and pre-pandemic controls (n=20). The anti-RBD IgG 

DBS measurements had a high degree of linear correlation in both cases and 

control plasma (r = 0.99, Figure A.9). While the classification of all samples was 

the same between DBS and plasma samples (100% classification concordance), 

values between the two sample types diverged more at low titer values. 

Discussion 

In this study, we found that antibodies against the RBD region of the S 

protein were accurate indicators of recent severe SARS-CoV-2 infection. The 

presence of IgG antibodies targeting SARS-CoV-2 RBD was a highly sensitive 

(95%) marker of infection after 14 days from onset of illness. This is consistent 

with a growing body of data which demonstrate that measurement of anti-RBD 

antibodies can accurately classify individuals recently infected with SARS-CoV-2 
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(6–9). Because this study was conducted in a large cohort of individuals with 

known SARS-CoV-2 infection (N=343) and controls (N=1548) it provides a robust 

measure of the accuracy of anti-RBD antibodies. 

These findings also add to emerging evidence on the persistence and 

decay of antibody responses following SARS-CoV-2 infection. IgM and IgA 

responses to RBD were short-lived and most individuals seroreverted within two 

and a half months after the onset of illness. This timing and pattern of 

seroreversion for IgM fits with findings from other pathogens such as SARS-CoV-

1 (10), RSV (11), syphilis (12), Zika Virus (13), Chikungunya Virus (14), and 

West Nile Virus (15). In contrast, IgG antibodies persisted at detectable levels in 

patients beyond 90 days after symptom onset, and seroreversion was only 

observed in a small percentage of individuals. The concentration of these anti-

RBD IgG antibodies was also highly correlated with pseudovirus NAb titers, 

which also demonstrated minimal decay. The observation that IgG and 

neutralizing antibody responses persist is encouraging and suggests the 

development of robust systemic immune memory in individuals with severe 

infection. This is similar to a study that reported on anti-RBD antibodies in 121 

North American convalescent plasma donors up to 82 days from symptom onset 

(16) and a study of 1,197 Icelanders who remained seropositive by 2 pan-IgG 

SARS-CoV-2 antibody assays 120 days after qPCR diagnosis of SARS-CoV-2 

(9). However, these findings differ with other recent studies suggesting a more 

rapid waning in anti-RBD titers following mild or asymptomatic SARS-CoV-2 

infection (17, 18). 
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RT-PCR based detection of SARS-CoV-2 is sensitive early in the first 

week after the onset of symptoms (19), and our results suggest that the detection 

of antibodies against the SARS-CoV-2 RBD by ELISA, even when utilizing all 

isotypes, is not likely to contribute significantly to the early diagnosis of COVID-

19. However, beyond two weeks after symptom onset, supplementing viral 

detection assays with antibody-based testing methods clearly increases 

sensitivity in diagnosing recent infection (20, 21), particularly as the sensitivity of 

RT-PCR for SARS-CoV-2 infection wanes (18). In particular, our results 

demonstrate that the earlier seroreversion of IgA and IgM responses will be 

helpful in distinguishing older infections from recent ones. Thus, the 

measurement of multiple isotypes, taking into account the early decay of IgA and 

IgM, is likely to be critical in interpreting the results of serosurveys and 

epidemiologic studies to estimate the time from infection. All considered, these 

findings suggest clearly defined applications for serologic testing of RBD 

responses in both clinical and public health/surveillance settings. 

Testing for anti-SARS-CoV-2 RBD antibodies can also be applied in 

seroepidemiologic studies, even in areas of low prevalence, given their excellent 

specificity and defined kinetics. Variation in the performance of commercial 

serologic tests and confusion about the role of antibodies as biomarkers of past 

infection versus protective immunity has led to widespread misperception that 

antibody testing may be inaccurate (22, 23). In contrast, our study, based on a 

very large sample of cases and controls, should provide significant confidence in 

the contribution of serologic measures in public health efforts to improve 
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epidemiological investigations (24) and to provide high-resolution estimates of 

infection incidence across geographies and populations. In addition, the lack of 

cross-reactivity of antibodies to SARS-CoV-2 RBD with common cold 

coronaviruses provides additional data supporting the specificity of the assay.  

One limitation of our study was that our cohort of individuals with SARS-

CoV-2 infection was skewed toward adults with severe disease or with risk 

factors for disease progression. It is important to study the kinetics and in 

particular the decay of antibody responses in individuals with severe infection for 

several reasons. First, the magnitude and duration of the responses in individuals 

with severe infection likely provide an estimate of the upper bounds of the 

achievable immune response and the development of B cell memory following 

natural infection. Second, these findings are expected to have significant 

implications for protective immunity in a population which clearly is vulnerable to 

poor outcomes when exposed. However, caution is required in generalizing 

these results to those with less severe infection. Individuals with mild or 

asymptomatic infection have been shown to develop less robust antibody 

responses (18), which may lead to false negatives if our proposed assay 

thresholds are used. Individuals with mild or asymptomatic infection may also 

serorevert more quickly than symptomatic individuals. The gradation of 

responses by disease severity has been found in other infections, including 

SARS-CoV-2 and MERS-CoV infection (25). An association between disease 

severity and the kinetics of the antibody response is also suggested by our 

finding that individuals with more severe disease, who required ICU-level care, 
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seroconverted earlier than individuals who did not require ICU-level support. 

However, some patients, such as the elderly individuals or diabetics, may have 

more severe disease because of a poor immune response with potentially lower 

concentrations of antibodies present. 

While anti-RBD antibodies accurately identify individuals with recent 

SARS-CoV-2 infection, it remains unknown whether these responses are 

associated with protection against subsequent infection. In many human 

challenge studies of common cold coronavirus infection, the presence of 

neutralizing antibodies has been associated with protection against symptomatic 

infection and decreased viral shedding (5). In addition, in vaccinated rhesus 

macaques challenged with SARS-CoV-2 infection, neutralizing antibodies 

directed at the S protein were also a strong correlate of protective immunity (26). 

Thus, neutralization titers, in the absence of other known markers, have become 

a de facto immunologic marker of protection against infection pending further 

investigation. In this context, it is notable that anti-RBD IgG antibodies were 

strongly correlated with the same neutralizing antibodies that were associated 

with protection in vaccinated macaques (26). This correlation with neutralizing 

titers was stronger than observed for other previously tested commercial 

serologic assays (27), and both anti-RBD and neutralizing antibodies persisted 

over a 2.5 month follow-up period. 

Our results, therefore, provide strong support for the application of anti-

RBD antibodies as a marker of recent SARS-CoV-2 infection as well as new and 

detailed information related to the specificity and decay kinetics of the anti-RBD 
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responses. The testing approach used meets the CDC’s guidelines for serologic 

testing (28) and has the potential to facilitate accurate diagnosis in clinical 

settings and the implementation of population-based studies of previous infection 

globally. While the association between anti-RBD-IgG and neutralizing titers and 

the persistence of these antibodies at late time points is encouraging, further 

work is needed to define the optimal antibody-mediated correlates of protective 

immunity. 

Materials and Methods 

Study design 

We evaluated the magnitude and kinetics of the early human antibody 

response to the receptor binding domain of SARS-CoV-2 spike protein, with the 

additional objective of evaluating the specificity and sensitivity of these antibody 

responses for identifying individuals with recent infection. Thus, we measured 

antibody concentration in blood samples obtained from confirmed patients with 

symptomatic SARS-CoV-2 infection and from control individuals whose samples 

were collected prior to the pandemic. IgG, IgA, and IgM antibody concentrations 

were measured by ELISA using recombinant SARS-CoV2 RBD in all samples. 

We focused on the RBD given its importance for viral entry into cells and that 

antibodies binding to the RBD may play an important role in neutralization. In a 

subset of samples, neutralizing antibody responses directed against the spike 

protein were also measured using a lentivirus pseudoneutralization model. From 

these data, we modeled the classification accuracy for each individual isotype 
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and combinations of isotypes at different time points, and the temporal dynamics 

of seroconversion and seroreversion following the onset of symptoms. 

Sample collection 

We obtained plasma and/or serum samples, collected for routine clinical 

care, from individuals with PCR-confirmed SARS-CoV-2 infection presenting, 

with fever and/or viral respiratory symptoms from March to April 2020 and who 

met criteria for RT-PCR testing. Testing criteria for SARS-CoV-2 changed over 

time, but primarily included patients with severe symptoms requiring hospital 

admission, although those who had other risk factors for disease progression 

(e.g., were age 60 or older, had diabetes, or were immunocompromised), or who 

worked or lived in a setting where infection control requirements dictated a need 

for testing. Additional serum/plasma samples collected September 2015 to 

December 2019 prior to the SARS-CoV-2 pandemic included healthy adults seen 

at the MGH Immunization and Travel Clinic prior to travel, patients undergoing 

routine serology, and patients presenting with other known febrile illnesses. 

Plasma samples, except for the routine serology samples, were heat-inactivated 

at 56°C for one hour prior to analysis.). Patient demographic information, lab 

results, and clinical outcomes were extracted from the electronic medical record. 

Patients were considered immunosuppressed if they had underlying 

immunosuppressive condition (e.g., HIV with CD4 count less than 200) or were 

on an immunosuppressive/immunomodulating agent at the time of their 

admission (e.g., methotrexate, rituximab) All research was approved by the 

Institutional Review Board for Human Subjects Research at MGH. 
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Dried blood spots (DBS) 

Seventy-two microliters of single donor, seronegative whole blood 

collected from sodium heparin tubes (Becton, Dickinson, NJ), was spiked with 8 

μl heat-inactivated plasma (10% of the whole blood volume) to maintain the 

relative whole blood composition. Assuming plasma is 50% of the whole blood 

volume, the spiked plasma was 18.18% of the final plasma volume. Whole blood 

(40 μL) was spotted onto Whatman 903 Protein Saver cards (GE Healthcare, 

Cardiff, UK) in replicate and allowed to dry overnight at room temperature. Two 

6-mm2 punches from the DBS card (5 μL plasma per punch) were placed in 133 

μL PBS-0.05% Tween 20 pH 7.4 (Sigma-Aldrich, St. Louis, MO) and incubated 

overnight at 4°C with gentle agitation eluates were then recovered after 

centrifugation. The total dilution of the spiked plasma in DBS eluate was 

assumed to be 1:73.15, which accounts for the initial dilution from spiking (1:5.5) 

and the further dilution during DBS elution (1:13.3) 

Enzyme-linked immunosorbent assay (ELISA) 

The ELISA assays measured IgG, IgA, and IgM responses to the receptor 

binding domain of the spike protein (RBD) from SARS-CoV-2 [GenBank: 

MN975262], Middle East Respiratory Syndrome (MERS) virus [GenBank: 

AFY13307.1], SARS-CoV-1 [GenBank: AAP13441.1], and common cold 

coronaviruses HKU1 [GenBank: AAT98580.1], OC229E [GenBank: AAK32191], 

OC43 [GenBank:AAT84362], and NL63 [GenBank: AKT07952]. RBD sequences 

were cloned into pVRC vector followed by expression in mammalian cells 

Expi293 cells (ThermoFisher Scientific, Waltham,MA) with a C-terminal 
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streptavidin-binding peptide (SBP)-His8X tag, and purified over TALON resin 

(Takara, Mountain View, CA) followed by size exclusion chromatography and 

cleavage of the His tag. RBD-specific antibody concentrations (μg/mL) were 

quantified using isotype-specific anti-RBD monoclonal antibodies. The RBDs 

were expressed in Expi293F suspension cells with a C-terminal SBP-His8X tag, 

and purified using affinity chromatography and then size exclusion 

chromatography prior to removal of the His tag as described previously (29). 

Briefly, 384 well Nunc MaxiSorp plates (Invitrogen, Carlsbad, CA) were coated by 

adding 50 μL of RBD in carbonate buffer (1 μg/mL) and incubating for 1 hour at 

room temperature (RT). Plates were then blocked for 30 min at RT with 5% 

nonfat milk in tris-buffered saline (TBS). Diluted samples (1:100 in TBS with 5% 

milk, 0.5% Tween) were added to the plate (25 μL/well) and incubated for 1 hour 

at 37°C with shaking. Serial 4-fold dilutions to 1:6400 were also included for 

individuals with high titers. At the end of incubation, samples were washed 5 

times with 1X high salt TBS. Subsequently, goat anti-human IgA, IgG, and IgM- 

horseradish peroxidase conjugated secondary antibodies diluted (Jackson 

ImmunoResearch) at 1:10000 (IgG, IgM) or 1:5000 (IgA) in 5% milk in TBST 

were added to plates (25 μL/well) and incubated at RT with shaking for 30 min 

followed by 5X 1X high salt TBS washes and a last wash with 1X TBS. Bound 

secondaries were detected using 1-step Ultra TMB (tetramethylbenzidine; 

ThermoScientific, Waltham, MA, 25 μL/well). Plates were incubated at RT for 5 

min in the dark before addition of 2 N sulfuric acid stop solution (25 μL/well). The 

optical density (OD) was read at 450 nm and 570 nm on a plate reader. OD 
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values were adjusted by subtracting the 570 nm OD from the 450 nm OD. We 

used a standard curve of the anti-SARS-CoV-2 monoclonal, CR3022 (30), to 

calculate the concentration of anti-RBD IgG, IgA, and IgM expressed in μg/mL. 

Note: For the DBS and plasma comparisons the starting concentration was 

1:200. 

Pseudovirus neutralization assay 

To determine the SARS-CoV-2 neutralization activity of our plasma 

samples, we used a lentivirus pseudoneutralization model as previously 

described (26), which is a strong correlate of protective immunity in challenged 

rhesus macaques (31). We expressed results from this assay as the antibody 

titer required to neutralize 50% of the SARS-CoV-2 pseudovirus (NT50). 

Statistical analysis 

Single isotype thresholds 

We first explored how cutoffs of individual isotypes (IgM, IgG and IgA) 

performed in identifying previously infected individuals. We compared 

measurements from pre-pandemic controls, with those taken at any time, ≤7 

days, 8-14 days, 15-28 days, and >28 days after the onset of symptoms. We 

estimated the AUC for each isotype and time period combination and calculated 

bootstrap 95% confidence intervals. Using the isotype cutoffs defined by the 

maximum concentration (μg/mL) found among the full set of pre-pandemic 

controls (IgG: 0.57, IgM: 2.63, IgA: 2.02), we estimated sensitivity and bootstrap 

95% confidence intervals. We also evaluated how setting a cutoff defined by 

maximum concentration would affect specificity through ten-fold cross-validation. 
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Random forest classification models 

We explored how combining multiple isotype-specific responses with 

random forest classification models, which allows for complex nonlinear 

interactions between isotypes, performed identifying previously infected 

individuals. Using a previously described cross-validation procedure (32), we 

allocated both cases and controls into ten equally sized groups (i.e., folds) and 

calculated a pooled cross-validated AUC (cvAUC). We also assessed variable 

importance within these different models using a permutation test–based metric, 

mean decrease in accuracy. To investigate the impact of class imbalance (i.e., 

the fact that we had many more negative controls than positives) on our model 

performance metrics, we investigated the effect of downsampling controls to 

have the same number as cases on model performance. 

Analysis of time to seroconversion and seroreversion 

We limited our analysis to individuals who had at least one measurement 

for every 28 days of follow-up (i.e., between symptom onset and their last 

measurement). Measurements above the isotype-specific cut-offs (i.e. the 

maximum measurements observed among pre-pandemic controls) were 

considered seropositive, while those below or equal were considered 

seronegative. For individuals with fluctuations around the pre-defined cutoff 

(N=6), the time to the first event was used in the analysis. Using individual level 

interval-censored data, we fitted nonparametric (i.e Turnbull’s Estimator) and 

parametric accelerated failure time models using the icenReg R package (33). All 

time-to-event data were assumed to be log-normal distributed. Bootstrapped 
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95% confidence intervals were estimated by sampling individuals with 

replacement. 

All analyses were completed using R (Version 3.6.1) within Rstudio 

(Version 1.2.5019). 
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Table 2.1. Individual characteristics of PCR-positive SARS-CoV-2 cases and 
pre-pandemic controls.  

*Pre-pandemic controls included healthy adults (n=274), patients undergoing 
routine serology testing (n=1241), and patients presenting with other known 
febrile illnesses (n = 33), including 13 with bacteremia (e.g., S. aureus, S. 
pneumoniae, E. coli, or K. pneumoniae confirmed by standard microbiologic 
techniques), 4 with babesiosis (confirmed by microscopy and/or PCR), 1 with 
presumed scrub typhus, and 15 with viral respiratory infections (e.g., influenza 
[7], parainfluenza [4], respiratory syncytial virus [3], and metapneumovirus [1] 
confirmed by PCR or direct fluorescent antibody test).¥Data available for 310 
cases. †Data available for 342 cases. 

Characteristic 

Pre-pandemic 
Controls* 
(N=1,548) 

PCR-positive 
Cases 

(N=343) 

Age 
  

Median [IQR] 37 [30–54] 59 [45–71] 

<65 years (%) 1,386 (90) 213 (62) 

65+ years (%) 162 (10) 130 (38) 

Female (%) 1,024 (66) 132 (38) 

Race or ethnic group¥ 
  

White (%) NA 125 (36) 

Black or African American (%) NA 34 (10) 

Hispanic or Latino (%) NA 121 (35) 

Asian, American Indian, Alaska 
Native or Other (%) 

NA 30 (9) 

Immunosuppressed (%) NA 26 (8) 

Severity† 
  

Not Hospitalized (%) NA 24 (7) 

Hospitalized, no ICU (%) NA 138 (40) 

Hospitalized, required ICU (%) NA 137 (40) 

Died due to COVID-19 (%) NA 43 (13) 
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Figure 2.1. Measurement of IgG, IgM, IgA against SARS-CoV-2 spike protein 
receptor binding domain among pre-pandemic controls and PCR positive 
cases. 
Each dot represents a unique measurement of an isotype (Row A: IgG, Row B: 
IgM, Row C: IgA) in pre-pandemic controls (left panels) and PCR positive cases 
(right panels). The blue line is a loess smooth nonparametric function. Black 
dashed lines indicate the maximum concentration (μg/mL) found among pre-
pandemic controls (IgG: 0.57, IgM: 2.63, IgA: 2.02). Horizontal jitter was 
introduced into the pre-pandemic controls. The limit of detection (μg/mL) was 
0.04 for IgG, 0.28 for IgM, and 0.30 for IgA. 
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Figure 2.2. Parametric and nonparametric model estimates of time to 
seroconversion and seroreversion for each isotype. 
A) The isotype cut-offs chosen for seroconversion were the maximum 
concentration (μg/mL) found among pre-pandemic controls (IgG: 0.57, IgM: 2.63, 
IgA: 2.02). The solid line represents the estimated cumulative distribution 
function of the time to seroconversion or reversion with 100 bootstrapped fits 
shown as transparent lines. The parametric accelerated failure time models 
assume a log-normal time-to-event distribution. Nonparametric estimates shown 
in grey were calculated using the Turnbull method. Only 3 individuals 
seroreverted for IgG, so no model is included. B) The table indicates the 
estimated average number of days since onset of symptoms it takes for a 
percentage of cases to seroconvert or serorevert. Bootstrap 95% confidence 
intervals are shown in parentheses. 
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Table 2.2. Predictive accuracy of individual isotypes for classifying 
controls and cases across time. 

The isotype cut-offs chosen for calculating sensitivity were the maximum value 
found among pre-pandemic controls (IgG: 0.57 μg/mL, IgM: 2.63 μg/mL, IgA: 
2.02 μg/mL). Bootstrap 95% confidence intervals are shown in parentheses. 
 
Isotype Days since symptom onset AUC (95% CI) Sensitivity (95% CI) 

IgG ≤7 days 0.68 (0.66–0.70) 0.07 (0.03–0.12) 

8-14 days 0.91 (0.89–0.92) 0.51 (0.43–0.58) 

15-28 days 0.99 (0.99–1.00) 0.95 (0.92–0.98) 

>28 days 0.99 (0.99–1.00) 0.95 (0.91–0.98) 

IgA ≤7 days 0.63 (0.61–0.65) 0.07 (0.03–0.11) 

8-14 days 0.87 (0.85–0.89) 0.44 (0.38–0.51) 

15-28 days 0.98 (0.97–0.98) 0.89 (0.84–0.94) 

>28 days 0.98 (0.97–0.98) 0.60 (0.51–0.68) 

IgM ≤7 days 0.60 (0.58–0.62) 0.08 (0.03–0.13) 

8-14 days 0.87 (0.85–0.89) 0.55 (0.48–0.62) 

15-28 days 0.98 (0.97–0.99) 0.86 (0.81–0.92) 

>28 days 0.93 (0.91–0.94) 0.51 (0.43–0.59) 
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Figure 2.3. SARS-CoV-2 pseudovirus neutralization antibody titers in 
symptomatic PCR positive cases and correlation with anti-RBD IgG 
responses. 
A) Each point represents a measurement of 50% neutralizing titer (NT50). Lines 
connect measurements from the same individual and a loess smooth function is 
shown in blue. B) The overall repeated measures correlation coefficient (r) is 
shown. Lines represent simple linear models for each time period. 
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serological assay 

 

Forrest K. Jones, Taufiqur R. Bhuiyan, Rachel Mills, Ashraful I Khan, Damien 

Slater, Kian Robert Hutt Vater, Fahima Chowdhury, Meagan Kelly, Peng Xu, 

Pavol Kováč, Rajib Biswas, Mohammad Kamruzzaman, Edward T. Ryan, 

Stephen B. Calderwood, Regina C. LaRocque, Justin Lessler, Richelle C. 

Charles, Daniel T. Leung, Firdausi Qadri, Jason B. Harris, Andrew S. Azman 

 

Abstract 

Population-level incidence of cholera infections can be estimated from 

cross-sectional serological data. Current laboratory methods are resource 

intensive and challenging to standardize across laboratories. A multiplex bead 

assay (MBA) could efficiently expand the breadth of measured antibody 

responses and improve accuracy. We tested 305 serum samples from confirmed 

cholera cases (collected 2-1083 days post-infection) and uninfected household 

contacts in Bangladesh for serological biomarkers using an MBA (IgG, IgA, and 

IgM for 7 Vibrio cholerae O1-specific antigens related to infection) as well as the 

vibriocidal assay (Ogawa and Inaba serotypes) and enzyme-linked 

immunosorbent assay (IgG and IgA for 2 antigens). While post-infection 

vibriocidal responses often had much higher initial fold-changes (52 and 50 times 

on-average) than other markers, several MBA-measured antibodies 
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demonstrated robust responses with similar or longer half-lives. Random forest 

models combining all MBA antibody and isotype measures allowed for accurate 

identification of cholera infections: a model identifying infection in the last 200 

days had an estimated a cross-validated AUC for (cvAUC200) of 92%. Simplified 

models based on only 3 IgG antibody responses had similar accuracy (cvAUC200 = 

89%). Across different infection windows (between 45- and 300-days), predictive 

accuracy of models trained on MBA measurements were non-inferior to models 

based on traditional serological assays. An MBA-based seroincidence assay can 

allow for expanded serosurveillance efforts globally including the use of these 

antigens in multi-pathogen serosurveillance platforms.  

Introduction 

Cholera remains a global public health threat with an estimated 95,000 

deaths per year, especially in areas without access to safe water and adequate 

sanitation (1). Seventh pandemic strains of V. cholerae (toxigenic serogroup O1 

El Tor biotype) are responsible for most cholera cases, with endemic 

transmission in subnational areas of Africa and South Asia as well as large 

outbreaks in conflict zones, humanitarian crises and post-disaster settings (2–5). 

Several countries plan to achieve large reductions in cholera cases and deaths 

over the next decade using a multisectoral approach through the use of oral 

cholera vaccines and investments in water and sanitation infrastructure (6). A 

clear understanding of the magnitude of V. cholerae transmission at the national 

and sub-national level is essential for targeting and monitoring of global progress 

towards ending cholera. 

https://paperpile.com/c/SqxL2O/z5Jb2
https://paperpile.com/c/SqxL2O/z5Jb2
https://paperpile.com/c/SqxL2O/z5Jb2
https://paperpile.com/c/SqxL2O/YKLf+nfbY+cdYE+4EuX
https://paperpile.com/c/SqxL2O/YKLf+nfbY+cdYE+4EuX
https://paperpile.com/c/SqxL2O/YKLf+nfbY+cdYE+4EuX
https://paperpile.com/c/SqxL2O/YKLf+nfbY+cdYE+4EuX
https://paperpile.com/c/SqxL2O/YKLf+nfbY+cdYE+4EuX
https://paperpile.com/c/SqxL2O/ZxQQZ
https://paperpile.com/c/SqxL2O/ZxQQZ
https://paperpile.com/c/SqxL2O/ZxQQZ
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Cholera surveillance typically consists of clinic-based syndromic 

surveillance for acute watery diarrhea with infrequent laboratory confirmation (7). 

When laboratory confirmation is performed, often less than half of suspected 

cholera cases have detectable V. cholerae by culture, though this varies 

considerably by setting (4, 5, 8). Since most infections with V. cholerae lead to 

mild or no symptoms, clinical surveillance detects only a small fraction of 

infections (9, 10). Clinical surveillance systems are also subject to biases related 

to individual healthcare access and design of the surveillance system (e.g. 

sentinel sites) (11, 12). As a result, clinical surveillance alone provides a skewed 

understanding of disease burden and transmission of V. cholerae. 

Serosurveillance has been a useful complement to clinical surveillance for 

a variety of pathogens and there is growing interest in its use for monitoring 

cholera incidence (13, 14). Despite variability in clinical outcomes, infection with 

cholera, regardless of symptoms, typically leads to a robust measurable immune 

response, including a rise, and eventual decay, in serum-circulating antibodies 

against multiple epitopes (15). As a result, cross-sectional measurements of 

circulating antibodies can provide insights into the incidence and timing of past 

infections. The two most common methodologies used to measure antibodies 

generated in response to V. cholerae infection are the vibriocidal assay and 

enzyme linked immunosorbent assay (ELISA). Previous studies have shown that 

vibriocidal titers rise quickly after infection and then decay toward pre-infection 

levels after 1 year (15, 16). However, the vibriocidal method is a functional assay 

that requires culturing V. cholerae over several hours (thus requiring Biosafety 
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https://paperpile.com/c/SqxL2O/cdYE+4EuX+i2fyi
https://paperpile.com/c/SqxL2O/cdYE+4EuX+i2fyi
https://paperpile.com/c/SqxL2O/cdYE+4EuX+i2fyi
https://paperpile.com/c/SqxL2O/cdYE+4EuX+i2fyi
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https://paperpile.com/c/SqxL2O/xVIhE+cBN65
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https://paperpile.com/c/SqxL2O/xVIhE+cBN65
https://paperpile.com/c/SqxL2O/8XrtL+AFuCl
https://paperpile.com/c/SqxL2O/8XrtL+AFuCl
https://paperpile.com/c/SqxL2O/8XrtL+AFuCl
https://paperpile.com/c/SqxL2O/8XrtL+AFuCl
https://paperpile.com/c/SqxL2O/8XrtL+AFuCl
https://paperpile.com/c/SqxL2O/lkZVT
https://paperpile.com/c/SqxL2O/lkZVT
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Level 2 practices, equipment, and facility design) and is challenging to 

standardize across laboratories (17). Although ELISA tests targeting IgG and IgA 

antibodies that bind to known antigens are easier to implement, these assays are 

less predictive of cholera infection than the vibriocidal assay (18). Recent work 

illustrates that combining vibriocidal titers with ELISA antibody measurements in 

statistical models can identify individuals infected in last year for the purposes of 

estimating cholera seroincidence (i.e., the incidence of meaningful immunologic 

exposures to V. cholerae O1 over a specific time period) (18). 

Over the past decade, advances in high-throughput multiplex bead 

serological assays (MBA) have enabled their use to study the burden, risk, and 

dynamics of a variety of pathogens (19–22). These assays only require a small 

volume of serum (e.g., 1 µL to measure multiple antigens [when performed in 

duplicate] as compared to 12.5 µL for the vibriocidal assay), potentially are more 

sensitive (23), and could be easier to standardize (24). Additionally, they allow for 

the characterization of multiple antigens simultaneously, improving the efficiency 

and cost of the assay as compared to running multiple ELISAs (25). This also 

facilitates broad exploration of novel antigens that may correlate with previous 

exposure or immunity. If measuring multiple antibodies to V. cholerae antigens is 

as predictive of previous infection as the vibriocidal assay, serosurveillance 

would be more feasible in many more settings. However, the use of cholera 

antigens in an MBA to predict previous infection has not been previously 

assessed. 

https://paperpile.com/c/SqxL2O/Yn8dr
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Here, we characterize post-infection antibody dynamics to seven cholera 

antigens up to three years post-infection in a cohort of confirmed medically-

attended V. cholerae O1 infections. We use these serological data to fit machine 

learning models aimed at identifying recently infected individuals. We then 

compare performance of models based on this assay to those based on 

traditional antibody measurements and suggest a reduced panel of antigens to 

be used in MBA arrays for future cholera serosurveillance efforts.  

Methods 

Study Population  

As described previously, consenting patients hospitalized at the icddr,b 

(formerly known as International Centre for Diarrhoeal Disease Research, 

Bangladesh) Dhaka hospital with culture-confirmed V. cholerae O1 infection were 

enrolled between 2006 and 2018 (26, 27). These cases were followed up to 1083 

days (~3 years) post enrollment with blood samples collected periodically. We 

approximated the number of days between infection and sample collection by 

taking the difference between the enrollment date and sample collection date, 

then adding the number of hours of symptomatic diarrhea prior to enrollment 

(range: 3-60 hours), then adding 1.4 days for the incubation period (28), and 

finally rounding to a whole number of days. Household contacts of confirmed 

cases (defined as individuals who shared a cooking pot with the index case for 

three or more days preceding the cholera episode in the index case) were also 

enrolled with blood and stool samples collected at approximately 2-, 7-, and 30-

days post enrollment of the initial cases. We limited our selection of household 

https://paperpile.com/c/SqxL2O/bB9CJ+I1HD1
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contacts to those that had no evidence of cultured V. cholerae from stool 

samples during follow-up. Data on non-immunological variables of age, sex, and 

blood type were available for all participants. 

Prior to this study, serum samples of cases and contacts had been tested 

using vibriocidal assays (Ogawa and Inaba serotypes) and ELISAs (26, 27). The 

latter included measures of both IgG and IgA for lipopolysaccharide Ogawa 

serotype (LPS) and cholera toxin B subunit (CT-B) antigens (18). To conserve 

limited specimens and lab reagents, we selected 20 individuals <10 years old 

and 20 individuals ≥10 years old to have a balance of cases for whom their 

infection was either their first or a subsequent infection. To further ensure a 

balanced distribution of different serological trajectories, we selected these 40 

individuals such that when fit with a model, led to the most accurate classification 

of samples from the rest of the cohort (Figure B.1). Specifically, we trained 

random forest models on 10,000 different potential training sets of 40 individuals 

and then selected the set that had the highest cross-validated area under the 

curve (cvAUC) when predicting infection within 1-year for samples in the test set 

(Supplementary Methods in Appendix B).  

After investigation of freezer stocks, samples from 39 of 40 individuals 

were available for testing. Samples from two additional cases were added to the 

set, giving a selection of 245 samples from 41 individuals (39 cases and 2 

uninfected household contacts). To include more individuals between the age of 

10 and 18, we supplemented this initial sample with all samples available from 9 

cases and 1 contact from this age group (Figure B.2) (who were randomly 

https://paperpile.com/c/SqxL2O/bB9CJ+I1HD1
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selected from available sera). To limit the influence of boosted antibody 

responses from reinfection/exposure during the follow-up period, we removed 

four data points (from two cases) that were part of or after a greater than 2-fold-

rise between measurements in vibriocidal Ogawa titers >90 days post initial 

infection. As all rises greater than 2-fold for vibriocidal Inaba titers followed a 

previous drop in titers below a detectable range (which were considered unlikely 

to be a part of reinfection pattern), only the Ogawa serotype was used for 

identifying reinfections. 

Serological testing and data processing  

Based on previous work on the immune responses to V. cholerae infection 

(29–31), we selected a panel of eleven antigens to investigate with a multiplex 

bead assay. Seven of these had been previously shown to be stimulated by 

infection with V. cholerae O1. These included O1 serogroup Ogawa serotype O-

specific polysaccharide (OSP, part of the LPS), O1 serogroup Inaba serotype 

OSP, CT-B, cholera toxin holotoxin (CT-H), Toxin co-regulated pilus subunit A 

(TcpA), V. cholerae cytolysin (VCC) (also known as hemolysin A), and V. 

cholerae sialidase. We also investigated the serum antibody response against 

four control antigens: O139 serogroup OSP (V. cholerae O139 has rarely been 

detected in humans over the last decade, but is included in most oral cholera 

vaccines), heat labile enterotoxin subunit B (LT-B), and heat labile holo-

enterotoxin (LT-H) (expressed during infection with enterotoxigenic Escherichia 

coli [ETEC] with a high degree of homology with cholera toxin) were also 

selected. Influenza haemaglutinin 1 (Flu) was also included as a control antigen. 

https://paperpile.com/c/SqxL2O/W1HAe+1e1wk+LEa7m
https://paperpile.com/c/SqxL2O/W1HAe+1e1wk+LEa7m
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https://paperpile.com/c/SqxL2O/W1HAe+1e1wk+LEa7m
https://paperpile.com/c/SqxL2O/W1HAe+1e1wk+LEa7m
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All antigens were conjugated to magnetic beads using the procedures specified 

by Luminex (32). 

Each plate included a dilution series (from pooled convalescent sera of 5 

patients with culture-confirmed V. cholerae O1 infection) and control wells, all of 

which were run in triplicate. Following the testing protocol, serum, beads, and 

secondary antibodies binding to IgG, IgA, and IgM were added to each well. 

Samples were run on a Luminex Flexmap 3D machine at Massachusetts General 

Hospital by one technician. Bead counts and median fluorescence intensity (MFI) 

values were exported from the Exponent software program. Plates were retested 

when over half of the positive control dilutions had ≥5 antigens with a coefficient 

of variation (calculated from triplicate MFI measurements) greater than 20%.  

For the analysis, any measurements with a bead count less than 30 were 

excluded (<0.1%). MFI values were averaged across replicate wells. We 

standardized MFI values from the assay to help adjust for inter-plate variability by 

calculating the relative antibody unit (RAU) (Supplementary Methods in Appendix 

B) (33). For each plate, we fit a 4-parameter log-logistic model to the dilution 

series and used the median of parameter estimates to predict the RAU for each 

sample. (Figure B.3, B.4, B.5, and B.6) (34, 35). For samples with a predicted 

RAU outside the range of 105 and 102, the RAU was set at the threshold value. 

Additionally, we calculated the Net MFI for each sample (i.e., MFI of sample - 

MFI of blank well, but censored at 10 FI units). Despite some between-plate 

variability and limits of detection, we observed high correlation between the Net 

MFI and RAU measurements, across time points. 
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Statistical Analysis 

We fit hierarchical regression models for each marker to estimate the 

degree of antibody boosting post-infection and its decay rate after the boost for 

each serological marker. We used a Bayesian framework with two components: 

a kinetic model and a measurement model (Supplementary Methods in Appendix 

B, (36)). For the kinetic model, we assumed individuals had an instantaneous 

boost of antibodies 5 days post-infection followed by decay over time and 

explored alternate lags in sensitivity analyses. We explored both exponential and 

biphasic models for antibody decay and compared the expected predictive log 

density values between both parameterizations. In the measurement model, we 

assumed random error was normally distributed (on the log-scale) and accounted 

for the fact that some observations were censored (e.g. titration data). We fit the 

models using Markov Chain Monte Carlo methods implemented in Stan (35, 37). 

We also investigated how age group (<10 years vs. ≥10 years), sex (male vs. 

female), blood type (O blood type vs. non-O blood type), and infecting serotype 

(Ogawa vs. Inaba) affected baseline antibody levels, boosting, and decay by 

including fixed effects for these binary variables in the model (Supplementary 

methods in Appendix B).  

We also explored the ability of statistical models to identify individuals who 

were recently infected with V. cholerae O1. Using serological biomarkers and 

three non-immunological demographic variables (age, sex, and blood type), we 

trained random forest classification models to identify recently infected 

individuals (38). We fit models using several definitions of recent infection (i.e. 
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the infection window), including having been infected within 45-, 120-, 200-, or 

300 days before blood collection. For example, the proportion of individuals 

classified as recently infected using a 120-day model is what is referred to as 

120-day seroincidence.  Uninfected household contacts and cases infected 5 or 

fewer days prior (due to insufficient time to generate an immune response) were 

always considered as not recently infected. We fit models with weights to 

account for both class imbalance and for the large concentration of 

measurements collected during the early convalescent period (7-30 days) 

compared to later post-infection period (Figure B.7, Supplementary Methods in 

Appendix B). Using 10-fold cross-validation on the full dataset, we estimated the 

cvAUC to evaluate the ability of the model to identify recently infected individuals. 

For each individual, we kept all measurements within the same fold. To 

understand which markers had the largest influence on model fits, we used a 

permutation importance metric (39). We fit three alternative models (i.e. Lasso 

and Elastic-Net Regularized Generalized Linear Models, Bayesian Additive 

Regression Trees, and Extreme Gradient Boosting) to understand the influence 

of model choice on our results. We also combined results to yield ensemble 

predictions and estimate their cvAUC (40). 

We also evaluated the specificity and time-varying sensitivity of the 

random forest classification models using leave-one-individual-out cross-

validation. For each fold (i.e. left-out individual), we fit random forest models to 

100 random samples of 50% individuals in the training set and found a cut-off 

that satisfies the Youden Index or a desired specificity cut-off (90%, 95%, or 
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99%) in the other 50% of individuals. Using the median value of these cut-offs 

and a model fit with the entire training data, we predicted the serostatus of the 

left-out samples. Using the predicted serostatus for each sample from leave-one-

individual-out cross-validation, we fit hierarchical logistic regression models to 

estimate the specificity and time-varying sensitivity of each random forest model 

(10, 41). For time-varying sensitivity models, we assumed that the 

logit(sensitivity) was a function of (log-transformed) days since infection. We 

allowed for increasingly complex functions as time since infection increased, 

including a constant sensitivity for the 45-day model, a linear decrease in 

sensitivity for the 120-day model, a quadratic polynomial for the 200-day model 

and a cubic polynomial for the 300-day infection window model.   

Data and code used to select samples and conduct primary analyses are 

available at: https://github.com/HopkinsIDD/cholera-multiplex-panel. 

 Results 

Description of individuals and timing of samples 

We tested 296 samples from 48 confirmed cholera cases (2 to 1,083 days 

post infection) and 9 samples from 3 uninfected household contacts of cases 

(Table B.1). V. cholerae serogroup O1 was isolated from each case with most 

being serotype Ogawa (81%) and the rest being serotype Inaba. The median age 

of cases at time of enrollment was 11 years (interquartile range (IQR): 6-26 

years) with 17% being <5 years old and 35% being ≥18 years old. Most cases 

were male (62%) and nearly half had the O blood type (46%). 

https://paperpile.com/c/SqxL2O/gMVVq+79cer
https://paperpile.com/c/SqxL2O/gMVVq+79cer
https://paperpile.com/c/SqxL2O/gMVVq+79cer
https://paperpile.com/c/SqxL2O/gMVVq+79cer
https://paperpile.com/c/SqxL2O/gMVVq+79cer
https://github.com/HopkinsIDD/cholera-multiplex-panel
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All cases had a baseline sample collected between 2 and 4 days after 

infection. Nearly all cases had additional samples collected between 7-9 days 

(n=46), 27-36 days (n=46), 87-109 days (n=42) and 173-191 days (n=39) post 

symptom onset. Between 269 and 1083 days after infection, 1 person had three 

samples, 35 people had two samples, 2 people had one sample, and 10 people 

had zero samples collected (Figure B.2).  

Kinetics of biomarkers in confirmed cholera cases  

After infection, the levels of several V. cholerae O1-specific antibodies 

among many cases had a steep rise followed by variable decays (Figure 3.1, 

B.8, B.9, and B.10). Robust anti-CT-B, anti-CT-H, anti-Inaba OSP, and anti-

Ogawa OSP antibody responses were observed across the study cohort (except 

anti CT-B and anti-CT-H IgM potentially indicating an anamnestic response) . 

Individuals that did have an increase in anti-sialidase, anti-TcpA, and anti-VCC 

antibodies tended to be adults (Figure B.11). Among anti-CT-B, anti-CT-H, anti-

Inaba OSP and anti-Ogawa OSP antibodies, the observed median day of peak 

measurement was 8 days for IgA, between 8 and 64 days for IgM, and 25 to 34 

days for IgG. There were no substantial increases in anti-O139 OSP or anti-Flu 

antibodies after infection (Figure B.8, Figure B.10), as expected. Some antibody 

responses were highly correlated due to antigen homology, including cross-

reactivity between the similar Ogawa and Inaba OSP antigens, and the CT and 

LT antigens (30) (Figure B.13). 

We fit a series of statistical models to estimate the population-level rise 

and decay of each marker. As biphasic models did not consistently fit better than 

https://paperpile.com/c/SqxL2O/1e1wk
https://paperpile.com/c/SqxL2O/1e1wk
https://paperpile.com/c/SqxL2O/1e1wk
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exponential models (i.e., biphasic models had a significantly higher expected 

predictive log density value for only 10 of 39 markers [Table B.2]), we utilized 

exponential antibody decay for our analysis. These models were able to 

reproduce individual-level antibody trajectories (Figure B.14-B.19) reasonably 

well. The magnitude of initial antibody rise and duration of half-life varied 

considerably across MBA measures of antibody levels and vibriocidal titers 

(Figure 3.2, Table B.3). The initial boost in vibriocidal titers (52 average fold-rise 

for Ogawa and 50 for Inaba) was higher than for all MBA-measured antibodies 

except anti-Ogawa OSP IgM. We estimated relatively large boosts in anti-Ogawa 

OSP and anti-Inaba OSP antibodies across isotypes (range: 7 - 62 average fold-

rise) and large boosts in anti-CT-B and anti-CT-H IgG and IgA antibodies (range: 

16 - 29 average fold-rise). Anti-Ogawa OSP IgG antibodies had the longest 

estimated half-life (335 days [95% CI: 221-490]). Anti-CT-B IgG, anti-CT-H IgG, 

and anti-Inaba OSP IgG antibodies had similar half-lives (98-130 days) as the 

vibriocidal markers (72 and 142 days) while the half-life for IgA and IgM 

antibodies was generally shorter (range: 11- 69 days). Antibodies measured by 

ELISA had less pronounced (average fold-rises all less than 2) and short lived 

(all half-lives less than 76 days) (Table B.3).   
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Figure 3.1. Multiplex bead assay measurements of IgG, IgA, and IgM 
against V. cholerae O1 antigens among culture confirmed cholera patients.  
The y-axis indicates the log10(Net MFI) and the x-axis is the number of days post-
infection (square-root transformed). Each colored line indicates individual 
trajectories over time. The Black solid line is a loess smooth function. A similar 
plot with relative antibody units (RAU) can be found in Figure B.8. A plot of other 
measured antigens can be found in Figure B.9 and Figure B.10. 
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Both age and infecting serotype influenced antibody kinetics (Figure B.11, 

Figure B.12). We found that individuals <10-years old tended to have smaller 

initial anti-Ogawa OSP and anti-Inaba OSP IgG responses (boosts were 3.9 

(95% CI 1.4-12.5) and 5.0 (95% CI 1.9-15.8) times smaller) but with slower 

decay (difference in half-life was 645 days (95% CI 262-1857) and 333 days 

(95% CI -77-945)) compared to those ≥10-years old (Table B.4). Individuals <10-

years old had lower baseline and initial responses for anti-Ogawa and anti-Inaba 

OSP IgA, but the rates of decay were similar. Individuals <10-years old had little 

difference as compared to those ≥10-years old in their anti-OSP IgM and anti-

CT-B trajectories for any isotype. Individuals with Ogawa infections on-average 

had 4.0 (95% CI 1.2-10.9) times higher initial boosts in anti-Ogawa OSP IgM 

than those with Inaba infections, but similar initial boosts in anti-Ogawa OSP IgG 

and IgA (Table B.4). Individuals with Inaba infections on-average had higher 

initial boosts in anti-Inaba OSP IgG (3.3 times, 95% CI: 1.4-9.8) than those with 

Ogawa infections. There were limited differences in terms of baseline values, 

boost, or decay rates across individuals with different blood type and sex (Table 

B.4).  
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Figure 3.2. Estimated duration of half-life and average fold-change from 
exponential decay models.  
Each point indicates the median estimate of the average individual fold-rise from 
baseline to peak (y-value) and the median estimate of the half-life (x-value) for 
exponential decay univariate models. Marginal 95% credible intervals are shown 
as lines. Model estimates for the vibriocidal assays in each panel are identical. 
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Identification of recent infections with cross-sectional serologic measurements  

We estimated the cvAUC of random forest models trained on 18 MBA 

markers (six antigens [CT-H was not included given its high correlation with CT-

B] and three isotypes) and three individual non-immunological factors to 

understand their ability to identify recently infected individuals. The average 

cvAUC was consistently above 88% regardless of infection window but was 

higher at shorter time windows (Figure 3.3A, Figure B.20). Models using 

observations that were weighted based on time since infection either performed 

equally or slightly worse than models without weights (Figure 3.3A). As an 

ensemble of four different machine learning models performed similarly to the 

random forest model, we conducted further analyses with the random forest 

model alone (Figure B.21). 
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Figure 3.3. Cross-validated area under the receiver operating characteristic 
curve (cvAUC) and predictor importance rankings for random forest 
models trained on MBA markers across infection windows. 
Estimates of mean cvAUC (10-fold) and 95% confidence interval are shown for 
weighted and non-weighted models between 50- and 600-day infection windows 
at 10-day intervals (A). Rug plot shows the day of collection of samples from 
cases used in training models. Samples collected under 5 days since infection, 
over 600 days since infection, or from household contacts are not shown. For 
each infection window of weighted models, the rankings of predictors by their 
importance are shown on the y-axis (B). Colors of lines are unique to each 
predictor.  
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Across infection windows, anti-CT-B IgG antibodies were consistently the 

most influential predictor of recent infection while the relative importance of 

predictors changed with different infection windows (Figure 3.3B, Figure B.20). 

With infection windows shorter than 90 days, anti-Ogawa OSP IgM was the 

second most influential marker, but waned in influence over longer windows, 

while the relative influence of anti-Ogawa OSP IgG increased over time. Anti-CT-

B IgA and anti-Ogawa OSP IgA were consistently among the most influential 

markers. Anti-Ogawa OSP markers were always more influential than anti-Inaba 

OSP markers within isotype (likely because 81% of cases used to train the 

models were infected with the V. cholerae Ogawa serotype). Other antibodies, 

age, sex, and blood type did not greatly influence the model. 

We then compared cvAUC from models fit to MBA measurements with 

those fit with the traditional vibriocidal and ELISA measurements for four infection 

windows (45-day, 120-day, 200-day and 300-day).  We removed 11 (4%) of 

samples (from cases) for this analysis as they were either missing a vibriocidal or 

ELISA measurement. The model fit with both vibriocidal and ELISA markers was 

highly predictive of recent infection at 45-day (cvAUC: 97%), 120-day (cvAUC: 

92%), 200-day (cvAUC: 87%) and 300-day (cvAUC: 88%) infection windows 

(Figure 3.4A, Table B.5). The cvAUC of models trained with all 18 MBA markers 

was consistently similar to models trained with vibriocidal and ELISA markers 

(range of cvAUC ratios: 0.98-1.05). (Figure 3.4A, Table B.5) 
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Multiplex bead assay panel simplification 

Reducing the number of isotypes tested may be necessary for the 

integration of cholera serosurveillance into larger MBA-based antigen panels. We 

explored how using fewer MBA markers would impact model performance 

(Figure 3.4A, Table B.5). Across all timescales, a model using all 6 IgG MBA 

markers (e.g., 200-day cvAUC: 90%, 2% lower mean cvAUC) was slightly more 

predictive than those using all 6 IgA MBA markers (e.g., 200-day cvAUC: 89%, 

4% lower mean cvAUC) or all 6 IgM MBA markers (e.g., 200-day cvAUC: 81%, 

12% lower mean cvAUC).   

As many commonly used serosurveillance panels are based on IgG 

markers alone, (42) we considered a reduced panel with only IgG (Figure 

3.4B,Table B.6, Figure B.22). A model using only anti-CT-B IgG and individual 

predictors was predictive (200-day cvAUC: 85%) of cholera infection across all 

infection windows. Adding both Ogawa OSP and Inaba OSP led to additional 

improvement (200-day cvAUC: 89%). The addition of TcpA offered a minimal 

improvement in cvAUC (200-day model: 90% [95% CI: 87%-93%]). The addition 

of VCC and Sialidase had little impact on the overall cvAUC. We saw similar 

model performance without inclusion of age, sex, and blood type in these 

models. 

  

https://paperpile.com/c/SqxL2O/Sfh5N
https://paperpile.com/c/SqxL2O/Sfh5N
https://paperpile.com/c/SqxL2O/Sfh5N
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Figure 3.4. Comparison of cross-validated AUC across random forest 
models trained on traditional and MBA serological markers for 45-day, 120-
day, 200-day, and 300-day infection windows. 
Random forest models were fit using a specified marker set and individual level 
factors including age, sex, and blood type (A). Estimated mean and 95% 
confidence intervals for cvAUC are reported. Models fit to reduced panels of IgG 
MBA markers are shown (B). The order of how antigens were added was 
determined by the variable importance when fitting a model with only IgG MBA 
markers. The black dashed box indicates the suggested minimum antigen panel 
for detecting recent cholera infection. 
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We then estimated the specificity and time-varying sensitivity of random 

forest models fit with traditional and MBA markers using leave-one-out cross-

validation (Figure 3.5). When using the Youden Index (i.e., jointly maximizing 

sensitivity and specificity), median estimates of specificity were all below 90% 

(Figure 3.5A). In general, sensitivity estimates were negatively correlated with 

higher specificity and did not vary substantially between models trained on 

different marker sets when using the same infection window (Figure 3.5B). When 

fixing specificity at 90%, the (non-time-varying) median sensitivity estimates 

ranged from 72% to 91% for the 45-day infection window. As for other infection 

windows, sensitivity steadily decreased over time for the 120-day (range of 

median estimates: 39%-98%), 200-day (range of median estimates: 24%-93%), 

and 300-day (range of median estimates: 16%-92%) window.   
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Figure 3.5. Specificity and time-varying sensitivity estimates of random 
forest models trained with leave-one-out cross-validation for 45-day, 120-
day, 200-day, and 300-day infection windows using different cut-offs.  
Median and 95% credible intervals are shown for the estimated (A) nominal 
specificity and (B) time-varying sensitivity. Each row represents a different 
method for acquiring a cut-off including the Youden Index or maximizing 
sensitivity for a desired value of specificity. The relationship between 
logit(sensitivity) and time since infection (log-transformed) was constant for the 
45-day window, linear for the 120-day, quadratic for the 200-day window, and 
cubic for the 300-day window. Traditional = Vibriocidal Ogawa, Vibriocidal Inaba, 
and 4 ELISA markers, All MBA = 18 MBA markers, All MBA IgG = 6 MBA 
markers, Reduced panel= anti-Ogawa OSP, anti-Inaba OSP, and anti-CT-B IgG. 
All models also included age, sex, and blood type as predictors. 
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Discussion 

With the aim of increasing the number of tools for serosurveillance of 

cholera, we developed an MBA, characterized post-infection antibody kinetics in 

sera of confirmed cholera cases, and estimated how well predictive models 

trained on these measurements identified recently infected individuals. After 

infection, anti-OSP and anti-CT-B antibody boosts were the highest and had the 

longest half-lives, similar to or greater than traditional vibriocidal titers. Models 

using MBA-measured antibody responses could identify individuals infected up to 

300 days before blood collection with similar performance as models employing 

both the vibriocidal assay and ELISA methods. Simplified models based on as 

few as three antibody targets performed well and may allow for an expansion of 

cholera serosurveillance efforts.   

The dynamics of the vibriocidal assay and some MBA marker 

measurements made them valuable for detecting exposure to cholera at different 

infection windows less than a year. In comparison to MBA markers, ELISA 

markers had lower post-infection boosts and shorter half-lives, thereby lowering 

their sensitivity over longer infection windows and limiting their use. Combining 

the predictive power of MBA markers was generally non-inferior to that of 

traditional markers for detecting recent infection. However, traditional markers 

were slightly more sensitive when using a shorter infection window or early-on in 

longer infection windows than MBA markers. 

While we measured robust rises in anti-OSP and anti-CT antibodies 

among most cases, the comparatively small average rise in antibodies against 
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VCC, sialidase, and TcpA illustrated that these additional antigens likely have 

less utility for estimating seroincidence. This may have been partly because our 

sample had a disproportionately large number of children who were less likely to 

generate a response to these antigens (Figure B.11). In a previous study of 

challenged adults, repeated exposures to V. cholerae were required to 

consistently produce antibodies to TcpA (43). We recommend that any MBA 

panel used to estimate cholera seroincidence from serological surveys at least 

measure anti-CT-B, anti-Ogawa OSP, and anti-Inaba OSP antibodies. Measuring 

antibodies for both serotypes might improve a panel’s versatility given the 

distribution of Inaba and Ogawa serotypes can vary considerably across space 

and time (44).  

With growing use of multi-pathogen integrated serosurveillance using 

MBAs, our study illustrates how inclusion of three additional beads (CT-B, 

Ogawa OSP, and Inaba OSP) to larger panels could efficiently provide data on 

cholera incidence. While many serosurveillance panels only measure IgG 

antibodies (42), technological advancements to simultaneously measure multiple 

isotypes could further improve seroincidence estimates of cholera infections (45). 

Standardization of MBA measurements between laboratories will be key to 

utilizing cut-offs (Figure B.23) or statistical models to classify individuals. This 

includes using the same antigens, common positive control sera, standardized 

bead conjugation techniques, and harmonized protocols for running the assay 

and monitoring quality.  

https://paperpile.com/c/SqxL2O/rrohy
https://paperpile.com/c/SqxL2O/rrohy
https://paperpile.com/c/SqxL2O/rrohy
https://paperpile.com/c/SqxL2O/dlqRf
https://paperpile.com/c/SqxL2O/dlqRf
https://paperpile.com/c/SqxL2O/dlqRf
https://paperpile.com/c/SqxL2O/Sfh5N
https://paperpile.com/c/SqxL2O/Sfh5N
https://paperpile.com/c/SqxL2O/Sfh5N
https://paperpile.com/c/SqxL2O/cnhcq
https://paperpile.com/c/SqxL2O/cnhcq
https://paperpile.com/c/SqxL2O/cnhcq
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External validation of our findings using serum from individuals infected 

with V. cholerae across the spectrum of clinical severity, more granular age 

groups, and epidemiologic settings is needed. Our study population consisted of 

hospitalized cholera cases, which likely have more robust immune responses to 

cholera (9). Therefore, we might expect statistical models from our study to 

misclassify mild and asymptomatic infections as not recently infected. 

Additionally, all members of our study population were from Bangladesh where 

cholera is endemic, and many individuals are likely infected several times over 

their lifetime (10). We expect validation of the MBA in an epidemic setting would 

yield similar results that have been shown with traditional serological assays in 

challenged North American volunteers (18). 

Further investigation of cross-reactive immune responses from cholera 

vaccination or ETEC infection is required to understand their potential for causing 

misclassification as recently infected with V. cholerae. Specifically, antibodies 

generated during an immune response to ETEC might bind to CT-B while oral 

cholera vaccination might stimulate antibodies that bind to OSP. Serosurveys in 

populations where there is a potential for either vaccination or ETEC to generate 

cross-reactive immune responses will require additional strategy to limit 

misclassification. Incorporation of additional antigens into MBA panels or 

measuring multiple isotypes (Figure B.22) might provide additional serological 

data that reduce prediction error. For example, most cholera vaccines include an 

uncommon serogroup of V. cholerae (i.e. serogroup O139); antibodies binding to 

O139 OSP could be considered a signal of recent vaccination. Strategies to 

https://paperpile.com/c/SqxL2O/ZzHZF
https://paperpile.com/c/SqxL2O/ZzHZF
https://paperpile.com/c/SqxL2O/ZzHZF
https://paperpile.com/c/SqxL2O/79cer
https://paperpile.com/c/SqxL2O/79cer
https://paperpile.com/c/SqxL2O/79cer
https://paperpile.com/c/SqxL2O/Fl9pl
https://paperpile.com/c/SqxL2O/Fl9pl
https://paperpile.com/c/SqxL2O/Fl9pl
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restrict serosurveys to populations or time periods such that the study population 

likely has few cross-reactive antibodies might also be considered to tackle this 

problem.  

As large investments in cholera prevention and control measures are 

being made, serosurveillance may be an important tool for tracking trends in 

incidence to better target interventions and measure their effectiveness in 

reducing infections. We show how measuring responses to as few as three 

antibodies with MBA can help identify individuals infected up to one year before, 

with similar precision as traditional methods. While cholera specific panels may 

be warranted in some locations, inclusion of V. cholerae specific beads in larger 

multi-pathogen MBAs being used in areas with cholera could lead to the efficient 

generation of data to aid the fight against cholera.  
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populations 
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Abstract 

Targeting mass oral cholera vaccination (OCV) campaigns to subnational 

areas with high incidence has been proposed to reduce global cholera burden 

and transmission. Serological surveillance could provide complementary 

information about Vibrio cholerae infections missed by clinical surveillance in 

these areas. Similar immune responses generated by vaccination and infection 

may lead to biased estimates of incidence from serological surveys after 

campaigns. Using serological data from cohorts of infected and vaccinated 

individuals, we characterized antibody dynamics in both groups and explored 

strategies to estimate seroincidence in partially vaccinated populations.  

We tested 305 serum samples from 51 confirmed V. cholerae serogroup 

O1 cases and uninfected contacts enrolled in Bangladesh and 248 serum 

samples from 51 volunteers vaccinated with killed whole-cell cholera vaccine in 

Haiti for IgG, IgM, and IgA antibodies binding to 8 V. cholerae antigens using a 
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multiplex bead assay. Both vaccination and infection stimulated anti-Ogawa OSP 

and anti-Inaba OSP antibody responses, but only infection led to detectable rises 

in anti-CT-B and anti-TcpA antibodies. Classification models trained only to 

detect recent infections (using 3 IgG antibody measurements) often misclassified 

vaccinated individuals as recently infected except over short seroincidence 

periods (e.g. 45-day seroincidence). Through cross-validation, we found that 

classification models trained using 15 antibody measurements could partially 

differentiate samples from 1) adults infected in the last 120 days (sensitivity: 

64%), 2) adults vaccinated but not recently infected (sensitivity: 81%), and 3) 

adults neither recently infected nor vaccinated (sensitivity: 79%). Using simulated 

cross-sectional serological surveys, we found that measuring additional 

serological markers or ascertaining vaccination status by other means (such as a 

questionnaire) could be used to accurately estimate seroincidence. 

Estimating incidence over a shorter window of time, testing for additional 

antibodies, and ascertaining vaccination status are all feasible strategies for 

undertaking serological surveillance shortly after vaccination campaigns. 

Serological surveillance can be a viable epidemiologic tool in high cholera 

incidence areas regardless of vaccination coverage. 

Introduction 

Cholera remains a global public health threat, with an estimated 95,000 

deaths per year (1). The Global Task Force on Cholera Control’s End Cholera 

2030 Roadmap is based on highly focused disease prevention and control in 

subnational ‘cholera hotspots’ (2). Killed oral cholera vaccines (OCV) are one 
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recommended component of cholera prevention in hotspots as they can reduce 

severe cholera symptoms and limit transmission (3, 4). Clinical surveillance for 

cholera can be poor, especially in highly affected communities, with most 

infections being missed and many suspected cases being misattributed as 

cholera (5). Serological surveillance (i.e. serosurveillance) has been proposed to 

gain complementary information on cholera transmission and burden. However, 

as vaccination becomes more prevalent, it is unclear how to adapt 

serosurveillance methods to make meaningful inference on infection rates in 

partially-vaccinated populations. 

Similarities between the immune response to V. cholerae infection and 

OCV have been compared in previous research (6). The two most used OCV in 

cholera endemic regions (Shanchol and Euvichol) contain five inactivated strains 

of V. cholerae, with no component of the cholera toxin (7). Both O1 (four strains) 

and O139 (one strain less commonly found in humans) serogroups are included; 

among the O1 strains, there are two Ogawa and two Inaba serotype strains. The 

vaccine is administered to individuals over the age of 1 year in two doses spaced 

at least two weeks apart. Mass campaigns generally last a short period of time, 

with each dose being administered to a population often over the course of a 

week or less (8). Vaccination has been shown to boost serological markers that 

have been proposed to identify previously infected individuals (9); seroincidence 

estimates from cross-sectional surveys conducted in partially vaccinated 

populations may be biased due to misclassification of vaccinated individuals as 

recently infected. 
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As has been shown for SARS-CoV-2 (10, 11) and dengue (12), measuring 

additional serological markers or differences in post-exposure antibody kinetics 

may be useful to distinguish vaccinated and infected individuals. Statistical 

adjustment of seroincidence estimates using information on vaccination status, 

either inferred through questionnaire data or serologic profiles, may help reduce 

biases in estimating seroincidence. Avoiding serological surveys shortly after 

vaccination campaigns, when vaccine-induced antibodies are at their highest, 

may reduce bias, but it remains unclear how long a wait is necessary. Additional 

data on the antibody kinetics following V. cholerae infection and/or vaccination 

are needed to evaluate these strategies. 

In this study, we measured antibodies to 8 V. cholerae antigens in 

longitudinally collected serum samples after infection (up to 3 years) and 

vaccination (up to 1 year). We evaluated classification models trained on 

serological data to distinguish recently vaccinated, recently infected, or 

individuals who were neither recently vaccinated nor infected. Using statistical 

models trained on only three antibody markers to identify recent cholera cases, 

we estimated the risk of misclassifying recently vaccinated individuals as recently 

infected and how this varied with time since vaccination. Lastly, we simulated 

serological surveys to understand whether using additional serological data or 

identifying vaccinated individuals by other means (such as a questionnaire) could 

be used to adjust seroincidence estimates to account for misclassification of 

vaccinated individuals as recently infected. 
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Methods 

Study Population  

In this study we analyzed data from two cohorts: volunteers vaccinated 

with OCV (Shanchol) enrolled in Haiti (i.e. vaccinees) and confirmed cholera 

cases and their household contacts enrolled in Bangladesh. 

In Bangladesh, as described previously, consenting patients (>1 year old) 

hospitalized at the International Centre for Diarrhoeal Disease Research, 

Bangladesh (icddr,b) Dhaka hospital with culture confirmed V. cholerae O1 were 

enrolled between 2006 and 2018 (13, 14). We utilized data from a previous 

analysis where we selected a sample of 51 confirmed cases (2 - 1083 days post 

symptom onset) and uninfected contacts enrolled in Bangladesh (305 serum 

samples in total).   

In Haiti, serum samples were collected from healthy volunteers enrolled 

from the outpatient department at Saint Nicholas Hospital in St. Marc, Haiti, an 

urban center in the Artibonite Department.  Individuals were excluded if 

previously given OCV, pregnant, or they had active gastrointestinal disorder 

within 7 days prior to enrollment. All individuals received two doses of OCV 

spaced 14 days apart. Children (i.e 1-17 years old) were enrolled during April 

2013, while adults (i.e. ≥18 years) were enrolled in 2015 (May) and 2016 

(January, March and April). While cholera cases were reported regularly in Haiti 

after being introduced in 2010, cases steadily decreased from 2011 through the 

time of these studies (15). Children had serum samples collected around days 0, 

https://paperpile.com/c/CNbxpV/HX5B1+4N0S1
https://paperpile.com/c/CNbxpV/D4Iq
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7, and 21 post first dose while adults had samples collected around 0, 7, 21, 44, 

90, 180, 270, and 365 days post first dose. 

We had access to samples from 98 child vaccinees followed up to 21 days 

post vaccination and 73 adult vaccinees followed up to 360 days. To conserve 

sera and laboratory reagents, we chose to select samples from 51 vaccinees. 

After limiting selection to individuals with more than 3 samples, we randomly 

selected five vaccinees ≤5 years, five vaccinees 6-9 years-old, five vaccinees 10-

17 years old, and 36 vaccinees ≥18 years old. In total, there were 258 samples 

from 51 vaccinees. To limit the influence of boosted antibody responses from 

infection during the follow-up period, we removed any data points that were part 

of or after a greater than 2 fold-rise between measurements in vibriocidal (Ogawa 

serotype) titers >90 days post initial infection. As all rises greater than 2-fold for 

vibriocidal Inaba titers followed a previous drop in titers below a detectable range 

(which were considered unlikely to be a part of reinfection pattern), only the 

Ogawa serotype was used for identifying reinfections. 

Serological testing and data processing 

Based on previous work on the immune response to V. cholerae infection 

(16–18), we selected a panel of eleven antigens to investigate with a multiplex 

bead assay (as described in Chapter 3). These included O1 serogroup Ogawa 

serotype O-specific polysaccharide (OSP, part of the LPS), O1 serogroup Inaba 

serotype OSP, CT-B, cholera toxin holotoxin (CT-H), Toxin co-regulated pilus 

subunit A (TcpA), V. cholerae cytolysin (VCC) (also known as hemolysin A), V. 

cholerae sialidase, and O139 serogroup OSP (V. cholerae O139 serogroup is 

https://paperpile.com/c/CNbxpV/azqoW+TPheB+expm
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rarely detected as circulating, but is included in most vaccines). Additionally, heat 

labile enterotoxin subunit B (LT-B), and heat labile holo-enterotoxin (LT-H) 

(expressed during infection with enterotoxigenic Escherichia coli [ETEC] and 

have a high degree of homology with cholera toxin) were also selected. Influenza 

hemagglutinin 1 (Flu) was also included as a control antigen. All antigens were 

conjugated to Luminex magnetic beads. 

Plate layouts were designed to include a dilution series (from pooled 

convalescent sera of culture confirmed V. cholerae O1 infection) and control 

wells, all of which were run in triplicate. Following the testing protocol, serum, 

beads, and secondary antibodies binding to IgG, IgA, and IgM were added to 

each well. Samples were run on a Luminex Flexmap 3D machine at 

Massachusetts General Hospital by one technician. Bead counts and median 

fluorescence intensity (MFI) values were exported from the Exponent software 

program. Plates were retested when more than half of the positive control 

dilutions had >=5 antigens (excluding O139 OSP) with a coefficient of variation 

(calculated from triplicate MFI measurements) greater than 20%. For the 

analysis, any measurements with a bead count less than 30 were excluded 

(<0.1%). MFI values were averaged across replicate wells. We calculated the Net 

MFI for each sample (i.e., MFI of sample - MFI of blank well, but censored at 10 

FI units).  

Statistical Analyses 

We fit hierarchical regression models for each marker to estimate the 

degree of antibody boosting post-infection and its decay rate after the boost for 



 

 82 

each serological marker. We used a Bayesian framework with two components: 

a kinetic model and a measurement model. For the kinetic model, based on 

previous analyses of serological data (19), we assumed individuals had an 

instantaneous boost of antibodies 5 days post-infection or vaccination followed 

by exponential decay. We chose the time of boosting at 5 days post-infection or 

vaccination as most markers peaked for individuals peaked shortly afterwards, 

but all baseline samples of cases were less than 5 days post-infection. In the 

measurement model, we assumed random error was normally distributed (on the 

log-scale) and accounted for the fact that some observations were censored (e.g. 

titration data). We fit the models using Markov Chain Monte Carlo methods 

implemented in Stan (20, 21) with separate models for child vaccinees, adult 

vaccinees, child cases, and adult cases. 

We investigated whether multiple serological markers could distinguish 

recently vaccinated (either 7, 21, or 44 days post first dose) from recently 

infected (<120 days) and those neither recently infected nor vaccinated. We 

considered baseline samples from cases and vaccinees, case samples collected 

>120 days after infection, and samples from a single uninfected household 

contact as representative of neither recent infection nor vaccination. We also 

limited our dataset for these analyses to include only adults given the short 

follow-up time of child vaccinees. First, we used multidimensional scaling (22, 23) 

to visualize the immunologic profiles of each group including all markers with a 

greater than a 4-fold boost from either vaccination or infection (as estimated by 

kinetic models). We then fit random forest models (24) using 15 antibody 

https://paperpile.com/c/CNbxpV/LyrY9
https://paperpile.com/c/CNbxpV/Xvcte+AiFs4
https://paperpile.com/c/CNbxpV/I9Wr+cm2I
https://paperpile.com/c/CNbxpV/xkOF
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measurements (anti-OSP, anti-CT-B, and anti-TcpA for all isotypes) and 

assessed accuracy using leave-one-individual-out cross validation (LOOCV, 

where each individual was in a single fold). Samples were classified based on 

which class received the highest number of votes. After estimating sensitivity and 

specificity of detecting vaccinated but uninfected individuals, we calculated the 

positive predictive value and negative predictive value at different levels of 

vaccine coverage (assuming a 120-day seroincidence of 5%).  

We also identified periods where the risk of misclassifying vaccinated 

individuals as recent cases was the highest using previously recommended 

methods for estimating seroincidence (in Chapter 3). First, we trained random 

forest models on serological data (three IgG markers: anti-Ogawa OSP, anti-CT-

B, and anti-Inaba OSP) from case and uninfected household contacts (using 

methods described in Chapter 3) and established a cut-off for a nominal 95% 

specificity in the unvaccinated population. We then predicted the serostatus (i.e. 

prediction of being recently infected based on serological measurements) of each 

sample of vaccinees to estimate the false positivity rate at different times since 

vaccination. For vaccinated adults, we also fit hierarchical logistic regression 

models to estimate the time-varying function of seropositivity for time since 

vaccination. Specifically, we assumed that the logit(seropositivity) was a cubic 

polynomial function of (log-transformed) days since infection.  

We simulated serological surveys that occurred after vaccination 

campaigns and compared estimated seroincidence with three methods. The 

three strategies we considered were 1) ignoring misclassification due to 
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vaccination, 2) using knowledge of vaccination status to adjust estimates, and 3) 

using additional serological markers to distinguish vaccinated individuals. Given 

our dataset of adult vaccinees had samples from around 7, 30, and 76 days post 

second dose, those were the times between vaccination campaign and survey 

we simulated using. We considered scenarios with different levels of vaccination 

coverage (25%, 50%, 75%) and 5 cases per 100 cumulative infection incidence 

during a 200-day infection window.  

We simulated infection and vaccination (assuming that they were 

independent) status for 2000 individuals, with ten rounds of simulation each 

scenario. Using estimates of sensitivity and specificity from the LOOCV analysis, 

we simulated whether each adult was seropositive or seronegative based on 

their infection status, vaccination status, and the model that was used. We 

assumed that individuals who were both recently infected and recently 

vaccinated had the same serologic profile of those recently infected, but not 

recently vaccinated. We then implemented a Bayesian framework 

(Supplementary methods in Appendix C) using Markov Chain Monte Carlo 

methods (20) to jointly estimate seroincidence and vaccination coverage while 

incorporating uncertainty in estimates of sensitivity and specificity of classification 

models. 

https://paperpile.com/c/CNbxpV/Xvcte
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Results 

Study population 

We tested 248 samples from 51 vaccinees, all of whom received two 

doses of Shanchol spaced 14 days apart (Table 4.1). Most vaccinees (71%) 

were adults (i.e. ≥18 years old) while cases were on average younger with only 

35% being adults. However, among children (i.e. <18 years old), vaccinees 

(20%) and cases (26%) had a similar proportion <5 years old. Overall, the 

proportion of female participants was similar among vaccines (33%) and cases 

(38%). Most cases (81%) had V. cholerae O1 serotype Ogawa isolated from their 

stool while the rest were the Inaba serotype. 

All individuals in the vaccinated cohort had a baseline sample taken on the 

day of first dose vaccination. All child vaccinees had additional blood samples 

taken around days 7 and 21 after receiving their first dose. Samples were 

collected from most adult vaccinees between 6-8 days (100%), 20-21 days 

(97%), 41-43 days (61%), 87-95 days (94%), 173-188 days (42%),  221-224 

days (22%) and 361-369 days (47%) (Figure C.1). Cases were followed up to 

1083 days with blood samples collected periodically.  
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Table 4.1. Individual characteristics of culture confirmed cholera patients 
and vaccinated individuals 

Characteristics 
Bangladeshi cholera 

cases* 
(n=48) 

Haitian 
vaccinees 

(n=51) 

Age Group   

< 5 years (%) 8 (17) 3 (6) 

5-9 years (%) 14 (29) 7 (14) 

10-17 years (%) 9 (19) 5 (10) 

18+ years (%) 17 (35) 36 (71) 

Female (%) 18 (38) 17 (33) 

V. cholerae O1 Ogawa isolated (%) 39 (81) NA 

* Serological data were also available for three uninfected household contacts of 
Bangladeshi cases enrolled with measurements taken at 2, 7, and 30 days after 
enrollment of the initial case 
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Antibody kinetics of vaccinated volunteers and confirmed cholera cases 

We first compared the earliest antibody measurements of vaccinees (i.e. 

day of first dose) and cases (i.e. between 2 and 4 days post-infection) for both 

adults and children. We observed little-to-no systematic differences between the 

baseline antibody measurements among adult cases and adult vaccinees. Child 

vaccinees, however, had elevated baseline levels of anti-CT-B and anti-OSP 

antibodies (ratio of the geometric mean Net MFI >2) as compared to child cases 

across isotypes (Figure C.2). We considered this may be a sign of recent 

infection in some child vaccine recipients. 

For vaccinees, anti-Ogawa OSP and anti-Inaba OSP antibodies (for all 

isotypes) rose steeply for most individuals after the first dose of vaccination 

(Figure 4.1, Figure C.3). Some antibody measurements were below the limit of 

detection (i.e. <1  log10(Net MFI)) for anti-Ogawa OSP and anti-Inaba IgG 

antibodies whereas nearly everyone had a detectable rise in IgA and IgM 

antibodies. The peak value in anti-Ogawa OSP and anti-Inaba OSP antibodies 

(across isotypes and age groups) for nearly every individual was around day 7 or 

day 21 (Figure C.4). Matching previous findings (25), we observed no apparent 

additional boost in antibodies from the second dose of vaccine provided two 

weeks after the first. As expected, we observed no rise in antibodies against CT-

B after vaccination as CT-B  is not included in Shanchol. Some vaccinees had a 

≥2-fold rise from baseline in anti-O139 OSP antibodies (IgG: 24%, IgA: 35%, 

IgM: 27%) at their peak. 
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Figure 4.1. Multiplex bead assay measurements of IgG, IgM, and IgA 
against CT-B, OSP, and TcpA antigens among Haitian vaccinated 
volunteers. 
Y-axis indicates the log (base 10) of the Net MFI. X-axis is square-root 
transformed. Each colored line indicates individual trajectories over time (dark 
blue: children <18 years, gold: adults ≥18 years). Rug plots show the antibody 
measurements from the cohort in Bangladesh (red: case measurements inside 
the 120-day infection window; black: uninfected household contacts and case 
measurements outside a 120-day infection window). The black dotted line 
indicates the timing of second dose vaccination.
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To further describe the differences in the immune response, we fit kinetic 

models to different antibody measurements for both vaccinees and cases (Figure 

4.2, C.5 & C.6, Table C.1). Among vaccinees, we estimated modest boosts (i.e., 

mean fold-change) for anti-Ogawa OSP antibodies for children (IgG: 5.6, IgA: 

9.7, IgM: 4.9) and adults (IgG: 6.4, IgA: 4.8, IgM: 5.0). Among cases, we 

estimated much larger boosts for anti-Ogawa OSP antibodies for children (IgG: 

9.5, IgA: 17.7, IgM: 31.3) and adults (IgG: 37.5, IgA: 57.5, IgM: 38.4). Higher 

boosts in anti-Inaba OSP antibodies were generally observed among cases than 

among vaccinees. Estimated average-fold change of anti-O139 OSP antibodies 

were all very low for both child vaccinees (IgG: 1.2, IgA: 2.7, IgM:1.6) and adult 

vaccinees (IgG: 1.4, IgA: 1.6, IgM: 1.7). Among child and adult cases, anti-CT-B 

IgG (22.5 and 16.4 average fold-change) and anti-CT-B IgA (32 and 24.7 

average fold-change) both rose, while effectively no boosting was observed 

among vaccinees. Small rises in anti-TcpA IgG and IgA (range of boosts: 2.9 - 

4.4) were observed among cases, but not vaccinees. The median half-life for 

adult cases and adult vaccinees were very similar for anti-Ogawa OSP IgG (116 

vs 116 days), IgA (35 vs 32 days), and IgM (54 vs 52 days) (as well as anti-Inaba 

OSP antibodies). Child cases had similar antibody decay rates as adult cases 

and vacinees, though they had much slower decay of anti-Ogawa OSP IgG (654 

days) and anti-Inaba OSP IgG (386 days). Among cases, the estimated half-life 

of anti-CT-B IgG (children: 123 days, adults: 146 days) and IgA (children: 27 

days, adults: 33 days) was consistent across age groups (Table C.1). 
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Figure 4.2. Estimated duration of half-life and average fold-change from 
exponential kinetic models for vaccinees and cases

Points indicate the median parameter estimate for the average individual case 
(red: children, pink: adults) and vaccinee (dark blue: children, light blue: adults). 
Lines show the 95% credible interval (A). Estimated durations of half-life are not 
shown for anti-CT-B, anti-O139, and anti-TcpA due to little to no boosting among 
adult vaccinees and are not shown for child vaccinees due to short follow-up (B).
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Distinguishing recently infected and vaccinated individuals using serological data 

We investigated whether there were distinct immunological signatures that 

would allow us to distinguish between recently infected, recently vaccinated, and 

not infected or vaccinated individuals using 47 samples collected within 120 days 

of infection (17 adults), 93 samples collected within 44 days post first dose of 

vaccination (36 adults), and 94 samples in neither category (54 adults) (Figure 

4.3A). The multidimensional scaling analysis demonstrated that these three 

populations were partially separated (though overlap remained), highlighting how 

combining serological data from several markers may be able to help 

differentiate these groups (Figure 4.3B).  

Through cross-validation, we found that the random forest model trained 

on 15 serological markers could classify individuals into the categories of recently 

infected, recently vaccinated, or neither. Receiver-operator-characteristic curves 

demonstrated modest ability of the model to discriminate either recently infected 

or recently vaccinated samples from the other two classes (Figure 4.3C). The 

most influential markers were anti-CT-B IgG, anti-CT-B IgA, and anti-TcpA IgG, 

all of which were found to be stimulated by infection but not vaccination. Among 

markers stimulated by vaccination, anti-Ogawa OSP IgM was the most 

influential. Most samples from recently infected individuals (62%), recently 

vaccinated (80%) and neither infected nor recently vaccinated (79%) were 

correctly classified (Figure 4.3D). In a scenario with vaccination coverage of 

50%, we estimated a specificity for identifying recently infected individuals of 

94%. In a scenario with 5% infection incidence during the previous 120-days, we 
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estimated a specificity for identifying recently vaccinated individuals (but not 

recently infected) as 88%. Regardless of vaccine coverage, the positive and 

negative predictive values (of identifying recently vaccinated, but not infected) 

remained below 85% (Figure 4.3E).  

Misclassification of vaccinated individuals as recently infected 

We then considered what level of misclassification would occur using 

models trained on three antibody measurements (anti-Ogawa OSP, anti-Inaba 

OSP and anti-CT-B IgG) previously proposed for estimating seroincidence in 

unvaccinated populations (Chapter 3). After training random forest models using 

serological data from Bangladeshi cases and uninfected household contacts, we 

predicted the serostatus of vaccinated individuals to understand how often they 

would be misclassified. When utilizing a model trained to have 95% specificity, 

vaccinees were classified as recently infected at both baseline and at later time 

points ranging between 0% and 60% of the time (Table C.2). Among 15 baseline 

samples from child vaccinees a substantial proportion of samples were 

seropositive with models from each window (45-day: 7%, 120-day: 20%, 200-

day: 27%, 300-day: 27%), potentially indicating some children were recently 

infected shortly before enrollment (or that the model has a greater tendency to 

misclassify children). As for adult vaccinees, baseline seropositivity for adult 

vaccinees was always below 5% (i.e. the expected false positivity rate) 

regardless of infection window. Among both child and adult vaccinees, the 

proportion seropositive increased at days 7 and 21 post first dose regardless of 

infection window (Table C.2).  
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Figure 4.3. Serological measurements among recently infected, recently 
vaccinated, and neither recently vaccinated nor infected adults and 
classification model ability to distinguish between groups. 
Boxplots show the distributions for each antigen isotype combination (A). The 
two dimensions of the multidimensional scaling analysis are shown in the 
scatterplot (B). Receiver-operator characteristic curves describing the fifteen 
marker random forest classification model ability to identify recently infected (red) 
and recently vaccinated (blue) from the two other classes (C). Gini index 
importance metric for the top 10 markers is shown. A confusion matrix shows the 
proportion of samples predicted for each class during cross-validation (D). The 
line graph highlights the positive predictive and negative predictive value for 
identifying recently vaccinated (but not infected) individuals for different levels of 
vaccination coverage (E). The proportion of the population that has been recently 
infected is assumed to be 5% and that no individuals were both recently 
vaccinated and infected.
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Among adult vaccinees, we modeled the seropositivity rate (i.e. the false 

positivity rate, FPR) as a function of time since the second dose (Figure 4.4A). 

When using the 45-day or 120-day infection window models, the FPR never 

increased above the expected FPR in unvaccinated populations (5%). We 

estimated that the maximum FPR occurred 3 days post second dose for the 200-

day window (23.0% [95% CI: 16.5%-30.5%]) and 4 days post second dose 

(21.9% [95% CI: 15.9%-28.8%]) for the 300-day window, over four times the 

expected FPR in unvaccinated populations. When considering 200- and 300-day 

infection windows, the mean FPR among vaccinees remained above 5% for 152 

and 157 days, respectively. 

We also examined the accuracy of models trained using 15 markers to 

distinguish recently infected (<200 days), recently vaccinated individuals, and 

individuals in neither category, when limiting the time of vaccination to a single 

point in time, like in a vaccination campaign (Figure 4.4B). The model trained 

using samples 7 days post-second dose were reasonably sensitive and specific 

across categories, correctly classifying samples for most individuals in each 

class. Models trained using samples 21 or 76 day post-second dose performed 

similarly among recently infected and neither classes but were poor at classifying 

recently vaccinated individuals correctly (sensitivity < 35%). 

Simulation of serological surveys and comparison of adjustment strategies  

Using simulated serological surveys conducted shortly after vaccination 

campaigns (7, 30, and 76 days after second dose), we observed how increased 
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misclassification led to greater bias in estimates of 200-day seroincidence. When 

vaccination status is ignored in the analysis and serological surveys occurred 7 

days after the second vaccination campaign, we found that average 

seroincidence estimates were always much higher than the true incidence, 

regardless of coverage (Figure 4.4C). For example, at 25% vaccination 

coverage, the average seroincidence rate was estimated at 18 cases per 100, 

over >3.5 times the true rate of 5 cases per 100. This bias only increased when 

coverage was 50% (30 cases per 100) or 75% (44 cases per 100). We did find 

that bias decreased with additional time since the second dose, but estimated 

rates were still far above the true rate: at 90 days, the average seroincidence had 

dropped to 9.9 cases per 100 (25% coverage), 15 cases per 100 (50% 

coverage), and 19 cases per 100 (75% coverage). 

We then examined how having either perfect information on individual 

vaccination status (e.g., perhaps as measured through a questionnaire) or testing 

for additional serological markers could reduce bias in adjusted estimates of 200-

day seroincidence (Figure 4.4C, Table C.3). In the most extreme scenario (75% 

coverage and 7 days since the second dose), the average adjusted 

seroincidence was 6.4 cases per 100 when adjusting using known vaccination 

status and 6.0 cases per 100 when adjusting by testing for additional serological 

markers. We also found that strategies measuring serological markers generally 

led to unbiased estimates of vaccination coverage (Table C.4), though the 

uncertainty in those estimates increased dramatically at 30 and 76 days post 

second dose.   
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Figure 4.4. Classification probability of samples by random forest models 
after vaccination and comparison of strategies for adjustment using 
simulated serological surveys. 
Each panel shows the false positivity rate (FPR) among vaccinated adults from 
models trained on three IgG serological markers (i.e. anti-Ogawa OSP, anti-
Inaba OSP, anti-CT-B) with different infection windows (A). Solid lines indicate 
the median FPR on a given day and yellow shading indicates the 95% credible 
interval. The black dashed line indicates the nominal false positivity rate of 5% 
(i.e. specificity of 95%). Each panel shows the classification probabilities for 
different categories of random forest models trained to differentiate recently 
infected individuals (<200 days), recently vaccinated (for a given time since 
second dose), or neither (B). Black lines indicate the 95% confidence interval. 
Each panel shows a different scenario with varying levels of vaccination 
coverage (C). Points represent the median 200-day adjusted seroincidence 
estimate for 10 simulated surveys at each time point since the second dose of a 
vaccination campaign. Transparent lines represent the 95% credible interval. The 
black dashed line indicates the true incidence (5 cases per 100) during the 200-
day infection window.
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Discussion 

Despite similarities in the immune response between infection and 

vaccination, estimating cholera incidence through serological surveillance is 

feasible in partially vaccinated populations. We found that vaccination stimulates 

only a subset of the antibody repertoire of that generated by infection and to a 

lower degree. Classification models trained to identify recently infected 

individuals only misclassified vaccinated adults shortly after vaccination 

campaigns when using an infection window ≥200 days and only 3 IgG antibody 

measurements. We also found that both ascertaining vaccination status or 

measuring additional antibodies can be used to adjust for this misclassification. 

Vaccination and infection have measurable differences in the antibody 

response generated that can be harnessed for serological surveillance. Though 

anti-Ogawa OSP and anti-Inaba OSP antibodies were generated among both 

cohorts, vaccinees generally had lower boosts overall. Anti-CT-B and anti-TcpA 

IgG and IgA antibodies were only stimulated by infection and not vaccination. We 

showed that classification models incorporating these markers were able to 

reasonably differentiate recently vaccinated and recently infected adults. 

However, this may be challenging to extend to children who may have higher 

levels of anti-CT-B antibodies (due to ETEC infection) and are less likely to 

generate anti-TcpA antibodies than adults (26). Lastly, we found that few anti-

O139 OSP antibodies were generated from vaccination (matching previous 

findings (27)) and are unlikely to effectively differentiate vaccinees from infected 

individuals. 

https://paperpile.com/c/CNbxpV/3Za7g
https://paperpile.com/c/CNbxpV/py4u
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Stimulation of anti-OSP antibodies sometimes caused misclassification, 

but we found multiple ways to address this in the context of cross-sectional 

serological surveys. First, we found that models trained to identify individuals 

infected in the last 120 days rarely misclassify vaccinated individuals as recently 

infected. As the duration of most cholera outbreaks have been documented to be 

less than 120 days (28), estimating incidence in a cross-sectional survey shortly 

after an outbreak ends is unlikely to be impacted by vaccination campaigns. For 

situations where an infection window of 200 days is being considered, we found 

that misclassification can potentially be addressed either through measuring 

additional antibodies (e.g. additional isotypes and anti-TcpA antibodies) and/or 

ascertaining vaccination status (e.g. through a questionnaire).  However, the 

adjustment we proposed assumes that all individuals are vaccinated within a 

short window of time and requires unbiased, precise estimates of sensitivity and 

specificity for the classification models. When starting a cross-sectional 

serosurvey, models to identify recent infections would ideally be validated with 

longitudinal serum samples from a population with similar cholera epidemiology. 

Conducting cholera serosurveillance in vaccinated populations can 

provide meaningful inference and requires careful consideration about study 

goals. We showed how estimating seroincidence from cross-sectional studies 

can be managed for different infection windows in a partially vaccinated 

population. However, there may be challenges for estimating other parameters of 

interest such as the rate of detection by clinical surveillance. As vaccination can 

decrease the severity of cholera infection, there might differences in the detection 

https://paperpile.com/c/CNbxpV/N5fn
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rate before and after the vaccination campaign. Also, we have shown the 

estimation of vaccination coverage using serological data is theoretically possible 

shortly after a vaccination campaign. This would require surveys occurring within 

a week or two after the campaign and measuring additional serological markers 

beyond anti-Ogawa OSP, anti-Inaba OSP, and anti-CT-B IgG (Table C.4). A 

questionnaire might be simpler for estimating vaccination coverage. Lastly, 

evaluation of interventions to prevent infection is theoretically possible using 

serological surveys but would likely require matching on important confounding 

factors. 

The observed differences in serological data among cases and vaccinees 

in this study may be partially attributed to differences in the age distribution and 

history of cholera spread in the area shortly before sample collection. At 

baseline, we found that Haitian child vaccinees had higher levels of antibodies for 

V. cholerae antigens as compared to Bangladeshi child cases. These differences 

may be due to recent infection with V. cholerae as child vaccinees were enrolled 

in 2013, when rates of cholera were relatively high in Haiti. Given these 

differences and the relatively short follow-up time for child vaccinees, we limited 

our dataset to include only adults for much of our analysis. Though we 

hypothesize many of our findings comparing adult vaccinees and cases are 

broadly applicable, future research where both cases and vaccinees of all ages 

come from the same target population is needed to confirm them. 

Our study population only contained individuals who were infected with V. 

cholerae or received two doses of OCV; there are several other combinations of 
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exposures that could exist in a target population and would impact serological 

measurements. ETEC infection is prevalent in many locations where cholera is, 

and stimulates antibodies that bind to both LT and CT. Further research is 

needed to understand how many ETEC infections may be misclassified as V. 

cholerae infection from models trained on serological data. Given the frequent 

co-occurence of the two pathogens in the same settings (29), serosurveillance 

systems ought to be designed to estimate seroincidence for both together using 

anti-CT antibodies as well as pathogen-specific antibodies. Additionally, all 

vaccinees in our study received two doses of oral cholera vaccine exactly two 

weeks apart. In the context of real-world campaigns, some vaccinees will only 

receive one dose (potentially during the first or second round) or will receive two 

doses with a different time between doses. As more and more individuals are 

vaccinated, future serological studies will allow us to capture post-infection 

kinetics of individuals with a history of vaccination. Challenge studies, where 

exposure can be directly controlled, might also be well-suited for gathering 

serological data on individuals with different combinations of exposures. 

Cholera serological surveillance provides valuable, complementary 

information in partially vaccinated populations. Expansion of cholera 

serosurveillance to new settings should include partially vaccinated populations 
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CHAPTER 5: Conclusion 

Serological data, when measured in the context of surveillance or 

epidemiologic studies, can provide insight on the spread of, burden of, and 

immunity against infectious diseases at the population-level. However, before 

being able to make that inference, investigators need a clear understanding of 

what their assays are measuring. In this dissertation, I utilized datasets of 

longitudinally collected serum samples from laboratory confirmed cases to 

understand the dynamics of antibodies over time since infection and assess the 

accuracy of assays to detect previous infection with either SARS-CoV-2 or V. 

cholerae.  

In Chapter 2, I showed how anti-RBD IgG antibodies detected through an 

in-house ELISA could provide valuable insight for detecting previous infection, 

with high levels of sensitivity (95%, after two weeks post symptom onset) and 

specificity (100%). The most important implication of this finding is that 

seroprevalence studies could provide valuable understanding of the incidence of 

SARS-CoV-2 infection as it was spreading across the world and could even be 

undertaken in areas with low-incidence given our high specificity. Such studies 

have been used to estimate important parameters (such as the infection fatality 

ratio and asymptomatic proportion) and to calibrate mathematical models (1–3). 

Additionally, I showed how SARS-CoV-2 infection did not lead to robust rises in 

antibodies of other human coronaviruses, indicating that issues concerning 

cross-reactivity (for this antigen) could likely be ignored. 
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Findings from Chapter 2 also have already made direct impacts for 

several scientific studies. For example, this work showed how anti-RBD IgG as 

measured from dried blood spots could be leveraged for serological surveys. Our 

team was able to use these data to estimate the number of infections missed by 

clinical surveillance during a serological survey in South Sudan (4). Additionally, 

our parameter estimates of the time required for seroconversion parameters can 

be used for statistical models attempting to incorporate dynamics in their 

estimates of incidence. For example, one study which attempted to estimate the 

cumulative incidence of SARS-CoV-2 infection in New York City and Connecticut 

used our estimate of the time to seroconversion in their model framework (5). 

Finally, Chapter 2 also contained valuable insights on the dynamics of IgM 

and IgA, showing how both seroconversion and seroreversion occurred for both 

isotypes against RBD. This may mean that development of a seroincidence 

assay is possible for SARS-CoV-2, which may become more important as more 

and more people already have generated IgG antibodies to the spike protein, 

either through infection or vaccination. However, a new dataset would have to be 

generated among a non-immunologically naive population to develop an assay to 

detect recent infections. Additionally, other antigens (such as spike proteins from 

different variants or the nucleocapsid) might need to be considered to develop 

such an assay. 

In Chapter 3, I demonstrated that the multiplex bead assay had similar 

performance at identifying recently infected individuals as traditional methods 

(that require the resource intensive vibriocidal assay). Multiplex bead assays are 
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already expanding to areas with neglected diseases like cholera (6). Adding V. 

cholerae antigens to existing multiplex bead assay panels may be far simpler 

than implementing vibriocidal methods. Additionally, smaller amounts of serum 

would be required for the multiplex bead assay, potentially meaning that valuable 

serum samples can be tested for more pathogens besides V. cholerae. Thus, 

these findings could help expand the number of areas worldwide with cholera 

serosurveillance. Before serosurveillance is implemented in an area (regardless 

of the assay used), careful consideration is needed to ensure the assay’s false-

positivity rate is lower than incidence in the area.  Otherwise, any estimate of 

seroincidence provided may entirely be due to assay misclassification rather than 

true incident infections. Thus, areas with explosive outbreaks or high levels of 

endemic transmission (ideally with strong clinical surveillance and laboratory 

confirmation) should be prioritized first.  

Expansion of serosurveillance systems for cholera has the potential to 

sharpen our understanding of the magnitude of spread and burden of the 

disease. Given the dependence on counting suspected cholera cases and 

infrequent laboratory confirmation, it remains largely unknown how common 

infection with V. cholerae is in the areas where it spreads. Serosurveillance may 

help identify areas with poor case-based surveillance that may not historically 

report cholera, but in fact have high levels of transmission. Serosurveillance 

could be used as a tool to monitor or evaluate programs (such as those geared 

towards improved water systems, sanitation or hygiene) that attempt to halt the 

transmission of cholera. Such evaluations might be accomplished through panel 
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surveys that estimate changes in incidence before and after an intervention has 

taken place or by comparing areas that did and did not receive an intervention. 

Such strategic information could aid efforts to reduce cholera morbidity and 

mortality as proposed by the Global Task Force on Cholera Control (7). 

In Chapter 4, I found that cross-sectional serological surveys to estimate 

incidence could still be implemented in areas with cholera vaccination campaigns 

despite cross-reactive immune responses from vaccination. Given the expanding 

number of areas of the world with oral cholera vaccination campaigns, this is 

essential for serosurveillance to remain a viable tool. However, I did find that 

additional care needs to be taken when wanting to estimate incidence over the 

course of infection windows longer than 120 days. When attempting to estimate 

incidence over the course of such windows, the safest way for investigators to 

avoid misclassification of vaccinated individuals is to wait to conduct the survey 

such that the infection window does not contain the time of when the campaign 

has occurred. This may be convenient if the goal is to estimate incidence during 

the post-vaccination period.  

However, waiting for antibodies (generated by vaccination) to wane may 

interfere with other study goals such as attempting to estimate incidence during 

an outbreak where a reactive campaign has occurred. In this situation, I found 

that measuring additional types of antibodies (such as increasing the number of 

antigens or isotypes measured) or ascertaining vaccination status independently 

(e.g., through a questionnaire) provides sufficient information to estimate 

incidence. Conducting serosurveillance in partially vaccinated populations still 
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requires additional research on individuals who have been both vaccinated and 

infected; understanding the antibody dynamics of these individuals will be key. 

Lastly, I found that few anti-O139 OSP antibodies were generated after 

vaccination against cholera, fitting with findings from past studies (8). As a result, 

anti-O139 OSP antibodies were not useful for distinguishing recently vaccinated 

from recently infected individuals and may not be worth measuring for future 

serosurveillance efforts. 

Demonstrating antibody measurements to be correlates (or surrogates (9)) 

of protection for SARS-CoV-2 or V. cholerae was not a focus of this dissertation. 

There are several methodological challenges to establish them (even for 

diseases as well-studied as measles (10)); they are often investigated in the 

context of vaccine trials, observational studies, or challenge studies. In prior 

studies, serum antibodies that neutralize SARS-CoV-2 have been shown to 

correlate with protection against COVID-19 (11, 12). As new variants have 

evolved, especially those with immune escape properties, titers measured with 

neutralization assays using prior strains may have less use. Design of 

serosurveillance systems for SARS-CoV-2 (or any quickly evolving pathogen) 

should consider what variants are of greatest interest to inform decision of which 

strains of the virus should be used in neutralization assays for serosurveillance. 

As for V. cholerae, serum antibodies as measured by the vibriocidal assay have 

been shown to be imperfect correlates of protection against infection, with many 

individuals with high titers still being infected (13). Since V. cholerae infection 

occurs in the intestine, this assay does not directly measure antibodies involved 
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in mechanisms of immunity. Further investigation of antibodies measured from 

saliva or stool may hold promise as they might correlate well with those involved 

with mucosal immunity in the intestine. 

Even if these correlates are only partially associated with protection, they 

might still be worth measuring in the context of serosurveillance activities. If the 

correlate is a marker of protection from infection, measurement at the population-

level could provide useful insight as to whether widespread susceptibility is 

driving transmission as opposed to changes in behavior, climate factors, or 

interventions. Additionally, these data could help parameterize forecasting 

models of infectious disease, predict outbreaks before they begin, demonstrate 

how pathogens evolve in response to population-immunity, and drive important 

policy decisions (such as closing schools or instituting mask mandates). If the 

correlate is a marker of protection from disease, serosurveillance could identify 

which populations have the most vulnerable individuals. We can then target 

resources to those groups to help prevent illness in the first place (e.g. booster 

campaigns) or ensure treatment would be quickly available if needed.  

In this dissertation, I applied laboratory, epidemiological, and statistical 

methods to answer questions about feasibility of serosurveillance for two 

biologically unrelated pathogens. Serosurveillance provides an opportunity to 

develop systems for monitoring several pathogens simultaneously rather than 

having separate systems each focusing on choice pathogens (14). Often some of 

the biggest challenges to implementing seroepidemiologic studies occur in the 

acquisition of participant specimens: issues can arise with acceptance, 
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enrollment, sample collection, transport, and storage. Proposals to start a “World 

Serology Bank” may be the path forward for addressing these challenges (15). 

With access to banked samples, multiplex bead assays could be leveraged to 

characterize antibody levels at the population-level for many pathogens while 

using less serum and being less costly than traditional assays (16).  

With improvements to our understanding of incidence of infection and 

immunity to future threats, decisions affecting public health have the potential to 

be more informed than ever before. As generating serological data has become 

easier, more consideration of how serosurveillance can be combined with other 

forms of surveillance is needed. Serosurveillance is not a panacea to the 

challenges of imperfect information for monitoring infectious diseases. Rather, it 

is an important piece of the puzzle that has been underutilized for too many 

diseases for too long. 
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APPENDICES 

 
 

Appendix A: Supplement to Persistence and decay of human antibody 

responses to the receptor binding domain of SARS-CoV-2 spike protein in 

COVID-19 patients 

 

Figure A.1. Number of PCR positive cases with a sample taken during each 
week since symptom onset. 
The date of symptom onset could not be determined for three individuals and the 
severity index was missing for one individual. 
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Figure A.2. Smooth average measurements of IgG, IgM, and IgA against 
SARS-CoV-2 spike protein receptor binding domain among PCR positive 
cases across time. 
Limit of detection was artificially set at 0.3 μg/mL for IgM and IgG to match that of 
IgA. Points were jittered horizontally. A) All cases are shown. Cases are 
categorized by B) clinical severity and C) immunosuppression status. 
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Figure A.3. Individual trajectories for 16 randomly selected individuals with 
4 or more measurements. 
Patient ID numbers are shown in gray boxes. 
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Figure A.4. Measurements of IgG, IgM, and IgA against SARS-CoV-2 spike 
protein receptor binding domain among pre-pandemic controls and 
symptomatic PCR positive cases.  
Black dashed line is at 0.57 μg/mL for IgG, 2.63 μg/mL for IgM, and 2.02 μg/mL 
for IgA.  
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Figure A.5. Receiver operating characteristic curve from random forest 
models and isotype contributions.  
Each panel shows the ROC curves for cross-validated random forest models fit 
to serological measurements taken (A) under 7 days (cvAUC: 0.64), (B) 8-14 
days (cvAUC: 0.92), (C) 15-28 days (cvAUC: 1.00) and over 28 days (cvAUC: 
1.00) after symptom onset of PCR positive cases and pre-pandemic controls. 
Each blue line is one of ten cross-validated ROC curves for a specific time point. 
Median relative importance of each serological marker is shown in each bar 
graph.  
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Figure A.6. Confusion matrices and out-of-bag error estimates for random 
forest models. 
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Figure A.7. Confusion matrices and out-of-bag error estimates for random 
forest models with downsampled controls.  
Controls were downsampled to have the same number of samples as cases for a 
given period.  
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Figure A.8. Measurements of IgG, IgA, and IgM against the RBD of other 
coronaviruses among pre-pandemic controls and PCR positive cases. 
Each dot represents a unique measurement of a serological marker (Row A: IgG, 
Row B: IgA, Row C: IgM) in pre-pandemic controls (left panels) and PCR positive 
cases (right panels) for each coronavirus. Each line connects measurements 
(dots) for individuals.  
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Figure A.9. Correlation between plasma and dried blood spot 
measurements (DBS). 
Plot of anti-RBD antibody IgG measurement in plasma versus DBS of 20 COVID 
cases (at 2 timepoints) and 20 pre-pandemic controls. The Pearson correlation 
coefficient (r) is shown. The dotted gray lines represent the concentration cut-off 
for seropositivity with plasma.  
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Table A.1. Full amino acid sequences of the coronavirus receptor-binding 
domains (RBDs) used in this study. 

In parentheses are the GenBank accession numbers from which the RBDs 
derive. Underlined is the HRV-3C protease site, the 8xHis and streptavidin-
binding peptide (SBP) purification tags.  
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Table A.2. Predictive accuracy of multiple isotypes for classifying controls 
and cases over time since symptom onset. 

Random forest models were used to calculate cvAUC. The isotype cut-offs 
chosen for calculating sensitivity were the maximum concentration (μg/mL) found 
among pre-pandemic controls (IgG: 0.57, IgM: 2.63, IgA: 2.02). Samples with 
measurements above at least one cut-off were classified as cases.  
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Table A.3. Parametric estimates of median time to seroconversion for each 
isotype by different patient characteristics. 

The isotype cutoffs chosen for seroconversion were the maximum concentration 
(μg/mL) found among pre-pandemic controls (IgG: 0.57, IgM: 2.63, IgA: 2.02). All 
models assumed that time to event followed a Weibull distribution. Bootstrap 
95% confidence intervals are shown in parentheses. Not Hospitalized and 
Hospitalized, no ICU groups were combined due to small sample size.  
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Appendix B: Supplement to Identifying recent cholera infections using a 

multiplex bead serological assay 

Method B.1. Overview of sample selection 
Prediction-based sampling 
We aimed to select a sample of the original cohort data from Bangladesh to test 
out for this analysis of a multiplex bead assay. Rather than attempt to handpick 
individuals using descriptive guidelines, we decided to choose the sample that 
best predicts the rest of the cohort. The sample with the best prediction accuracy 
should have attributes that roughly reflect that of the whole cohort, be they 
demographic (age, sex, blood type) or test-based (vibriocidal, ELISAs). 
The process for making these predictions was as follows: 

• Choose a random sample of individuals to create the “training set”, for a given 
scenario (explained below) 

• Fit a random forest model to those individuals to classify individuals as 
recently infected or not 

• Create a “balanced test set” (explained below) 

• Use the random forest to predict the outcomes in the balanced test set 

• Evaluate the predictions with cross-validated area under the ROC curve 
(cvAUC) 

We looked at three scenarios for selecting the training set, all of which included 
20 individuals who are under 10 (‘children’) and 20 individuals who are 10 and 
older (‘adults’). The scenarios only differ by the number of household contacts 
used. In the first scenario, we randomly draw 10 adults who were index cases 
and 10 adults who were household contacts. In the second scenario, we draw 
only index cases and no household contacts. In the third scenario, we draw from 
the pool of index and household contacts indiscriminately; letting the predictive 
ability of the models choose the number of household contacts. 
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After selecting the training set and fitting the random forest model, we predicted a 
“balanced test set”. The test set consisted of the observations that were not 
chosen in the training set. We took a large random sample with replacement of 
the test set, but balanced such that (a) there were as many seropositive (as 
predicted by the model) observations as seronegative observations and (b) the 
seropositive observations were evenly distributed over their time since infection. 
This is important because the original cohort was skewed towards having more 
seropositive observations with lower times since infection. Having an equal 
number of seropositive and seronegative cases ensured that we did not reward 
models for erring on the side of making positive or negative predictions. By 
sampling across time since infection, we hoped to improve the model 
performance at times further from infection; the serosurvey model performed 
quite well at short time intervals but poorly at longer horizons. 

After resampling 10,000 times, we chose a set that had the highest cvAUC for 
the third scenario. This included 38 cases and 2 household contacts. 
Sample inventory 
After investigation of freezer stocks, samples from 39 of 40 individuals were 
found. Samples from two additional cases were added to the set, giving a 
selection of 245 samples from 41 individuals (39 cases and 2 household 
contacts). 
Additional sample selection 
After initial testing was completed, we decided to supplement the dataset with 
samples from 10 individuals (9 cases and 1 contact) in order to balance out the 
ages of individuals. In particular, we were concerned about the lack of individuals 
with samples between the ages of 10 and 18 in the original sample. To limit the 
influence of boosted antibody responses from reinfection/exposure during the 
follow-up period, we removed any data points that were part of or after a greater 
than a 2 fold-rise between measurements in vibriocidal Ogawa titers >90 days 
post initial infection. Our final sample included 305 samples from 51 individuals 
(48 cases and 3 contacts). 
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Method B.2. Procedure for calculating the relative antibody unit from 
median fluorescence intensity measurements 
On each 384-well plate, a dilution series of positive control wells was included to 
adjust for between-plate variability. We used this to calculate the relative 
antibody unit (RAU) for all samples on the plate. The RAU is the expected 
dilution of the positive control sample needed to get the same MFI as the sample. 
Dilution series 
Serum samples from 5 patients with culture-confirmed V. cholerae O1 collected 7 
days after symptoms were combined to create a serum pool. Of the total 19 
plates run, 7 had four dilution points (1:100, 1:400, 1:1,600, 1:6,400). After 
deciding to expand the range of dilutions, the next 12 plates had eight dilution 
points (1:10, 1:40, 1:160, 1:640, 1:2,560, 1:10,240, 1:40,960, 1:163,840). 
Additionally, blank control wells (i.e. not including any sera) were run on every 
plate. All samples were run in triplicate and MFI values were averaged. 
Model parameterization and fit 
For each antigen, we fit four-parameter log-logistic models to each plate’s dilution 
series. As previously described (1), the relationship between dilution and MFI is 
defined as follows: 

𝑌𝑖 = log(median fluorescence intensity) for sample 𝑖
𝑥𝑖 = dilution for sample 𝑖

𝑌𝑖 = 𝑐 +
𝑑 − 𝑐

1 + 𝑒𝑥𝑝(𝑏 × (𝑙𝑜𝑔(𝑥𝑖) − 𝑙𝑜𝑔(𝑒)))

 

We chose this parameterization given its frequent use for modeling dose-
response relationships and that we only had four dilution points for many of our 
plates. For plates with seven dilution points, we used the drc package in R (1). 
For plates with four dilution points, we decided to implement a Bayesian 
framework so that we could fit the model with prior distributions informed by the 
seven dilution series wells: 

𝑏 ∼ Normal(𝜇𝑏 , 1)

𝑐 ∼ Normal(𝜇𝑐 , 0.5)

𝑑 ∼ Normal(𝜇𝑑 , 20)

𝑒 ∼ Normal(𝜇𝑒 , 100)
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Specifically, 𝜇𝑐, the mean of the prior distribution for 𝑐 (the lower bound of the 
logistic curve), was set equal to the log(MFI) for the blank sample for each plate. 
The variance parameter of the prior distribution for 𝑐 was set at 0.5 to be slightly 
larger than observed among blank samples. The mean values for the other priors 
(𝜇𝑏,𝜇𝑑, and 𝜇𝑒) were set equal to the average values estimated from the seven 
dilution models using the drc package. Variance values for the prior distributions 
of 𝑏,𝑑,and 𝑒 were selected to be sufficiently large to be relatively uninformative. 

Relative antibody unit calculation 
For each antigen on each plate, the mean value for each parameter was used to 
calculate the relative antibody unit (RAU). To avoid extrapolation, all samples 
with a calculated RAU above 1:100 or below 1:100,000 were set equal to those 
values. Any samples with MFI values falling outside of the logistic curve were 
also set to the threshold value. 
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Method B.3. Univariate decay model equations 
We fit univariate decay models to describe the antibody dynamics of individuals 
for each biomarker. All models had two components: 1) a measurement model 
and 2) a decay model. This data set contains 𝑛 individuals (indexed by 𝑖), and 𝑚 
total measurements (indexed by 𝑗). Each marker is modeled separately. 
Measurement Models 
We had several different types of measurements of biomarkers (multiplex bead 
assay (MBA) relative antibody unit (RAU), Vibriocidal titers, and ELISA 
concentrations) to fit models to. We assumed that the observed data were 
normally distributed (𝑓𝑁 denotes the normal density) around the true 
(unobserved) value. Each different model accounted for censored observations 
in various ways based on how the data was generated. 

• 𝑌𝑖𝑗 = the true value at the time of the 𝑗th measurement for individual i. 

• 𝑌𝑖𝑗
∗  = the observed value at the time of the 𝑗th measurement for individual i. 

• 𝜎 = measurement error variance 

Multiplex bead assay relative antibody unit measurement model 
For our analysis, the RAU was inverted and log10 transformed. Values can only 
take a value above -5 and below -2. Any value set at -5 and -2 are censored 
values and are treated as so: 

𝑃𝑟(𝑌𝑖𝑗
∗ |𝑌𝑖𝑗 , 𝜎) =

{
 
 

 
 ∫ 𝑓𝑁

−5

−∞

(𝑌𝑖𝑗|𝜎) if 𝑌𝑖𝑗
∗ = −5

𝑓𝑁(𝑌𝑖𝑗|𝜎) if − 5 < 𝑌𝑖𝑗
∗ < −2

∫ 𝑓𝑁

∞

−2

(𝑌𝑖𝑗|𝜎) if 𝑌𝑖𝑗
∗ = −2

 

Vibriocidal assay measurement model 
Vibriocidal titers were divided by 5 and log2 transformed. The vibriocidal assay 
outputs a measurement of the highest dilution where the vibriocidal reaction still 
occurs. Therefore, the true dilution is between the reported dilution and the next 
dilution (i.e. interval censored). 𝑉𝑚𝑎𝑥, the largest measureable log titer, was 11. 
𝑉𝑚𝑖𝑛, the smallest measureable log titer was 0. 

𝑃𝑟(𝑌𝑖𝑗
∗ |𝑌𝑖𝑗 , 𝜎) =

{
 
 
 

 
 
 ∫ 𝑓𝑁

𝑉𝑚𝑖𝑛

−∞

(𝑌𝑖𝑗|𝜎) if 𝑌𝑖𝑗
∗ = 𝑉𝑚𝑖𝑛

∫ 𝑓𝑁

𝑌𝑖𝑗+1

𝑌𝑖𝑗

(𝑌𝑖𝑗|𝜎) if 𝑉𝑚𝑖𝑛 < 𝑌𝑖𝑗
∗ < 𝑉𝑚𝑎𝑥

∫ 𝑓𝑁

∞

𝑉𝑚𝑎𝑥

(𝑌𝑖𝑗|𝜎) if 𝑌𝑖𝑗
∗ = 𝑉𝑚𝑎𝑥
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ELISA measurement model 
ELISA measurements were all log10 transformed. No values were at the limit of 
detection so censoring was not accounted for. 

𝑃𝑟(𝑌𝑖𝑗
∗ |𝑌𝑖𝑗 , 𝜎) = 𝑓𝑁(𝑌𝑖𝑗 , 𝜎) 

Kinetic Models 

We also explored different modes of decay (expoenential vs. biphasic). 
Additionally, we also investigated differences in decay between individuals with 
different of demographic characteristics. 
The following variables and parameters are shared across all kinetic models: 

• 𝑇𝑖𝑗 = time of sample collection post-infection for individual i and 

measurement j. 

• 𝜔𝑖 = baseline value for individual 𝑖 

• 𝜆𝑖 = boost for individual 𝑖 (restricted to values greater than 0) 

• 𝐷 = time between infection and initial rise (set at 5 days) 

• 𝜇𝜔  = average individual’s baseline rate 

• 𝜇𝜆  = average individual’s boost from baseline at day D (restricted to values 
greater than 0) 

• 𝛴 = covariance matrix for average baseline and boost 

All models follow the same general temporal pattern: 

• Individuals start at their baseline values 𝜔𝑖 

• After 𝐷 days, an individuals value immediately increases by 𝜆𝑖 

• Over time, an individuals value decays 
We allow for baseline values and boosts to vary between individuals, but assume 
the decay rate is shared across individuals. 
Exponential decay model 
For the exponential model, we assume that decay follows an exponential pattern 
with the decay parameter 𝛿 (restricted to be greater than zero). 

𝑌𝑖𝑗 = {
𝜔𝑖 𝑇𝑖𝑗 < 𝐷

𝜔𝑖 + 𝜆𝑖 × 𝑒
−𝛿(𝑇𝑖𝑗−𝐷) 𝑇𝑖𝑗 ≥ 𝐷

(
𝜔𝑖
𝜆𝑖
) ∼ MVN((

𝜇𝜔

𝜇𝜆
) , 𝛴)

 

Biphasic decay model 

For the biphasic decay model, we assume that each marker’s value is 
determined by two independent components that each decay exponentially. The 
proportion of these two components is unknown. 

• 𝜃1 = decay rate for first component (restricted to be greater than zero) 
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• 𝜃2 = decay rate for second component (restricted to be greater than zero) 

• 𝛼 = proportion of boost due to first component (restricted between 0 and 1) 

𝑌𝑖𝑗 = {
𝜔𝑖 𝑇𝑖𝑗 < 𝐷

𝜔𝑖 + 𝜆𝑖(𝛼𝑒
−𝜃1(𝑇𝑖𝑗−𝐷) + (1 − 𝛼)𝑒−𝜃2(𝑇𝑖𝑗−𝐷)) 𝑇𝑖𝑗 ≥ 𝐷

(
𝜔𝑖
𝜆𝑖
) ∼ MVN((

𝜇𝜔

𝜇𝜆
) , 𝛴)

 

Exponential model including individual covariates (e.g. age group) 

To understand how kinetics varied by individual-level attributes, we included age 
(<10 vs 10+ years), sex (male vs female), blood group (O group vs. non-O 
group), and infecting serotype (Ogawa vs. Inaba) as binary variables in the 
model. These covariates were allowed to modify the initial baseline, boost and 
decay rate. 

• 𝑋𝑖 = covariate of individual 𝑖 (e.g. 0 if < 10 years and 1 if 10+years) 

• 𝛽𝜔  = fixed effect of covariate on baseline 

• 𝛽𝜆  = fixed effect of covariate on boost 

• 𝛽𝛿  = fixed effect of covariate on decay 

𝜇𝑖𝑗 = {
𝜔𝑖 + 𝛽

𝜔𝑋𝑖 𝑇𝑖𝑗 < 𝐷

𝜔𝑖 + 𝛽
𝜔𝑋𝑖 + (𝜆𝑖 + 𝛽

𝜆𝑋𝑖) × 𝑒
−(𝛿+𝛽𝛿𝑋𝑖)(𝑇𝑖𝑗−𝐷) 𝑇𝑖𝑗 ≥ 𝐷

(
𝜔𝑖
𝜆𝑖
) ∼ MVN ((

𝜇𝜔

𝜇𝜆
) , 𝛴)
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Method B.4. Sample weighting 
The samples used to train random forest classification models are heavily 
skewed towards times in the early acute and convalescent period due to the 
higher density of blood draws during that period and the limited loss to follow-up 
early on (Figure B.2). This skewed distribution of infection times likely does not 
represent the expected more uniform distribution of infection times in a study 
population during a cross-sectional survey. We would expect that the 
assessments of model fit might be misleading or overly optimistic if this skew is 
not accounted for. 
We attempted to re-weight the samples used to train random forest models in 
each class based on an expected distribution of time since infection. Additionally, 
we used weighting to account for class imbalance such that the sum of weights 
among recently infected and non-recently infected were made equal. 

Expected distribution of infection times 
For this analysis, we decided to assume a constant hazard of infection with an 
annual incidence rate of 10%. When conducting a cross-sectional serosurvey at 
one point in time, we would expect that the time since last infection should be 
exponentially distributed. This could be modified given a different understanding 
of distribution of last infection times. Using the cumulative distribution function of 
an exponential distribution, we can understand the expected proportion of 
samples from each time slice. 
Defining time slices 
As shown in Figure B.2, the day of sample collection we have for each sample 
are clustered around certain time points. In order to properly reweight the 
samples we have, we need to consider what unobserved infections the samples 
are ‘standing in’ for. 
Given a particular infection window (e.g. 200-day), we assigned each sample to 
whether they were inside or outside of the window. We assumed baseline 
samples (collected <5 days post infection) of cases and household contacts were 
always outside of the infection window. 
Next, we further divided the time inside and outside the infection window into 
time slices. For cases, samples were collected around 2, 7, 30, 90, 180, 270, 
360, 540, 720, 900 and 1080 days. We used these times to define the time slices 
using the average of consecutive time points as dividers. We assumed that 
samples from any case after 540 days as well as uninfected contacts belonged to 
the same time slice. 

200-day Infection Window Status Day Time Slice n (%) 

Inside Case 7 [5,18.5) 46 (27) 

30 [18.5,60) 46 (27) 

90 [60,135) 42 (24) 
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200-day Infection Window Status Day Time Slice n (%) 

180 [135,200) 39 (23) 

Outside Case 2 [0,5) 48 (36) 

270 [200,315) 11 (8) 

360 [315,450) 12 (9) 

540 [450,Inf) 25 (19) 

720 [540,Inf) 1 (1) 

900 [540,Inf) 25 (19) 

1080 [540,Inf) 1 (1) 

Outside Contact 2 [540,Inf) 3 (2) 

7 [540,Inf) 3 (2) 

30 [540,Inf) 3 (2) 

All samples belonging to the same time slice are equally weighted and stand in 
for all potential infection times within the slice. If the proportion of samples for 
given time slice does not match what is expected from an exponential 
distribution, they can now be properly weighted. 

Weight calculation 
We calculated weights to account for both class imbalance and distribution of 
infection times. To account for class imbalance, we simply created weights so the 
sum of weights among samples inside and that of samples outside the window 
were equal. For the class weight, samples within each class were equally 
weighted. 
To account for the distribution of infection times, we calculated both the observed 
and the expected proportion of samples to be in each time slice. The calculated 
time-based weight to account for infection time is the ratio of the expected versus 
observed proportion (Figure B.7). 
The final weight used in our analyses is the product of the class weight and the 
time-based weight. It was recalculated for every different length of infection 
window and each fold in cross-validation. 
  



 

 140 

Figure B.1. Vibriocidal Ogawa measurements among individuals selected 
from the SMIC and PIC cohorts 
Vibriocidal titer measurements were transformed by dividing the measurement by 
5 and then taking the logarithm (base 2) (A). X-axis indicates the approximate 
collection day for each measurement for cases. All measurements for uninfected 
household contacts are shown regardless of collection day (B). 
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Figure B.2. Timing of sample collection among culture confirmed cases 
relative to date of infection 
Each point represents a blood sample collection occurred for a confirmed case 
(A). The daily number of samples is shown on the y-axis. Red dashed lines are 
placed at the threshold values for infections windows (45, 120, 200, and 300 
days) (B). 
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Figure B.3. Postive control dilution curve and four parameter log-logistic 
curve fits for Vibrio cholerae O1 antigen multiplex bead assay markers 
Each point represents the median fluorescence intensity measurement (y-value) 
for a dilution (x-value) of pooled convalescent sera from confirmed positive Vibrio 
cholerae O1 patients. Each plate’s dilution series were fit using a four-parameter 
log-logisitic regression (black lines). Shape of each point is unique to each plate. 
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Figure B.4. Postive control dilution curve and four parameter log-logistic 
curve fits for additional antigen multiplex bead assay markers 
Each point represents the median fluorescence intensity measurement (y-value) 
for a dilution (x-value) of pooled convalescent sera from confirmed positive Vibrio 
cholerae O1 patients. Each plate’s dilution series were fit using a four-parameter 
log-logisitic regression (black lines). Shape of each point is unique to each plate. 
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Figure B.5. Relationship between relative antibody units and median 
fluorescence intensity for additional antigen multiplex bead assay markers 
Relative antibody unit (RAU) measurements for each sample are plotted against 
the median fluorescence intensity (MFI) calculated from averaging triplicate 
measurements. Relative antibody units estimates were truncated at 10^2 and 
10^5 (red points). 
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Figure B.6. Relationship between relative antibody units and median 
fluorescence intensity for non-Vibrio cholerae O1 antigen multiplex bead 
assay markers 
Relative antibody unit (RAU) measurements for each sample are plotted against 
the median fluorescence intensity (MFI) calculated from averaging triplicate 
measurements. Relative antibody units estimates were truncated at 10^2 and 
10^5 (red points). LT-B = heat labile toxin B subunit. LT-H = heat labile toxin 
holotoxin. 
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Figure B.7. Weights used for random forest models at each infection 
window 
The yellow columns represent the proportion of samples that fall within the time 
interval on the x-axis (A). The purple columns indicate the expected proportion of 
samples that would fall within the time interval if infection times were 
exponentially distributed with a 10% annual incidence. Both of these proportions 
condition on the sample already being either inside or outside the infection 
window. Each point shows the weight used for each infection window (B). 
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Table B.1. Individual characteristics of culture confirmed cholera patients 
and uninfected household contacts 

All cases were hospitalized and solely had O1 Vibrio cholerae isolated. Inaba O1 
was isolated from non-Ogawa cases 

Characteristics 
Cholera 
cases 
(n=48) 

Household 
contacts 

(n=3) 

Age Group   

< 5 years (%) 8 (17) 0 (0) 

5-9 years (%) 14 (29) 0 (0) 

10-17 years (%) 9 (19) 2 (67) 

18+ years (%) 17 (35) 1 (33) 

Female (%) 18 (38) 1 (33) 

V. cholerae O1 Ogawa isolated (%) 39 (81) - 
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Figure B.8. Multiplex bead assay relative antibody unit measurements of 
IgG, IgM, and IgA against V. cholerae O1 antigens among culture confirmed 
cholera patients 
The y-axis indicates the log (base 10) of the relative antibody unit (RAU) and the 
x-axis is the number of days post-infection (square-root transformed). Each 
colored line indicates individual trajectories over time. The Black solid line is a 
loess smooth function. 
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Figure B.9. Multiplex bead assay Net MFI measurements of IgG, IgM, and 
IgA against additional antigens among culture confirmed cholera patients 
The y-axis indicates log (base 10) of the Net MFI and the x-axis is the number of 
days post-infection (square-root transformed). Each colored line indicates 
individual trajectories over time. The Black solid line is a loess smooth function. 
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Figure B.10. Multiplex bead assay relative antibody unit measurements of 
IgG, IgM, and IgA against additional antigens among culture confirmed 
cholera patients 
The y-axis indicates the log (base 10) of the relative antibody unit (RAU) and the 
x-axis is the number of days post-infection (square-root transformed). Each 
colored line indicates individual trajectories over time. The Black solid line is a 
loess smooth function. 
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Figure B.11. Multiplex bead assay Net MFI measurements of IgG, IgM, and 
IgA against V. cholerae O1 antigens among culture confirmed cholera 
patients, by age group 
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Figure B.12. Multiplex bead assay Net MFI measurements of IgG, IgM, and 
IgA against V. cholerae O1 antigens among culture confirmed cholera 
patients, by infecting serotype 
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Figure B.13. Correlation matrix of multiplex bead assay biomarkers 
Spearman correlation coefficients were calculated using 49 samples all of which 
were collected approximately 30 days post-enrollment for both cases and 
contacts. 
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Table B.2. Biphasic and Exponential decay model comparison 

The expected log-predictive density (ELPD) and standard error difference was 
calculated using the loo R package. Asterisks denote that the ELPD of the 
biphasic model (which includes more parameters) was over 1.96 standard errors 
larger than the ELPD of the exponential model.  

Marker Biphasic ELPD Exponential ELPD 
Biphasic - Exponential 

Standard Error Difference 

ELISA CtxB IgA -94.8 -94.6 -0.62 

ELISA CtxB IgG 11.1 11.2 -1.22 

ELISA LPS IgA -135.9 -133.8 -1.37 

ELISA LPS IgG -7.2 -5.2 -0.76 

MBA IgA CTHT -556.8 -394.6 -51.68 

MBA IgA CtxB -266.8 -210.5 -26.73 

MBA IgA Flu -6,497.5 -6,168.7 -99.70 

MBA IgA InabaOSPBSA -1,280.4 -1,283.6 24.69* 

MBA IgA LTB -301.4 -277.8 -10.98 

MBA IgA LTh -153.9 -152.6 -4.78 

MBA IgA O139BSA -85.4 -76.1 -4.86 

MBA IgA OgawaOSPBSA -181.0 -170.7 -6.71 

MBA IgA Sialidase -67.2 -64.3 -1.36 

MBA IgA TcpA -121.9 -109.4 -10.47 

MBA IgA VCC -137.9 -126.8 -8.23 

MBA IgG CTHT -167.7 -159.4 -4.60 

MBA IgG CtxB -153.1 -143.3 -3.57 

MBA IgG Flu -6,379.6 -6,178.0 -95.02 

MBA IgG InabaOSPBSA -186.8 -185.7 -0.80 

MBA IgG LTB -148.9 -159.2 7.61* 

MBA IgG LTh -256.5 -247.0 -9.61 

MBA IgG O139BSA -13.0 -4.9 -5.52 

MBA IgG OgawaOSPBSA -248.2 -247.5 -0.75 

MBA IgG Sialidase -7.5 -5.9 -0.78 

MBA IgG TcpA -107.5 -107.3 -0.87 
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Marker Biphasic ELPD Exponential ELPD 
Biphasic - Exponential 

Standard Error Difference 

MBA IgG VCC -393.2 -437.8 16.36* 

MBA IgM CTHT -274.4 -261.3 -13.15 

MBA IgM CtxB -460.6 -465.8 20.42* 

MBA IgM Flu -444.3 -498.3 20.54* 

MBA IgM InabaOSPBSA -780.1 -798.8 11.13* 

MBA IgM LTB -628.5 -595.8 -22.63 

MBA IgM LTh -226.7 -243.4 11.18* 

MBA IgM O139BSA -60.8 -56.8 -8.01 

MBA IgM OgawaOSPBSA -367.4 -337.7 -11.41 

MBA IgM Sialidase -337.1 -339.8 5.66* 

MBA IgM TcpA -606.0 -630.2 19.58* 

MBA IgM VCC -933.2 -964.8 26.80* 

Vibriocidal Inaba -616.5 -587.1 -14.17 

Vibriocidal Ogawa -675.2 -617.3 -28.75 
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Figure B.14. Individual-level trajectories of Ogawa OSP IgG 
Each facet shows the log10(RAU) measurements for individuals over time 
(points). Solid line indicates the median value of exponential decay model. 
Shaded area is the 95% credible interval. 
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Figure B.15. Individual-level trajectories of Ogawa OSP IgA 
Each facet shows the log10(RAU) measurements for individuals over time 
(points). Solid line indicates the median value of exponential decay model. 
Shaded area is the 95% credible interval. 
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Figure B.16. Individual-level trajectories of Ogawa OSP IgM 
Each facet shows the log10(RAU) measurements for individuals over time 
(points). Solid line indicates the median value of exponential decay model. 
Shaded area is the 95% credible interval. 
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Figure B.17. Individual-level trajectories of CT-B IgG 
Each facet shows the log10(RAU) measurements for individuals over time 
(points). Solid line indicates the median value of exponential decay model. 
Shaded area is the 95% credible interval. 
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Figure B.18. Individual-level trajectories of CT-B IgA 
Each facet shows the log10(RAU) measurements for individuals over time 
(points). Solid line indicates the median value of exponential decay model. 
Shaded area is the 95% credible interval. 
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Figure B.19. Individual-level trajectories of CT-B IgM 
Each facet shows the log10(RAU) measurements for individuals over time 
(points). Solid line indicates the median value of exponential decay model. 
Shaded area is the 95% credible interval. 
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Table B.3. Estimated duration of half-life and average fold-change from 
univariate exponential decay models 

The median estimate duration of half-life (in days) and the median estimate 
increase in fold-change for the average individual are shown below as well as in 
Figure 2. 95% Bayesian Credible Intervals are shown in parentheses. 

Isotype Antigen Half Life (95% CI) in days Average Fold-Change (95% CI) 

IgA CT-H 21 (16-27) 21.2 (13.1-15.8) 

CT-B 29 (22-38) 28.8 (18.9-22.3) 

Flu 11 (5-39) 2.0 (1.3-4.8) 

Inaba OSP 33 (26-43) 32.7 (16.1-26.4) 

LT-B 20 (16-25) 13.0 (8.6-15.6) 

LT-H 22 (18-28) 21.7 (14.8-18.2) 

O139 OSP 12 (6-24) 2.8 (2.1-6.2) 

Ogawa OSP 42 (31-59) 25.3 (14.3-30.8) 

Sialidase 16 (7-37) 1.9 (1.5-6.8) 

TcpA 18 (11-30) 3.5 (2.5-11.2) 

VCC 19 (13-29) 3.3 (2.5-13.2) 

IgG CT-H 98 (77-125) 16.0 (11.7-77.4) 

CT-B 108 (86-135) 24.6 (18.1-86.2) 

Flu 11 (5-71) 1.6 (1.2-5.0) 

Inaba OSP 130 (86-215) 6.7 (4.2-85.8) 

LT-B 66 (51-85) 8.4 (6.2-51.4) 

LT-H 77 (63-94) 15.2 (10.8-62.6) 

O139 OSP 86 (19-234) 1.6 (1.3-19.2) 

Ogawa OSP 335 (221-490) 12.7 (7.6-221.3) 

Sialidase 75 (19-260) 1.5 (1.3-19.4) 

TcpA 133 (77-242) 3.1 (2.3-77.4) 

VCC 78 (32-162) 1.9 (1.5-31.5) 

IgM CT-H 23 (9-92) 2.1 (1.6-8.8) 

CT-B 68 (17-178) 2.3 (1.7-17.2) 

Flu 53 (9-192) 1.8 (1.4-9.2) 

Inaba OSP 36 (28-46) 24.0 (13.4-28.0) 
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Isotype Antigen Half Life (95% CI) in days Average Fold-Change (95% CI) 

LT-B 18 (6-100) 1.7 (1.3-6.2) 

LT-H 15 (5-173) 2.0 (1.4-5.4) 

O139 OSP 61 (5-386) 1.4 (1.2-5.5) 

Ogawa OSP 59 (46-76) 62.1 (34.6-46.2) 

Sialidase 25 (7-130) 1.9 (1.4-6.9) 

TcpA 69 (13-363) 1.8 (1.4-12.7) 

VCC 30 (9-90) 1.7 (1.3-8.9) 

Marker Half Life (95% CI) in days Average Fold-Change (95% CI) 

ELISA CtxB IgA 17 (12-22) 2.0 (1.8-12.3) 

ELISA CtxB IgG 76 (53-112) 1.5 (1.4-53.1) 

ELISA LPS IgA 36 (25-53) 1.9 (1.6-25.5) 

ELISA LPS IgG 56 (36-87) 1.4 (1.3-36.2) 

Vibriocidal Inaba 72 (49-107) 49.7 (27.8-49.2) 

Vibriocidal Ogawa 142 (85-251) 52.0 (26.1-85.4) 
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Table B.4. Relative parameter values for univariate exponential decay 
models including covariates for different serological markers 

The median relative baseline value, median relative fold-change value, and 
median difference in days of half-life are reported. 95% Bayesian Credible 
intervals are shown in parentheses. Reference categories include male, non-O 
blood group, Inaba, and 10+ years old. 

Marker Covariate 
Ratio of 

Baseline Values 
Ratio of 

Fold-Change Values 
Difference in days 

of Half-Life 

ELISA 
IgA CtxB 

Female 0.73 (0.488-1.09) 0.996 (0.484-1.97) -3 (-12-6) 

O Blood 0.875 (0.587-1.32) 1.77 (0.923-3.26) 8 (-1-17) 

Ogawa 1.16 (0.68-1.99) 0.848 (0.348-1.81) 3 (-9-12) 

Under 10 0.817 (0.547-1.22) 2.17 (1.13-4.05)* 0 (-10-9) 

ELISA 
IgA LPS 

Female 1.16 (0.774-1.74) 0.333 (0.14-0.708)* -6 (-26-32) 

O Blood 1.35 (0.908-2) 1.23 (0.56-2.46) -12 (-55-16) 

Ogawa 1.36 (0.851-2.24) 0.509 (0.188-1.14) 19 (-4-40) 

Under 10 0.477 (0.337-0.669)* 0.552 (0.251-1.12) 21 (-9-70) 

ELISA 
IgG CtxB 

Female 0.993 (0.742-1.33) 1.18 (0.83-1.66) -42 (-114-8) 

O Blood 1.04 (0.782-1.38) 1.13 (0.805-1.6) -22 (-95-30) 

Ogawa 0.913 (0.64-1.32) 0.754 (0.476-1.19) 49 (4-106)* 

Under 10 1.2 (0.897-1.6) 1.28 (0.904-1.8) -27 (-107-24) 

ELISA 
IgG LPS 

Female 0.938 (0.717-1.23) 0.765 (0.482-1.15) 16 (-30-98) 

O Blood 0.998 (0.767-1.33) 1.21 (0.792-1.78) -28 (-201-31) 

Ogawa 1.05 (0.75-1.51) 0.738 (0.418-1.21) 9 (-64-53) 

Under 10 0.829 (0.638-1.07) 0.61 (0.385-0.91)* 46 (-16-200) 

MBA IgA 
CTHT 

Female 1.11 (0.713-1.72) 0.536 (0.191-1.33) 2 (-9-20) 

O Blood 1.12 (0.74-1.69) 0.747 (0.275-1.8) 8 (-2-22) 

Ogawa 1.4 (0.847-2.32) 1.02 (0.33-2.39) 10 (-1-19) 

Under 10 0.921 (0.607-1.39) 1.42 (0.526-3.41) -2 (-13-8) 

MBA IgA 
CtxB 

Female 1.17 (0.721-1.91) 0.495 (0.206-1.16) 15 (-3-44) 

O Blood 1.09 (0.681-1.75) 0.975 (0.41-2.24) 3 (-12-18) 

Ogawa 1.26 (0.701-2.33) 1.49 (0.528-3.65) 14 (-2-27) 

Under 10 0.903 (0.56-1.46) 1.41 (0.601-3.24) -6 (-21-9) 

Female 2.57 (0.76-9.56) 0.82 (0.396-1.86) -2 (-22-57) 
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Marker Covariate 
Ratio of 

Baseline Values 
Ratio of 

Fold-Change Values 
Difference in days 

of Half-Life 

MBA IgA 
Flu 

O Blood 1.09 (0.316-3.41) 0.716 (0.327-1.57) -3 (-51-21) 

Ogawa 1.61 (0.341-9.15) 0.683 (0.252-1.41) -2 (-31-37) 

Under 10 0.32 (0.0826-0.922)* 0.781 (0.272-1.57) -3 (-180-25) 

MBA IgA 
Inaba 
OSP 

Female 2.59 (1.13-6.46)* 0.404 (0.102-1.31) -15 (-31-1) 

O Blood 1.48 (0.645-3.54) 1.98 (0.611-5.5) 10 (-7-26) 

Ogawa 1.47 (0.469-5) 0.333 (0.0629-1.14) 10 (-12-25) 

Under 10 0.325 (0.147-0.663)* 0.156 (0.0352-0.584)* -2 (-19-23) 

MBA IgA 
LTB 

Female 0.796 (0.534-1.18) 0.666 (0.274-1.49) 3 (-7-20) 

O Blood 1.29 (0.888-1.89) 0.801 (0.356-1.67) 5 (-5-16) 

Ogawa 1.26 (0.776-2.06) 1.14 (0.44-2.39) 2 (-13-12) 

Under 10 0.933 (0.632-1.38) 1.4 (0.627-2.86) 0 (-9-10) 

MBA IgA 
LTh 

Female 1.07 (0.665-1.7) 0.592 (0.272-1.28) 6 (-5-24) 

O Blood 1.37 (0.878-2.16) 0.743 (0.341-1.53) 5 (-4-16) 

Ogawa 1.43 (0.775-2.49) 1.21 (0.469-2.76) 4 (-9-13) 

Under 10 0.851 (0.545-1.34) 1.57 (0.728-3.32) 1 (-9-10) 

MBA IgA 
O139 

Female 1.11 (0.703-1.76) 0.432 (0.227-0.792)* -4 (-13-37) 

O Blood 1.19 (0.777-1.86) 0.616 (0.324-1.18) -2 (-13-19) 

Ogawa 1.18 (0.627-2.14) 1.15 (0.551-2.18) -4 (-56-8) 

Under 10 0.485 (0.334-0.702)* 0.831 (0.418-1.56) -4 (-24-7) 

MBA IgA 
Ogawa 
OSP 

Female 1.48 (0.812-2.68) 0.334 (0.0942-1.01) -9 (-33-23) 

O Blood 1.31 (0.726-2.36) 1.48 (0.517-3.68) -11 (-43-16) 

Ogawa 3 (1.58-5.81)* 1.17 (0.342-3.05) 26 (1-48)* 

Under 10 0.377 (0.216-0.652)* 0.273 (0.0803-0.809)* 33 (-4-83) 

MBA IgA 
Sialidase 

Female 1.01 (0.657-1.54) 0.72 (0.429-1.24) -5 (-23-32) 

O Blood 1.22 (0.813-1.86) 0.862 (0.501-1.43) 4 (-15-42) 

Ogawa 1.47 (0.866-2.42) 0.812 (0.411-1.44) 3 (-22-28) 

Under 10 0.651 (0.451-0.961)* 0.752 (0.443-1.31) -9 (-38-9) 

MBA IgA 
TcpA 

Female 1.11 (0.72-1.73) 0.554 (0.26-1.1) -5 (-19-15) 

O Blood 1.07 (0.686-1.67) 0.537 (0.24-1.06) 15 (2-36)* 

Ogawa 1.44 (0.846-2.5) 0.267 (0.097-0.555)* 9 (-2-23) 
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Marker Covariate 
Ratio of 

Baseline Values 
Ratio of 

Fold-Change Values 
Difference in days 

of Half-Life 

Under 10 0.5 (0.352-0.709)* 0.336 (0.158-0.665)* -9 (-21-7) 

MBA IgA 
VCC 

Female 1.21 (0.81-1.83) 0.941 (0.491-1.62) 10 (-4-31) 

O Blood 1.04 (0.699-1.54) 0.646 (0.338-1.09) 9 (-4-26) 

Ogawa 1.09 (0.647-1.8) 0.428 (0.175-0.798)* 3 (-12-14) 

Under 10 0.639 (0.443-0.924)* 0.568 (0.289-0.998)* -6 (-19-8) 

MBA IgG 
CTHT 

Female 0.541 (0.332-0.878)* 1.48 (0.769-2.78) 28 (-17-77) 

O Blood 0.965 (0.583-1.62) 0.794 (0.426-1.47) -7 (-53-42) 

Ogawa 0.883 (0.479-1.63) 1.75 (0.835-3.48) 59 (12-98)* 

Under 10 1.92 (1.2-3.05)* 1.16 (0.621-2.21) -34 (-87-11) 

MBA IgG 
CtxB 

Female 0.807 (0.444-1.42) 1.07 (0.553-2.03) 32 (-13-84) 

O Blood 0.686 (0.389-1.21) 1.05 (0.563-1.93) 10 (-35-60) 

Ogawa 1.26 (0.618-2.61) 1.25 (0.593-2.61) 44 (-8-88) 

Under 10 1.66 (0.93-2.93) 1.05 (0.559-1.99) -20 (-70-25) 

MBA IgG 
Flu 

Female 1.41 (0.306-6.22) 0.836 (0.483-1.57) -2 (-67-55) 

O Blood 1.3 (0.292-5.02) 0.671 (0.38-1.18) -4 (-111-81) 

Ogawa 4.46 (0.76-27.6) 0.64 (0.299-1.14) -2 (-33-87) 

Under 10 0.347 (0.0889-1.51) 0.68 (0.352-1.27) -3 (-109-58) 

MBA IgG 
Inaba 
OSP 

Female 1.31 (0.738-2.32) 0.223 (0.0859-0.567)* -76 (-162--12)* 

O Blood 1.65 (0.908-3.05) 0.857 (0.328-2.03) -116 (-336-14) 

Ogawa 0.971 (0.457-2.43) 0.306 (0.102-0.7)* 20 (-355-100) 

Under 10 0.84 (0.451-1.84) 0.198 (0.0634-0.525)* 333 (-77-945) 

MBA IgG 
LTB 

Female 0.6 (0.361-0.986)* 1.21 (0.638-2.19) 24 (-8-60) 

O Blood 0.877 (0.532-1.44) 0.938 (0.513-1.61) 1 (-32-35) 

Ogawa 1.32 (0.723-2.47) 1.29 (0.632-2.36) 34 (-2-63) 

Under 10 1.23 (0.756-2.01) 1.53 (0.853-2.68) -17 (-54-15) 

MBA IgG 
LTh 

Female 0.727 (0.398-1.33) 1.06 (0.498-2.15) 28 (-4-65) 

O Blood 0.979 (0.535-1.76) 0.903 (0.455-1.75) 4 (-27-37) 

Ogawa 1.24 (0.575-2.62) 1.46 (0.653-2.86) 34 (-2-62) 

Under 10 1.5 (0.843-2.72) 1.55 (0.793-3.03) -11 (-44-20) 

Female 0.583 (0.252-0.892)* 0.843 (0.563-1.22) 0 (-125-237) 
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Marker Covariate 
Ratio of 

Baseline Values 
Ratio of 

Fold-Change Values 
Difference in days 

of Half-Life 

MBA IgG 
O139 

O Blood 1.16 (0.743-1.8) 0.649 (0.453-0.981)* -105 (-240-37) 

Ogawa 1.08 (0.619-1.89) 0.741 (0.423-1.18) 75 (-68-219) 

Under 10 0.876 (0.566-1.34) 0.795 (0.549-1.15) -80 (-262-59) 

MBA IgG 
Ogawa 
OSP 

Female 0.971 (0.46-2.08) 0.444 (0.135-1.23) 7 (-255-343) 

O Blood 1.53 (0.753-3.09) 1.45 (0.471-3.81) -280 (-681--20)* 

Ogawa 1.8 (0.892-4.08) 0.962 (0.284-2.52) 220 (-8-400) 

Under 10 0.775 (0.41-1.46) 0.254 (0.08-0.732)* 645 (262-1857)* 

MBA IgG 
Sialidase 

Female 0.902 (0.588-1.39) 0.848 (0.591-1.23) 33 (-78-555) 

O Blood 1.24 (0.826-1.91) 0.765 (0.542-1.09) -41 (-245-134) 

Ogawa 0.756 (0.462-1.29) 0.889 (0.551-1.24) 73 (-12-217) 

Under 10 0.819 (0.549-1.22) 0.673 (0.488-0.948)* -72 (-238-51) 

MBA IgG 
TcpA 

Female 1.28 (0.805-2.05) 0.553 (0.27-1.03) -31 (-132-150) 

O Blood 0.993 (0.64-1.53) 0.473 (0.234-0.885)* -152 (-408--17)* 

Ogawa 1.39 (0.821-2.48) 0.252 (0.102-0.515)* 37 (-45-133) 

Under 10 0.829 (0.521-1.32) 0.334 (0.173-0.623)* 67 (-79-345) 

MBA IgG 
VCC 

Female 0.898 (0.539-1.46) 1.45 (0.95-2.15) 48 (-98-150) 

O Blood 0.817 (0.497-1.32) 0.775 (0.479-1.18) -69 (-199-29) 

Ogawa 0.924 (0.505-1.69) 0.562 (0.269-0.976)* 66 (-13-173) 

Under 10 0.749 (0.457-1.19) 0.855 (0.529-1.3) -20 (-157-103) 

MBA IgM 
CTHT 

Female 1.42 (0.896-2.29) 0.734 (0.388-1.31) -5 (-39-99) 

O Blood 0.745 (0.459-1.21) 0.661 (0.337-1.19) -8 (-59-107) 

Ogawa 0.455 (0.253-0.835)* 0.734 (0.326-1.29) 10 (-32-104) 

Under 10 0.986 (0.603-1.62) 1.2 (0.653-2.15) -33 (-225-7) 

MBA IgM 
CtxB 

Female 1.52 (0.796-2.87) 0.63 (0.312-1.16) 11 (-68-188) 

O Blood 0.599 (0.32-1.09) 0.901 (0.458-1.62) -21 (-180-107) 

Ogawa 0.338 (0.148-0.72)* 1.04 (0.499-1.81) 8 (-283-120) 

Under 10 1.06 (0.551-1.99) 1.08 (0.583-1.91) -72 (-248-33) 

MBA IgM 
Flu 

Female 1.85 (1.01-3.38)* 0.795 (0.413-1.5) -2 (-95-166) 

O Blood 0.607 (0.341-1.1) 0.692 (0.362-1.32) -13 (-160-142) 

Ogawa 0.49 (0.238-1.02) 0.47 (0.171-0.955)* 28 (-128-158) 
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Marker Covariate 
Ratio of 

Baseline Values 
Ratio of 

Fold-Change Values 
Difference in days 

of Half-Life 

Under 10 1.25 (0.684-2.26) 1.01 (0.552-1.85) -9 (-229-88) 

MBA IgM 
Inaba 
OSP 

Female 2.91 (1.18-7.8)* 0.463 (0.145-1.27) -13 (-29-4) 

O Blood 0.97 (0.383-2.48) 1.17 (0.412-2.8) 19 (4-36)* 

Ogawa 0.34 (0.115-1.02) 0.616 (0.162-1.69) 19 (1-34)* 

Under 10 0.673 (0.269-1.71) 0.409 (0.12-1.19) -17 (-32-0) 

MBA IgM 
LTB 

Female 1.46 (0.734-2.85) 0.681 (0.362-1.26) 0 (-18-158) 

O Blood 0.678 (0.342-1.29) 0.952 (0.503-1.74) -4 (-129-33) 

Ogawa 0.43 (0.195-1.01) 0.717 (0.304-1.32) -2 (-87-50) 

Under 10 1.21 (0.615-2.32) 0.902 (0.477-1.68) -11 (-166-24) 

MBA IgM 
LTh 

Female 1.25 (0.649-2.3) 0.927 (0.431-1.92) 0 (-29-177) 

O Blood 0.69 (0.381-1.28) 0.988 (0.476-2.13) -4 (-225-30) 

Ogawa 0.506 (0.224-1.08) 0.866 (0.327-1.76) -2 (-118-106) 

Under 10 1.15 (0.618-2.12) 1.01 (0.483-2.16) -6 (-239-18) 

MBA IgM 
O139 

Female 1.44 (0.806-2.48) 0.665 (0.455-0.979)* -3 (-68-216) 

O Blood 0.809 (0.463-1.43) 0.885 (0.603-1.34) -17 (-436-95) 

Ogawa 0.49 (0.255-0.978)* 0.802 (0.451-1.23) 0 (-243-317) 

Under 10 0.601 (0.349-1.01) 0.763 (0.524-1.13) -56 (-368-35) 

MBA IgM 
Ogawa 
OSP 

Female 1.49 (0.595-3.71) 0.312 (0.0998-0.939)* 9 (-22-51) 

O Blood 1.48 (0.619-3.65) 0.867 (0.28-2.45) -6 (-36-24) 

Ogawa 0.994 (0.334-3.14) 4.05 (1.19-10.9)* 35 (-9-61) 

Under 10 0.536 (0.224-1.29) 0.772 (0.239-2.28) -6 (-35-25) 

MBA IgM 
Sialidase 

Female 2.06 (1.01-4.15)* 1.02 (0.438-2.51) 1 (-43-191) 

O Blood 1.17 (0.57-2.34) 0.709 (0.314-1.55) -13 (-220-42) 

Ogawa 0.559 (0.231-1.32) 0.592 (0.168-1.35) -1 (-179-87) 

Under 10 0.795 (0.409-1.56) 0.87 (0.38-1.9) -6 (-159-84) 

MBA IgM 
TcpA 

Female 1.69 (0.679-4.29) 0.966 (0.386-1.7) 202 (-26-4953) 

O Blood 1.06 (0.455-2.68) 0.717 (0.425-1.17) -151 (-817-32) 

Ogawa 0.629 (0.21-1.85) 0.776 (0.325-1.42) 123 (-49-790) 

Under 10 1.17 (0.493-2.85) 0.613 (0.377-1.02) -204 (-757--2)* 

Female 1.61 (0.84-3.05) 1.1 (0.644-1.83) 1 (-57-90) 
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Marker Covariate 
Ratio of 

Baseline Values 
Ratio of 

Fold-Change Values 
Difference in days 

of Half-Life 

MBA IgM 
VCC 

O Blood 0.561 (0.282-1.05) 0.798 (0.462-1.3) -8 (-81-76) 

Ogawa 0.449 (0.202-1) 0.586 (0.276-1.02) 13 (-32-185) 

Under 10 0.869 (0.465-1.64) 0.817 (0.463-1.34) -8 (-116-42) 

Vibriocida
l 
Inaba   

Female 3.46 (1.11-10.7)* 0.787 (0.225-2.56) -35 (-89-22) 

O Blood 1.37 (0.46-4.39) 0.652 (0.195-1.99) 17 (-38-87) 

Ogawa 0.357 (0.0861-1.55) 0.295 (0.0591-1.32) 34 (-22-89) 

Under 10 0.938 (0.311-2.89) 0.505 (0.152-1.53) 19 (-33-91) 

Vibriocida
l 
Ogawa   

Female 0.495 (0.176-1.42) 0.595 (0.147-2.13) 448 (231-807)* 

O Blood 1.35 (0.494-4.26) 0.846 (0.222-2.71) -44 (-248-76) 

Ogawa 0.488 (0.147-1.67) 1.24 (0.287-4.06) 118 (17-268)* 

Under 10 0.22 (0.0815-0.596)* 1.46 (0.405-4.59) 240 (105-462)* 
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Figure B.20. Cross-validated receiver operator characteristic curves and 
permutation importance for random forest models using 45-day, 120-day, 
200-day, and 300-day infection window 
Permutation importance is shown along the x-axis for 21 predictors of random 
forest models containing multiplex bead assay (MBA) markers (except for those 
binding to CT-H, LT-H, and LT-B), age, sex, and blood-type. 
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Figure B.21. Comparison of cross-validated area under the ROC curve 
between ensemble and random forest models 
Models were fit to 18 MBA markers and 3 demographic variables (age, sex, and 
blood type). The ensemble model was created using the R package 
SuperLearner. Four different types of models were combined into the ensemble: 
Random Forest models (ranger), Lasso and Elastic-Net Regularized Generalized 
Linear Models (glmnet), Bayesian Additive Regression Trees (bartMachine), and 
Extreme Gradient Boosting (xgboost). All models were unweighted. 

 
  



 

 172 

Table B.5. Comparison of cross-validated AUC between multiple marker 
random forest models using 45-day, 120-day, 200-day, and 300-day 
infection windows 

Random forest models were fit using a the specified marker set and individual 
level factors including age, sex, and blood group. Mean and 95% confidence 
intervals for cvAUC are reported. 

Marker Set 45-day 120-day 200-day 300-day 

All MBA 
Markers 

0.95 (0.93-0.97) 0.92 (0.89-0.94) 0.92 (0.89-0.94) 0.90 (0.87-0.94) 

ELISA 
Markers 

0.94 (0.91-0.98) 0.87 (0.84-0.91) 0.80 (0.75-0.85) 0.77 (0.72-0.83) 

IgA MBA 
Markers 

0.93 (0.90-0.96) 0.89 (0.86-0.92) 0.88 (0.86-0.91) 0.85 (0.81-0.88) 

IgG MBA 
Markers 0.93 (0.90-0.96) 0.90 (0.87-0.92) 0.90 (0.87-0.93) 0.87 (0.82-0.91) 

IgM MBA 
Markers 

0.91 (0.87-0.95) 0.85 (0.81-0.88) 0.81 (0.76-0.85) 0.79 (0.74-0.84) 

Vibriocidal 
Markers 

0.92 (0.88-0.95) 0.86 (0.82-0.89) 0.82 (0.78-0.87) 0.84 (0.80-0.88) 

Vibriocidal & 
ELISA Markers 

0.97 (0.95-0.99) 0.92 (0.89-0.94) 0.87 (0.84-0.90) 0.88 (0.85-0.91) 
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Table B.6. Comparison of cross-validated AUC between multiplex bead 
assay IgG multiple marker random forest models using 45-day, 120-day, 
200-day, and 300-day infection windows 

Random forest models were using a reduced panel of MBA IgG markers and 
individual level factors including age, sex, and blood group. Mean and 95% 
confidence intervals for cvAUC are reported. 

MBA Panel for IgG 45-day 120-day 200-day 300-day 

CT-B 0.90 (0.87-0.94) 0.88 (0.85-0.92) 0.85 (0.81-0.89) 0.82 (0.78-0.86) 

+ Ogawa OSP 0.92 (0.89-0.96) 0.89 (0.86-0.92) 0.88 (0.85-0.92) 0.87 (0.83-0.91) 

+ Inaba OSP 0.92 (0.89-0.96) 0.88 (0.85-0.92) 0.89 (0.86-0.92) 0.86 (0.82-0.90) 

+ TcpA 0.93 (0.90-0.96) 0.90 (0.88-0.93) 0.90 (0.87-0.93) 0.88 (0.85-0.91) 

+ VCC 0.92 (0.89-0.95) 0.89 (0.87-0.92) 0.89 (0.86-0.92) 0.87 (0.84-0.91) 

+ Sialidase 0.93 (0.90-0.96) 0.90 (0.87-0.93) 0.90 (0.87-0.93) 0.87 (0.83-0.92) 
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Figure B.22. Comparison of cross-validated AUC across random forest 
models trained on traditional and MBA serological markers excluding anti-
CT-B markers for 45-day, 120-day, 200-day, and 300-day infection windows 
Random forest models were fit using a the specified marker set and individual 
level factors including age, sex, and blood group (A). Estimated mean and 95% 
confidence intervals for cvAUC are reported. (B-D) Models fit to reduced panels 
of IgG, IgA, and IgM MBA markers are shown. 
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Figure B.23. Marker cutoffs to detect recent infection within the past 120 
days 
Individuals were considered seropositive if their RAU was above the cut-off for 
both anti-Ogawa OSP IgG and anti-CT-B IgG. Sensitivity and specificity were 
estimated using a hierarchical logistic regression model with only an intercept 
fixed effect. The red dot represents the point where specificity is ≥ 90%, anti-
OgawaOSP IgG RAU ≥-4.0, and then maximizing sensitivity. 
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Appendix C: Supplement to Conducting cholera serosurveillance in 

partially vaccinated populations 

Method C.1. Equations for Bayesian framework to estimate seroincidence 
using known vaccination status 
Known vaccination status adjustment 
We sought to estimate seroincidence (i.e. 𝜆) and vaccination coverage (i.e. 𝛾) in 
the context of a simulated serosurvey occurring shortly after a vaccination 
campaign using serological data and vaccination status. Vaccination status (𝑉𝑖) of 
individuals (indexed by 𝑖) equals either 1 (vaccinated) or 0 (unvaccinated). 𝑆𝑖 is 
the serostatus as determined by a classification model prediction from serological 
data. It can equal either 1 (seropositive) or 0 (seronegative). 𝑅𝑖 is the true 
infection status, equaling either 1 (recently infected) or 0 (not recently infected). 
We used estimates of sensitivity and specificity for 𝑃𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖), including the 
estimated uncertainty in each parameter when only 3 IgG markers are measured. 
We assumed that the sensitivity of detecting recent infection was the same 
regardless of vaccination status (i.e. 𝑃𝑟(𝑆𝑖|𝑉𝑖 = 1, 𝑅𝑖 = 1) = 𝑃𝑟(𝑆𝑖|𝑉𝑖 = 0,𝑅𝑖 = 1)). 
Here is the likelihood function used in the framework: 

𝑃𝑟(𝑆, 𝑉⃗⃗|𝜆, 𝛾) ≈ ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖 , 𝑉𝑖|𝜆, 𝛾)

= ∏∑𝑃

1

𝑟=0

𝑛

𝑖=1

𝑟(𝑆𝑖 , 𝑉𝑖|𝑅𝑖 = 𝑟, 𝜆, 𝛾) × 𝑃𝑟(𝑅𝑖 = 𝑟|𝜆, 𝛾)

= ∏∑𝑃

1

𝑟=0

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖 = 𝑟, 𝜆, 𝛾) × 𝑃𝑟(𝑉𝑖|𝑅𝑖 = 𝑟, 𝜆, 𝛾) × 𝑃𝑟(𝑅𝑖 = 𝑟|𝜆, 𝛾)

= ∏∑𝑃

1

𝑟=0

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖 = 𝑟) × 𝑃𝑟(𝑉𝑖|𝛾) × 𝑃𝑟(𝑅𝑖 = 𝑟|𝜆)

= ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖 = 0) × 𝑃𝑟(𝑉𝑖|𝛾) × 𝑃𝑟(𝑅𝑖 = 0|𝜆)

+𝑃𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖 = 1) × 𝑃𝑟(𝑉𝑖|𝛾) × 𝑃𝑟(𝑅𝑖 = 1|𝜆)

= ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖 = 0) × 𝑃𝑟(𝑉𝑖|𝛾) × (1 − 𝜆)

+𝑃𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖 = 1) × 𝑃𝑟(𝑉𝑖|𝛾) × 𝜆
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Ignoring vaccination status 
For the ignoring vaccination status “method”, we modified the equations for the 
known vaccination status adjustment by simply setting all individuals to be 
considered unvaccinated. Without any information about vaccination status, we 
do not estimate vaccination coverage, 𝛾. We used estimates of sensitivity and 
specificity for 𝑃𝑟(𝑆𝑖|𝑉𝑖 = 0, 𝑅𝑖), including the estimated uncertainty in each 
parameter when only 3 IgG markers are measured. Here is the likelihood 
function used in the framework: 

𝑃𝑟(𝑆|𝜆) ≈ ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑉𝑖 = 0,𝑅𝑖 = 0) × (1 − 𝜆)

+𝑃𝑟(𝑆𝑖|𝑉𝑖 = 0,𝑅𝑖 = 1) × 𝜆
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Method C.2. Equations for Bayesian framework to estimate seroincidence 
using additional serological data 
We sought to estimate seroincidence (i.e. 𝜆) and vaccination coverage (i.e. 𝛾). 𝑆𝑖 
is the serostatus as determined by a classification model using serological data 
from 15 markers. It can equal either 3 (seropositive, recently infected), 2 
(seropositive, recently vaccinated but not recently infected), and 1 
(seronegative). 𝑅𝑖 is the true infection status, equaling either 1 (recently infected) 
or 0 (not recently infected). 𝑉𝑖 is the true vaccination status, equaling either 1 
(recently vaccinated) or 0 (not recently vaccinated). We used estimates of 
sensitivity and specificity for 𝑃𝑟(𝑆𝑖|𝑉𝑖 , 𝑅𝑖), including the estimated uncertainty in 
each parameter when 15 serological markers are measured. We assumed that 
the sensitivity of detecting recent infection was the same regardless of 
vaccination status (i.e. 𝑃𝑟(𝑆𝑖|𝑉𝑖 = 1,𝑅𝑖 = 1) = 𝑃𝑟(𝑆𝑖|𝑉𝑖 = 0,𝑅𝑖 = 1)). Here is the 
likelihood used in the framework: 
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𝑃𝑟(𝑆|𝜆, 𝛾) ≈ ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝜆, 𝛾)

= ∏∑∑𝑃

1

𝑣=0

1

𝑟=0

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑅𝑖 = 𝑟, 𝑉𝑖 = 𝑣, 𝜆, 𝛾) × 𝑃𝑟(𝑅𝑖 = 𝑟, 𝑉𝑖 = 𝑣|𝜆, 𝛾)

= ∏∑∑𝑃

1

𝑣=0

1

𝑟=0

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑅𝑖 = 𝑟, 𝑉𝑖 = 𝑣) × 𝑃𝑟(𝑅𝑖 = 𝑟, 𝑉𝑖 = 𝑣|𝜆, 𝛾)

= ∏∑∑𝑃

1

𝑣=0

1

𝑟=0

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑅𝑖 = 𝑟, 𝑉𝑖 = 𝑣) × 𝑃𝑟(𝑅𝑖 = 𝑟|𝜆) × 𝑃𝑟(𝑉𝑖 = 𝑣|𝛾)

= ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑅𝑖 = 1,𝑉𝑖 = 1) × 𝑃𝑟(𝑅𝑖 = 1|𝜆) × 𝑃𝑟(𝑉𝑖 = 1|𝛾)

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 1, 𝑉𝑖 = 0) × 𝑃𝑟(𝑅𝑖 = 1|𝜆) × 𝑃𝑟(𝑉𝑖 = 0|𝛾)

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 0, 𝑉𝑖 = 1) × 𝑃𝑟(𝑅𝑖 = 0|𝜆) × 𝑃𝑟(𝑉𝑖 = 1|𝛾)

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 0, 𝑉𝑖 = 0) × 𝑃𝑟(𝑅𝑖 = 0|𝜆) × 𝑃𝑟(𝑉𝑖 = 0|𝛾)

= ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑅𝑖 = 1,𝑉𝑖 = 1) × 𝜆𝛾

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 1, 𝑉𝑖 = 0) × 𝜆(1 − 𝛾)

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 0, 𝑉𝑖 = 1) × (1 − 𝜆)𝛾

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 0, 𝑉𝑖 = 0) × (1 − 𝜆)(1 − 𝛾)

Assume 𝑆𝑖|𝑅𝑖 = 1 does not depend 𝑉𝑖

= ∏𝑃

𝑛

𝑖=1

𝑟(𝑆𝑖|𝑅𝑖 = 1) × 𝜆

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 0, 𝑉𝑖 = 1) × (1 − 𝜆)𝛾

+𝑃𝑟(𝑆𝑖|𝑅𝑖 = 0, 𝑉𝑖 = 0) × (1 − 𝜆)(1 − 𝛾)
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Figure C.1. Timing of sample collection among Haitian vaccinees relative to 
date of first dose vaccination 
Each point represents a blood sample collection occurred for a vaccinated 
volunteer (A). The daily number of samples is shown on the y-axis (B). Red-
dashed line indicates timing of second dose at 14 days. 
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Figure C.2. Comparison of baseline antibody measurements among Haitian 
vaccinees and Bangladeshi cholera cases 
Baseline antibody measurements from cases (2-4 days after infection) and 
vaccinees (day of first dose) are shown on the y-axis (A). Ratios of the geometric 
mean MFI are shown on the y-axis with 95% bootstrapped confidence intervals 
indicated by vertical lines (B). 
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Figure C.3. Multiplex bead assay net median fluorescence intensity 
measurements of IgG, IgM, and IgA against other antigens among Haitian 
vaccinated volunteers 
Y-axis indicates the log (base 10) of the Net MFI. X-axis is square-root 
transformed. Each colored line indicates individual trajectories over time (dark 
blue: children, gold: adults). Rug plots show the antibody measurements from the 
cohort in Bangladesh (red: Case measurements inside the 120-day infection 
window; black: Uninfected household contacts and case measurements outside 
a 120-day infection window). The black dotted line indicates the timing of second 
dose vaccination. 
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Figure C.4. Proportion of individuals with a peak value on a given day, by 
age group and antibody 
Color indicates the proportion of cases(A) and vaccinees (B) whose peak value 
fall on around a certain day since infection or first dose vaccination. Proportions 
are stratified by age group and antibody. 
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Figure C.5. Posterior density of half-life and average fold-change from 
exponential kinetic models for anti-OSP, anti-CT-B, and anti-TcpA 
antibodies among vaccinees and cases 
Points represent 1000 draws from the posterior distribution for the average 
individual (red: children, pink: adults) and vaccinees (light blue: adults) and solid 
lines highlighting a contour containing the top 95% of all estimates. Estimates of 
the average fold change for child vaccines are shown as a rug plot (dark blue) 
with solid lines indicating the 95% credible interval. 
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Figure C.6. Posterior density of half-life and average fold-change from 
exponential kinetic models for additional antibody measurements among 
vaccinees and cases 
Points represent 1000 draws from the posterior distribution for the average 
individual (red: children, pink: adults) and vaccinees (light blue: adults) and solid 
lines highlighting a contour containing the top 95% of all estimates. Estimates of 
the average fold change for child vaccines are shown as a rug plot (dark blue) 
with solid lines indicating the 95% credible interval. 
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Table C.1. Estimated duration of half-life and average fold-change from 
exponential kinetic models for vaccinees and cases 

The median estimate duration of half-life (in days) and the median estimate 
increase in fold-change for the average individual are shown below. 95% 
Bayesian Credible Intervals are shown in parentheses. 

Isotype Antigen Status 
Average Fold-Change 

(95% CI) 

Half Life (95% CI) 

in days 

IgG CT-B Adult Case 16.5 (9.1-30.9) 145 (94-238) 

Adult Vaccinee 1.2 (1.1-1.4) 6 (4-12) 

Child Case 22.2 (16.6-29.5) 123 (98-156) 

Child Vaccinee 1.1 (1-1.4) 10 (5-73) 

Ogawa OSP Adult Case 38.4 (11.3-134.5) 116 (84-168) 

Adult Vaccinee 6.4 (3.9-11.1) 114 (67-193) 

Child Case 9.9 (5.2-19.7) 641 (389-1153) 

Child Vaccinee 5.5 (2.2-15.2) 156 (63-1635) 

Inaba OSP Adult Case 33.9 (9.2-121.2) 86 (65-113) 

Adult Vaccinee 4.6 (3-7.6) 101 (62-163) 

Child Case 6 (3.5-10.4) 392 (201-715) 

Child Vaccinee 8.5 (2.9-28.9) 179 (62-3296) 

O139 OSP Adult Case 1.6 (1.2-2.3) 19 (6-184) 

Adult Vaccinee 1.4 (1.2-1.7) 14 (6-98) 

Child Case 1.9 (1.5-2.4) 83 (20-218) 

Child Vaccinee 1.2 (1.1-1.4) 15 (5-147) 

TcpA Adult Case 4.4 (2.4-8.8) 82 (42-194) 

Adult Vaccinee 1.2 (1.1-1.4) 8 (4-29) 

Child Case 3 (1.9-4.6) 100 (57-190) 

Child Vaccinee 1.2 (1.1-1.3) 12 (5-94) 

VCC Adult Case 2.5 (1.5-4.5) 53 (31-97) 

Adult Vaccinee 1.2 (1.1-1.4) 7 (4-16) 

Child Case 2 (1.6-2.6) 89 (35-186) 

Child Vaccinee 1.1 (1-1.3) 10 (5-50) 

Sialidase Adult Case 2.9 (1.7-5.4) 55 (29-111) 
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Isotype Antigen Status 
Average Fold-Change 

(95% CI) 

Half Life (95% CI) 

in days 

Adult Vaccinee 1.1 (1.1-1.3) 7 (4-16) 

Child Case 1.4 (1.2-1.7) 19 (6-122) 

Child Vaccinee 1.2 (1-1.4) 9 (4-52) 

CT-H Adult Case 14.7 (7.3-28.6) 116 (76-187) 

Adult Vaccinee 1.3 (1.1-1.5) 6 (3-14) 

Child Case 18.2 (12.6-25.3) 99 (76-131) 

Child Vaccinee 1.1 (1-1.3) 11 (5-129) 

LT-B Adult Case 6.4 (3.7-11.1) 70 (43-121) 

Adult Vaccinee 1.2 (1.1-1.4) 7 (4-20) 

Child Case 10.9 (7.7-15.6) 67 (50-90) 

Child Vaccinee 1.2 (1-1.4) 11 (5-94) 

LT-H Adult Case 7.7 (4.4-13.6) 80 (53-123) 

Adult Vaccinee 1.2 (1.1-1.4) 6 (4-14) 

Child Case 15.3 (11.2-21.4) 87 (70-110) 

Child Vaccinee 1.2 (1.1-1.4) 10 (5-85) 

Flu Adult Case 1.4 (1.1-2) 13 (5-427) 

Adult Vaccinee 1.3 (1.1-1.6) 8 (4-36) 

Child Case 1.4 (1.1-1.8) 12 (5-74) 

Child Vaccinee 1.3 (1.1-1.7) 8 (4-36) 

IgA CT-B Adult Case 24.7 (11.8-53.7) 33 (23-51) 

Adult Vaccinee 1.1 (1-1.3) 6 (4-19) 

Child Case 31.6 (19.6-54) 27 (21-38) 

Child Vaccinee 1.2 (1-1.4) 10 (5-228) 

Ogawa OSP Adult Case 55.4 (18.3-205) 35 (27-46) 

Adult Vaccinee 4.8 (3.2-7.2) 32 (23-44) 

Child Case 17.6 (8.5-36.8) 46 (26-78) 

Child Vaccinee 9.6 (3.5-29.2) 43 (19-250) 

Inaba OSP Adult Case 74.9 (18.7-377.1) 32 (25-41) 

Adult Vaccinee 6.2 (3.9-9.7) 32 (24-42) 
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Isotype Antigen Status 
Average Fold-Change 

(95% CI) 

Half Life (95% CI) 

in days 

Child Case 15.8 (7.3-33.3) 29 (20-45) 

Child Vaccinee 8.2 (3.2-21.4) 42 (16-401) 

O139 OSP Adult Case 3.3 (1.9-6.7) 15 (7-36) 

Adult Vaccinee 1.6 (1.3-2) 93 (11-525) 

Child Case 3.4 (2.3-5.2) 9 (5-21) 

Child Vaccinee 2.7 (1.4-5.4) 119 (30-2612) 

TcpA Adult Case 4.2 (2.1-9.1) 24 (12-46) 

Adult Vaccinee 1.1 (1-1.3) 7 (4-29) 

Child Case 3.5 (2.2-6.2) 13 (7-31) 

Child Vaccinee 1.2 (1.1-1.4) 10 (5-43) 

VCC Adult Case 4.4 (2.2-9.6) 21 (13-36) 

Adult Vaccinee 1.2 (1.1-1.3) 7 (4-17) 

Child Case 4.1 (2.5-6.7) 18 (11-28) 

Child Vaccinee 1.3 (1.1-1.7) 14 (5-206) 

Sialidase Adult Case 4 (1.7-10.3) 17 (11-27) 

Adult Vaccinee 1.1 (1-1.3) 7 (4-26) 

Child Case 1.8 (1.4-2.6) 10 (5-29) 

Child Vaccinee 1.2 (1.1-1.3) 10 (5-61) 

CT-H Adult Case 15.1 (6.8-33.7) 31 (18-53) 

Adult Vaccinee 1.2 (1.1-1.4) 7 (4-18) 

Child Case 23.6 (14.4-39.7) 21 (15-29) 

Child Vaccinee 1.2 (1.1-1.5) 9 (5-47) 

LT-B Adult Case 9.3 (4.6-17.7) 22 (15-34) 

Adult Vaccinee 1.1 (1-1.3) 7 (4-24) 

Child Case 16.3 (9.8-26.9) 19 (15-26) 

Child Vaccinee 1.2 (1-1.4) 9 (4-37) 

LT-H Adult Case 15 (8.1-27.1) 24 (17-34) 

Adult Vaccinee 1.1 (1-1.3) 7 (4-20) 

Child Case 26.9 (16.7-41.9) 23 (18-30) 
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Isotype Antigen Status 
Average Fold-Change 

(95% CI) 

Half Life (95% CI) 

in days 

Child Vaccinee 1.2 (1.1-1.4) 10 (4-61) 

Flu Adult Case 1.6 (1.2-2.5) 11 (5-51) 

Adult Vaccinee 1.2 (1.1-1.5) 8 (4-58) 

Child Case 1.5 (1.2-2.1) 11 (5-60) 

Child Vaccinee 1.1 (1.1-1.3) 10 (5-61) 

IgM CT-B Adult Case 1.8 (1.3-2.6) 34 (8-210) 

Adult Vaccinee 1.2 (1.1-1.4) 7 (4-17) 

Child Case 1.9 (1.6-2.5) 68 (19-177) 

Child Vaccinee 1.2 (1-1.4) 8 (4-32) 

Ogawa OSP Adult Case 38.6 (14.5-115.2) 54 (39-74) 

Adult Vaccinee 5 (3.4-7.5) 51 (37-75) 

Child Case 32 (16.4-67) 48 (35-67) 

Child Vaccinee 4.9 (2.7-9.4) 58 (19-866) 

Inaba OSP Adult Case 24.7 (9.1-75.2) 44 (33-59) 

Adult Vaccinee 2.8 (2.1-3.9) 32 (21-46) 

Child Case 11.8 (6.2-22.1) 22 (16-31) 

Child Vaccinee 2.6 (1.7-4.5) 29 (9-424) 

O139 OSP Adult Case 1.5 (1.2-2.2) 28 (6-238) 

Adult Vaccinee 1.7 (1.4-2.1) 55 (18-133) 

Child Case 1.4 (1.2-1.8) 19 (5-331) 

Child Vaccinee 1.5 (1.2-2) 20 (7-105) 

TcpA Adult Case 1.7 (1.3-2.2) 37 (10-270) 

Adult Vaccinee 1.3 (1.1-1.6) 7 (4-27) 

Child Case 2.1 (1.6-3) 9 (4-22) 

Child Vaccinee 1.2 (1.1-1.5) 8 (4-30) 

VCC Adult Case 1.5 (1.2-2) 19 (6-210) 

Adult Vaccinee 1.2 (1.1-1.4) 6 (4-14) 

Child Case 1.4 (1.2-1.7) 16 (5-100) 

Child Vaccinee 1.2 (1.1-1.5) 14 (5-131) 
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Isotype Antigen Status 
Average Fold-Change 

(95% CI) 

Half Life (95% CI) 

in days 

Sialidase Adult Case 1.3 (1.1-1.8) 16 (5-146) 

Adult Vaccinee 1.2 (1.1-1.4) 6 (4-15) 

Child Case 1.4 (1.2-1.8) 29 (6-225) 

Child Vaccinee 1.2 (1.1-1.4) 9 (4-51) 

CT-H Adult Case 1.7 (1.3-2.4) 58 (9-299) 

Adult Vaccinee 1.2 (1.1-1.3) 7 (4-19) 

Child Case 2 (1.5-2.6) 12 (5-34) 

Child Vaccinee 1.2 (1-1.4) 8 (4-39) 

LT-B Adult Case 1.5 (1.2-2.1) 24 (6-272) 

Adult Vaccinee 1.1 (1-1.3) 7 (4-21) 

Child Case 1.6 (1.3-2.2) 11 (5-69) 

Child Vaccinee 1.2 (1.1-1.6) 8 (4-47) 

LT-H Adult Case 1.5 (1.2-2.2) 17 (5-174) 

Adult Vaccinee 1.2 (1.1-1.5) 7 (4-15) 

Child Case 1.8 (1.4-2.6) 10 (5-32) 

Child Vaccinee 1.3 (1.1-1.7) 9 (4-40) 

Flu Adult Case 1.4 (1.1-1.9) 14 (5-101) 

Adult Vaccinee 1.1 (1-1.3) 7 (4-22) 

Child Case 1.5 (1.2-1.8) 39 (8-156) 

Child Vaccinee 1.1 (1.1-1.4) 8 (4-31) 
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Table C.2. Number of samples from vaccinated individuals misclassified as 
recently infected by infection window 

Age Group 
Days after  

first dose 

45-day 

model 

120-day 

model 

200-day 

model 

300-day 

model 

<18 years 0 7% (1/15) 20% (3/15) 27% (4/15) 27% (4/15) 

7 20% (3/15) 47% (7/15) 53% (8/15) 60% (9/15) 

21 27% (4/15) 33% (5/15) 33% (5/15) 47% (7/15) 

18+ years 0 0% (0/36) 0% (0/36) 3% (1/36) 3% (1/36) 

7 0% (0/36) 3% (1/36) 17% (6/36) 17% (6/36) 

21 0% (0/35) 0% (0/35) 26% (9/35) 23% (8/35) 

44 0% (0/22) 0% (0/22) 14% (3/22) 14% (3/22) 

90 0% (0/34) 0% (0/34) 9% (3/34) 9% (3/34) 

180 0% (0/15) 0% (0/15) 7% (1/15) 7% (1/15) 

220 0% (0/8) 0% (0/8) 0% (0/8) 0% (0/8) 

360 0% (0/17) 0% (0/17) 0% (0/17) 0% (0/17) 
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Table C.3. Average and range of seroincidence estimates in simulated 
serological surveys 

True  

Coverage 

Days since 

second 

dose 

Ignore Known vaccination 
status Serological 

25% 7 17.5% (15.2%-19.8%) 6.6% (4.8%-8.5%) 6.4% (5.4%-8.1%) 

30 14.7% (11.4%-16.3%) 6.0% (4.6%-7.4%) 5.9% (5.0%-7.3%) 

76 9.9% (8.6%-10.9%) 6.2% (5.1%-7.6%) 6.0% (4.6%-8.4%) 

50% 7 29.7% (25.3%-31.9%) 5.7% (3.9%-7.4%) 5.7% (4.2%-7.1%) 

30 25.1% (21.8%-29.4%) 6.5% (4.8%-9.4%) 6.0% (4.1%-8.1%) 

76 14.8% (10.7%-18.6%) 6.4% (4.9%-9.8%) 6.0% (5.1%-7.5%) 

75% 7 43.5% (40.5%-49.3%) 7.5% (5.7%-9.7%) 6.6% (5.0%-7.8%) 

 30 33.8% (30.7%-40.3%) 6.6% (4.0%-10.8%) 5.5% (4.4%-7.5%) 

76 19.0% (17.3%-22.6%) 6.3% (3.6%-10.4%) 6.0% (5.0%-7.6%) 
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Table C.4. Average and range of coverage estimates in simulated 
serological surveys 

True  

Coverage 

Days since 

second dose 

Known Vaccination 

Status 
Serological 

25% 7 24.9% (22.5%-27.0%) 25.4% (22.7%-27.9%) 

30 25.4% (23.7%-27.4%) 26.6% (23.6%-29.6%) 

76 25.0% (23.8%-26.1%) 26.5% (22.2%-32.7%) 

50% 7 49.9% (49.0%-50.9%) 50.1% (47.6%-53.6%) 

30 50.1% (48.6%-51.9%) 53.8% (52.2%-55.0%) 

76 49.3% (48.4%-50.3%) 52.2% (43.9%-56.6%) 

75% 7 74.4% (73.0%-75.8%) 74.9% (72.6%-77.1%) 

 30 75.0% (74.2%-77.3%) 75.6% (70.2%-81.2%) 

76 75.3% (74.6%-76.7%) 75.5% (69.7%-80.2%) 
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