
CORESETS FOR CLUSTERING:
FOUNDATIONS AND CHALLENGES

by
Xuan Wu

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
February, 2022

© 2022 Xuan Wu
All rights reserved

Abstract

Clustering is a fundamental task in machine learning and data analysis. The main

challenge for clustering in big data sets is that classical clustering algorithms often

do not scale well. Coresets are data reduction techniques that turn big data into a

tiny proxy. Prior research has shown that coresets can provide a scalable solution to

clustering problems and imply streaming and distributed algorithms. In this work,

we aim to solve a fundamental question and two modern challenges in coresets for

clustering.

Beyond Euclidean Space: Coresets for Clustering in Euclidean space have been

well studied and coresets of constant size are known to exist. While very few results

are known beyond Euclidean space. It becomes a fundamental problem that what

kind of metric space admits constant-sized coresets for clustering. We focus on graph

metrics which is a common ambient space for clustering. We provide positive results

that assert constant-sized coresets exist in various families of graph metrics including

graphs of bounded treewidth, planar graphs and the more general excluded-minor

graphs.

Missing Value: Missing value is a common phenomenon in real data sets. Clustering

under the existence of missing values is a very challenging task. In this work, we

construct the first coresets for clustering with multiple missing values. Previously,

such coresets were only known to exist when each data point has at most one missing

value [1]. We further design a near-linear time algorithm to construct our coresets.

This algorithm implies the first near-linear time approximation scheme for k-Means

ii

clustering with missing values and improves a recent result by [2].

Simultaneous Coresets: Most classical coresets are limited to a specific clustering

objective. When there are multiple potential objectives, a stronger notion of “simulta-

neous coresets” is needed. Simultaneous coresets provide the approximations for a

family of objectives and can serve as a more flexible data reduction tool. In this work,

we design the first simultaneous coresets for a large clustering family which includes

both k-Median and k-Center.

Thesis Readers

Dr. Vladimir Braverman (Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Michael Dinitz
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Xin Li
Associate Professor
Department of Computer Science
Johns Hopkins University

iii

Dedicated to my dear parents.

I can not reach here,

without their unconditional love and support

iv

Acknowledgements

First, I would like to thank my advisor, Vladimir Braverman. Vova has given me full

academic freedom and always appreciates my results in research. It was an honor to

work with him.

I thank Shaofeng Jiang and Robert Krauthgamer who were working closely with

me in several projects. Their expertise is essential for me to find exciting results and

write my papers well.

Last but not least, I want to thank Jian Li, who brought me into the world of

theoretical computer science.

v

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . vi

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Overview of the Thesis . 2

1.1.1 Coresets for Clustering in Graph Metrics 3

1.1.2 Coresets for Ordered Weighted Clustering 4

1.1.3 Coresets for Clustering with Missing Values 4

1.1.4 The Lower Bound . 5

1.2 Preliminaries . 5

Chapter 2 Coresets for Clustering in Bounded Treewidth Graph . . 6

2.1 Introduction . 6

2.1.1 Our Results . 7

2.1.2 Technical Contributions . 8

2.1.3 Additional Related Work . 10

2.2 Preliminaries . 10

vi

2.3 Coresets for k-Median in Graph Metrics 11

2.3.1 Bounding the Shattering Dimension 15

2.3.2 Proof of the Structural Lemma 18

2.3.3 Complexity of Min-linear Functions 23

Chapter 3 Coresets for Clustering in Excluded-Minor Graphs 25

3.1 Introduction . 25

3.1.1 Our Results . 25

3.1.2 Technical Contributions . 26

3.1.3 Additional Related Work . 30

3.2 Preliminaries . 31

3.3 Framework . 34

3.3.1 Iterative Size Reduction . 35

3.3.2 Importance Sampling . 37

3.3.3 Coresets via Terminal Embedding 39

3.4 Coresets . 45

3.4.1 Excluded-minor Graphs . 45

3.4.2 Proof of Lemma 3.4.1 . 49

3.4.2.1 From Planar to Minor-excluded Graphs 61

3.4.3 High-Dimensional Euclidean Spaces 67

Chapter 4 Coresets for Ordered Weighted Clustering 69

4.1 Introduction . 69

4.1.1 Our Contribution . 71

4.1.2 Overview of Techniques . 72

4.1.3 Additional Related Work . 73

4.2 Preliminaries . 73

vii

4.3 The Basic Case: p-Centrum for k = d = 1 (one facility in one-

dimensional data) . 74

4.3.1 Proofs of Technical Lemmas 80

4.4 Simultaneous Coreset for Ordered k-Median 82

4.4.1 Coreset for p-Centrum on Lines in Rd 83

4.4.2 Coreset for p-Centrum in Rd 87

4.4.3 Simultaneous Coreset for Ordered k-Median in Rd 90

Chapter 5 Coreset for Clustering with Missing Values 93

5.1 Our Results . 94

5.1.1 Technical Overview . 96

5.1.2 Additional Related Work . 97

5.2 Preliminaries . 98

5.3 Coresets . 98

5.3.1 Proof of Lemma 5.3.3: Shattering Dimension of Rd
? 101

5.3.2 Proof of Lemma 5.3.4: Estimating Sensitivity Efficiently . . . 102

5.3.3 Proof of Lemma 5.3.6: Dynamic O(1)-Coresets for k-Center

Clustering . 105

Chapter 6 The Lower Bound . 114

6.1 Coresets for Clustering in Graphs of Bounded Treewidth 114

6.2 Coresets for Ordered Weighted Clustering 118

6.3 Coresets for Clustering with Missing Values 121

6.4 Coresets for Clustering in Euclidean Space 122

Conclusions . 126

References . 127

viii

List of Figures

Figure 4-1 Coreset construction for p-Centrum with k = 1 facilities in

dimension d = 1. The left figure depicts the partition of the data

into X = (L ∪R) ∪Q, where P = L ∪R contains the p furthest

points from an optimal center y∗. The right figure shows the

different manners of splitting L and Q into intervals. 76

ix

Chapter 1

Introduction

(k, z)-Clustering In this thesis, our main focus is the metric (k, z)-Clustering

problem and its variants. The input of metric (k, z)-Clustering is a metric space

M = (V, d) and an n-point data set X ⊆ V , and the goal is to find a set C ⊆ V of k

points, called center set, that minimizes the objective function

cost(X, C) :=
∑︂
x∈X

dz(x, C),

where d(x, C) := min{d(x, c) : c ∈ C}. The (k, z)-Clustering generalizes the well-

known k-Median and k-Means clustering problems. Such clustering problems are

essential tools in data analysis and are used in many application domains, such as

genetics, information retrieval, and pattern recognition. However, finding an optimal

clustering is a nontrivial task, and even in settings where polynomial-time algorithms

are known, it is often challenging in practice because data sets are huge, and potentially

distributed or arriving over time. To this end, a powerful data-reduction technique,

called coresets, is of key importance.

Roughly speaking, a coreset is a compact summary of the data points by weighted

points, that approximates the clustering objective for every possible choice of the

center set. Formally, an ϵ-coreset for k-Median is a subset D ⊆ V with weight

w : D → R+, such that for every k-subset C ⊆ V ,
∑︂
x∈D

w(x) · d(x, C) ∈ (1± ϵ) · cost(X, C).

1

This notion, sometimes called a strong coreset, was proposed in [3], following a

weaker notion of [4]. Small-size coresets often translate to faster algorithms, more

efficient storage/communication of data, and streaming/distributed algorithms via

the merge-and-reduce framework, see e.g. [3, 5–8] and recent surveys [9–11].

Coresets for k-Median were studied extensively in Euclidean spaces, i.e., when

V = Rd and d(x, y) = ∥x− y∥2. The size of the first ϵ-coreset for k-Median, when

they were first proposed [3], was O(k(1
ϵ
)d · log n), and it was improved to O(k(1

ϵ
)d),

which is independent of n, in [12]. Feldman and Langberg [13] drastically improved

the dependence on the dimension d, from exponential to linear, achieving an ϵ-coreset

of size O(k
ϵ2 · d), and this bound was generalized to doubling metrics [7]. Recently,

coresets for Euclidean (k, z)-Clustering of size independent of d and polynomial in
k
ϵ

were devised by [14, 15]. However, beyond the traditional Euclidean setting, there

were not too many known results prior to this work.

1.1 Overview of the Thesis

We divide this thesis into 3 parts: (1) In the first part, we consider a fundamental

question in the area (Challenge 1.1.1) that aims to characterize the conditions of the

ambient metric space such that clustering in this metric space admits constant size

coresets. We present our work to this question in Chapter 2 and Chapter 3. (2) In

the second part, we consider non-traditional settings that include multiple objectives

and missing values in clustering. In Chapter 4, we consider the setting that there

exists multiple clustering objectives (e.g. we need to care about both k-Median and

k-Center) and we show how to design simultaneous coresets for those objectives. In

Chapter 5, we design the first coresets for clustering when there are multiple missing

coordinates. (3) In Chapter 6, the third and last part, we present lower bounds of

coresets for problems we consider in the first and second parts.

2

The main chapters are all based on Xuan Wu’s publications. Chapter 2 is based

on the theoretical part of [16]. Chapter 3 is based on [17]. Chapter 4 is based on [18].

Chapter 5 is based on [19]. The lower bound part, Chapter 6 is based on various lower

bounds results in the above papers.

1.1.1 Coresets for Clustering in Graph Metrics

Many modern coreset constructions stem from a fundamental framework proposed by

Feldman and Langberg [13], extending the importance sampling approach of Langberg

and Schulman [20]. In this framework [13], the size of an ϵ-coreset for k-Median is

bounded by O(poly(k/ϵ) · sdim), where sdim is the shattering (or VC) dimension of

the family of distance functions. For a general metric space (V, d), a direct application

of [13] results in a coreset of size Ok,ϵ(log |V |), which is tight in the sense that in

some instances, every coreset must have size Ω(log |V |) (see Chapter 6). Therefore, to

obtain coresets of size independent of the data set size |X|, we have to restrict our

attention to specific metric spaces, which raises the following fundamental question.

Challenge 1.1.1. Identify conditions on a data set X from metric space (V, d) that

guarantee the existence (and efficient construction) of an ϵ-coreset for k-Median of

size Oϵ,k(1)?

This question has seen major advances recently. Coresets of size independent of X

(and V) were obtained, including efficient algorithms, for several important special

cases: high-dimensional Euclidean spaces [14, 21] (i.e., independently of the Euclidean

dimension), and metrics with bounded doubling dimension [7].

We make significant progress to the above challenge, by designing new coresets

for k-Median in three very different types of metric spaces. (i) In Chapter 2, we

give the first Oϵ,k(1)-size coreset for bounded treewidth graphs; (ii) In Chapter 3,

we give the first Oϵ,k(1)-size coreset for excluded-minor; and (iii) Based on the new

3

techniques we deleveop in Chapter 3, we give a simplified state-of-the-art coreset for

high-dimensional Euclidean spaces (i.e., coreset-size independent of the Euclidean

dimension with guarantees comparable to [21] but simpler analysis).

Finally, in Chapter 6, we provide lower bounds for coresets in bounded treewidth

graphs and general graphs to complete our results.

1.1.2 Coresets for Ordered Weighted Clustering

An immediate challenge for using clustering algorithms is to choose a proper objective

function. Popular choices of clustering objectives include k-Median and k-Center

which respectively capture the average performance and the worst-case performance

of the centers. Standard coresets have limited usefulness when there are multiple

potential objectives. The simultaneous coresets, initially introduced by [22], aim to

have the approximation hold for all the objectives simultaneously.

Challenge 1.1.2. Can one construct simultaneous coresets for both k-Center and

k-Median?

In Chapter 4, we answer the above question affirmatively by designing simultaneous

coresets for a more general class of clustering objectives Ordered k-Median which

is a natural generalization of k-Center and k-Median. Moreover, in Chapter 6, we

provide a lower bound for such coresets to complete our results.

1.1.3 Coresets for Clustering with Missing Values

Missing value is a common phenomenon. Perform clustering tasks under the existence

of missing value is a challenging task. Only very recently, [2] designs the first polynomial

time approximation scheme (PTAS) for k-Means with missing values. However, the

algorithm is complicated and its running time is quadratic.

4

Challenge 1.1.3. Are there small coresets for k-Means and the general (k, z)-

Clustering with missing values? Moreover, can one construct such coresets in

near-linear time and thus provide the first scalable solution for these problems?

We provide a positive answer to the above question in Chapter 5 and prove a lower

bound of such coresets in Chapter 6 to complete our results.

1.1.4 The Lower Bound

While we put most our effort in proving upper bound, namely, constructing coresets,

lower bound is a topic we can never ignore.

In Chapter 6, we provide lower bounds for the above three questions to complete

our corresponding upper bounds. Moreover, we show the first lower bounds of coresets

for clustering in general metric space and Euclidean space.

1.2 Preliminaries

We consider a general k-clustering problem called (k, z)-clustering, which asks to

minimize the following objective function. This objective function (and problem) is

also called k-Median when z = 1 and k-Means when z = 2.

Definition 1.2.1 ((k, z)-Clustering). For data set X ⊂ Rd and a center set C ⊂ Rd

containing k (usual) points, let

costz(X, C) :=
∑︂
x∈X

distz(x, C).

Definition 1.2.2 (ϵ-Coreset for (k, z)-Clustering). For data set X ⊂ Rd, we

say a weighted set S ⊆ X with weight function w : S → R+ is an ϵ-coreset for

(k, z)-Clustering, if

∀C ⊂ Rd, |C| = k,
∑︂
x∈S

w(x) · distz(x, C) ∈ (1± ϵ) · costz(X, C).

5

Chapter 2

Coresets for Clustering in Bounded
Treewidth Graph

2.1 Introduction

In this Chapter, we initiate the study of coresets for clustering in graph metrics,

i.e., the shortest-path metrics of graphs. As usual in these contexts, the focus is on

edge-weighted graphs G = (V, E) with a restricted topology, and in our case bounded

treewidth. For ease of presentation, we present our coresets result for k-Median while

our result can easily be extended to the general (k, z)-Clustering.

Clustering in Graph Metrics While clustering in Euclidean spaces is very

common and well studied, clustering in graph metrics is also of great importance

and has many applications. For instance, clustering is widely used for community

detection in social networks [23], and is an important technique for the visualization

of graph data [24]. Moreover, k-clustering on graph metrics is one of the central tasks

in data mining of spatial (e.g., road) networks [25, 26], and it has been applied in

various data analysis methods [27, 28], and many other applications can be found in a

survey [29].

Despite the importance of graph k-Median, coresets for this problem were not

studied before, and to the best of our knowledge, the only known constructions

applicable to graph metrics are coresets for general n-point metrics M = (V, d) with

6

X = V [13, 30], that have size poly log n. In contrast, as mentioned above, coresets

for Euclidean spaces usually have size independent of n = |V | and sometimes even

independent of the dimension d. Moreover, this generic construction assumes efficient

access to the distance function, which is expensive in graphs and requires to compute

all-pairs shortest paths.

To fill this gap, we study coresets for k-Median on the shortest-path metric of an

edge-weighted graph G. As a baseline, we confirm that the O(log n) factor in coreset

size is really necessary for general graphs, which motivates us to explore whether

structured graphs admit smaller coresets. We achieve this by designing coresets whose

size are independent of n when G has a bounded treewidth (see Definition 2.2.1), which

is a special yet common graph family. Moreover, our algorithm for constructing the

coresets runs in near-linear time (for every graph regardless of treewidth).

Indeed, treewidth is a well-studied parameter that measures how close a graph

is to a tree [31, 32], and intuitively it guarantees a (small) vertex separator in every

subgraph. Several important graph families have bounded treewidth: trees have

treewidth at most 1, series-parallel graphs have treewidth at most 2, and k-outerplanar

graphs, which are an important special case of planar graphs, have treewidth O(k).

In practice, treewidth is a good complexity measure for many types of graph data. A

recent experimental study showed that real data sets in various domains including road

networks of the US power grid networks and social networks such as an ego-network

of Facebook, have small to moderate treewidth [33].

2.1.1 Our Results

Our main result is a near-linear time construction of a coreset for k-Median whose

size depends linearly on the treewidth of G and is completely independent of |X| (the

size of the data set). This significantly improves the generic O(k
ϵ2 · log n) size bound

from [13] whenever the graph has small treewidth.

7

Theorem 2.1.1 (Fast Coresets for Graph k-Median; see Theorem 2.3.1). For every

edge-weighted graph G = (V, E), 0 < ϵ < 1, and integer k ≥ 1, k-Median of every

data set X ⊆ V (with respect to the shortest-path metric of G) admits an ϵ-coreset of

size Õ(k2

ϵ2) · tw(G).1 Furthermore, the coreset can be computed in time Õ(|E|) with

high probability.

2.1.2 Technical Contributions

Our coreset construction employs the importance sampling framework proposed

by Feldman and Langberg [13], although implemented differently as explained in

Remark 2.3.1. A key observation of the framework is that it suffices to give a uniform

upper bound on the shattering dimension (see Definition 2.2.2), denoted sdimv(M), of

the metric M = (V, d) weighted by any point weight v : V → R+. Our main technical

contribution is a (uniform) shattering-dimension bound that is linear in the treewidth,

and this implies the size bound of our coreset.

Theorem 2.1.2 (Shattering Dimension Bound; see Theorem 2.3.5). For every edge-

weighted graph G = (V, E) and every point weight function v : V → R+, the shortest-

path metric M of G satisfies sdimv(M) ≤ O(tw(G)).

The shattering dimension of many important spaces was studied, including for

Euclidean spaces [13] and for doubling spaces [7]. For graphs, the shattering dimension

of an Kr-minor free graph (which includes bounded-treewidth graphs) is known to be

O(r) [34] for unit weight v ≡ 1, see Section 2.2 for details. However, a general point

weight v : V → R+ introduces a significant technical challenge which is illustrated

below.

In our context, the shattering dimension is defined with respect to the set system

of all v-weighted metric balls, where every such ball has a center x ∈ V and a radius
1Throughout, we use Õ(f) to denote O(f · polylog(f)).

8

r ≥ 0, and is defined by

Bv(x, r) := {y ∈ V : v(y) · d(x, y) ≤ r}. (2.1)

Roughly speaking, a bounded shattering dimension means that for every subset

H ⊆ V , the number of ways this H is intersected by v-weighted metric balls is at most

poly(|H|). The main technical difficulty is that an arbitrary weight v can completely

break the “continuity” of the space, which can be illustrated even in one-dimensional

line V = R (and analogously in a simple path graph on V = {0, 1, . . . , n}), where

under unit weight v ≡ 1, every ball is a contiguous interval, but under a general weight

v an arbitrary subset of points could form a ball; indeed, for a center x = 0 and radius

r = 1, every point y ≥ 1 can be made inside or outside of the ball Bv(x, r) by setting

v(y) = 1
2y

or v(y) = 2
y
.

Our main technical contribution is to analyze the shattering dimension with general

weight functions, which we outline now briefly (see Section 2.3 for a more formal

overview). We start by showing a slightly modified balanced-separator theorem for

bounded-treewidth graphs (Lemma 2.3.7), through which the problem of bounding the

shattering dimension is reduced to bounding the “complexity” of shortest paths that

cross one of a few vertex separators, each of size O(tw(G)). An important observation

is that, if S ⊂ V is a vertex separator and x, y ∈ V belong to different components

after removing S, then every path connecting x to y must cross S, and hence

d(x, y) = min{d(x, si) + d(si, y) : si ∈ S}.

If we fix x ∈ V and consider all y ∈ V , then we can think of each d(si, y) as a real

variable zi ∈ R, so instead of varying over all y ∈ V , which depends on the graph

structure, we can vary over |S| real variables, and each d(x, ·) is the minimum of |S|

linear (actually affine) functions, or in short a min-linear function. Finally, we consider

different x ∈ V with the same separator S, and hence the same |S| real variables,

and we bound the “complexity” of these min-linear functions by relating it to the

9

arrangement number of hyperplanes, which is a well-studied concept in computational

geometry. We believe our techniques may be useful for more general graph families,

such as minor-free graphs.

2.1.3 Additional Related Work

Approximation algorithms have been extensively studied for k-Median in graph

metrics, and here we only mention a small selection of results. In general graphs

(which is equivalent to general metrics), it is NP-hard to approximate k-Median

within 1 + 2
e

factor [35], and the state-of-art is a 2.675-approximation [36]. For planar

graphs and more generally graphs excluding a fixed minor, a PTAS for k-Median

was obtained in [37] based on local search, and it has been improved to be FPT (i.e.

the running time is of the form f(k, ϵ) · nO(1)) recently [38]. For general graphs, [39]

proposed an O(1)-approximation that runs in near-linear time.

2.2 Preliminaries

Definition 2.2.1 (Tree Decomposition and Treewidth). A tree decomposition of a

graph G = (V, E) is a tree T with node set V , such that each node in V , called a bag,

is a subset of V , and the following conditions hold:

1. ⋃︁S∈V S = V .

2. ∀u ∈ V , the nodes of T that contain u form a connected component in T .

3. ∀(u, w) ∈ E, ∃S ∈ V , such that {u, w} ⊆ S.

The treewidth of a graph G, denoted tw(G), is the smallest integer t, such that there

exists a tree decomposition with maximum bag size t + 1.

A nice tree decomposition is a tree decomposition such that each bag has a degree

10

at most 3.2 It is well known that there exists a nice tree decomposition of G with

maximum bag size O(tw(G)) [32].

Shattering Dimension As mentioned in Section 2.1, our coreset construction

employs the Feldman-Langberg framework [13]. A key notion in the Feldman-Langberg

framework is the shattering dimension of a metric space with respect to a point weight

function.

Definition 2.2.2 (Shattering Dimension). Given a point weight function v : V → R+,

the shattering dimension of M = (V, d) with respect to v, denoted as sdimv(M), is

the smallest integer t, such that for every H ⊆ V with |H| ≥ 2, it holds that

|{H ∩Bv(x, r) : x ∈ V, r ≥ 0}| ≤ |H|t.

Observe that the left-hand side counts the number of ways that H is intersected by

all weighted balls, which were defined in (2.1). We remark that our notion shattering

dimension is tightly related to the well-known VC-dimension (see for example [40]).

In particular, let Bv := {Bv(x, r) : x ∈ V, r ≥ 0} be the collection of all v-weighted

balls, then the VC-dimension of the set system (V,Bv) is within a logarithmic factor

to the sdimv(M). It was shown in [34] that the VC-dimension of a Kr-minor free

graph with unit weights v ≡ 1 is at most O(r), which immediately implies an O(r)

bound also for the shattering dimension (under unit weight v ≡ 1).

2.3 Coresets for k-Median in Graph Metrics

In this section, we present a near-linear time construction for ϵ-coreset for k-Median

in graph metrics, whose size is linear in the treewidth. This is formally stated in the

following theorem.

2Usually, nice tree decompositions are defined to have additional guarantees, but we only need
the bounded degree.

11

Theorem 2.3.1 (Coreset for Graph k-Median). For every edge-weighted graph

G = (V, E), 0 < ϵ, δ < 1, and integer k ≥ 1, k-Median of every data set

X ⊆ V (with respect to the shortest path metric of G) admits an ϵ-coreset of size

Õ
(︂

k2

ϵ2 · (tw(G) + log(1/δ))
)︂
. Furthermore, it can be computed in time Õ(|E|) with

success probability 1− δ.

Our construction is based on the Feldman-Langberg framework [13], in which

the coreset is constructed using importance sampling. While this framework is quite

general, their implementation is tailored to Euclidean spaces and is less suitable for

graphs metrics. In addition, their algorithm runs in Õ(kn) time assuming access

to pairwise distances, which is efficient in Euclidean spaces but rather expensive in

graphs.

We give an efficient implementation of the Feldman-Langberg framework in graphs,

and also provide an alternative analysis that is not Euclidean-specific. A similar

strategy was previously employed for constructing coresets in doubling spaces [7], but

that implementation is not applicable here because of the same efficiency issue (i.e., it

requires oracle access to distances). We present our implementation and analysis of

the framework below, and then put it all together to prove Theorem 2.3.1.

Importance Sampling Recall that at a high level, the importance sampling

method consists of two steps.

1. For each data point x ∈ X, compute an importance σx ∈ R+.

2. Form a coreset by drawing N (to be determined later) independent samples

from X, where each sample picks every x ∈ X with probability proportional to

σx, i.e., px := σx∑︁
x′∈X

σx′
, and assigns it weight 1

px
.

To implement the algorithm, we need to define σx and N . Following the Feldman-

12

Langberg framework, each importance σx is an upper bound on the sensitivity

σ⋆
x := max

C⊆V,|C|=k

d(x, C)
cost(X, C) ,

which was introduced in [20] and represents the maximum possible contribution of x

to the objective over all center sets C.

Let the total importance be σX := ∑︁
x∈X σx. Our key tool is the following bound

on coreset size N in terms of σX and a uniform upper bound on sdimv(M).

Lemma 2.3.2 ([41]). Define the maximum shattering dimension as sdimmax :=

maxv:V →R+ sdimv(M). Then for

N = Õ
(︃

σX

ϵ2

(︂
k · sdimmax + log 1

δ

)︂)︃
,

the importance sampling procedure returns an ϵ-coreset with probability at least 1− δ.

Computing σx An efficient algorithm to compute σx was presented in [42],

assuming that an O(1)-approximation to k-Median is given. Furthermore, an O(k)

bound on the total importance σX was shown.

Lemma 2.3.3 ([42]). Suppose C⋆ is a ρ-approximate solution to the k-Median

instance. Let σx := ρ ·
(︂

d(x,C⋆)
cost(X,C⋆) + 1

|C⋆(x)|

)︂
, where C⋆(x) ⊆ X is the cluster of C⋆ that

contains x. Then σX = O(ρk) and

∀x ∈ X, σx ≥ Ω(σ⋆
x).

Thus, to construct the coreset in near-linear time, we need to compute an O(1)-

approximation C⋆ fast, for which we use the following result of [39].

Lemma 2.3.4. There is an algorithm that, given as input a weighted undirected graph

G = (V, E) and data set X ⊆ V , computes an O(1)-approximate solution for graph

k-Median in time Õ(|E|) with probability 1− o(1).

13

Finally, we need a uniform shattering-dimension bound (with respect to treewidth).

Such a bound, stated next, is our main technical contribution and its proof is presented

in Section 2.3.1.

Theorem 2.3.5 (Shattering Dimension). For every edge-weighted graph G = (V, E)

and every point weight function v : V → R+, the shortest-path metric M of G satisfies

sdimv(M) ≤ O(tw(G)).

Remark 2.3.1. Our implementation of the framework of [13] differs in several respects.

First, their shattering dimension is defined with respect to hyperbolic balls instead of

usual metric balls (as the underlying set system). Second, the choice of σx and the

sampling bound are different. While they achieve an improved coreset size (linear in

k), their analysis relies on Euclidean-specific properties and does not apply in graph

metrics.

Putting It Together We are now in position to conclude our main result.

Proof of Theorem 2.3.1. Construct a coreset by the importance sampling procedure,

where the importance σx is computed using Lemma 2.3.4. Then we can apply

Lemma 2.3.3 with ρ = O(1) to bound the total importance σX = O(k). Combining

this and the shattering dimension from Theorem 2.3.5, we can apply Lemma 2.3.2

with coreset size

N = Õ
(︃

k2

ϵ2

(︂
tw(G) + log 1

δ

)︂)︃
.

The running time is dominated by computing the importance σx for all x ∈ X, which

we claim can be computed in time Õ(|E|) by using Lemmas 2.3.3 and 2.3.4. Indeed,

first compute C⋆ in time Õ(|E|) using Lemma 2.3.4, then compute the clustering of

X with respect to C⋆ and the associated distances {d(x, C⋆) : x ∈ X} using a single

Dijkstra execution in time Õ(|E|) time (see Observation 1 of [39]). Finally, use this

information to compute σx for all x ∈ X, and sample according to it, in total time

Õ(|X|).

14

2.3.1 Bounding the Shattering Dimension

We give a technical overview before presenting the detailed proof of Theorem 2.3.5.

Recall that the unit-weight case of shattering dimension was already proved in [34],

and our focus is when v : V → R+ is a general weight function.

The proof starts with a slightly modified balanced-separator theorem for bounded

treewidth graphs (Lemma 2.3.7), through which the problem of bounding the shattering

dimension is reduced to bounding the complexity of bag-crossing shortest paths for

every bag.

A well-known fact is that every bag {si, . . . , sm} ⊆ V in the tree decomposition

is a vertex cut of size m = O(tw(G)), and this leads to an important observation:

if x and y belong to different components after removing this bag, then every path

connecting x with y crosses the bag, and hence

d(x, y) = min{d(x, si) + d(si, y) : i ∈ [m]}.

Now suppose we fix x ∈ V and let y vary over V ; then we can write d(x, ·) as a

min-linear function (which means the minimum of m linear functions) fx : Rm → R+,

whose variables are zi = d(si, y) for i ∈ [m]; notice that the terms d(x, si) are constant

with respect to y.

This alternative view of distances enables us to bound the complexity of shortest-

paths, because the functions {fx}x all have common variables {zi = d(si, y)}i∈[m] in

real domain (instead of variables in V), and more importantly, the domain of these

functions has low dimension m = O(tw(G)). Furthermore, the min-linear description

also handles weights because v(x) · fx is min-linear too. Finally, in a technical lemma

(Lemma 2.3.8), we relate the complexity of a collection of min-linear functions of low

dimension to the arrangement number of hyperplanes, which is a well-studied quantity

in computational geometry.

Theorem 2.3.6 (Restatement of Theorem 2.3.5). For every edge-weighted graph

15

G = (V, E) and every point weight function v : V → R+, the shortest-path metric M

of G satisfies sdimv(M) ≤ O(tw(G)).

Proof. Fix a point weight v : V → R+. We bound the shattering dimension by

verifying the definition (see Definition 3.2.1). Fix a subset of points H ⊆ V with

|H| ≥ 2. By Definition 3.2.1, we need to show

|{H ∩Bv(x, r) : x ∈ V, r ≥ 0}| ≤ |H|O(tw(G)).

We interpret this as a counting problem, in which we count the number of distinct

subsets H ∩ Bv(x, r) over two variables x and r. To make the counting easier, our

first step is to “remove” the variable r, so that we could deal with the center x only.

Relating to Permutations For x ∈ V , let πx be the permutation of H such that

points y ∈ H are ordered by d(x, y) · v(y) (in non-increasing order) and ties are broken

consistently. Since H ∩ Bv(x, r) corresponds to a prefix of πx, and every πx has at

most |H| prefixes, we have

|{H ∩Bv(x, r) : x ∈ V, r ≥ 0}| ≤ |H| · |{πx : x ∈ V }| .

Hence it suffices to show

|{πx : x ∈ V }| ≤ |H|O(tw(G)), . (2.2)

Next, we divide the graph (not necessarily a partition) into poly(|H|) parts using

the following structural lemma of bounded treewidth graphs, so that each part is

“simply structured”. We prove the following lemma in Section 2.3.2.

Lemma 2.3.7 (Structural Lemma). Given graph G(V, E), and H ⊆ V , there exists

a collection S ⊆ 2V of subsets of V , such that the following holds.

1. ⋃︁A∈S A = V .

2. |S| ≤ poly(|H|).

16

3. For each A ∈ S, either |A| ≤ O(tw(G)), or i) |A∩H| ≤ O(tw(G)) and ii) there

exists P ⊆ V with |P | ≤ O(tw(G)) such that there is no edge in E between A

and V \ (A ∪ P).

Let S be the collection of subsets asserted by Lemma 2.3.7. Since ⋃︁A∈S A = V

and |S| ≤ poly(|H|), it suffices to count the number of permutations for each part.

Formally, it suffices to show that

∀A ∈ S, |{πx : x ∈ A}| ≤ |H|O(tw(G)). (2.3)

Counting Permutations for Each A ∈ S The easy case is when |A| ≤

O(tw(G)):

|{πx : x ∈ A}| ≤ |A| ≤ O(tw(G)) ≤ |H|O(tw(G)).

Then we focus on proving Inequality (2.3) for the other case, where i) |A ∩ H| ≤

O(tw(G)) and ii) there exists P ⊆ V with |P | ≤ O(tw(G)) such that there is no edge

between A and V \ (A ∪ P), by item 3 of Lemma 2.3.7.

Now fix such an A. Let HA := H∩A, and let Q := P ∪HA. Write Q = {q1, . . . , qm}.

Since there is no edge between A and V \ (A ∪ P), for x ∈ A and y ∈ H, we know

that

d(x, y) = min
qi∈Q
{d(x, qi) + d(qi, y)}.

Alternative Representation of d(x, y) We write d(x, y) in an alternative way.

If we fix y ∈ H and vary x, then d(x, y) may be represented as a min-linear function

in variables zi := d(x, qi). Specifically, for y ∈ H, define fy : Rm → R+ as

fy(z1, . . . , zm) := min
i∈[m]
{zi + d(y, qi)}.

Note that d(y, qi) is constant in fy. By definition, fy(d(x, q1), . . . , d(x, qm)) = d(x, y).

We also rewrite πx under this new representation of distances. For a ∈ Rm, define

τa as a permutation of H that is ordered by v(y) · fy(a), in the same rule as in πx (i.e.

17

non-decreasing order and ties are broken consistently as in πx). Then we have

πx = τ(d(x,q1),...,d(x,qm)),

which implies

|{πx : x ∈ A}| ≤ |{τa : a ∈ Rm}| .

Thus, it remains to analyze |{τa : a ∈ Rm}|. We bound this quantity via the following

technical lemma, which describes the complexity of a collection of min-linear functions

with bounded dimension. Its proof appears in Section 2.3.3.

Lemma 2.3.8 (Complexity of Min-Linear Functions). Suppose f1, . . . , fs are s func-

tions such that for every i ∈ [s],

• fi : Rl → R, and

• fi(x) = minj∈[l]{gij(x)} where each gij : Rl → R is a linear function.

For x ∈ Rl, let σx be the permutation of [s] such that i ∈ [s] is ordered by fi(x) (in non-

increasing order), and ties are broken consistently. Then |{σx : x ∈ Rl}| ≤ O(sl)O(l).

Applying Lemma 2.3.8 with s = |H|, l = m and the collection of min-linear

functions {v(y) · fy : y ∈ H}, we conclude that

|{τa : a ∈ Rm}| ≤ |H|O(m) ≤ |H|O(tw(G))

where the last inequality follows from |HA| ≤ O(tw(G)) and |P | ≤ O(tw(G)) and

m = |Q| = |HA ∪ P | ≤ |HA|+ |P | ≤ O(tw(G)).

2.3.2 Proof of the Structural Lemma

Lemma 2.3.9 (Restatement of Lemma 2.3.7). Given graph G(V, E), and H ⊆ V ,

there exists a collection S ⊆ 2V of subsets of V , such that the following holds.

18

1. ⋃︁A∈S A = V .

2. |S| ≤ poly(|H|).

3. For each A ∈ S, either |A| ≤ O(tw(G)), or i) |A∩H| ≤ O(tw(G)) and ii) there

exists P ⊆ V with |P | ≤ O(tw(G)) such that there is no edge in E between A

and V \ (A ∪ P).

Proof. Let T be a nice tree decomposition of G(V, E) with maximum bag size O(tw(G))

(see Section 2.2). For a subtree T ⋆ of T , let V (T ⋆) be the union of points in all bags

of T ⋆. For a subset of bags B of T ,

• Define T\B as the set of subtrees of T resulted by removing all bags in B from T ;

• for T ⋆ ∈ T\B, define ∂B(T ⋆) ⊆ B as the subset of bags in B via which T ⋆ connects

to bags outside of T ⋆;

• for T ⋆ ∈ T\B, define V\B(T ⋆) := V (T ⋆) \ ⋃︁S∈∂B(T ⋆) S.

Given a nice tree decomposition T , we have the following theorem for constructing

balanced separators, which will be useful for defining S.

Theorem 2.3.10 (Balanced Separator of A Tree Decomposition [31]). Suppose T ⋆ is

a subtree of T and w : V → {0, 1} is a point weight function. There exists a bag S in

T ⋆, such that any subtree T ′ ∈ T ⋆
\S satisfies w(V\S(T ′)) ≤ 2

3w(V (T ⋆)).

The first step is to construct a subset of bags that satisfy the following nice

structural properties.

Lemma 2.3.11. There exists a subset of bags B = BH of T , such that the following

holds.

1. |B| = poly(|H|).

2. For every S ∈ B, |S| = O(tw(G)).

19

Algorithm 1 Balanced-Decomp(T ⋆, w)
Require: subtree T ⋆ of T , point weight w : V → {0, 1}
Ensure: set of bags B

1: if w(V (T ⋆)) ≤ O(tw(G)) then
2: return B ← ∅
3: else
4: apply Theorem 2.3.10 on (T ⋆, w), let S be the asserted bag, and write T ⋆

\S ←
{T ⋆

1 , . . . , T ⋆
l }

5: define point weight w′ : V → {0, 1}, such that w′(u) = 0 if u ∈ S and
w′(u) = w(u) otherwise

6: for i ∈ [l], let B′
i ← Balanced-Decomp(T ⋆

i , w′)
7: return B ← (⋃︁i∈[l] B′

i) ∪ S
8: end if

3. For every T ⋆ ∈ T\B, |∂B(T ⋆)| ≤ 2.

4. For every T ⋆ ∈ T\B, |V\B(T ⋆) ∩H| = O(tw(G)).

Proof. The proof strategy is to start with a set of bags B1 such that items 1, 2 and 4

hold. Then for each T ⋆ ∈ T\B, we further “divide” it by a few more bags, and the

newly added bags B2 combined with B1 would satisfy all items.

To construct B1, we apply Theorem 2.3.10 which constructs balanced separators.

The first step of our argument is no different from constructing a balanced separator

decomposition, expect that we need explicitly that each separator is a bag of T . We

describe our balanced separator decomposition in Algorithm 1 which makes use of

Theorem 2.3.10.

Define w : V → {0, 1} as w(u) = 1 if u ∈ H and w(u) = 0 otherwise. Call Algo-

rithm 1 with (T , w), and denote the resulted bags as B1, i.e. B1 := Balanced-Decomp(T , w).

Analyzing B1 We show B1 satisfies Items 1, 2 and 4.

• Item 2 is immediate since B1 is a set of bags, and the width of the tree decom-

position is O(tw(G)).

• Since T is a nice tree decomposition, each node of it has degree at most 3. so

20

Algorithm 2 Boundary-Reduction(T ,B1)
Require: tree decomposition T , subset of bags B1
Ensure: set of bags B2

1: initialize B2 ← ∅
2: for T ⋆ ∈ T\B1 do
3: if |∂B1(T ⋆)| > 2 then
4: let ˆ︂T ⋆ be the subtree of T formed by including bags in ∂B1(T ⋆) and their

connecting edges to T ⋆

5: let ˜︂T ⋆ be the minimal subtree of ˆ︂T ⋆ that contains all bags in ∂B1(T ⋆)
6: let B⋆ be the set of bags in ˜︂T ⋆ with degree at least 3
7: update B2 ← B2 ∪ B⋆

8: end if
9: end for

10: return B2

each recursive invocation of Algorithm 1 creates at most 3 new subtrees, and each

subtree has its weight decreased by 1
3 (by Theorem 2.3.10). Moreover, the initial

weight is |H|, and the recursive calls terminate when the weight is O(tw(G))

(see Line 2), we conclude |B1| = O(3log 3
2

(|H|)) = O(|H|2.71) = poly(|H|), which is

item 1.

• Because of the observation in the comment of Line 5, w(V (T ⋆)) in Line 2 is

exactly V\B1(T ⋆) ∩H, which implies item 4.

We further modify B1 so that item 3 is satisfied. The modification procedure is

listed in Algorithm 2. Roughly speaking, we check each subtree T ⋆ ∈ T\B1 , and if it

violates item 3, we add more bags inside T ⋆, i.e. B⋆ in line 6, so that |∂B1∪B⋆(T ⋆)| ≤ 2.

This modification may be viewed as a refinement for the decomposition defined in

Algorithm 1.

Call Algorithm 2 with (T ,B1), and let B2 := Boundary-Reduction(T ,B1). We

formally analyze B := B1 ∪ B2 as follows.

Analyzing B := B1∪B2 Item 2 follows immediately since both B1 and B2 are sets

of bags. Now consider an iteration of Algorithm 2 on T ⋆ ∈ T\B1 . By the definition of

B⋆, we know that ˜︂T ⋆\(B1∪B⋆) contains paths only (each having two boundary bags).

21

Hence each subtree T ′ ∈ ˆ︂T ⋆\(B1∪B⋆) satisfies |∂B1∪B⋆(T ′)| ≤ 2. Since Algorithm 2 runs

in a tree-by-tree basis, we conclude item 3.

Still consider one iteration of Algorithm 2. By using item 2 of the definition of the

tree decomposition, we have that for every T ′ ∈ ˆ︂T ⋆\(B1∪B⋆), V\(B1∪B⋆)(T ′) ⊆ V\B1(T ⋆).

Combining this with the fact that B1 satisfies item 4 (as shown above), we conclude

that B also satisfies item 4. Finally, by the fact that the number of nodes of degree at

least 3 is at most the number of leaves, we conclude that |B⋆| ≤ |∂B1(T ⋆)|. Then

|B2| ≤
∑︂

T ⋆∈T\B1

|B⋆| ≤
∑︂

T ⋆∈T\B1

|∂B1(T ⋆)| ≤ O(1) · |B1|,

where the last inequality is by the degree constraint of the nice tree decomposition.

Therefore, |B| ≤ |B1| + |B2| ≤ poly(|H|), which concludes item 1. This finishes the

proof of Lemma 2.3.11.

Suppose B is the set asserted by Lemma 2.3.11. Let S := B∪{V\B(T ⋆) : T ⋆ ∈ T\B}.

It is immediate that ⋃︁A∈S A = V . By item 1 of Lemma 2.3.11 and the degree constraint

of the nice tree decomposition T , |T\B| = poly(|H|). Hence, |S| ≤ poly(|H|).

By item 2 of Lemma 2.3.11, we know for every A ∈ B, |A| ≤ O(tw(G)). Now

consider T ⋆ ∈ T\B, and let A := V\B(T ⋆) ∈ S. By item 4 of Lemma 2.3.11, |A ∩

H| ≤ O(tw(G)). Therefore, we only need to show there exists P ⊆ V such that

|P | ≤ O(tw(G)) and there is no edge between A and V \ (A ∪ P). We have the

following fact for a tree decomposition.

Fact 2.3.12 (A Bag is A Vertex Cut). Suppose T ⋆ is a subtree of the tree decomposition

T , and S is a bag in T ⋆. Then

• For 1 ≤ i < j ≤ l, V\S(T ⋆
i) ∩ V\S(T ⋆

j) = ∅.

• There is no edge between V\S(T ⋆
i) and V\S(T ⋆

j) for 1 ≤ i < j ≤ l. In other

words, S is a vertex cut for V\S(T ⋆
i) for all i ∈ [l].

22

Define P := ⋃︁
S∈∂B(T ⋆) S. By Fact 2.3.12 and item 3 of Lemma 2.3.11, we know

that |P | ≤ O(tw(G)), and there is no edge between A and V \ (A ∪ P). This finishes

the proof of Lemma 2.3.7.

2.3.3 Complexity of Min-linear Functions

Lemma 2.3.13 (Restatement of Lemma 2.3.8). Suppose we have s functions f1, . . . , fs

such that for every i ∈ [s],

• fi : Rl → R, and

• fi(x) = minj∈[l]{gij(x)} where gij : Rl → R are linear functions.

For x ∈ Rl, let σx be the permutation of [s] such that i ∈ [s] is ordered by fi(x) (in non-

increasing order), and ties are broken consistently. Then |{σx : x ∈ Rl}| ≤ O(sl)O(l).

Proof. The proof strategy is to relate the number of permutations to the arrangement

number of hyperplanes. The main tool that we use is the upper bound of the number

of arrangements of hyperplanes. Specifically, as stated in Theorem 2.2 of [43], p

hyperplanes of dimension d can partition Rd into O(p)d regions. At a high level, we

start with “removing” the min in fi’s, by partitioning Rl into linear regions in which

fi(x)’s are simply linear functions. We bound the number of linear regions using the

arrangement bound. Since fi(x)’s are linear functions in each linear region, we may

interpret them as l-dimensional hyperplanes. Then, we bound the number of σx’s that

are formed by s hyperplanes of dimension l using the arrangement bound again. The

lemma is thus concluded by combining the two parts. We implement the two steps as

follows.

We call R ⊆ Rl a linear region, if R is a maximal region satisfying that for all

i ∈ [s], there exists ji ∈ [l] such that fi(x) = giji
(x) holds for all x ∈ R. Observe

that for each i ∈ [s] and j ∈ [l], the set of x ∈ Rl such that fi(x) = gij(x) may be

23

represented by the intersection of at most l halfspaces of dimension l. (For example,

when j = 1, the set is determined by gi1(x) ≤ gi2(x) and gi1(x) ≤ gi3(x) and . . . and

gi1(x) ≤ gil(x).) Hence, the boundaries of linear regions must be formed by those

intersections. Therefore, the number of linear regions is upper bounded by O(sl)l

using the arrangement number bound.

Suppose R ⊆ Rl is a linear region. Then for any i ∈ [s], fi(x) (x ∈ R) may be

interpreted as a l-dimensional hyperplane Pi. Hence, any maximal subset S ⊆ R such

that ∀x, y ∈ S, σx = σy, is a (convex) region whose boundaries are formed by the

intersection of (any two of) the hyperplanes Pi’s (noting that the intersection is of

dimension at most l). We call such S’s invariant regions. Apply the arrangement

number bound again, we can upper bound the number of invariant regions in a linear

region by O(s)O(l).

Note that invariant regions subdivide linear regions and each invariant region

introduces exactly one permutation σx. Therefore, we can upper bound the distinct

number of permutations by the total number of invariant regions, i.e.,
⃓⃓⃓{︂

σx : x ∈ Rl
}︂⃓⃓⃓
≤

O(sl)l ·O(s)O(l) ≤ O(sl)O(l). This concludes the lemma.

24

Chapter 3

Coresets for Clustering in
Excluded-Minor Graphs

3.1 Introduction

In this Chapter, we continue to answer the question proposed by Challenge 1.1.1.

Specifically, we construct new coresets for clustering in excluded-minor graphs and in

Euclidean spaces. As in Chapter 2, we present our results for k-Median while our

results can easily be extended to (k, z)-Clustering.

3.1.1 Our Results

Our coreset constructions are based on the well-known importance sampling framework

of [13], but with subtle deviations that introduce significant advantages. Our first

technical idea is to relax the goal of computing the final coreset in one shot: we

present a general reduction that turns an algorithm that computes a coreset of size

O(poly(k/ϵ) log ∥X∥0) into an algorithm that computes a coreset of size O(poly(k/ϵ)).

The reduction is very simple and efficient, by straightforward iterations. Thus, it

suffices to construct a coreset of size O(poly(k/ϵ) log ∥X∥0). We construct this using

the importance sampling framework [13], but applied in a subtly different way, called

terminal embedding, in which distances are slightly distorted, trading accuracy for

(hopefully) a small shattering dimension. It still remains to bound the shattering

25

dimension, but we are now much better equipped — we can distort the distances

(design a new embedding or employ a known one), and we are content with dimension

bound Ok,ϵ(log ∥X∥0), instead of the usual Ok,ϵ(1).

Coresets for Excluded-minor Graphs A minor of graph G is a graph H

obtained from G by a sequence of edge deletions, vertex deletions or edge contractions.

We are interested in graphs G that exclude a fixed graph H as a minor, i.e., they do

not contain H as a minor. Excluded-minor graphs have found numerous applications

in theoretical computer science and beyond and they include, for example, planar

graphs and bounded-treewidth graphs. Besides its practical importance, k-Median in

planar graphs received significant attention in approximation algorithms research [38,

39, 44]. Our framework yields the first ϵ-coreset of size Ok,ϵ(1) for k-Median in

excluded-minor graphs. We stress that our technical approach is significantly different

from Chapter 2, in the sense that we introduce a novel iterative construction and a

relaxed terminal embedding of excluded-minor graph metrics (see Section 3.1.2), and

overall bypass bounding the shattering dimension by O(1) (which is the technical core

in Chapter 2).

Coresets for High-dimensional Euclidean Space A simple application of our

new framework yields a near-linear time construction of coreset of size poly(k/ϵ) in

Euclidean space, which too is independent of the dimension. Compared to the state

of the art [21], our result achieves essentially the same size bound, while greatly

simplifying the analysis.

3.1.2 Technical Contributions

Iterative Size Reduction This technique is based on an idea so simple that it may

seem too naive: Basic coreset constructions have size Ok,ϵ(log n), so why not apply

it repeatedly, to obtain a coreset of size Ok,ϵ(log log n), then Ok,ϵ(log log log n) and so

on? One specific example is the size bound O(ϵ−2k log n) for a general n-point metric

26

space [13], where this does not work because n = |V | is actually the size of the ambient

space, irrespective of the data set X. Another example is the size bound O(ϵ−mk log n)

for Euclidean space Rm [3], where this does not work because n = ∥X∥1 is the total

weight of the data points X, which coresets do not reduce (to the contrast, they

maintain it). These examples suggest that one should avoid two pitfalls: dependence

on V and dependence on the total weight.

We indeed make this approach work by requiring an algorithm A that constructs a

coreset of size O(log ∥X∥0), which is data-dependent (recall that ∥X∥0 is the number

of distinct elements in a weighted set X). Specifically, we show in Theorem 3.3.1

that, given an algorithm A that constructs an ϵ′-coreset of size O(poly(k/ϵ′) log ∥X∥0)

for every ϵ′ and X ⊆ V , one can obtain an ϵ-coreset of size poly(k/ϵ) by simply

applying A iteratively. It follows by setting ϵ′ carefully, so that it increases quickly

and eventually ϵ′ = O(ϵ). See Section 3.3.1 for details.

Not surprisingly, the general idea of applying the sketching/coreset algorithm

iteratively was also used in other related contexts (e.g. [45–47]). Moreover, a related

two-step iterative construction was applied in a recent coreset result [21]. Nevertheless,

the exact implementation of iterative size reduction in coresets is unique in the

literature. As can be seen from our results, this reduction fundamentally helps to

achieve new or simplified coresets of size independent of data set. We expect the

iterative size reduction to be of independent interest to future research.

Terminal Embeddings To employ the iterative size reduction, we need to con-

struct coresets of size poly(k/ϵ) · log ∥X∥0. Unfortunately, a direct application of [13]

yields a bound that depends on the number of vertices |V |, irrespective of X. To

bypass this limitation, the framework of [13] is augmented (in fact, we use a refined

framework proposed in [41]), to support controlled modifications to the distances

d(·, ·). As explained more formally in Section 3.3.2, one represents these modifications

using a set of functions F = {fx : V → R+ | x ∈ X}, that corresponds to the modified

27

distances from each x, i.e., fx(·)↔ d(x, ·). Many previous papers [13, 20, 41, 48] work

directly with the distances and use the function set F = {fx(·) = d(x, ·) | x ∈ X}, or

a more sophisticated but still direct variant of hyperbolic balls (where each fx is an

affine transformation of d(x, ·)). A key difference is that we use a “proxy” function set

F , where each fx(·) ≈ d(x, ·). This introduces a tradeoff between the approximation

error (called distortion) and the shattering dimension of F (which controls the number

of samples), and overall results in a smaller coreset. Such tradeoff was first used in [7]

to obtain small coresets for doubling spaces, and was recently used in [21] to reduce the

coreset size for Euclidean spaces. This proxy function set may be alternatively viewed

as a terminal embedding on X, in which both the distortion of distances (between X

and all of V) and the shattering dimension are controlled.

Such terminal embedding (Section 3.3.3) maintains (1 + ϵ)-multiplicative distortion

of the distances. When this embedding achieves dimension bound O(poly(k/ϵ) log ∥X∥0),

we combine it with the aforementioned iterative size reduction, to further reduce the

size to be independent of X. It remains to actually design embeddings of this type,

which we achieve (as explained further below), for excluded-minor graphs and for

Euclidean spaces, and thus we overall obtain Oϵ,k(1)-size coresets in both settings.

Terminal Embedding for Euclidean Spaces Our terminal embedding for

Euclidean spaces is surprisingly simple, and is a great showcase for our new framework.

In a classical result [13], it has been shown that sdimmax(F) = O(m) for Euclidean

distance in Rm without distortion. On the other hand, we notice a terminal embedding

version of Johnson-Lindenstrauss Lemma was discovered recently [49]. Our terminal

embedding bound (Section 3.4.16) follows by directly combining these two results, see

Section 3.4.3 for details.

We note that without our iterative size reduction technique, plugging in the

recent terminal Johnson-Lindenstrauss Lemma [49] into classical importance sampling

frameworks, such as [13, 41] does not yield any interesting coreset. Furthermore, the

28

new terminal Johnson-Lindenstrauss Lemma was recently used in [21] to design coresets

for high-dimensional Euclidean spaces. Their size bounds are essentially the same as

ours, however they go through a complicated analysis to directly show a shattering

dimension bound poly(k/ϵ). This complication is not necessary in our method, because

by our iterative size reduction it suffices to show a very loose Ok,ϵ(log ∥X∥0) dimension

bound, and this follows immediately from the Johnson-Lindenstrauss result.

Terminal Embedding for Excluded-minor Graphs The technical core of

the terminal embedding for excluded-minor graphs is how to bound the shattering

dimension. In our proof, we reduce the problem of bounding the shattering dimension

into finding a representation of the distance functions on X × V as a set of min-linear

functions. Specifically, we need to find for each x a min-linear function gx : Rs → R of

the form gx(t) = min1≤i≤s{aiti + bi}, where s = O(log ∥X∥0), such that ∀c ∈ V , there

is t ∈ Rs with d(x, c) = gx(t).

The central challenge is how to relate the graph structure to the structure of

shortest paths d(x, c). To demonstrate how we relate them, we start with discussing

the simple special case of bounded treewidth graphs. For bounded treewidth graphs,

the vertex separator theorem is applied to find a subset P ⊆ V , through which the

shortest path x⇝ y has to pass. This translates into the following

d(x, c) = min
p∈P
{d(x, p) + d(p, c)},

and for each x ∈ X, we can use this to define the desired min-linear function

gx(d(p1, c), . . . , d(pm, c)) = d(x, c), where we write P = {p1, . . . , pm}.

However, excluded-minor graphs do not have small vertex separator, and we use

the shortest-path separator [50, 51] instead. Now assume for simplicity that the

shortest paths x ⇝ c all pass through a fixed shortest path l. Because l itself is a

shortest path, we know

∀x ∈ X, c ∈ V, d(x, c) = min
u1,u2∈l

{d(x, u1) + d(u1, u2) + d(u2, c)}.

29

Since l can have many (i.e. ω(log ∥X∥0)) points, we need to discretize l by designating

poly(ϵ−1) portals P l
x on l for each x ∈ X (and similarly P l

c for c ∈ V). This only

introduces (1 + ϵ) distortion to the distance, which we can afford.

Then we create d′
x : l→ R+ to approximate d(x, u)’s, using distances from x to the

portals P l
x (and similarly for d(c, u)). Specifically, for the sake of presentation, assume

P l
x = {p1, p2, p3} (p1 ≤ p2 ≤ p3), interpret l as interval [0, 1), then for u ∈ [0, p1),

define d′
x(u) = d(x, 0), for u ∈ [p1, p2), define d′

x(u) = d(x, p1), and so forth. Hence,

each d′
x(·) is a piece-wise linear function of O(|P l

x|) pieces (again, similarly for d′
c(·)),

and this enables us to write

d(x, c) ≈ d′(x, c) := min
u1,u2∈P l

x∪P l
c

{d′
x(u1) + d(u1, u2) + d′

c(u2)}.

Therefore, it suffices to find a min-linear representation for d′(x, ·) for x ∈ X.

However, the piece-wise linear structure of d′
x creates extra difficulty to define min-

linear representations. To see this, still assume P l
x = {p1, p2, p3}. Then to determine

d′
x(u) for u ∈ P l

x ∪ P l
c , we not only need to know d(x, pi) for pi ∈ P l

x, but also need

to know which sub-interval [pi, pi+1) that u belongs to. (That is, if u ∈ [p1, p2), then

d′
x(u) = d(x, p1).) Hence, in addition to using distances {c} × P l

c as variables of gx,

the relative ordering between points in P l
x ∪ P l

c is also necessary to evaluate d′(x, c).

Because c ∈ V can be arbitrary, we cannot simply “remember” the ordering in

gx. Hence, we “guess” this ordering, and for each fixed ordering we can write gx

as a min-linear function of few variables. Luckily, we can afford the “guess” since

|P l
x ∪ P l

c | = poly(ϵ−1) which is independent of X. A more detailed overview can be

found in Section 3.4.1.

3.1.3 Additional Related Work

Tightly related to coresets and terminal embedding, dimensionality reduction has also

been studied for clustering in Euclidean spaces. Compared with coresets which reduce

30

the data set size while keeping the dimension, dimensionality reduction aims to find a

low-dimensional representation of data points (but not necessarily reduce the number

of data points). As a staring point, a trivial application of Johnson-Lindenstrauss

Lemma [52] yields a dimension bound O(ϵ−2 log n) for (k, z)-Clustering. For k-

Means with 1 + ϵ approximation ratio, [53] showed an O(k/ϵ2) dimension bound

for data-oblivious dimension reduction and an O(k/ϵ) bound for the data-dependent

setting. Moreover, the same work [53] also obtained a data-oblivious O(ϵ−2 log k)

dimension bound for k-Means with approximation ratio 9 + ϵ. Very recently, [54]

obtained an Õ(ϵ−6(log k + log log n)) dimension bound for k-Means and [55] obtained

an O(ϵ−2 log k
ϵ
) bound for (k, z)-Clustering. Both of them used data-oblivious

methods and have approximation ratio 1 + ϵ. Dimensionality reduction techniques are

also used for constructing dimension-free coresets in Euclidean spaces [14, 21, 41, 54].

3.2 Preliminaries

Notations Let V k := {C ⊆ V : |C| ≤ k} denote the collection of all subsets of

V of size at most k. 1 For integer n, i > 0, let log(i) n denote the i-th iterated

logarithm of n, i.e. log(1) n := log n and log(i) n := log(log(i−1) n) (i ≥ 2). Define

log⋆ n as the number of times the logarithm is iteratively applied before the result

is at most 1, i.e. log⋆ n := 0 if n ≤ 1 and log⋆ n = 1 + log⋆(log n) if n > 1. For

a weighted set S, denote the weight function as wS : S → R+. Let OPTz(X)

be the optimal objective value for (k, z)-Clustering on X, and we call a subset

C ⊆ V an (α, β)-approximate solution for (k, z)-Clustering on X if |C| = αk and

costz(X, C) := ∑︁
x∈X wX(x) · (d(x, C))z ≤ β ·OPTz(X).

Functional Representation of Distances We consider sets of functions F from

V to R+. Specifically, we consider function sets F = {fx : V → R+ | x ∈ X} that is
1Strictly speaking, V k is the collection of all ordered k-tuples of V , but here we use it to denote

the subsets. Note that tuples may contain repeated elements so the subsets in V k are of size at most
k.

31

indexed by the weighted data set X ⊆ V , and intuitively fx(·) is used to measure the

distance from x ∈ X to a point in V . Because we interpret fx’s as distances, for a

subset C ⊆ V , we define fx(C) := minc∈C fx(C), and define the clustering objective

accordingly as

costz(F , C) :=
∑︂

fx∈F
wF(fx) · (fx(C))z.

In fact, in our applications, we will use fx(y) as a “close” approximation to d. We

note that this functional representation is natural for k-Clustering, since the objective

function only uses distances from X to every k-subset of V only. Furthermore, we do

not require the triangle inequality to hold for such functional representations.

Shattering Dimension For c ∈ V, r ≥ 0, define BF(c, r) := {f ∈ F : f(c) ≤ r}.

We emphasize that c is from the ambient space V in addition to the data set X.

Intuitively, BF(c, r) is the ball centered at c with radius r when the f functions are

used to measure distances. For example, consider X = V and let fx(·) := d(x, ·) for

x ∈ V . Then BF(c, r) = {fx ∈ F : d(c, x) ≤ r}, which corresponds to the metric ball

centered at c with radius r.

We introduce the notion of shattering dimension in Definition 3.2.1. In fact, the

shattering dimension may be defined with respect to any set system [56], but we do

not need this generality here and thus we consider only the shattering dimension of

the “metric balls” system.

Definition 3.2.1 (Shattering Dimension [56]). Suppose F is a set of functions from

V to R+. The shattering dimension of F , denoted as sdim(F), is the smallest integer

t, such that for every H ⊆ F with |H| ≥ 2,

∀H ⊆ F , |H| ≥ 2, |{BH(c, r) : c ∈ V, r ≥ 0}| ≤ |H|t. (3.1)

The shattering dimension is tightly related to the well-known VC-dimension [57],

and they are equal to each other up to a logarithmic factor [56, Corollary 5.12,

32

Lemma 5.14]. In our application, we usually do not use sdim(F) directly. Instead,

given a point weight v : X → R+, we define Fv := {fx · v(x) | x ∈ X}, and then

consider the maximum of sdim(Fv) over all possible v, defined as sdimmax(F) :=

maxv:X→R+ sdim(Fv).

33

3.3 Framework

We present our general framework for constructing coresets. Our first new idea is a

generic reduction, called iterative size reduction, through which it suffices to find a

coreset of size O(log ∥X∥0) only in order to get a coreset of size independent of X.

This general reduction greatly simplifies the coreset construction, and in particular,

as we will see, “old” techniques such as importance sampling gains new power and

becomes useful for new settings such as excluded-minor graphs.

Roughly speaking, the iterative size reduction turns a coreset construction algorithm

A(X, ϵ) with size O(poly(ϵ−1k) · log ∥X∥0) into a construction A′(X, ϵ) with size

poly(ϵ−1k). To define A′, we simply iteratively apply A, i.e. Xi := A(Xi−1, ϵi), and

terminate when ∥Xi∥0 does not decrease. However, if A is applied for t times in

total, the error of the resulted coreset is accumulated as ∑︁t
i=1 ϵt. Hence, to make the

error bounded, we make sure ϵi ≥ 2ϵi−1 and ϵt = O(ϵ), so ∑︁t
i=1 ϵi = O(ϵ). Moreover,

our choice of ϵi also guarantees that ∥Xi∥0 is roughly poly(ϵ−1k · log(i) ∥X∥0). Since

log(i) ∥X∥0 decreases very fast with respect to i, ∥Xi∥0 becomes poly(ϵ−1k) in about

t = log⋆ ∥X∥0 iterations. The detailed algorithm A′ can be found in Algorithm 3, and

we present the formal analysis in Theorem 3.3.1.

To construct the actual coresets which is to be used with the reduction, we adapt

the importance sampling method that was proposed by Feldman and Langberg [13].

In previous works, the size of the coresets from importance sampling is related to the

shattering dimension of metric balls system (i.e. in our language, it is the shattering

dimension of F = {d(x, ·) | x ∈ X}.) Instead of considering the metric balls only, we

give a generalized analysis where we consider a general set of “distance functions” F

that has some error but is still “close” to d. The advantage of doing so is that we

could trade the accuracy with the shattering dimension, which in turn reduces the

size of the coreset.

34

We particularly examine the following set of functions F = {fx : V → R+ | x ∈ X}

where F introduces a multiplicative (1 + ϵ) error to d, i.e. ∀x ∈ X, c ∈ V , d(x, c) ≤

fx(c) ≤ (1 + ϵ) · d(x, c). Such a small distortion is already very helpful to obtain an

O(log ∥X∥0) shattering dimension for minor-free graphs and Euclidean spaces.

In this section, we will discuss how F implies efficient coresets, and the dimension

bounds will be analyzed in Section 3.4 where we also present the coreset results.

3.3.1 Iterative Size Reduction

Theorem 3.3.1 (Iterative Size Reduction). Let ρ ≥ 1 be a constant and let M

be a family of metric spaces. Assume A(X, k, z, ϵ, δ, M) is a randomized algorithm

that constructs an ϵ-coreset of size ϵ−ρs(k) log δ−1 log ∥X∥0 for (k, z)-Clustering

on every weighted set X ⊆ V and metric space M(V, d) ∈ M, for every z ≥ 1, 0 <

ϵ, δ < 1
4 , running in time T (∥X∥0, k, z, ϵ, δ, M) with success probability 1 − δ. Then

algorithm A′(X, k, z, ϵ, δ, M), stated in Algorithm 3, computes an ϵ-coreset of size

Õ(ϵ−ρs(k) log δ−1) for (k, z)-Clustering on every weighted set X ⊆ V and metric

space M(V, d) ∈M, for every z ≥ 1, 0 < ϵ, δ < 1
4 , in time

O(T (∥X∥0, k, z, O(ϵ/(log ∥X∥0)
1
ρ), O(δ/∥X∥0), M) · log⋆ ∥X∥0),

and with success probability 1− δ.

Proof. For the sake of presentation, let n := ∥X∥0, s := s(k), and Γ := sϵ−ρ log δ−1.

We start with proving in the following that Xt is an O(ϵ)-coreset of X with size

max{160000Γ4, 20Γρ323ρ+3} with probability 1−O(δ).

Let ai := ∥Xi∥0. Then by definition of Xi,

ai = sϵ−ρ
i log ai−1 log δ−1

i

= sϵ−ρ
i log ai−1(log ai−1 + log δ−1)

≤ sϵ−ρ
i log δ−1(log ai−1)2 (3.2)

35

Algorithm 3 Iterative size reduction A′(X, k, z, ϵ, δ, M)
Require: algorithm A(X, k, z, ϵ, δ, M) that computes an ϵ-coreset for (k, z)-

Clustering on X with size ϵ−ρs(k) log δ−1 log ∥X∥0 and success probability
1− δ.

1: let X0 := X, and let t be the largest integer such that log(t−1) ∥X∥0 ≥
max{20ϵ−ρs(k) log δ−1, ρ2ρ+1}

2: for i = 1, · · · , t do
3: let ϵi := ϵ/(log(i) ∥X∥0)

1
ρ , δi := δ/∥Xi−1∥0

4: let Xi := A(Xi−1, k, z, ϵi, δi, M)
5: end for
6: Xt+1 := A(Xt, k, z, ϵ, δ, M)
7: return Xt+1

where the inequality is by log ai−1 + log δ−1 ≤ log ai−1 · log δ−1, which is equivalent to

(log ai−1 − 1)(log δ−1 − 1) ≥ 1 and the latter is true because ai−1 ≥ ϵ−ρ ≥ ϵ−1 ≥ 4 and

δ < 1
4 .

Next we use induction to prove that ai ≤ 20Γ log δ−1(log(i) n)3 for all i = 1, . . . , t.

This is true for the base case when i = 1, since a1 ≤ sϵ−ρ
1 log δ−1(log n)2 ≤ Γ(log n)3 ≤

20Γ(log n)3. Then consider the inductive case i ≥ 2 and assume the hypothesis is true

for i− 1. We have

ai ≤ sϵ−ρ
i log δ−1(log ai−1)2 by (3.2)

= Γ log(i) n · (log ai−1)2 by definition of ϵi

≤ Γ log(i) n · (log(20Γ(log(i−1) n)3))2 by induction hypothesis

= Γ log(i) n · (log(20Γ) + 3 log(i) n)2

≤ Γ log(i) n · (2(log(20Γ))2 + 18(log(i) n)2) by (a + b)2 ≤ 2a2 + 2b2

≤ 20Γ(log(i) n)3,

where the last inequality follows from the fact that log(20Γ) ≤ log(log(i−1) n) =

log(i) n, by i ≤ t and the definition of t. Hence we conclude ai ≤ 20Γ(log(i) n)3.

This in particular implies that at ≤ 20Γ(log(t) n)3, and by definition of t, we have

36

log(t) n < max{20Γ, ρ2ρ+1}. Hence,

at ≤ max{160000Γ4, 20Γρ323ρ+3}.

By the guarantee of A, we know that Xt is a Πt
i=1(1 + ϵi)-coreset for X. Note that

a ≥ 2ρ log a for every a ≥ ρ2ρ+1, so we have ϵi+1 ≥ 2ϵi for i ≤ t, which implies that∑︁t
i=1 ϵi ≤ 2ϵt. Hence we conclude that

Πt
i=1(1 + ϵi) ≤ exp

(︄
t∑︂

i=1
ϵi

)︄
≤ exp(2ϵt) ≤ exp

⎛⎝ 2ϵ

(log(t) n)
1
ρ

⎞⎠ ≤ exp(2ϵ) ≤ 1 + 10ϵ,

where the second last inequality follows from log(t) n = log(log(t−1) n) ≥ log(ρ2ρ+1) ≥ 1

for ρ ≥ 1, and the last inequality follows by the fact that exp(2ϵ) ≤ 1 + 10ϵ for

ϵ ∈ (0, 1). For the failure probability, we observe that ai−1 ≥ ϵ−ρ
i−1 ≥ log(i−1) n, hence

δi = δ
ai−1
≤ δ

log(i−1) n
, and the total failure probability is
t∑︂

i=1
δi ≤ δ

(︄
1
n

+ 1
log n

+ · · ·+ 1
log(t−1) n

)︄
≤ O(δ),

where again we have used log(t−1) n ≥ ρ2ρ+1 ≥ 4, by definition of t and ρ ≥ 1.

Therefore, Xt is an O(ϵ)-coreset of X with size max{160000Γ4, 20Γρ323ρ+3} with

probability 1 − O(δ). Finally, in the end of algorithm A′, we apply A again on Xt

with parameter ϵ and δ to obtain an O(ϵ)-coreset of X with size

sϵ−ρ log δ−1 log(max{160000Γ4, 20Γρ323ρ+3}) = Õ(sϵ−ρ log δ−1)

with probability 1−O(δ).

To see the running time, we note that t = O(log⋆ n), and we run A for t + 1 times.

Moreover, since ϵi ≥ ϵ1 and δi ≥ δ1, the running time of each call of A is at most

T (∥X∥0, k, z, ϵ1, δ1, M). This completes the proof of Theorem 3.3.1.

3.3.2 Importance Sampling

We proceed to design the algorithm A required by Theorem 3.3.1. It is based on the

importance sampling algorithm introduced by [13, 20], and at a high level consists of

two steps:

37

1. Computing probabilities: for each x ∈ X, compute px ≥ 0 such that ∑︁x∈X px =

1.

2. Sampling: draw N (to be determined later) independent samples from X, each

drawn from the distribution (px : x ∈ X), and assign each sample x a weight
wX(x)
px·N to form a coreset D.

The key observation in the analysis of this algorithm is that the sample size

N , which is also the coreset size ∥D∥0, is related to the shattering dimension (see

Definition 3.2.1) of a suitably defined set of functions [13, Theorem 4.1]. The analysis

in [13] has been subsequently improved [41, 48], and we make use of [41, Theorem 31],

restated as follows.

Lemma 3.3.2 (Analysis of Importance Sampling [41]). Fix z ≥ 1, 0 < ϵ < 1
2 , an

integer k ≥ 1 and a metric space (V, d). Let X ⊆ V have weights wX : V → R+ and

let F := {fx : V → R+ | x ∈ X} be a corresponding set of functions with weights

wF(fx) = wX(x). Suppose {σx}x∈X satisfies

∀x ∈ X, σx ≥ σF
x := max

C∈V k

wX(x) · (fx(C))z

costz(F , C) ,

and set a suitable

N = O(ϵ−2σX(k · sdimmax(F) · log(sdimmax(F)) · log σX + log 1
δ
)),

where σX := ∑︁
x∈X σx and

sdimmax(F) := max
v:X→R+

sdim (Fv) , Fv := {fx · v(x) | x ∈ X}.

Then the weighted set D of size ∥D∥0 = N returned by the above importance sampling

algorithm satisfies, with high probability 1− δ,

∀C ∈ V k,
∑︂
x∈D

wD(x) · (fx(C))z ∈ (1± ϵ) · costz(F , C).

38

Remark 3.3.1. We should explain how [41, Theorem 31] implies Lemma 3.3.2. First of

all, the bound in [41] is with respect to VC-dimension, and we transfer to shattering

dimension by losing a logarithmic factor (see Section 5.2 for the relation between VC-

dimension and shattering dimension). Another main difference is that the functions

therein are actually not from V to R+. For F = {fx : V → R+ | x ∈ X}, they consider

Fk := {fx(C) = minc∈C{fx(c)} | x ∈ X}, and their bound on the sample size is

N = Õ(ϵ−2σX(sdimmax(Fk) · log σX + log 1
δ
)).

The notion of balls and shattering dimension they use (for Fk) is the natural extension

of our Definition 3.2.1 (from functions on V to functions on V k), where a ball around

C ∈ V k is BF(C, r) = {fx ∈ F : fx(C) ≤ r}, and (3.1) is replaced by

⃓⃓⃓
{BH(C, r) : C ∈ V k, r ≥ 0}

⃓⃓⃓
≤ |H|t.

Our Lemma 3.3.2 follows from [41, Theorem 31] by using the fact sdim(Fk) ≤

k · sdim(F) from [13, Lemma 6.5].

Terminal Embedding. As mentioned in Section 3.1, F in Lemma 3.3.2 corre-

sponds to the distance function d, i.e., fx(·) = d(x, ·), and Lemma 3.3.2 is usually

applied directly to the distances, i.e., on a function set F = {fx(·) = d(x, ·) | x ∈ X}.

In our applications, we instead use Lemma 3.3.2 with a “proxy” function set F that

is viewed as a terminal embedding on X, in which both the distortion of distances

(between X and all of V) and the shattering dimension are controlled.

In what follows, we discuss how terminal embedding is used to construct coresets.

3.3.3 Coresets via Terminal Embedding

Recall that our terminal embedding distorts distances between V and X multiplica-

tively, i.e.,

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ϵ) d(x, c). (3.3)

39

This natural guarantee works very well for (k, z)-Clustering in general. In particular,

using such F in Lemma 3.3.2, our importance sampling algorithm will produce (with

high probability) an O(zϵ)-coreset for (k, z)-Clustering.

Sensitivity Estimation. To compute a coreset using Lemma 3.3.2 we need to

define, for every x ∈ X,

σx ≥ σF
x = max

C∈V k

wX(x) · (fx(C))z

costz(F , C) .

The quantity σF
x , usually called the sensitivity of point x ∈ X with respect to F [13,

20]; essentially measures the maximal contribution of x to the clustering objective

over all possible centers C ⊆ V . Since fx(y) approximates d(x, y) by (3.3), it actually

suffices to estimate the sensitivity with respect to d instead of F , given by

σ⋆
x := max

C∈V k

wX(x) · (d(x, C))z

costz(X, C) . (3.4)

Even though computing σ⋆
x exactly seems computationally difficult, we shown

next (in Lemma 3.3.3) that a good estimate can be efficiently computed given an

(O(1), O(1))-approximate clustering. A weaker version of this lemma was presented

in [42] for the case where X has unit weights, and we extend it to X with general

weights. We will need the following notation. Given a subset C ⊆ V , denote the

nearest neighbor of x ∈ X, i.e., the point in C closest to x with ties broken arbitrarily,

by NNC(x) := arg min{d(x, y) : y ∈ C}. The tie-breaking guarantees that every x

has a unique nearest neighbor, and thus NNC(.) partitions X into |C| subsets. The

cluster of x under C is then defined as C(x) := {x′ ∈ X : NNC(x′) = NNC(x)}.

Lemma 3.3.3. Fix z ≥ 1, an integer k ≥ 1, and a weighted set X. Given Capx ∈ V k

that is an (α, β)-approximate solution for (k, z)-Clustering on X, define for every

x ∈ X,

σapx
x := wX(x) ·

(︄
(d(x, Capx))z

costz(X, Capx) + 1
wX(Capx(x))

)︄
.

Then σapx
x ≥ Ω(σ⋆

x/(β22z)) for all x ∈ X, and σapx
X := ∑︁

x∈X σapx
x ≤ 1 + αk.

40

Before proving this lemma, we record the following approximate triangle inequality

for distances raised to power z ≥ 1.

Claim 3.3.4. For all x, x′, y ∈ V we have dz(x, y) ≤ 2z−1 · [dz(x, x′) + dz(x′, y)].

Proof of Claim 3.3.4. We first use the triangle inequality,

dz(x, y) ≤ [d(x, x′) + d(x′, y)]z

and since a ↦→ az is convex (recall z ≥ 1), all a, b ≥ 0 satisfy (a+b
2)z ≤ az+bz

2 , hence

≤ 2z−1[dz(x, x′) + dz(x′, y)].

The claim follows.

Proof of Lemma 3.3.3. Given C∗, we shorten the notation by setting µ := NNCapx,

and let Xapx be the weighted set obtained by mapping all points of X by µ. For-

mally, Xapx := {µ(x) : x ∈ X} where every y ∈ Xapx has weight wXapx(y) :=∑︁
x∈X:µ(x)=y wX(x). Then obviously

∀x ∈ X, wX(Capx(x)) =
∑︂

x′∈Capx(x)
wX(x′) = wXapx(µ(x)).

Upper bound on σapx
X . Using the above,

σapx
X =

∑︂
x∈X

σapx
x =

∑︂
x∈X

wX(x) ·
(︄

dz(x, µ(x))
costz(X, Capx) + 1

wXapx(µ(x))

)︄
,

and we can bound

∑︂
x∈X

wX(x) · 1
wXapx(µ(x)) =

∑︂
y∈Xapx

wXapx(y) · 1
wXapx(y) ≤ ∥C

apx∥0 ≤ αk,

and we conclude that σapx
X ≤ 1 + αk, as required.

Lower bound on σapx
x (relative to σ⋆

x). Aiming to prove this as an upper bound

on σ⋆
x, consider for now a fixed C ∈ V k. We first establish the following inequality,

41

that relates the cost of Xapx to that of X.

costz(Xapx, C) =
∑︂

y∈Xapx
wXapx(y) · dz(y, C)

=
∑︂
x∈X

wX(x) · dz(µ(x), C)

≤ 2z−1 ∑︂
x∈X

wX(x) · [dz(µ(x), x) + dz(x, C)] by Claim 3.3.4

= 2z−1 · [costz(X, Capx) + costz(X, C)] as Capx is (α, β)-approximation

≤ 2z−1(β + 1) · costz(X, C). (3.5)

Now aiming at an upper bound on σ⋆
x, observe that

dz(X, C)
costz(X, C) ≤ 2z−1 ·

[︄
dz(x, µ(x)) + dz(µ(x), C)

costz(X, C)

]︄
by Claim 3.3.4 (3.6)

and let us bound each term separately. For the first term, since Capx is an (α, β)-

approximation,

dz(x, µ(x))
costz(X, C) ≤ β · dz(x, µ(x))

costz(X, Capx) .

The second term is

dz(µ(x), C)
costz(X, C) ≤ (β + 1)2z−1 · dz(µ(x), C)

costz(Xapx, C) by (3.5)

= (β + 1)2z−1 · dz(µ(x), C)∑︁
y∈Xapx wXapx(y) · dz(y, C)

≤ (β + 1)2z−1 · 1
wXapx(µ(x)) .

Plugging these two bounds into (3.6), we obtain

dz(x, C)
costz(X, C) ≤ (β + 1)22z−2 ·

[︃
dz(x, µ(x))

costz(X, Capx) + 1
wXapx(µ(x))

]︃
= (β + 1)22z−2 · σapx

x

wX(x) .

Using the definition in (3.4), we conclude that (β +1)22z−2 ·σapx
x ≥ σ⋆

x, which completes

the proof of Lemma 3.3.3.

Conclusion. Our importance sampling algorithm for this type of terminal em-

bedding is listed in Algorithm 4. By a direct combination of Lemma 3.3.2 and Lemma

3.3.3, we conclude that the algorithm yields a coreset, which is stated formally in

Lemma 3.3.5.

42

Algorithm 4 Coresets for (k, z)-Clustering for F with multiplicative distortion
1: compute an (O(1), O(1))-approximate solution Capx for (k, z)-Clustering on X

2: for each x ∈ X, let σx := wX(x) ·
(︂

(d(x,Capx))z

costz(X,Capx) + 1
wX(Capx(x))

)︂
▷ as in Lemma 3.3.3

3: for each x ∈ X, let px := σx∑︁
y∈X

σy

4: draw N := O
(︂
ϵ−222zk ·

(︂
zk log k · sdimmax(F) + log 1

δ

)︂)︂
independent samples

from X, each from the distribution (px : x ∈ X) ▷ sdimmax as in Lemma 3.3.2
5: let D be the set of samples, and assign each x ∈ D a weight wD(x) := wX(x)

pxN

6: return the weighted set D

Lemma 3.3.5. Fix 0 < ϵ, δ < 1
2 , z ≥ 1, an integer k ≥ 1, and a metric space M(V, d).

Given a weighted set X ⊆ V and respective F = {fx : V → R+ | x ∈ X} such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ϵ) · d(x, c),

Algorithm 4 computes a weighted set D ⊆ X of size

∥D∥0 = O
(︂
ϵ−222zk

(︂
zk log k · sdimmax(F) + log 1

δ

)︂)︂
,

that with high probability 1− δ is an ϵ-coreset for (k, z)-Clustering on X.

The running time of Algorithm 4 is dominated by the sensitivity estimation,

especially line 1 which computes an (O(1), O(1))-approximate solution. In Lemma

3.3.6 we present efficient implementations of the algorithm, both in metric settings

and in graph settings.

Lemma 3.3.6. Algorithm 4 can be implemented in time Õ(k∥X∥0) if it is given oracle

access to the distance d, and it can be implemented in time Õ(|E|) if the input is an

edge-weighted graph G = (V, E) and M is its shortest-path metric.

Proof. The running time is dominated by Step 1 which requires an (O(1), O(1))-

approximation in both settings. For the metric setting where oracle access to d is

given, [58] gave an Õ(k∥X∥0) algorithm for both k-Median (z = 1) and k-Means

(z = 2), and it has been observed to work for general z in a recent work [21].

43

For the graph setting, Thorup [39, Theorem 20] gave an (2, 12+o(1))-approximation

for graph k-Median in time Õ(|E|), such that the input points are unweighted. Even

though not stated in his result, we observe that his approach may be easily modified

to handle weighted inputs as well, and we briefly mention the major changes.

• Thorup’s first step [39, Algorithm D] is to compute an (Õ(log |V |), O(1))-

approximation F by successive uniform independent sampling. This can be

naturally modified to sampling proportional to the weights of the input points.

• Then, the idea is to use the Jain-Vazirani algorithm [59] on the bipartite graph

F×X. To make sure the running time is Õ(|V |), the edges of F×X sub-sampled

by picking, for each x ∈ X, only Õ(1) neighbors in F . This sampling is oblivious

to weights, and hence still goes through. Let the sampled subgraph be G′.

• Finally, the Jain-Vazirani algorithm is applied on G′ to obtain the final (2, 12 +

o(1))-approximation. However, we still need to modify Jain-Vazirani to work

with weighted inputs. Roughly, Jain-Vazirani algorithm is a primal-dual method,

so the weights are easily incorporated to the linear program, and the primal-dual

algorithm is naturally modified so that dual variables are increased at a rate

that is proportional to their weight in the linear program.

After obtaining Capx, the remaining steps of Algorithm 4 trivially runs in time

Õ(k∥X∥0) when oracle access to d is given. However, for the graph setting, the trivial

implementation of Step 2 which requires to compute cost1(X, Capx) needs to run Õ(k)

single-source-shortest-paths from points in Capx, and this leads to a running time

Õ(k|V |). In fact, as observed in [39, Observation 1], only one single-source-shortest-

path needs to be computed, by running Dijkstra’s algorithm on a virtual point x0

which connects to each point in Capx to x0 with 0 weight.

This completes the proof of Lemma 3.3.6.

44

3.4 Coresets

We now apply the framework developed in Section 3.3 to design coresets of size

independent of X for two different settings, including excluded-minor graphs (in Section

3.4.1), and high-dimensional Euclidean spaces (in Section 3.4.3). Our workhorse will be

Lemma 3.3.5 which effectively translates a terminal embedding F with low distortion

on X×V and low shattering dimension sdimmax into an efficient algorithm to construct

a coreset whose size is linear in sdimmax(F).

We therefore turn our attention to designing such terminal embeddings. For

excluded-minor graphs, we design a terminal embedding F with multiplicative distor-

tion 1 + ϵ of the distances, and dimension sdimmax(F) = O(poly(k/ϵ) · log ∥X∥0). For

Euclidean spaces, we employ a known terminal embedding with similar guarantees. In

both settings, even though the shattering dimension depends on ∥X∥0, it still implies

coresets of size independent of X by our iterative size reduction (Theorem 3.3.1). We

thus obtain the first coreset (of size independent of X and V) for excluded-minor

graphs (Corollary 3.4.2), and a simpler state-of-the-art coreset for Euclidean spaces

(Corollary 3.4.18).

3.4.1 Excluded-minor Graphs

Our terminal embedding for excluded-minor graphs is stated in the next lemma.

Previously, the shattering dimension of the shortest-path metric of graphs excluding a

fixed graph H0 as a minor was studied only for unit point weight, for which Bousquet

and Thomassé [34] proved that F = {d(x, ·) | x ∈ X} has shattering dimension

sdim(F) = O(|H0|). For arbitrary point weight, i.e., sdimmax(F), it is still open to get

a bound that depends only on |H0|, although the special case of bounded treewidth

graph resolved in Chapter 2. Note that both of these results use no distortion of

the distances, i.e., they bound F = {d(x, ·) | x ∈ X}. Our terminal embedding

45

handles the most general setting of excluded-minor graphs and arbitrary point weight,

although it bypasses the open question by allowing a small distortion and dependence

on X.

Lemma 3.4.1 (Terminal Embedding for Excluded-minor Graphs). For every edge-

weighted graph G = (V, E) that excludes some fixed minor and whose shortest-path

metric is denoted as M = (V, d), and for every weighted set X ⊆ V , there exists a set

of functions F := {fx : V → R+ | x ∈ X} such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ϵ) · d(x, c),

and sdimmax(F) = Õ(ϵ−2) · log ∥X∥0.

Let us present now an overview of the proof of Lemma 3.4.1, deferring the full

details to Section 3.4.2. Our starting point is the following approach developed in

Chapter 2 for bounded-treewidth graphs. (The main purpose is to explain how vertex

separators are used as portals to bound the shattering dimension, but unfortunately

additional technical details are needed.) The first step in this approach reduces the

task of bounding the shattering dimension to counting how many distinct permutations

of X one can obtain by ordering the points of X according to their distance from

a point c, when ranging over all c ∈ V . An additional argument uses the bounded

treewidth to reduce the range of c from all of V to a subset V̂ ⊂ V , that is separated

from X by a vertex-cut P ⊂ V of size |P̂ | = O(1). This means that every path,

including the shortest-path, between every x ∈ X and every c ∈ V̂ must pass through

P̂ , therefore

d(x, c) = min{d(x, p) + d(p, c) : p ∈ P̂},

and the possible orderings of X are completely determined by these values. The key

idea now is to replace the hard-to-control range of c ∈ V̂ with a richer but easier

range of |P̂ | = O(1) real variables. Indeed, each d(x, ·) is captured by a min-linear

46

function, which means a function of the form mini aiyi + bi with real variables {yi}

that represent {d(p, c)}p∈P̂ and fixed coefficients {ai, bi}. Therefore, each d(x, ·) is

captured by a min-linear function gx : R|P̂ | → R+, and these functions are all defined

on the same |P̂ | = O(1) real variables. In this representation, it is easy to handle

the point weight v : X → R+ (to scale all distances from x), because each resulting

function v(x) ·gx is still min-linear. Finally, the number of orderings of the set {gx}x∈X

of min-linear functions, is counted using the arrangement number for hyperplanes,

which is a well-studied quantity in computational geometry.

To extend this approach to excluded-minor graphs (or even planar graphs), which

do not admit small vertex separators, we have to replace vertex separators with

shortest-path separators [50, 51]. In particular, we use these separator theorem to

partition the whole graph into a few parts, such that each part is separated from the

graph by only a few shortest paths, see Lemma 3.4.4 for planar graphs (which is a

variant of a result known from [60]) and Lemma 3.4.12 for excluded-minor graphs.

However, the immediate obstacle is that while these separators consist of a few paths,

their total size is unbounded (with respect to X), which breaks the above approach

because each min-linear function has too many variables. A standard technique to

address this size issue is to discretize the path separator into portals, and reroute

through them a shortest-path from each x ∈ X to each c ∈ V . This step distorts the

distances, and to keep the distortion bounded multiplicatively by 1 + ϵ, one usually

finds inside each separating shortest-path l, a set of portals Pl ⊂ l whose spacing is at

most ϵ · d(x, c). However, d(x, c) could be very small compared to the entire path l,

hence we cannot control the number of portals (even for one path l).

Vertex-dependent Portals In fact, all we need is to represent the relative

ordering of {d(x, ·) : x ∈ X} using a set of min-linear functions over a few real

variables, and these variables do not have to be the distance to fixed portals on

the separating shortest paths. (Recall this description is eventually used by the

47

arrangement number of hyperplanes to count orderings of X.) To achieve this, we first

define vertex-dependent portals P l
c with respect to a separating shortest path l and a

vertex c ∈ V (notice this includes also P l
x for x ∈ X). and then a shortest path from

x ∈ X to c ∈ V passing through l is rerouted through portals P l
x∪P l

c , as follows. First,

since l is itself a shortest path, d(x, c) = minu1,u2∈l{d(x, u1) + d(u1, u2) + d(u2, c)}.

Observe that d(u1, u2) is already linear, because one real variable can “capture” a

location in l, hence we only need to approximate d(x, u1) and d(c, u2). To do so, we

approximate the distances from c to every vertex on the path l, i.e., {d(c, u)}u∈l, using

only the distances from c to its portal set P l
c , i.e., {d(c, p)}p∈P l

c
. Moreover, between

successive portals this approximate distance is a linear function, and it actually suffices

to use |P l
c | = poly(1/ϵ) portals, which means that d(c, u) can be represented as a

piece-wise linear function in poly(1/ϵ) real variables.

Note that the above approach ends up with the minimum of piece-wise linear

(rather than linear) functions, which creates extra difficulty. In particular, we care

about the relative ordering of {d(x, ·) : x ∈ X} over all c ∈ V , and to evaluate d(x, c)

we need the pieces that c and x generate, i.e., information about P l
c ∪ P l

x. Since the

number of c ∈ V is unbounded, we need to “guess” the structure of P l
c , specifically

the ordering between the portals in P l
c and those in P l

x. Fortunately, since every

|P l
c | ≤ poly(1/ϵ), such a “guess” is still affordable, and this would prove Lemma 3.4.1.

Corollary 3.4.2 (Coresets for Excluded-Minor Graphs). For every edge-weighted

graph G = (V, E) that excludes a fixed minor, every 0 < ϵ, δ < 1/2 and integer k ≥ 1,

k-Median of every weighted set X ⊆ V (with respect to the shortest path metric of

G) admits an ϵ-coreset of size Õ(ϵ−4k2 log 1
δ
). Furthermore, such a coreset can be

computed in time Õ(|E|) with success probability 1− δ.

Proof. By combining Lemma 3.3.5, Lemma 3.3.6 with our terminal embedding from

Lemma 3.4.1, we obtain an efficient algorithm for constructing a coreset of size

48

Õ(ϵ−4k2 log ∥X∥0). This size can be reduced to the claimed size (and running time)

using the iterative size reduction of Theorem 3.3.1.

Remark 3.4.1. This result partly extends to (k, z)-Clustering for all z ≥ 1. The

importance sampling algorithm and its analysis are immediate, and in particular imply

the existence of a coreset of size Õ(ϵ−4k2 log 1
δ
). However we rely on known algorithm

for z = 1 in the step of computing an approximate clustering (needed to compute

sampling probabilities).

3.4.2 Proof of Lemma 3.4.1

For the sake of presentation, we start with proving the planar case, since this already

requires most of our new technical ideas. The statement of terminal embedding

for planar graphs is as follows, and how the proof can be modified to work for the

minor-excluded case is discussed in Section 3.4.2.1.

Lemma 3.4.3 (Terminal Embedding for Planar Graphs). For every edge-weighted

planar graph G = (V, E) whose shortest path metric is denoted as M = (V, d) and

every weighted set X ⊆ V , there exists a set of functions F = FX := {fx : V →

R+ | x ∈ X} such that for every x ∈ X, and c ∈ V , fx(c) ∈ (1 ± ϵ) · d(x, c), and

sdimmax(F) = ˜︁O(ϵ−2) log ∥X∥0.

By definition, sdimmax(F) = maxv:X→R+(Fv), so it suffices to bound sdim(Fv) for

every v. Also, by the definition of sdim, it suffices to prove for every H ⊆ Fv with

|H| ≥ 2,

|{BH(c, r) : c ∈ V, r ≥ 0}| ≤ poly(∥X∥0) · |H|Õ(ϵ−2) log ∥X∥0 .

Hence, we fix some v : X → R+ and H ⊆ Fv with |H| ≥ 2 throughout the proof.

General Reduction: Counting Relative Orderings For H ⊆ F and c ∈ V ,

let σH
c be the permutation of H ordered by v(x) ·fx(c) in non-decreasing order and ties

49

are broken arbitrarily. Then for a fixed c ∈ V and very r ≥ 0, the subset BH(c, r) ⊆ H

is exactly the subset defined by some prefix of σH
c . Hence,

|{BH(c, r) : c ∈ V, r ≥ 0}| ≤ |H| ·
⃓⃓⃓
{σH

c : c ∈ V }
⃓⃓⃓
.

Therefore, it suffices to show⃓⃓⃓
{σH

c : c ∈ V }
⃓⃓⃓
≤ poly(∥X∥0) · |H|Õ(ϵ−2) log ∥X∥0 .

Hence, this reduces the task of bounding of shattering dimension to counting the

number of relative orderings of {v(x) · fx(c) | x ∈ X}.

Next, we use the following structural lemma for planar graphs to break the graph

into few parts of simple structure, so we can bound the number of permutations for c

coming from each part. We note that a variant of this lemma has been proved in [60],

where the key idea is to use the interdigitating trees. For completeness, we give a full

proof of this lemma in the following.

Lemma 3.4.4 (Structural Property of Planar Graphs, see also [60]). For every edge-

weighted planar graph G = (V, E) and subset S ⊆ V , V can be broken into parts

Π := {Vi}i with |Π| = poly(|S|) and ⋃︁i Vi = V , such that for every Vi ∈ Π,

1. |S ∩ Vi| = O(1),

2. there exists a collection of shortest paths Pi in G with |Pi| = O(1) and removing

the vertices of all paths in Pi disconnects Vi from V \Vi (points in Vi are possibly

removed).

Furthermore, such Π and the corresponding shortest paths Pi for Vi ∈ Π can be

computed in Õ(|V |) time2.

The proof of Lemma 3.4.4 is based on the following property of general trees. We

note that the special case when R = T was proved in [60, Lemma 3.1] and our proof

is based on it. Nonetheless, we also provide the proof for completeness.
2This lemma is used only in the analysis in this section.

50

Lemma 3.4.5. Let T be a tree of degree at most 3 and let R be a subset of nodes in

T . There is a partition of the nodes of T with poly(|R|) parts, such that each part

is a subtree of T that contains O(1) nodes of R and has at most 4 boundary edges3

connecting to the rest of T . Such partition can be computed in time Õ(|T |), where |T |

is the number of nodes in T .

Proof. We give an algorithm to recursively partition T in a top-down manner. The

recursive algorithm takes a subtree T ′ as input, and if |T ′ ∩ R| ≥ 4, it chooses an

edge e from T ′ and run recursively on the two subtrees T ′
1 and T ′

2 that are formed by

removing e from T ′. Otherwise, the algorithm simply declares the subtree T ′ a desired

part and terminate, if |T ′ ∩R| < 4. Next, we describe how e is picked provided that

|T ′ ∩R| ≥ 4.

If T ′ has at most 3 boundary edges, we pick an edge e ∈ T ′ such that each of the

two subtrees T ′
1, T ′

2 formed by removing e satisfies 1
3 |T

′ ∩R| ≤ |T ′
j ∩R| ≤ 2

3 |T
′ ∩R|,

for j = 1, 2. By a standard application of the balanced separator theorem (see e.g.

Lemma 1.3.1 of [61]), such edge always exists and can be found in time O(|T ′|).

Now, suppose T ′ has exactly 4 boundary edges. Then we choose an edge e ∈ T ′,

such that each of the two subtrees T ′
1 and T ′

2 formed by removing e has at most 3

boundary edges. Such e must exist because the maximum degree is at most 3, and

such e may be found in time O(|T ′|) as well. To see this, suppose the four endpoints

(in T ′) of the four boundary edges are a, b, c, d. It is possible that they are not distinct,

but they can have a multiplicity of at most 2 because otherwise the degree bound 3 is

violated. If any point has a multiplicity 2, say a and b, then it has to be a leaf node

in T ′ (again, because of the degree constraint), and we can pick the unique tree edge

in T ′ connecting a as our e. Now we assume the four points are distinct, and consider

the unique paths P1, P2 that connect a, b and c, d respectively. If P1 and P2 intersect,

then the intersection must contain an edge as otherwise the intersections are at nodes
3Here a boundary edge is an edge that has exactly one endpoint in the subtree.

51

only which means each of them have degree at least 4, a contradiction. Hence, we

pick the intersecting edge as our e. Finally, if P1 and P2 are disjoint, we consider the

unique path P3 that connects a and c, and we pick edge e := e′ in P3 that is outside

both P1 and P2 to separate a and b from c and d.

We note that there are no further cases regarding the number of boundary edges of

T ′, since in the case of 4 boundaries edges, both T ′
1 and T ′

2 have at most 3 boundary

edges and it reduces to the first case.

It remains to analyze the size of the partition. By the property of balanced

separator, we know that such recursive partition has O(log |R|) depth. Hence the

total number of subtrees is 2O(log |R|) = poly(|R|). Finally, we note that in each level

of depth, we scan the whole tree once, so the running time is upper bounded By

O(log |R|) · |T | = Õ(|T |).

Proof of Lemma 3.4.4. We assume G is triangulated, since otherwise we can triangu-

late G and assign weight +∞ to the new edges so that the shortest paths are the same

as before. Let T be a shortest path tree of G from an arbitrary root vertex. Let G⋆ be

the planar dual of G. Let T ⋆ be the set of edges e of G⋆ such that the corresponding

edge of e in G is not in T . Indeed, T and T ⋆ are sometimes called interdigitating trees,

and it is well known that T ⋆ is a spanning tree of G⋆ (see e.g. [61]).

Choose R⋆ to be the set of faces that contain at least one point from S. We apply

Lemma 3.4.5 on R = R⋆ and T = T ⋆ to obtain Π⋆, the collection of resulted subtrees

of T ⋆. Then |Π⋆| = poly(|S|), and each part C⋆ in Π⋆ is a subset of faces in G such

that only O(1) of these faces contain some point in S on their boundaries. For a part

C⋆ in Π⋆, let V (C⋆) be the set of vertices in G that are contained in the faces in C⋆.

Recall that G is triangulated, so each face can only contain O(1) vertices from S on

its boundary. Therefore, for each part C⋆ in Π⋆, |C⋆ ∩ S| = O(1).

Still by Lemma 3.4.5, each part C⋆ in Π⋆ corresponds to a subtree in T ⋆, and

52

it has at most 4 boundary edges connecting to the rest of T ⋆. By the well-known

property of planar duality (see e.g. [61]), each C⋆ is bounded by the fundamental

cycles in T of the boundary edges. We observe that the vertices of a fundamental

cycle lie on 2 shortest paths in G via the least common ancestor in T (recalling that

T is the shortest path tree). So by removing at most 8 shortest paths in G, V (C⋆) is

disconnected from V \ V (C⋆) for every C⋆ ∈ Π⋆.

Therefore, we can choose Π := {V (C⋆) : C⋆ ∈ Π⋆}. For the running time, we note

that both the triangulation and the algorithm in Lemma 3.4.5 run in Õ(|V |) time.

This completes the proof.

Applying Lemma 3.4.4 with S = X (noting that S is an unweighted set), we obtain

Π = {Vi}i with |Π| = poly(∥X∥0), such that each part Vi ∈ Π is separated by O(1)

shortest paths Pi. Then
⃓⃓⃓
{σH

c : c ∈ V }
⃓⃓⃓
≤
∑︂

Vi∈Π

⃓⃓⃓
{σH

c : c ∈ Vi}
⃓⃓⃓
.

Hence it suffices to show for every Vi ∈ Π, it holds that
⃓⃓⃓
{σH

c : c ∈ Vi}
⃓⃓⃓
≤ |H|Õ(ϵ−2) log ∥X∥0 . (3.7)

Since ⋃︁i Vi = V , it suffices to define functions fx(·) for c ∈ Vi for every i independently.

Therefore, we fix Vi ∈ Π throughout the proof. In the following, our proof proceeds in

three parts. The first defines functions fx(·) on Vi, the second analyzes the distortion

of fx’s, and the final part analyzes the shattering dimension.

Part I: Definition of fx on Vi By Lemma 3.4.4 we know |Vi∩X| = O(1). Hence,

the “simple” case is when x ∈ Vi ∩ T , for which we define fx(·) := d(x, ·).

Otherwise, x ∈ X \ Vi. Write Pi := {Pj}j . Since Pj ’s are shortest paths in G, and

removing Pi from G disconnects Vi from V \ Vi, we have the following fact.

Fact 3.4.6. For c ∈ Vi and x ∈ X \ Vi, there exists Pj ∈ Pi and c′, x′ ∈ Pj, such that

d(c, x) = d(c, c′) + d(c′, x′) + d(x′, x).

53

Let dj(c, x) be the length of the shortest path from c to x that uses at least one

point in Pj. For each Pj ∈ Pi, we will define f j
x : Vi → R+, such that f j

x(c) is within

(1± ϵ) · dj(c, x), and let

fx(c) := min
Pj∈Pi

f j
x(c), ∀c ∈ Vi.

Hence, by Fact 3.4.6, the guarantee that f j
x(c) ∈ (1 ± ϵ) · dj(c, x) implies fx(c) ∈

(1± ϵ) · d(x, c), as desired. Hence we focus on defining f j
x in the following.

Defining f j
x : Vi → R+ Suppose we fix some Pj ∈ Pi, and we will define f j

x(c), for

c ∈ Vi. By Fact 3.4.6 and the optimality of shortest paths, we have

dj(x, c) = min
c′,x′∈Pj

{d(c, c′) + d(c′, x′) + d(x′, x)}.

For every y ∈ V , we will define lj
y : Pj → R+ such that lj

y(y′) ∈ (1 ± ϵ) · d(y, y′) for

every y′ ∈ Pj. Then, we let

f j
x(c) := min

c′,x′∈Pj

{lj
c(c′) + d(c′, x′) + lj

x(x′)},

and this would imply f j
x(c) ∈ (1± ϵ) · dj(x, c). So it remains to define lj

y : Pj → R+

for every y ∈ V .

Defining lj
y : Pj → R+ Fix y ∈ V and we will define lj

y(y′) for every y′ ∈ Pj . Pick

hy ∈ Pj that satisfies d(y, hy) = d(y, Pj). Since Pj is a shortest path, we interpret Pj

as a segment in the real line. In particular, we let the two end points of Pj be 0 and 1,

and Pj is a (discrete) subset of [0, 1].

Define a, b ∈ Pj such that a ≤ hy ≤ b are the two furthest points on the two

sides of h on Pj that satisfy d(hy, a) ≤ d(y,hy)
ϵ

and d(hy, b) ≤ d(y,hy)
ϵ

. Then construct a

sequence of points a = q1 ≤ q2 . . . in the following way. For t = 1, 2, . . ., if there exists

u ∈ (qt, 1] ∩ Pj such that d(qt, u) > ϵ · d(y, hy), then let qt+1 be the smallest such u; if

such u does not exist, then let qt+1 := b and terminate. Essentially, this breaks Pj

into segments of length ϵ · d(y, hy), except that the last one that ends with b may be

shorter. Denote this sequence as Qy := (q1 = a, . . . , qm = b).

54

Claim 3.4.7. For every y ∈ V , |Qy| = O(ϵ−2).

Proof. By the definition of Qy, for 1 ≤ t ≤ m − 2, d(qt, qt+1) > ϵ · d(y, hy). On the

other hand, by the definition of a and b, d(q1, qm) = d(a, b) ≤ O(d(y,hy)
ϵ

). Therefore,

|Qy| ≤ O(ϵ−2), as desired.

Definition of fx on Vi: Recap Define

lj
y(y′) :=

⎧⎪⎪⎨⎪⎪⎩
d(hy, y′) if y′ < a = q1 or y′ > b = qm

d(y, qt) if qt ≤ y′ < qt+1, 1 ≤ t < m

d(y, qm) if y′ = b = qm

(3.8)

where hy ∈ Pj, Qy = {qt}t ⊂ Pj. To recap,

• if x ∈ X ∩ Vi, then fx(c) := d(x, c);

• otherwise x ∈ X \ Vi, fx(c) := minPj∈Pi
f j

x(c), where

f j
x(c) := min

c′,x′∈Pj

{lj
c(c′) + d(c′, x′) + lj

x(x′)}. (3.9)

Finally,

fx(c) := min
Pj∈Pi

f j
x(c), ∀c ∈ Vi. (3.10)

Part II: Distortion Analysis The distortion of l’s is analyzed in the following

Lemma 3.4.8, and the distortion for fx follows immediately from the above definitions.

Lemma 3.4.8. For every Pj ∈ Pi, y ∈ V , y′ ∈ Pj, lj
y(y′) ∈ (1± ϵ) · d(y, y′).

Proof. If y′ = qm = b, by definition lj
y(y′) = d(y, qm) = d(y, y′). Then consider the

case when y′ < a = q1 or y′ > b = qm.

lj
y(y′) = d(hy, y′)

∈ d(y′, y)± d(y, hy)

∈ d(y′, y)± ϵ · d(y′, hy),

55

where the last inequality follows from d(y′, hy) > d(y,hy)
ϵ

. This implies d(y, y′) ∈

(1± ϵ) · lj
y(y′).

Otherwise, qt ≤ y′ < qt+1 for some 1 ≤ t < m. By the definition of qt’s and the

definition of hy,

d(y, y′) ∈ d(y, qt)± d(qt, y′)

∈ d(y, qt)± ϵ · d(y, hy)

∈ d(y, qt)± ϵ · d(y, y′)

∈ lj
y(y′)± ϵ · d(y, y′),

which implies lj
y(y′) ∈ (1± ϵ) · d(y, y′). This finishes the proof of Lemma 3.4.8.

Part III: Shattering Dimension Analysis Recall that we fixed v : X → R+

and H ⊆ Fv with |H| ≥ 2. Now we show

⃓⃓⃓
{σH

c : c ∈ Vi}
⃓⃓⃓
≤ |H|Õ(ϵ−2) log ∥X∥0 . (3.11)

Let H := {x : v(x) · fx ∈ H}, so |H| = |H|. Recall that |Vi ∩X| = O(1) by Lemma

3.4.4, so |Vi ∩H| = O(1). Hence, if we could show

⃓⃓⃓
{σH

c : c ∈ Vi}
⃓⃓⃓
≤ N(|H|)

for H such that H ∩ Vi = ∅, then for general H,

⃓⃓⃓
{σH

c : c ∈ Vi}
⃓⃓⃓
≤ N(|H| − |Vi ∩H|) · |H|O(|Vi∩H|) ≤ N(|H|) · |H|O(1).

Therefore, it suffices to show (3.11) under the assumption that H ∩ Vi = ∅.

In the following, we will further break Vi into |H|Õ(ϵ−2) parts, such that for each

part V ′, fx on V ′ may be alternatively represented as a min-linear function.

Lemma 3.4.9. Let u = |Pi|. There exists a partition Γ of Vi, such that the following

holds.

56

1. |Γ| ≤ |H|Õ(ϵ−2)·u.

2. ∀V ′ ∈ Γ, ∀x ∈ H, there exists gx : Rs → R+ where s = O(ϵ−2), such that gx is a

minimum of O(ϵ−4u) linear functions on Rs, and for every c ∈ V ′, there exists

y ∈ Rs that satisfies fx(c) = gx(y).

Proof. Before we actually prove the lemma, we need to examine f j
x(c) and lj

y more

closely. Suppose some Pj ∈ Pi is fixed. Recall that for y ∈ V, y′ ∈ Pj (defined in (3.8)),

lj
y(y′) :=

⎧⎪⎪⎨⎪⎪⎩
d(hy, y′) if y′ < a = q1 or y′ > b = qm

d(y, qt) if qt ≤ y′ < qt+1, 1 ≤ t < m

d(y, qm) if y′ = b = qm

where hy ∈ Pj, Qy = {qt}t ⊂ Pj. Hence, for every y, lj
y is a piece-wise linear function

with O(|Qy|) = O(ϵ−2) (by Claim 3.4.7) pieces, where the transition points of lj
y are

Qy ∪ {0, 1} (noting that d(hy, y′) is linear since hy, y′ ∈ Pj).

Using that l’s are piece-wise linear, we know for c ∈ Vi, x ∈ X \ Vi,

f j
x(c) = min

c′,x′∈Pj

{lj
c(c′) + d(c′, x′) + lj

x(x′)} defined in (3.9)

= min
c′,x′∈Qc∪Qx∪{0,1}

{lj
c(c′) + d(c′, x′) + lj

x(x′)}. as l’s are piece-wise linear

Hence, to evaluate f j
x(c) we only need to evaluate lj

c(c′) and lj
x(x′) at c′, x′ ∈ Qc ∪

Qx ∪ {0, 1}, and in particular we need to find the piece in lj
c and lj

x that every

c′, x′ ∈ Qc ∪ Qx ∪ {0, 1} belong to, and then evaluate a linear function. Precisely,

the piece that every c′, x′ belongs to is determined by the relative ordering of points

Qx∪Qc (recalling that they are from Pj). Thus, the pieces are not only determined by

x, but also by c which is the variable, and this means without the information about

the pieces, fx cannot be represented as a min-linear function gx. Therefore, the idea is

to find a partition Γ of Vi, such that for c in each part V ′ ∈ Γ, the relative ordering of

Qc with respect to {Qx : x ∈ H} is the same. We note that we need to consider the

ordering of Qc with respect to all Qx’s, because we care about the relative orderings

of all fx’s.

57

Defining Γ For 1 ≤ j ≤ u, c ∈ Vi, let τ j
c be the ordering of Qc with respect to⋃︁

y∈H Qy on Pj . Here, an ordering of Qc with respect to
(︂⋃︁

y∈H Qy

)︂
is defined by their

ordering on Pj which is interpreted as the real line. In our definition of Γ, we will

require each part V ′ ∈ Γ to satisfy that ∀c ∈ V ′, the tuple of orderings (τ 1
c , . . . , τu

c)

remains the same. That is, Vi is partitioned according to the joint relative ordering

τ j
c ’s on all shortest paths Pj ∈ Pi.

Formally, for 1 ≤ j ≤ u, let Λj := {τ j
c : c ∈ Vi} be the collection of distinct

ordering τ j
c on Pj over points c ∈ Vi. Define

Λ := Λ1 × . . .× Λu

as the tuples of τj’s for 1 ≤ j ≤ u (here, the × operator is the Cartesian product).

For (τ1, . . . , τu) ∈ Λ, define

V
(τ1,...,τu)

i := {c ∈ Vi : (τ 1
c = τ1) ∧ . . . ∧ (τu

c = τu)}

as the subset of Vi such that the ordering τ j
c for each 1 ≤ j ≤ u agrees with the given

tuple. Finally, we define the partition as

Γ := {V (τ1,...,τu)
i : (τ1, . . . , τu) ∈ Λ}.

Bounding |Γ| By Claim 3.4.7, we know |Qy| = O(ϵ−2) for every y ∈ V . Hence,⃓⃓⃓⋃︁
y∈H Qy

⃓⃓⃓
= O (ϵ−2|H|). Therefore, for every j ∈ [u],

|Λj| ≤
(︄

O(ϵ−2|H|)
O(ϵ−2)

)︄
= O

(︂
ϵ−1|H|

)︂O(ϵ−2)
.

Therefore,

|Γ| ≤ Π1≤j≤u|Λj| ≤ O
(︂
ϵ−1|H|

)︂O(ϵ−2u)
≤ |H|Õ(ϵ−2)·u,

as desired.

Defining gx By our definition of Γ, we need to define gx for each V ′ ∈ Γ. Now,

fix tuple (τ1, . . . , τu) ∈ Λ, so the part corresponds to this tuple is V ′ = V
(τ1,...,τu)

i , and

58

we will define gx with respect to such V ′. Similar to the definition of fx’s (see (3.10)),

we define gx : Rs → R+ to have the form

gx(y) := min
Pj∈Pi

gj
x(y).

Then, for 1 ≤ j ≤ u, x ∈ H, define gj
x : Rs → R of s := O(ϵ−2) variables

(q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc) for qi ∈ Qc, such that

gj
x(q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc) = min

c′,x′∈Qc∪Qx∪{0,1}
{lj

c(c′) + d(c′, x′) + lj
x(x′)}.

We argue that for every 1 ≤ j ≤ u, gj
x may be viewed as a minimum of O(ϵ−4) linear

functions whose variables are the same with that of gj
x.

• Linearity. Suppose c ∈ V ′, and fix c′, x′ ∈ Qc ∪ Qx ∪ {0, 1}. By the above

discussions, lj
c(c′) could take values only from {d(c, qi) : qi ∈ Qc} ∪ {d(hc, c′)}.

Since ∀qi ∈ Qc, d(c, qi) is a variable of gj
x, and d(hc, c′) = |hc − c′| is linear and

that hc is also a variable of gj
x, we conclude that lj

c(c′) may be written as a linear

function of the same set of variables of gj
x. By a similar argument, we have the

same conclusion for lj
x. Therefore, lj

c(c′) + d(c′, x′) + lj
x(x′) may be written as a

linear function of (q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc).

• Number of linear functions. By Claim 3.4.7, we have

∀y ∈ V, |Qy| = O(ϵ−2),

hence |Qc ∪Qx ∪ {0, 1}| = O(ϵ−2). Therefore, there are O(ϵ−4) pairs of c′, x′ ∈

Qc ∪Qx ∪ {0, 1}.

Therefore, item 2 of Lemma 3.4.9 follows by combining this with the definition of gx.

We completed the proof of Lemma 3.4.9.

Now suppose Γ is the one that is guaranteed by Lemma 3.4.9. Since
⃓⃓⃓
{σH

c : c ∈ Vi}
⃓⃓⃓
≤
∑︂

V ′∈Γ

⃓⃓⃓
{σH

c : c ∈ V ′}
⃓⃓⃓

59

and

|Γ| ≤ |H|Õ(ϵ−2)·u ≤ |H|Õ(ϵ−2), (3.12)

where the last inequality is by Lemma 3.4.4 (recalling u = |Pi|), it suffices to show for

every V ′ ∈ Γ,
⃓⃓⃓
{σH

c : c ∈ V ′}
⃓⃓⃓
≤ |H|Õ(ϵ−2) log ∥X∥0 . (3.13)

Fix some V ′ ∈ Γ. By Lemma 3.4.9, for every x ∈ H there exists a min-linear

function gx : Rs → R+ (s = O(ϵ−2))), such that for every c ∈ V ′, there exists y ∈ Rs

that satisfies fx(c) = gx(y). For y ∈ Rs define πH
y as a permutation of H that is

ordered by gx(y) in non-increasing order and ties are broken in a way that is consistent

with σ. Then
⃓⃓⃓
{σHv

c : c ∈ V ′}
⃓⃓⃓
≤
⃓⃓⃓
{πH

y : y ∈ Rs}
⃓⃓⃓
. (3.14)

To bound the number of permutations πH
y , we restates the following lemma which

relates the number of relative orderings of gx’s to the arrangement number in compu-

tational geometry.

Lemma 3.4.10 (Restatement of Lemma 2.3.8). Suppose there are m functions

g1, . . . , gm from Rs to R, such that ∀i ∈ [m], gi is of the form

gi(x) := min
j∈[t]
{gij(x)},

where gij is a linear function. For x ∈ Rs, let πx be the permutation of [m] ordered by

gi(x). Then,

|{πx : x ∈ Rs}| ≤ (mt)O(s).

Applying Lemma 3.4.10 on gx’s for x ∈ H with parameters s = O(ϵ−2), t =

O(ϵ−4u) = O (ϵ−4 log ∥X∥0) and m = |H|, we obtain
⃓⃓⃓
{πH

y : y ∈ Rs}
⃓⃓⃓
≤ O

(︂
ϵ−1|H| log ∥X∥0

)︂O(ϵ−2)
≤ |H|Õ(ϵ−2)·log ∥X∥0 . (3.15)

60

Thus, (3.13) is implied by combining (3.15) with (3.14). Finally, we complete the

proof of Lemma 3.4.3 by combining the above three parts of the arguments.

3.4.2.1 From Planar to Minor-excluded Graphs

The strategy for proving the minor-excluded case is similar to the planar case. Hence,

we focus on presenting the major steps and highlight the differences, while omitting

repetitive arguments. The terminal embedding lemma that we need to prove is restated

as follows.

Lemma 3.4.11 (Restatement of Lemma 3.4.1). For every edge-weighted graph G =

(V, E) whose shortest path metric is denoted as M = (V, d), and every weighted set

X ⊆ V , given that G excludes some fixed minor, there exists a set of functions

F := {fx : V → R+ | x ∈ X} such that for every x ∈ X, and c ∈ V , d(x, c) ≤ fx(c) ≤

(1 + ϵ) · d(x, c), and sdimmax(F) = Õ(ϵ−2) · log ∥X∥0.

Similar to the planar case, we fix v : X → R+ andH ⊆ Fv with |H| ≥ 2 throughout

the proof. Then σH
c is defined the same as before, and it suffices to prove

|{σH
c : c ∈ V }| ≤ poly(∥X∥0) · |H|Õ(ϵ−2) log ∥X∥0 .

Next, we used a structural lemma to break V into several parts where each part is

separated by a few shortest paths. In the planar case, we showed in Lemma 3.4.4

that the number of parts is O(∥X∥0), and only O(1) separating shortest paths in G

are necessary. However, the proof of Lemma 3.4.4 heavily relies on planarity, and for

minor-excluded graphs, we only manage to prove the following weaker guarantee.

Lemma 3.4.12 (Structural Property of Minor-excluded Graphs). Given edge-weighted

graph G = (V, E) that excludes a fixed minor, and a subset S ⊆ V , there is a collection

Π := {Vi}i of V with |Π| = poly(|S|) and ⋃︁i Vi = V such that for every Vi ∈ Π the

following holds.

61

1. |S ∩ Vi| = O(1).

2. There exists an integer ti and ti groups of paths P i
1, . . . ,P i

ti
in G, such that

(a) |⋃︁ti
j=1P i

j| = O(log |S|)

(b) removing the vertices of all paths in ⋃︁ti
j=1P i

j disconnects Vi from V \ Vi in

G (possibly removing points in Vi)

(c) for 1 ≤ j ≤ ti, let Gi
j be the sub-graph of G formed by removing all paths

in P i
1, . . . ,P i

j−1 (define Gi
1 = G), then every path in P i

j is a shortest path

in Gi
j.

The lemma follows from a recursive application of the balanced shortest path

separator theorem in [51, Theorem 1], stated as follows.

Lemma 3.4.13 (Balanced Shortest Path Separator [51]). Given edge-weighted graph

G = (V, E) that excludes a fixed minor with non-negative vertex weight4, there is a set

of vertices S ⊆ V , such that

1. S = P1 ∪ P2 ∪ . . . where Pi is a set of shortest paths in the graph formed by

removing ⋃︁j<i Pj

2. ∑︁i |Pi| = O(1), where the hidden constant depends on the size of the excluded

minor

3. the weight of every component in the graph formed by removing S from G is at

most half the weight of V .

Proof of Lemma 3.4.12. Without loss of generality, we assume G is a connected graph.

We will apply Lemma 3.4.13 on G recursively to define the partition Π and the

groups of shortest paths {P i
j}j associated with the parts. The detailed procedure,

4[51, Theorem 1] only states the special case with unit vertex weight, while the general weighted
version was discussed in a note of the same paper.

62

called DEF-Π, is defined in Algorithm 5. We assume there is a global Γ initialized as

Γ = ∅ which is constructed throughout the execution of the recursive algorithm. The

execution of the algorithm starts with DEF-Π(G, ∅, S).

Roughly, the procedure DEF-Π takes a sub-graph G′, a set sep = {Pj}j of groups

of paths and S as input, such that G′ corresponds to a component in a graph formed

by removing all paths in sep from G. The procedure execute on such G′ and find

shortest paths in G′ using Lemma 3.4.13. The found shortest paths are segmented

(with respect to S) and added to the collection Π. Then the found shortest paths are

removed from G′ to form a new graph G′′. Components in G′′ that contain less than 2

points in S are made new parts in Π, and the procedure DEF-Π is invoked recursively

on other components in G′′.

Algorithm 5 Procedure DEF-Π(G′ = (V ′, E ′), sep, S)
1: apply Lemma 3.4.13 on graph G′ with vertex weight 1 if x ∈ V ′∩S and 0 otherwise,

and let P be the set of shortest paths in G′ guaranteed by the lemma.
2: for P ∈ P do
3: interpret P as interval [0, 1], list S ∩ P = {x1, . . . , xm} and 0 ≤ x1 ≤ . . . ≤

xm ≤ 1
4: segment P into sub-paths P ′ = {[0, x1], [x1, x2], . . . , [xm, 1]}
5: for P ′ ∈ P ′ do
6: include P ′ in Π, and define the set of associated groups of shortest paths

as sep ∪ {P ′}
7: end for
8: end for
9: let G′′ be the graph formed by removing all paths in P , and let C = {Ci}i be its

components
10: include the union of all components with no intersection with S as a single part

in Π, and define the set of associated groups of paths as sep ∪ P
11: for Ci ∈ C do
12: if |Ci ∩ S| = 1 then
13: include Ci as a new part in Π, and define the set of associated groups of

paths as sep ∪ P
14: else if |Ci ∩ S| ≥ 2 then
15: call DEF-Π(G′′[Ci], sep ∪ {P}, S) ▷ G′′[Ci] is the induced sub-graph of G′′

on vertex set Ci

16: end if
17: end for

63

By construction and Lemma 3.4.13, it is immediate that ⋃︁Vi∈Π Vi = V , and item

2.(b), 2.(c) also follows easily. To see item 1, we observe that we have two types of

Vi’s in Π. One is from the shortest paths P (Line 6), and because of the segmentation,

the intersection with S is at most 2. The other type is the components in G′′ whose

intersection with S is by definition at most 1 (Line 10, 13). Therefore, it remains to

upper bound |Π|, and show item 2.(a) which requires a bound of |⋃︁ti
j=1P i

j| = O(log |S|)

for all Vi ∈ Π.

First, we observe that at any execution of Gen-Π, it is always the case that 0 ≤

|sep| ≤ O(log |S|), because Lemma 3.4.13 guarantees the weight of every component

in G′′ is halved. This also implies that the total number of executions of GEN-Π is

poly(|S|). Therefore, ∀Vi ∈ Π, |⋃︁ti
j=1P i

j| ≤ O(log |S|), which proves item 2.(a).

Bounding |Π| Observe that there are three places where we include a part Vi in

Π, and we let Π1 be the subset of those included at Line 6, Π2 be those included at

Line 10, and Π3 be those included at Line 13. Then |Π| ≤ |Π1|+ |Π2|+ |Π3|.

If Vi ∈ Π1, then Vi is a sub-path of some P ∈ P , where P is defined at Line 1. We

observe that the number of all Vi ∈ Π1 such that Vi∩S ≠ ∅, i.e. |{Vi ∈ Π1 : Vi∩S ̸= ∅}|,

is at most O(|S|). This is because we remove paths P ∈ P in every recursion, which

means any point in S can only participate in at most one such P during the whole

execution, and hence any point in S can intersect at most two sub-paths Vi ∈ Π1 such

that Vi ∩ S ̸= ∅ (because |Vi ∩ S| ≤ 2 by the segmentation at Line 4). On the other

hand, if Vi ∈ Π1 and Vi ∩ S = ∅, then no segmentation was performed and Vi = P for

P at Line 2. Therefore, the number of such Vi’s is bounded by the total number of

execution of DEF-Π multiplied by the size of P at Line 2, which is at most poly(|S|).

Therefore, we conclude that |Π1| = poly(|S|).

Finally, since every Vi ∈ Π3 satisfies |Vi ∩ S| = 1 (at Line 12 and 13), and we

observe that subsets in Π3 are disjoint, so we immediately have |Π3| = O(|S|). For

Π2, we note that only one Vi ∈ Π2 could be included in each execution of DEF-Π, so

64

|Π2| = poly(|S|).

We conclude the proof of Lemma 3.4.12 by combining all the above discussions.

As before, we still apply the Lemma 3.4.12 with S = X (which is unweighted set)

to obtain Γ = {Vi}i with |Π| = O(poly(∥X∥0)), and it suffices to prove for each Vi ∈ Π

|{σH
c : c ∈ Vi}| ≤ |H|Õ(ϵ−2) log ∥X∥0 .

To proceed, we fix Vi and define functions fx(·) for c ∈ Vi. However, compared with

Lemma 3.4.4, the separating shortest paths in Lemma 3.4.12 are not from the original

graph G, but is inside some sub-graph generated by removing various other separating

shortest paths. Also, the number of shortest paths in the separator is increased from

O(1) to O(log ∥X∥0).

Hence, we need to define fx’s with respect to the new structure of the separat-

ing shortest paths. Suppose {P i
1, . . . ,P i

ti
} is the ti groups of paths guaranteed by

Lemma 3.4.12. Also as in the lemma, suppose Gi
j is the sub-graph of G formed by

removing all paths in P i
1, . . . ,P i

j−1 (define Gi
1 = G). For 1 ≤ j ≤ ti, P ∈ P i

j and

x, y ∈ V , let dP
j (x, y) denote the length of the shortest path from x to y using edges

in Gi
j and uses at least one point of P . Then, analogue to Fact 3.4.6, we have the

following lemma.

Lemma 3.4.14. For c ∈ Vi and x ∈ V \ Vi, there exists 1 ≤ j ≤ ti, P ∈ P i
j and

c′, x′ ∈ P , such that d(c, x) = dP
j (c, c′) + dP

j (c′, x′) + dP
j (x′, x).

Proof. First, we observe that the shortest path c⇝ x has to intersect (at a vertex of)

at least one path contained in {P i
j}j, because removing ⋃︁ti

j=1Pj disconnects Vi from

V \ Vi. Suppose j0 is the smallest j such that c⇝ x intersects a shortest path in P i
j,

and let P ∈ P i
j0 be any intersected path in P i

j0 .

Then, this implies that (the edge set of) c⇝ x is totally contained in sub-graph

Gi
j0 , since Gi

j0 is formed by removing only groups Ps
j with j < j0 which do not

65

intersect c ⇝ x. Hence, we have d(c, x) = dGi
j0

(c, x), where dGi
j0

is the shortest

path metric in sub-graph Gi
j0 . By Lemma 3.4.12, P is a shortest path in Gi

j0 , so

c ⇝ x has to cross P at most once, which implies there exists c′, x′ ∈ P , such that

d(x, c) = dP
j (c, c′) + dP

j (c′, x′) + dP
j (x′, x), as desired.

Using Lemma 3.4.14 and by the optimality of the shortest path, we conclude that

∀c ∈ Vi, x ∈ X, d(c, x) = min
1≤j≤ti

min
P ∈Pi

j

min
c′,x′∈P

{dP
j (c, c′) + dP

j (c′, x′) + dP
j (x′, x)}.

Then, for each 1 ≤ j ≤ ti, path P ∈ P i
j, we use the same way as in the planar case

to define the approximate distance function l to approximate dP
j (y, y′) for y ∈ V and

y′ ∈ P . The fx is then defined similarly, and the distortion follows by a very similar

argument as in Lemma 3.4.8.

The analysis of shattering dimension is also largely the same as before, except that

the definition of u in the statement of Lemma 3.4.9 is slightly changed because of the

new structural lemma. The new statement is presented as follows, and the proof of it

is essentially as before.

Lemma 3.4.15. Let u = |⋃︁ti
j=1P i

j|. There exists a partition Γ of Vi, such that the

following holds.

1. |Γ| ≤ |H|Õ(ϵ−2)·u.

2. ∀V ′ ∈ Γ, ∀x ∈ H, there exists gx : Rs → R+ where s = O(ϵ−2), such that gx is a

minimum of O(ϵ−4u) linear functions on Rs, and for every c ∈ V ′, there exists

y ∈ Rs that satisfies fx(c) = gx(y).

We apply the lemma with the new bound of u = |⋃︁ti
j=1P i

j| = O(log ∥X∥0) (by

Lemma 3.4.12), and the bound in (3.13) is increased to

|Γ| ≤ |H|Õ(ϵ−2)·u ≤ |H|Õ(ϵ−2) log ∥X∥0 .

Finally, to complete the proof of Lemma 3.4.1, we again use Lemma 3.4.10 on each

V ′ ∈ Γ to conclude the desired shattering dimension bound.

66

3.4.3 High-Dimensional Euclidean Spaces

We present a terminal embedding for Euclidean spaces, with a guarantee that is similar

to that of excluded-minor graphs. For these results, the ambient metric space (V, d)

of all possible centers is replaced by a Euclidean space.5

Lemma 3.4.16. For every ϵ ∈ (0, 1/2) and finite weighted set X ⊂ Rm, there exists

F = {fx : Rm → R+ | x ∈ X} such that

∀x ∈ X, c ∈ Rm, ∥x− c∥2 ≤ fx(c) ≤ (1 + ϵ)∥x− c∥2,

and sdimmax(F) = O(ϵ−2 log ∥X∥0).

Proof. The lemma follows immediately from the following terminal version of the

Johnson-Lindenstrauss Lemma [52], proved recently by Narayanan and Nelson [49].

Theorem 3.4.17 (Terminal Johnson-Lindenstrauss Lemma [49]). For every ϵ ∈

(0, 1/2) and finite S ⊂ Rm, there is an embedding g : S → Rt for t = O(ϵ−2 log |S|),

such that

∀x ∈ S, y ∈ Rm, ∥x− y∥2 ≤ ∥g(x)− g(y)∥2 ≤ (1 + ϵ)∥x− y∥2.

Given X ⊂ Rm, apply Theorem 3.4.17 with S = X (as an unweighted set), and

define for every x ∈ X the function fx(c) := ∥g(x)− g(c)∥2. Then F = {fx | x ∈ X}

clearly satisfies the distortion bound. The dimension bound follows by plugging

t = O(ϵ−2 log ∥X∥0) into the bound sdimmax(F) = O(t) known from [13, Lemma

16.3].6

Corollary 3.4.18 (Coresets for Euclidean Spaces). For every 0 < ϵ, δ < 1/2, z ≥ 1,

and integers k, m ≥ 1, Euclidean (k, z)-Clustering of every weighted set X ⊂ Rm

5It is easily verified that as long as X is finite, our entire framework from Section 3.3 extends to
V = Rm with ℓ2 norm. For example, all maximums (e.g., in Lemma 3.3.2) are well-defined by using
compactness arguments on a bounding box.

6The following is proved in [13, Lemma 16.3]. For every S ⊂ Rt, the function set H := {hx | x ∈ S}
given by hx(y) = ∥x− y∥2, has shattering dimension sdimmax(H) = O(t).

67

admits an ϵ-coreset of size Õ(ϵ−422zk2 log 1
δ
). Furthermore, such a coreset can be

computed7 in time Õ(k∥X∥0m) with success probability 1− δ.

Proof. By combining Lemma 3.3.5, Lemma 3.3.6 with our terminal embedding from

Lemma 3.4.16, we obtain an efficient algorithm for constructing a coreset of size

Õ(ϵ−422zk2 log ∥X∥0). This size can be reduced to the claimed size (and running time)

using the iterative size reduction of Theorem 3.3.1.

Remark 3.4.2 (Comparison to [21]). For (k, z)-Clustering in Euclidean spaces, our

algorithms can also compute an ϵ-coreset of size Õ(ϵ−O(z)k), which offers a different

parameters tradeoff than Corollary 3.4.18. This alternative bound is obtained by

simply replacing the application of Lemma 3.3.2 (which is actually from [41]) with [21,

Lemma 3.1] (which itself is a result from [13], extended to weighted inputs).

Our two coreset size bounds are identical to the state-of-the-art bounds proved

by Huang and Vishnoi [21] (in the asymptotic sense). Their analysis is different,

and bounds sdimmax independently of X using a dimensionality-reduction argument

for clustering objectives. In contrast, we require only a loose bound sdimmax(F) =

O(poly(ϵ−1) · log ∥X∥0), which follows immediately from [49], and the coreset size is

then reduced iteratively using Theorem 3.3.1, which simplifies the analysis greatly.

7We assume that evaluating ∥x− y∥2 for x, y ∈ Rm takes time O(m).

68

Chapter 4

Coresets for Ordered Weighted
Clustering

4.1 Introduction

In this Chapter, we study coresets for a class of clustering problems, called ordered

weighted clustering, which generalizes the classical k-Center and k-Median problems.

In these clustering problems, the objective function is computed by ordering the n

data points by their distance to their closest center, then taking a weighted sum

of these distances, using predefined weights v1 ≥ · · · ≥ vn ≥ 0. These clustering

problems can interpolate between k-Center (the special case where v1 = 1 is the

only non-zero weight) and k-Median (unit weights vi = 1 for all i), and therefore offer

flexibility in prioritizing points with large service cost, which may be important for

applications like Pareto (multi-objective) optimization and fair clustering. In general,

fairness in machine learning is seeing a surge in interest, and is well-known to have

many facets. In the context of clustering, previous work such as the fairlets approach

of [62], has addressed protected classes, which must be identified in advance. In

contrast, ordered weighted clustering addresses fairness towards remote points (which

can be underprivileged communities), without specifying them in advance. This is

starkly different from many application domains, where remote points are considered

as outliers (to be ignored) or anomalies (to be detected), see e.g., the well-known

69

survey by [63].

Formally, we study two clustering problems in Euclidean space Rd. In both of them,

the input is n data points X ⊂ Rd (and k ∈ [n]), and the goal is to find k centers C ⊂ Rd

that minimize a certain objective cost(X, C). In Ordered k-Median, there is a

predefined non-decreasing weight vector v ∈ Rn
+, and the data points X = {x1, . . . , xn}

are ordered by their distance to the centers, i.e., d(x1, C) ≥ · · · ≥ d(xn, C), to define

the objective
costv(X, C) :=

n∑︂
i=1

vi · d(xi, C), (4.1)

where throughout d(·, ·) refers to ℓ2 distance, extended to sets by the usual convention

dist(x, C) := minc∈C dist(x, c). This objective follows the Ordered Weighted Averaging

(OWA) paradigm of [64], in which data points are weighted according to a predefined

weight vector, but in order of their contribution to the objective. The p-Centrum

problem is the special case where the first p weights equal 1 and the rest are 0, denoting

its objective function by costp(X, C). Observe that this problem already includes both

k-Center (as p = 1) and k-Median (as p = n).

Recall that for a set X, a weighted set X ′ is an ϵ-coreset of X for clustering

objective cost(·, ·) if it approximates the objective within factor 1± ϵ, i.e.,

∀C ⊂ Rd, |C| = k, cost(X ′, C) ∈ (1± ϵ) cost(X, C),

and the size of X ′ is the number of distinct points in it.1

The above coreset definition readily applies to ordered weighted clustering. However,

a standard coreset is constructed for a specific clustering objective, i.e., a single weight

vector v ∈ Rn
+, which might limit its usefulness. The notion of a simultaneous coreset,

introduced recently by [22], requires that all clustering objectives are preserved, i.e.,

the (1 + ϵ)-approximation holds for all weight vectors in addition to all centers. This
1A common alternative definition is that X ′ is as a set with weights w : X ′ → R+, which represent

multiplicities, and then size is the number of non-zero weights. This would be more general if weights
are allowed to be fractional, but then one has to extend the definition of cost(·, ·) accordingly.

70

“simultaneous” feature is valuable in data analysis, since the desired weight vector

might be application and/or data dependent, and thus not known when the data

reduction is applied. Moreover, since ordered weighted clustering includes classical

clustering, e.g., k-Median and k-Center as special cases, all these different analyses

may be performed on a single simultaneous coreset.

4.1.1 Our Contribution

Our main result is (informally) stated as follows. To simplify some expressions, we

use Oϵ,d(·) to suppress factors depending only on ϵ and d. The precise dependence

appears in the technical sections.

Theorem 4.1.1 (informal version of Theorem 4.4.6). There exists an algorithm that,

given an n-point data set X ⊂ Rd and k ∈ [n], computes a simultaneous ϵ-coreset of

size Oϵ,d(k2 log2 n) for Ordered k-Median.

Our main result is built on top of a coreset result for p-Centrum (the special case

of Ordered k-Median in which the weight vector is 1 in the first p components and

0 in the rest). For this special case, we have an improved size bound, that avoids the

O(log2 n) factor, stated as follows. Note that this coreset is for a single value of p

(and not simultaneous).

Theorem 4.1.2 (informal version of Theorem 4.4.4). There exists an algorithm that,

given an n-point data set X ⊂ Rd and k, p ∈ [n], computes an ϵ-coreset of size Oϵ,d(k2)

for p-Centrum.

The size bounds in the two theorems are nearly tight. The dependence on n in

Theorem 4.1.1 is unavoidable, because we can show that the coreset size has to be

Ω(log n), even when k = d = 1. (See Theorem 6.2).

For both Theorem 4.1.1 and Theorem 4.1.2, the hidden dependence on ϵ and d is

(1
ϵ
)d+O(1). This factor matches known lower bounds [D. Feldman, private communica-

71

tion] and state-of-the-art constructions of coresets for k-Center (which is a special

case of Ordered k-Median) [65].

A main novelty of our coreset is that it preserves the objective for all weights

(v ∈ Rn
+ in the objective function) simultaneously. It is usually easy to combine

coresets for two data sets, but in general it is not possible to combine coresets for

two different objectives. Moreover, even if we manage to combine coresets for two

objectives, it is still nontrivial to achieve a small coreset size for infinitely many

objectives (all possible weight vectors v ∈ Rn
+). See the overview in Section 4.1.2 for

more details on the new technical ideas needed to overcome these obstacles.

4.1.2 Overview of Techniques

We start with discussing Theorem 4.1.2 (which is a building block for Theorem 4.1.1).

Its proof is inspired by [12], who constructed coresets for k-Median clustering in Rd

by reducing the problem to its one-dimensional case. We can apply a similar reduction,

but the one-dimensional case of p-Centrum is significantly different from k-Median.

One fundamental difference is that the objective counts only the p largest distances,

hence the subset of “contributing” points depends on the center. We deal with this

issue by introducing a new bucketing scheme and a charging argument that relates

the error to the p largest distances. See Section 4.3 for more details.

The technical difficulty in Theorem 4.1.1 is two-fold: how to combine coresets for

two different weight vectors, and how to handle infinitely many weight vectors. The

key observation is that every Ordered k-Median objective can be represented as a

linear combination of p-Centrum objectives (see Lemma 4.4.7). Thus, it suffices to

compute a simultaneous coreset for p-Centrum for all p ∈ [n]. We achieve this by

“combining” the individual coresets for all p ∈ [n], while crucially utilizing the special

structure of our construction of a p-Centrum coreset, but unfortunately losing an

O(log n) factor in the coreset size. In the end, we need to “combine” the n coresets

72

for all p ∈ [n], but we can avoid losing an O(n) factor by discretizing the values of p,

so that only O(log n) coresets are combined, The result is a simultaneous coreset of

size Oϵ,d(log2 n), see Section 4.4 for more details.

4.1.3 Additional Related Work

Ordered k-Median and its special case p-Centrum generalize k-Center and

are thus APX-hard even in R2 [66]. However, p-Centrum may be solved optimally

in polynomial time for special cases such as lines and trees [67]. The first provable

approximation algorithm for Ordered k-Median was proposed by [68], and they

gave 2-approximation for trees and O(log n)-approximation for general metrics. The

approximation ratio for general metrics was drastically improved to 38 by [69], improved

to 18+ ϵ by [70], and finally a (5+ ϵ)-approximation was obtained very recently by [71].

4.2 Preliminaries

Throughout this Chapter, we use capital letters other than I and J to denote finite

subsets of Rd. We recall some basic terminology from [12]. For a set Y ⊂ R, define its

mean point to be
µ(Y) := 1

|Y |
∑︂
y∈Y

y, (4.2)

and its cumulative error to be

δ(Y) :=
∑︂
y∈Y

|y − µ(Y)|. (4.3)

Let I(Y) := [inf Y, sup Y] denote the smallest closed interval containing Y . The

following facts from [12] will be useful in our analysis.

Lemma 4.2.1. For every Y ⊂ R and z ∈ R, the following holds,

• ∑︁
y∈Y

⃓⃓⃓⃓
|z − y| − |z − µ(Y)|

⃓⃓⃓⃓
≤ δ(Y); and

• if z /∈ I(Y) then ∑︁
y∈Y |y − z| = |Y | · |µ(Y)− z|.

73

It will be technically more convenient to treat a coreset as a point set X ′ ⊂ Rd

associated with integer weights w : X ′ → N, which is equivalent to a multiset (with

weights representing multiplicity), and thus the notation of costv(X ′, C) in (4.1) is

well-defined. (These weights w are unrelated to the predefined weights {vi}.) While our

algorithm always produces X ′ with integral weights w, our proof requires fractional

weights during the analysis, and thus we extend (4.2) and (4.3) to a point set Y

with weights w : Y → R+ by defining µw(Y) := 1∑︁
y∈Y

w(y)
∑︁

y∈Y w(y) · y, δw(Y) :=∑︁
y∈Y w(y) · |y − µ(Y)|.

We will use the fact that in one-dimensional Euclidean space, p-Centrum can be

solved (exactly) in polynomial time by dynamic programming, as shown by [67].

Lemma 4.2.2 ([67]). There is a polynomial-time algoritm that, given a set of one-

dimensional points X = {x1, . . . , xn} ⊂ R and parameters k, p ∈ [n], computes a set

of k centers C ⊂ Rd that minimizes costp(X, C).

4.3 The Basic Case: p-Centrum for k = d = 1 (one
facility in one-dimensional data)

In this section, we illustrate our main ideas by constructing a coreset for p-Centrum

in the special case of one facility in one-dimensional Euclidean space (i.e., k = d = 1).

This is not a simultaneous coreset, but rather for a single p. The key steps of our

construction described below will be repeated, with additional technical complications,

also in the general case of p-Centrum, i.e., k facilities in dimension d.

We will need two technical lemmas, whose proofs appear in Section 4.3.1.

The first lemma bounds δ(Y) by the cost of connecting Y to an arbitrary point

outside I(Y) (which in turn is part of the objective in certain circumstances).

Lemma 4.3.1. Let Y ⊂ R be a set with (possibly fractional) weights w : Y → R+.

Then for every z ∈ R such that z ̸∈ I(Y) or z is an endpoint of I(Y), δw(Y) ≤

74

2∑︁y∈Y w(y) · |y − z|.

Recall that k = 1, hence the cost in an instance of p-Centrum is the sum of the

p largest distances to the center. In the analysis of our coreset it will be useful to

replace some points of the input set X with another set Y . The second lemma will be

used to bound the resulting increase in the cost; it considers two sequences, denoted

X and Y , of the connection costs, and bounds the difference between the sum of the

p largest values in X and that in Y by a combination of ℓ∞ and ℓ1 norms.

Lemma 4.3.2. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two sequences of real

numbers. Then for all S ⊆ [n], | topp(X)−topp(Y)| ≤ p maxi∈S |xi−yi|+
∑︁

i∈[n]\S |xi−

yi|, where topp(Z) is the sum of the p largest numbers in Z.

Outline of the Coreset Construction In the context of a one-dimensional

point set X ⊂ R, the term interval will mean a subset of X that spans a contiguous

subsequence under a fixed ordering of the points, i.e., a subset {xi, . . . , xj} when the

points in X are ordered as x1 ≤ . . . ≤ xn. Informally, our coreset construction works

as follows. First, use Lemma 4.2.2 to find an optimal center y∗, its corresponding

optimal cost OPT, and a subset P ⊂ X of size |P | = p that contributes to the optimal

cost. Then partition the data into three intervals, namely X = L ∪R ∪Q, as follows.

Points from P that are ≤ y∗ are placed in L, points from P that are > y∗ are placed

in R, and all other points are placed in Q = X \ P . Now split L, Q and R into

sub-intervals, in a greedy manner that we describe below, and represent the data

points in each sub-interval by adding to the coreset a single point, whose weight is

equal to the number of data points it replaces. See Figure 4-1 for illustration.

To split L into sub-intervals, scan its points from the smallest to the largest and

pack them into the same sub-interval J as long as their cumulative error δ(J) is below

a threshold set to Θ(ε ·OPT). This ensures, by Lemma 4.3.1, a lower bound on their

total connection cost to the optimal center y∗, which we use to upper bound the

75

Figure 4-1. Coreset construction for p-Centrum with k = 1 facilities in dimension d = 1.
The left figure depicts the partition of the data into X = (L ∪ R) ∪Q, where P = L ∪ R
contains the p furthest points from an optimal center y∗. The right figure shows the different
manners of splitting L and Q into intervals.

number of such intervals (which immediately affects the size of the coreset) by O
(︂

1
ϵ

)︂
.

The split of R is done similarly. To split Q = X \ P , observe that the distance from

every q ∈ Q to the center y∗ is less than OPT
p

, hence the diameter of Q is less than
2OPT

p
, and Q can be partitioned into O(1

ε
) sub-intervals of length O(εOPT

p
). Observe

that the construction for Q differs from that of L and R.

Let D denote the coreset resulting from the above construction. To prove that

the resulting coreset has the desired error bound for every potential center y ∈ R,

we define an intermediate set Z that contains a mix of points from X and D. We

stress that Z depends on the potential center y ∈ R, which is possible because Z

is used only in the analysis. The desired error bound follows by bounding both

| cost(Z, y)− cost(X, y)| and | cost(Z, y)− cost(D, y)|, (here we use Lemma 4.3.2), and

by the triangle inequality.

Detailed Construction and Coreset Size

We now give a formal description of our coreset construction. Let X = {x1, . . . , xn} ⊂

R be the input data set, and recall that costp(X, y) for a point y ∈ R is the sum of

the p largest numbers in {|x1 − y|, . . . , |xn − y|}. Denote the optimal center by y∗ :=

argminy∈R costp(X, y), and the corresponding optimal cost by OPT := costp(X, y∗).

By Lemma 4.2.2, y∗ and OPT can be computed in polynomial time. Next, sort X by

distances to y∗. For simplicity, we shall assume the above notation for X is already in

this sorted order, i.e., |x1 − y∗| ≥ · · · ≥ |xn − y∗|. Thus, costp(X, y∗) = ∑︁p
i=1 |xi − y∗|.

Let P := {x1, . . . , xp}, L := {xi ≤ y∗ : xi ∈ P}, R := {xi > y∗ : xi ∈ P} and

76

Q := X \ P . By definition, X is partitioned into L, Q and R, which form three

intervals located from left to right. We now wish to split L, Q and R into sub-intervals,

and then we will add to D the mean of the points in each sub-interval, with weight

equal to the number of such points.

Split L into sub-intervals from left to right greedily, such that the cumulative error

of each interval J does not exceed 2ε·OPT
21 , and each sub-intervals is maximal, i.e., the

next point cannot be added to it. Split R into sub-intervals similarly but from right

to left. We need to bound the number of sub-intervals produced in this procedure.

For sake of analysis, we consider an alternative split of L that is fractional, i.e., allows

assigning a point fractionally to multiple sub-intervals, say 1/3 to the sub-interval to

its left and 2/3 to the sub-interval to its right. The advantage of this fractional split

is that all but the last sub-interval have cumulative error exactly 2ε·OPT
21 .

We show in Lemma 4.3.3 that the number of sub-intervals produced in the original

integral split is at most twice that of the fractional split, and thus it would suffice to

bound the latter by O(1
ε
).

Lemma 4.3.3. The number of sub-intervals in the integral split is at most twice than

that of the fractional split.

Proof. It suffices to show that for every t, the first 2t sub-intervals produced by

the integral partitioning contain at least as many points as the first t sub-intervals

produced by the fractional partitioning. For this, the key observation is that in a

fractional split, only the two endpoints of a sub-interval may be fractional, because

the cumulative error of a singleton set is 0.

We prove the above by induction on t. The base case t = 1 follows from these

observations, since the fractional sub-interval may be broken into two integral sub-

intervals, each with cumulative error at most 2ε·OPT
21 . Suppose the claim holds for t− 1

and let us show that it holds for t. Since the cumulative error is monotone in adding

77

new points, we may assume the first t− 1 sub-intervals from fractional split contain as

many points as the first 2(t− 1) sub-intervals from integral split. Now similarly to the

base case, the t-th fractional interval may be broken into two integral sub-intervals,

and this proves the inductive step.

To see that the number of sub-intervals produced by a fractional partitioning of

L is O(1
ε
), we use Lemma 4.3.1. Suppose there are m such sub-intervals J1, ..., Jm.

We can assume that the first m− 4 of them do not contain y∗ and have cumulative

error at least 2ε·OPT
21 , because at most two sub-intervals can contain y∗, and at most

one sub-interval from each of L and R may have cumulative error less than 2ε·OPT
21 .

By Lemma 4.3.1 and the fact that y∗ is not in the first i ≤ m − 4 sub-intervals,

OPT ≥ ∑︁m−4
i=1

∑︁
x:x∈Ji

|x− y∗| ≥ 1
2
∑︁m−4

i=1 δw(Ji) = (m− 4) ε·OPT
21 . Thus m = O(1

ε
), and

by Lemma 4.3.3 a similar bound holds also for the number of sub-intervals in the

integral split of L and of R. Now split Q greedily into maximal sub-intervals of length

≤ ε·OPT
3p

. Since maxq∈Q |q − y∗| ≤ |xp − y∗| ≤ OPT
p

, the length of I(Q) is ≤ 2OPT
p

, and

we conclude that Q is split into at most 3
ε

+ 1 sub-intervals.

Finally, construct the coreset D from the sub-intervals, by adding to D the mean

of each sub-interval in D, with weight that is the number of points in this sub-interval.

Since the total number of sub-intervals is O(1
ϵ
), the size of the coreset D is also

bounded by O(1
ϵ
).

Coreset Accuracy To prove that D is an ϵ-coreset for X, fix a potential center

y ∈ R and let us prove that | costp(D, y)− costp(X, y)| ≤ ε ·OPT, where we interpret

D as a multi-set. Let P1 ⊆ X denote the set of p points in X that are farthest from y.

Now define an auxiliary set Z := {z1, . . . , zn}, as follows. For each i ∈ [n], let Xi ⊂ X

be the sub-interval containing xi in the construction of the coreset (recall it uses the

optimal center y∗ and not y), and let π(xi) = µ(Xi) be its representative in the coreset

D. Now if (a) i ≤ p; (b) y ̸∈ Xi; and (c) P1 ∩Xi is either empty or all of Xi; then let

78

zi := π(xi). Otherwise, let zi := xi.

We now aim to bound | costp(Z, y) − costp(D, y)| using Lemma 4.3.2 with S =

{p + 1, ..., n}. Consider first some i ∈ S (i.e., i > p). Then

|d(zi, y)− d(π(xi), y)| ≤ |zi − π(xi)|

= |xi − π(xi)| (4.4)

≤ ε ·OPT
3p

. (4.5)

Consider next i /∈ S (i.e., i ≤ p). We can have zi ̸= π(xi) only if y ∈ Xi or if P1 ∩Xi

is neither empty nor all of Xi. This can happen for at most 7 distinct sub-intervals

Xi, because the former case can happen for at most 3 sub-intervals Xi (by a simple

case analysis of how many sub-intervals might have an endpoint at y, e.g., two from

L, or one from each of L, R, Q) and because P1 is contained in 2 intervals (to the left

and right of y), and each of them can intersect at most 2 distinct sub-intervals Xi

without containing all of Xi. We obtain
p∑︂

i=1
|d(zi, y)− d(π(xi), y)|

=
∑︂

i∈[p]:zi ̸=π(xi)
|d(xi, y)− d(π(xi), y)| (4.6)

≤
∑︂

Xi:i∈[p],(y∈Xi)∨(P1∩Xi ̸=∅,Xi)
δ(Xi) (4.7)

≤ 7 · 2ε ·OPT
21 (4.8)

= 2ε ·OPT
3 , (4.9)

where (4.7) is by Lemma 4.2.1, and (4.9) is by the fact that these Xi are from L or R

(recall i ≤ p) and thus have a bounded cumulative error. Applying Lemma 4.3.2 to our

S = {p+1, ..., n} together with (4.5) and (4.9), we obtain | costp(Z, y)−costp(D, y)| ≤

p · ε·OPT
3p

+ 2ε·OPT
3 = ε ·OPT.

Lastly, we need to prove that costp(Z, y) = costp(X, y). We think of Z as if it is

obtained from X by replacing each xi with its corresponding zi = π(xi) = µ(Xi). We

can of course restrict attention to indices where zi ̸= xi, which happens only if all

79

three requirements (a)-(c) hold. Moreover, whenever this happens for point xi, it must

happen also for all points in the same sub-interval Xi, i.e., every xj ∈ Xi is replaced by

zj = π(xj) = µ(Xi). By requirement (c), Xi is either disjoint from P1 or contained in

P1. In the former case, points xj ∈ Xi do not contribute to costP (X, y) because they

are not among the p farthest points, and then replacing all xj ∈ Xi with zj = µ(Xi)

would maintain this, i.e., the corresponding points zj do not contribute to costp(Z, y).

In the latter case, the points in Xi contribute to costP (X, y) because they are among

the p farthest points, and replacing every xj ∈ Xi with zj = µ(Xi) would maintain

this, i.e., the corresponding points zj contribute to costp(Z, y). Moreover, their total

contribution is the same because using requirement (b) that y /∈ Xi, we can write

their total contribution as ∑︁xj∈Xi
d(xj, y) = |Xi| · d(µ(Xi), y) = ∑︁

xj∈Xi
d(π(xj), y).

4.3.1 Proofs of Technical Lemmas

Lemma 4.3.4 (restatement of Lemma 4.3.1). Let Y ⊂ R be a set with (possibly

fractional) weights w : Y → R+. Then for every z ∈ R such that z ̸∈ I(Y) or z is an

endpoint of I(Y),

δw(Y) ≤ 2
∑︂
y∈Y

w(y) · |y − z|.

Proof. Assume w.l.o.g. that z is to the left of I(Y), i.e., z ≤ infy∈Y y. Partition Y

into YL = {y ∈ Y : y ≤ µw(Y)} and YR = Y \ YL. Define wL := ∑︁
x∈YL

w(x) and

wR := ∑︁
x∈YR

w(x). Since

(wL + wR) · µw(Y) =
∑︂
y∈Y

w(y) · y =
∑︂

y∈YL

w(y) · y +
∑︂

y∈YR

w(y) · y,

we have that ∑︂
y∈YL

w(y)(µw(Y)− y) =
∑︂

y∈YR

w(y)(y − µw(Y)).

80

For every y ∈ YL we actually have z ≤ y ≤ µw(Y), and we conclude that

2
∑︂
y∈Y

w(y)(y − z) = 2(wL + wR) · (µw(Y)− z)

≥ 2wL · (µw(Y)− z)

≥ 2
∑︂

y∈YL

w(y)(µw(Y)− y)

=
∑︂

y∈YL

w(y)(µw(Y)− y) +
∑︂

y∈YR

w(y)(y − µw(Y))

= δw(Y).

Lemma 4.3.5 (restatement of Lemma 4.3.2). Let X = (x1, . . . , xn) and Y =

(y1, . . . , yn) be two sequences of real numbers. Then for all S ⊆ [n],

| topp(X)− topp(Y)| ≤ p max
i∈S
|xi − yi|+

∑︂
i∈[n]\S

|xi − yi|,

where topp(Z) is the sum of the p largest numbers in Z.

Proof. For all T ⊆ [n], |T | = p,
⃓⃓⃓⃓
⃓∑︂
i∈T

(xi − yi)
⃓⃓⃓⃓
⃓ ≤ ∑︂

i∈T ∩S

|xi − yi|+

⃓⃓⃓⃓
⃓⃓ ∑︂
i∈T \S

(xi − yi)

⃓⃓⃓⃓
⃓⃓

≤ p max
i∈S
|xi − yi|+

∑︂
i∈[n]\S

|xi − yi|.

Now let X1 ⊆ [n] be the set of indices of the p largest numbers in X, then by the

above inequality

topp(X) =
∑︂

i∈X1

xi ≤
∑︂

i∈X1

yi +
⃓⃓⃓⃓
⃓ ∑︂

i∈X1

(xi − yi)
⃓⃓⃓⃓
⃓

≤ topp(Y) + p max
i∈S
|xi − yi|+

∑︂
i∈[n]\S

|xi − yi|.

By symmetry, the same upper bound holds also for topp(Y)− topp(X), and the lemma

follows.

81

4.4 Simultaneous Coreset for Ordered k-Median

In this section we give the construction of a simultaneous coreset for Ordered k-

Median on data set X ⊂ Rd (Theorem 4.4.6), which in turn is based on a coreset for

p-Centrum (Theorem 4.4.4). In both constructions, we reduce the general instance

in Rd to an instance X ′ that lies on a small number of lines in Rd. The reduction

is inspired by a projection procedure of [12], that goes as follows. We start with

an initial centers set C, and then for each center c ∈ C, we shoot O(1
ϵ
)d lines from

center c to different directions, and every point in X is projected to its closest line.

The projection cost is bounded because the number of lines shot from each center is

large enough to accurately discretize all possible directions. The details appear in

Section 4.4.2.

For the projected instance X ′, we construct a coreset for each line in X ′ using

ideas similar to the case d = k = 1, which was explained in Section 4.3. However, the

error of the coreset cannot be bounded line by line, and instead, we need to address

the cost globally for all lines altogether, see Lemma 4.4.1 for the formal analysis.

Finally, to construct a coreset for p-Centrum in Rd, the initial centers set C for

the projection procedure is picked using some polynomial-time O(1)-approximation

algorithm, such as by [71]. A coreset of size Oϵ,d(k2) is obtained by combining the

projection procedure with Lemma 4.4.1.

To deal with the infinitely many potential weights in the simultaneous coreset for

Ordered k-Median, the key observation is that it suffices to construct a simultaneous

coreset for p-Centrum for O(log n
ϵ

) different value of p, and then “combine” the

corresponding p-Centrum coresets. An important structural property of the p-

Centrum coreset is that it is formed by mean points of some sub-intervals. This

enables us to “combine” coresets for p-Centrum by “intersecting” all their sub-

intervals into even smaller intervals. However, this idea works only when the sub-

82

intervals are defined on the same set of lines, which were generated by the projection

procedure. To resolve this issue, we set the centers set C in the projection procedure

to be the union of all centers needed for p-Centrum in all the O(log n) values of p.

Since the combination of the coresets for p-Centrum yields even smaller sub-intervals,

the error analysis for the individual coreset for p-Centrum still carries on. The size of

the simultaneous coreset is O(log2 n)-factor larger than that for (a single) p-Centrum,

because we combine O(log n) coresets for p-Centrum, and we use O(log n) times more

centers in the projection procedure. The detailed analysis appears in Section 4.4.3.

4.4.1 Coreset for p-Centrum on Lines in Rd

Below, we prove the key lemma that bounds the error of the coreset for p-Centrum

for a data set that may be represented by lines. The proof uses the idea introduced

for the k = d = 1 case in Section 4.3. In particular, we define an intermediate

(point) set Z to help compare the costs between the coreset and the true objective.

The key difference from Section 4.3 in defining Z is that the potential centers might

not be on the lines, so extra care should be taken. Moreover, we use a global cost

argument to deal with multiple lines in X. We also introduce parameters s and tl

in the lemma. These parameters are to be determined with respect to the initial

center set C in the projection procedure, and eventually we want (s +∑︁
l∈L tl) to be

O(OPTp) where OPTp is the optimal for p-Centrum. We introduce these parameters

to have flexibility in picking s and tl, which we will need later when we construct a

simultaneous coreset that uses a more elaborate set of initial centers C.

Lemma 4.4.1. Suppose k ∈ Z+, ϵ ∈ (0, 1), X ⊂ Rd is a data set, and L is a collection

of lines in Rd. Furthermore,

• X is partitioned into {Xl | l ∈ L}, where Xl ⊆ l for l ∈ L, and

• ∀l ∈ L, Xl is partitioned into a set of disjoint sub-intervals Yl, such that ∀Y ∈ Yl,

either len(I(Y)) ≤ O(ϵ
p
· s) or δ(Y) ≤ O(ϵ

k
· tl) for some s, tl > 0.

83

Then for all sets C ⊂ Rd of k centers, the weighted set D := {µ(Y) | Y ∈ Yl, l ∈ L}

with weight |Y | for element µ(Y) satisfies | costp(D, C) − costp(X, C)| ≤ O(ϵ) · (s +∑︁
l∈L tl).

Proof. Suppose X = {x1, . . . , xn}. The proof idea is similar to the d = k = 1 case as

in Section 4.3. In particular, we construct an auxiliary set of points Z := {z1, . . . , zn},

and the error bound is implied by bounding both | costp(Z, C) − costp(D, C)| and

| costp(Z, C)− costp(X, C)| for all k-subset C ⊂ Rd.

Notations For xi ∈ X, let Yi ∈ Yl denote the unique sub-interval that contains xi,

where l is the line that Yi belongs to, and let π(xi) denote the unique coreset point in Yi

(which is µ(Yi)). Define M := {xi | len(Yi) ≤ O(ϵ
p
·s)} and N := X\M . We analyze the

error for any given C = {c1, . . . , ck} and let Ci = {x ∈ X : arg minj∈[k] d(x, cj) = ci}

(ties are broken arbitrarily) be the cluster induced by C. If x ∈ Ci, we say x is served

by ci. Let P1 ⊂ X denote the set of p farthest points to C. Define cil to be the

projection of ci onto line l.

Defining Z We define zi to be either xi or π(xi) as follows. For xi ∈ M , let

zi = xi. For xi ∈ N , if

a) I(Yi) does not contain any cjl for j ∈ [n], l ∈ L, and

b) all points in Yi are served by a unique center, and

c) Yi is either contained in P1 or does not intersect P1,

then we define zi := π(xi) otherwise zi := xi.

Let error := ϵ · (s + ∑︁
l∈L tl). It suffices to show | costp(D, C) − costp(Z, C)| ≤

O(error) and | costp(Z, C)− costp(X, C)| ≤ O(error).

Part I: | costp(D, C)−costp(Z, C)| ≤ O(error) To prove |costp(D, C)−costp(Z, C)| ≤

84

O(error), we apply Lemma 4.3.2 with S = M , so

|costp(D, C)− costp(Z, C)|

≤ p · max
xi∈M

|d(π(xi), C)− d(zi, C)|

+
∑︂

xi∈N

|d(π(xi), C)− d(zi, C)|. (4.10)

Observe that xi ∈M implies |d(π(xi), xi)| ≤ len(I(Yi)) = O(ϵ
p
· s). Therefore,

p · max
xi∈M

|d(π(xi), C)− d(zi, C)| ≤ p ·O(ϵ

p
· s) · p = O(ϵ · s). (4.11)

Then we bound the second term ∑︁
xi∈N |d(π(xi), C)− d(zi, C)|. We observe that

in each line l, there are only O(k) distinct sub-intervals Yi ∈ Yl induced by xi ∈ N

such that zi = xi. Actually, for each line l, there are at most k sub-intervals Y ∈ Yl

such that I(Y) contains some cil for i ∈ [n], and there are at most 2k sub-intervals

whose points are served by at least 2 centers, and there are at most 4k intervals that

intersect P1 but are not fully contained in P1. Hence,

∑︂
xi∈N

|d(π(xi), C)− d(zi, C)| ≤
∑︂

xi∈N :zi=xi

d(π(xi), xi)

≤
∑︂

Yi:xi∈N,zi=xi

δ(Yi)

≤
∑︂
l∈L

O(k) · ϵ

k
· tl (4.12)

= O(ϵ) ·
∑︂
l∈L

tl. (4.13)

Combining Inequality 4.11 and 4.13 with 4.10, we conclude that | costp(D, C) −

costp(Z, C)| ≤ O(error).

Part II: | costp(Z, C) − costp(X, C)| ≤ O(error) Let Y ′ ⊆ ⋃︁
l∈L Yl be the set of

sub-intervals Yi such that xi ∈ N and a) - c) hold (i.e. zi = π(xi)). Note that by

construction, the only difference between Z and X is due to replacing points in sub-

intervals Y ∈ Y ′ with |Y | copies of µ(Y), thus it suffices to analyze this replacement

error.

85

Let PZ ⊆ Z be (multi)-set of the p-furthest points of Z from C. We start with

showing that, the coreset point µ(Y) of Y ∈ Y ′, is fully contained in PZ or does not

intersect PZ . Consider some Y ∈ Y ′ and assume points in Y are all served by cj.

Denote the endpoints of interval I(Y) as a and b. Let l ∈ L be the line that contains

Y . Since I(Y) does not contain cjl, then either ∠abcj > π
2 or ∠bacj > π

2 . W.l.o.g.,

we assume that ∠abcj > π
2 . By Observation 4.4.2, we know that if Y ∩ P1 = ∅, then

µ(Y) ̸∈ PZ ; on the other hand, if Y ⊆ P1, then µ(Y) ∈ PZ .

Observation 4.4.2. Let ∆ABC denote a triangle where ∠ABC > π
2 . Let E be a

point on the edge BC then |AC| ≥ |AE| ≥ |AB|.

Hence, if Y ∈ Y ′ has empty intersection with P1, the |Y | copies of µ(Y) in Z

does not contribute to either costp(Z, C) or costp(X, C). Thus, it remains to bound

the error for Y ∈ Y ′ such that Y ⊆ P1. In the 1-dimensional case as in Section 4.3,

replacing Y with the mean µ(Y) does not incur any error, as the center is at the

same line with the interval I(Y). However, this replacement might incur error in

the d-dimensional case since the center might be outside the line that contains the

sub-interval Y . Luckily, this error has been analyzed in [12, Lemma 2.8], and we adapt

their argument in Lemma 4.4.3 (shown below). By Lemma 4.4.3, ∀cj ∈ C, l ∈ L, the

total replacement error for all sub-intervals Y ∈ Y ′ ∩ Yl such that i) Y ⊆ P1 and ii)

all points in Y are served by cj, is at most O(ϵ
k
· tl). Therefore,

| costp(Z, C)− costp(X, C)| ≤
∑︂
l∈L

∑︂
cj∈C

O(ϵ

k
· tl)

= O(ϵ) ·
∑︂
l∈L

tl

≤ O(error).

This finishes the proof of Lemma 4.4.1.

Lemma 4.4.3. Let l ⊂ Rd be a line and c ∈ Rd be a point. Define cl be the

projection of c on l. Assume that X1, . . . , Xm ⊂ l are finite sets of points in l such

86

that I(X1), . . . , I(Xm) are disjoint, δ(Xi) ≤ r and ∀i ∈ [m], cl /∈ I(Xi). Then⃓⃓⃓⃓
⃓⃓ m∑︂
i=1

∑︂
x∈Xi

d(x, c)−
m∑︂

i=1
|Xi| · d(µ(Xi), c)

⃓⃓⃓⃓
⃓⃓ ≤ O(r).

Proof. W.l.o.g. we assume ∀i ∈ [m], Xi is not a singleton, since ∑︁x∈Xi
d(x, c) =

|Xi| · d(µ(Xi), c) for singleton Xi. Let erri := ∑︁
x∈Xi

d(x, c)− |Xi| · d(µ(Xi), c). In [12,

Lemma 2.5], it was shown that erri ≥ 0 for all i ∈ [m] (using that cl ̸∈ I(Xi)).

Furthermore, it follows from the argument of [12, Lemma 2.8] that, if each Xi is

modified into a weighted set X ′
i with real weight wi : X ′

i → R+, such that I(Xi) = I(X ′
i)

and each X ′
i has the same cumulative error δwi

(X ′
i) = r, then

• ∀i ∈ [m], err′
i := ∑︁

x∈X′
i
w(x) · d(x, c)−

(︂∑︁
x∈X′

i
wi(x)

)︂
· d(µwi

(X ′
i), c) ≥ 0, and

• ∑︁
i∈[m] err′

i = ∑︁
i∈[m]

∑︁
x∈X′

i
w(x)·d(x, c)−∑︁i∈[m]

(︂(︂∑︁
x∈X′

i
wi(x)

)︂
· d(µwi

(X ′
i), c)

)︂
≤

O(r).

Hence, it suffices to show that it is possible to modify each Xi into a real weighted set

X ′
i with I(X ′

i) = I(Xi), such that δ(X ′
i) = r and err′

i ≥ erri for all i ∈ [m].

For each i ∈ [m], find two points a ̸= b ∈ I(Xi) such that µ(Xi) is the midpoint of

a and b. Such a and b must exist since we assume Xi is not a singleton. We form X ′
i by

adding points a and b with the same (real-valued) weight into Xi, such that δwi
(X ′

i) = r,

then err′
i ≥ erri follows from the geometric fact that d(c, a) + d(c, b) ≥ 2d(c, µ(Xi)).

This concludes Lemma 4.4.3.

4.4.2 Coreset for p-Centrum in Rd

We now prove the theorem about a coreset for p-Centrum. As discussed above, we

use a projection procedure inspired by [12] to reduce to line cases, and then apply

Lemma 4.4.1 to get the coreset.

Theorem 4.4.4. Given k ∈ Z+, ϵ ∈ (0, 1), an n-point data set X ⊂ Rd, and p ∈ [n],

there exists an ϵ-coreset D ⊂ Rd of size O(k2

ϵd+1) for p-Centrum. Moreover, it can be

87

computed in polynomial time.

We start with a description of how we reduce to the line case, which will be used

again in the simultaneous coreset.

Reducing to Lines: Projection Procedure Consider an m-point set C :=

{c1, . . . , cm} ⊂ R which we call projection centers. We will define a new data set

X ′ by projecting points in X to some lines defined with respect to C. The lines

are defined as follows. For each ci ∈ C, construct an ϵ-net Ni for the unit sphere

centered at ci, and for u ∈ Ni, define liu as the line that passes through ci and u.

Let L := {liu | i ∈ [m], u ∈ Ni} be the set of projection lines. Then X ′ is defined by

projecting each data point x ∈ X to the nearest line in L. Since Ni’s are ϵ-nets on

unit spheres in Rd, we have |L| ≤ O(1
ϵ
)d · |C|. The cost of this projection is analyzed

below in Lemma 4.4.5.

Lemma 4.4.5 (projection cost). For all C ′ ⊂ Rd and p ∈ [n], | costp(X ′, C ′) −

costp(X, C ′)| ≤ O(ϵ) · costp(X, C).

Proof. For x ∈ X, denote the projection of x by σ(x) ∈ X ′, and for y ∈ X ′ let

σ−1(y) ∈ X be any x ∈ X such that σ(x) = y. Observe that ∀x ∈ X, d(x, C ′) −

d(σ(x), C ′) ≤ d(x, σ(x)) ≤ O(ϵ) · d(x, C), where the first inequality is by triangle

inequality, and the last inequality is by the definition of σ(x).

Let A ⊆ X ′ be the p-furthest points from C ′ in X ′. Then

costp(X ′, C ′) =
∑︂
x∈A

d(x, C ′) ≤
∑︂
x∈A

d(σ−1(x), C ′) + O(ϵ) ·
∑︂
x∈A

d(σ−1(x), C)

≤ costp(X, C ′) + O(ϵ) · costp(X, C).

Similarly, let B ⊆ X be the p-furthest points from C ′ in X. Then

costp(X, C ′) =
∑︂
x∈B

d(x, C ′) ≤
∑︂
x∈B

d(σ(x), C ′) + O(ϵ) ·
∑︂
x∈B

d(x, C)

≤ costp(X ′, C ′) + O(ϵ) · costp(X, C).

This finishes the proof.

88

We remark that both the projection center and the candidate center C ′ in

Lemma 4.4.5 are not necessarily k-subsets. This property is not useful for the coreset

for p-Centrum, but it is crucially used in the simultaneous coreset in Section 4.4.3.

Below we give the proof of Theorem 4.4.4.

Proof of Theorem 4.4.4. For the purpose of Theorem 4.4.4, we pick C to be an

O(1)-approximation to the optimal centers for the k-facility p-Centrum on X,

i.e., costp(X, C) ≤ O(1) ·OPTp, where OPTp is the optimal value for the p-Centrum.

Such C may be found in polynomial time by applying known approximation algorithms,

say by [71]. As analyzed in Lemma 4.4.5, for such choice of C, the error incurred in

X ′ because of the projections is bounded by O(ϵ) ·OPTp.

We will apply Lemma 4.4.1 on X ′. The line partitioning {X ′
l | l ∈ L} of X ′ that we

use in Lemma 4.4.1 is naturally induced by the line set L resulted from the projection

procedure. Then, for each l ∈ L, we define the disjoint sub-intervals Yl as follows.

Let S := X ′ ∩ l, let S1 ⊆ S be the subset of the p-furthest points from C, and let

S2 := S \ S1. We then break S1 and S2 into sub-intervals, using similar method as

in Section 4.3. Let APX := costp(X ′, C), and let APXl be the contribution of S in

APX. Break S1 into sub-intervals according to cumulative error δ with threshold

O(ϵ·APXl

k
), similar with how we deal with L and R in Section 4.3. Break S2 into

maximal sub-intervals of length Θ(ϵ·APX
p

), similar with Q in Section 4.3. Again, similar

with the analysis in Section 4.3, the number of sub-intervals is at most O(k
ϵ
) for each

l ∈ L.

Finally, we apply Lemma 4.4.1 with tl := APXl and s := APX, and it yields a

multi-set D such that | costp(D, C ′) − costp(X, C ′)| ≤ O(ϵ) · (APX +∑︁
l∈L APXl) =

O(ϵ) · APX = O(ϵ) · OPTp. On the other hand, the size of D is upper bounded by

|L| · k
ϵ
≤ O(k

ϵd+1) · |C| ≤ O(k2

ϵd+1). This concludes Theorem 4.4.4.

89

4.4.3 Simultaneous Coreset for Ordered k-Median in Rd

In this section we prove our main theorem that is stated below as Theorem 4.4.6. As

discussed before, we first show it suffices to give simultaneous coreset for p-Centrum

for O(log n) values of p. Then we show how to combine these coresets to obtain a

simultaneous coreset.

Theorem 4.4.6. Given k ∈ Z+, ϵ ∈ (0, 1) and an n-point data set X ⊂ Rd, there

exists a simultaneous ϵ-coreset of size O(k2 log2 n
ϵd) for Ordered k-Median. Moreover,

it can be computed in polynomial time.

We start with the following lemma, which reduces simultaneous coresets for

Ordered k-Median to simultaneous coresets for p-Centrum.

Lemma 4.4.7. Suppose k ∈ Z+, ε ∈ (0, 1), X ⊂ Rd and D is a simultaneous ϵ-coreset

for the k-facility p-Centrum problem for all p ∈ [n]. Then D is a simultaneous

ϵ-coreset for Ordered k-Median.

Proof. Suppose X = {x1, . . . , xn}. We need to show for any center C and any weight

v, costv(D, C) ∈ (1 ± ϵ) · costv(X, C). Fix a center C and some weight v. We

assume w.l.o.g. d(x1, C) ≥ . . . ≥ d(xn, C). By definition we have costv(X, C) =∑︁n
i=1 vi · d(xi, C) and costp(X, C) = ∑︁p

i=1 d(xi, C) for any p. Since D is an ε-coreset of

X for p-Centrum on every p ∈ [n], costp(D, C) ∈ (1± ε) costp(X, C). Let vn+1 := 0,

and we have

costv(D, C) =
n∑︂

p=1
(vp − vp+1) · costp(D, C)

∈ (1± ϵ) ·
n∑︂

p=1
(vp − vp+1) · costp(X, C)

= (1± ϵ) · costv(X, C).

90

With the help of the following lemma, we only need to preserve the objective for

p’s taking powers of (1 + ϵ). In other words, it suffices to construct simultaneous

coresets to preserve the objective for only O(log n
ϵ

) distinct values of p’s.

Lemma 4.4.8. Let X, C ⊂ Rd and p1, p2 ∈ [n] such that p1 ≤ p2 ≤ (1 + ϵ) · p1. Then

costp1(X, C) ≤ costp2(X, C) ≤ (1 + ϵ) · costp1(X, C).

Proof. We assume w.l.o.g. d(x1, C) ≥ . . . ≥ d(xn, C). By definition,

costp2(X, C) = costp1(X, C) +
p2∑︂

i=p1

d(xi, C) ≥ costp1(X, C).

On the other hand,

costp2(X, C) = costp1(X, C) +
p2∑︂

i=p1+1
d(xi, C)

≤ costp1(X, C) + (p2 − p1) ·
1
p1

costp1(X, C)

≤ costp1(X, C) + ϵ · p1 ·
1
p1
· costp1(X, C)

= (1 + ϵ) · costp1(X, C).

We are now ready to present the proof of Theorem 4.4.6.

Proof of Theorem 4.4.6. As mentioned above, by Lemma 4.4.8, it suffices to obtain

an ϵ-coreset for O(log n
ϵ

) values of p’s. Denote the set of these values of p’s as W .

We use a similar framework as in Theorem 4.4.4, and we start with a projection

procedure. However, the projection centers are different from those in Theorem 4.4.4.

For each p ∈ W , we compute an O(1)-approximate solution Cp for p-Centrum, which

is a k-subset. Then, we define C := ⋃︁
p∈P Cp be the union of all these centers, so

|C| ≤ O(k·log n
ϵ

). Let X ′ be the projected data set. By Lemma 4.4.5, the projection

cost is bounded by O(ϵ) · costp(X, C) ≤ O(ϵ) · costp(X, Cp) ≤ O(ϵ) · OPTp, for all

p ∈ W .

91

Following the proof of Theorem 4.4.4, for each p ∈ W , we apply Lemma 4.4.1 on

the projected set X ′ in exactly the same way, and denote the resulted coreset as Dp.

By a similar analysis, for each p, the size of Dp is O(k2·log n
ϵd+1).

Then we describe how to combine Dp’s to obtain the simultaneous coreset. A

crucial observation is that, the coresets Dp’s are constructed by replacing sub-intervals

with their mean points, and for all p ∈ W , the Dp’s are built on the same set of lines.

Therefore, we can combine the sub-intervals resulted from all Dp’s. Specifically, com-

bining two intervals [a, b] and [c, d] yields [min{a, c}, max{a, c}], [max{a, c}, min{b, d}],

[min{b, d}, max{b, d}]. For any particular p, in the combined sub-intervals, the length

upper bound and the δ upper bound required in Lemma 4.4.1 still hold. Hence the

coreset D resulted from the combined sub-intervals is a simultaneous coreset for all

p ∈ W . By Lemma 4.4.7 and Lemma 4.4.8, D is a simultaneous ϵ-coreset for Ordered

k-Median.

The size of D is thus O(log n) times the coreset for a single p. Therefore, we

conclude that the above construction gives a simultaneous ϵ-coreset with size O(k2 log2 n
ϵd+1),

which completes the proof of Theorem 4.4.6.

92

Chapter 5

Coreset for Clustering with
Missing Values

In this Chapter, we consider coresets and approximation algorithms for k-clustering

problems, particularly k-Means and more generally (k, z)-Clustering (see Defini-

tion 1.2.1), for points in Rd with missing values (coordinates). The presence of missing

values in data sets is a common phenomenon, and dealing with it is a fundamental

challenge in data science. While data imputation is a very popular method for handling

missing values, it often requires prior knowledge which might not be available, or

statistical assumptions on the missing values that might be difficult to verify [72,

73]. In contrast, our worst-case approach does not requires any prior knowledge.

Specifically, in our context of clustering, the distance dist(x, c) between a clustering

center point c and a data point x is evaluated only on the available (i.e., non-missing)

coordinates. Similar models that aim to minimize clustering costs using only the

available coordinates have been proposed in previous work [74–77], and some other

relevant works were discussed in a survey [78].

Clustering under this distance function, which is evaluated only on the available

coordinates, is a formidable computational challenge, because distances do not satisfy

the triangle inequality, and therefore many classical and effective clustering algorithms,

such as k-Means++ [79], cannot be readily applied or even be defined properly.

93

Despite the algorithmic interest in clustering with missing values, the problem is still

not well understood and only a few results are known. In a pioneering work, Gao,

Langberg and Schulman [80] initiated the algorithmic study of the k-Center problem

with missing values. They took a geometric perspective and interpreted the k-Center

with missing values problem as an affine-subspace clustering problem, and followup

work [81, 82] has subsequently improved and generalized their algorithm. Only very

recently, approximation algorithms for objectives other than k-Center, particularly

k-Means, were obtained for the limited case of at most one missing coordinate in

each input point [1] or for constant number of missing coordinates [2].

We focus on designing coresets for clustering with missing values. Roughly speak-

ing, an ϵ-coreset is a small proxy of the data set, such that the clustering objective

is preserved within (1 ± ϵ) factor for all center sets (see Definition 1.2.2 for formal

definition). Efficient constructions of small ϵ-coresets usually lead to efficient approxi-

mations schemes, since the input size is reduced to that of the coreset, see e.g. [1, 7, 8].

Moreover, apart from speeding up approximation algorithms in the classical setting

(offline computation), coresets can also be applied to design streaming [83–85], dis-

tributed [86–88], and dynamic algorithms [89, 90], which are effective methods/models

for dealing with big data, and recently coresets were used even in neural networks [91].

5.1 Our Results

Coresets. Our main result, stated in Theorem 5.1.1, is a near-linear time construction

of coresets for k-Means with missing values. Here, an ϵ-coreset for k-Means for a

data set X in Rd with missing coordinates is a weighted subset S ⊆ X with weights

w : S → R+, such that

∀C ⊂ Rd, |C| = k,
∑︂
x∈S

w(x) · dist2(x, C) ∈ (1± ϵ)
∑︂
x∈X

dist2(x, C),

94

where dist(x, c) :=
√︂∑︁

i:xi not missing (xi − ci)2, and dist(x, C) := minc∈C dist(x, c); note

that the center set C does not contain missing values. More generally, our coreset also

works for (k, z)-Clustering, which includes k-Median.

Theorem 5.1.1 (Informal version of Theorem 5.3.1). There is an algorithm that, given

0 < ϵ < 1/2, integers d, j, k ≥ 1, and a set X ⊂ Rd of n points each having at most j

missing values, it constructs with constant probability an ϵ-coreset for k-Means on X

of size m = (jk)O(min{j,k}) · (ϵ−1d log n)2, and runs in time Õ
(︂
(jk)O(min{j,k}) · nd + m

)︂
.

Our coreset size is only a low-degree polynomial of d, ϵ and log n, and can thus

deal with moderately-high dimension or large data set. The dependence on k (number

of clusters) and j (maximum number of missing values per point) is also a low-degree

polynomial as long as at least one of k and j is small. Furthermore, the space

complexity of our construction algorithm is near-linear, and since our coreset is clearly

mergeable, it is possible to apply the merge-and-reduce method [83] to convert our

construction into a streaming algorithm of space poly log n. Prior to our result, the

only known coreset construction for clustering with missing values is for the special case

j = 1 [1] and has size kO(k) · (ϵ−2d log n). Since our coreset has size poly(kϵ−1d log n)

when j = 1, it improves the dependence on k over that of [1] by a factor of kO(k).

Near-linear time PTAS for k-Means with missing values. Very recently, a

PTAS for k-Means with missing values, was obtained by Eiben, Fomin, Golovach,

Lochet, Panolan, and Simonov [2]. Its time bound is quadratic, namely O(2poly(jk/ϵ) ·

n2d), and since our coreset can be constructed in near-linear time, we can speedup

this PTAS to near-linear time by first constructing our coreset and then running this

PTAS on the coreset.

Corollary 5.1.2 (Near-linear time PTAS for k-Means with missing values). There

is an algorithm that, given 0 < ϵ < 1/2, integers d, j, k ≥ 1, and a set X ⊂ Rd of

n points each having at most j missing values, it finds with constant probability a

95

(1 + ϵ)-approximation for k-Means on X, and runs in time Õ
(︂
(jk)O(min{j,k}) · nd +

2poly(jk/ϵ) · dO(1)
)︂
.

5.1.1 Technical Overview

Our coreset construction is based on the importance sampling framework introduced

by Feldman and Langberg [13] and subsequently improved and generalized by [17,

41]. In the framework, one first computes an importance score σx for every data point

x ∈ X, and then draws independent samples with probabilities proportional to these

scores. When no values are missing, the importance scores can be computed easily,

even for general metric spaces [17, 41, 42]. However, a significant challenge with

missing values is that distances do not satisfy the triangle inequality, hence importance

scores cannot be easily computed.

We overcome this hurdle using a method introduced by Varadarajan and Xiao [92]

for projective clustering (where the triangle inequality similarly does not hold). They

reduce the importance-score computation to the construction of a coreset for k-

Center objective; this method is quite different from earlier approaches, e.g. [13,

17, 41, 42], and yields a coreset for k-Means whose size depends linearly on log n

and of course on the size of the k-Center coreset. (Mathematically, this arises from

the sum of all importance scores.) We make use of this reduction, and thus focus on

constructing (efficiently) a small coreset for k-Center with missing values.

An immediate difficulty is how to deal with the missing values. We show that it is

possible to find a collection of subsets of coordinates I (so each I ∈ I is a subset of

[d]), such that if we construct k-Center coresets SI on the data set “restricted” to

each I ∈ I, then the union of these SI ’s is a k-Center coreset for the original data

set with missing values. Crucially, we ensure that each “restricted” data set does not

contain any missing value, so that it is possible to use a classical coreset construction

for k-Center. Finally, we show in a technical lemma how to find a collection as

96

necessary of size |I| ≤ (jk)O(min{j,k}).

Since a “restricted” data set does not contain any missing values, we can use

a classical k-Center coreset construction, and a standard construction has size

O(kϵ−d) [65], which is known to be tight. We bypass this ϵ−d limitation by observing

that actually Õ(1)-coreset for k-Center suffices, even though the final coreset error

is ϵ. We observe that an Õ(1)-coreset can be constructed using a variant of Gonzalez’s

algorithm [93].

To implement Gonzalez’s algorithm, a key step is to find the furthest neighbor of

a given subset of at most O(k) points, and a naive implementation of this runs in

linear time, which overall yields a quadratic-time coreset construction, because the

aforementioned reduction of [92] actually requires Θ(n/k) successive runs of Gonzalez’s

algorithm. To resolve this issue, we propose a fully-dynamic implementation of

Gonzalez’s algorithm so that a furthest-point query is answered in time poly(k log n),

and the point-set is updated between successive runs instead of constructed from

scratch. Our dynamic algorithm is based on a random-projection method that was

proposed for furthest-point queries in the streaming setting [94]. Specifically, we

project the (restricted) data set onto several random directions, and on each projected

(one-dimensional) data set we apply a data structure for intervals.

5.1.2 Additional Related Work

Recently, attention was given to some non-traditional settings of coresets for clustering,

including coresets for Gaussian mixture models (GMM) [95, 96]; coresets for logistic

regressions [97]; and coresets for clustering under fairness constraints [98]. Also

considered were settings that capture uncertainty, for example when each point is only

known to lie in a line (i.e., clustering lines) [1], and when each point comes from a

finite set (i.e., clustering point sets) [99].

97

5.2 Preliminaries

We represent a data point as a vector in (R∪ {?})d, and a coordinate takes “?” if and

only if it is missing. Let Rd
? be a shorthand for (R∪ {?})d. Throughout, we consider a

data set X ⊂ Rd
?. The distance is evaluated only on the coordinates that are present

in both x, y, i.e.,

∀x, y ∈ Rd
?, dist(x, y) :=

√︄ ∑︂
i:xi,yi ̸=?

(xi − yi)2.

For x ∈ Rd
?, we denote the set of coordinates that are not missing by Ix := {i : xi ̸=?}.

For integer m ≥ 1, let [m] := {1, . . . , m}. For two points p, q ∈ Rd
? and an index set

I ⊆ Ip ∩ Iq, we define the I-induced distance to be distI(p, q) :=
√︂∑︁

i∈I(pi − qi)2. A

point x ∈ Rd
? is called a j-point if it has at most j missing coordinates, i.e., |Ix| ≥ d−j.

5.3 Coresets

We prove our main theorem in this section.

Theorem 5.3.1. There is an algorithm that, given as input a data set X ⊂ Rd
? of size

n = |X| consisting of j-points and parameters k, z ≥ 1 and 0 < ϵ < 1/2, constructs

with constant probability an ϵ-coreset of size m = Õ
(︃

zz · (j+k)j+k+1

jjkk−z−2 · (d log n)
z+2

2

ϵ2

)︃
for

(k, z)-Clustering of X, and runs in time Õ
(︂

(j+k)j+k+1

jjkk−2 · nd + m
)︂
.

We remark that (j+k)j+k

jjkk = (jk)O(min(j,k)). To see this, assume j ≥ k w.l.o.g., so
(j+k)j

jj = (1 + k
j
)j ≤ e

k
j

·j = ek and (j+k)k

kk ≤ (j + k)k.

Theorem 5.3.1 is the main theorem of this Chapter, and we present the proof

in this section. As mentioned in Section 5.1.1 and previous chapters, the coreset is

constructed via importance sampling, by following three major steps.

1. For each data point x ∈ X, compute an importance score σx ≥ 0.

98

2. Draw N (to be determined later) independent samples from X, such that x ∈ X

is sampled with probability px ∝ σx.

3. Denote the sampled (multi) set as S, and for each x ∈ S define its weight

w(x) := 1
pxN

. Report the weighted set S as the coreset.

The importance score σx is usually defined as (an approximation) of the sensitivity of

x, denoted

σ⋆
x := sup

C⊂Rd,|C|=k

distz(x, C)
costz(X, C) , (5.1)

which measures the maximum possible relative contribution of x to the objective

function.

Usually, there are two main challenges with this approach. First, the sensitivity

(5.1) is not efficiently computable because it requires to optimize over all k-subsets

C ⊂ Rd. Second, one has to determine the number of samples N (essentially the coreset

size) based on a probabilistic analysis of the event that S is a coreset. Prior work on

coresets has studied these issues extensively and developed a general framework, and

we shall use the variant stated in Theorem 5.3.2 below. This framework only needs an

approximation to the sensitivities {σ⋆
x}x∈X , more precisely it requires overestimates

σx ≥ σ⋆
x whose sum ∑︁

x∈X σx is bounded. Moreover, it relates the number of samples

N to a quantity called the weighted shattering dimension sdimmax, which roughly

speaking measures the complexity of a space (set of points) by the number of distinct

ways that metric balls can intersect it. The definition below has an extra complication

of a point weight v, which originates from the weight in the importance sampling

procedure, and thus we need a uniform upper bound, denoted sdimmax, over all possible

weights.1

1In principle, this uniform upper bound is not necessary, and an upper bound for weights
corresponding to the importance score suffices, but a uniform upper bound turns out to be technically
easier to deal with.

99

Definition 5.3.1 (Shattering dimension). Given a weight function v : Rd
? → R+, let

sdimv(Rd
?) be the smallest integer t such that

∀H ⊂ Rd
?, |H| ≥ 2

⃓⃓⃓{︂
BH

v (c, r) : c ∈ Rd, r ≥ 0
}︂⃓⃓⃓
≤ |H|t,

where BH
v (c, r) := {x ∈ H : v(x) · dist(x, c) ≤ r}. Moreover, let sdimmax(Rd

?) :=

supv:Rd
?→R+ sdimv(Rd

?).

Strictly speaking, Theorem 5.3.2 has been proposed and proved only for metric

spaces, but the proof is applicable also in our setting (where dist need not satisfy

the triangle inequality), because it only concerns the binary relation between data

points and center points (without an indirect use of a third point, e.g., by triangle

inequality.)

Theorem 5.3.2 ([41]2). Let X ⊂ Rd
? be a data set, and let k, z ≥ 1. Consider the

importance sampling procedure with importance scores that satisfy σx ≥ σ⋆
x for all

x ∈ X, and with a sufficiently large number of samples

N = Õ

(︄
ϵ−2kzz sdimmax(Rd

?)
∑︂
x∈X

σx

)︄
.

Then with constant probability it reports an ϵ-coreset for (k, z)-Clustering.

Proof of Theorem 5.3.1. Because of Theorem 5.3.2, it suffices to bound sdimmax(Rd
?),

and to provide an efficient algorithm to estimate σx whose sum is bounded. These two

components are provided in Lemma 5.3.3 and Lemma 5.3.4 stated below (their proofs

appear in Sections 5.3.1 and 5.3.2), Plugging these two lemmas into Theorem 5.3.2,

the main theorem follows.

Lemma 5.3.3 (Shattering dimension bound). sdimmax(Rd
?) = O(d).

2Our theorem statement is based on [41, Theorem 31], adapted to our context. One difference is
that their theorem is about VC-dimension, but it is also applicable for shattering dimension. Another
difference is that we use a more direct terminology that is specialized to metric balls in Rd

? instead of
a general range space.

100

Lemma 5.3.4. There is an algorithm that, given a data set X ⊂ Rd
? of n j-points,

for (k, z)-Clustering computes importance scores {σx}x∈X such that with constant

probability,

• σx ≥ σ⋆
x for all x ∈ X; and

• ∑︁
x∈X σx ≤ O

(︃
(j+k)j+k+1

jjkk−z−1 ·
√︂

dz · logz+2 n
)︃

,

and its running time is Õ
(︂

(j+k)j+k+2

jjkk−2 · nd
)︂
.

5.3.1 Proof of Lemma 5.3.3: Shattering Dimension of Rd
?

We now prove Lemma 5.3.3, which asserts that sdimmax(Rd
?) = O(d). We remark that

the shattering dimension bound for Rd without missing values has been proved in [13,

Lemma 16.1] and our proof is actually an extension of it.

Proof of Lemma 5.3.3. Let us verify Definition 5.3.1. Consider H ⊂ Rd
? and a weight

function v : Rd
? → R+. Recall that given c ∈ Rd and r ≥ 0, we have BH

v (c, r) = {h ∈

H : v(h) · dist(h, c) ≤ r} and dist(h, c)2 = ∑︁
i∈Ih

(hi− ci)2 for h ∈ H. We need to show

that ⃓⃓⃓
{BH

v (c, r) : c ∈ Rd, r ≥ 0}
⃓⃓⃓
≤ |H|O(d). (5.2)

Observe that

h ∈ BH
v (c, r) ⇐⇒ v(h) · dist(h, c) ≤ r

⇐⇒ −r2 +
∑︂
i∈Ih

(v2(h)h2
i + v2(h)c2

i − 2v2(h)hici) ≤ 0.

Next, we write this inequality in an alternative way, that separates terms depending h

from those depending on c and r, more precisely as an inner-product ⟨f(h), g(c, r)⟩ ≤ 0

for vectors f(h), g(c, r) ∈ R3d+1. Now consider f : H → Rd × Rd × Rd × R and

101

g : Rd × R→ Rd × Rd × Rd × R such that f(h) = (p, q, t,−1), where p, q, t ∈ Rd and

for i ∈ [d]

pi =

⎧⎨⎩v2(h) · h2
i if i ∈ Ih

0 otherwise
qi =

⎧⎨⎩v2(h) if i ∈ Ih

0 otherwise

ti =

⎧⎨⎩−2v2(h) · hi if i ∈ Ih

0 otherwise

and g(c, r) = (y, z, w, r2), where y, z, w ∈ Rd, yi = 1, zi = c2
i , wi = ci for i ∈ [d]. Then

we have

h ∈ BH
v (c, r) ⇐⇒ ⟨f(h), g(c, r)⟩ ≤ 0.

For a vector t ∈ R3d+1, let projH− (t) := {h ∈ H : ⟨f(h), t⟩ ≤ 0} be the subset of H

that has nonpositive inner-product with t (it can be viewed also as projection or a

halfspace). Therefore, by (5.2), we have
⃓⃓⃓
{BH

v (c, r) : c ∈ Rd, r ≥ 0}
⃓⃓⃓
=
⃓⃓⃓
{projH− (g(c, r)) : c ∈ Rd, r ≥ 0}

⃓⃓⃓
≤
⃓⃓⃓
{projH− (t) : t ∈ R3d+1}

⃓⃓⃓
.

We observe that
⃓⃓⃓
{projH− (t) : t ∈ R3d+1}

⃓⃓⃓
≤ |H|O(d),

since this may be related to the shattering dimension of halfspaces in R3d+1, which

is O(d) and is a well-known fact in the PAC learning theory (cf. [100, Chapter 7.2]).

This concludes the proof of Lemma 5.3.3.

5.3.2 Proof of Lemma 5.3.4: Estimating Sensitivity Efficiently

We use a technique introduced by Varadarajan and Xiao [92] that reduces the

sensitivity-estimation problem to the problem of constructing a coreset for k-Center

clustering. This coreset concept is defined as follows.

102

Definition 5.3.2. An α-coreset for k-Center of a data set X ⊂ Rd
? is a subset

Y ⊆ X such that

∀C ⊂ Rd, |C| = k, max
x∈X

dist(x, C) ≤ α ·max
y∈Y

dist(y, C).

Note that the error parameter α represents a multiplicative factor, which is slightly

different from that of ϵ in ϵ-coreset for (k, z)-Clustering, and roughly corresponds

to α = 1 + ϵ. The reasoning is that maxy∈Y dist(y, C) for Y ⊆ X is always no more

than maxx∈X dist(x, C), and therefore we only need to measure the contraction-side

error.

The reduction in Lemma 5.3.5 was presented in [92], and we restate its algorithmic

steps in Algorithm 6. This needs access to some Algorithm A that constructs an

α-coreset for k-Center on a point set X ⊂ Rd
?. Each iteration i calls Algorithm A

to construct a k-Center coreset for the current point set X (which is initially the

entire data set), assign sensitivity estimates O(αz/i) to every coreset point, and then

remove these coreset points from X. These iterations are repeated until X is empty.

Algorithm 6 Sensitivity estimation from [92, Lemma 3.1] for data set X ⊂ Rd
?

Require: algorithm A that constructs α-coreset for k-Center
1: i← 1
2: while X ̸= ∅ do
3: P ← A(X)
4: for x ∈ P do
5: σx ← O(αz/i)
6: end for
7: X ← X \ P
8: i← i + 1
9: end while

Lemma 5.3.5 ([92, Lemma 3.1]). Suppose algorithm A constructs an α-coreset of

size T = T (α, d, j, k) for k-Center an input X ⊂ Rd
?. Then Algorithm 6 (which

makes calls to this Algorithm A) computes sensitivities {σx} for (k, z)-Clustering

satisfying that σx ≥ σ⋆
x for all x ∈ X, and ∑︁x∈X σx ≤ αz · T log |X|.

103

However, there are two outstanding technical challenges. First, there is no known

construction of a small k-Center coreset for our clustering with missing values setting.

Moreover, as can be seen from Algorithm 6, this reduction executes the k-Center

coreset construction |X|
T

times (where T is the size of the coreset as in Lemma 5.3.5),

and when using a naive implementation of the k-Center coreset construction, which

naturally requires Ω(|X|) time, results overall in quadratic time, which is not very

efficient.

First, to deal with question marks, we employ a certain family I of subset of

coordinates (so each I ∈ I is a subset of [d]), and we restrict the data set X on each

I ∈ I. Each restricted data set (restricted on some I) may be viewed as a data set in

RI , without any question marks. We show that the union of k-Center coresets on

all restricted data sets with respect all to I ∈ I, forms a valid k-Center coreset for

X (which has question marks), provided that the family I has a certain combinatorial

property. Naturally, the size of this coreset for X depends on an upper bound on |I|.

Second, since the choice of family I is oblivious to the data set, it suffices to design

an efficient algorithm for k-Center coreset for any restricted data set. We observe

that the efficiency bottleneck in Algorithm 6 is the repeated invocation of Algorithm A

to construct a coreset, even though its input changes only a little between consecutive

invocations. Hence, we design a dynamic algorithm, that maintains a k-Center

coreset on the restricted data sets under point updates. Our algorithm may be viewed

as a variant of Gonzalez’s algorithm [93], and we maintain it efficiently by a random

projection idea that was used e.g. in [94]. In particular, we “project” the data points

onto several one-dimensional lines in Rd, and we maintain an interval data structure

(that is based on balanced trees) to dynamically maintain the result of our variant of

Gonzalez’s algorithm. We summarize the dynamic algorithm in the following lemma.

Lemma 5.3.6. There is a randomized dynamic algorithm with the following guar-

antees. The input is a dynamic set X ⊂ Rd
? of j-points, such that X undergoes

104

q adaptive updates (point insertions and deletions) and the points ever added are

fixed in advance (non-adaptively). The algorithm maintains per update in time

Õ
(︂

(j+k)j+k+1

jjkk · (j + k log q)(d + k2 log q)
)︂
, a subset Y ⊆ X such that the size of Y

is only |Y | ≤ O
(︂

(j+k)j+k+1

jjkk−1 · log d
)︂

and with constant probability, Y is an O(k
√

d log q)-

coreset for k-Center on X after every update.

The proof of the lemma can be found in Section 5.3.3, and here we proceed to the

proof of Lemma 5.3.4.

Proof of Lemma 5.3.4. We plug in the dynamic algorithm in Lemma 5.3.6 as A in

Lemma 5.3.5. Specifically, line 3 and 7 of Algorithm 6 are replaced by the corresponding

query and update procedure. Since |X| = n, and each point is inserted and deleted for

exactly once, algorithm 6 needs q = O(n) insertions and deletions of points. Moreover,

the set of points ever added is just X which is fixed. Thus, α is replaced by O(k
√

d log n)

and T is replaced by O
(︂

(j+k)j+k+1

jjkk−1 · log d
)︂
. Therefore, for (k, z)-Clustering, this

computes σx for x ∈ X such that σx ≥ σ⋆
x, and that

∑︂
x∈X

σx ≤ αz · T · log n = O

(︄
(j + k)j+k+1

jjkk−z−1 ·
√︂

dz · logz+2 n

)︄
.

The total running time is bounded by Õ
(︂

(j+k)j+k+2

jjkk−2 · nd
)︂

for implementing O(n)

updates.

5.3.3 Proof of Lemma 5.3.6: Dynamic O(1)-Coresets for k-
Center Clustering

As mentioned, the high level idea is to identify a collection I of subsets of coordinates

(so each I ∈ I satisfies I ⊆ [d]), construct an α-coreset (a will be determined is the

later context) Yi for k-Center on the data set X with coordinates restricted on each

Ii ∈ I, and then the union ⋃︁i Yi would be the overall α
√

d-coreset for k-Center on

X. The exact definition of restricted data set goes as follows.

105

Definition 5.3.3. For a point p ∈ Rd
? and a subset I ⊆ Ip, define p|I ∈ RI in the

obvious way, by selecting the coordinates {pi}i∈I . Define the I-restricted data set to

be X|I := {p|I : p ∈ X, I ⊆ Ip}. Since each vector in X|I arises from a specific vector

in X, a subset Y ⊆ X|I corresponds to a specific subset of X, and we shall denote

this subset by Y −1.

We observe that the metric space on the restricted data set becomes a usual

metric space, i.e. it satisfies the triangle inequality, and can be realized as a point

set in RI which does not contain question marks. Therefore, this reduces our goal

to constructing k-Center coresets for this usual data set. However, the size of the

coreset yielded from this approach would depend on the size of the family I. Hence,

a key step is to identify a small set I such that the union of the coreset restricted

on I is an accurate coreset. To this end, we consider the so-called (j, k, d)-family of

coordinates as in Definition 5.3.4. This family itself is purely combinatorial, but we

will show in Lemma 5.3.7 that such a family actually suffices for the accuracy of the

coreset, and we show in Lemma 5.3.8 the existence of a small family.

Definition 5.3.4. A family of sets I ⊂ 2[d] is called a (j, k, d)-family if for any

J, K ⊂ [d], J ∩K = ∅, |J | = j, |K| = k, there exists an I ∈ I such that I ∩ J = ∅ and

K ⊂ I.

Lemma 5.3.7. Suppose I is a (j, k, d)-family Let X ⊆ Rd
? be a set of j-points, and

for every I ∈ I, let YI be an α-coreset for k-Center on X|I . Then ∪I∈IY −1
I is an

α
√

d-coreset for k-Center on X.

Proof. It suffices to show that for any center set C = {c1, . . . , ck} ⊆ Rd with k points

and x ∈ X, if dist(x, C) ≥ r for some r ≥ 0, then we can find a coreset point

y ∈ ∪I∈IY −1
I such that dist(y, C) ≥ r

α
√

d
.

For i ∈ [k], let ti ∈ arg maxt∈Ix |xt − ci
t|, i.e., ti is the index of coordinate that

contributes the most in distance dist(x, ci), so |xti
− ci

ti
| ≥ r√

d
. Let K be any k-subset

106

such that K ⊆ Ix and {t1, . . . , tk} ⊆ K. Since I is a (j, k, d)-family and |Ix| ≥ d− j,

by definition, there exists an I ⊆ I such that K ⊆ I ⊆ Ix. We note that

dist(x|I , C|I) = distI(x, C) = min
i∈[k]

distI(x, ci) ≥ min
i∈[k]

distK(x, ci) ≥ min
i∈[k]
|xti
− ci

ti
| ≥ r√

d
.

Since I ⊆ Ix, we know that x|I ∈ X|I . As YI is an α-coreset for X|I , we know that

there exists y ∈ Y −1
I such that

dist(y, C) ≥ distI(y, C) = dist(y|I , C|I) ≥ dist(x|I , C|I)
α

≥ r

α
√

d
.

Next, we show the existence of a small (j, k, d)-family. We remark that this

combinatorial structure has been employed in designing fault-tolerant data structures

and algorithms (cf. [101–103]). Similar bounds were obtained in their different contexts

and languages, and here we provide a proof for completeness.

Lemma 5.3.8. There is a (j, k, d)-family I of size O
(︂

(j+k)j+k+1

jjkk log d
)︂
. Moreover,

there is a randomized algorithm that constructs I in time O(d · |I|) with probability at

least 1− 1
dj+k .

Proof. Set t = (j+k)j+k+1

jjkk · 2 log d. We add t random sets into I where each random set

is generated by independently including each element of [d] with probability k
j+k

. For

a set J ⊆ [d], |J | = j and a set K ⊆ [d], |K| = k such that J ∩K = ∅, the probability

that a random set generated in the above way contains K but avoids J , is(︄
j

j + k

)︄j

·
(︄

k

j + k

)︄k

.

Since there are at most dj+k tuples of such J and K, by union bound and the choice

of t, the probability that I is a (j, k, d)-family is at least

1− dj+k

(︄
1− (j

j + k
)j · (k

j + k
)k

)︄t

≥ 1− 1
dj+k

107

Gonzalez’s algorithm yields k-Center coreset for restricted data set. Fi-

nally, the k-Center coreset for the restricted data set on each I ∈ I would be

constructed using an approximate version of Gonzalez’s algorithm [93]. We note that

while Gonzalez’s algorithm was originally designed as an approximation algorithm for

k-Center, the approximate solution actually serves as a good coreset for k-Center

(see Lemma 5.3.9). The assumption that the input forms a metric space is crucial in

Lemma 5.3.9, and this is guaranteed since we run this variant of Gonzalez only on a

restricted data set which satisfies the triangle inequality.

Lemma 5.3.9 (Approximate Gonzalez). Let (M, d) be a metric space. Let A ⊂ M

be a set of n points and consider the following variant of Gonzalez’s greedy algorithm.

Set B = {b0} for an arbitrary b0 ∈ A. Repeat for k times, where each time we add

a c-approximation of B’s furthest point into B. Precisely, add bi ∈ A such that

c · dist(bi, B) ≥ maxa∈A dist(a, B) into B. Then B is a (1 + 2c)-coreset for k-Center

on A.

Proof. Fix a center set C = {c1, . . . , ck} with k points and let r := maxb∈B dist(b, C).

Then we have ⋃︁k
i=1 Ball(ci, r) covers B where Ball(x, r) = {y : dist(x, y) ≤ r} is the

ball centered at x with radius r. It suffices to prove that A ⊆ ⋃︁k
i=1 Ball(ci, (2c + 1)r).

Since k balls B(c1, r), · · · , B(ck, r) cover B and |B| = k+1, by pigeonhole principle,

there exists bi, bj ∈ B, i < j that are contained in a same ball B(ci, r). W.l.o.g., we

assume bi, bj ∈ B(c1, r). Now fix a ∈ A \B, since a has never been added into B, we

have

dist(a, B) ≤ dist(a, {b1, . . . , bj−1})

≤ c · dist(bj, {b1, . . . , bj−1})

≤ c · dist(bi, bj)

≤ c · (dist(bi, c1) + dist(bj, c1))

≤ 2cr.

108

Thus A ⊆ ⋃︁k+1
i=1 Ball(bi, 2cr) ⊆ ⋃︁k

i=1 Ball(ci, (2c + 1)r).

Dynamic implementation of Gonzalez’s algorithm. To make this k-Center

coreset construction dynamic, we adapt the random projection technique to Gonzalez’s

algorithm, so that it suffices to dynamically execute Gonzalez’s algorithm on a set of

one-dimensional lines in Rd.

Random projection. We call a sample from the d-dimensional standard normal

distribution N(0, Id) a d-dimensional random vector for simplicity. To implement (the

variant of) Gonzalez’s algorithm as in Lemma 5.3.9 in the dynamic setting, we project

the point set to several random vectors and use one dimensional data structure to

construct k-Center coreset in each of the one dimensional projected data set.

Note that the key step in Gonzalez’s algorithm is the furthest neighbor search,

and we would show that our projection method eventually yields an O(k
√

log n)-

approximation of the furthest neighbor with high probability. The following two facts

about normal distribution are crucial in our argument, and Lemma 5.3.12 is our main

technical lemma.

Fact 5.3.10. Let u ∈ Rd and let v ∼ N(0, Id) be a random vector, then ⟨u, v/|u|⟩ ∼

N(0, 1).

Fact 5.3.11. Let Z ∼ N(0, 1), then there exists some universal constant c > 0 such

that P [|Z| ≤ 1
k
] ≤ c

k
, and P [|Z| ≥ t] ≤ e−c·t2 for any t > 0.

Lemma 5.3.12. Let X ⊂ Rd, |X| = n and V be a collection of t = O(k log n+log δ−1)

random vectors in Rd, then with probability 1− δ, for every C ⊆ X, |C| ≤ k and every

x ∈ X, there exists a vector v ∈ V such that (i) |x · v − c · v| ≥ Ω(1
k
) · ∥c − x∥2 for

every c ∈ C and (ii) |a · v − b · v| ≤ O(
√

log n) · ∥a− b∥2 for every a, b ∈ X.

Proof. Fix a subset C ⊆ X, |C| ≤ k, a point x and a random vector v. For every c ∈ C,

since (c−x) · v/∥c−x∥2 ∼ N(0, 1), by Fact 5.3.11, the probability that |c · v−x · v| ≥

109

Ω(1
k
) · ∥c−x∥2 is at least 1− 1

4k
. For every a, b ∈ X, since (a−b) ·v/∥a−b∥2 ∼ N(0, 1),

by Fact 5.3.11, the probability that |a · v − b · v| ≤
√

log n∥a− b∥2 is at most 1
4n2 .

Since there are k choices of c ∈ C and at most n2 choices of a, b ∈ X, by union

bound, with probability at least 1− k · 1
4k
−n2 · 1

4n2 = 1
2 , the following two events hold,

(i) |x·v−c·v| ≥ Ω(1
k
)·∥c−x∥2 for every c ∈ C and (ii) |a·v−b·v| ≤ O(

√
log n)·∥a−b∥2

for every a, b ∈ X.

Now since V contains t random vectors, the probability that there exists one vector

v ∈ V that satisfies (i) and (ii) is at least 1− 1
2t .

Finally, by union bound, since there are at most (n+1)k+1 choices of C ⊆ X, |C| = k

and x ∈ X, the probability such that for every C and x, there exists v ∈ V such that

(i) and (ii) happen is at least 1− (n+1)k+1

2t ≥ 1− δ.

In the next lemma, we present a dynamic algorithm that combines the random

projection idea with a one-dimensional data structure. This combining with the

(j, k, d)-family idea would immediately imply Lemma 5.3.6.

Lemma 5.3.13. There is a dynamic algorithm that for every P ⊆ Rm subject to at

most q adaptive point insertions and deletions where the set of points ever added is

fixed in advance, maintains set Q ⊆ P with |Q| ≤ k + 1 such that with probability at

least 1 − δ, Q is an O(k
√

log q)-coreset for k-Center on P after every update, in

time O
(︂
(k2 log q + m)(k log q + log δ−1)

)︂
per update.

Proof of Lemma 5.3.6. The dynamic algorithm is initialized by using Lemma 5.3.8

to construct a (j, k, d)-family I of size O
(︂

(j+k)j+k+1

jjkk log d
)︂
, and then for each I ∈ I,

we create a data structure DI (that maintains X|I), using Lemma 5.3.13 with failure

probability δ := Θ
(︂

1
|I|

)︂
. Upon each update of X, we update each DI , and obtain the

maintained coreset YI from DI .

Analysis. Since we pick δ = Θ
(︂

1
|I|

)︂
for all DI ’s, with constant probability all data

structures DI ’s succeed simultaneously. The running time follows immediately from

110

Lemma 5.3.8 and Lemma 5.3.13. The coreset accuracy follows from Lemma 5.3.7 and

Lemma 5.3.13 (noting that we need to suffer a
√

d factor because of Lemma 5.3.7).

Proof of Lemma 5.3.13. We assume there is a data structure T that maintains a set

of real numbers and supports the following operations, all running in O(log n) time

where n is the number of elements currently present in the structure.

• Remove(x): Remove an element x from the structure.

• Add(x): Add an element x to the structure.

• UpperBound(x): Return the largest element that is at most x.

• LowerBound(x): Return the smallest element that is at least x.

Note that such T may be implemented by using a standard balanced binary tree.

Furthest point query. We also need Furthest(C) query, where C ⊂ R and it asks

for an element x that has the largest distance to C (and it should return an arbitrary

element if C = ∅). This Furthest(C) can be implemented by using O(|C|) many

UpperBound and LowerBound operations, which then takes O(|C| log n) time in

total. To see this, assume C = {c1, . . . , ck} where c1 ≤ . . . ≤ ck then the clusters

partitoned by C is (−∞, 1
2(c1 + c2)], (1

2(c1 + c2), 1
2(c2 + c3)], · · · , (1

2(ck+1 + ck), +∞)

and we can find the potential furthest points in each cluster by querying the following,

UpperBound(−∞), LowerBound
(︃1

2(c1 + c2)
)︃

,

UpperBound
(︃1

2(c1 + c2)
)︂
, LowerBound

(︂1
2(c2 + c3)

)︃
. . .

UpperBound
(︃1

2(ck+1 + ck)
)︃

, LowerBound(+∞)

and the furthest point to C among the above 2k = O(|C|) many points is what we

seek for.

111

The dynamic algorithm is presented in Algorithm 7. The algorithm samples a

set of independent random vectors V (in a data oblivious way), then creates an

above-mentioned interval structure Tv for each v ∈ V . When we insert/delete a point

x, the update is performed on every Tv with the projection ⟨x, v⟩. The coreset for the

current data set P can be computed on the fly by simulating the Gonzalez’s algorithm.

In particular, this is where the Furthest query is used, and we find an approximate

furthest point in P by taking the furthest point in each Tv, and select the one that is

the relative furthest in P .

Algorithm 7 Dynamic Gonzalez’s algorithm
1: procedure Init ▷ initialize an empty structure
2: l← O(k log q+log δ−1), and draw l independent random vectors in Rm, denotes

as V
3: initialize Tv for each v ∈ V
4: end procedure
5: procedure Update(x)
6: insert/delete ⟨x, v⟩ for each v ∈ V
7: end procedure
8: procedure Get-Coreset(k)
9: Q← ∅

10: for i = 1, . . . , k + 1 do
11: for v ∈ V , let xv ∈ P satisfy ⟨xv, v⟩ = Tv.Furthest(⟨Q, v⟩)

▷ where ⟨Q, v⟩ := {⟨x, v⟩ : x ∈ Q}
12: v⋆ ← arg maxv∈V dist(xv, Q)
13: Q← Q ∪ {xv⋆}
14: end for
15: return Q
16: end procedure

Analysis. Let A be the set of points ever added, so |A| ≤ q. Recall that A is

fixed in advance. By applying Lemma 5.3.12 in A, we know that with probability

1− δ, the following event E happens. For every C ⊆ A, |C| ≤ k, every x ∈ A, there

exists v ∈ V , such that

(i) |⟨c− x, v⟩| ≥ Ω(1
k
) · ∥x− c∥2 for every c ∈ C, and

(ii) |⟨a− b, v⟩| ≤ O(
√

log q) · ∥a− b∥2 for every a, b ∈ A.

112

Now condition on E . Suppose the current point set is P . Suppose we run the Get-

Coreset subroutine and we query Tv.Furthest(⟨Q, v⟩) for some v and Q. Suppose

x ∈ P ⊆ A is the current furthest point to Q. Because of E , there exists a vector v ∈ V

such that (i) and (ii) hold. By (i), we have that dist(⟨x, v⟩, ⟨Q, v⟩) ≥ Ω(1
k
) · dist(x, Q).

By (ii), we know that for any p ∈ P and c ∈ Q, |⟨p − c, v⟩| ≤ O(
√

log q)∥p − c∥2,

so dist(⟨p, v⟩, ⟨Q, v⟩) ≤ O(
√

log q) · dist(p, Q). So if Tv.Furthest(⟨Q, v⟩) returns an

answer ⟨p, v⟩, we know that

dist(p, Q) ≥ dist(⟨p, v⟩, ⟨Q, v⟩)
O(
√

log q)
≥ dist(⟨x, v⟩, ⟨Q, v⟩)

O(
√

log q)
≥ Ω

(︄
1

k
√

log q

)︄
· dist(x, Q).

Thus, p is an O(k
√

log q)-approximation of the furthest point to Q. This combining

with Lemma 5.3.9. implies the error bound.

Running time. For the running time, we note that for each update of P , we need

to update Tv for each v ∈ V accordingly. Thus we need to pay O(lm) time (recalling

that l = O(k log q + log δ−1) was defined in Algorithm 7) to compute all the inner

products and O(l log q) time to update all Tv’s. The main loop in Get-Coreset

requires O(kl) many Furthest(·) queries and this runs in O(k2l log q) time in total.

In conclusion, the running time of each update (and maintaining coreset) is bounded

by

O
(︂
(k2 log q + m) · l

)︂
= O

(︂
(k2 log q + m)(k log q + log δ−1)

)︂
.

113

Chapter 6

The Lower Bound

6.1 Coresets for Clustering in Graphs of Bounded
Treewidth

We present an Ω(k
ϵ
· tw(G)) lower bound for clustering in graphs, which matches the

linear dependence on tw(G) of our coreset construction in Chapter 2. Previously, no

lower bounds for k-Median were known. In fact, even the O(log n) factor for general

metrics was not justified. Since our hard instance in Theorem 6.1.1 consists of O(k
ϵ
·2t)

vertices, it readily implies for the first time that the O(log n) factor is optimal for

general metrics (see Corollary 6.1.5).

Our lower bound is actually split into two theorems: one for the tree case (tw(G) =

1) and one for the other cases (tw(G) ≥ 2). Ideally, we would use a unified argument,

but unfortunately the general argument for tw(G) ≥ 2 does not apply in the special

case tw(G) = 1 because some quantity is not well defined, and we thus need to employ

a somewhat different argument for the tree case.

Theorem 6.1.1 (Lower Bound for Graphs with Treewidth ≥ 2). For every 0 < ϵ < 1

and integers t, k ≥ 1, there exists an unweighted graph G = (V, E) with tw(G) ≤ t + 1,

such that any ϵ-coreset for k-Median on data set X = V has size Ω(k
ϵ
· t).

Proof. The vertex set of Gk,ϵ is defined as L ∪ R ∪ {u0}. Let m := k
ϵ
. Both L

114

and R consist of m groups, i.e. L := ⋃︁m
i=1 Li and R := ⋃︁m

i=1 Ri. For i ∈ [m], Li

consists of t elements, and Ri consists of 2t elements. Let Li := {l(i)
j : j ∈ [t]}, and

Ri := {r(i)
J : J ⊆ [t]}. Since t ≥ 1, L is non-empty. Define a special connection point

u0 to which all points of L∪R connect to (the specific way of connection is defined in

the next paragraph).

The edge set is defined as follows. All edges are of weights 1. Connect all points

in L∪R to u0. For each i ∈ [m], for each l
(i)
j ∈ Li and r

(i)
J ∈ Ri, if j ∈ J , add an edge

{l(i)
j , r

(i)
J }. Finally, let T = Ω(m

k
· 2t), and make T − 1 copies of each point in L, which

we call shadow vertices: for each l
(i)
j , create T − 1 vertices, and connect them to l

(i)
j

directly (so they form a star with center l
(i)
j).

Fact 6.1.2. All distances in Gk,ϵ are 2, except that the distances between Li and Ri

(i ∈ [m]) are 1.

For simplicity, we use G to represent Gk,ϵ in the following.

Treewidth Analysis: First, consider removing u0 from G, and define the resultant

graph as G′. Then tw(G) ≤ tw(G′) + 1. Observe that G′ has m components:

{Li ∪ Ri : i ∈ [m]}, so it suffices to bound the treewidth for each component. For

each such component, since removing Li makes all points in the component isolated,

we conclude that the treewidth of the component is at most |Li| = t. Therefore, we

conclude that tw(G) ≤ t + 1.

Error Analysis: Suppose D ⊆ V (with weight w) is an O(ϵ)-coreset of size o(k
ϵ
·t).

By manipulating the weight w, we assume w.l.o.g. that D does not contain the shadow

vertices. Pick any k-subset S ⊆ [m], such that for every i ∈ S, |D ∩ Li| ≤ t
2 and

|D∩Ri| ≤ t
2 . Such S must exist, since otherwise there would be m−k = Ω(k

ϵ
) number

of i’s, such that |D ∩ Li|+ |D ∩Ri| > t
2 , which contradicts |D| = o(k

ϵ
· t).

We would then pick two subsets Pi, Qi ⊆ [t] for each i ∈ S, which correspond to

two points in Ri and encode two subsets of Li, as in the following claim.

115

Claim 6.1.3. For each i ∈ S, there exists Pi, Qi ⊆ [t], such that

1. If l
(i)
j ∈ D ∩ Li, then j ∈ Pi and j ∈ Qi.

2. If r
(i)
J ∈ D ∩Ri, then J ̸= Pi and J ̸= Qi.

3. |Pi| ≤ |D ∩ Li|+ O(1), and |Qi| ≥ t−O(1).

Proof. Suppose D∩Ri = {r(i)
J1 , . . . , r

(i)
Js
}, and let J = {J1, . . . , Js}. Find the minimum

cardinality Pi such that item 1 and 2 holds: this is equivalent to find the smallest

P ′, such that (D ∩ Li) ∪ P ′ /∈ J . Such P ′ may be found in a greedy way: try

out all 0-subsets, 1-subsets, . . . , until (D ∩ Li) ∩ P ′ /∈ J . Since |D ∩ Ri| ≤ t
2 and

|D∩Li| ≤ t
2 , such greedy procedure must end after trying out O(1)-subsets and hence

|Pi| ≤ |D ∩ Li|+ O(1).

Let Qi denote the set with the maximum cardinality such that item 1 and 2 holds.

By a similar argument, we can prove that |Qi| ≥ t−O(1).

Based on this claim, we define C1 := {r(i)
Pi

: i ∈ S}, and C2 := {r(i)
Qi

: i ∈ S}.

Observe that the cost on both C1 and C2 are the same on the coreset D (by item 1).

However, the objective on C1 and C2 differ by an Ω(ϵ) factor (where we use item 2

and 3). To see it,

cost(V, C1) = 2⏞⏟⏟⏞
u0

+ 2(m− k) · T · t⏞ ⏟⏟ ⏞
cost of L \ Li

+ 2(m · 2t − k)⏞ ⏟⏟ ⏞
cost of R

+ T ·
∑︂
i∈S

2(t− |Pi|) + |Pi|⏞ ⏟⏟ ⏞
cost of Li

=2 + 2(m− k) · T · t + 2(m · 2t − k) + 2ktT − (2− 1)T ·
∑︂
i∈S

|Pi|

≥2 + 2(m− k) · T · t + 2(m · 2t − k) + 2ktT − kT · (t

2 + O(1)).

Similarly,

cost(V, C2) =2 + 2(m− k) · T · t + 2(m · 2t − k) + T ·
∑︂
i∈S

2(t− |Qi|) + |Qi|

≤2 + 2(m− k) · T · t + 2(m · 2t − k) + 2ktT − kT · (t−O(1))

116

So,

cost(V, C1)
cost(V, C2)

≥ 1 +
kT · (t

2 −O(1))
2 + 2(m− k) · T · t + 2(m · 2t − k) + 2ktT − kT · (t−O(1))

≥ 1 + Ω(ϵ)

where the last inequality is by m = k
ϵ

and T = Ω(m
k
· 2t). This contradicts the fact

that D is an O(ϵ)-coreset.

Then we prove for the special case with treewidth 1, which is the tree case.

Theorem 6.1.4 (Lower Bound for Star Graphs). For every 0 < ϵ < 1/3 and integer

k ≥ 1, there exists an (unweighted) start graph G = (V, E) with |V | = O(k
ϵ
) such that

any ϵ-coreset for k-Median on data set X = V has size Ω(k
ϵ
).

Proof. Denote the root node of the star graph G = (V, E) by r and leaf nodes by

x1, . . . , xn (n ≥ 100k
ϵ

). Suppose D ⊆ V (with weight w) is an ϵ-coreset of size o(k
ϵ
).

Let W = ∑︁
x∈D\{r} w(x). Consider a k-center set where all centers are on r. We have

that

W =
∑︂
x∈D

w(x) · d(x, r) ≥ (1− ϵ) · cost(X, r) = (1− ϵ) · n, (6.1)

where the inequality is from the fact that D is an ϵ-coreset.

Next, we construct two center sets C1 and C2. Let C1 ⊆ V \ (D ∪ {r}) be a

collection of k distinct leaf nodes that are not in D. Let C2 be the collection of k

nodes in D \ {r} with largest weights. By construction, we have that

W ′ =
∑︂

x∈C2

w(x) ≥ kW

|D|
≥ 100ϵW ≥ 50ϵn, (6.2)

where the last inequality is by Inequality (6.1). Moreover, since D is an ϵ-coreset, we

have that

2W + w(r) = cost(D, C1) ≤ (1 + ϵ) · cost(V, C1) ≤ 2 · (2n + 1). (6.3)

117

By symmetry, cost(V, C1) = cost(V, C2). Then by the definition of coreset, we have

cost(D, C1)
cost(D, C2)

= 2W + w(r)
2(W −W ′) + w(r) ≤

1 + ϵ

1− ϵ
.

However, by Inequalities (6.2) and (6.3), we have

2W + w(r)
2(W −W ′) + w(r) ≥

2W + w(r)
2W + w(r)− 50 · 2ϵn

(Ineq. (6.2))

≥ 2 · (2n + 1)
2 · (2n + 1)− 100ϵn

(Ineq. (6.3))

>
1 + ϵ

1− ϵ
,

which is a contradiction. This completes the proof.

Combining Theorems 6.1.4 and 6.1.1, we obtain a lower bound of Ω(k
ϵ
· tw(G)) for

the coreset size. Moreover, we observe that the hard instance in Theorem 6.1.1 has

O(2t) nodes, which in fact implies an Ω(log n) size lower bound for general graphs.

We state this corollary as follows.

Corollary 6.1.5. For every 0 < ϵ < 1 and integers n, k ≥ 1, there exists an unweighted

graph G = (V, E) with |V | = O(n) such that any ϵ-coreset for k-Median on data set

X = V has size Ω(k
ϵ
· log n).

6.2 Coresets for Ordered Weighted Clustering

In this section we show that the size of a simultaneous coreset for Ordered k-Median,

and in fact even for the special case p-Centrum, must grow with n, even for k = d = 1.

More precisely, we show that it must depend at least logarithmically on n, and therefore

our upper bound in Theorem 4.4.6 is nearly tight with respect to n.

Theorem 6.2.1. For every (sufficiently large) integer n and every n−1/3 < ϵ < 1/2,

there exists an n-point set X ⊂ R, such that any simultaneous ϵ-coreset of X for

p-Centrum with k = 1 has size Ω(ϵ−1/2 log n).

118

While a simultaneous coreset preserves the objective value for all possible centers

(in addition to all p ∈ [n]), our proof shows that even one specific center already

requires Ω(log n) size. Our proof strategy is as follows. Suppose D is a simultaneous

ϵ-coreset for Ordered k-Median on X ⊂ R with k = 1, and let c ∈ R be some center

to be picked later. Since D is a simultaneous coreset for Ordered k-Median, it is in

particular a coreset for p-Centrum problems for all p ∈ [n]. Let WX(p) := costp(X, c)

be the cost as a function of p, and let WD(p) be similarly for the coreset D, when we

view X, D and the center c as fixed. It is easy to verify that WD(·) is a piece-wise

linear function with only O(|D|) pieces. Now since D is a simultaneous ϵ-coreset, the

function WD(·) has to approximate WX(·) in the entire range, and it would suffice to

find an instance X and a center c for which WX(p) cannot be approximated well by a

few linear pieces. (Note that this argument never examines the coreset D explicitly.)

The detailed proof follows.

Proof. Throughout, let F (x) :=
√

x. Now consider the point set X := {x1, x2, . . . , xn} ⊂

R, defined by its prefix-sums ∑︁j∈[i] xj = F (i) (for all i ∈ [n]). It is easy to see that

1 = x1 > x2 > · · · > xn > 0. Fix center c := 0 and consider a simultaneous ϵ-

coreset D of size |D|. Since D is a simultaneous coreset for Ordered k-Median,

WD(p) ∈ (1± ϵ) ·WX(p) for all p ∈ [n], where by definition WX(p) = F (p).

We will need the following claim, which shows that each linear piece in WD(·)

(denote here by g) cannot be too “long”, as otherwise the relative error exceeds ϵ. We

shall use the notation [a..b] = {a, a + 1, . . . , b} for two integers a ≤ b.

Claim 6.2.2. Let F be as above and let g : R → R be a linear function. Then for

every two integers a ≥ 1 and b ≥ (1 + 1
ϵ
)2 satisfying b

a
≥ (1 + 12

√
ϵ)4, there exists an

integer p ∈ [a..b] such that g(p) /∈ (1± ϵ) · F (p).

Proof. We may assume both g(a) ∈ (1± ϵ) ·F (a) and g(b) ∈ (1± ϵ) ·F (b), as otherwise

the claim is already proved. Since g is linear, it is given by g(x) = k(x− a) + g(a),

119

where k := g(b)−g(a)
b−a

. Let ˆ︁p := ⌊
√

ab⌋. Observe that ˆ︁p ∈ [a..b], thus it suffices to prove

that

g(ˆ︁p)
F (ˆ︁p) < 1− ϵ.

The intuition of picking ˆ︁p = ⌊
√

ab⌋ is that x =
√

ab maximizes F (x)ˆ︁g(x) , where ˆ︁g(x)

is the linear function passing through (a, F (a)) and (b, F (b)), and we know that this

ˆ︁g(x) should be “close” to g as g(a) ∈ (1± ϵ) · F (a) and g(b) ∈ (1± ϵ) · F (b). (Notice

that since F is concave, ˆ︁g(x) ≤ F (x) for all x ∈ [a, b].)

To analyze this more formally,

g(ˆ︁p) = g(b)− g(a)
b− a

(⌊
√

ab⌋ − a) + g(a)

= (⌊
√

ab⌋ − a) · g(b) + (b− ⌊
√

ab⌋) · g(a)
b− a

∈ (1± ϵ) · (⌊
√

ab⌋ − a)
√

b + (b− ⌊
√

ab⌋)
√

a

b− a

= (1± ϵ) · ⌊
√

ab⌋+
√

ab
√

a +
√

b
.

Therefore,

0 <
g(ˆ︁p)
F (ˆ︁p) ≤ (1 + ϵ) · ⌊

√
ab⌋+

√
ab

(
√

a +
√

b) ·
√︂
⌊
√

ab⌋
.

To simplify notation, let t :=
(︂

b
a

)︂1/4
and s :=

(︃
⌊
√

ab⌋√
ab

)︃1/2
. By simple calculations, our

assumptions b
a
≥ (1+12

√
ϵ)4 and b ≥ (1+ 1

ϵ
)2 imply the following facts: t+t−1 ≥ 2+11ϵ

and 1
1+ϵ
≤ s ≤ 1. And now we have

(1 + ϵ) · ⌊
√

ab⌋+
√

ab

(
√

a +
√

b) ·
√︂
⌊
√

ab⌋
= (1 + ϵ) · s + s−1

t + t−1

≤ (1 + ϵ)(2 + ϵ)
2 + 11ϵ

< 1− ϵ.

Altogether, we obtain 0 < g(ˆ︁p)
F (ˆ︁p) < 1− ϵ, which completes the proof of Claim 6.2.2.

120

We proceed with the proof of Theorem 6.2.1. Recall that WD(p) is the sum of

the p largest distances from points in D to c, when multiplicities are taken into

account. Thus, if the p-th largest distance for all p ∈ [a..b] arise from the same point

of D (with appropriate multiplicity), then WD(p)−WD(p− 1) is just that distance,

regardless of p, which means that WD(p) is linear in this range. It follows that WD(p)

is piece-wise linear with at most |D| pieces. By Claim 6.2.2 and the error bound of

the coreset, if a linear piece of WD(p) spans p = [a..b] where (1 + 1
ϵ
)2 ≤ b ≤ n, then

b ≤ (1 + 12
√

ϵ)4 ·a ≤ (1 + O(
√

ϵ)) ·a. Since all the linear pieces span together all of [n],

we conclude that |D| = Ω
(︂
log1+O(

√
ϵ)(ϵ2n)

)︂
= Ω

(︂
log n√

ϵ

)︂
and proves Theorem 6.2.1.

6.3 Coresets for Clustering with Missing Values

Recall that in Chapter 5, we design a coreset of size (jk)O(min(j,k)) poly(ϵ−1d log n) for

k-Means with missing values. In this Chapter, we prove the following lower bound

to assert the necessity of the exponential dependence on min(j, k).

Theorem 6.3.1. Consider the k-Means with missing values problem in Rd where

each point can have at most j missing coordinates. Assume there is an algorithm

that constructs an ϵ-coreset of size f(j, k) · poly(ϵ−1d log n), then f(j, k) can not be as

small as 2o(min(j,k)).

Proof. Consider the following n points instance with j = k = Θ(log n), and d = 2j.

For a subset I of [d], we define a data point p(I) such that p(I)i = 1 if i ∈ I and

p(I)i =? otherwise. Then we let the data set P = {p(I)|I ⊆ [d], |I| = j}. We remark

that we can make |P | =
(︂

d
j

)︂
= n by choosing a proper j = Θ(log n).

We prove that any 1/2-coreset of P should contain every point in P . Let D be

such a coreset and assume p(I) ̸∈ D, we choose the following k = j centers. For

every i ∈ I, we define a center ci ∈ Rd such that the i-th coordinate of ci is 0 and

the other coordinates of ci are 1. We observe that, for any i ∈ I, dist(p(I), ci) = 1.

121

Meanwhile for any other p(I ′) ̸= p(I), there must be a i′ ∈ I \ I ′ since |I| = |I ′|, thus

dist(p(I ′), ci′) = 0. This should imply that the cost on coreset is 0 while the cost on

P is 1 which makes a contradiction.

Since j = k = Θ(log n), d = 2j, we have 2o(min(j,k)) · poly(d log n) = o(n). Thus

f(j, k) can not be as small as 2o(min(j,k)).

6.4 Coresets for Clustering in Euclidean Space

We prove the following lower bound for coresets in Euclidean space. While this lower

bound still has a gap of at least 1√
ϵ

from the known upper bounds, it is in fact the

first nontrivial lower bound for the Euclidean setting.

Theorem 6.4.1 (Lower Bound for 1D Lines). For every 0 < ϵ < 1/24 and integer

k ≥ 1, there exists a set of data points V ⊆ R, such that every ϵ-coreset for k-Median

of V has size Ω(k√
ϵ
), even if the coreset may use any point in R.

We first introduce our technical Lemma 6.4.2, which shows a quadratic function

cannot be approximated by an affine linear function in a short interval.

Lemma 6.4.2. Let ϵ ∈ (0, 1/12) and 1/2 ≤ p ≤ q ≤ 1. Suppose f(x) = ax2 + b where

a > 0, b, g(x) is a non-negative linear function on [p, q], and g(x) ∈ (1± ϵ)f(x) for

every x ∈ [p, q], then q ≤ p +
√︂

24(b/a + 1)ϵ.

Proof. Since g(x) is non-negative and g(x) ∈ (1 ± ϵ)f(x),∀x ∈ [p, q], we have that∫︁ q
p g(x)dx ∈ (1± ϵ)

∫︁ q
p f(x)dx. By computation,

∫︁ q
p f(x)dx =

∫︁ q
p (ax2 + b)dx = a(q3−p3)

3 +

b(q − p). Since g(x) is linear,
∫︁ q

p g(x)dx = (g(p) + g(q))(q − p)/2. By the fact that

g(x) ∈ (1±ϵ)f(x) = (1±ϵ)(ax2+b), we have
∫︁ b

a g(x)dx ∈ (1±ϵ)(ap2+aq2+2b)(q−p)/2.

But
∫︁ b

a g(x)dx ≤ (1 + ϵ)
∫︁ b

a (ax2 + b)dx = (1 + ϵ)(a(q3 − p3)/3 + b(q − p)), so we have

that,

122

a(q3 − p3)/3 + b(q − p)
(ap2 + aq2 + 2b)(q − p)/2 ≥

1− ϵ

1 + ϵ
≥ 1− 2ϵ.

So we have p2 + q2 − 2pq
1−6ϵ
− 12bϵ

(1−6ϵ)a ≤ 0. Since 1
2 ≤ p ≤ q ≤ 1 and 0 < ϵ < 1/12,

we have that

(q − p)2 ≤ 12bϵ

(1− 6ϵ)a + 12ϵpq

1− 6ϵ
≤ 24(b/a + 1)ϵ

which implies q ≤ p +
√︂

24(b/a + 1)ϵ.

Now we are ready to prove Theorem 6.4.1.

Proof of Theorem 6.4.1. We first prove the basic case k = 1. Without loss of generality,

we can assume V = [−1, 1].1 Let f(x) := cost(V, {x}) =
∫︁

V ∥t− x∥dt denote the cost

of connecting V to x ∈ R (the 1-Median value). Note that f(x) = x2 + 1 on [−1, 1].

Assume D is an ϵ-coreset of V for the 1-median problem. Recall that D is a weighted

set and may contain the ambient points of the real line. Let g(x) := cost(D, {x}).

Then g(x) is a piecewise linear function and the transition from one affine linear

function to another happens only when x crosses a coreset point. So the number of

pieces is at most |D|+ 1. We need to prove g(x) has at least Ω(1√
ϵ
) pieces.

Since D is an ϵ-coreset of V , we have that g(x) ∈ (1± ϵ)f(x) for every x ∈ [−1, 1].

Assume g(x) has m pieces in [1/2, 1] and their connecting points are x0 = 1/2 < x1 <

... < xm = 1. Then g(x) is affine linear in [xi−1, xi] but g(x) ∈ (1 ± ϵ)f(x), so by

Lemma 6.4.2, xi < xi−1 +
√︂

24(1/1 + 1)ϵ < xi−1 + 7
√

ϵ. So m ≥ 1/2
7
√

ϵ
= 1

14
√

ϵ
.

Now we consider the case of general k. We put k copies of [−1, 1] in the real line.

In particular, we let Vi = [−1+ (i−1)t, 1+ (i−1)t] for a large enough positive number

t > 39√
ϵ

and V = ∪k
i=1Vi. Let Si = [1/2 + (i− 1)t, 1 + (i− 1)t] be a subset of Vi. We

partition each Si into m = Θ(1/
√

ϵ) intervals Si1, ..., Sim, such that each of them has

length 13
√

ϵ.
1For discretization, we can let V = {0,± 1

m , ...,±1} for large enough m.

123

Now, for the sake of contradiction, we assume there is an ϵ-coreset D of V for the

k-median problem, such that |D| < mk/2. By averaging, we know that there is a

j∗ ∈ [k] such that ∪k
i=1Sij∗ contains at most k/2 points of D. Let b = |D ∩ (∪k

i=1Sij∗)|

in the following, then b < k/2. So there are k − b > k/2 many i ∈ [k] such that Sij∗

doesn’t contain any coreset point. We assume S0j∗ = [a0, b0] and let x be a variable

in [a0, b0]. We construct the following set of centers Cx = {xi : i ∈ [k]} where if

Sij∗ ∩D ̸= ∅, xi = x + (i− 1)t, otherwise xi = (i− 1)t.

Let f(x) = cost(V, Cx), then f(x) = b + (k − b)(x2 + 1) = (k − b)x2 + k. We note

that k ≤ f(x) ≤ 2k on [a0, b0]. Let Di = D∩ [(i− 4/3)t, (i− 2/3)t], D′ = ∪i∈[k]Di and

D′′ = D\D′. We first claim that |cost(D′′, Cx)−cost(D′′, Ca0)| ≤ O(
√

ϵk/t). Actually,

note that when x ∈ [a0, b0], the connection cost of points in D′′ is always Ω(t), along

with the fact that when x ∈ [a0, b0], cost(D′′, Cx) ≤ cost(D, Cx) ≤ (1+ϵ)cost(V, Cx) ≤

3k, we know that the total weight of D′′ is at most 3k/t. Now, since x changes by at

most 13
√

ϵ, the connection cost of every point in D′′ changes by at most 13
√

ϵ, so we

have

|cost(D′′, Cx)− cost(D′′, Ca0)| ≤ 39
√

ϵk

t
.

Let g(x) = cost(D′, Cx) + cost(D′′, Ca0). Since t > 39√
ϵ

and f(x) ≥ k for every

x ∈ [a0, b0], we conclude that when x ∈ [a0, b0],

|g(x)− cost(D, Cx)| = |cost(D′′, Ca0)− cost(D′′, Cx)| ≤ 39
√

ϵk

t
≤ ϵf(x).

But cost(D, Cx) ∈ (1 ± ϵ)f(x) on [a0, b0], so we have that g(x) ∈ (1 ± 2ϵ)f(x) on

[a0, b0].

Now we show that g(x) is an affine linear function in [a0, b0]. We note that

D′ = ∪i∈[k]Di and cost(Di, Cx) = cost(Di, {xi}) for any x ∈ [a0, b0]. If xi = x+(i−1)t

then by construction, xi never crosses any coreset point in Di, so cost(Di, {xi}) remains

affine linear. On the other hand, if xi = (i−1)t, then cost(Di, {xi}) is a constant. So we

know that g(x) = cost(D′, Cx) + cost(D′′, Ca0) = ∑︁
i∈[k] cost(Di, {xi}) + cost(D′′, Ca0)

124

is an affine linear function on [a0, b0]. But g(x) ∈ (1± 2ϵ)f(x) on [a0, b0], by Lemma

6.4.2, we know that the length of [a0, b0] is at most
√︂

24(k
k−b

+ 1) · 2ϵ ≤
√

144ϵ = 12
√

ϵ,

arriving at a contradiction.

125

Conclusions

Coresets are important data reduction tools for clustering problems. Coresets for

clustering have received great attentions from big data algorithm and machine learning

algorithm research community. In this dissertation, we make various contributions to

this line of research.

We make contributions to a fundamental question on what kind of metric space

admit constant-sized coresets, by constructing such coresets in bounded treewidth

graph and the more general excluded-minor graph.

Moreover, we resolve new challenges appearing in modern application scenario

of coresets. In particular, we have designed simultaneous coresets and coresets for

clustering with missing values.

We also provide various lower bounds to support our upper bound results.

126

References

1. Marom, Y. & Feldman, D. k-Means Clustering of Lines for Big Data in NeurIPS
(2019), 12797–12806.

2. Eiben, E. et al. EPTAS for k-means Clustering of Affine Subspaces in SODA (SIAM,
2021), 2649–2659.

3. Har-Peled, S. & Mazumdar, S. On coresets for k-means and k-median clustering in
36th Annual ACM Symposium on Theory of Computing, (2004), 291–300.

4. Agarwal, P. K., Har-Peled, S. & Varadarajan, K. R. Approximating Extent Measures
of Points. J. ACM 51, 606–635 (July 2004).

5. Fichtenberger, H., Gillé, M., Schmidt, M., Schwiegelshohn, C. & Sohler, C. BICO:
BIRCH Meets Coresets for k-Means Clustering in ESA 8125 (Springer, 2013), 481–
492.

6. Balcan, M.-F. F., Ehrlich, S. & Liang, Y. Distributed k-means and k-median Clustering
on General Topologies in NIPS (2013), 1995–2003.

7. Huang, L., Jiang, S. H.-C., Li, J. & Wu, X. Epsilon-coresets for clustering (with
outliers) in doubling metrics in 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS) (2018), 814–825.

8. Friggstad, Z., Rezapour, M. & Salavatipour, M. R. Local Search Yields a PTAS for
k-Means in Doubling Metrics. SIAM J. Comput. 48, 452–480 (2019).

9. Phillips, J. M. Coresets and Sketches. CoRR abs/1601.00617. arXiv: 1601.00617
(2016).

10. Munteanu, A. & Schwiegelshohn, C. Coresets-Methods and History: A Theoreticians
Design Pattern for Approximation and Streaming Algorithms. KI 32, 37–53 (2018).

11. Feldman, D. Core-sets: An updated survey. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 10 (2020).

12. Har-Peled, S. & Kushal, A. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry 37, 3–19 (2007).

13. Feldman, D. & Langberg, M. A unified framework for approximating and clustering
data in STOC https://arxiv.org/abs/1106.1379 (ACM, 2011), 569–578.

14. Sohler, C. & Woodruff, D. P. Strong Coresets for k-Median and Subspace Approxima-
tion: Goodbye Dimension in FOCS (IEEE Computer Society, 2018), 802–813.

15. Huang, L. & Vishnoi, N. K. Coresets for clustering in euclidean spaces: Importance
sampling is nearly optimal in Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing (2020), 1416–1429.

127

https://arxiv.org/abs/1601.00617
https://arxiv.org/abs/1106.1379

16. Baker, D. et al. Coresets for clustering in graphs of bounded treewidth in International
Conference on Machine Learning (2020), 569–579.

17. Braverman, V., Jiang, S. H.-C., Krauthgamer, R. & Wu, X. Coresets for Clustering
in Excluded-minor Graphs and Beyond in SODA (SIAM, 2021), 2679–2696.

18. Braverman, V., Jiang, S. H.-C., Krauthgamer, R. & Wu, X. Coresets for ordered
weighted clustering in International Conference on Machine Learning (2019), 744–753.

19. Braverman, V., Jiang, S. H.-C., Krauthgamer, R. & Wu, X. Coresets for Clustering
with Missing Values. arXiv preprint arXiv:2106.16112 (2021).

20. Langberg, M. & Schulman, L. J. Universal epsilon-approximators for Integrals in
SODA (SIAM, 2010), 598–607.

21. Huang, L. & Vishnoi, N. K. Coresets for clustering in Euclidean spaces: importance
sampling is nearly optimal in STOC (ACM, 2020), 1416–1429.

22. Bachem, O., Lucic, M. & Lattanzi, S. One-shot coresets: The case of k-clustering in
International conference on artificial intelligence and statistics (2018), 784–792.

23. Fortunato, S. Community detection in graphs. Physics reports 486, 75–174 (2010).
24. Herman, I., Melançon, G. & Marshall, M. S. Graph Visualization and Navigation

in Information Visualization: A Survey. IEEE Trans. Vis. Comput. Graph. 6, 24–43
(2000).

25. Shekhar, S. & Liu, D.-R. CCAM: A Connectivity-Clustered Access Method for
Networks and Network Computations. IEEE Trans. Knowl. Data Eng. 9, 102–119
(1997).

26. Yiu, M. L. & Mamoulis, N. Clustering Objects on a Spatial Network in SIGMOD
Conference (ACM, 2004), 443–454.

27. Rattigan, M. J., Maier, M. & Jensen, D. Graph clustering with network structure
indices in Proceedings of the 24th international conference on Machine learning (2007),
783–790.

28. Cui, W., Zhou, H., Qu, H., Wong, P. C. & Li, X. Geometry-based edge clustering for
graph visualization. IEEE Transactions on Visualization and Computer Graphics 14,
1277–1284 (2008).

29. Tansel, B. C., Francis, R. L. & Lowe, T. J. State of the art—location on networks: a
survey, Part I and II. Management Science 29, 482–497 (1983).

30. Chen, K. On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM Journal on Computing 39, 923–947 (2009).

31. Robertson, N. & Seymour, P. D. Graph minors. II. Algorithmic aspects of tree-width.
Journal of algorithms 7, 309–322 (1986).

32. Kloks, T. Treewidth: computations and approximations (Springer Science & Business
Media, 1994).

33. Maniu, S., Senellart, P. & Jog, S. An Experimental Study of the Treewidth of Real-
World Graph Data in ICDT 127 (Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019), 12:1–12:18.

34. Bousquet, N. & Thomassé, S. VC-dimension and Erdős–Pósa property. Discrete
Mathematics 338, 2302–2317 (2015).

128

35. Jain, K., Mahdian, M. & Saberi, A. A new greedy approach for facility location
problems in STOC (ACM, 2002), 731–740.

36. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A. & Trinh, K. An Improved Approxi-
mation for k-Median and Positive Correlation in Budgeted Optimization. ACM Trans.
Algorithms 13, 23:1–23:31 (2017).

37. Cohen-Addad, V., Klein, P. N. & Mathieu, C. Local Search Yields Approximation
Schemes for k-Means and k-Median in Euclidean and Minor-Free Metrics. SIAM J.
Comput. 48, 644–667 (2019).

38. Cohen-Addad, V., Pilipczuk, M. & Pilipczuk, M. Efficient Approximation Schemes for
Uniform-Cost Clustering Problems in Planar Graphs in ESA 144 (Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019), 33:1–33:14.

39. Thorup, M. Quick k-Median, k-Center, and Facility Location for Sparse Graphs.
SIAM J. Comput. 34, 405–432 (2005).

40. Kearns, M. J. & Vazirani, U. V. An introduction to computational learning theory
(MIT press, 1994).

41. Feldman, D., Schmidt, M. & Sohler, C. Turning Big Data Into Tiny Data: Constant-
Size Coresets for k-Means, PCA, and Projective Clustering. SIAM J. Comput. 49,
601–657 (2020).

42. Varadarajan, K. R. & Xiao, X. On the Sensitivity of Shape Fitting Problems in
FSTTCS 18 (Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012), 486–497.

43. Sack, J. & Urrutia, J. Handbook of Computational Geometry (Elsevier, 1999).
44. Cohen-Addad, V., Klein, P. N. & Mathieu, C. Local search yields approximation

schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM Journal
on Computing 48, 644–667 (2019).

45. Li, M., Miller, G. L. & Peng, R. Iterative Row Sampling in FOCS (IEEE Computer
Society, 2013), 127–136.

46. Clarkson, K. L. & Woodruff, D. P. Sketching for M -Estimators: A Unified Approach
to Robust Regression in SODA (SIAM, 2015), 921–939.

47. Munteanu, A., Schwiegelshohn, C., Sohler, C. & Woodruff, D. P. On Coresets for
Logistic Regression in NeurIPS (2018), 6562–6571.

48. Braverman, V., Feldman, D. & Lang, H. New Frameworks for Offline and Streaming
Coreset Constructions. CoRR abs/1612.00889. eprint: 1612.00889 (2016).

49. Narayanan, S. & Nelson, J. Optimal terminal dimensionality reduction in Euclidean
space in STOC (ACM, 2019), 1064–1069.

50. Thorup, M. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51, 993–1024 (2004).

51. Abraham, I. & Gavoille, C. Object location using path separators in PODC (ACM,
2006), 188–197.

52. Johnson, W. B. & Lindenstrauss, J. in Conference in modern analysis and probability
(New Haven, Conn., 1982) 189–206 (Amer. Math. Soc., 1984).

129

1612.00889

53. Cohen, M. B., Elder, S., Musco, C., Musco, C. & Persu, M. Dimensionality reduction
for k-means clustering and low rank approximation in Proceedings of the forty-seventh
annual ACM symposium on Theory of computing (2015), 163–172.

54. Becchetti, L., Bury, M., Cohen-Addad, V., Grandoni, F. & Schwiegelshohn, C. Oblivi-
ous dimension reduction for k-means: beyond subspaces and the Johnson-Lindenstrauss
lemma in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (2019), 1039–1050.

55. Makarychev, K., Makarychev, Y. & Razenshteyn, I. Performance of Johnson-Lindenstrauss
transform for k-means and k-medians clustering in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (2019), 1027–1038.

56. Har-Peled, S. On Complexity, Sampling, and ϵ-Nets and ϵ-Samples (American Mathe-
matical Soc., 2011).

57. Vapnik, V. N. & Chervonenkis, A. Y. On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities. Theory of Probability and its Applications
16, 264–280 (1971).

58. Mettu, R. R. & Plaxton, C. G. Optimal Time Bounds for Approximate Clustering.
Mach. Learn. 56, 35–60 (2004).

59. Jain, K. & Vazirani, V. V. Approximation algorithms for metric facility location and
k-Median problems using the primal-dual schema and Lagrangian relaxation. J. ACM
48, 274–296 (2001).

60. Eisenstat, D., Klein, P. N. & Mathieu, C. Approximating k-center in planar graphs in
SODA (SIAM, 2014), 617–627.

61. Klein, P. & Mozes, S. Optimization Algorithms for Planar Graphs Book draft, http:
//www.planarity.org. 2012.

62. Chierichetti, F., Kumar, R., Lattanzi, S. & Vassilvitskii, S. Fair Clustering Through
Fairlets in NIPS (2017), 5036–5044.

63. Chandola, V., Banerjee, A. & Kumar, V. Anomaly detection: A survey. ACM Comput.
Surv. 41, 15:1–15:58 (2009).

64. Yager, R. R. On Ordered Weighted Averaging Aggregation Operators in Multicriteria
Decisionmaking. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988).

65. Agarwal, P. K. & Procopiuc, C. M. Exact and Approximation Algorithms for Cluster-
ing. Algorithmica 33, 201–226 (2002).

66. Megiddo, N. & Supowit, K. On the Complexity of Some Common Geometric Location
Problems. SIAM Journal on Computing 13, 182–196 (1984).

67. Tamir, A. The k-centrum multi-facility location problem. Discrete Applied Mathematics
109, 293–307 (2001).

68. Aouad, A. & Segev, D. The ordered k-median problem: surrogate models and approx-
imation algorithms. Mathematical Programming, 1–29 (2018).

69. Byrka, J., Sornat, K. & Spoerhase, J. Constant-factor approximation for ordered
k-median in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (2018), 620–631.

130

http://www.planarity.org
http://www.planarity.org

70. Chakrabarty, D. & Swamy, C. Interpolating between k-Median and k-Center: Ap-
proximation Algorithms for Ordered k-Median in 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018) 107 (Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018), 29:1–29:14.

71. Chakrabarty, D. & Swamy, C. Approximation Algorithms for Minimum Norm and
Ordered Optimization Problems. CoRR abs/1811.05022. arXiv: 1811.05022 (2018).

72. Allison, P. D. Missing data (Sage publications, 2001).
73. Little, R. J. & Rubin, D. B. Statistical analysis with missing data (John Wiley &

Sons, 2019).
74. Hathaway, R. J. & Bezdek, J. C. Fuzzy c-means clustering of incomplete data. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 31, 735–744
(2001).

75. Wagstaff, K. in Classification, clustering, and data mining applications 649–658
(Springer, 2004).

76. Chi, J. T., Chi, E. C. & Baraniuk, R. G. k-POD: A Method for k-Means Clustering
of Missing Data. The American Statistician 70, 91–99 (2016).

77. Wang, S. et al. K-Means Clustering With Incomplete Data. IEEE Access 7, 69162–
69171 (2019).

78. Himmelspach, L. & Conrad, S. Clustering approaches for data with missing values:
Comparison and evaluation in ICDIM (IEEE, 2010), 19–28.

79. Arthur, D. & Vassilvitskii, S. k-means++: the advantages of careful seeding in SODA
(SIAM, 2007), 1027–1035.

80. Gao, J., Langberg, M. & Schulman, L. J. Analysis of Incomplete Data and an Intrinsic-
Dimension Helly Theorem. Discret. Comput. Geom. 40, 537–560 (2008).

81. Gao, J., Langberg, M. & Schulman, L. J. Clustering lines in high-dimensional space:
Classification of incomplete data. ACM Trans. Algorithms 7, 8:1–8:26 (2010).

82. Lee, E. & Schulman, L. J. Clustering Affine Subspaces: Hardness and Algorithms in
SODA (SIAM, 2013), 810–827.

83. Har-Peled, S. & Mazumdar, S. On coresets for k-means and k-median clustering in
STOC https://arxiv.org/abs/1810.12826 (ACM, 2004), 291–300.

84. Frahling, G. & Sohler, C. Coresets in dynamic geometric data streams in STOC
(ACM, 2005), 209–217.

85. Braverman, V., Frahling, G., Lang, H., Sohler, C. & Yang, L. F. Clustering High
Dimensional Dynamic Data Streams in ICML 70 (PMLR, 2017), 576–585.

86. Balcan, M.-F., Ehrlich, S. & Liang, Y. Distributed k-means and k-median clustering
on general communication topologies in NIPS (2013), 1995–2003.

87. Reddi, S. J., Póczos, B. & Smola, A. J. Communication Efficient Coresets for Empirical
Loss Minimization in UAI (AUAI Press, 2015), 752–761.

88. Bachem, O., Lucic, M. & Krause, A. Scalable k-Means Clustering via Lightweight
Coresets in KDD (ACM, 2018), 1119–1127.

89. Chan, T. M. Dynamic Coresets. Discret. Comput. Geom. 42, 469–488 (2009).

131

https://arxiv.org/abs/1811.05022
https://arxiv.org/abs/1810.12826

90. Henzinger, M. & Kale, S. Fully-Dynamic Coresets in ESA 173 (Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020), 57:1–57:21.

91. Mussay, B., Osadchy, M., Braverman, V., Zhou, S. & Feldman, D. Data-Independent
Neural Pruning via Coresets in ICLR (OpenReview.net, 2020).

92. Varadarajan, K. & Xiao, X. A near-linear algorithm for projective clustering integer
points in Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms (2012), 1329–1342.

93. Gonzalez, T. F. Clustering to minimize the maximum intercluster distance. Theoretical
computer science 38, 293–306 (1985).

94. Indyk, P. Better algorithms for high-dimensional proximity problems via asymmetric
embeddings in SODA (ACM/SIAM, 2003), 539–545.

95. Lucic, M., Faulkner, M., Krause, A. & Feldman, D. Training gaussian mixture models
at scale via coresets. The Journal of Machine Learning Research 18, 5885–5909 (2017).

96. Feldman, D., Kfir, Z. & Wu, X. Coresets for gaussian mixture models of any shape.
arXiv preprint arXiv:1906.04895 (2019).

97. Munteanu, A., Schwiegelshohn, C., Sohler, C. & Woodruff, D. On Coresets for Logistic
Regression in Advances in Neural Information Processing Systems (eds Bengio, S.
et al.) 31 (Curran Associates, Inc., 2018).

98. Huang, L., Jiang, S. & Vishnoi, N. Coresets for Clustering with Fairness Constraints
in Advances in Neural Information Processing Systems 32 (Curran Associates, Inc.,
2019).

99. Jubran, I., Tukan, M., Maalouf, A. & Feldman, D. Sets Clustering in Proceedings
of the 37th International Conference on Machine Learning 119 (PMLR, 13–18 Jul
2020), 4994–5005.

100. Van Handel, R. Probability in high dimension tech. rep. (PRINCETON UNIV NJ,
2014).

101. Dinitz, M. & Krauthgamer, R. Fault-tolerant spanners: better and simpler in Pro-
ceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of
distributed computing (2011), 169–178.

102. Duan, R., Gu, Y. & Ren, H. Approximate Distance Oracles Subject to Multiple Vertex
Failures in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA) (2021), 2497–2516.

103. Karthik, C. & Parter, M. Deterministic replacement path covering in Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA) (2021), 704–723.

132

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Overview of the Thesis
	Coresets for Clustering in Graph Metrics
	Coresets for Ordered Weighted Clustering
	Coresets for Clustering with Missing Values
	The Lower Bound

	Preliminaries

	Coresets for Clustering in Bounded Treewidth Graph
	Introduction
	Our Results
	Technical Contributions
	Additional Related Work

	Preliminaries
	Coresets for k-Median in Graph Metrics
	Bounding the Shattering Dimension
	Proof of the Structural Lemma
	Complexity of Min-linear Functions

	Coresets for Clustering in Excluded-Minor Graphs
	Introduction
	Our Results
	Technical Contributions
	Additional Related Work

	Preliminaries
	Framework
	Iterative Size Reduction
	Importance Sampling
	Coresets via Terminal Embedding

	Coresets
	Excluded-minor Graphs
	Proof of Lemma 3.4.1
	From Planar to Minor-excluded Graphs

	High-Dimensional Euclidean Spaces

	Coresets for Ordered Weighted Clustering
	Introduction
	Our Contribution
	Overview of Techniques
	Additional Related Work

	Preliminaries
	The Basic Case: p-Centrum for k=d=1 (one facility in one-dimensional data)
	Proofs of Technical Lemmas

	Simultaneous Coreset for Ordered k-Median
	Coreset for p-Centrum on Lines in Rd
	Coreset for p-Centrum in Rd
	Simultaneous Coreset for Ordered k-Median in Rd

	Coreset for Clustering with Missing Values
	Our Results
	Technical Overview
	Additional Related Work

	Preliminaries
	Coresets
	Proof of Lemma 5.3.3: Shattering Dimension of R?d
	Proof of Lemma 5.3.4: Estimating Sensitivity Efficiently
	Proof of Lemma 5.3.6: Dynamic O(1)-Coresets for k-Center Clustering

	The Lower Bound
	Coresets for Clustering in Graphs of Bounded Treewidth
	Coresets for Ordered Weighted Clustering
	Coresets for Clustering with Missing Values
	Coresets for Clustering in Euclidean Space

	Conclusions
	References

