
TOPIC MODELING IN THEORY AND PRACTICE

by
Chandler Camille May

A dissertation submitted to Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
March 2022

c⃝ 2022 Chandler May
All rights reserved



Abstract

Topic models can decompose a large corpus of text into a relatively small set

of interpretable themes or topics, potentially enabling a domain expert to explore

and analyze a corpus more efficiently. However, in my work, I have found that

theories put forth by topic modeling research are not always borne out in practice.

In this dissertation, I use case studies to explore four theories of topic modeling.

While these theories are not explicitly stated, I show that they are communicated

implicitly, some within an individual study and others more diffusely. I show that

this implicit knowledge fails to hold in practice in the settings I consider. While

my work is confined to topic modeling research and moreover concentrated on the

latent Dirichlet allocation topic model, I argue that these kinds of gaps may pervade

scientific research and present an obstacle to improving the diversity of the research

community.

Primary Reader and Advisor: Benjamin Van Durme

Secondary Reader: Mark Dredze, David Yarowsky
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Chapter 1

Introduction

Natural language processing (NLP) is a largely empirical research field, but even

empirical research relies on implicit theories. In unsupervised NLP, a wealth of re-

search builds on the latent Dirichlet allocation (LDA) topic model, adding online

learning, hierarchical structure, increased computational efficiency, and other im-

provements, or developing alternative topic modeling approaches. These lines of

research generally treat LDA as a strong baseline model, a system capable of decom-

posing a corpus of text into human-interpretable topics. Hence, we might conclude

there is an implicit theory that LDA does satisfactorily decompose text into human-

interpretable topics; if there were not, we might expect the research following LDA

to (at least initially) focus on getting it to “work” before pursuing other extensions.

And while that theory is arguably well-supported—the efficacy of LDA is readily

observable—a naive implementation and application of LDA to a text corpus typi-
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cally yields a collection of relatively uninterpretable topics represented by words like

“the,” “of,” “a,” and “in.” In practice, such stop words are generally filtered out of the

corpus before training (or out of the resultant topics after training), but that process is

considered a pre-processing (or post-processing) step, not a part of the LDA training

algorithm itself, and it is rarely given much (if any) mention in the literature. Thus,

while topic modeling research at large might appear to have an implicit theory that

LDA automatically decomposes text, the usage of LDA in practice is slightly more

complex than the literature suggests: It is only automatic if the necessary manual

interventions are performed in concert.

Taking this example as a starting point, I examine several areas of topic modeling

research, eliciting a simple implicit theory from each area and testing whether each

theory holds in practice. Specifically, I examine the following theories:

• Rejuvenation enables streaming learning of LDA by particle filtering (Ch. 3).

• Under limited supervision, topic model features aid topic identification (Ch. 4).

• The effective usage of LDA is similar across languages (Ch. 5).

• The nested hierarchical Dirichlet process obviates the need for stop-word filter-

ing (Ch. 6).

Topic models have recently been used in original research in the social sciences [Schwem-

mer and Jungkunz, 2019, Curry and Fix, 2019] as well as in surveys of past research

in other disciplines [Bohr and Dunlap, 2018], suggesting that gaps between the theory

2
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and practice of topic modeling are potentially relevant to current and future research.

Although these inconsistencies may result in a loss in productivity and hinder the

expansion of knowledge, they may also have more insidious consequences. If practical

knowledge needed to make topic models work is communicated primarily through

back-channels and not through the more public and accessible communications of the

field, the seclusion of that information presents a barrier to entry. Researchers in the

know and those they associate with, a population that historically skews male, white,

and otherwise privileged, will have an advantage in performing successful research.

Researchers without those connections, meanwhile, may have to rediscover what some

researchers already know before achieving publishable results. Thus, gaps between

theory and practice have the potential to exacerbate the under-representation of mi-

nority groups in topic modeling research and hinder efforts to improve diversity.

My thesis is similar to the topic of the independently developed NeurIPS 2020

workshop “I Can’t Believe It’s Not Better! Bridging the gap between theory and em-

piricism in probabilistic machine learning,” which investigates discrepancies between

theory and practice across all of probabilistic machine learning.1 The existence and

success of this workshop illustrate a couple of points: first, that other researchers are

aware of and interested in studying gaps between theory and practice; second, that

those gaps are not limited to topic modeling, but may extend to probabilistic machine

learning and beyond.2

1https://neurips.cc/Conferences/2020/ScheduleMultitrack?event=16124
2Per the workshop description, the scope is limited to probabilistic machine learning to facilitate

3

https://neurips.cc/Conferences/2020/ScheduleMultitrack?event=16124


CHAPTER 1. INTRODUCTION

the exchange of ideas and evaluation of hypotheses, not because gaps between theory and practice
are necessarily confined to that domain.

4



Chapter 2

Background

2.1 Topic modeling

I provide a brief introduction to topic modeling with latent Dirichlet allocation;

see Blei [2012] for a more thorough presentation.

Topic modeling is the task of finding the themes, or topics, that run through a

collection of documents. Topic models commonly consist of a set of topics, each of

which is modeled as a probability distribution or weighting over a fixed vocabulary

of words, and a representation of each document in terms of those topics.

Topic models typically make a bag-of-words assumption, meaning that each doc-

ument is modeled as a bag (multiset) of discrete words, and the order of words in

a document is not modeled. Other assumptions abound, however. The number of

words in each document is widely assumed to be given and is not modeled; the num-
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ber of topics is also typically assumed to be given (but see Chapter 6 for a model that

relaxes that assumption). Additionally, topic models generally make a more implicit

assumption that stop words, common but relatively uninformative words like prepo-

sitions, conjunctions, pronouns, determiners, and auxiliary verbs, have been filtered

out of the corpus. Although stop word filtering is a necessary step in reproducing

many topic modeling results, it is rarely allocated more than a cursory mention in

the literature.

2.1.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generative Bayesian topic model: It models

a data set as a draw from a probability distribution, and the parameters of that model

are themselves modeled as draws from another probability distribution called the

prior. Specifically, for N words collected into D documents of varying length (number

of words), denote the length of the d-th document by Nd, denote the i-th word in

the data set by wi, and denote the document wi occurs in by di. LDA “explains” the

occurrence of each word by postulating that a document was generated by repeatedly:

(1) Sampling a topic assignment zi from a document-specific probability distribution

over K topics, Categorical(θ(di)), and (2) sampling a word wi from a topic-specific

probability distribution over a vocabulary of W words, Categorical(ϕ(zi)). The topic

parameters ϕ and document-wise topic proportions θ are in turn modeled as draws

6
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α θ z w

ϕβ
K

Nd D

Figure 2.1: Plate diagram for latent Dirichlet allocation topic model.

from Dirichlet priors [Blei et al., 2003b]. Altogether, the model is as follows:

wi|zi,ϕ(zi) ∼ Categorical
(︂
ϕ(zi)

)︂
,

ϕ(k) ∼ Dirichlet (β) ,

zi|θ(di) ∼ Categorical
(︂
θ(di)

)︂
,

θ(d) ∼ Dirichlet (α) .

Additionally, a plate diagram for the model is provided in Figure 2.1.

2.1.2 Training

Learning the values of ϕ and θ from a given data set typically involves estimat-

ing the posterior distribution and then taking a point estimate of that posterior to

represent the “learned” model. Computing the distribution of ϕ and θ exactly is

intractable, requiring the enumeration of exponentially many combinations of values

of discrete variables (topic assignments z). This intractability motivates approximate

inference methods such as expectation propagation [Minka and Lafferty, 2002], vari-

7
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ational Bayesian inference [Blei et al., 2003b, Hoffman et al., 2010], and collapsed

Gibbs sampling [Griffiths and Steyvers, 2004]. Once the posterior is approximated,

its mean is typically used for point estimates of ϕ and θ.

Perhaps the most widely known, and the simplest, training algorithm for LDA is

the collapsed Gibbs sampling algorithm introduced by Griffiths and Steyvers [2004].

Gibbs sampling is a Markov chain Monte Carlo (MCMC) method in which, at each

step, one variable is sampled from the posterior while conditioning on the current

values of all the other variables. The collapsed Gibbs sampling algorithm simplifies

this procedure for LDA by leveraging Dirichlet-Multinomial conjugacy to integrate

out ϕ and θ. The algorithm begins with random topic assignments z, then at each

step, one topic assignment zi is sampled (conditioning on all other topic assignments

zi−1) according to

P
[︁
zi|zN\i,w

]︁
=

n
(wi)
zi,N\i + βwi

n
(·)
zi,N\i +

∑︁W
t=1 βt

·
n
(di)
zi,N\i + αdi

n
(di)
·,N\i +

∑︁K
k=1 αk

where: n(wi)
zi,N\i is the number of times word wi has been assigned topic zi, not including

word i; n
(·)
zi,N\i is the number of times any word has been assigned topic zi, not

including word i; n(di)
zi,N\i is the number of times topic zi has been assigned to any word

in document di, not including word i; and n
(di)
·,N\i is the number of words observed in

document di, not including word i [Griffiths and Steyvers, 2004].

Sampling is run until some stopping criteria, such as a lower threshold on the
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change in log likelihood between sweeps of the data, is met. At that point, the most

recent step in the Markov chain is typically selected as a point estimate of the trained

model. After (or during) sampling, the topics and topic proportions can be estimated

as

ϕ̂
(k)

w =
n
(w)
k,N + βw

n
(·)
k,N +

∑︁W
t=1 βt

,

θ̂
(d)

k =
n
(d)
k,N + αd

n
(d)
·,N +

∑︁K
t=1 αt

,

respectively [Griffiths and Steyvers, 2004].

2.1.3 Evaluation and Application

Topic models are evaluated in the literature through both quantitative (numeri-

cal, statistical) and qualitative (descriptive, conceptual) methods. Topics are often

represented to human users and other researchers by their keys, or top-m words (for

some small number m).1 Accordingly, many evaluation methods assess the quality of

these topic keys.

One of the most common quantitative measures is the log-likelihood, which conveys
1Typically, m = 5 or m = 10.
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how likely a data set is under the model. In notation, the log-likelihood is

logL (Φ,Θ|w) = log PΦ,Θ [w]

=
N∑︂
i=1

log PΦ,θ(di) [wi]

where PΦ,θ [w; d] is the probability of w under the model with global parameters

Φ and local parameters θ, marginalizing over the latent variable z. While this

naive formulation computes how likely a corpus is given all global parameters as

well as each document’s local parameters θ(d), predictive log-likelihood marginalizes

over document-local parameters as well:

logLpred (Φ|w) =
N∑︂
i=1

log PΦ [wi] .

Best practices when evaluating with likelihood include computing predictive log-

likelihood on a held-out test set (using, for example, the left-to-right or Chib-style

estimator of Wallach et al. [2009b] or the first-order approximation of Scott and

Baldridge [2013]) in order to convey how well the model generalizes.

Another popular and more recent method for quantitative evaluation is the topic

coherence metric introduced by Mimno et al. [2011]. Topic coherence measures the

degree to which a topic’s keys, or most probable words, co-occur in the corpus (occur

in the same documents). If D(w,w′) is the number of documents in which words w

and w′ co-occur, D(w) is the number of documents in which w occurs (its document

10
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frequency), and v
(k)
i is the i-th topic key (the i-th most probable word) of topic k,

then the topic coherence TC(k) of topic k is

TC(k) =
m∑︂
i=2

i−1∑︂
j=1

log
D

(︂
v
(k)
i , v

(k)
j

)︂
+ 1

D
(︂
v
(k)
j

)︂
And the overall topic coherence for a model is typically computed by taking the

average over the model’s topics.

As Roberts et al. [2014] point out, this metric quantifies the cohesiveness of each

topic, the degree to which the topic keys tend to co-occur (occur in the same doc-

uments), but there is another property of topic decompositions that we often care

about: exclusivity, the degree to which a topic’s keys tend not to occur in the keys

of another topic. Roberts et al. [2014] note that they are not the first to make this

observation; rather, it has been made before in several forms.

Both log-likelihood and topic coherence evaluate the distributions of words and

topics and do not require additional labeled data. Sometimes, however, a data set

will be labeled with gold standard or ground truth labels, and the inferred topics

can be evaluated for their alignment with those labels. For example, the classic “20

newsgroups” data set contains a collection of newsgroup posts from twenty different

newsgroups,2 and posts from multiple newsgroups are typically combined into a single

data set for topic modeling, treating the original newsgroup for each post as its

gold-standard topic labeling. One popular approach for quantifying the alignment
2http://qwone.com/~jason/20Newsgroups/
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between inferred and gold-standard topics is normalized mutual information (NMI),

an information theoretic measure of similarity between two clusterings. There is no

universal definition of NMI due to different choices in normalization, but a common

definition is as follows.

Let C1 and C2 be two clusterings (partitions) of a set of points X into K clusters

(partition blocks). Let C1 be a random variable indicating the cluster index k under

clustering C1 of a point sampled uniformly with replacement from X , and define C2

analogously. So, if there are n = |X | points in total and n
(1)
k of them are assigned to

cluster k under C1, then

P [C1 = k] =
n
(1)
k

n
.

Moreover, if n(2)
k′ points are assigned to cluster k′ under C2 and n

(1,2)
k,k′ points are assigned

to both cluster k under C1 and cluster k′ under C2, then

P [C2 = k′] =
n
(2)
k′

n

and

P [C1 = k, C2 = k′] =
n
(1,2)
k,k′

n
.

If H(C1) is the entropy of C1, H(C2) is the entropy of C2, H(C1, C2) is their joint
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entropy, and I(C1, C2) is their mutual information, then the NMI of C1 and C2 is

NMI(C1, C2) =
I(C1, C2)

H(C1) +H(C2)

or equivalently

NMI(C1, C2) =
H(C1) +H(C2)−H(C1, C2)

H(C1) +H(C2)
.

NMI is often applied to topic models by treating a set of documents as the data X and

using the topic with highest topic proportion in each document as that document’s

inferred cluster.

Becker [2011, Appendix A] shows that this definition of NMI is equivalent to an-

other clustering metric, the V-measure. The V-measure, in turn, is a harmonic mean

of two components: homogeneity, the degree to which each cluster from C1 only con-

tains data from a single cluster in C2, and completeness, the degree to which all points

from a cluster in C2 are assigned to the same cluster in C1 [Rosenberg and Hirschberg,

2007]. Put succinctly, the first component measures how homogeneous a cluster in

C1 is while the second component measures how complete it is. These components

closely resemble the cohesiveness and exclusivity criteria (respectively) described by

Roberts et al. [2014]. However, while V-measure (hence NMI) is often applied to the

topics assigned to documents, cohesiveness and exclusivity are described in terms of

the topics assigned to words. And whereas V-measure involves comparison of inferred
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topics to a gold-standard clustering, the cohesiveness and exclusivity criteria pertain

solely to the distributions of words and inferred topics.

A closely related metric, the variation of information (VOI), measures how much

information is lost when moving between two clusterings [Meilă, 2007]. The VOI

between clusterings C1 and C2 is defined as

V I(C1, C2) = H(C1) +H(C2)− 2I(C1, C2)

or equivalently

V I(C1, C2) = H(C1|C2) +H(C2|C1).

where H(C1|C2) is the conditional entropy of C1 conditioned on C2 and H(C2|C1) is

defined analogously [Meilă, 2007].

Qualitative evaluation of topic models is more nascent, but no less important.

Topic models are often motivated as potential tools for human analysts working with

text, so qualitative evaluation of topic models reflects the circumstances of their use.

Typically, to distill a topic model into something that can be assessed qualitatively,

each topic is represented by its keys, or top m words for some small number m.

Many authors analyze the topic keys for each topic informally, discussing how well

they fit the authors’ intuitions and reproducing the lists directly in their reports so

that readers may make their own judgments. The word intrusion and topic intrusion

14
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tasks of Chang et al. [2009] use human judgments to approximately quantify two

model qualities one might find intuitive: the distinguishability of words in a topic

from words out of the topic and the distinguishability of topics used in a document

from topics not used in the document, respectively. These tasks combine simple

qualitative tests performed by human judges with quantitative aggregation methods.

Although the top m words by probability are by far the most common choice

of topic keys, some researchers have proposed other selection criteria. For example,

Bischof and Airoldi [2012] treat frequency and exclusivity of words in a topic as

competing desiderata for topic keys and use the harmonic mean of the two properties

to score how informative each word is in each topic. This frequency-exclusivity score,

abbreviated FREX, can be used to select topic keys in a manner that is more robust

to the presence of stop words [Bischof and Airoldi, 2012].

Topic modeling research is motivated by potential applications in the social sci-

ences [Roberts et al., 2014, Boyd-Graber et al., 2017, Schwemmer and Jungkunz, 2019,

Curry and Fix, 2019], the humanities [Buurma, 2015, Boyd-Graber et al., 2017], ed-

ucation [Reich et al., 2014], natural language processing [Boyd-Graber et al., 2014],

and surveys of past research in other disciplines [Boyd-Graber et al., 2017, Bohr and

Dunlap, 2018].3 Topic models are also used in the development of search interfaces,

visualizations, and other tools in government and industry [Boyd-Graber et al., 2014].
3Indeed, Schwemmer and Jungkunz [2019], Curry and Fix [2019], and Bohr and Dunlap [2018]

all use a probabilistic graphical topic model called the structural topic model [Roberts et al., 2013],
suggesting that research on probabilistic graphical topic models like LDA is still relevant in the era
of neural topic models and deep learning in natural language processing. More information on usage
of the structural topic model is available at https://www.structuraltopicmodel.com/.
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One of the limitations and challenges of applying topic modeling in practice is that

many topic models, including LDA, are not identifiable. This means that even in the-

ory, a given data set can be equivalently represented by many different parametriza-

tions of LDA. Concretely, the ordering of topics in LDA has no theoretical impact on

the observation model, so a topic model with two topics, so there are K! equivalent

parametrizations of an LDA model with K topics. Moreover, when training a topic

model, the initial model provided to the training algorithm is often randomly gener-

ated and that initialization step is often symmetric with respect to the topics, so each

an LDA model is trained on a given data set the topics may appear in a different

order. And because of estimation error, multiple runs of the training algorithm may

even produce different sets of topics altogether. These complications are a nuisance

in the evaluation of topic models in the literature, but they can be much more of

a problem in real-world applications where random effects are less acceptable. For

example, the use of LDA in a judicial trial would be problematic because different

random seeds can potentially produce qualitatively different results.

See Boyd-Graber et al. [2017] for further discussion of applications of topic models.

2.1.4 Practice

Training, inference, and analysis of LDA topic models has been implemented

numerous times in open-source software. The most popular implementation is likely

MALLET [McCallum, 2002], a Java library that implements collapsed Gibbs sampling
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for LDA as well as algorithms for other NLP models. Another popular implementation

is Gensim [Řehůřek and Sojka, 2010], a Python library that implements stochastic

variational inference for LDA as well as algorithms for other topic models and vector

representations of text.

Some of the practical concerns of topic modeling that I investigate in the follow-

ing chapters have already been observed by researchers and practitioners before me.

For example, Manning et al. [2008, Ch. 2] discuss varying preprocessing requirements

of different languages and stop word filtering in the context of information retrieval.

Topic modeling, in fact, descends directly from information retrieval: Latent Dirichlet

allocation is based on probabilistic latent semantic analysis [Hofmann, 1999], which

is in turn based on latent semantic analysis [Deerwester et al., 1990], a classic method

in information retrieval. Accordingly, early topic modeling researchers may have as-

sumed that their audience was familiar with practical concerns of information retrieval

like those outlined in Manning et al. [2008, ch. 2], and that assumption might have

been reasonable at the time. However, modern publications on topic modeling make

little or no mention of information retrieval, and information retrieval practice is not

widely known by researchers outside of information retrieval. The practical concerns

of information retrieval are therefore poised to be unknown unknowns to modern topic

modeling researchers, concepts that researchers not only don’t know, but don’t know

they don’t know.

Topic modeling publications sometimes enumerate practical concerns of topic
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modeling themselves; see, for example, Boyd-Graber et al. [2014]. However, my

experience as a student researcher indicates that such sporadic expositions are not

sufficient, and the premise of the NeurIPS 2020 “I Can’t Believe It’s Not Better!”

workshop suggests I am not be alone.

2.2 Theory

In general, topic modeling research spans multiple spaces, disciplines, communi-

ties, and cultures. The research I study similarly spans these contexts, although it is

concentrated in computer science and largely does not extend to the social sciences

and humanities. Although out of scope for my work, the variability of topic modeling

theory and practice across these contexts would be an interesting object of study for

future work.

Topic modeling, in the sense I consider, is a largely empirical field of research;

progress is determined largely by the outcomes of computational experiments. Ad-

ditionally, there is little in the way of explicit theory developed in topic modeling

research. For example, the “distributional hypothesis” from linguistics may be con-

sidered to be a theoretical foundation for topic modeling. While the distributional

hypothesis is often attributed to Harris [1954], it is more concisely stated by Ruben-

stein and Goodenough [1965], and this abbreviated form is more often used in modern

research:
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Theory. “Words which are similar in meaning occur in similar contexts” [Rubenstein

and Goodenough, 1965].

In contrast, topic modeling research rarely makes such formal claims; when it does,

the claims are often limited to the mathematical properties of learning algorithms, as

in Arora et al. [2013]. However, building off empirical work requires abstracting from

the reported observations, which are inevitably laden with contextual information

that may have little relevance to the objects of study. Thus, topic modeling research

must produce theory in some more implicit form.

A small, self-contained example of implicit theories in NLP appears in the history

of the scikit-learn stop word list recounted by Nothman et al. [2018]: Scikit-learn, a

Python machine learning library, provided an English stop word list as of July 2010,

but it was disabled by default as the person who contributor it claimed it did not

improve text classification results. In November 2010, a different contributor enabled

it, arguing that filtering out stop words was a reasonable default. Then, in March

2012, it was disabled again [Nothman et al., 2018]. Although there is no explicit

theory of stop words in NLP, the developers involved in these changes clearly had

mental models of how stop word filtering affected text classification (and perhaps

other tasks) in general. In fact, these models—theories—appear to contradict each

other. Because such theories are not stated, tested, and communicated explicitly, it

is easy for competing theories to coexist in any given community, a phenomenon I

will revisit in Chapter 5.
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To make the notion of implicit theory more concrete, I draw on key ideas in the

philosophy of science and technology; for a more detailed philosophical exposition, see

Franssen et al. [2018]. In this section so far, I have assumed that topic modeling is a

scientific area of research and proceeds largely by developing and testing hypotheses.

Surely, some proportion of topic modeling research is science, but many (if not most)

topic modeling papers have the following structure: First, present a task or problem

to be solved, and second, present a solution. This problem-solving structure suggests

that to some extent, topic modeling research is not science but technology research.

Specifically, Bunge [1966] argues that theories in technology take two forms: opera-

tive theories, which are theories of action, and substantive theories, which are theories

of the object of that action. In the context of topic modeling research, substantive

theories may be considered to include theories of language, like the distributional

hypothesis, and theories of machines and data, like the central limit theorem. While

these substantive theories are inherited from the sciences (and mathematics), opera-

tive theories arise in the topic modeling research itself and pertain to the action of

topic modeling. While operative theories do not contain the substance of science,

they do use scientific methods, including making use of theoretical concepts and ab-

stractions and testing against empirical data. These operative theories, theories of

how to do topic modeling, are the implicit theories I aim to study.

Finally, note that topic modeling research—or indeed any area of research—is

not only performed through the publication of peer-reviewed papers. Broadly, topic
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modeling research takes place over peer-reviewed papers as well as book chapters,

preprints that have not gone through peer review, presentations at conferences, dis-

cussions in the hallways and other meeting places of those conferences, discussions

in research labs and coffee shops and myriad other settings, distribution of research

software and documentation, bug reports and feature requests on that software, class-

room lectures and activities, blogs and blog comments, private email threads, mailing

lists, and social media in general. Indeed, the theories that I claim are implicit in

published research papers are likely made explicit in these other channels. However,

an analysis of the broader research discourse is out of scope in my work, and be-

cause published, peer-reviewed papers are generally considered the gold standard of

research, I will restrict my attention to them.
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Chapter 3

Streaming Learning

3.1 Preface

This chapter describes work originally appearing in May et al. [2014], of which I

was the primary author. Our goal was to use reservoir sampling to implement the

rejuvenation step of a particle filtering training algorithm for LDA introduced in prior

work, thereby eliminating that algorithm’s linear memory requirement and allowing

LDA models to be learned on unbounded data streams in principle.

Many data sets are too large to fit into main memory or traverse more than

once. Using a batch learning method like Gibbs sampling, we can train an LDA topic

model by iterating over the documents in a corpus. However, a good fit requires

traversing the corpus multiple times, and we must maintain document-level state for

all documents in the corpus throughout training. In response, a particle filtering
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algorithm was proposed,1 allowing LDA to be trained by sampling in one pass and

with memory constant in the size of the corpus [Canini et al., 2009], that is, in

a streaming data setting. In order to update the model with new data without

losing or “forgetting” what was learned before, the particle filtering algorithm uses a

technique called rejuvenation in which the sampler is periodically re-run on a random

sample of documents from the data stream. Prior work found this algorithm to yield

high performance on some data sets, measuring by distributional similarity to gold-

standard assignments. I seek to implement the rejuvenation step using a reservoir

sample, a technique that produces a random sample at every point in a data stream

in constant memory and linear runtime requirements. I implement and study the

particle filtering algorithm empirically, making the following contributions to science:

• I perform a parameter study of a particle filtering training algorithm for LDA

introduced in prior work [Canini et al., 2009], providing a more comprehensive

analysis of the algorithm.

• I show that tuning an LDA model by perplexity is just as good as tuning it by

the evaluation metric (using gold-standard forum labels) on several qualitatively

different subsets of the common 20 newsgroups data set, suggesting that there

may be little room for improvement in topic modeling on that data set from an

information theoretic perspective.

• I have publicly released my LDA particle filter training and experiment code
1See, for example, Godsill [2019] for a recent introduction to particle filtering.
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for the benefit of future research.2

In studying the prior work, I develop the following implicit theory:

Theory. Rejuvenation enables streaming learning of LDA by particle filtering.

However, I find that the topic model learned by this particle filtering algorithm is

sensitive to initialization, and rejuvenation has a negligible effect at practical scales.

I was only able to approximately reproduce the results of prior work with an initial-

ization sample one-fifth the size of the entire training set, and the particle filter itself

yielded a relatively small improvement on the initial model [May et al., 2014]. Thus,

while prior work suggests that topic models can be effectively learned by sampling in

the streaming data setting, I find that this approach is dominated by initialization,

limiting its utility in practice.

3.2 Introduction

In this chapter, I study the training of a latent Dirichlet allocation topic model

in cases where the data is effectively unbounded. To formalize this setting, I define a

streaming algorithm as an algorithm that requires at most

• one pass over the data,

• constant storage, and
2https://github.com/ccmaymay/pflda
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• linear runtime.3

Specifically, then, in this chapter, I study LDA training in the streaming setting.

Canini et al. [2009] presented a method for LDA inference based on particle fil-

tering in which a weighted sample of particles (in this case, LDA models) is updated

online via importance sampling for each new token observed from a stream. In general,

the particle sample becomes degenerate (almost all importance weight goes to just

one particle) over time, and must be periodically resampled and rejuvenated [Gilks

and Berzuini, 2001]. In the resampling step, particles are resampled according to their

importance weights so that the total weight is more evenly distributed over the par-

ticles; in the rejuvenation step, Markov Chain Monte Carlo (MCMC) steps are taken

over the history so that the particles are less redundant. This process is illustrated

in Figure 3.1. The particle filter of Canini et al. [2009] rejuvenates over independent

draws from the history by storing all past observations and states. This algorithm

thus has linear storage complexity and does not satisfy the streaming criteria.

I propose approximating the rejuvenation step with a reservoir sampler to reduce

the storage complexity of the particle filter to constant, thereby yielding a streaming

learning algorithm. This implementation is scientifically interesting in that it recovers

some of the cognitive plausibility that motivated the use of a similar particle filter

by Börschinger and Johnson [2012]. My proposal hinges on a belief that the particle
3Other authors have proposed slightly different definitions of a streaming algorithm, such as

allowing multiple passes or O(log n) storage. However, the relatively simple, restrictive definition
proposed here will suffice for my purposes.
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importance sampling

resampling

rejuvenation

Figure 3.1: Illustration of the resampling and rejuvenation steps for a hypothetical
particle filter on a real-valued variable. The curve represents the true posterior; the
circles below the curve represent the particles, with location corresponding to value
and size corresponding to importance weight.
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filter proposed by Canini et al. [2009] works in part due to rejuvenation, that is, that

rejuvenation has an impact on the resultant model. I argue this relatively simple

theory is justified by prior work: “Markov chain Monte Carlo (MCMC) is used after

particle resampling to restore diversity to the particle set . . . . The length of [the re-

juvenation sequence] can be chosen to trade off runtime against performance” [Canini

et al., 2009], implying rejuvenation impacts runtime and performance. Moreover, I

assume that everything written in Canini et al. [2009] is relevant to their argument;4

if rejuvenation did not impact their experimental results, Canini et al. [2009] would

likely not have expended the effort to write about it and implement it in software.

However, I find rejuvenation makes no noticeable impact on the resultant model

in the setting studied by Canini et al. [2009]. Instead, I show that the quality of

the resultant model is highly dependent on the quality of the initial model provided

to the particle filter, and the particle filter only overcomes this sensitivity when the

rejuvenation process is performed at such a large scale that the algorithm no longer

satisfies the streaming criteria in practice. This finding re-opens the question of

whether LDA models can be effectively trained by particle filtering in the streaming

setting.
4This assumption follows directly from Grice’s cooperative principle, which describes the prop-

erties of conversational communication.
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3.3 Background

A common way to fit an LDA model to a corpus is by Gibbs sampling, in which

a chain of samples from the model is constructed by iteratively sampling one vari-

able while conditioning on all others. While the resultant chain yields an empirical

distribution over (parametrized) models, a single model representing the data can be

produced by taking the last sample in the chain.

One major benefit of Gibbs sampling is its simplicity: A training algorithm can be

implemented in relatively few lines of code and easily explained. Additionally, Gibbs

sampling and other sampling techniques estimate the exact distribution of model

parameters given the data, accounting for burn-in and autocorrelation in the chain.

Improvements to sampling methods, like the extension to the streaming data setting

studied here, have the potential to significantly benefit future research and practice.

One limitation of these techniques is they require multiple passes over the data

to obtain good samples of ϕ and θ—to achieve burn-in. This requirement makes

them impractical when the corpus is too large to fit directly into memory and in

particular when the corpus grows without bound. This motivates online learning

techniques [Banerjee and Basu, 2007, Canini et al., 2009]. However, where these

approaches assume the ability to draw independent samples from the full data set,

I consider the case when it is infeasible to access elements arbitrarily far back in

the history. While a streaming variational Bayes framework has been proposed for

training under this constraint [Broderick et al., 2013], I focus on sampling-based meth-
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initialize: ω
(p)
0 ← 1/P for each particle p = 1, . . . ,P

for i = 1, . . . , N do
for p = 1, . . . ,P do

ω
(p)
i ← ω

(p)
i−1P

[︂
wi

⃓⃓⃓
z
(p)
i−1,wi−1

]︂
sample z

(p)
i with probability P

[︂
z
(p)
i

⃓⃓⃓
z
(p)
i−1,wi

]︂
.

if ∥ω∥−2
2 ≤ neff then

for j ∈ R(i) do
for p = 1, . . . ,P do

sample z
(p)
j with probability P

[︂
z
(p)
j

⃓⃓⃓
z
(p)
i\j,wi

]︂
ω
(p)
i ← 1/P for each particle p = 1, . . . ,P

Algorithm 1: Particle filtering for LDA.

ods, of which I know no streaming algorithm other than the particle filter proposed

by [Canini et al., 2009] when implemented with a reservoir sampler for rejuvenation.

3.4 Online LDA Using Particle Filters

Particle filters are a family of sequential Monte Carlo (SMC) sampling algorithms

designed to estimate the posterior distribution of a system whose state evolves over

time [Doucet et al., 2001]. A particle filter approximates the posterior with a weighted

sample of points, called particles, from the state space. The particle cloud is updated

recursively for each new observation using importance sampling (an approach referred

to as sequential importance sampling).

Canini et al. [2009] apply this approach to LDA, analytically integrating out ϕ and

θ to obtain Rao-Blackwellized particle filter [Doucet et al., 2000] that estimates the
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collapsed posterior P [z|w]. In this setting, the P particles are samples of the topic

assignment vector z(p), and they are propagated forward in state space one token

at a time.As Canini et al. [2009] note, this usage of particle filtering is nonstandard

because the state space z grows over time (with each step of the particle filtering

algorithm).5

In general, the larger the number of particles P is, the more accurately we ap-

proximate the posterior; for small P , the approximation of the tails of the posterior

will be particularly poor [Pitt and Shephard, 1999]. However, a larger value of P

increases the runtime and storage requirements of the algorithm.

I now describe the Rao-Blackwellized particle filter for LDA in detail; pseudocode

is given in Algorithm 1. At the moment token i is observed, the particles form a

discrete approximation of the posterior up to the (i− 1)-th word:

P [zi−1|wi−1] ≈
∑︂
p

ω
(p)
i−1

[︂
zi−1 = z

(p)
i−1

]︂

where [x = x′] is the Iverson bracket which evaluates to 1 if x = x′ and 0 other-

wise. Now each particle p is propagated forward by drawing a topic z
(p)
i from the

conditional posterior distribution P
[︂
z
(p)
i

⃓⃓⃓
z
(p)
i−1,wi

]︂
and scaling the particle weight by

P
[︂
wi

⃓⃓⃓
z
(p)
i−1,wi−1

]︂
. The particle cloud now approximates the posterior up to the i-th

5Particle filters are often used in applications like object tracking in video, where the target
distribution changes over time but its dimensionality is constant.
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word:

P [zi|wi] ≈
∑︂
p

ω
(p)
i

[︂
zi = z

(p)
i

]︂
.

Dropping the superscript (p) for notational convenience, the conditional posterior

used in the propagation step is given by

P [zi|zi−1,wi] ∝ P [zi, wi|zi−1,wi−1]

=
n
(wi)
zi,i\i + βwi

n
(·)
zi,i\i +

∑︁W
t=1 βt

·
n
(di)
zi,i\i + αdi

n
(di)
·,i\i +

∑︁K
k=1 αk

where n
(wi)
zi,i\i is the number of times word wi has been assigned topic zi so far, n(·)

zi,i\i

is the number of times any word has been assigned topic zi, n
(di)
zi,i\i is the number of

times topic zi has been assigned to any word in document di, and n
(di)
·,i\i is the number

of words observed in document di. The particle weights are scaled as

ω
(p)
i

ω
(p)
i−1

∝
P
[︂
wi

⃓⃓⃓
z
(p)
i ,wi

]︂
P
[︂
z
(p)
i

⃓⃓⃓
z
(p)
i−1

]︂
Q
(︂
z
(p)
i

⃓⃓⃓
z
(p)
i−1,wi

)︂
= P

[︂
wi

⃓⃓⃓
z
(p)
i−1,wi−1

]︂

where Q is the proposal distribution for the particle state transition; in my case,

Q
(︂
z
(p)
i

⃓⃓⃓
z
(p)
i−1,wi

)︂
= P

[︂
z
(p)
i

⃓⃓⃓
z
(p)
i−1,wi

]︂
,
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minimizing the variance of the importance weights conditioned on wi and zi−1 [Doucet

et al., 2000].

Over time the particle weights tend to diverge. To compensate for this inefficiency,

after every state transition I estimate the effective sample size (neff) of the particle

weights as ∥ωi∥−2
2 [Liu and Chen, 1998] and resample the particles when that esti-

mate drops below a pre-specified threshold. Several resampling strategies have been

proposed [Doucet et al., 2000]; I perform multinomial resampling as in Pitt and Shep-

hard [1999] and Ahmed et al. [2011], treating the weights as unnormalized probability

masses on the particles.

After resampling we are likely to have several copies of the same particle, yielding

a degenerate approximation to the posterior. To reintroduce diversity to the particle

cloud I take MCMC steps over a sequence of states from the history [Doucet et al.,

2000, Gilks and Berzuini, 2001]. I call the indices of these states the rejuvenation

sequence, denoted R(i) [Canini et al., 2009]. The transition probability for a state

j ∈ R(i) is given by

P
[︂
zj

⃓⃓⃓
zN\j,wN

]︂
∝

n
(wj)

zj ,N\j + βwj

n
(·)
zj ,N\j +

∑︁W
t=1 βt

·
n
(dj)

zj ,N\j + αdj

n
(dj)

·,N\j +
∑︁K

k=1 αk

.

The rejuvenation sequence can be chosen by the practitioner. Choosing a long

sequence (large |R(i)|) may result in a more accurate posterior approximation but

also increases runtime and storage requirements. The tokens in R(i) may be chosen
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uniformly at random from the history or under a biased scheme that favors recent

observations. The particle filter studied empirically by Canini et al. [2009] stored the

entire history, incurring linear storage complexity in the size of the stream. Ahmed

et al. [2011] instead sampled ten documents from the most recent 1000, achieving

constant storage complexity at the cost of a recency bias. If we want to fit a model

to a long non-i.i.d. (where i.i.d. stands for independent and identically distributed)

stream, we require an unbiased rejuvenation sequence as well as sub-linear storage

complexity.

3.5 Reservoir Sampling

Reservoir sampling is a widely-used family of algorithms for choosing an array

(“reservoir”) of m items. The most common example, presented in Vitter [1985] as

Algorithm R, chooses m elements of a stream S such that all subsets of m elements are

equally likely. This effects sampling m items uniformly without replacement, using

runtime O(|S|) (linear in the stream length, constant per update) and storage O(m).

To ensure constant space over an unbounded stream, I draw the rejuvenation

sequence R(i) uniformly from a reservoir. As each token of the training data is

ingested by the particle filter, we decide to insert that token into the reservoir, or

not, independent of the other tokens in the current document. Thus, at the end of

step i of the particle filter, each of the i tokens seen so far in the training sequence has
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Initialize m-element array R ;
Stream S ;
for i = 1, . . . ,m do

R[i]← S[i] ;
for i = m+ 1, . . . , |S| do

Sample j uniformly from {1, 2, ..., i};
if j ≤ m then

R← S[i] ;

Algorithm 2: Algorithm R for reservoir sampling

an equal probability of being in the reservoir, hence being selected for rejuvenation.

3.6 Experiments

I evaluate the particle filter on three data sets studied in Canini et al. [2009]:

diff3, rel3, and sim3. Each of these data sets is a collection of posts under three

categories from the 20 Newsgroups data set.6 I use a 60% training/40% testing split

of this data available online.7

I preprocess the data by splitting each line on non-alphabet characters, converting

the resulting tokens to lower-case, and filtering out any tokens that appear in a list

of common English stop words. In addition, I remove the header of every file and

filter every line that does not contain a non-trailing space (which removes embedded

ASCII-encoded attachments). Finally, I shuffle the order of the documents. After

these steps, I compute the vocabulary for each data set as the set of all non-singleton
6diff3: {rec.sport.baseball, sci.space, alt.atheism}; rel3: talk.politics.{misc,

guns, mideast}; and sim3: comp.{graphics, os.ms-windows.misc, windows.x}.
7http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz
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types in the training data augmented with a special out-of-vocabulary symbol.

After each step of particle filter training, I report the similarity between the in-

ferred topics and gold-standard topics. Following Canini et al. [2009], I compute sim-

ilarity using out-of-sample normalized mutual information (NMI), holding the word

proportions ϕ fixed, running five sweeps of collapsed Gibbs sampling on the test set,

and inferring the topic proportions for each document as during training. Two Gibbs

sweeps have been shown to yield good performance in practice [Yao et al., 2009]; I

increase the number of sweeps to five after inspecting the stability on my data set.

The variance of the particle filter is often large, so for each experiment I perform 30

runs and plot the mean NMI inside bands spanning one sample standard deviation

in either direction.

3.6.1 Fixed Initialization

My first set of experiments has a similar parametrization to the experiments of

Canini et al. [2009] except I draw the rejuvenation sequence from a reservoir.8 I

initialize the particle filter with 200 Gibbs sweeps on the first 10% of each data set.

Then, for each data set, for rejuvenation disabled, rejuvenation based on a reservoir

of size 1000, and rejuvenation based on the entire history (in turn), I perform 30 runs

of the particle filter from that fixed initial model. My results (Figure 3.2) resemble

those of Canini et al. [2009]; I believe the discrepancies are mostly attributable to
8The parametrization I use consists of K = 3 topics, symmetric priors α· = β· = 0.1, P = 100

particles, an effective sample size neff , and a rejuvenation sequence of size |R| = 30 tokens.
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differences in preprocessing.

In these experiments, the initial model was not chosen arbitrarily. Rather, the

initial model was tuned: An initial model that yielded out-of-sample NMI close to

the corresponding out-of-sample NMI score reported in the previous study was chosen

from a set of 100 candidates. Note that out-of-sample NMI involves comparison to a

set of gold-standard topics (and document-topic assignments), so these experiments

do not represent an unsupervised setting.

3.6.2 Variable Initialization

I now investigate the significance of the initial model selection step used in the

previous experiments. I run a new set of experiments in which the reservoir size is

held fixed and the size of the initialization sample is varied. Specifically, I vary the size

of the initialization sample, in documents, between zero (corresponding to no Gibbs

initialization), 30, 100, and 300, and also perform a run of batch Gibbs sampling

(with no particle filter). In each case, 200 Gibbs sweeps over the initialization sample

are performed. In these experiments, the initial models are not held fixed; for each

of the 30 runs for each data set, the initial model was generated by a different Gibbs

chain. The results for these experiments, depicted in Figure 3.3, indicate that the

size of the initialization sample improves mean NMI and reduces the variance, and

that the variance of the particle filter itself is dominated by the variance introduced

by the initialization sample.
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Figure 3.2: NMI over the course of training using fixed initialization with no rejuve-
nation, rejuvenation using a reservoir of 1000 tokens, and rejuvenation over the entire
history.
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This is the only initialization setting I study that does not require some form of

supervised data.

3.6.3 Tuned Initialization

I observed previously that variance in the Gibbs initialization of the model con-

tributes significantly to variance of the overall algorithm, as measured by NMI. With

this in mind, I consider whether we can reduce variance in the initialization by tun-

ing the initial model based on NMI. Thus I perform a set of experiments in which

we perform Gibbs initialization 20 times on the initialization set, setting the particle

filter’s initial model to the model out of these 20 with the highest in-sample NMI.

This procedure is performed independently for each run of the particle filter. We may

not always have labeled data for initialization, so I also consider a variation in which

Gibbs initialization is performed 20 times on the first 80% of the initialization sample,

held-out perplexity (per word) is estimated on the remaining 20% each time, using

a first-moment particle learning approximation [Scott and Baldridge, 2013], and the

particle filter’s initial model is set to the model out of these 20 with the lowest held-

out perplexity. Results, shown in Figure 3.4, suggest we can mitigate the variance

due to initialization by tuning the initial model to either NMI or perplexity.

As in the fixed initialization experiments, however, note that comparison to NMI

requires gold-standard topics and document-topic assignments, and so breaches the

constraints of strictly unsupervised learning.
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Figure 3.3: NMI over the course of training using variable initialization with initializa-
tion sample sizes of zero documents, 30 documents, 100 documents, 300 documents,
and the size of the training corpus (equivalent to batch Gibbs sampling).
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Figure 3.4: NMI over the course of training using variable initialization without
tuning, with NMI-based tuning, and with perplexity-based tuning.
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3.6.4 Large rejuvenation

Finally, I investigate the impact of the rejuvenation sequence size, |R|, allowing it

to vary across the large values of 1, 3, 10, 30, 100, or 300 documents (contrasting the

previous setting of 30 tokens). In the “fixed initialization” experiment, I varied the

size of the reservoir underpinning the rejuvenation sequence, and hence the storage

complexity; in this experiment, I vary the size of the rejuvenation sequence itself, and

hence the runtime complexity. Additionally, in this experiment, I control for other

effects by omitting initialization altogether, using P = 1 particle, and drawing the

rejuvenation sample from the entire history (rather than a reservoir sample). Results,

shown in Figure 3.5, show that the particle filter is sensitive to the rejuvenation

sequence size at large scales, and the effect of initialization can be overcome when

rejuvenation sequence is the same scale as the training data itself. However, at this

scale, the algorithm’s runtime is effectively quadratic, as the particle filter is revisiting

most of its past observations after each new one.

3.7 Discussion

Overall, my results indicate that the particle filter for LDA on this data set is

sensitive to initialization and only sensitive to rejuvenation at large scales. Accord-

ingly, at moderate rejuvenation sequence sizes, reservoir sampling neither improves

nor detracts from performance.
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Figure 3.5: NMI over the course of training using large rejuvenation samples. Whereas
rejuvenation samples of previous experiments were measured in tokens, these samples
are measured in documents and typically consist of a much larger number of tokens.
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On a different task, Börschinger and Johnson [2012] found rejuvenation to sig-

nificantly improve performance, measured by token F-score, of a Bayesian word seg-

mentation model. The best performance in that study was obtained by a degenerate

(single-particle) particle filter with a rejuvenation sequence containing almost one-

sixth of the training data; in this configuration, rejuvenation MCMC steps occur

much more often than the particle state transitions, allowing the particle filter to

revisit the word assignments of most of the characters in a given utterance several

times. In my large-rejuvenation experiment (Section 3.6.4), I consider rejuvenation

sequences of one or more documents, mirroring this setting, and I found that the par-

ticle filter was sensitive to the rejuvenation sequence size at these scales. However, in

this setting, the runtime of the algorithm appears effectively quadratic because the

particle filter revisits a large proportion of its past observations each time it makes a

new one, such that the algorithm virtually becomes an iterative Gibbs sampler. Thus,

in this setting, the algorithm does not satisfy the streaming criteria in practice.

I have also shown that tuning the initial model using in-sample NMI or held-out

perplexity can improve mean NMI and reduce variance. Perplexity (or likelihood) is

often used to estimate model performance in LDA [Blei et al., 2003b, Griffiths and

Steyvers, 2004, Wallach et al., 2009b, Hoffman et al., 2010] and does not compare

the inferred model against gold-standard labels, yet it appears to be a good proxy for

NMI in my tuning experiment. Thus, if the particle filter’s performance continues to

exhibit sensitivity to initialization, at least we may have the flexibility of performing
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that initialization without gold-standard labels. On the other hand, the data sets I

have studied are small and approximately stationary due to randomization. I expect

initialization to provide a smaller improvement for larger, less stationary data sets.

Accordingly, I believe extending this study to larger data sets should be a priority for

future work.

I have focused on NMI as my evaluation metric for the sake of comparison with

Canini et al. [2009]. However, evaluation of topic models is a subject of considerable

debate [Wallach et al., 2009b, Yao et al., 2009, Newman et al., 2010, Mimno et al.,

2011] and it may be informative to investigate the effects of initialization and rejuve-

nation under a different metric, such as held-out perplexity or semantic coherence.

Perhaps the main difference between the use of particle filtering for LDA train-

ing proposed by Canini et al. [2009] and the typical uses of particle filtering is the

unbounded state space in the LDA training application. In the case studied here,

the state space grow with each SMC step and old states cannot be revised in general

unless the memory usage of the algorithm is also allowed to grow with each step.

Moreover, each dimension of the state space (topic assignment) is weighted equally,

so the influence of each SMC step decreases, converging to zero, as the algorithm

processes more and more data. Accordingly, I hypothesize that using a technique like

exponential smoothing, as stochastic variational inference does in the global varia-

tional parameter update [Hoffman et al., 2013]—perhaps coupled with mini-batching

to reduce variance, as stochastic variational inference does [Hoffman et al., 2013]—
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could improve the performance of the particle filter.

3.8 Conclusion

I proposed reservoir sampling as a way to reduce the storage complexity of a

particle filter from linear to constant, making it a streaming algorithm. However, in

the process of reproducing the findings of prior work, I discovered that rejuvenation

does not play a significant role in the experiments of Canini et al. [2009] in the first

place. I also found that performance of the particle filter was largely determined

by the initialization of the model, and I suggested a simple approach to reduce this

sensitivity without using additional data. Ultimately, I found that the particle filter

yields little improvement to the initial model except when the rejuvenation sequence

size is very large, but at that scale, the runtime of the algorithm is effectively quadratic

and no longer satisfies the streaming criteria. Therefore, while rejuvenation allows

an LDA model of a certain quality to be learned via streaming particle filtering in

theory, I found that the particle filter failed to produce an acceptable model in the

streaming setting in practice.
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Chapter 4

Features for Topic Identification

4.1 Preface

This work originally appeared in May et al. [2015a], a collaboration between lo-

cal text-processing and speech-processing researchers. I was the primary author for

the paper excepting sections 3 (the description of input representations), 4.2 (the

description of multinomial i-vectors), and 5.2 (the topic discovery experiments using

v-measure). Observing that the text and speech processing research communities both

ultimately studied language but rarely collaborated, we sought to cross-pollinate the

communities: to find techniques from the speech processing community that could

benefit the text processing community and vice versa. We performed this cross-

pollination by applying learned, lower-dimensional representations from the text and

speech processing communities—notably including the multinomial i-vector model
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from speech processing, which is omitted in the current presentation—to data from

the text and speech communities for the common task of topic identification. In

the course of this project, I discovered that topic model representations were not as

well-suited to topic identification as I had expected. I will now elaborate.

Topic models allow us to infer a set of underlying topics from a corpus of docu-

ments, a task I call topic discovery. However, in some settings—for example, when

performing a larger information extraction task—we may already have a collection of

topics that we believe applies to the corpus, and what we need is to determine which

of those topics apply to which documents. If those topics were originally produced

by a topic model and are represented accordingly (typically a probability distribution

over words from a fixed vocabulary), we can use the model to estimate the proportions

of the topics latent in each document. However, in practice, the topic set is often

defined by human domain experts and takes a less structured form. For example, a

topic might be described by a paragraph, a sentence, or even just a word or phrase,

precluding its direct application in a topic model. In these settings, supervised learn-

ing comes in handy: We can use examples of documents labeled with their respective

topics to train a topic classifier. I call this task topic identification. The literature

suggests that in some settings where supervised data is scarce, we can boost topic

identification performance by first performing topic discovery on all documents and

then using the resultant topic proportions as features for topic identification. Indeed,

topic model features were applied to topic identification in the very paper that in-
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troduced LDA, where LDA features were found to improve performance especially

when labeled training data was scarce [Blei et al., 2003b]. Topic model features have

also been applied to topic identification and related tasks in more recent work [Grif-

fiths and Steyvers, 2004, Newman et al., 2008, 2009, Wintrode, 2011, Harwath and

Hazen, 2012, Morchid et al., 2014b]. I test the applicability of topic discovery features

to topic identification on conversational text, making the following contributions to

science:

• This study is the first of its time to provide cross-community evaluations of

SAGE and other models on both text and speech data.

• This study also uses low-resource triphone state cluster soft counts as speech

data for topic ID, following May et al. [2015a]. The low-resource setting reflects

constraints often faced in real-world applications, and I report topic ID per-

formance under limited supervision to better illuminate the practical strengths

and weaknesses of the learned representations.

• Finally, I believe that the comparison herein of several prominent learned rep-

resentations on two complementary tasks on both text and speech, presented

together in the same study, will provide a useful point of reference for future

research.

While researching this project, I gleaned the following implicit theory:

Theory. Under limited supervision, topic model features aid topic identification.
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However, in my experiments on conversational text, I find that several feature

representations, including potentially less interpretable and higher-dimensional repre-

sentations like tf-idf, yield higher classification accuracy than topic proportions, even

when as few as two labeled examples are available per topic during training [May

et al., 2015a]. Thus, although we are led to expect that topic discovery represen-

tations would be effective features for topic identification under limited supervision,

that convergence is not borne out in practice.

4.2 Introduction

In this chapter, I assess the use of inferred topics from topic discovery as features

for topic identification. To do so, I compare features from topic discovery with features

from other dimensionality reduction techniques as well as high-dimensional baseline

feature representations. I perform this comparison on two kinds of multinomial lan-

guage data, one derived from text and another derived from speech. As dimensionality

reductions, I consider the sparse additive generative (SAGE) [Eisenstein et al., 2011]

and latent Dirichlet allocation (LDA) [Blei et al., 2003b] topic models as well as latent

semantic analysis (LSA) [Deerwester et al., 1990]. The SAGE topic model represents

a multinomial parameter vector as the softmax of a sum of vectors, one of which is

a background vector representing overall word usage in the corpus; LDA is a more

established topic model with no background vector; and LSA is a class of methods

49



CHAPTER 4. FEATURES FOR TOPIC IDENTIFICATION

based on the singular value decomposition (SVD). I evaluate all three learned repre-

sentations on the supervised task of topic identification (topic ID). To perform this

task, raw text or speech data is processed into multinomial counts, which are then

transformed using one of the dimensionality reduction methods; a logistic regression

classifier then predicts the topic of each document based on its representation. This

pipeline is depicted in Figure 4.1.

Topic ID is the task of assigning topics to documents with a known topic set.1

The two topic models, SAGE and LDA, were developed for the related task of topic

discovery, in which an unknown topic set is inferred (discovered) from a set of doc-

uments, assigning topics to documents in the process. Intuitively, these two tasks

concern the same information about a set of documents (the information encoded by

“topics”), and we might reasonably expect that a set of topic-document assignments

produced by topic discovery would be effective features for topic identification.

More concretely, Blei et al. [2003b] demonstrate the utility of LDA by using it

to produce features for topic ID, observing that “in almost all cases the performance

is improved with the LDA features” [Blei et al., 2003b]. In another foundational

paper, Griffiths and Steyvers [2004] infer the topics of a corpus of journal article

abstracts using LDA and find “strong diagnostic topics for almost all of the minor

categories” [Griffiths and Steyvers, 2004], where those categories were created and

assigned by experts. Thus, there is an implicit theory that topic identification benefits
1For an introduction to text classification, including topic classification, see Manning et al. [2008,

Ch. 13].
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Figure 4.1: Depiction of the topic ID pipeline.

from features derived by topic modeling (topic discovery). In this chapter, I test that

theory.

I use the bag-of-words multinomial representation of text data; that is, each docu-

ment is represented by a vector of counts over the word vocabulary. For speech data,

I use a modern automatic speech recognition (ASR) system to produce frame-wise

triphone state cluster posteriors and I take the sum of these posteriors across all

frames in a document to obtain a document-level vector of triphone state cluster soft

counts. This choice marks a break from convention: Modern topic ID systems for

speech use ASR output instead of a lower-resource representation like triphone state

cluster soft counts in order to improve performance [Hazen et al., 2007]. ASR word

counts are high-resource and can be viewed as a noisy version of word counts from

text. However, I wish to assess the relative performance of my learned representa-

tions, not the quality of the data pre-processing scheme, and I desire to strengthen

my results by evaluating performance on two distinct views of a corpus. Thus, I use

triphone state cluster soft counts to represent speech data.
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4.3 Background

Previous work has compared LDA and other dimensionality reduction techniques.

Chen et al. [2014] compared a multinomial i-vector language model against LDA and

other models on the task of spoken document retrieval, and found the multinomial

i-vector model to significantly outperform the other models on words, but not on sub-

words (syllable pairs), derived from ASR. The syllable pairs are similar in granularity

to the triphone state clusters used as multinomial speech data in the current work.

Morchid et al. [2014a] improved conversation theme identification by employing

LDA and a Gaussian i-vector model in a pipeline. They learn LDA models of varying

dimensions (numbers of topics) on ASR output and use them to generate a suite of

feature vectors. The feature vector for each document-dimension pair is created by

marginalizing over topics according to the document’s inferred topic proportions. A

Gaussian i-vector model is then learned on those feature vectors; the i-vectors are

normalized and used to identify document themes via the Bayes decision rule.

In this study, I have a fundamentally different approach from that of Morchid et al.

[2014a]. First, I treat topic models as representations themselves, directly comparing

SAGE and LDA, while Morchid et al. use LDA as a pre-processing step for computing

Gaussian i-vectors. Second, I use triphone state cluster soft counts instead of ASR

word counts, hence my representation of speech data is significantly lower-resource.

Third, I also evaluate performance on text data, and where Morchid et al. limit their

vocabulary (from ASR) to 166 task-specific words, I use all 26 606 words present in
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my training data.

4.3.1 Input Representations

I use the speech and text data set from May et al. [2015a]. This data comes from

a subset of the Fisher English corpus [Cieri et al., 2004c] that has been annotated for

topic ID [Hazen et al., 2007]. It consists of audio recordings of telephone conversa-

tions [Cieri et al., 2004a] and manual transcriptions of those recordings [Cieri et al.,

2004b]. In this study, I use speech data consisting of triphone state cluster posteriors

inferred from the recordings and text data consisting of bag-of-words representations

of the transcripts. The topic ID annotations comprise 40 topics, some of which are

used more than others. Further details about the data set are provided in May et al.

[2015a].

4.4 Learned Representations

I consider three main dimensionality reduction models: the SAGE and LDA topic

models and LSA. The learned representations I consider explain which words appear

in a document d via a latent, lower-dimensional representation θ(d). All representa-

tions operate under a bag-of-words assumption. To compare topic models and LSA,

I find it useful to formulate each learned representation as operating on different con-

texts (subsets) c of a document; such a formulation does not negate the fundamental
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bag-of-words assumption. The three models represent the words that appear in con-

text c—either the entire document or each token—via multinomial-style parameters

ϕ(c).2, Each model consists of K components (e.g., a K-dimensional affine subspace),

and shared parameters Hk,w prescribe the amount of weight each component k places

on each vocabulary word w. The models construct ϕ(c) by combining H and θ(d); in

some cases empirical word statistics m are also used to stabilize the representations.

4.4.1 LSA

LSA [Deerwester et al., 1990] factorizes a term-document matrix by truncated

SVD, learning the projection of the data onto a linear subspace of fixed rank such that

the approximation error of the reconstructed term-document matrix (as measured by

the Frobenius norm) is minimized. In the basic version of LSA, SVD is applied to

the raw term counts, giving the low-dimensional representation

ϕ(d) = Hθ(d),

where ϕ(d) is the vector of observed multinomial counts in document d, H is the

matrix of left singular vectors of the term-document count matrix, and θ(d) is the

inferred representation of ϕ(d). In practice, LSA is often applied instead to the term-

document matrix weighted by term frequency–inverse document frequency (tf-idf) in
2Other efforts have modeled documents with intermediate granularity, e.g., sentence-level [Titov

and McDonald, 2008] or entity-level [Newman et al., 2006] granularity.
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order to normalize terms by importance. We can also apply further pre-processing

steps, such as term-wise centering by subtracting the column-wise mean m of the

data, in which case LSA finds an affine subspace that approximates the data.

4.4.2 Bayesian Discrete Topic Models

Bayesian topic models explain word occurrences via K latent components Hk

(topics) each drawn from some prior distribution G. Unlike LSA, multinomial topic

models are admixture models: Each token wi is drawn from a multinomial distri-

bution parametrized by Hzi . Latent token assignment variables zi, taking integral

values between 1 and K (indexing H), dictate the token’s topic choice. The doc-

ument di controls how often each topic is chosen via the K-dimension multinomial

distribution parametrized by θ(di). In the parametric settings I consider, Dirichlet

priors are often placed on the topic proportions θ(d), allowing experimentation with

the topic representation H .3 Topic-specific word distributions ϕ(k) are formed by

a mapping Q(Hk), possibly the identity, ensuring ϕ(k) are probability vectors. A
3There have been many efforts to provide or induce latent structure among the topics [Blei et al.,

2003a, Li and McCallum, 2006, Wallach et al., 2009a, Paul and Girju, 2010], but most models ground
out to Dirichlet and discrete random variables.
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general formulation is

wi|zi,ϕ(zi) ∼ Multinomial
(︂
ϕ(zi)

)︂
ϕ(k) = Q (Hk)

Hk ∼ G(η)

zi|θ(di) ∼ Categorical
(︂
θ(di)

)︂
θ(d) ∼ Dirichlet(α).

The hyperparameters α and η dictate the informativeness of the priors over Hk

and θ(d): Often (empirically optimized) symmetric hyperparameters are employed,

resulting in a form of Laplace smoothing during topic estimation. In the current

work, I follow this strategy, noting that there have been concerted efforts to encode

domain or expert knowledge via the hyperparameters [Gormley et al., 2012, Paul and

Dredze, 2015].

4.4.2.1 SAGE Topic Model

The Sparse Additive Generative (SAGE) model [Eisenstein et al., 2011] is a gen-

erative Bayesian modeling framework in which the word distribution ϕ for each token

is formed by summing a background vector and one or more sparse vectors gener-

ated from appropriate priors. Those additive components can reflect the contribu-

tions of documents, aspects, topics, or other factors chosen by the modeler. A basic
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SAGE topic model sets ϕ(k) = softmax (m+Hk) and draws Hk from some sparsity-

inducing distribution G, for example, the Laplace distribution. As m is a shared

background frequency vector, Hk is the learned residual frequency vector of topic k.

Replacing the assigned topic in SAGE by its conditional expectation gives

ϕ̃
(zi,di)

= softmax
(︂
m+ Ezi

[︂
Hzi

⃓⃓⃓
θ(di),H

]︂)︂
= softmax

(︂
m+Hθ(di)

)︂
.

This “marginal SAGE” model could be useful in future work: The marginalization

may mitigate the problem of topic-switching, yielding a more identifiable (but perhaps

less interpretable) model and lending to downstream tasks such as topic ID.

4.4.2.2 LDA

Latent Dirichlet Allocation (LDA) [Blei et al., 2003b] is a generative Bayesian

topic model similar to SAGE, but in which each topic is drawn from a Dirichlet prior

G rather than a sparsity-inducing distribution. LDA does not explicitly account for

the background distribution; to account for this, it is common practice to threshold

the vocabulary a priori to remove very common and very rare words (though in my

experiments, I do not do this). For LDA, ϕ(zi) = Hzi , and Hk ∼ Dirichlet (η) with

η = β.
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4.5 Experiments

I compare these three models of learned representations empirically on the task of

topic ID. I use a C++ implementation of SAGE4 that uses approximate mean-field

variational inference as in Eisenstein et al. [2011]. I learn the LDA model using the

MALLET implementation of Gibbs sampling [McCallum, 2002].5 I perform LSA

using centered tf-idf–weighted word counts and centered l2-normalized triphone state

cluster soft counts. I implement tf-idf by scaling the raw term count by the log

inverse document frequency. I apply l2 normalization rather than tf-idf weighting to

the speech data because it is dense and tf-idf is thus inappropriate. On both text

and speech, mean-centering is performed after the respective normalization, as this

pre-processing recipe performed best of all the variants I tried.

For each of the three models, the low-dimensional real vector θ(d) represents a

given document d in my experiments. I also consider two high-dimensional baseline

representations: raw (soft) counts on both the text and speech data, and, only on

the text data, tf-idf–weighted word counts.6 These tf-idf weights constitute a high-

dimensional learned representation.

In my first topic ID experiment I evaluate topic ID error on raw multinomial views
4https://github.com/fmof/sagepp
5For Gibbs sampling, fractional counts are truncated.
6I do not apply tf-idf to the speech data because tf-idf requires hard (discrete, sparse) counts in

practice and my speech data is represented by soft (continuous, dense) counts. If I were to apply tf-
idf to the speech data, the document frequencies would be similar (close to the number of documents
in the corpus) for most triphone state clusters because of the low sparsity of that representation [May
et al., 2015a].
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of the data. In subsequent experiments I explore the interaction of representation

dimensionality with each model and dataset and evaluate the classifier when it is

only given a fraction of the available data for training. This latter configuration is

the most interesting as it reflects the cost of obtaining supervised data in practice.

Given feature vectors for some representation of the documents in a corpus, topic

ID is performed in a one-versus-all framework. I use logistic regression as the per-

class binary classifier, implemented using LIBLINEAR [Fan et al., 2008]. Results

were similar when logistic regression was replaced by support vector machines. All

document representations are length-normalized (divided by their l2 norm) before

they are input to the classifier. Performance is measured by topic ID error, the

error of multi-class prediction where the class predicted for each document is that

of the per-class classifier that gave it the highest weight. Baseline performance on

the test set (where the baseline classifier chooses the most prevalent topic in the

training set for all test examples) is 96.2% error. Note that this error rate differs

from the uniform-at-random classification error rate of 97.5% because of the uneven

distribution of topics.

4.5.1 Document Construction

Prior work [Hazen et al., 2007, Wintrode and Khudanpur, 2014] treated whole con-

versations as documents in addition to separating each conversation into its two sides.

I perform a small topic ID experiment in this configuration to probe the impact of this
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design choice. Ten-fold cross-validation (CV) is used to tune the logistic regression

regularizers. On the test set, the classifier achieves topic ID error of 12.4% and 15.6%

for whole-conversation and individual-side text data, respectively, and 20.1% and

29.5% for whole-conversation and individual-side speech data, respectively. These re-

sults correspond roughly to results listed in Table 3 of Hazen et al. [2007], specifically,

the topic ID error of 8.2% and 12.4% for whole-conversation and individual-side tran-

scriptions, respectively, and 22.9% and 35.3% for whole-conversation and individual-

side triphones derived from ASR lattices, respectively [Hazen et al., 2007]. However,

I use logistic regression without feature selection instead of Naïve Bayes with feature

selection, and I apply my classifier to triphone state cluster soft counts inferred by a

DNN instead of triphone counts from ASR lattices. I believe that the discrepancies in

performance with respect to prior work are due to these differences in experimental

configuration. My results and those of prior work show that using whole-conversation

documents instead of individual-side documents make the topic ID task easier. As

a result, I expect that differences in performance between the different learned rep-

resentations will be more clearly pronounced on individual conversation sides and I

restrict the rest of my study to that setting.

4.5.2 Dimensionality Study

I perform topic ID on learned representations at dimensions of K = 10, 50, 100,

200, 300, and 600 on individual conversation sides, using ten-fold cross-validation to
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Figure 4.2: Topic ID error (%) on the test set for raw and tf-idf representations and
lower-dimensional learned representations at dimensions of K = 10, 50, 100, 200, 300,
and 600.

tune the logistic regression regularizers. Figure 4.2 gives topic ID error results on the

test set, varying K; selected values are listed in Table 4.1. In both datasets, as the di-

mension K of a learned representations increases, topic ID error decreases, approach-

ing (approximately) the raw baseline. On text, tf-idf performs slightly better than

the raw representation. LSA is marginally the best-performing lower-dimensional

learned representation; LDA performs well at some representation sizes, depending

on the data source, but is less consistent. SAGE performs poorly overall.
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view model dimension error

text LDA 600 16.5
text SAGE 600 31.3
text LSA 600 16.7
text tf-idf 26 606 13.6
text raw 26 606 15.6
speech LDA 600 35.3
speech SAGE 600 63.0
speech LSA 600 26.2
speech raw 7591 29.5

Table 4.1: Selected topic ID error (%) values from Figure 4.2.

4.5.3 Limited Data Study

The raw text and speech representations (multinomial observations) are very high-

dimensional, and the classifier is likely to overfit to specific components (words or

triphone state clusters) in these representations. To measure this effect and attempt

to separate the predictive power of logistic regression from the quality of the learned

representations in my analysis, I experiment with reducing the number of labeled

training examples the classifier can use; I still learn representations on the full (un-

labeled) training set. This experiment represents the limited-supervision setting in

which supervised data is costly to obtain but unlabeled data abounds.

I run this experiment twice, using ℓ = 2 and ℓ = 6 labeled examples per topic,

for a total of 80 and 240 classifier training examples, respectively. Ten-fold cross-

validation is used to fit the regularizer; per-class loss coefficients are set according

to the class prior in the original training set in order to counteract the artificial

balancing of the classes in the limited-supervision dataset. I report cross-validation
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estimates of the topic ID error on the training set for K = 10 (Figure 4.3), K =

100 (Figure 4.4), and K = 600 (Figure 4.5). For K = 100 and K = 600, LSA

dominates in the limited-supervision setting. SAGE performs poorly overall;7 LDA

performs significantly better than SAGE but worse than LSA. Finally, tf-idf–weighted

word counts perform very well on text, often achieving the best performance of all

representations even under limited supervision.

4.6 Discussion

I have theoretically and empirically compared several content-bearing representa-

tions from prior work, measuring their relative performance as features for topic ID.

In the full-supervision setting, the lower-dimensional learned representations converge

in performance to the raw representation as the dimension K increases. However, if

only a couple of labeled examples per class are available—which reflects the expense

of obtaining labels in practice—then learned representations generally outperform the

raw representation, which is more prone to overfitting. Among learned representa-

tions, LSA consistently outperforms the topic discovery (topic model) representations.

7I believe that approximately sparse posterior θ(d) values result in a kind of topic switching,
contributing to the poor performance of SAGE. To test this hypothesis, I “tested on train” and
analyzed the top topics inferred for each document: While the highest-weighted topic tended to
be consistent, SAGE infers approximately sparse θ(d) with large variation in the next four highest-
weighted topics (the remaining topics are assigned trace mass). Second, a phenomenon known as
conversation drift, described in May et al. [2015b], is so pronounced in Fisher that the first 25%
percent of words of each conversation side are nearly as predictive as the entire document [Wintrode,
2013]. All representations must contend with this drift, but SAGE may be particularly susceptible
due to sparsity in θ(d). These two issues may make the classification I use much less robust.
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Figure 4.3: CV topic ID error (%) for raw and tf-idf representations and lower-
dimensional learned representations of size K = 10. Error bars denote plus and
minus one standard deviation according to the CV empirical distribution.

Tf-idf performs surprisingly well in the limited supervision setting; it is learned from

the data, but it should be prone to overfitting due to its high dimensionality. More-

over, tf-idf outperforms the learned representations by the widest margin for K = 10,

which is relatively close to typical dimensionalities of topic models. While LDA’s

relative performance improves for higher K, those dimensionalities are rare in topic

modeling practice, as a very large number of topics may be intractable for human

analysts. It is also surprising that SAGE performance on text degrades significantly

at high dimensions; I suspect this is due to topic switching, but further investigation

is warranted.

Word counts and triphone state cluster soft counts provide only one view of text

64



CHAPTER 4. FEATURES FOR TOPIC IDENTIFICATION

lim−2 lim−6 full

text
speech

0

25

50

75

0

25

50

75

representation

to
pi

c 
ID

 e
rr

or
 (

%
)

LDA SAGE LSA tfidf raw

Figure 4.4: CV topic ID error (%) for raw and tf-idf representations and lower-
dimensional learned representations of size K = 100. Error bars denote plus and
minus one standard deviation according to the CV empirical distribution.

and speech (respectively), and other input representations may yield different conclu-

sions. The particular LSA approach I used for text, based on tf-idf weighting, is not

as appropriate for my speech data, which is dense. Future work could evaluate other

implementations of LSA or use a higher-level view of speech, such as triphone state

cluster n-grams, that more naturally exhibits sparsity and lends to tf-idf weighting. In

particular, weighting by a likelihood ratio test statistic and applying a log transform

has generated better performance in several other tasks [Lapesa and Evert, 2014]. Fu-

ture work could also test my conclusions on higher-resource views of speech such as

ASR word counts or lower-resource views such as mel-frequency cepstral coefficients

(MFCCs).
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Figure 4.5: CV topic ID error (%) for raw and tf-idf representations and lower-
dimensional learned representations of size K = 600. Error bars denote plus and
minus one standard deviation according to the CV empirical distribution.

I have provided a brief evaluation of learned representations on multinomial text

and speech data. Prior work has evaluated related learned representations on text

data alone, surveying parameters and tasks at greater breadth [Lapesa and Evert,

2014, Levy et al., 2015]. A similarly comprehensive evaluation spanning the text and

speech research communities would demand great effort but serve as a proportionately

large and versatile resource. In complement, a detailed, case-by-case analysis of errors

made by the models in my study could illuminate future modeling efforts by exposing

exactly how and why each model errs or excels in each setting.

I suspect the reason that LDA does not perform as well as other feature repre-

sentations is simply that the effective definition of “topic” differs between the tasks

66



CHAPTER 4. FEATURES FOR TOPIC IDENTIFICATION

of topic discovery and topic identification. Indeed, the earnest evaluation of topic

models is difficult in part because the notion of “topic” is ill-defined. In any case, I

hypothesize that the poor performance of topic discovery features for topic identifi-

cation is at least partly due to mismatched objective. To improve the performance of

such features, I would propose applying a semi-supervised topic model such as LDA

with Dirichlet Forest priors [Andrzejewski et al., 2009] or the anchored Correlation

Explanation model [Gallagher et al., 2017] to incorporate the (limited) supervision

directly into the topic modeling objective. I would also suggest a qualitative compar-

ison of the tf-idf and LDA features used in topic identification and the gold-standard

topics, as that analysis may reveal specific shortcomings of the LDA representation.

4.7 Conclusion

The literature suggests that topic discovery and topic ID rely on the same basic

information in a collection of documents. I’ve conducted preliminary experiments to

test this hypothesis in a controlled setting. On both speech and text transcripts de-

rived from topic-labeled conversations, I find that representations derived from topic

models are consistently outperformed by common non–topic-model representations

as features for topic ID. Therefore, while topic models and topic identification may

share a common underlying representation in theory, I find that congruence is not

borne out in practice.

67



Chapter 5

Language Independence

5.1 Preface

This chapter is split into two parts: a study using a manual (human-in-the-loop)

evaluation and a larger study using an automated evaluation. The original manual

study was a collaboration [May et al., 2016], and in the following, I reproduce with-

out further notice those parts of the study for which I was primary author, citing the

original study for work done primarily by my collaborators. This study was origi-

nally performed and submitted for publication prior to the publication of Schofield

and Mimno [2016], which was performed independently and ultimately “scooped” our

study. That said, Schofield and Mimno [2016] analyzed a different language, took a

different methodological approach, and provided a much more comprehensive analy-

sis altogether. In the second part of this chapter, I build on the foundation laid by
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Schofield and Mimno [2016] to extend my previous study.

Natural language processing research has long focused almost exclusively on English-

language text. Topic modeling research is no exception, and because most topic mod-

els treat each document as a “bag of words,” they are sometimes framed as language-

independent technologies or applied uniformly across languages [Mimno et al., 2009].

However, effective use of a topic model is inevitably contingent on the application of

various preprocessing and/or postprocessing steps. Indeed, some authors argue that

stemming or lemmatizing the text before training may be necessary: “For languages

with a richer morphology, [stemming] is particularly critical . . . . However, for En-

glish, this is more a matter of taste. When topics are designed for human inspection,

many users prefer not to see stemmed words” [Boyd-Graber et al., 2014]. Similarly,

Schofield and Mimno write: “Although stemmers are commonly used in topic models .

. . we find no empirical benefits for the practice” [Schofield and Mimno, 2016]. Hence,

I inferred the following implicit theory (coexisting with a contradicting theory):

Theory. The effective usage of LDA is similar across languages.

Using both human-in-the-loop and fully automated procedures, I evaluated topic

models trained on lemmatized and unlemmatized corpora across several languages,

providing several contributions to science:

• This chapter is one of the first published studies of the impact of lemmatization

on topic modeling.
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• I have performed a human-in-the-loop analysis of topic model interpretability

and and an automated analysis using proxy methods on a similar data set,

increasing collective knowledge about the practical relationship between costly

human-in-the-loop evaluation methods and automated proxy methods.

• I have analyzed the impact of lemmatization on topic models in several lan-

guages by re-using methods from Schofield and Mimno [2016], increasing the

comparability of our studies and facilitating future work.

• I have publicly released my experiment code for the benefit of future research.1

Ultimately, I found that topic model quality improved with lemmatization in

some cases I studied but not in most. Thus, although LDA is sometimes presented

as a language-independent technology in theory, its effective application in practice

benefits from a language-dependent treatment.

5.2 Introduction

Topic modeling is often portrayed as a tool for the unsupervised analysis of text

corpora, regardless of their language or domain. In fact, Blei et al. [2003b] introduce

LDA as “a generative probabilistic model for collections of discrete data such as text

corpora” [Blei et al., 2003b], suggesting that LDA not only applies across languages,

but beyond language altogether. The generality of LDA is a theme reproduced in
1https://github.com/ccmaymay/lda-lemmas

70

https://github.com/ccmaymay/lda-lemmas


CHAPTER 5. LANGUAGE INDEPENDENCE

later work; for example, in an extension of LDA that models multiple languages in

parallel, Mimno et al. [2009] treat data from different languages uniformly. However,

while topic modeling discourse supports a theory that the effective usage of LDA is

language-independent, it also seems to support the opposing theory, that the usage of

LDA is language-dependent : For example, Boyd-Graber et al. [2014] write that “for

languages with a richer morphology, [stemming] is particularly critical” [Boyd-Graber

et al., 2014]. These two theories appear to exist simultaneously, such that the theory

encountered when reading the literature (for example) depends on context. In this

chapter, I investigate the former theory, that effective topic modeling is language-

independent.

Topic models pick up on the co-occurrence signal between different words in a cor-

pus, such that words that occur often in the same document are likely to belong to

the same latent topic. In languages that exhibit rich inflectional morphology, the sig-

nal becomes weaker because of the proliferation of different word tokens with similar

meanings. While lemmatization (or stemming) is often used to preempt this problem,

its effects on a topic model are studied privately, or perhaps assumed; they are not

studied in published work.2 In this study, I provide some of the first published mea-

surements of the effect of token-based lemmatization on topic models across languages

of varying morphological richness.

Syntactic information is not typically considered to exert a strong force on the
2For a more detailed discussion of topic modeling practice including stemming in different lan-

guages, see Boyd-Graber et al. [2014].
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thematic nature of a document. Indeed, for this reason topic models often make a

bag-of-words assumption, discarding the order of words within a document. In mor-

phologically rich languages, however, syntactic information is often encoded in the

word form itself. This form of syntactic variation is a nuisance variable in many topic

modeling applications, “polluting” topic representations learned from data [Boyd-

Graber et al., 2014]. As May et al. [2016] explain, while there is only form of the

Russian name Putin in the English language, there are many forms in the Russian

language, including Путин, Путина, Путину, Путине, and Путином. The choice of

which form to use depends on the surrounding sentence’s syntactic structure. Ad-

ditionally, relations involving prepositions and other stop words in English are often

marked by inflectional suffixes in Russian [May et al., 2016]. Topic models are gener-

ally sensitive to the presence of prepositions and other stop words in English [Wallach

et al., 2009a, Blei et al., 2010, Eisenstein et al., 2011], so we might expect them to be

sensitive to morphological variation in languages like Russian.

In this chapter, I use a variety of methods to test the language-independence

theory of topic modeling. First, in a small preliminary study, I train topic models

on a corpus of Wikipedia articles with and without preprocessing by lemmatization.

Using a human-in-the-loop procedure with Russian language experts, I evaluate the

effect of lemmatization on a model’s interpretability. I then extend my study to

multiple languages and lemmatizers, switching to automated evaluation procedures

to account for the increase in scale. Specifically, I evaluate topic models using several
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automated evaluation procedures on English, Farsi, Korean, and Russian Wikipedia

articles subject to no lemmatization, lemmatization using the same lemmatizer as

before, and lemmatization using a different lemmatizer. Finally, I summarize my

findings across these studies to argue that effective topic modeling in practice is

language-dependent in general.

5.3 Background

Following May et al. [2016], I focus on inflectional morphology, a kind of variation

in word structure that marks syntactic properties like number and gender. English has

relatively little inflectional morphology, including variation in number (dancer and

dancers) and degree of comparison (fancier and fanciest). However, languages like

Russian use inflectional morphology more prominently, with Russian nouns having

twelve word forms and Russian verbs having more than thirty [May et al., 2016].

Many natural language processing techniques, including topic models, generally treat

words as discrete units, so the proliferation of word forms for the same underlying

word type in languages like Russian creates sparsity in the data. To mitigate that

increase in sparsity, we can lemmatize the data, applying an approximation to map

each word form to a lemma representing the underlying word type. In this study I

use the TreeTagger lemmatizer [Schmid, 1994] of May et al. [2016].

There are other kinds of morphology that one might consider in topic modeling.
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Inflectional morphology refers to variation within a lexeme, a set of word forms sharing

a lemma but referring to the same underlying concept. There is also variation in word

formation between lexemes, including derivation and compounding forms. Derivation

refers to the formation of a word (lexeme) from another word by adding affixes that

are not themselves independent words. For example, the word dancer is derived

by affixing the non-word r to the word dance. While dancer and dancers refer to

different numbers of the same underlying concept, dance refers to a slightly different

concept altogether, namely, the thing that dancers do. Compounding, on the other

hand, refers to the formation of a word from two or more other independent words.

For example, the word dancewear is formed from the independent words dance and

wear and represents a new concept altogether.

Given that topic models represent corpora by collections of topics, or concepts, I

focus on the role of inflectional morphology in topic modeling. Because word forma-

tion creates words representing different concepts from their components, normalizing

variation from derivation and compounding (for example) is susceptible to change the

meaning of some word tokens. In contrast, controlling for inflectional variation does

not change the underlying meaning of a token in principle.

To study the effect of lemmatization on topic models in practice, we must oper-

ationalize the concept of “topic models.” In this study, for comparability with other

work, I restrict my attention to latent Dirichlet allocation (LDA) [Blei et al., 2003b],

the foundational Bayesian graphical topic model. I measure the performance of a
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topic model with metrics representing its interpretability, as topic models are most fit

for discovering human-interpretable decompositions of the data [May et al., 2015a].

5.3.1 Related Work

There are more modern but less widely-used topic models than LDA, such as the

sparse additive generative (SAGE) topic model, which explicitly models the back-

ground word distribution and encourages sparse topics [Eisenstein et al., 2011], or

the nested hierarchical Dirichlet process (nHDP) topic model, which represents top-

ics in a hierarchy and automatically infers its effective size [Paisley et al., 2015]. These

models may be more interpretable by some measures but are less widely used and

accessible. Separately, the infinite-vocabulary LDA model has a prior similar to an

n-gram model [Zhai and Boyd-Graber, 2013], which could be viewed as loosely en-

coding beliefs of a concatenative morphology, but the effect of that prior has not been

analyzed in isolation. I seek to measure the impact of lemmatization on a topic model

and would like my results to be applicable to research and industry, so I leave these

alternative topic models as considerations for future work.

Though stemming and lemmatization have long been applied in topic modeling

studies [Deerwester et al., 1990, Hofmann, 1999, Mei et al., 2007, Nallapati et al.,

2008, Lin and He, 2009], their effect on a topic model was publicly investigated only

recently, in a comparison of rule-based and context-based stemmers in LDA topic

models on four English corpora [Schofield and Mimno, 2016]. Overall, stemming was
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found to reduce model fit, negligibly affect topic coherence, and negligibly or nega-

tively affect model consistency across random initializations. In light of these results,

Schofield and Mimno [2016] recommended refraining from stemming the corpus as a

pre-processing step and instead stemming the topic keys as a post-processing step,

as needed. The primary distinction between this work and Schofield and Mimno

[2016] is my consideration of languages other than English. While my preliminary

study using a human-in-the-loop evaluation on Russian Wikipedia was performed

prior to the publication of Schofield and Mimno [2016], I performed the larger, mul-

tilingual follow-up study more recently and reused many of the methods of Schofield

and Mimno [2016].

As observed in May et al. [2016], morphology has been studied relatively little in

the context of topic modeling; it has received more substantial attention, however,

in the context of related but more recent word embedding models [Bian et al., 2014,

Soricut and Och, 2015, dos Santos and Zadrozny, 2014, Ling et al., 2015].

5.4 Manual Evaluation

In my first study, I use a human-in-the-loop procedure to evaluate the effect of

lemmatization on LDA topic models trained on Russian Wikipedia articles.

Recall that for some pre-specified number of topics K and Dirichlet concentration

hyperparameters β and α, the LDA topic model represents a corpus by a set of K
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model topic keys

lemmatized деревня⋆ сельский поселение пункт сельсовет
none деревня⋆ деревни⋆ деревне⋆ жителей волости
lemmatized клетка лечение⋆ заболевание препарат действие
none лечения⋆ течение лечение⋆ крови заболевания
lemmatized японский⋆ япония корея префектура смотреть
none считается японии японский⋆ посёлок японской⋆

lemmatized художник⋆ искусство художественный⋆ картина выставка†
none искусства музея картины выставки† выставка†

Table 5.1: Topic pairs from my coauthored paper [May et al., 2016, Table 2], repro-
duced with permission. We manually aligned four topics from the lemmatized model
with four topics (respectively) from the unlemmatized (“none”) model based on their
content. We used the symbols ⋆ and † to mark words sharing a lemma; for example,
in the first topic pair, the words from the unlemmatized model деревня, деревни,
and деревне are marked with the ⋆ symbol to indicate they have the same lemma,
деревня (the Russian word for village). In this reproduction, I have color-coded the
words by lemma to aid interpretation. The topic keys from the unlemmatized model
are less informative, as they contain largely redundant information in the form of
multiple forms of the same underlying word type.

i.i.d. topics ϕ(k), represents each document d as an i.i.d. mixture over those topics

(with mixture weights θ(d)), and specifies that each token in a document is generated

by sampling a word type from the document’s topic mixture. Meaningful evaluation

of topic models is notoriously difficult and has received considerable attention in the

literature [Chang et al., 2009, Wallach et al., 2009b, Newman et al., 2010, Mimno

et al., 2011, Lau et al., 2014]. Given common applications of topic models, an evalua-

tion metric that correlates with a human’s ability to use the model to explore or filter

a large dataset, hence the interpretability of the model, is preferable. In this study,

I moreover require an evaluation metric that is comparable across different treat-

ments of the same corpus, specifically an unlemmatized treatment and a lemmatized
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treatment.

With those concerns in mind I choose a word intrusion evaluation: A human

expert is shown one topic at a time, represented by its m topic keys (for some small

number m) in random order, as well as an additional word (called the intruder)

randomly placed among the topic keys [Chang et al., 2009]. The intruder is randomly

selected from the set of high-probability words from other topics in the model. The

expert is tasked with identifying the intruder in each list of m+1 words. As in prior

work [Chang et al., 2009], I instruct the expert to ignore syntactic and morphological

patterns.

If the model is interpretable, the topic keys will be internally coherent whereas the

intruder word is likely to stand out. Thus a model’s interpretability can be quantified

by the fraction of topics for which the expert correctly identifies the intruder. I call

this value the mean model precision (MMP):

MMP =
1

K

K∑︂
k=1

[ik = ωk]

where K is the number of topics in the model, ik is the index of the intruder in the

randomized word list generated from topic k, and ωk is the index of the word the

expert identified as the intruder. This is just the mean (over topics) of the model

precision metric from prior work [Chang et al., 2009] in the special case where there

is only one expert (and the model is left implicit).
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I use the lemmatized and unlemmatized treatments of a Russian Wikipedia cor-

pus, as described in May et al. [2016], as my data set. I consider two additional

preprocessing schemes to account for stop words, which also play a role in inter-

pretability. First, I compute the vocabulary as the top 10 000 words by document

frequency,3 separately for the lemmatized and unlemmatized data, and specify an

asymmetric prior on each document d’s topic proportions θ(d). I refer to this pre-

processing scheme as the unfiltered-asymmetric approach. The second preprocessing

scheme I consider uses a vocabulary with high-frequency words filtered out and a

uniform prior on the document-wise topic proportions. I refer to this approach as

filtered-symmetric. Specifically, a 10 000 word vocabulary is formed from the lemma-

tized data by removing the top 100 words by document frequency over the corpus

and taking the next 10 000. To determine the unlemmatized vocabulary, I map the

filtered lemmatized vocabulary onto all word forms that produce one of those lemmas

in the data. Finally, observing that some of the uninformative high-frequency words

reappear in this projection, I remove any of the top 100 words from the lemmatized

and unlemmatized corpora from this list, producing a unlemmatized vocabulary of

72 641 words. While the large size of this vocabulary slows learning, I do not believe

it impacts the results negatively; my priority is retaining the information captured

by the lemmatized vocabulary to provide a fair comparison.

In addition to exploring different choices of vocabulary, I also consider truncating
3Due to implementation concerns, the lemmatized and unlemmatized vocabularies consist of the

top 9387 and 9531 words (respectively) by document frequency.
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the documents to their first 50 tokens.4 This augmentation simulates data sparsity by

reducing the amount of content-bearing signal in each document, so I might expect

the truncated documents to more greatly benefit from lemmatization (which can be

cast as a dimensionality reduction method).

I train LDA by stochastic variational inference [Hoffman et al., 2013], initializing

the models randomly and using fixed priors.5 I specify K = 100 topics to all models.

Uniform priors with ηv = 0.1 and αk = 5/K were given to filtered-symmetric models;

non-uniform priors with ηv = 0.1, α1 = 5, and αk = 5/(K−1) for k > 1 were given to

unfiltered-asymmetric models. The local hyperparameters α are informed by mean

document word usage and document length; in particular, I believe approximately

50% of the word tokens in the corpus are uninformative.

The mean model precision for all four configurations (filtered-symmetric or unfiltered-

asymmetric vocabulary and full-length or truncated documents), and the p-values for

one-sided MMP differences (testing my hypothesis that the lemmatized models yield

higher MMP than the unlemmatized models), are reported in Table 5.2. Word intru-

sion performance benefits significantly from lemmatization on a filtered vocabulary

and a symmetric prior. Truncated documents exhibit lower performance overall and

are helped less by lemmatization. Further, I observe differences between use of an

asymmetric prior on an unfiltered vocabulary and use of a symmetric prior on a
4As the vocabulary does not contain rare words, the number of tokens per document seen by the

model is less than 50.
5In preliminary experiments, Gibbs sampling with hyper-parameter optimization did not improve

interpretability.
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vocabulary prior documents MMP p-value

unlemmatized lemmatized

unfiltered symmetric full 0.54 0.52 0.61
filtered asymmetric full 0.50 0.65 0.02
unfiltered symmetric truncated 0.37 0.37 0.50
filtered asymmetric truncated 0.43 0.47 0.28

Table 5.2: Mean model precision for the unlemmatized and lemmatized models and
p-values for the one-sided MMP difference tests. The MMP when using a filtered
vocabulary coupled with an asymmetric prior on full-length documents benefits sig-
nificantly from lemmatization (row highlighted in bold).

vocabulary with stop words filtered out.

As observed in May et al. [2016], stop words were highly ranked in many topics

from the unfiltered-asymmetric models despite the asymmetric priors encouraging

frequent words into each model’s first topic. Additionally, a manual alignment of

topics from the lemmatized and unlemmatized filtered-symmetric models 5.1 (trained

on full documents) revealed that the keys of many unlemmatized topics contained

redundant word forms corresponding to a single lemma in the topic keys of a similar

lemmatized topic [May et al., 2016]. Thus, in many cases, the lemmatized model

lends more easily to human interpretation.

5.5 Automatic Evaluation

In the previous section, I studied the interpretability of topic models on Russian

text using a human-in-the-loop evaluation process. In this section, I study topic

models on several different languages using an automated evaluation process. While
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the automated evaluation is more cost-effective, I expect it exhibits a lower correlation

with most notions of interpretability than the manual evaluation.

In this study, in addition to using different evaluation metrics, I use different data

sets and learning algorithms. In this study, I use the preprocessed Wikipedia data

sets prepared by Al-Rfou et al. [2013] largely out of practical concerns, as I no longer

have access to the Russian data set used in the previous study, and preprocessing

Wikipedia data sets in other languages would add substantially to the overall com-

putational cost. I use the Gibbs sampling LDA training procedure implemented in

MALLET [McCallum, 2002] partly for practical concerns (as it is more readily acces-

sible) but largely out of hindsight: While I expect the hyperparameter optimization

provided by MALLET to filter stop words at least as well as the fixed asymmetric

priors considered in the prior study, MALLET is also far more accessible to other

researchers and practitioners and better represents the practice of topic modeling.6

Specifically, I perform an evaluation of LDA topic models trained on the prepro-

cessed English, Farsi (Persian), Korean, and Russian Wikipedia data subsets of the

Polyglot multilingual Wikipedia data set [Al-Rfou et al., 2013].7 These data sets vary

in size by over an order of magnitude, so before performing any other processing, I

subsample all data sets to 200 000 documents. I consider three different lemmatiza-

tion treatments applied to each data set: No lemmatization treatment, lemmatization
6MALLET is accessible online as a compiled Java program or source code at https://mimno.

github.io/Mallet/index. Additionally, the MALLET GitHub repository (https://github.com/
mimno/Mallet) has over 30 contributors and 300 forks at the time of writing.

7The Polyglot data set is accessible online at https://sites.google.com/site/rmyeid/
projects/polyglot.
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using TreeTagger [Schmid, 1994],8 and lemmatization using UDPipe models trained

on Universal Dependencies 2.5 treebanks [Straka and Straková, 2017]. I then lower-

case each treatment of each data set and train ten topic models (using ten different

random seeds) on each one.9 I evaluate each data set using the variation of informa-

tion (VOI) and modified topic coherence procedures of Schofield and Mimno [2016],10

using m = 5 topic keys for topic coherence and filtering the top 200 words in each

corpus (by document frequency) out of the untreated topic keys as stop words.

5.5.1 Topic Coherence

Recall that topic coherence measures the degree to which a topic’s keys co-occur

in the corpus (occur in the same documents) [Mimno et al., 2011]. If D(w,w′) is

the number of documents in which words w and w′ co-occur, D(w) is the number of

documents in which w occurs (its document frequency), and v
(k)
i is the i-th topic key

(the i-th most probable word) of topic k, then define the topic coherence TC ′(k) of

topic k as

TC ′(k) =
m∑︂
i=2

i−1∑︂
j=1

log
D

(︂
v
(k)
i , v

(k)
j

)︂
+ β

D
(︂
v
(k)
j

)︂
+ β

8TreeTagger and the requisite parameter files for each language are currently available online
from https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/.

9UDPipe and the requisite parameter files for each language are currently available online from
https://ufal.mff.cuni.cz/udpipe/1.

10I set the modified topic coherence smoothing parameter β to the optimized value of the Dirichlet
hyperparameter β of the corresponding topic model.
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where m is the number of keys used to represent each topic. This definition differs

slightly from that of Mimno et al. [2011]: For my experiments, following Schofield

and Mimno [2016], I smooth the counts by a parameter β to imitate the smoothing

induced by the Dirichlet priors in LDA.

To control for differences in vocabulary size between different treatments, I use

the modified version of topic coherence proposed by Schofield and Mimno [2016].

In addition to smoothing with a parameter β, in the modified formulation of topic

coherence, topic keys are computed by taking the token assignments in the model to

be evaluated, replacing the word at each token location by the corresponding word in

the untreated corpus,11 and computing the most frequent words in the resultant list.

Accordingly, the modified topic coherence is computed using the document frequencies

and co-document frequencies from the untreated corpus. This procedure allows us to

compare the coherence of a topic model trained on a lemmatized version of a corpus to

one trained on the untreated corpus without favoring the lemmatized model a priori

just because its data set exhibits less sparsity.

Both the modified and unmodified versions of topic coherence only represent the

coherence of a single topic. I compute a model’s overall topic coherence by taking the

mean of the topic coherence scores for its individual topics.

Figure 5.1 shows the distribution of the (modified) negative topic coherence for

each treatment on each language corpus. Overall, lemmatization treatments increased
11This operation requires that lemmatization maps each word to exactly one lemma. In particular,

a lemmatizater cannot map a word form to multiple “lemmas.”
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Figure 5.1: Distribution of modified negative topic coherence for topic models trained
on each treatment of each corpus. Lower is better.
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negative topic coherence, meaning they made the topics less coherent. However, UD-

Pipe on Farsi and Korean yielded small (and likely insignificant) increases in median

coherence. Lemmatization with TreeTagger had a detrimental effect on Farsi and the

largest detrimental effect on Russian, while UDPipe had the largest detrimental effect

on English and Korean.

Unlike the human evaluation, this evaluation controls for the vocabulary size.

Thus, while TreeTagger appears to lower the topic quality according to these results

and raise the topic quality according to the human evaluation results, this discrepancy

might be explained by the different vocabulary sizes between treatments in the human

evaluation.

To investigate this hypothesis, I first compute the ratio of word types to word

tokens for each treatment of each corpus to measure the reduction in vocabulary

effected by each lemmatizer. These ratios are depicted in Figure 5.2. On all languages

but English, UDPipe yields a larger reduction in vocabulary than TreeTagger. The

differences between ratios are especially stark in Korean, on which UDPipe almost

halves the vocabulary.

I also compute the unmodified topic coherence, which does not control for vocab-

ulary size. The distributions of unmodified negative topic coherence for each treat-

ment of each language data set are shown in Figure 5.3. Unmodified topic coherence

is improved by both lemmatization treatments on all languages. The improvements

provided by TreeTagger and UDPipe on Korean and Russian are particularly stark.
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Figure 5.2: Type-token (word type/word token) ratio for each treatment of each
corpus. Because both lemmatizers map each unlemmatized token to exactly one lem-
matized token, the ratios for each language are directly proportional to the vocabulary
sizes of that language’s untreated and treated corpora.
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Figure 5.3: Distribution of unmodified negative topic coherence for topic models
trained on each treatment of each corpus. This variant of topic coherence does not
control for differing vocabulary sizes between treatments. Lower is better.

88



CHAPTER 5. LANGUAGE INDEPENDENCE

Thus, the improvement in topic quality indicated under the human evaluation might

be explained largely by the reduction in vocabulary size as observed through the

topic keys, and may not represent an improvement in the underlying fit of the topic

model. However, recall that I use a different data set in this evaluation than in the

human evaluation, likely reflecting a different subset of Wikipedia in a different year

preprocessed with a different text normalization procedure. Hence, comparison of the

modified and unmodified variants of topic coherence affords only suggestive evidence

for explaining the discrepancy between the human and automated evaluations.

5.5.2 Variation of Information

Recall that the variation of information (VOI) is an information theoretic metric

of how much information is lost when moving between two clusterings C1 and C2.

VOI is defined [Meilă, 2007] as

V I(C1, C2) = H(C1) +H(C2)− 2I(C1, C2)

or equivalently

V I(C1, C2) = H(C1|C2) +H(C2|C1).

89



CHAPTER 5. LANGUAGE INDEPENDENCE

none

treetagger

udpipe

none
treetagger

udpipe

5.84

5.88

5.92

5.96

mean VOI

(a) English

none

treetagger

udpipe

none
treetagger

udpipe

4.96

5.00

5.04

5.08
mean VOI

(b) Farsi

none

treetagger

udpipe

none
treetagger

udpipe

4.85

4.90

4.95

5.00

5.05

5.10

mean VOI

(c) Korean

none

treetagger

udpipe

none
treetagger

udpipe

5.20

5.25

5.30

5.35

5.40

mean VOI

(d) Russian

Figure 5.4: Mean variation of information (VOI) between topic models trained on
each treatment of each corpus. The diagonal in each plot shows intra-treatment VOI
and the off-diagonal shows inter-treatment VOI. Darker (lower VOI) is better.

Following Schofield and Mimno [2016], I apply the variation of information to two

topic models by taking the tokens in a corpus as the data points X and the token

assignments under the two models as the clusterings C1 and C2 of those tokens.12

Figure 5.4 shows the mean variation of information for each setting. The tiles on

the diagonals depict mean intra-treatment VOI (VOI between topic models trained
12Within a treatment (intra-treatment), I compute VOI for all two-sets of trials (distinct unordered

pairs of distinct trials), yielding
(︁
10
2

)︁
= 45 samples. Across treatments (inter-treatment), I compute

VOI for all pairs of trials, yielding 102 = 100 samples.
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on the same data with different random seeds) while the tiles off the diagonals depict

mean inter-treatment VOI (VOI between topic models trained on different treatments

of the data and different random seeds). The mean intra-treatment VOI for each

language and treatment is less than the mean inter-treatment VOI with each of the

other two treatments at a significance level of p < 10−5 (using a two sample t-test)

in all settings except TreeTagger on Farsi, for which p < 10−2.

On Korean, the mean VOI between the TreeTagger and UDPipe treatments is

significantly less than that between TreeTagger and the untreated corpus (p < 10−15)

and that between UDPipe and the untreated corpus (p < 10−15), suggesting that

TreeTagger and UDPipe lemmatization treatments yield topic models more similar

to each other than to the unlemmatized corpus. Hence, TreeTagger and UDPipe may

have similar effects on a corpus on Korean. On Russian, the mean VOI between the

TreeTagger and UDPipe treatments is significantly less than that between TreeTagger

and the untreated corpus (p < 10−15) and that between UDPipe and the untreated

corpus (p < 10−15), so the same pattern holds. English and Farsi do not exhibit

this pattern. In fact, on English, the mean VOI between TreeTagger and UDPipe is

significantly greater than that between UDPipe and the untreated corpus (p < 10−6),

and on Farsi, the mean VOI between TreeTagger and UDPipe is significantly greater

than that between TreeTagger and the untreated corpus (p < 10−4).

On English and Russian, the mean intra-treatment VOI is significantly greater

for both TreeTagger and UDPipe than for the unlemmatized corpus (p < 10−15).
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On Farsi, mean intra-treatment VOI is somewhat significantly greater for TreeTagger

than for the unlemmatized corpus (p < 0.02 and significantly greater for UDPipe than

for the unlemmatized corpus (p < 10−11). On Korean, mean intra-treatment VOI

is somewhat significantly greater for TreeTagger than for the unlemmatized corpus

(p < 0.04). These results indicate that both lemmatization treatments tend to detract

from the stability of the topic model, with the notable exception of UDPipe on Korean,

which significantly increases stability (mean intra-treatment VOI is significantly less

for UDPipe than for the unlemmatized corpus with p < 10−15).

Finally, the mean intra-treatment VOI on Farsi is significantly greater for UDPipe

than it is for TreeTagger (p < 10−6), indicating that UDPipe detracts from topic

model stability on Farsi significantly more than TreeTagger does.

5.5.3 Automatic Translation

To supplement the automated quantitative analysis of the models, I also perform

a small, partially automated qualitative analysis using machine translation. Specifi-

cally, I use the Translator Dictionary Lookup method from Microsoft Azure Cognitive

Services to translate the topic keys of each model to English. In contrast with other

cloud machine translation interfaces, Translator Dictionary Lookup provides transla-

tions of individual words independent of context, allowing translation of topic keys

without requiring potentially confounding heuristics to ground them in appropriate

contexts. The translated topic keys are then filtered by a set of stop words developed
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for the English corpora by computing the top 200 words in a corpus by document

frequency.

However, while filtering topic keys by these stop words produces satisfactory keys

for the English models, this procedure leaves a significant amount of punctuation

and uninformative words in the translated results from other languages. For exam-

ple, the translated word “pm” appeared at or near the top of almost every topic on

Russian. Novel word forms containing lemmatizer-specific syntax, specifically lemma-

tized words containing # in Farsi and lemmatized words containing + in Korean, also

present an obstacle to automatic translation (hence interpretation). Those machine-

readable “lemmas” may be difficult to interpret even in their untranslated forms by

native speakers. Thus, to facilitate interpretation of the translated topic keys, I also

filter out words with three characters or less and words containing characters outside

of the Latin alphabet.

In the following results, I pick five topics uniformly at random from a TreeTagger-

lemmatized model and show their topic keys alongside manually aligned topics from

the respective UDPipe-lemmatized and unlemmatized models.13 Manual alignment

of topics was performed to approximately control for the effect of interpretability

varying between topics. Thus, while I report only five keys per topic for the purpose
13Specifically, I take the first five topics of the first trial of the TreeTagger-lemmatized model and

align them with topics from the first trial of the UDPipe-lemmatized model and the first trial of the
unlemmatized model. Because of symmetry, this is virtually equivalent to selecting a TreeTagger
trial uniformly at random and then selecting five topics uniformly at random from that model.
Although topic model initialization and other implementation choices may break symmetry, hence
biasing the results of this sampling procedure, I did not see evidence of bias when inspecting the
models and aligning their topics.
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model topic keys

treetagger german germany berlin dutch austria
udpipe german germany berlin dutch swedish
none german germany berlin dutch netherlands
treetagger system⋆ signal light power device
udpipe power energy system⋆ signal current
none energy light surface system⋆ field
none system⋆ digital systems⋆ technology computer
treetagger virginia florida carolina ohio illinois
udpipe york virginia jersey washington carolina
none york virginia jersey washington pennsylvania
treetagger match cricket test score england
udpipe australia australian zealand cricket match
none match cricket wrestling championship test
treetagger company⋆ business product sell market
udpipe company⋆ business product sell market
none company⋆ business companies⋆ products founded

Table 5.3: Five random topics from a TreeTagger-lemmatized model on English,
manually aligned with topics from models subject to other lemmatization treatments.
Words that appear in multiple forms in the unlemmatized model are annotated with
the symbol ⋆ and color-coded. The second set of topics includes two topics from the
unlemmatized model (“none”) because the content of the topics in the lemmatized
models appeared to span multiple topics in the unlemmatized model.

of judging interpretability, I allowed a larger set of topic keys when aligning topics:

One hundred topic keys were output for each topic, translated, and filtered, and I used

the resultant lists to determine whether two topics aligned. This greater allowance

of information during alignment enables better approximation of an “oracle” topic

alignment, if one exists.

The (untranslated) topic keys of randomly sampled topics from the English models

are presented in Table 5.3. While most of the topics appear to be equally informative

in all three models, in two cases, the unlemmatized model’s topic keys contain multiple
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model topic keys

treetagger party sccr election boss representative
udpipe iran islamic election republic revolution
none iran islamic revolution republic tehran
treetagger village⋆ water dara agricultural abad
udpipe village⋆ water dara agricultural mountain
none village⋆ village⋆ water rated agricultural
treetagger disease treatment patient person blood
udpipe disease treatment medication patient person
none disease treatment consumption blood body
treetagger game china japan japanese chinese
udpipe game series company version published
udpipe china country province population source
none game series company published harry
none japan station japanese korea tokyo
treetagger iran tehran iranian volume activity
udpipe iran tehran seyed mirza shah
none iran islamic revolution republic tehran

Table 5.4: Five random topics from a TreeTagger-lemmatized model on Farsi, man-
ually aligned with topics from models subject to other lemmatization treatments.
Words that appear in multiple forms in the unlemmatized model are annotated with
the symbol ⋆ and color-coded. The fourth set of topics includes two topics each from
the UDPipe-lemmatized (“udpipe”) and unlemmatized (“none”) model because the
content of the topics in the TreeTagger-lemmatized model appeared to span multiple
topics in the other models.

forms of a lemma. However, in my judgment, these topics are still highly interpretable,

so lemmatization would not seem to have a substantial effect overall.

The translated topic keys of randomly sampled topics from the Farsi models are

presented in Table 5.4. While most of the topics appear to be equally informative in all

three models, in one case, the unlemmatized model’s topic keys contain multiple forms

of a lemma. Because Farsi exhibits greater morphological variation than English, the

two word forms in Farsi translate to the same word form in English. However, in
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model topic keys

treetagger having routes seoul sectors current
udpipe having routes railway train sectors
none station subway platform guide railway
treetagger having person yourself days week
udpipe having yourself person days pick
none –
treetagger japan emperor⋆ meiji cabinet kyoto
udpipe japan tokyo prefecture having upon
udpipe castle times emperor⋆ shogunate having
none emperor⋆ king china japan emperor⋆

treetagger mind select having mean buddhist
udpipe select having mind mean status
none select mind says should buddhist
treetagger language character english⋆ english⋆ kanji
udpipe language character pronunciations notation word
none character language english⋆ english⋆ hangul

Table 5.5: Five random topics from a TreeTagger-lemmatized model on Korean, man-
ually aligned with topics from models subject to other lemmatization treatments.
Words that appear in multiple forms in the unlemmatized model are annotated with
the symbol ⋆ and color-coded. The second set of topics does not contain an un-
lemmatized topic because one could not be found that aligned with the TreeTagger-
lemmatized model’s topic. The third set of topics contains two UDPipe-lemmatized
topics because the content of the TreeTagger-lemmatized model appeared to span
multiple topics in that model.

my judgment, these topics are still highly interpretable, so lemmatization would not

seem to have a substantial effect overall.

The translated topic keys of randomly sampled topics from the Korean models

are presented in Table 5.5. While many of the topics appear similarly informative in

all three models, the unlemmatized topic in the first set is more interpretable than

the other two, and the UDPipe-lemmatized topic is slightly more interpretable than

the TreeTagger-lemmatized topic. The lemmatized topics in the second set largely
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evade interpretation and do not appear to have an analogue in the unlemmatized

model. Additionally, the relatively uninformative word “having” appears in three out

of five of the TreeTagger-lemmatized topics’ keys and five out of six of the UDPipe-

lemmatized topics’ keys and is not prevalent in the unlemmatized model’s topic keys.

In two cases, the unlemmatized model’s topic keys contain multiple forms of a lemma.

Because Korean exhibits greater morphological variation than English, the two word

forms in a topic in Korean translate to the same word form in English. However,

in my judgment, this redundancy does not impair interpretability, so lemmatization

would not seem to have a substantial effect overall.

The translated topic keys of randomly sampled topics from the Russian models

are presented in Table 5.6. While many of the topics appear to be equally informa-

tive in all three models, the TreeTagger-lemmatized topic in the first set is not as

interpretable as the other two topics, and the second TreeTagger-lemmatized topic

and the unlemmatized topic in the second set have lower interpretability as well. In

two cases, the unlemmatized model’s topic keys contain multiple forms of a lemma.

Because Russian exhibits greater morphological variation than English, some of those

word forms in Korean translate to the same word form in English. In my judgment,

this redundancy does not impair interpretability, so lemmatization would not seem to

have a substantial effect overall. However, these topic sets exhibit more redundancy

in word forms in the unlemmatized model than those for the other languages studied;

based on these results only, we might expect lemmatization to have a greater (al-
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model topic keys

treetagger star mark save thumb edition
udpipe button book⋆ writer magazine novel
none books⋆ book⋆ novel author button
treetagger community kazakhstan bulgaria enter elections
udpipe party political government president minister
udpipe save surname watch community enter
none star bulgaria community enters results
treetagger device signal system frequency digital
udpipe system energy signal field current
none prior image signal device communication
treetagger linear peak kitt spacewatch mart
udpipe linear peak kitt spacewatch mart
none linear peak kitt spacewatch martha
treetagger church⋆ bishop diocese orthodox holy
udpipe church⋆ holy monastery† diocese bishop
none church⋆ church⋆ monastery† orthodox monastery†

Table 5.6: Five random topics from a TreeTagger-lemmatized model on Russian,
manually aligned with topics from models subject to other lemmatization treatments.
Words that appear in multiple forms in the unlemmatized model are annotated with
the symbols ⋆ or † and color-coded. The second set of topics includes two topics
from the UDPipe-lemmatized (“udpipe”) model because the content of the topics in
the TreeTagger-lemmatized model appeared to span multiple topics in the UDPipe-
lemmatized model. The fourth set of topics is conspicuous for its virtually perfect
alignment between the topic keys. These topics pertain to U.S. near-earth object
discovery programs such as LINEAR at MIT Lincoln Laboratory and Spacewatch at
Kitt Peak National Observatory. Based on inspection of the data set, I hypothesize
that the stability of this topic across models results from the existence of long lists
of near-earth objects and the programs that discovered them, which gives rise to
large word frequencies that directly reflect ratios in the real world (specifically, ratios
between the numbers of near-earth objects discovered by each program) in a subset
of the documents.

98



CHAPTER 5. LANGUAGE INDEPENDENCE

beit still somewhat small) effect on interpretability in Russian than it does in other

languages.

5.6 Discussion

In a preliminary study, I used a human-in-the-loop evaluation procedure to mea-

sure the effect of pre-processing by lemmatization on the interpretability of topic

models on Russian language. The results of this study suggest that topic models on

Russian text benefit from lemmatization in some cases, contrasting a related study

that found topic models on English text did not benefit from lemmatization.

In a larger follow-up study, I used automated evaluation metrics to study the

effect of pre-processing by lemmatization on the interpretability of topic models in

several additional languages and one additional lemmatizer. First, I used a modi-

fied topic coherence metric to assess model fit while controlling for the size of the

vocabulary. Since any non-trivial lemmatization reduces the size of the vocabulary,

many metrics that are used to assess model fit, like the original unmodified version of

topic coherence, are biased toward models on lemmatized data simply because their

dimensionality is reduced. The modified version of topic coherence controls for that

dimensionality reduction. And the results using that version of the metric indicate

that the lemmatization treatments I considered actually reduced (worsened) model

fit to some extent. That is, after controlling for vocabulary size, LDA models fit un-
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lemmatized data better than lemmatized data in the cases I studied. This finding is

surprising given my claim that inflectional morphological variation has little impact

on the underlying concept represented by a word. In hindsight, we might hypothesize

that that variation correlates with variation in word sense.

I next applied the original, unmodified topic coherence metric to test whether the

differences in vocabulary size could help explain why the human-in-the-loop evalu-

ation suggested that lemmatization benefited interpretability while the automated

evaluation using topic coherence suggested that lemmatization harmed the fit of the

model (hence, I expect, interpretability). In this case, the lemmatization treatments

noticeably improved the model fit (hence, I expect, interpretability), supporting the

hypothesis that reduction in vocabulary largely explains any improvement in inter-

pretability when using lemmatized data.

Perhaps the most readily generalizable results of the automated evaluation are

the vocabulary reduction and intra-treatment variation of information statistics. A

smaller vocabulary allows more iterations of the training algorithm given the same

computational resources and reduces the degree of data sparsity that the algorithm

must overcome. The lemmatizers provide a much more noticeable vocabulary reduc-

tion in Korean (and, to a lesser degree, Russian) than in English or Farsi, so all else

equal, we might expect lemmatization to provide a more noticeable impact on topic

model interpretability on Korean (and Russian). As for the other metric, UDPipe

yields lower intra-treatment variation of information than either TreeTagger or no
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lemmatization, so we can expect the reliability of a topic model on Korean to im-

prove when the data is lemmatized by UDPipe. While both lemmatizers increase

intra-treatment variation of information (over the no-lemmatization treatment) on

the other three languages, TreeTagger yields a relatively small increase on Farsi, so

we might expect the reliability of a topic model on Farsi to be somewhat higher when

preprocessed with TreeTagger compared to UDPipe.

While the automated evaluation does not require human judges who can read the

languages under study, that decrease in cost and increase in reliability come at the

expense of construct validity. That is, while this automated evaluation protocol elim-

inates the cost of soliciting “interpretability” judgments from people who can read the

languages in question,14 I argue it produces measurements that are less representative

of the construct of “interpretability.” For example, while the unmodified topic coher-

ence statistics suggest that lemmatization does significantly improve interpretability

across languages, that metric only tells us about distributions of words in the cor-

pus and topic model, not their contents, and the words that represent each topic

may still be difficult to interpret. Moreover, while automated translation enables a

glimpse of the contents of those words, English exhibits less morphological variation
14I do not believe this protocol ended up reducing the total number of person-hours expended

in my study, nor do I believe it would provide a reduction in most related studies; designing and
implementing the automated evaluation protocol took considerable time on my part, and I suspect
that experience is typical. I also do not believe that developing unifying software frameworks for
NLP obviates this problem, at least not in the general case. Research is evaluated on its novelty,
among other aspects, and while the availability and accessibility of software automating individual
steps of the research process continues to improve, the requirement of novelty effectively prevents
the use of more holistic NLP software frameworks directly “off the shelf” in my experience.
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than many other languages, so some amount of information about the topic keys is

inevitably lost in translation; additionally, translation fails on a large number of topic

keys, and words that confound the translation algorithm are plausibly less likely to

be interpretable. That is, filtering out words that were not translated into the Latin

alphabet may unintentionally also filter out many words that are not interpretable

by themselves.

In any case, to reduce the amount of language-dependent processing needed for

effective topic modeling, we might consider applying topic models to language units

other than words. In recent years, learned subword representations like byte pair

encoding (BPE) have become popular in many NLP tasks. Unlike lemmatizers, these

representations are computed directly from corpus statistics and do not require further

language-specific resources. While topic modeling on BPE would produce relatively

uninterpretable topic keys using standard methods, I argue we should also consider re-

visiting the construction of these keys (or the design of human–topic-model interfaces

altogether). By sampling words or phrases containing those keys from the corpus,

we might be able to regain interpretability in the topic representations. Additionally,

a tremendous amount of research has extended LDA and proposed alternative topic

models and algorithms, but many approaches still culminate in simple top-m word

lists. Usage of an alternative representation that balances the estimated probability

of each word with the diversity of words presented, like FREX [Bischof and Airoldi,

2012], might improve topic modeling more than improvements in the underlying model
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or learning algorithm.

5.7 Conclusion

If nothing else, the results of both evaluation protocols suggest that preprocess-

ing Russian language data by lemmatization yields a modest improvement in topic

model interpretability, while preprocessing English or Farsi by similar lemmatization

technology yields less improvement, if any at all. Thus, while topic models are often

framed as relatively language-independent techniques in theory, I have found evi-

dence that effective topic modeling benefits from a language-dependent approach in

practice.
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Chapter 6

Hierarchical Modeling for Stop Word

Filtering

6.1 Preface

This chapter began with an attempt to re-implement the algorithm and repro-

duce the results of a recent (at the time) topic modeling paper [Paisley et al., 2012].

Upon reading that paper, I became excited about the potential of its model not only

to induce topic hierarchies but also to filter out stop words automatically.1 In the

following, I describe an investigation emanating from that reproduction attempt.
1Not finding a public software implementation linked in the manuscript or appearing in a cursory

web search, I began re-implementing the algorithm. I found, many months later, that the first author
had released code implementing the algorithm on his website. I also designed my implementation
for scalability and generality, starry eyed over potential applications—applications that were never
able to materialize. I hope future researchers will approach their work more cautiously in order to
better avoid such lost investments.
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While the foundational LDA topic model learns an unstructured collection of

topics to describe a corpus, some more recent models, like the nested hierarchical

Dirichlet process (nHDP), learn topic hierarchies [Paisley et al., 2015]. Because the

nHDP’s hierarchy has an optional root node (topic), we might expect that the root

topic will automatically collect stop words, obviating the need for removing stop words

as a preprocessing or postprocessing step. Indeed, in a footnote, the researchers who

developed the nHDP wrote that the hierarchy “includes a root node topic, which is

shared by all documents and is intended to collect stop words” [Paisley et al., 2015].

However, in that study, stop-word filtering was used for all models that were studied

qualitatively or presented as examples using the topic keys. Nonetheless, I argue that

an optimistic reader would expect an active root node to filter out stop words:

Theory. The nested hierarchical Dirichlet process obviates the need for stop-word

filtering.

However, while I was able to approximately reproduce the results of Paisley et al.

[2015], I found that an active root node did not prevent stop words from proliferating

the descendant topics.

In this chapter, I make the following contributions to science:

• I have performed a focused analysis of the stop word filtering behavior of the

nHDP, complementing the original study.

• I have produced a detailed analysis of the software implementation of the nHDP
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provided by Paisley et al., comparing and contrasting it with the published

algorithm.

• I have publicly released my nHDP training and experiment code for the benefit

of future research.2 This code is closely based on Paisley et al.’s code, amending

its discrepancies with the algorithm from the paper.

Although it is impossible to prove that the nHDP cannot be configured to auto-

matically filter stop words (as the number of possible configurations is infinite), the

negative results of this study further support my thesis that theories of topic models

suggested in the literature do not generally hold in practice. In particular, the nHDP

does not filter stop words in practice with the level of ease the literature suggests.

6.2 Background

After the success of LDA, there were a number of extensions of the model and

basic learning algorithms to new contexts. Informally, there seemed to be a common

belief—a theory—that any problem could be solved (within reason) with the right

generative story. For example, LDA requires the number of topics to be specified

before learning, but what if we don’t have a good idea of how many topics there

should be? What if we want both coarse-grained and fine-grained representations of

the data?
2https://github.com/ccmaymay/nhdp
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One approach taken to address those issues was Bayesian nonparametric modeling.

Bayesian nonparametric models such as the hierarchical Dirichlet process (HDP) topic

model [Teh et al., 2006], sparse topic model [Wang and Blei, 2009], and focused topic

model [Williamson et al., 2010] allow the number of topics to be inferred from the

data, while models like nonparametric Bayes Pachinko allocation [Li et al., 2007],

the nested Chinese restaurant process (nCRP) topic model [Blei et al., 2010], and the

nested hierarchical Dirichlet process (nHDP) topic model [Paisley et al., 2015] further

allow a hierarchical topic structure to be inferred. In this chapter, I study the latter

model, the nHDP, which relaxes the assumption of prior knowledge of the number of

topics and topic structure. I provide a brief description of the nHDP and the HDP

on which it is based; for a more thorough and accessible introduction to Bayesian

nonparametric models, see Gershman and Blei [2012].

The hierarchical Dirichlet process (HDP) topic model represents a corpus with a

theoretically unbounded set of topics, and a finite topic representation can then be

inferred from that representation as needed [Teh et al., 2006]. Specifically, the HDP

“explains” the occurrence of each word by postulating that a document was generated

by repeatedly: (1) Sampling a topic parameter vector ϕ(i) from a document-specific

mixture over topics, G, and (2) sampling a word wi from a topic-specific probability

distribution over a vocabulary of W words, Categorical(ϕ(i)). The document-wise

topic distribution G is modeled as a Dirichlet process over a global topic distribution

G0, which is in turn modeled as a Dirichlet process over a prior Dirichlet distribution
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Figure 6.1: Plate diagram for hierarchical Dirichlet process topic model.

H [Teh et al., 2006]. Altogether, the model is as follows:

wi|ϕ(i) ∼ Categorical
(︂
ϕ(i)

)︂
,

ϕ(i)|G ∼ G,

G|G0 ∼ DP(α,G0),

G0 ∼ DP(γ,H).

Additionally, a plate diagram for the model is provided in Figure 6.1.

The HDP uses Dirichlet processes (DPs) to model the document-specific topic

mixtures G as well as a global topic mixture G0. While a Dirichlet distribution is a

probability distribution over (probability) vectors, a Dirichlet process is a probability

distribution over probability distributions. Consider a Dirichlet process DP(α′, G′
0)

parametrized by a concentration parameter α′
0 and a base distribution G′

0. Following

Teh et al. [2006], who in turn use a result from Sethuraman [1994], every draw G′ ∼
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DP(α′, G′
0) has the following form:

G′ =
∞∑︂
k=1

πkδϕ′
k
,

ϕ′
k ∼ G′

0,

where δx is the Dirac delta distribution,

δx(x
′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x′ = x,

0, otherwise,

and where {πk}k is a sequence of non-negative, monotonically non-increasing random

variables that sum to one:

πk = π′
k

k−1∏︂
ℓ=1

(1− π′
ℓ) ,

π′
k ∼ Beta (1, α′) .

This representation of G′ is called the stick-breaking representation. Note that a

higher concentration parameter α′ tends to lend distributions G′ that are concentrated

on the first few atoms ϕ′
k, whereas a lower α′ tends to lend distributions G′ that are

more uniform.

The Chinese restaurant process (CRP) is a stochastic process closely related to
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the Dirichlet process and frequently appears alongside it in the literature. The CRP

produces distributions over partitions (clusterings) of the integers and is commonly

described by the following metaphor. Consider a restaurant with an infinite number

of tables and infinite seating at each table. When the first customer arrives, they

sit at the first table. Then, at any point in the process, let nk be the number of

customers currently sitting at each occupied table k. When customer n arrives, they

sit at any occupied table k with probability

nk

α′ + n− 1

or at the next unoccupied table with probability

α′

α′ + n− 1

for some positive real number α′. As Blei et al. [2010] summarize, the CRP induces

the same distribution on partitions of the integers as draws from a stick-breaking

representation,

Zn ∼
∞∑︂
k=1

πkδk,

where Zn indicates the cluster to which integer n is assigned and the weights πk are

defined as previously. The CRP can be used as a mixture model by associating each
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cluster with a draw from a base distribution, that is, by serving a single “dish” to

each table when it is first occupied.

Coming back to the HDP topic model, then, the global topic distribution G0 is

a mixture over countably many draws from a Dirichlet distribution H provided as

a prior. For each document, the local topic distribution G is a mixture over count-

ably many draws from G0. Put another way, each G is essentially a permutation of

the topics in the stick-breaking representation of G0, albeit with different weights.

Because all local topic distributions G are draws from DP (α,G), they are likely to

share topics unless the global concentration parameter γ is very small (close to zero).

Because we only have a finite amount of time in practice, Teh et al. [2006] proposes

learning the HDP using a truncated representation, meaning that the global and lo-

cal topic distributions are truncated to a finite number of topics; the truncation level

mediates a trade-off between computational cost and approximation error.3 After a

model is learned, an effective number of (and distribution over) topics can be com-

puted by, for example, taking the minimal set of topics that cover 95% of the global

topic distribution’s posterior probability mass.

While many Bayesian nonparametric models like the HDP promise to alleviate the

problem of determining an appropriate topic structure beforehand, models like the

sparse additive generative topic model [Eisenstein et al., 2011] relax the assumption
3Truncation is essentially the imposition of a finite upper bound on the number of components

in an otherwise unbounded model. Bryant and Sudderth [2012] proposes an online variational
inference algorithm for the HDP that does not rely on such a fixed truncation, allowing the number
of components to grow until the available memory is exhausted.
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that stop words are filtered out separately from the main learning algorithm. In this

chapter, I focus on the nHDP, a model that appears to combine the inference of topic

structure with explicit modeling of (hence alleviation of the need to filter out) stop

words. The nHDP is a Bayesian nonparametric tree-structured topic model [Paisley

et al., 2015].4 It consists of a global tree-structured random process constructed

as recursively nested CRPs [Blei et al., 2010] and a set of local (per-document) tree-

structured random processes constructed as recursively nested HDPs [Teh et al., 2006].

A document is thus modeled as a node-wise permutation of the global topic tree: The

immediate child topics of a node in the local tree are a random permutation of the

child topics of the corresponding node in the global tree. A topic assignment for a

word token in the document is drawn by first sampling a path from the local tree

and then sampling a node (topic) along that path from a stick-breaking distribution

specific to that path. Accordingly, the nHDP topic model can be thought of as an

extension of the HDP from a flat topic structure to a hierarchical one.

Based only on the tree-like structure of the nHDP, we might hope that it obviates

the need to filter out stop words by assigning them predominantly to the root node,

leaving the topic keys of other topics free of stop words. Indeed, in setting up an initial

batch learning experiment, Paisley et al. [2015, p. 265] write that “because these three

data sets contain stop words, we follow [2] and [4] by including a root node shared by

all documents for this batch problem only.” This statement suggests that a root node
4A similar model called the nested Chinese restaurant franchise was independently proposed in

2013 [Ahmed et al., 2013]; note that a manuscript introducing the nHDP appeared on arXiv in
2012 [Paisley et al., 2012].
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is necessary for successful training of the nHDP when stop words are present in the

data, and because topic models are often evaluated by the interpretability of their

topic keys, it is reasonable to suspect that the root node filters out stop words. In a

footnote, the authors appear to confirm this suspicion, writing that the root node “is

shared by all documents and is intended to collect stop words” Paisley et al. [2015,

p. 259]. For the aforementioned batch learning experiment on three data sets with

stop words, the authors do not show topic keys or otherwise report any inspection

of the contents of the topics, except indirectly via the predictive log-likelihood of the

models. However, for the stochastic learning experiment on the New York Times and

Wikipedia data sets, the authors “remove stop words and rare words.” [Paisley et al.,

2015, p. 265] and do present the topic keys of several topic subtrees below the root.

These diagrams, which together take up over a page of space and are perhaps the

focal point of the paper, appear free of stop words. Altogether, Paisley et al. [2015]

convey a theory that the nHDP’s root node filters stop words. I set out to test this

theory.

6.3 Experiments

To facilitate reproduction of my work and reduce the computational expense, I did

not use the exact data sets of Paisley et al. [2015]. While they used two large, unspec-

ified corpuses of several million articles from The New York Times and Wikipedia (re-
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spectively) for their main experiment, I used the smaller, publicly released WikiText-

103 corpus [Merity et al., 2016]. Specifically, I used the tokenized training data from

WikiText-103, splitting into documents along title headers, splitting each document

into tokens along whitespace, and lower-casing the tokens, but otherwise performing

no text normalization or filtering. I retained all title and section headers, including

markup, in each document’s text. This preprocessing procedure yielded a data set

of 28 474 documents spanning 229 463 unique word types, including the pre-existing

placeholder word for rare word types, <unk>.

I learned a tree of size (1, 10, 7, 5), that is, an active root node, ten nodes

immediately below the root, seven nodes below each of those, and five nodes below

each of those. I used an initialization sample size of 1000 documents and a mini-batch

size of 1000 documents, stopping training at 1500 iterations (1.5 million documents

seen). Informally, the topic keys appeared to be largely stable well before the 1500-

iteration mark. For other hyperparameters I used λ0 = 0.1, α = 5, β = 1, γ1 = 1/3,

γ2 = 2/3, and κ = 0.5, following Paisley et al. [2015]. While Paisley et al. [2015]

used the adaptive learning rate of Ranganath et al. [2013], I used the non-adaptive

learning rate of ρs = (1 + s)−0.75 (where s is the iteration number starting at one)

implemented in Paisley’s software.

I used my own software implementation,5 a modification of the MATLAB nHDP

code released by Paisley,6 for training. Beyond the choice of learning rate, I followed
5https://github.com/ccmaymay/nhdp
6http://www.columbia.edu/~jwp2128/code/nHDP.zip
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the algorithm described by Paisley et al. [2015] as closely as possible, keeping im-

plementation choices of the original software where implementation was not specified

in the paper (for example, using three iterations of k-means in initialization). To

follow the Paisley et al. [2015] algorithm, I amended the following discrepancies in

the original software:

• In both the initialization and the global parameter update, the parameter up-

date was scaled by 100 000 instead of D/|Cs|.

• In the first local parameter update (after subtree selection), prior terms are

ignored.

• The global parameter update was smoothed by taking a convex combination of

the update with a uniform term, where the uniform term had weight ρs/10.

• Subtree selection was limited to a maximum of 20 iterations (nodes).

• The local parameter update (after subtree selection) was limited to a maximum

of 50 iterations.

• There was a numerical error in subtree selection that caused some nodes early in

the tree to be selected repeatedly, potentially making selected subtrees smaller

(on average) than they should be. The subtree selection iteration limit in the

original implementation prevented this bug from creating an infinite loop.

I list these discrepancies for completeness and for the potential benefit of future
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Figure 6.2: Topic keys for topics in subtree of nHDP trained on WikiText. At each
level of the tree, the first m topics (for varying m, chosen to fit the screen) are shown
in order of highest prior probability to lowest from left to right. The root node is at
the top.

work, but preliminary experiments using the original software did not yield different

conclusions; that is, the discrepancies do not explain my findings.

Following Paisley et al. [2015], I report results from a single learned model, that

is, from one run of the training algorithm. However, repeated runs performed during

development suggest that the effect of random initialization does not explain my

findings. Also following Paisley et al. [2015], we investigate the model qualitatively

by inspecting subtrees of the global topic tree, as there are 431 topics (nodes) in our

configuration in total, and analyzing all of them is impractical. Moreover, the tree

we learn is a truncated, finite approximation of an infinite tree, so we are already

confining our analysis to an arbitrary subtree of the model.
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topic keys

" that ’s it is a he i , ’
the ( were ) @-@ @,@ was to @.@ had
his he was to , of in had ’s him
= on , @-@ his in he for a ’s
is of are = , or <unk> . in and
the ( ) = is was city @.@ . @,@
" his he ’s , a in that as and
of the <unk> ( ) and is in century ,
to of that for " in , = the were
the . , of ( ) on storm to in

Table 6.1: Topic keys of each topic immediately below the root for nHDP trained on
WikiText. Topics have the same order as they do in the tree, starting with the first
(leftmost) topic of the tree level at the top of the table.

Figure 6.2 shows the topic keys of a subtree formed by selecting the topics at each

tree level (depth) of the learned model with highest prior probability. Consulting the

figure, both the root node and the nodes in the level immediately below the root have

topic keys dominated by stop words, and it is virtually impossible to interpret these

topics solely based on the topic keys. In the third level, there is a mix of stop words

and more content-bearing words, and it is much easier to understand what each topic

is about; however, the second two topics both appear to concern TV shows, and one

might wonder whether the difference between them might be illuminated by the next

few content-bearing words in their lists (which are crowded out of the topic keys by

stop words). In the fourth level, there are still stop words in many topics, but the

ratio of content-bearing words to stop words is higher.

Figure 6.2 shows some of the most probable topics at each level (according to the

global prior), illustrating that stop words are only gradually filtered as one descends
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topic keys (filtered)

people wrote stated way felt described don good best think
m 000 ft crew km sea 20 metres water 30
british family death years died london father war george son
2011 2010 2008 2009 2012 2007 2013 announced year team
found form body example type water study human even animals
city park bridge river area construction street building $ west
book work published life wrote writing books story death own
century period island modern early people south east western history
united states public people u.s. american government national women 000
storm tropical km winds h mph cyclone damage hurricane depression

Table 6.2: Topic keys of each topic immediately below the root for nHDP trained on
WikiText, in the same order as in Table 6.1, but after stop words have been filtered
out in postprocessing. This view of the topics is more interpretable: We might start
with labels of “attribution,” “geography,” and “history” for the first three topics (from
top to bottom), respectively. For context, the root’s topic keys in this configuration
are: “well part year years day end early following number long.”

the tree. In Table 6.1, I list the k = 10 topic keys of all topics in the first level below

the root. These word lists are predominated by stop words, illustrating that stop

words are not filtered as one traverses a single level of the tree. In Table 6.2, I list the

k = 10 topic keys of those same topics after postprocessing the topics by filtering stop

words from them [Schofield et al., 2017]. This view of each topic is more coherent and

lends more readily to topic labeling, demonstrating that the topics are not inherently

uninterpretable.7

7The stop word list used for filtering was developed on models from the WikiText-2 data set,
but it was augmented (added to) substantially based on the WikiText-103 model’s topic keys. I
developed a basic interactive script with a read-eval-print loop to create the initial stop word list,
and I would recommend a similarly interactive process for implementing the postprocessing approach
of Schofield et al. [2017] in general (as stop words are domain-dependent in practice). Note that this
is not a shortcoming of the postprocessing approach, but a feature: Interactive stop word filtering
based on the resulting topic contents is impractical when filtering is performed during preprocessing.
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6.4 Discussion

My results show that the proposed training algorithm for the nHDP does not filter

stop words into the root node. The behavior of the nHDP with respect to stop words

is presented more as a passing mention in Paisley et al. [2015] than as a result in

itself; it is scarcely given any explicit attention in the paper. However, the authors

draw a connection between the root node of the model and stop words in the data at

multiple points in the paper, and state that the root node is at the very least designed

(“intended”) to filter (“collect”) stop words. Additionally, by including topic keys in

the paper at all and by allocating so much space on the page to them, the authors

show that they (or the reviewers) believe inspection of those topic keys to have some

value in topic modeling research; the explanation of my results is not that Paisley

et al. [2015] don’t consider the topic keys meaningful or relevant. One might propose

that the root node’s “collection” of stop words does not imply that stop words will

not appear prominently in other topics as well; perhaps the collection is only a partial

one, or happens gradually down the levels of the tree. But I argue a focus on the root

node in this case would be misplaced, as the topics immediately below the root are

virtually as full of stop words as the root (Figure 6.2 and Table 6.1), and the gradual

filtering of stop words as the levels of the tree are descended is much more apparent

in subsequent (lower) levels. Moreover, if a user was only interested in the lowest

(most fine-grained) level of the tree, a simpler, flat model like the HDP would seem

more appropriate; if we are interested in stop word filtering primarily for its effect on
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the topic keys (interpretability), gradual filtering of stop words down the tree would

not be useful.

While I maintain that Paisley et al. [2015] suggest a behavior that is not borne

out in practice, I do not mean to suggest they purposefully misled the reader. It is

plausible that none of the authors realized the implication created in the final version

of the paper. It is also plausible that none of the authors even realized that the

root node does not filter out stop words, as text data is commonly preprocessed by

converting word types into integer array indices to improve performance of a text pro-

cessing algorithm, and the software implementation of the nHDP released by Paisley

indeed uses this approach, meaning any trained model would require postprocess-

ing before the topic keys could be inspected. Further supporting this explanation is

that the models learned in the batch experiment were evaluated only by predictive

log-likelihood and not through any other lens, so the omission of topic keys is not

conspicuous for that experiment in isolation.

In this chapter, I have presented a single model resulting from one run of the

training algorithm using one setting of the model hyperparameters and algorithm

parameters. I chose those parameters to reproduce the results of the original study

as well as possible within some constraints. However, I spent months, perhaps even

a year or more developing and testing a C implementation of the training algorithm

before I found the existing MATLAB implementation, and I devoted a large part of a

summer to applying the nHDP to different data sets using different hyperparameters
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and algorithm parameters.8 I did not find any results (models) that filtered stop

words substantially better than the model I have presented here. Although results

of these experiments are scattered among my archived e-mails, I did not catalog the

settings that gave rose to those results, so I am unable to present those experiments

in a way that I think would provide further insight. I hope it will suffice to say: I

tried a lot of settings.

One potential limitation of the nHDP in the context of stop word filtering is its

lack of sparsity. The nHDP represents each topic as a distribution that has positive

probability mass on each word in the vocabulary, so there is not a strong penalty on a

topic giving weight to a word that already has weight in another topic. Accordingly,

descendant topics in the nHDP can model slight variations in the stop word distribu-

tion (relative to the root topic’s stop word distribution) that correlate with their more

content-bearing words. This could be tested, for example, by comparing the word

distributions of each child of the root topic to the empirical stop word distributions of

documents that select those topics during inference. Alternatively, the nHDP could

be trained on a corpus in which proportions of stop words are artificially fixed in all

documents, and the resultant model could be inspected for stop word filtering.
8This was almost seven years prior to the time of writing—time flies!
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6.5 Conclusion

I have implemented a learning algorithm introduced in a previous paper, building

on a partial implementation released by the authors. I was approximately able to

reproduce their finding that the algorithm was capable of learning interpretable topic

trees. However, while their paper suggested the algorithm would automatically collect

stop words in the topic tree’s root node, I found this not to be the case, illustrating

that even theories of language technology created largely within a single paper may

fail to hold up in practice.
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Conclusion

I have used case studies to show that four theories of topic modeling, spanning

algorithms, applications, and models, are not generally borne out in practice. In

Chapter 3, I showed that the theory of an online learning algorithm developed in a

prior study failed to hold beyond the precise (yet unspecified) initial conditions of

their experiments, and I made the following additional contributions to science:

• I perform a parameter study of a particle filtering training algorithm for LDA

introduced in prior work [Canini et al., 2009], providing a more comprehensive

analysis of the algorithm.

• I show that tuning an LDA model by perplexity is just as good as tuning it by

the evaluation metric (using gold-standard forum labels) on several qualitatively

different subsets of the common 20 newsgroups data set, suggesting that there

may be little room for improvement in topic modeling on that data set from an
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information theoretic perspective.

• I publicly released my LDA particle filter training and experiment code for the

benefit of future research.1

In Chapter 4, I demonstrated that the tasks of topic identification and discovery are

less complementary than the literature suggests, with topic features failing to improve

topic identification performance even under low supervision; I made the following

additional contributions to science:

• This study is the first of its time to provide cross-community evaluations of

SAGE and other models on both text and speech data.

• This study also uses low-resource triphone state cluster soft counts as speech

data for topic ID, following May et al. [2015a]. The low-resource setting reflects

constraints often faced in real-world applications, and I report topic ID per-

formance under limited supervision to better illuminate the practical strengths

and weaknesses of the learned representations.

• Finally, I believe that this comparison of several prominent learned representa-

tions on two complementary tasks on both text and speech, presented together

in the same study, will provide a useful point of reference for future research.

In Chapter 5, I studied the purported language independence of topic modeling, illus-

trating that the end-to-end topic modeling algorithm does bear a significant language
1https://github.com/ccmaymay/pflda
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dependence in practice; I also made the following additional contributions to science:

• This chapter is one of the first published studies of the impact of lemmatization

on topic modeling.

• I performed a human-in-the-loop analysis of topic model interpretability and

and an automated analysis using proxy methods on a similar data set, increasing

collective knowledge about the practical relationship between costly human-in-

the-loop evaluation methods and automated proxy methods.

• I analyzed the impact of lemmatization on topic models in several languages by

re-using methods from Schofield and Mimno [2016], increasing the comparability

of our studies and facilitating future work.

• I publicly released my experiment code for the benefit of future research.2

Finally, in Chapter 6, I showed that a hierarchical topic model theorized as capable

of filtering stop words does not achieve that goal in practice, making the following

additional contributions to science:

• I performed a focused analysis of the stop word filtering behavior of the nHDP,

complementing the original study.

• I produced a detailed analysis of the software implementation of the nHDP

provided by Paisley et al., comparing and contrasting it with the published

algorithm.
2https://github.com/ccmaymay/lda-lemmas
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• I publicly released my nHDP training and experiment code for the benefit of

future research.3 This code is closely based on Paisley et al.’s code, amending

its discrepancies with the algorithm from the paper.

In each chapter, I moreover proposed specific further research for investigating method-

ological explanations of the gap between theory and practice.

While the case studies I have presented represent a wide sample of topic modeling

research, they are also limited in several ways. For one, they are almost exclusively

based on sources from the academic literature, but topic modeling discourse spans

many channels, including: journal articles; conference presentations, question-and-

answer sessions, panels, and proceedings; funding proposals; book chapters; classroom

lectures and homework assignments, electronic pre-prints; peer reviews and author

responses; discussions in meeting rooms, hallways; and social media, software source

code, documentation, and issue trackers. I have chosen to provide a broad inves-

tigation of implicit theories in topic modeling, but concerns about scope preclude

a more thorough understanding of how topic modeling knowledge is communicated

more generally. A complementary, more narrow investigation of a single theory’s

communication across channels could help contextualize or challenge my findings.

In fact, these studies are all retrospective: Each one arose from an original research

project with different objectives. The case studies on streaming learning (Chapter 3),

language independence (Chapter 5), and stop word filtering (Chapter 6) went awry
3https://github.com/ccmaymay/nhdp
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in various ways, while the study on features for topic identification (Chapter 4) pro-

duced surprising results. The prevalence of implicit theories that don’t generally

hold in practice only became apparent in hindsight, and this dissertation represents

a reanalysis of the original projects through a novel lens. Had I known then what

I know now, I may have begun by reviewing the literature, enumerating common

implicit theories, and testing those in a more controlled fashion. For example, in the

manual evaluation of the language independence study (Section 5.4), I used stochas-

tic variational inference to train LDA models because I had believed that setting a

fixed asymmetric prior was the best way to automatically filter out stop words and

my implementation of stochastic variational inference facilitated that. However, in

hindsight, I believe that Gibbs sampling would have produced better results. Addi-

tionally, using Gibbs sampling would have eliminated a potential confounding variable

by bringing the methods of the language independence study more in line with the

studies on streaming learning and features for topic identification, which use sampling

algorithms for training.

7.1 Recent Developments

In the time I have been a Ph.D. student, NLP research has changed dramati-

cally. The year I began my Ph.D. program was the year the word2vec paper came

out [Mikolov et al., 2013], and over the next several years, virtually all of NLP seemed
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to transition from traditional probabilistic graphical models to neural networks as the

technology of choice. While I can’t comment on the state of neural topic modeling

directly, I don’t expect the transition to neural models to have addressed the specific

knowledge gaps I’ve discussed. One of the main challenges of topic modeling is its

lack of clear objectives and evaluation metrics; there is currently no topic model-

ing equivalent of accuracy or F-score. This presents a challenge to neural modeling,

which largely does away with modeling the internal workings of natural processes and

instead uses flexible classes of functions and powerful learning techniques to model

those processes’ observable behavior. The desired behavior of topic models is gen-

erally only specified abstractly, making neural modeling more difficult than in most

cases.

However, I argue that the evaluation of topic models is not fundamentally more

complex than that of other NLP tasks. Rather, the difference is that the complexity

of topic model evaluation is more obvious than the complexity of evaluation in other

tasks. The existence of a widely accepted evaluation metric for a task masks the com-

plexity of that task’s evaluation by abstracting from it to a relatively straightforward

algorithm. For example, the F-score is a widely accepted metric for classification

tasks like topic identification. In addition to aggregating a topic identification sys-

tem’s predictions in a certain way (and not in others), the F-score relies on a set of

“gold” or “ground truth” labels indicating which topic each document belongs to, and

this set of labels replaces a complex, even fraught problem with a fixed, definitive set
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of answers.4 For instance, the problem of whether to assign the label “crime” or the

label “terrorism” to a news article about hate crime is masked behind a metric and set

of labels amenable to grad student descent,5 leading to potentially dangerous biases

in downstream applications. Thus, the evaluation of topic modeling may ultimately

be no more complex than that of other tasks; its complexity may just be harder to

overlook.

Additionally, the culture of neural NLP gives me no reason to expect that the

implicit theories of today’s research are more often made explicit and tested em-

pirically. Indeed, in neural NLP generally, there seems to be much more attention

given to held-out estimates of evaluation metrics, with many data sets accompanied

by “leaderboards” of the best-scoring models and algorithms. This focus on direct

comparison of approaches using automated evaluation metrics draws attention away

from inspecting and investigating the assumptions built into those metrics, where the

implicit theories I’ve encountered seem to lurk. Research into the assumptions and

limitations of evaluation methods continues, but I have no reason to believe it has

accelerated, nor do I think the transition to neural methods has improved the implicit

theory situation otherwise.

Another shift that has happened during my time as a student is the growth of

research focusing on reproducibility in machine learning. A relatively early example
4This framing mirrors that of a comment I heard at a conference (or perhaps on Twitter or in a

book; regrettably, I can’t find the source) regarding the use of gender as an explanatory variable in
computational linguistics and social science: Gender is not a solution, it is a problem.

5
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of this work in NLP is Fokkens et al. [2013], who analyze the reproducibility of results

in two NLP tasks and find five general sources of implicit variation that hinder it:

preprocessing, experimental setup (including train/dev/test splits), versions of soft-

ware and resources, differences in intermediate outputs, and random variation. These

types of variation are implicit in the sense that they are not reported in the original

papers. To the extent we can assume researchers write papers with the intention that

their results should be reproducible, the problematic sources of variation identified by

Fokkens et al. [2013] may point to implicit theories about which details are important

for reproduction and which details are not. For example, the omission of preprocess-

ing details in a paper could be taken to suggest that those preprocessing details are

not essential to reproducing the results.

Crane [2018] performs a similar analysis of reproducibility in question answering

that focuses on deep learning papers and variation in results that persists even after

releasing source code. In addition to finding similar sources of variation to those

of Fokkens et al. [2013], Crane [2018] finds additional sources of variation that are

created or exacerbated by the complexity of deep learning algorithms and software.

While my analysis is novel, the individual observations I’ve made are just points on

a spectrum of negative results arising from reproductions and extensions of prior work.

The “reproducibility” research community has coalesced to study some of the more

challenging parts of that spectrum, and even before the growth of that community,

many researchers individually encountered such problems using topic models.
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Research on the interpretability of NLP (and more generally, machine learning)

models has also blossomed in recent years. Topic modeling may be considered a

precursor of this research thrust, as topic models are often developed to be interpreted

and used by humans. “Interpretability” research aims to facilitate the interpretation of

NLP models generally, such that the user of a question answering system, for example,

can understand how that system predicts the answers it does. While the concept of

understanding a prediction may be intuitive, Lipton [2016] shows that interpretability

research is motivated by a variety of concerns: the desire for a model to gain the

trust of its users, so that it can be deployed in high-stakes situations; the desire to

be able to infer causal relationships from a model’s predictions, so that it can help

generate scientific hypotheses; the desire to be able to judge a model’s transferability

to unseen data and new use cases; the desire for a model to be informative, so that

human decision-makers can use it to aid their work; and the desire for a model’s use

to be ethical, so that the application of machine learning does not continue to subject

minorities to stereotyping or perpetuate other injustices [Lipton, 2016].

Similarly, the methods of interpretability research may be designed to satisfy a

variety of properties: simulatability, the ability of a user to be able to reasonably

understand and simulate the entire model; decomposability, the ability to decompose

a larger model into individually understandable parts; algorithmic transparency, the

ability of a researcher to be able to understand and reason about the learning al-

gorithm that produced the model; text explanations and visualization, the post-hoc
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construction of text or visual explanations of a model; local explanations, the post-hoc

explanation of what is happening in a model locally (for example, when making a

specific prediction); and explanation by example, the post-hoc explanation of predic-

tion on a given example by listing other examples or feature representations that yield

similar predictions [Lipton, 2016]. Accordingly, research on interpretability comprises

not a set of efforts to solve a single task but a collection of efforts to solve a diverse

set of related tasks.

7.2 Extensions

Though my work focuses on topic modeling research, I do not believe gaps be-

tween implicit theory and practice are limited to topic modeling or even to computer

science. Practice not living up to theory is a pattern that extends far beyond the

case studies presented here; after all, theory itself is defined by assumptions and sim-

plifications. And I have only shown that these theories do not hold in general, that

a good-faith effort to reproduce or extend research building on such implicit theories

often fails; however, I suspect there are common settings (special cases) in which

those theories do hold. I also do not wish to malign the intentions of researchers who

promote these theories or do not publish their empirical results about them: I suspect

most researchers with knowledge about such implicit theories take that knowledge for

granted. On the other hand, those who realize they could publish such knowledge
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may be unable to. Nguyen et al. [2016] finds that the field of computational linguistics

primarily values creativity and predictive accuracy, values that would likely be flouted

by a study of an implicit theory many researchers take for granted. Additionally, in

a study of reviews for submissions to the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics, Gao et al. [2019] found

that the overall submission score most correlated with the sub-scores for the submis-

sion’s “soundness” and “substance,” followed closely by “originality.” While empirical

studies of implicit theories would seem well-aligned with the value of “soundness,” the

prioritization of “substance” and “originality” over the remaining sub-scores reflects

the findings of Nguyen et al. [2016]. Thus, if one seeks a career in computational

linguistics research, spending time to study and publish an investigation of implicit

theory may be imprudent. The belief that every researcher must “publish or perish”

is widespread and largely justified, and attempting to publish work of little value to

the research community may not prevent one from perishing.

Furthermore, while I have sometimes referred to a singular topic modeling commu-

nity, there are actually multiple, variously overlapping communities, and the knowl-

edge and values held by these communities may differ. For example, “topic iden-

tification” is a term that seems to be used most prominently in speech processing

communities, so the different histories and values between speech-based topic identi-

fication and text-based topic modeling may help explain my findings in Chapter 4.

More broadly, much of the prior work underpinning my arguments was published in
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general machine learning and artificial intelligence communities [Blei et al., 2003b,

Griffiths and Steyvers, 2004, Canini et al., 2009, Paisley et al., 2015], not natural

language processing or computational linguistics communities that might be more

interested in the nuances of language data. At the same time, a large amount of topic

modeling research is published by the Association for Computational Linguistics, so

the comparison of implicit theories across research publishers and communities would

be an important next step in validating my conclusions.

Although the theories I study are not formally stated in the literature, I argue they

are nonetheless supported and conveyed such that the reader—especially a wide-eyed,

optimistic graduate student like I once was—is prone to detect and adopt them. Much

like the patterns that a machine learning algorithm discovers, these theories are often

hidden, but that does not mean they do not exist or do not matter. I hypothesize

that these implicit theories (and the gaps that often separate them from practice) not

only impede research progress in the near term, but function as gatekeeping devices

and limit the diversity of the research community. Specifically, if we assume people

encounter these theories and learn about their relation to practice as they become

established in topic modeling communities, then established researchers—and those

connected to them—will have an advantage. Although having an experienced mentor

is surely to improve one’s chances for success in any vocation, if we want research

to function as a meritocracy, we should be wary of any secrets—intentionally kept

or otherwise—that are needed to successfully publish research. The existence of
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general, significant, yet unpublished topic modeling knowledge potentially enables

well-connected groups of researchers to out-publish others on average; thus, implicit

theories are positioned to help researchers who are upper-class, white, straight, able,

cisgender, and/or otherwise privileged succeed, while presenting yet another obstacle

to the less privileged.

If we do take my conclusions at face value, though, there is hope of ameliorating

the problem. While my original research was taking place, an interdisciplinary interest

in improving the reproducibility of research was growing rapidly. Improvements to

reproducibility would likely translate to expositions of some implicit theories like those

I’ve considered, as the steps required to reproduce a paper’s results would become

more transparent, making any idiosyncrasies more visible.

However, the philosopher W. V. O. Quine argued that theory—and knowledge

claims in general—are underdetermined by evidence; that is, the available empirical

evidence is generally insufficient to support a given theory by itself, and that gap

between evidence and theory is bridged by our biases, our values. Moreover, from

a feminist empiricist view, these values play a legitimate role in scientific inquiry.6

perhaps, then, the solution to “implicit theory” lies not in changing our methods, but

in changing our culture.

6See Anderson [2020] for an overview of feminist empiricism and underdetermination.
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