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Abstract

A central task of genetics research is to uncover genotypes linked to important phenotypes. However, many genomic loci

are incompletely or inaccurately represented in genetics studies, thus obscuring their function and evolution. New

technology can accurately and continuously sequence large segments of genomic DNA at a�ordable cost and

unprecedented scale, raising the possibility of complete and accurate representations of genomes across the tree of life.

However, new computational methods are required to automatically �nish, validate, and curate the forthcoming wave of

genome assemblies enabled by these technologies. Researchers must also devise analytical approaches to comparing

previously unresolved and usually repetitive genomic loci within and between species. Here, we introduce RaGOO and

RagTag, new methods that leverage genome maps to automatically sca�old and improve draft genome assemblies into

chromosome-scale representations. By applying these new methods to a bread wheat genome, we show how the established

reference falsely collapsed functional paralogs genome-wide. In Arabidopsis thaliana, we present a new reference assembly

that completely resolves all �ve centromeres for the �rst time, revealing centromere architecture, genetics, epigenetics, and

evolution. Finally, we present a catalog of natural structural variants (SVs) across 100 diverse tomato accessions revealing

exceptional genetic diversity via arti�cial introgression as well as broad and speci�c examples of how SVs in�uence

molecular, domestication, and improvement phenotypes. This work underscores the potential to accelerate genetics

research with complete and diverse genotype data and apply these �ndings to plant breeding and engineering.
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By representing complex genomes through simplified
maps, researchers can annotate and compare genomic
features to study biological phenomena.
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Introduction
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PLANTS ARE FUNDAMENTAL TO HUMAN EXISTENCE, playing important aesthetic, medicinal, nutritional, and

cultural roles in day-to-day life. The domestication of major agricultural staples, a process spanning thousands of years,

exempli�es how humans have adopted and manipulated plant systems to sustain and celebrate life. By changing plants to

suit their needs, these ancient humans were unknowingly in�uencing dynamic and complex collections of heritable

molecules located within plant cells, known today as “genomes”. Modern geneticists seek to uncover the genetic basis for

domestication and improvement phenotypes to facilitate future crop improvement and solve contemporary global

challenges, such as hunger, nutrition, and climate change. While such research has traditionally excluded large portions of

plant genomes, cutting-edge DNA sequencing technology promises to o�er complete and accurate genotype information

for model and non-model species. Here, I outline some of these technologies and the current state of associated plant

genome sequence research. I also present current challenges to representing and comparing genome sequences and my

methodological and analytical contributions towards addressing these challenges.

Representing genomes through maps

Genome maps are any genome-wide collection of markers (genomic landmarks) and their relative distances. By representing

complex genomes through simpli�ed maps, researchers can annotate and compare genomic features to study biological

phenomena. We highlight genome maps here because of their utility in structural variant analysis and genome assembly

sca�olding. Researchers have devised many types of maps tailored for speci�c scienti�c questions and scenarios and we

highlight three relevant examples: (genetic) linkage, spatial proximity, and physical maps (Figure 0.1).
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Figure 0.1: Common genome maps. From left to right: A Saccharum spontaneum linkage map (original �gure from Al-Janabi, S.
M. et al, 1993 [1]), a spatial proximity map built from Hi-C data, an optical map (original �gure from Bionano:
https://bionanogenomics.com/technology/platform-technology/), and a Potentilla micrantha chloroplast genome assembly (original
�gure from Ferrarini, M. et al, 2013 [2]).

Linkage maps are built by observing recombination rates between genetic markers to infer their relative distances [3]. In

plants, linkage maps are typically established by observing allele recombination in bi-parental segregating F2 populations

using the “test-cross” method (invented by Gregor Mendel and �rst applied to pea plants), or variants thereof [4]. While

establishing segregating populations can be expensive, laborious, and even impossible in some circumstances, linkage maps

are still widely used to identify Quantitative Trait Loci (QTL) via recombination mapping. They are also useful for

studying recombination rates between individuals, which is relevant for breeding.

Physical maps refer to a broad class of maps that represent genome sequences. Some physical maps, referred to here as

“sequence-unresolved maps” do not represent continuous genomic sequences but only describe how many nucleotides are

between markers. These include optical maps, restriction digest maps, linked reads, and mate pairs. Aside from structural

variant analysis and genome assembly sca�olding, sequence-unresolved physical maps are useful for inferring the size of

genomic loci that are di�cult to continuously resolve, such as centromeres [5–7]. Other physical maps, referred to here as

“sequence-resolved maps” such as genome assemblies and long DNA sequencing reads, represent continuous genomic

sequences. Such maps provide the same utility as sequence-unresolved maps while also directly encoding genotype

information and providing references for genomics experiments and oligonucleotide design. Accordingly, sequence-resolved
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physical maps are the most complete and useful type of physical map and are expected to render sequence-unresolved maps

obsolete as sequencing technologies continue to advance. More details on the current state of genome assembly and

technical details on genome assembly processes are outlined in “Accurate and complete physical maps via genome assembly

and sca�olding”.

Optical maps are a speci�c type of physical map that uses imaging to infer the relative distances of markers. First,

high-molecular-weight DNA molecules are �uorescently labeled at speci�c loci, essentially creating a �ngerprint for each

molecule. Images are taken of these linearized and labeled molecules and software is used to infer a corresponding physical

map. Each physical map corresponding to a molecule can be analyzed individually, or they can be assembled into more

contiguous physical maps, similar to genome assembly, but without speci�c sequence information. While these maps do

not contain actual sequences, they are often much longer than DNA sequencing reads and thus provide useful long-range

structural information.

Spatial proximity maps convey the relative distance of genetic markers in three-dimensional space. To measure 3D

interaction, researchers use Chromatin Conformation Capture followed by sequencing, or Hi-C [8]. Hi-C �rst employs

specialized chemistry techniques to establish a sequencing library with chimeric DNA templates composed of two usually

distant loci. By sequencing these chimeric inserts with paired-end sequencing, read pairs can be mapped to a genome

assembly and the 3D distance of any two loci can be inferred from read mapping statistics. Spatial proximity maps are

primarily used to study the 3D organization of a genome within the nucleus, which plays an important role in gene and

genome regulation.

Accurate and complete physical maps via genome assembly and scaffolding

Genome assemblies are, ideally, complete sequence representations of whole genomes. Advances in sequencing technology

and assembly algorithms have made genome assembly accessible for researchers studying model and non-model organisms

across the tree of life [9,10]. Researchers recently published the �rst-ever truly complete human genome assembly,
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indicating that complete genome assemblies for model organisms are on the horizon [11]. Multiple diverse human genomes

are increasingly being assembled, and the Vertebrate Genomes Project has begun establishing genome assemblies for every

extant vertebrate species [10,12]. In major crops such as soybean, rapeseed, rice, and maize, large collections of genome

assemblies have been published representing wild accessions, important cultivars, and mapping population parents

[13–16].

Modern genome assemblies are typically derived from long Whole Genome Shotgun (WGS) DNA sequencing reads.

Today, these long reads are primarily commercialized by two companies: Oxford Nanopore Technologies (ONT) and

Paci�c Biosciences (PacBio). ONT provides the longest read lengths, ranging from 5kb to well over 100 kbp long. ONT

read accuracy has changed dramatically over recent years as basecalling software has improved. Though read accuracy

depends on the organism being sequenced, reads with 99% accuracy are now routinely achieved in human samples. PacBio

high �delity long reads (HiFi) are relatively shorter (between 5k and 20k) but are much more accurate (approaching 99.9%

accuracy) [17]. PacBio also produces Continuous Long Reads (CLR) that are longer yet noisier than HiFi. While CLR data

is still used for legacy projects, it has been mostly rendered obsolete by HiFi and ONT.

The ideal eukaryotic genome assembly completely represents the sequence of every chromosome in a genome. To combine

WGS reads into larger, non-redundant contiguous sequences (contigs), genome assemblers approximately or exactly

perform all-by-all pairwise comparisons of reads to �nd sequence overlaps. Assemblers then use this overlap information to

build graph data structures that encode sequences and their relationships. Finally, contigs are derived by �nding solutions to

these graphs that remove redundant or erroneous nodes and edges [18–23]. One major challenge of genome assembly is

that DNA is usually sampled from multiple genomes. Samples usually contain DNA from two (one maternal and one

paternal) homologous genomes (haplotypes). Homologs can be relatively similar (low rates of heterozygosity) or distinct

(high rates of heterozygosity), depending on the species and sample. Additionally, as is common in plant species, samples

derived from polyploid genomes contain DNA from multiple homeologous subgenomes. Both autopolyploidy (relatively

similar homeologs) and allopolyploidy (relatively distinct homeologs) result from events such as unreduced gametes that
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increase chromosome copy number. Autopolyploidy occurs when these extra chromosome copies come from the same

species, whereas allopolyploidy occurs when they come from distinct species. Aside from mixed genomes, genomic repeats

present another major challenge for genome assembly algorithms. When comparing reads to each other, repeats can cause

ambiguities in assembly graphs and thus cause assembly errors or omissions.

The problems of mixed genomes and genomic repeats are conceptually similar. Assemblers often confuse haplotypic or

subgenome homology with repeats and vice versa [10]. To address both of these challenges, assemblers require input

sequencing reads that are capable of resolving the ambiguities caused by these phenomena. If one assumes that reads are

perfectly accurate, then assemblers require reads that are long enough to connect ambiguous loci to their surrounding

context. For example, in the case of samples with mixed homologous genomes, reads need to be long enough to anchor

homozygous sequence to allelic loci (known as “phasing”). For genomic repeats, reads need to be long enough to anchor

repetitive sequences to the closest unique sequence. In reality, sequencing reads do not have perfect accuracy, so read length

and read accuracy are the two main parameters controlling the ability of reads to resolve ambiguities [24]. ONT reads are

exceptionally long, but HiFi reads are exceptionally accurate, and therefore the two technologies can serve complementary

roles in genome assembly projects [25].

Aside from using long and accurate reads, researchers have devised alternate techniques to speci�cally address the challenge

of mixed genomes. Firstly, for diploid samples, many assemblies simply choose an allele at each bi-allelic site, either

arbitrarily or according to a heuristic, thus creating a “pseudo-haploid” assembly that continuously alternates between

haplotypes. Though “pseudo-haploid” assemblies were default for many years, new techniques are now commonly used to

produce one assembly for each haplotype (“haplotype resolved assemblies”). For example, trio-binning, gamete-binning, or

read mapping and phasing-based approaches are techniques that separate reads into respective haplotypes before assembly

[26–28]. For certain model organisms, inbred, double haploid, or haploid samples can be used for sequencing, thus

ensuring that samples e�ectively only represent one genome [11,29].
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Though advances in sequencing read length and accuracy combined with improved assembly algorithms have dramatically

improved the quality of genome assemblies in recent years, draft assemblies still rarely achieve chromosome-scale (one

sequence per chromosome). Instead, each chromosome is usually represented by a collection of unordered and unoriented

contigs. “Sca�olding” is the process of ordering and orienting these contigs, placing gaps between adjacent contigs, into

chromosome-scale sequences (Figure 0.2). Building such chromosome-scale sca�olds is essential for establishing

chromosome-sized physical maps, which is crucial for understanding many biological phenomena and creating useful

reference genomes. Sca�olding is usually performed by aligning a draft genome assembly to another genome map and then

ordering and orienting contigs according to the structure indicated in the map [30–33]. Linkage, spatial proximity, and

physical maps (genome assemblies and optical maps) are popular and e�ective maps for sca�olding [27,34–36]. Because

eukaryotic genomes can be structurally diverse, the map and the draft assembly ideally should represent the same genome.

However, especially with contiguous draft assemblies, maps representing closely related but distinct genomes can be used

while preserving structural variation. This is because contiguous draft assemblies contain most or sometimes all genetic

variation within contigs, therefore ordering and orienting contigs does not in�uence genotype information.
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Figure 0.2: Genome assembly sca�olding. A diagram describing how sets of genome assembly contigs are ordered and oriented to
build chromosome-scale sca�olds. Original �gure from Burton, J. N. et al, 2013 [32].

Though genome maps are e�ective for sca�olding modern genome assemblies, most initial automated sca�olding attempts

either fail to achieve complete chromosome-scale or incorrectly order or orient contigs. Chromosome-scale genome

assembly physical maps usually enable chromosome-scale sca�olds, but misassemblies or genuine structural variation can

lead to errors in the sca�olds. Optical maps may not always achieve chromosome-scale and they often lack markers in

extended repetitive sequences such as centromeres. Spatial proximity maps rely on short-read mapping to reference

genomes, and therefore repeats with low mappability are not well-represented. Additionally, genuine 3D genome

organization can obscure the linear sequence order of a chromosome, often causing misassemblies. Finally, sca�olding

algorithms can be computationally ine�cient, both in terms of space and time [33,37]. Aside from causing inconvenience

and expense, this often necessitates sca�olding algorithms that are not guaranteed to be optimal. Given these sca�olding

shortcomings, researchers often manually compare contigs to maps to achieve accurate and chromosome-scale sca�olds

[38,39]. While this can be e�ective, it is laborious and prone to human error.
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Genome maps reveal genome structure

Genome maps can be analyzed and compared to study genomic characteristics. One such characteristic is genome

“structure”, or anything regarding the large-scale (typically >=50 bp) sequence composition of genomes. This is distinct

from 3D genome structure, which is a separate �eld of study and is not addressed here. Here, we outline two speci�c

motivations for studying genome structure, namely “intrinsic” and “extrinsic”. Intrinsic genome structure refers to large

genomic features that are independently important for genome function and evolution. Researchers study intrinsic genome

structure by annotating and analyzing important features of a genome, such as genes, repeats, and regulatory elements.

While this encompasses many �elds of study, one example of using maps to study intrinsic genome structure is the study of

genomic repeats. A common technique used to study genomic repeats is to align a genome assembly to itself. In such a

scenario, every locus will align perfectly to itself, but repetitive elements will additionally align to similar sequences across

the genome. For example, such analysis can uncover the structure and composition of large satellite repeats, such as

centromeres [40,41]. It can also reveal gene paralogs and signatures of ancient polyploidy, a phenomenon that is especially

relevant for plant genomes (Figure 0.3) [42].
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Figure 0.3: Intrinsic repetitive genome structure. (A) Aligning a whole Dioscorea alata genome to itself reveals widespread
sequence duplication, providing evidence for ancient polyploidy. Original �gure from Bredeson, J. V. and Lyons, J. B. et al, 2021 [42].
(B) Aligning a chr2B locus of a Triticum aestivum genome assembly to itself reveals tandemly repeated paralogs (dotted lines with red
labels) in a segmental duplication. Original �gure from Alonge, M. and Shumate, A. et al, 2020 [35].

Extrinsic genome structure refers to the comparison of genome structure across samples and species. This is often referred

to as “comparative genomics”, which for this dissertation, includes genome comparison both within and between species.

Within species, comparative genomics includes the study of structural variants (SVs), or large genetic variants segregating in

a population. Structural variants are widespread in eukaryotic genomes, and they underlie large-scale sequence di�erences

between individuals and explain the phenotypic variation of many important traits [43,44]. Genome maps are especially

well-suited for this analysis as two genome maps representing distinct genomes can be aligned to each other and large

di�erences in the maps can be interpreted as SVs (Figure 0.4) [45]. While all chromosome-scale maps can be e�ectively

used to identify the location of SVs, sequence-resolved physical maps, such as long-reads and genome assemblies are

required to characterize speci�c variable sequences [12]. To study SVs with long reads, reads are typically aligned to a

reference genome, and discordant alignment signatures are used to infer SVs [46–48]. To discover SVs from genome

assemblies, one can simulate reads from a genome assembly template and then use read mapping-based SV detection

strategies. Additionally, one can align the genome assembly to a reference genome with a whole-genome aligner and

interpret SVs via discordant alignments [12,49–51]. While such pairwise comparative techniques are currently the most
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common, e�cient, and interpretable forms of SV analysis, multiple whole-genome sequence alignment (comparing >2

maps simultaneously) has matured in recent years and shows promise as a useful comparison technique [52].

Figure 0.4: Comparing genome maps reveals structural variants. (A) Comparing an M82 tomato genome assembly to the SL4.0
genome assembly reveals a large inversion on chromosome 5, enclosed in the dotted box. (B). Comparing M82 Hi-C data to the SL4.0
genome assembly reveals supporting evidence for the inversion, with black arrows pointing to inversion breakpoints.

A eukaryotic “pan-genome” is a collection of sequence-resolved physical maps for a representative set of individuals within a

population or species [9]. Such pan-genomes enable the broad study of intrinsic and extrinsic genome structure at scale.

While pan-genome studies have revealed comparatively little genetic diversity in humans, plant and especially crop

pan-genomes have revealed dramatic di�erences between members of the same species [9,53]. Some crops such as tomatoes

are especially structurally diverse due to pre-breeding and breeding with wild material [44]. Such intra-species structural

genetic diversity has major implications for genomics experiments that typically compare populations to a single reference

genome. Namely, sequencing reads emanating from structurally distinct loci will map with lower accuracy, a phenomenon

known as “reference bias” [54]. In crops such as tomato with widespread arti�cial introgressions, reference bias may occur

locally at speci�c introgressed loci. To overcome such reference bias, researchers may employ modi�ed reference genomes or

associated indexes such as pan-genome graphs or major allele references [55–63]. The ideal reference genome represents the
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same genome as the sample of interest, also known as a “personalized” reference genome. This is especially useful for plants

with reference genotypes that are maintained via seed stocks and commonly used for genetics experiments. Given the new

relative accessibility of establishing high-quality reference genome assemblies, researchers can now plan experiments around

e�cient and convenient model systems rather than reference genomes.

Here, we �rst explore new methods to facilitate accurate and automatic genome assembly sca�olding. We �rst introduce

RaGOO, a homology-based sca�older that uses one genome assembly to sca�old another assembly. We next present

RagTag, the successor to RaGOO that introduces a patching and gap-�lling feature, as well as a new tool to reconcile many

sca�olding proposals for a given genome assembly. While presenting both RaGOO and RagTag, we demonstrate how

sca�olded physical maps can be useful for comparative and personalized genomics analysis in tomato and Arabidopsis

thaliana. We also show how we used RagTag to sca�old a bread wheat genome. Even though both sca�olding and

annotation relied on an established reference genome, we uncovered over 1 Gbp of new sequence and over 5,700 new gene

copies, thus more comprehensively elucidating the paralog landscape of wheat. Next, we used ONT and HiFi to almost

completely assemble and resolve an Arabidopsis thaliana genome, including all �ve centromeres, thus revealing Arabidopsis

centromeric architecture and genetics for the �rst time. Finally, we describe an e�ort to catalog natural structural variation

among 100 diverse tomato genomes, thus revealing how SVs broadly impact gene expression as well as speci�c instances of

SVs in�uencing important traits. These new methods and applied analyses highlight the unprecedented speed and scale of

plant genomics in the pan-genome era and reveal the vast potential for genomics to address the world’s most pressing

agricultural and nutritional needs.
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RaGOO is a fast and reliable reference-guided
scaffolding method … that orders and orients genome
assembly contigs according to Minimap2 alignments
to a single reference genome.

1
RaGOO: fast and accurate reference-guided

sca�olding of draft genomes
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1.1 ABSTRACT

We present RaGOO, a reference-guided contig ordering and orienting tool that leverages the speed and sensitivity of

Minimap2 to accurately achieve chromosome-scale assemblies in minutes. After the pseudomolecules are constructed,

RaGOO identi�es structural variants, including those spanning sequencing gaps. We show that RaGOO accurately orders

and orients 3 de novo tomato genome assemblies, including the widely used M82 reference cultivar. We then demonstrate

the scalability and utility of RaGOO with a pan-genome analysis of 103 Arabidopsis thaliana accessions by examining the

structural variants detected in the newly assembled pseudomolecules. RaGOO is available open source at

https://github.com/malonge/RaGOO.

1.2 BACKGROUND

Long-read single-molecule sequencing technologies commercialized by Oxford Nanopore Technologies (ONT) and Paci�c

Biosciences (PacBio) have facilitated a resurgence of high-quality de novo eukaryotic genome assemblies [1]. Assemblies

using these technologies in a variety of plant and animal species have consistently reported contig N50s over 1 Mbp, while

also reconstructing higher percentages of target genomes, including repetitive sequences [2,3]. Current long-read

sequencers are now able to produce over one terabase of long reads per week, presenting the opportunity for detailed

pan-genome analysis of unprecedented scale. Such analyses can include structural variations that are notoriously di�cult to

detect using short-read sequencing. However, lagging behind the current speed and cost of generating long-read sequencing

data are genome assemblers, which are still unable to resolve complex repeats and related structural variants that are

widespread in eukaryotic genomes. Thus, there is a need for simpli�ed and faster approaches to sca�old fragmented genome

assemblies into chromosome-scale pseudomolecules.

Two common approaches have been used to achieve chromosome-scale assemblies, namely, reference-free (de novo) and

reference-guided approaches. One popular reference-free sca�olding approach is to anchor genome assembly contigs to

some type of genome map [4], such as a physical or linkage map [5]. This process involves aligning the genomic map to a

sequence assembly and sca�olding contigs according to the chromosomal structure indicated in the map. However, contigs
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not implicated in any alignments will fail to be sca�olded, which can result in incomplete sca�olding. Furthermore,

acquiring a genomic map can be expensive, time-consuming, or otherwise intractable depending on the species and the type

of map.

Another reference-free method for pseudomolecule construction involves the use of long-range genomic information to

sca�old assembled contigs. This includes a large class of technologies such as mate-pair sequencing, Bacterial Arti�cial

Chromosomes (BACs), Linked Reads, and chromatin conformation capture such as Hi-C [6–8]. In particular, Hi-C has

recently been shown to be a practical and e�ective resource for chromosome-scale sca�olding [9–11]. Paired-end Hi-C

sequencing reads are aligned to the assembly, and mates which align to di�erent contigs (Hi-C links) are recorded.

According to the relative density of such Hi-C links between pairs of contigs, contigs can be ordered and oriented into

larger sca�olds, potentially forming chromosome-length pseudomolecules. Also, because misassemblies may be observed by

visualizing Hi- C alignments, Hi-C can be used for validation and manual correction of misassemblies [12]. Though Hi-C

has been widely adopted, there remain challenges that can impede the ability to form accurate chromosome-scale

pseudomolecules with Hi-C alone. Principally, Hi-C data are noisy, and Hi-C-based sca�olders are prone to producing

structurally inaccurate sca�olds [13]. Also, because this process relies on the alignment of short Hi-C sequencing reads to

the draft assembly, small and repetitive contigs with little or con�icting Hi-C link information often fail to be accurately

sca�olded. Finally, the analysis requires deep sequencing coverage and therefore can be expensive and compute-intensive.

Aside from reference-free approaches, there are also a few tools available for reference-guided sca�olding [14]. For example,

Chromosomer and MUMmer’s “show-tiling” utility leverage pairwise alignments to a reference genome for contig

sca�olding and have been used to sca�old eukaryotic genomes [15–17]. RACA is similar, though it also requires paired-end

sequencing data to aid sca�olding [18]. Finally, tools such as GOSASM and Ragout2 employ multiple sequence aligners to

reconcile multiple, potentially diverse contig sets [19,20]. Though reference-guided sca�olding may introduce erroneous

reference bias, it is often substantially faster and less expensive than acquiring the resources for the reference-free methods

outlined above. However, current tools for reference-guided sca�olding of eukaryotic genomes have notable shortcomings.
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Firstly, these tools depend on slower DNA aligners such as BLAST and Nucmer and accordingly require long compute

times of several hours to several days for mammalian-sized genomes [21]. This is especially pronounced in tools like

Ragout2 that use multiple sequence aligners, such as Cactus, that can require hundreds of CPU hours for large eukaryotic

genomes [22]. These aligners are also not robust to repetitive and/or gapped alignments resulting in a signi�cant portion of

contigs being unassigned in pseudomolecules. Finally, many of these methods do not internally o�er the ability to correct

large-scale misassemblies frequently present in draft assemblies of eukaryotic genomes nor report any metrics on con�icts

due to true biological di�erences in the genomes.

Here, we introduce RaGOO, an open-source method that utilizes Minimap2 [23] alignments to a closely related reference

genome to quickly cluster, order, and orient genome assembly contigs into pseudomolecules. RaGOO also provides the

option to correct apparent chimeric contigs before pseudomolecule construction. Finally, structural variants (SVs),

including those spanning gaps, are identi�ed using an optimized and integrated version of Assemblytics [24], thus enabling

rapid pan-genome SV analysis of many genomes at once. This is especially important for detecting large insertions and

other complex structural variations that are di�cult to detect using read mapping approaches.

We �rst demonstrate the speed and accuracy of RaGOO sca�olding with simulated data of increasing complexity and show

that it outperforms 2 popular alternative methods. We next show the utility of RaGOO by creating high-quality

chromosome-scale reference genomes for 3 distinct wild and domesticated genotypes of the model crop tomato using a

combination of short and long-read sequencing. Finally, we demonstrate the scalability of RaGOO by ordering and

orienting 103 draft Arabidopsis thaliana genomes and comparing structural variants across the pan-genome. This uncovers

a large number of defense response genes that are highly variable.
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1.3 RESULTS

Reference-guided contig ordering and orientation with RaGOO

RaGOO is a fast and reliable reference-guided sca�olding method, implemented as an open-source python command-line

utility, that orders and orients genome assembly contigs according to Minimap2 alignments to a single reference genome

(Figure 1.1) [25]. RaGOO’s primary goal is to utilize the large-scale structure of a reference genome to organize assembly

contigs, analogous to how a genetic map is used. Therefore, under default settings, RaGOO does not alter or mutate any

input assembly sequence but rather arranges them and places gaps for padding between contigs. Additionally, users have the

option to break input contigs at points of potential misassembly indicated by discordant alignments to the reference

genome. However, these breaks will only fragment the assembly and do not add or remove any sequence content. RaGOO

can optionally avoid breaking chimeric intervals at loci within genomic coordinates speci�ed by a g�3 �le, to avoid

disrupting gene models identi�ed in the de novo assembly.

Figure 1.1: The RaGOO pipeline. (A) Contigs are aligned to the reference genome with Minimap2 and are ordered and oriented
according to those alignments. (B) Normal alignments between a contig and a reference chromosome (top) and example alignments
between a reference chromosome and an intrachromosomal chimera (bottom left) and an interchromosomal chimera (bottom right).
Red arrows represent potential contig breakpoints.
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Additionally, RaGOO computes con�dence scores associated with the clustering, ordering, and orienting of each contig.

These scores ultimately strive to measure the �delity of contig ordering and orienting to the underlying alignments. For

example, a contig that aligns with equal coverage to three di�erent chromosomes will have a lower clustering con�dence

score than a contig that exclusively aligns to a single chromosome. These scores can also be viewed as measuring the level of

sca�olding ambiguity present in the alignments. Accordingly, one can compare con�dence scores with and without

chimeric contig correction to ensure that alignments become less ambiguous after correction (see the “M82 chromosome

Hi-C validation, �nishing, annotation” section). Furthermore, a poor con�dence score distribution can indicate that a draft

assembly is too divergent from the reference assembly for optimal sca�olding (see the “Sca�olding a divergent S. pennellii

genome assembly” section).

After constructing pseudomolecules, RaGOO re-aligns the assembly to the reference and calls structural variants with an

integrated version of Assemblytics. We have optimized this approach by replacing the relatively slow single-threaded nucmer

alignment phase with the much faster Minimap2 aligner along with the necessary converters between the output formats.

Noting that such alignments may traverse gaps in either the reference or the query assembly, we report the percent overlap

between each SV and gaps, allowing users to utilize such variants at their discretion. Importantly, the speed of Minimap2

alignments, and therefore RaGOO, facilitates a genome sca�olding and SV analysis at scales previously not feasible with

comparable tools. For example, RaGOO sca�olds an Arabidopsis thaliana draft assembly in ~ 13 s and a human draft

assembly in ~ 12 min and 33 s using eight cores and less than 20 GB of RAM [26].

Simulated reference-guided scaffolding

To assess the e�cacy of RaGOO, we used it to sca�old simulated draft eukaryotic genome assemblies of increasing

di�culty. To simulate these assemblies, we partitioned the current tomato (Solanum lycopersicum) reference genome (Heinz

version SL3.0) into variable-length sca�olds [27]. To achieve a realistic distribution of sequence lengths, we sampled the

observed contig lengths from a de novo assembly produced with Oxford Nanopore long reads of the S. lycopersicum cultivar

M82, which is described later in this paper. Given that many of these resulting sca�olds contained a gap sequence ("N"

23



characters) from the reference genome, we also established an assembly comprised of contigs free of sequencing gaps. For

this, we split the simulated sca�olds at any stretch of 20 or more “N” characters, excluding the gap sequence. We also

excluded any resulting contigs shorter than 10 kbp in length. We refer to these sca�olds and contigs as the “easy” set of

simulated data, as they are a partitioning of the reference with no variation. To simulate a “hard” dataset that contained

variation, we used SURVIVOR [28] to simulate 10,000 insertion and deletion SVs, ranging in size from 20 bp to 10 kbp,

and SNPs at a rate of 1% into the simulated sca�olds. Contigs were then derived from these sca�olds just as with the “easy”

contigs.

Utilizing the same SL3.0 reference assembly, we used MUMmer’s “show-tiling” utility, as well as Chromosomer and

RaGOO to arrange these simulated assemblies into 12 pseudomolecules. To assess sca�olding success, we measured

clustering, ordering, and orienting accuracy. Clustering and orienting accuracy is the percentage of localized contigs that

were assigned the correct chromosome group and orientation, respectively. To assess the ordering accuracy, the edit distance

between the true and predicted contig order was calculated for each pseudomolecule normalized by the true number of

contigs in the pseudomolecule. Additionally, for a local measurement of ordering accuracy, the fraction of correct adjacent

contig pairs was computed for each pseudomolecule. Finally, to measure the sca�olding completeness, we noted the

percentage of contigs and total sequence localized into pseudomolecules.

RaGOO performed best on all datasets, achieving high clustering, ordering, and orienting accuracy on both the “easy” and

“hard” datasets, while localizing the vast majority (~ 99.9998% for hard sca�olds) of sequence in only a few minutes (1 min

and 15 s for the “hard” sca�olds) (Figure 1.2). In all simulations, Chromosomer accurately reconstructed most of the

genome, though the presence of gaps in sca�olds and variation in the “hard” assembly degraded the performance to a

localization score of 86.65% in the “hard” sca�olds. Show-tiling su�ered tremendously from the presence of gaps in

sca�olds and accordingly achieved poor localization scores on sca�olds of both the “easy” (8.43%) and “hard” (0.01%) sets.

Both Chromosomer and show-tiling took substantially longer to run than RaGOO in all cases and required several hours

rather than minutes.
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Figure 1.2: Sca�olding simulated assemblies. Ordering and localization results for “easy” and “hard” simulated tomato genome
assemblies. Normalized edit distance and adjacent pair accuracy measure the success of contig ordering and are averaged across the 12
simulated chromosomes. The percentage of the genome localized measures how much of the simulated assemblies were clustered,
ordered, and oriented into pseudomolecules.

Pan-SV analysis of three chromosome-scale tomato genome assemblies

For more than a decade, the reference genome for tomato (var. “Heinz 1706”) has been an invaluable resource in both basic

and applied research, but extensive sequence gaps (81.7 Mbp, 9.87%), unlocalized sequence (~ 17.8 Mbp, 2.39%), and

limited information on natural genetic variation in the wider germplasm pool impeded its full utilization [27]. To

compensate, more than 700 additional accessions have since been sequenced by Illumina short-read technology [29,30].

However, due to the short sequence reads, these studies were limited to evaluating, with reasonable accuracy (depending on

variable sequencing quality and coverage), single nucleotide polymorphisms (SNPs), and small insertions and deletions

(indels). In contrast, larger structural variations (SVs) that have important and often underestimated functional

consequences for genome evolution and phenotypic diversity were largely ignored in this major model crop plant. Critically,

without long reads, the complete catalog of structural variations in the species, a pan-SV analysis, is largely incomplete.

To address this knowledge gap and begin constructing a high-quality tomato pan-SV analysis, we used long-read ONT

instruments to sequence three distinct genotypes that provide anchor points for wild and domesticated tomato germplasm:
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(1) the species S. pimpinellifolium is the ancestor of tomato, and the Ecuadorian S. pimpinellifolium accession BGV006775

(BGV) represents the group of progenitors that are most closely related to early domesticated types; (2) the S. lycopersicum

processing cultivar M82 is the most widely used accession in research due to its rich genetic resources; and (3) the S.

lycopersicum elite breeding line Fla.8924 (FLA) is a large-fruited “fresh market” type that was developed for open-�eld

production in Florida [31,32]. Together, these three accessions provide a foundation for constructing a pan-SV analysis that

will enable the identi�cation and classi�cation of thousands of predicted SVs.

Reference-guided and reference-free M82 scaffolding

To evaluate the e�ectiveness of RaGOO with genuine sequencing data, we �rst used it along with other reference-guided

and reference-free tools to sca�old a highly contiguous assembly of the S. lycopersicum cultivar M82. We sequenced the

genome with an Oxford Nanopore MinION sequencer to 58.8× fold coverage with an N50 read length of 13.4 kbp (max

1,256,650 bp). The genome was assembled with Canu [33] and was comprised of 1709 contigs with a contig N50 of

1,458,445 bp. To compare RaGOO to other reference-guided tools, the assembly was sca�olded with RaGOO (with

chimeric contig correction), MUMmer’s “show-tiling” utility, and Chromosomer. Here, a “localized” contig is one that is

placed in a pseudomolecule group and is assigned order and orientation. In all cases, the Heinz SL3.0 genome was used as

the reference. RaGOO localized the highest portion of sequence, placing 99.01% of sequence into chromosomes compared

to 85.6% and 3.17% for Chromosomer and show-tiling, respectively. The resulting RaGOO assembly contained 12

chromosome-length pseudomolecules with only 0.99% of sequence in the ambiguous chromosome 0 (Figure 1.3).

Additionally, the sca�olding completed in only ~ 3 min for RaGOO, compared to ~ 285 min for show-tiling and ~ 1466 min

for Chromosomer.
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Figure 1.3: M82 assembly contiguity. “Nchart” of the M82 and Heinz contigs and pseudomolecules. M82 pseudomolecules were
established by ordering and orienting M82 contigs with RaGOO. Heinz contigs were derived from the SL3.0 pseudomolecules by
splitting sequences at stretches of 20 or more contiguous “N” characters.

To compare RaGOO sca�olding to a widely used reference-free approach, we generated Hi-C chromatin conformation

data and used SALSA2 [13] to build sca�olds from the M82 contigs. Though SALSA2 does not necessarily build

pseudomolecules, it strives to establish chromosome and chromosome-arm length sca�olds as the data allows. SALSA2

utilized Hi-C alignments to the M82 draft assembly along with the M82 Canu assembly graph. Though the sca�olds were

highly contiguous compared to the input assembly (sca�old N50 of 18,282,950 bp), they are not chromosome scale.

We further compared the structural accuracy of the RaGOO pseudomolecules to that of the SALSA2 sca�olds by

comparing the 12 pseudomolecules of the former and the 12 longest sca�olds of the latter to the Heinz SL3.0 reference

(Figure 1.4). This shows nearly complete and highly co-linear coverage of the RaGOO pseudomolecules, while highly

fragmented and rearranged placements of the SALSA2 sca�olds. Additionally, realigning the same Hi-C data to these

pseudomolecules/sca�olds provides a reference-free assessment of the large-scale structural accuracy of these sequences.
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Through this analysis, we found that the SALSA2 sca�olds contained many misassemblies, especially false inversions, while

the RaGOO pseudomolecules contained very few structural errors (Figure 1.4). These Hi-C alignments suggest that most

inversions and other large structural di�erences between the SALSA2 sca�olds and the Heinz reference assembly are likely

not biological, but rather are sca�olding errors. They also demonstrate that erroneous reference bias in the RaGOO

pseudomolecules, though present, was rare.

Figure 1.4: Reference-free vs. reference-guided sca�olding of M82. Both the top and bottom panels depict a dotplot (left) and
Hi-C heatmap (right). The dotplots are generated from alignments to the Heinz reference assembly. On the top panel is the
reference-guided RaGOO assembly dotplot, with chromosomes 1 through 12 depicted from top left to bottom right, and the Hi-C
heatmap for chromosome 12. On the bottom is the de novo SALSA sca�olds dotplot, with the 12 largest sca�olds depicted in
descending order of length from top left to bottom right and the Hi-C heatmap for the 12th largest sca�old.
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M82 chromosome Hi-C validation, finishing, and annotation

To establish a new structurally accurate tomato reference genome, we sought to make further improvements to the

RaGOO M82 pseudomolecules, as they provided the best completeness and contiguity with relatively few misassemblies.

We �rst used the abovementioned Hi-C data and Juicebox Assembly Tools to correct apparent lingering misassemblies in

the pseudomolecules [12]. A total of three corrections were made: an inversion error correction on chromosome 3 and an

ordering error correction on chromosomes 7 and 11. Any “debris” contigs resulting from these alterations were placed in

chromosome 0. With these few misassemblies corrected, the pseudomolecules were gap �lled with PBJelly and polished

with Pilon [34,35]. The �nal polished assembly had an average identity of 99.56% when compared to the Heinz SL3.0

reference and contained a complete single copy of 94.1% of BUSCO genes [36]. We note that M82 is biologically distinct

from Heinz, so we do not expect 100% identity and estimate the overall identity at approximately 99.8 to 99.9%.

Additionally, M82 consensus accuracy is re�ected in ITAG 3.2 cDNA GMAP alignments, 96.8% of which align with at

least 95% coverage and identity [37].

Gene �nding and annotation was performed on the �nished M82 assembly with the MAKER pipeline [38]. There are

35,957 genes annotated in the M82 assembly, of which 27,624 are protein coding. When comparing M82 and Heinz 1706

ITAG3.2 gene models using g�compare (https://github.com/gpertea/g�compare), we found 24,652 gene models with

completely matching intron chains. The �nal M82 assembly contained a total of ~ 46 Mbp novel non-gapped sequence

missing from the SL3.0 reference genome. Furthermore, the M82 assembly contained only ~ 8.9 Mbp of unlocalized

sequence in chromosome 0 compared to ~ 17.8 Mbp in the Heinz SL3.0 reference.

Pan-SV analysis of 3 tomato accessions

In addition to the M82 cultivar, we also assembled genomes for the BGV and FLA tomato accessions de novo with Oxford

Nanopore sequencing reads and the Canu assembler. We sequenced the BGV accession to 33.5× fold coverage with a read

N50 length of 27,350 bp (max 192,728 bp) and the FLA accession to 41.6× fold coverage with a read N50 length of

24,225 bp (max 144,350 bp). The FLA assembly contained a total of 750,743,510 bp and had an N50 of 795,751 bp, while

29



the BGV assembly contained a total of 769,694,915 bp and had an N50 of 4,105,177 bp. As with the M82 assembly,

RaGOO was then used to establish pseudomolecules and call structural variants for these assemblies. The �nal FLA and

BGV pseudomolecules contained 745,663,382 bp and 765,377,903 bp (99.3% and 99.4%) of the total ungapped sequence

localized to chromosomes, respectively. Finally, the assemblies underwent gap �lling, polishing, and gene �nding using the

same methods as M82. A summary of the �nal assembly statistics for all three accessions is presented in Table 1.1. The

polished assemblies had 99.4% (FLA) and 98.9% (BGV) average identity compared to the Heinz SL3.0 reference as

measured by MUMmer’s “dnadi�.” These assemblies also demonstrated genome completeness with BGV and FLA

containing a single copy of 94.8% and 94.9% of BUSCO genes, respectively.

Accession Chromosome
span (bp)

Chromosome
N50 (bp)

Chr0 bases
(bp)

Number
Contigs

Contig span
(bp)

Contig N50
(bp)

Number SVs

Heinz 828,076,956 66,723,567 20,852,292 22,705 746,357,581 133,084 NA

M82 792,934,937 67,021,692 8,891,603 2910 771,143,786 1,458,445 36,191

BGV 794,568,563 67,174,401 4,643,553 638 769,694,915 4,105,177 45,927

FLA 796,004,315 67,650,907 5,490,904 2577 750,743,510 795,751 45,478

Table 1.1: Summary statistics of the reference tomato genome as well as the three novel accessions. Chromosome span
indicates the total span of all of the chromosomes, including gaps. Chromosome N50 is the length such that half of the total span is
covered in chromosome sequences this length or longer. Chr0 bases report the number of bases assigned to the unresolved
chromosome 0. Contig span is the total length of non-gap (N) characters. Contig N50 is the length such that half of the contig span is
covered by contigs this length or longer. Number SVs reports the number of SVs reported by RaGOO using the integrated version of
Assemblytics.

Together with the M82 genome, we present 3 chromosome-scale assemblies with substantially more sequence content and

fewer gaps than the Heinz SL3.0 reference genome. Given the structural variants output by RaGOO, we next used

SURVIVOR to determine which variants were shared among these three accessions (Figure 1.5). As expected, the most

divergent accession, BGV, demonstrated the most structural variant diversity with a total of 45,927 SVs compared to 45,478

and 36,191 SVs in FLA and M82, respectively. The union of these sets of variants yielded 98,988 total structural variants,

which overlapped with 19,790 out of 35,768 total ITAG 3.2 genes (with 2 kbp �anking upstream and downstream each
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gene included). The most variable gene (the gene with the most intersecting SVs), Solyc03g095810.3, is annotated as a

member of the GDSL/SGNH-like Acyl-Esterase family, while the second most variable gene, Solyc03g036460.2, is

annotated as a member of the E3 ubiquitin-protein ligase. These three chromosome-scale assemblies, along with their

associated sets of SVs, establish valuable genomic resources for the Solanaceae scienti�c community.

Figure 1.5: The tomato pan-genome. (left) Circos plot (http://omgenomics.com/circa/) depicting the size and type of structural
variant. From the outer ring to the inner ring: M82, FLA, and BGV. Point height (y-axis) is scaled by the size of the variant, with red
indicating insertions and blue indicating deletions. (right) Euler diagrams (https://github.com/jolars/eulerr) depicting the insertions
and deletions shared among the three accessions.

Scaffolding a divergent S. pennellii genome assembly

Reference-guided sca�olding accuracy depends on a shared chromosomal structure between the draft and reference

assemblies. This is the case for our three tomato assemblies since they represent either the same species as the reference (S.

lycopersicum) or a closely related progenitor species (S. pimpinellifolium). However, we sought to evaluate the sca�olding

success of a more divergent S. pennellii draft assembly to assess scenarios where assemblies are not close relatives. To this

end, we sca�olded a draft S. pennellii genome assembly twice using two distinct reference genomes [39]. First, we sca�olded
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contigs according to the same S. lycopersicum SL3.0 reference genome used thus far in our previous tomato analysis. In

addition, we also sca�olded contigs according to an independent, chromosome-scale S. pennellii reference genome [40].

If the distantly related S. lycopersicum reference is suitable for sca�olding the S. pennellii contigs, then the two resulting sets

of RaGOO pseudomolecules should be structurally similar. Rather, we found major structural disagreements between the

two sets of RaGOO pseudomolecules. Notably, chromosome 0 contained over four times as many bases when using the S.

lycopersicum reference (26,868,206 bp vs. 6,230,859 bp) indicating that signi�cantly less of the genome had been localized.

We further noted the con�dence score distributions were appreciably lower when using the S. lycopersicum reference. From

these results, we conclude that S. lycopersicum is too divergent from S. pennellii to be used as a guide for sca�olding.

Though every case must be examined individually, this analysis shows how con�dence scores and localization stats can be

used to determine if reference-guided sca�olding is appropriate for divergent assemblies.

Pan-SV analysis of 103 Arabidopsis thaliana genomes

Given the speed of RaGOO, we sought to test its scalability by performing a pan-SV genome analysis on a large population

of diverse individuals. To acquire such population-scale data, we examined the sequencing data from the 1001 Genomes

Project database, which includes raw short-read sequencing data and small variant calls for 1135 Arabidopsis thaliana

accessions [41]. We mined the 1001 Genomes Project database for sequencing data amenable to genome assembly with

su�ciently deep coverage of paired-end reads. This identi�ed 103 short-read datasets representing a wide range of accessions

sampled across 4 continents (Figure 1.6). We then established draft de novo assemblies for each accession using SPAdes

[42]. Finally, RaGOO utilized the TAIR 10 reference genome to create 103 chromosome-scale assemblies and associated SV

calls [43]. Between 85.8 and 98.7% (mean = 96.7%) of sequence was localized into chromosomes per accession, showing that

the majority of assembled sequence across the pan-genome was sca�olded into pseudomolecules, even for more divergent

accessions. The structural variant calls from this pan-genome provide a database of A. thaliana genetic variation previously

unreported in the initial 1001 Genomes Project analysis [44].
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Figure 1.6: The Arabidopsis pan-genome. (A) Map of the 103 Arabidopsis accessions that were assembled in this study. (B)
Principal components analysis of the structural variant presence/absence matrix of the 103 Arabidopsis accessions.

SV calls were compared with SURVIVOR, yielding a total of 137,111 merged variants across the pan-genome. From this

merged set of variants, we constructed a presence/absence matrix representing which variants were present in which

accessions. Principal components analysis of this matrix revealed clustering of accessions according to their geographic

location (Figure 1.6). Upon further analysis of global trends in the data, we found that SVs were concentrated in

pericentromeric regions, consistent with previous �ndings [45].

We further examined those genes that intersected variants present in small and large numbers of accessions, as these

represent rare variants in the population and rare variants in the reference genome, respectively. When including variants

present in at least 1, 10, 50, and 100 samples, we found 26,795, 17,593, 7859, and 332 total intersecting protein-coding

genes (2 kbp �anking each side), respectively. Since there are a total of 27,416 protein-coding genes in the TAIR 10

database, we conclude that SVs in the pan-genome impact the genomic architecture for the majority of protein-coding

genes, though fewer genes are a�ected by variants present in multiple samples (Table 1.2). Interestingly, most of these

highly variable genes are defense response genes. Ultimately, our analysis highlights the importance of chromosome-level

assembly at a population scale to help understand the broad impact of structural variation.
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Gene Annotation Number
of

variants

Normalized
number of

variants

Number of
accessions with

variants

AT4G16960 Defense response, chloroplast 62 0.00715605 80

AT1G58602 ADP binding, defense response, ATP binding 57 0.00244101 90

AT3G44400 ADP binding, defense response, cytoplasm, signal transduction 56 0.00621256 89

AT3G44630 Defense response 55 0.00593312 84

AT4G16920 Defense response, chloroplast, cytoplasm 55 0.00522913 79

AT1G62620 N,N-dimethylaniline monooxygenase activity, �avin adenine
dinucleotide binding, NADP binding, monooxygenase activity, nucleus,
oxidation-reduction process

54 0.00850796 91

AT4G16950 Defense response to fungus, incompatible interaction, nucleotide
binding, defense response, protein binding

54 0.00558486 70

AT1G62630 Defense response, ATP binding, N-terminal protein myristoylation,
ADP binding, nucleus

50 0.00748391 93

AT5G41740 Nucleus, defense response, chloroplast 48 0.00565171 91

AT4G16890 Defense response, cytosol, signal transduction, defense response to
bacterium, protein binding, ATP binding, defense response to
bacterium, incompatible interaction, ADP binding, systemic acquired
resistance, salicylic acid-mediated signaling pathway, cytoplasm,
intracellular membrane-bounded organelle, nucleus, nucleotide binding,
endoplasmic reticulum, response to auxin

48 0.00536373 75

Table 1.2: Summary of the ten most variable genes in the Arabidopsis pan-genome. “Number of variants” is the total number
of variants intersecting a given gene, and “Normalized number of variants” is the number of intersecting variants divided by gene
length.

1.4 DISCUSSION

We have introduced RaGOO in both a general and focused context for highly accurate genome sca�olding. As a general

method, RaGOO may be valuable for chromosome-scale sca�olding in experimental designs where ordering and/or

orienting of contigs leveraging an existing reference is available. Ordering and orienting with RaGOO may also facilitate

analysis not possible with unlocalized contigs. This is exempli�ed by the additional sequence found through gap-�lling of

the M82, BGV, and FLA assemblies or by the identi�cation of structural variants spanning gaps between contigs in the S.
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lycopersicum and Arabidopsis thaliana pan-genomes. Additionally, our pan-genome analysis demonstrates that the speed of

RaGOO o�ers new possibilities as to the scope and size of experiments that require reference-guided sca�olding.

Furthermore, the integrated structural variant identi�cation pipeline allows for a rapid survey of gene-related and other

variants in the population. This shows that for both tomato and Arabidopsis pan-genomes, the majority of protein-coding

genes are associated with the structural variation, highlighting the importance of population-scale assembly and structural

variant discovery.

In a more focused analysis, we demonstrate that RaGOO may be a valuable component of a detailed assembly pipeline to

establish new high-quality eukaryotic genomic resources. Our use of RaGOO to produce three tomato assemblies

highlights a valuable means of organizing contiguous draft assemblies into pseudomolecules. This is especially useful as

draft assemblies become more contiguous, and high-quality references become more common, even for non-model species.

For applications that do not have independent data such as Hi-C to validate the accuracy of RaGOO output, it can be

challenging to assess the extent to which errors such as reference bias are present in pseudomolecules. However, it is possible

to estimate the �delity of newly created pseudomolecules to the reference. As we show in our S. pennellii analysis, the

percentage of localized contigs/sequence along with the RaGOO con�dence scores can be examined to help determine if

sca�olding was successful. In general, if pseudomolecules pass these quality control checks, users can be more con�dent that

RaGOO pseudomolecules are accurate and complete.

1.5 CONCLUSIONS

Our results show that RaGOO is a fast and accurate method for organizing genome assembly contigs into

pseudomolecules. They also show that with a closely related reference genome, reference-guided sca�olding may yield

substantially better sca�olding results than popular reference-free methods such as sca�olding with Hi-C data. In the

process, we produced three tomato genome assemblies that are a valuable resource for the Solanaceae community and were

selected to serve as the foundation for many additional tomato accessions we will be sequencing to establish a pan-SV
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genome for use in biology and agriculture. For this purpose, the M82 assembly has already undergone extensive procedures

to provide a complete and accurate assembly with an associated set of gene models and annotations.

1.6 METHODS

Description of RaGOO algorithm and scoring metrics

The RaGOO source code is available on GitHub at https://github.com/malonge/RaGOO and is released under an MIT

license. RaGOO is written in Python3 and uses the python packages intervaltree and numpy. It also relies on Minimap2

that is available on GitHub at https://github.com/lh3/minimap2. RaGOO also comes bundled with an integrated

implementation of Assemblytics for structural variation analysis.

Scaffolding algorithm overview

RaGOO utilizes alignments to a reference genome to cluster, order, and orient contigs to form pseudomolecules. RaGOO

internally invokes Minimap2, with k-mer size and window size both set to 19 bp, to obtain the necessary mappings of

contigs to a reference genome. By default, any alignments less than 1 kbp in length are removed. To cluster contigs into

chromosome groups, each contig is assigned to the reference chromosome which it covers the most. Coverage here is

de�ned as the total number of reference chromosome base pairs covered in at least one alignment. Next, for each

pseudomolecule group, the contigs in that group are ordered and oriented relative to each other. To do this, the longest

(primary) alignment for each contig to its assigned reference chromosome is examined. Ordering is achieved by sorting these

primary alignments by the start then end alignment position in the reference. Finally, the orientation of that contig is

assigned the orientation of its primary alignment. To produce pseudomolecules, ordered and oriented contigs are

concatenated, with padding of “N” characters placed between contigs.

Scaffolding confidence scores

Each contig is assigned a con�dence score, between 0 and 1, for each of the three stages outlined above. The clustering

con�dence score is the number of base pairs a contig covered in its assigned reference chromosome divided by the total
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number of covered base pairs in the entire reference genome. To create a metric associated with contig ordering con�dence,

we de�ned a location con�dence. First, the smallest and largest alignment positions, with respect to the reference, between a

contig and its assigned reference chromosome are found. The location con�dence is then calculated as the number of

covered base pairs in this range divided by the total number of base pairs in the range. Finally, to calculate the orientation

con�dence, each base pair in each alignment between a contig and its assigned reference chromosome casts a vote for the

orientation of its alignment. The orientation con�dence is the number of votes for the assigned orientation of the contig

divided by the total number of votes.

Chimeric contig correction

Before clustering, ordering, and orienting, RaGOO provides the option to break contigs that may be chimeric as indicated

by discordant alignments to the reference. RaGOO can identify and correct both interchromosomal and intrachromosomal

chimeric contigs. Interchromosomal chimeric contigs are contigs that have signi�cant alignments to two distinct reference

chromosomes. To identify and break such contigs, all the alignments for a contig are considered. Alignments less than 10

kbp are removed, and the remaining alignments are unique anchor �ltered [24]. If there are multiple instances where at least

5% of the total alignment lengths cover at least 100 kbp of a distinct reference chromosome, a contig is deemed chimeric. To

break the contig, alignments are sorted with respect to the contig start, then end positions, and the contig is broken where

the sorted alignments transition between reference chromosomes.

Intrachromosomal chimeric contigs are contigs that have signi�cant alignments to distant loci on the same reference

chromosome. As with interchromosomal chimeric contigs, identi�cation and breaking of intrachromosomal chimeric

contigs start with removing short and non-unique alignments. The remaining alignments are sorted with respect to the

start then end position in the reference chromosome. Next, the genomic distance between consecutive alignments is

calculated, both with respect to the reference and the contig. If any of these distances exceed user-de�ned thresholds, the

contig is broken between the corresponding alignments. Only one intrachromosomal and one interchromosomal break can

occur per contig per execution of the software. Importantly, all of the above criteria for breaking contigs are tunable
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parameters in the RaGOO software. This allows users to specify how large a structural di�erence between the assembly and

the reference must be to consider it an error. Chimeric contig correction should only be used in cases when the user is

con�dent that such large structural di�erences between the assembly and the reference are more likely to be misassemblies

than true, large-scale structural variants. We advise users to validate misassembly correction with independent data to help

ensure that true variation is not being masked.

Scaffolding of an Arabidopsis thaliana and human genome

Of our 103 A. thaliana assemblies, we highlighted the runtime and sca�olding accuracy of the assembly representing the

TFÄ 04 accession (SRR1945711). This assembly was assembled with SPAdes (see below) and had a sca�old N50 of

120,255 bp with a total size of 115,803,138 bp [42]. Additionally, to demonstrate the sca�olding of a mammalian-sized

genome, we used RaGOO to order and orient the mixed haplotype human Canu assembly derived from Paci�c Biosciences

CCS reads. This human assembly had a contig N50 of 22,778,121 bp and a total size of 3,418,171,375 bp. For both the

TFÄ 04 and human assemblies, default RaGOO parameters were used and the software was run with 8 threads (“-t 8”).

The TAIR 10 and hs37d5 reference genomes were used to sca�old the TFÄ 04 and human assemblies, respectively.

RaGOO completed in 12.576 s and 12 min and 33.090 s for TFÄ 04 and human, respectively. The dotplots for both

assemblies were made by aligning RaGOO pseudomolecules to the respective reference genomes with nucmer (-l 200 -c

500). Alignments were �ltered with delta-�lter (-1 -l 20000), and plots were made with Mummerplot (--fat). Only nuclear

chromosome and non-alternate sequences are shown in the dotplots.

Simulated reference-guided scaffolding

A simulated S. lycopersicum draft genome assembly was created by partitioning the Heinz SL3.0 reference genome,

excluding chromosome 0, into sca�olds of variable length. Intervals along each chromosome were successively de�ned, with

each interval length being randomly drawn from the distribution of observed M82 Canu contig lengths. Bedtools [46] was

then used to retrieve the sequence associated with these intervals. Finally, simulated sca�olds with more than 50% “N”

characters were removed, and half of the remaining contigs were randomly reverse complemented. A second simulated
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assembly containing contigs, rather than sca�olds, was derived from these simulated sca�olds. Sca�olds were broken at any

stretch of “N” characters longer than or equal to 20 bp, excluding the gap sequence. Any resulting contigs less than 10 kbp

in length were also excluded. We call this pair of simulated assemblies the “easy” set of simulated data. To simulate a “hard”

set of data, we started with the same “easy” sca�olds and added variation. To do this, we used SURVIVOR to simulate

10,000 indels ranging from 20 bp to 10 kbp in size. We also added SNPs at a rate of 1%. Again, we split these sca�olds into

contigs resulting in a pair of “hard” simulated assemblies.

Given these “easy” and “hard” simulated sca�olds and contigs, RaGOO, Chromosomer, and MUMmer’s “show-tiling”

utility were used for reference-guided sca�olding. For RaGOO, chimera breaking was turned o�, and default parameters

were used except for the padding amount, which was set to zero. Chromosomer utilized Blast alignments with default

parameters. Additionally, the “fragmentmap ratio” was set to 1.05, and the padding amount was set to zero. Show-tiling

used default parameters. Since RaGOO and Chromosomer rely on aligners that allow for multithreading, both tools were

run with eight threads, while show-tiling was run with a single thread.

We recorded various measurements to evaluate the success of these tools in ordering and orienting simulated assemblies.

Firstly, we observed the runtime, percentage of localized contigs, and percentage of localized sequence. To assess the

clustering and orienting accuracy, we measure the percentage of localized contigs that had been assigned the correct cluster

and orientation, respectively. Finally, we used two measurements to assess the ordering accuracy of each pseudomolecule.

The �rst was the edit distance between the true and predicted order of contigs. This edit distance was normalized by

dividing by the total number of contigs in the true ordering. The second ordering accuracy measurement was the

percentage of correct adjacent contig pairs.

Plant material and growth conditions

Seeds of the S. lycopersicum cultivar M82 (LA3475) were from our stocks. Seeds of the S. pimpinellifolium accession

BGV006775 were provided by E. van der Knaap, University of Georgia. Seeds of the S. lycopersicum breeding line Fla.8924
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were from the stocks of S. Hutton, University of Florida. Seeds were directly sown and germinated in the soil in 96-cell

plastic �ats and grown under long-day conditions (16-h light/8-h dark) for 21 days in a greenhouse under natural light

supplemented with arti�cial light from high-pressure sodium bulbs (~ 250 μmol m2 s1). Daytime and nighttime

temperatures were 26–28 °C and 18–20 °C, respectively, with a relative humidity of 40–60%.

Genome and transcriptome sequences

Genomic Illumina read data for BGV006775 were downloaded from the NCBI Sequence Read Archive (SRA) database

(accession SRS3394566). Genomic Illumina read data for Fla.8924 [32] was provided by S. Hutton, University of Florida.

Illumina read data for all transcriptomes were downloaded from

ftp://ftp.solgenomics.net/user_requests/LippmanZ/public_releases/by_experiment/Park_etal/ [SeSo1]

ftp://ftp.solgenomics.net/transcript_sequences/by_species/Solanum_lycopersicum/libraries/illumina/LippmanZ/;

[SeSo2] http://solgenomics.net/[SeSo3]. [SeSo4] [ZBL5].

Tissue collection and high molecular weight DNA extraction

For extraction of high molecular weight DNA, young leaves were collected from 21-day-old light-grown seedlings. Before

tissue collection, seedlings were incubated in complete darkness for 48 h. Flash-frozen plant tissue was ground using a

mortar and pestle and extracted in �ve volumes of ice-cold extraction bu�er 1 (0.4 M sucrose, 10 mM Tris-HCl pH 8,

10 mM MgCl2, and 5 mM 2-mercaptoethanol). Extracts were brie�y vortexed, incubated on ice for 15 min, and �ltered

twice through a single layer of Miracloth (Millipore Sigma). Filtrates were centrifuged at 4000 rpm for 20 min at 4 °C, and

pellets were gently re-suspended in 1 ml of extraction bu�er 2 (0.25 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, 1%

Triton X-100, and 5 mM 2-mercaptoetanol). Crude nuclear pellets were collected by centrifugation at 12,000g for 10 min at

4 °C and washed by re-suspension in 1 ml of extraction bu�er 2 followed by centrifugation at 12,000g for 10 min at 4 °C.

Nuclear pellets were re-suspended in 500 μl of extraction bu�er 3 (1.7 M sucrose, 10 mM Tris-HCl pH 8, 0.15% Triton

X-100, 2 mM MgCl2, and 5 mM 2-mercaptoethanol), layered over 500 μl extraction bu�er 3, and centrifuged for 30 min at

16,000g at 4 °C. The nuclei were re-suspended in 2.5 ml of nuclei lysis bu�er (0.2 M Tris pH 7.5, 2 M NaCl, 50 mM EDTA,
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and 55 mM CTAB) and 1 ml of 5% Sarkosyl solution and incubated at 60 °C for 30 min. To extract DNA, nuclear extracts

were gently mixed with 8.5 ml of chloroform/isoamyl alcohol solution (24:1) and slowly rotated for 15 min. After

centrifugation at 4000 rpm for 20 min, ~ 3 ml of aqueous phase was transferred to new tubes and mixed with 300 μl of 3 M

NaOAC and 6.6 ml of ice-cold ethanol. Precipitated DNA strands were transferred to new 1.5 ml tubes and washed twice

with ice-cold 80% ethanol. Dried DNA strands were dissolved in 100 μl of elution bu�er (10 mM Tris-HCl, pH 8.5)

overnight at 4 °C. Quality, quantity, and molecular size of DNA samples were assessed using Nanodrop (Thermo�sher),

Qbit (Thermo�sher), and pulsed-�eld gel electrophoresis (CHEF Mapper XA System, Biorad) according to the

manufacturer’s instructions.

Nanopore library preparation and sequencing

DNA was sheared to 30 kb using the Megarupter or 20 kb using Covaris g-tubes. DNA repair and end-prep were performed

using New England Biosciences kits NEBNext FFPE DNA Repair Kit and Ultra II End-Prep Kit. DNA was puri�ed with a

1× AMPure XP bead cleanup. Next, DNA ligation was performed with NEBNext Quick T4 DNA Ligase, followed by

another AMPure XP bead cleanup. DNA was re-suspended in elution bu�er and sequenced according to the MinION

standard protocol.

10× Genomics library preparation and sequencing

1.12 ng of high molecular weight gDNA was used as input to the 10× Genomics Chromium Genome kit v2 and libraries

we prepared according to the manufacturer’s instructions. The �nal libraries, after shearing and adapter ligation, had an

average fragment size of 626 bp and were sequenced on an Illumina HiSeq, 2500 2 × 250 bp.

Hi-C library preparation and sequencing

DNA extraction, library construction, and sequencing for Hi-C analyses were performed by Phase Genomics (Seattle, WA)

and conducted according to the supplier’s protocols. Young leaves from 21-day-old light-grown and 48-h dark-incubated

seedlings were wrapped in wet tissue paper and shipped on ice overnight.
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Initial de novo assembly of tomato genomes

The Oxford Nanopore sequencing data for M82, BGV, and FLA were assembled with Canu. For all three assemblies,

default parameters were used with the expected genome size set to 950 Mbp. Assemblies were submitted to the UGE cluster

at Cold Spring Harbor Laboratory for parallel computing. After assembly, it was determined that the M82 assembly

contained bacterial contamination. To remove bacterial contigs from the assembly, the Canu contigs were aligned to all

RefSeq bacterial genomes (downloaded on June 7, 2018) as well as the Heinz SL3.0 reference genome. If a contig covered

more RefSeq bacterial genome base pairs than SL3.0 base pairs, it was deemed a contaminant and removed from the

assembly. In this paper, “M82 Canu contigs” refers to the Canu contigs after contaminant contigs had been removed.

Reference-guided and reference-free scaffolding of tomato genomes

The M82 Canu contigs were ordered and oriented into pseudomolecules with RaGOO, Chromosomer, and Nucmer’s

“show-tiling” utility. The Heinz SL3.0 reference, with chromosome 0 removed, was used for all tools. RaGOO used eight

threads with chimeric contig correction turned on and the gap padding size set to 200 bp. We also instructed RaGOO to

skip three contigs that had low grouping accuracy scores. Chromosomer used eight threads for BLAST alignments. The

Chromosomer fragmentmap ratio was set to 1.05, and the gap padding size was set to 200 bp. Default parameters were used

for show-tiling.

For reference-free sca�olding of the M82 assembly, 46,239,525,282 bp (~ 60× coverage of the M82 Canu contigs) of 2 × 101

Hi-C sequencing reads were aligned to the M82 Canu contigs with BWA mem using the “-5” �ag [47]. Aligned reads were

then �ltered with “samtools view” to include alignments where both mates of a pair aligned as primary, non-supplementary

alignments (-F 2316) [48]. SALSA2 then utilized these alignments along with the M82 Canu assembly graph to build

sca�olds. The SALSA2 “-m” �ag was also set to “yes” in order to correct misassemblies in the M82 contigs, and the expected

genome size was set to 800 Mbp. Finally, we set “-e GATC” to correspond to the use of Sau3AI in the Hi-C library. The

SALSA2 sca�olds were comprised of 2065 sca�olds and had an N50 of 18,282,950 bp and a total size of 827,545,698 bp.
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The structural accuracy of the M82 RaGOO pseudomolecules and SALSA2 sca�olds was assessed with dotplots and Hi-C

density plots. For dotplots, both sequences were aligned to the Heinz SL3.0 reference (with chromosome 0 removed) with

Minimap2 using the “-ax asm5” parameter. Alignments less than 12 kbp in length were excluded. For Hi-C visualization,

the same Hi-C data described earlier was aligned to both sequences using the same parameters as were used for SALSA2.

These alignments were then visualized with Juicebox [49]. Hi-C mates that mapped to the same restriction fragment were

excluded from visualization.

Using the same parameters as M82, RaGOO was also used to order and orient the FLA and BGV Canu assemblies. BGV

underwent two rounds of chimeric contig correction. Assemblytics structural variants for each assembly were compared

with “SURVIVOR merge,” with the “max distance between breakpoints” set to 1 kbp. Variants in chromosome 0 of the

SL3.0 reference as well as variants that spanned more than 10% gaps were excluded from the structural variant analysis.

Tomato genome correction and polishing

M82 RaGOO pseudomolecules were manually corrected for misassemblies and/or reference bias. Manual corrections were

identi�ed by visualizing Hi-C alignments to the M82 genome described in the previous sections. Firstly, three contigs with

spurious alignments were removed from the pseudomolecules. Then, using Juicebox Assembly Tools, an inversion error was

corrected on chromosome 3 and two ordering errors were corrected, one on chromosome 7 and one on chromosome 11.

Gap �lling and polishing were performed on the RaGOO pseudomolecules for the M82, FLA, and BGV tomato

accessions. For each assembly, all respective Oxford Nanopore sequencing data used for assembly was used for gap �lling

with PBJelly.

After gap �lling, we sought to �nd the most e�ective genome polishing strategy given our data. We used the gap-�lled M82

assembly as a starting point for our tests. To polish this genome, we utilized the raw Oxford Nanopore data used for

assembly as well as 10× Genomics Illumina Whole Genome Shotgun sequencing reads. We trimmed adapters and primers
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(23 bp from the beginning of read 1) and low-quality bases (40 bp from the ends of read 1 and read 2) from these 10×

genomics data. With these data, we compared multiple polishing strategies using various alignment and polishing tools.

First, we examined assemblies polished with or without Nanopolish [50]. For Nanopolish, the M82 raw Oxford Nanopore

read set was aligned to the M82 assembly with Minimap2 using the “map-ont” parameter. Next, we compared assemblies

polished with 1 or 2 rounds of Pilon polishing. For each round of polishing, the Illumina data was randomly subsampled to

40× coverage prior to alignment. Finally, we compared bwa mem, Bowtie2, and ngm for short-read alignment prior to Pilon

polishing [51,52]. We used bwa mem and ngm with default parameters, while Bowtie2 was run with the “--local”

parameter.

We used MUMmer’s “dnadi�” utility to compare the e�cacy of these polishing pipelines. For dnadi� analysis, polished

assemblies and the SL3.0 reference were broken into contigs by breaking sequences at gaps of 20 bp or longer. Then,

assemblies were aligned to the reference contigs with nucmer using the “-l 100 -c 500 –maxmatch” parameters. After

determining that 2 rounds of Pilon polishing with Bowtie2 yielded the best results, we applied the same pipeline to the

BGV and FLA assemblies using ~ 23× coverage and ~ 26× coverage of paired-end Illumina short-read data was used for

BGV and FLA, respectively. BUSCO was used to evaluate genome completeness of the polished M82, BGV, and FLA

assemblies. The Solanaceae odb10 database was used with the “species” parameter set to “tomato.”

Finally, we searched for spurious duplications introduced after gap-�lling with PBJelly, since others have reported such

phenomena [53]. We �rst examined the M82, BGV, and FLA assemblies after gap-�lling but before polishing. Using these

assemblies, we called structural variants with respect to the SL3.0 reference genome using Assemblytics (unique minimum

alignment length set to 10 kbp). We then found all “tandem expansions” (duplications) that intersected gaps �lled by

PBJelly. Finally, for any intersecting tandem expansions, we calculated the average raw ONT read coverage across the

variant. For FLA and BGV, all tandem expansions in �lled gaps had ample read support (> 15×). For M82, there were two

tandem expansions that had less than 1× coverage. Since one variant was only 7 bp long with respect to the M82 assembly,

44



we omitted it from this analysis. The remaining spurious tandem expansion extended 982 bp and was perfectly mapped to

the �nal polished M82 assembly using Minimap2 to M821.3ch09: 21470172-21471154.

Tomato genome annotation

We annotated protein-coding genes in the M82, FLA, and BGV assembly using the Maker v3.0 pipeline on Jetstream by

providing repeats, full-length cDNA sequences, and proteins from Heinz 1706 ITAG3.2 assembly [54]. Simple,

low-complexity, and unclassi�ed repeats were excluded from masking. We additionally provided Maker with an M82

reference transcriptome derived from 50 M82 RNA-seq libraries. RNA-seq reads were aligned to the M82 genome using

STAR, a splice-aware aligner [55]. These alignments were used to assemble transcripts and establish a consensus

transcriptome using StringTie and TACO, respectively [56,57]. We ran Maker using parameters est2genome set to 1,

protein2genome set to 1 and keep_preds set to 1 to perform the gene annotation. Low consensus gene models with an

AED score above 0.5 were �ltered from the Maker-predicted gene models. We additionally removed gene models shorter

than 62 bp following the cuto�s used for the ITAG3.2 annotation. Putative gene functions were assigned to the MAKER

gene models via Interproscan protein signatures and blastp protein homology search [58]. blastp queried the

UniProtKB/Swiss-Prot and Heinz 1706 ITAG3.2 protein databases, �ltering out alignments with an e value greater than

1e−05 [59]. We further �ltered out genes that did not have an associated gene function in either Interproscan,

UniprotKB/Swiss-Prot, or ITAG3.2.

S. pennellii genome scaffolding

S. pennellii contigs were sca�olded with both the Heinz 1706 SL3.0 reference and the independent S. pennellii reference

genome using default RaGOO parameters and excluding chromosome 0 from the reference chromosomes (“-e”). The two

resulting sets of pseudomolecules were aligned to each other using Nucmer (-l 200 -c 500). The resulting alignments were

�ltered with delta-�lter (-l 50000 -1) and plotted with mummerplot. The two reference genomes were also aligned to each

other using Nucmer (-l 50 -c 100), and the resulting alignments were �ltered with delta-�lter (-l 10000 -1) and plotted with

mummerplot.
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Arabidopsis structural variant analysis

The 1001 Genomes Database was mined for accessions for which there was at least 50× coverage of paired-end sequencing

data. We also required that the read length be at least 100 bp. For practical reasons, we excluded accessions with excessive

coverage. For each of the remaining accessions, the fastq �les were randomly subsampled to achieve exactly 50× coverage.

Subsampled reads were then assembled with the SPAdes assembler, with k-mer size set to 33, 55, 77, and 99, and otherwise

default parameters. These draft assemblies were then ordered and oriented with RaGOO using default parameters (no

chimeric contig correction) and the TAIR 10 reference genome (GCA_000001735.1). RaGOO also provided structural

variants, with the minimum variant size set to 20 bp. Of the chromosome-scale assemblies, a few assemblies with a genome

size greater than 150 Mbp were removed due to putative sample contamination. After this �ltering, assemblies and

structural variant calls for 103 accessions remained.

Variants that were called in chromosome 0 or the chloroplast/mitochondrial chromosomes were discarded. Also, variants

that had more than a 10% overlap with a gap were excluded. To �nd unique variants across multiple samples, SURVIVOR

merge was used such that a variant only had to be present in at least 1 sample for it to be reported. Therefore, given all 103

samples, this yielded the union of all variants present in the pan-genome. To �nd shared variants across multiple samples,

SURVIVOR merge was used such that a variant must have been present in all samples to be reported. This e�ectively

provided the intersection of variants in the pan-genome. In all instances of using SURVIVOR merge, the “max distance

between breakpoints” was set to 1 kbp. Also, the strand of the SV was taken into account, while distance based on the size

of the variant was not estimated. Finally, the minimum variant size was set to 20 bp to be consistent with the RaGOO

parameters. Bedtools was used to �nd variant/gene intersections.
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… RagTag overcomes the scaffolding bottleneck by
leveraging existing genome assemblies to improve new
ones, or by collectively drawing from multiple genome
maps to build consensus scaffolds.

2
Automating genome assembly

sca�olding enables new references
for customized plant models
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2.1 ABSTRACT

Advancing crop genomics in the age of pan-genomes requires multiple genetic systems enabled by simpli�ed generation of

high-quality genome assemblies. Here, we introduce RagTag, a new method for rapid and accurate automation of genome

assembly sca�olding. We use this tool to establish high-quality reference tomato genome assemblies for a widely used

genetic system and a new compact, rapid-cycling genotype developed for comparative genomics and genome editing. These

references facilitate e�cient genome-scale genetic manipulation in tomato and establish strategies for expanding systems in

other plant species.

2.2 MAIN

Sweet-100 is a new experimental system for functional genomics in tomato

Recent technological advances in genome sequencing and editing are enabling the deciphering and manipulating of crop

genomes and traits with unprecedented accuracy and �exibility. Pan-genomes capture diverse alleles within crop species but

studying their phenotypic consequences is limited by e�cient functional genetic systems in relevant genotypes. Tomato has

been a core crop system to study the dissection of genetic architectures that shape crop domestication and quantitative

traits. Sequencing hundreds of tomato genomes has uncovered vast genomic variation [1,2] however, chromosome-scale

genomes are only available for few accessions [3–5], and there is a historical discrepancy between the reference genome

(Heinz 1706) and the genotypes that are commonly used by the community for genetic and molecular experimentation

(e.g. cultivars M82, Moneymaker, Ailsa Craig, etc.). The large-fruited cultivar M82 has been developed into the main

reference for genetic and developmental analyses [6,7], however, a high-quality genome assembly has been missing.

Furthermore, analyses of quantitative phenotypes in large-fruited cultivars are labor-intensive and require extensive growth

facilities to accommodate large plants with long generation times. The ultra-dwarfed variety “Micro-tom” bypasses some of

these limitations [8], but its highly mutagenized background, severe hormonal and developmental abnormalities, and low

fruit quality undermine its value for studying many quantitative and developmental phenotypes of agronomic importance,

such as shoot, in�orescence, and fruit development, for translational research (Figure 2.1A-E).
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To address these limitations and illustrate how new genomic and genome-editing systems can be rapidly developed, we

established the small-fruited tomato cultivar Sweet-100 (S100) into a new system for genome editing and functional

genomics studies. Previously, we used CRISPR-Cas9 to engineer mutations in the paralogous �owering repressor genes

SELF PRUNING (SP) and SELF PRUNING 5G (SP5G) to induce fast �owering and compact growth in S100 (Figure

2.1A and 2.1B) [9]. Importantly, null mutations in these genes cause rapid-cycling compact growth without severe

developmental abnormalities in shoot, in�orescence, and fruit development (Figure 2.1C-E). The �rst ripe fruits mature

65-70 days after sowing, allowing up to �ve generations per year compared to three or fewer generations for most other

genotypes, which also require more space and resources (Figure 2.1B). Indeed, the short generation time and compact

growth habit of S100 allows greenhouse and �eld growth at double the normal density with reduced input. Together, these

characteristics make S100 a highly e�cient system for genetics in tomato and a valuable addition or alternative to the widely

used M82 cultivar for functional genomics and genome editing, but a high-quality reference genome to facilitate wide

adoption of S100 has been lacking.
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Figure 2.1: The cherry tomato cultivar Sweet-100 shows characteristics of a superior experimental model system. (A)
Images of mature M82, Micro-tom (MT), and Sweet-100 (S100) plants ten weeks after sowing. (B) Images of in�orescences from M82
and S100 plants 66 days after sowing, and quanti�cation of fruit ripening in S100. n equals the number of plants. (C) Images of
detached in�orescences from M82, MT, and S100 plants and quanti�cation of �ower number per in�orescence. n equals the number
of in�orescences. (D) Images of detached fruit clusters from M82, MT, and S100. (E) Images of fruits and quanti�cation of seed
number per fruit in MT and S100. n equals the number of fruits. Scale bars indicate 1 cm.

RagTag enables improved automated scaffolding of genome assemblies

High-quality genome assemblies are the foundation of genetics and functional genomics analyses. Modern genome

assemblies are typically built from PacBio High Fidelity (HiFi) and/or Oxford Nanopore long-reads (ONT) [10]. HiFi

reads average 15 kbp in length, are highly accurate (~0.1% error), and can produce highly contiguous draft genome

assemblies [11]. However, HiFi-based assemblies often fragment at large and homogenous repeats as well as known

sequence-speci�c coverage dropouts [12]. Built from much longer, though noisier reads with a distinct error-pro�le,

ONT-based assemblies can complement HiFi-based assemblies by resolving some larger repeats or compensating for HiFi

coverage dropouts [12]. However, even when using complementary long-read technologies, modern draft genome

assemblies rarely achieve complete chromosome scale. Longer and ultimately chromosome-scale sequences are produced by

sca�olding, the process of ordering and orienting genome assembly contigs, and placing gaps between adjacent contigs.

Sca�olding is usually achieved by comparing a genome assembly to genome maps encoding the relative distances of genomic
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markers along chromosomes. Linkage, physical, and spatial proximity maps (from Chromatin Conformation Capture, or

“Hi-C” data) are popular and e�ective for sca�olding assemblies. However, because genome maps are noisy and sca�olding

methods are fallible, automated sca�olding usually results in incomplete or misassembled sca�olds and researchers often

rely on laborious manual curation to correct these shortcomings [13,14].

To overcome these limitations, we developed RagTag, a new method to automate sca�olding and improve modern genome

assemblies (Figure 2.2A). RagTag succeeds our previously published RaGOO sca�older and implements general

improvements to the homology-based correction and sca�olding modules [15]. RagTag also provides two new sca�olding

tools called “patch” and “merge”. RagTag “patch” uses a genome assembly to make sca�olding joins and �ll gaps in another

genome assembly (Figure 2.2B). This is especially useful for genome assembly projects with complementary sequencing

technology types, such as HiFi and ONT [12]. RagTag “merge” is an extension of the CAMSA sca�older that reconciles

distinct sca�olding solutions for a given assembly (Figure 2.2C) [16]. RagTag “merge” allows users to sca�old an assembly

with any map or map-speci�c technical parameters and synergistically combine results into a single sca�olding solution.

RagTag “merge” uses input sca�olding proposals to build a “sca�old graph” and users can optionally use Hi-C data to

re-weight the graph and resolve ambiguous paths [17].
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Figure 2.2: RagTag enables new reference genomes for Sweet-100 and M82. (A) An overview diagram describing RagTag
“sca�old”, “patch”, and “merge”. (B) A more detailed diagram describing RagTag “patch”. Gray bars indicate alignments. (C) A more
detailed diagram describing RagTag “merge”. The function h() maps contig terminus pairs to Hi-C scores (see Methods). (D) nX plots
showing the minimum sequence length (y-axis) need to constitute a particular percentage of the assembly (x-axis). (E) Ideogram
showing contig boundaries (alternating color and gray) within the �nal sca�olds. (F) circos plots comparing M82 to Heinz 1706.
Circos quantitative tracks a, b and c are summed in 500 kbp windows and show genes (a, lower tick=0, middle tick=47, upper
tick=94), LTR retrotransposons (b, 0, 237, 474), and structural variants (c, 0, 24, 48). The inner ribbon track shows whole-genome
alignments, with blue indicating forward-strand alignments and red indicating reverse-strand alignments (inversions) (darker colors
indicate alignment boundaries). (G) same as (F) but comparing Sweet-100 to Heinz 1706 and showing genes (a, 0, 48, 96), LTR
retrotransposons (b, 0, 269, 538), and structural variants (c, 0, 30, 59) and whole-genome alignment ribbons.

We used RagTag to produce high-quality chromosome-scale reference genomes for M82 and S100. Brie�y, for each

genotype, we assembled HiFi and ONT data independently. After screening the HiFi primary contigs for bacterial

contamination and super�uous organellar sequences, we used RagTag “patch” to patch the HiFi contigs with the ONT

contigs, ultimately improving the N50 from 20.1 to 40.8 Mbp and 12.6 to 27.8 Mbp in S100 and M82, respectively,
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without introducing any gaps (Figure 2.2D). After patching, S100 chromosomes 1 and 5 and M82 chromosome 7 were

each represented in a single chromosome-scale contig (Figure 2.2E). To build 12 chromosome-scale pseudomolecules for

each assembly, we used a variety of physical and spatial proximity maps to produce multiple sca�olding hypotheses. We then

used RagTag “merge” to reconcile these sca�olding proposals into �nal sca�olding solutions. Finally, each set of sca�olds

were manually corrected with Juicebox Assembly Tools and the assemblies were packaged according to the pan-sol

speci�cation (https://github.com/pan-sol/pan-sol-spec) [18].

Using a read mapping approach, we previously reported that S100 and M82 are admixed and are thus structurally distinct

from the Heinz 1706 reference genome [2]. When comparing these genomes, we con�rmed elevated rates of structural

variation across broad chromosomal regions, indicating introgressions from wild relatives during domestication and

breeding (Figures 2.2F and 2.2G). Nearly whole chromosomes, such as chromosomes 4, 9, 11, and 12 in S100 and

chromosomes 4, 5, and 11 in M82 appear to be introgressed from wild relatives. Within introgressions, we found several

large inversions in both S100 and M82. The largest inversion, a ~8.6 Mbp inversion observed on chromosome 9 of S100,

was previously found in the wild tomato Solanum pimpinellifolium LA2093 accession and genotyped in 99% of S.

pimpinellifolium accessions, reinforcing the contribution of S. pimpinellifolium and other wild tomato species to the S100

and M82 genomes [4]. Such widespread structural variation between these three tomato varieties highlights the need for

personalized tomato genomes to mitigate reference bias and false signals in genomics experiments.

Efficient transformation and genome editing in Sweet-100

Powerful experimental model systems for genetics and functional genomics allow routine genetic manipulation. Using the

new S100 genome assembly as a foundation, we adapted our plant transformation and genome editing protocols to

genetically modify S100. We obtained transgenic plants in less than four months, which is comparable to previously

published protocols for tomato [8,19]. To test the e�ciency of CRISPR-Cas9 genome editing in S100, we targeted the

tomato homolog of Arabidopsis APETALA3 (SlAP3, Solyc04g081000) on the chromosome 4 introgression with two

guide-RNAs (gRNAs) (Figure 2.3A). In Arabidopsis, AP3 activity is essential for petal and stamen development [20] and
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we observed abnormal or missing petals and stamen on all seven ap3CR �rst-generation (T0) transgenic plants (Figure

2.3B). We isolated multiple ap3CR mutant alleles by sequencing and observed germline transmission to the next generation,

demonstrating e�cient and robust editing in S100 (Figure 2.3C and 2.3D). Next, we explored the possibility to delete

entire genes by CRISPR-Cas9 to mitigate potential confounding e�ects from genetic compensation responses, which can

be induced by transcribed mutant alleles and lead to upregulation of homologous genes [21]. We targeted the �oral identity

gene ANANTHA (AN) [22] with two gRNAs 183 bp upstream and 18 bp downstream of the protein coding sequence

(Figure 2.3E). From four T0 transgenics we identi�ed the complete 1568 bp gene deletion (apCR-1568), which was

transmitted to the next generation (Figure 2.3F-H). Second-generation individuals that carried the apCR-1568 allele

developed cauli�ower-like in�orescence structures that are characteristic of an mutants, demonstrating the feasibility of

complete gene deletion by CRISPR-Cas9 in S100 (Figure 2.3H). Finally, we tested the potential for mutating multigene

families and targeted the three �oral regulator genes JOINTLESS2 (J2), ENHANCER OF J2 (EJ2), and LONG

INFLORESCENCE (LIN), which belong to the SEPALLATA (SEP) clade of the MADS-box gene family [9] (Figure

2.3I). From eight T0 transgenics, we identi�ed an individual (T0-6) that displayed the j2CRej2CR double mutant phenotype

with strongly branched in�orescences, and an individual (T0-17) with the j2CRej2CRlinCR triple mutant phenotype and

cauli�ower-like in�orescences (Figure 2.3J). Sequencing identi�ed mutant J2 and EJ2 alleles in addition to wild-type LIN

alleles in the T0-6 individual, while only mutant alleles for all three genes were detected in individual T0-17 (Figure 2.3K).

Together, these results illustrate the e�ectiveness of S100 as an experimental platform for CRISPR-Cas9 genome editing of

single genes and multigene families for functional analyses.
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Figure 2.3: Assessment of genome editing capabilities in Sweet-100. (A) CRISPR-Cas9 targeting of SlAP3 using two gRNAs.
Black boxes, black lines, and blue boxes represent exonic, intronic, and untranslated regions, respectively. (B) Images of detached
in�orescences (top) and �owers (bottom) from wild-type (WT) and independent �rst-generation (T0) ap3CR transgenic plants. (C)
and (D) CRISPR-induced mutations in AP3 identi�ed by agarose gels (C) and Sanger sequencing (D). gRNA and PAM sequences are
indicated in red and black bold letters, respectively; deletions are indicated with blue dashes; deletions; sequence gap length is given in
parenthesis. (E) Full gene deletion of AN by CRISPR-Cas9 using two gRNAs. (F) and (G) Detection of complete deletion of the AN
gene by agarose gel electrophoresis (F) and Sanger sequencing (G). (H) Images of WT and anCR mutant plants in the second (F2)
generation. (I) CRISPR-Cas9 targeting of the SEP4 gene family using �ve gRNAs. (J) analysis of j2 ej2 linCR T0 plants by agarose gel
electrophoresis, (K) images of T0 plants showing j2 ej2 double (T0-6) and j2 ej2 linCR triple (T0-17) mutant phenotypes. (L)
CRISPR-induced mutations in J2, EJ2, and LIN identi�ed by Sanger sequencing. Scale bars indicate 1cm.
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2.3 DISCUSSION

Personalized genome assemblies completely represent genotypes and mitigate reference bias in genomics experiments. To

meet the high demand for personalized genomes, RagTag overcomes the sca�olding bottleneck by leveraging existing

genome assemblies to improve new ones, or by collectively drawing from multiple genome maps to build consensus

sca�olds. By using RagTag to produce personalized assemblies for M82 and the new compact, rapid-cycling Sweet-100

genotype, we provide valuable tools for modern functional genomics in tomato while demonstrating a strategy to produce

e�cient model plant systems and associated genomic resources in other species.

2.4 METHODS

Plant material, growth conditions, and phenotyping

Seeds of S. lycopersicum cv. M82 (LA3475), Sweet-100 (S100), and Micro-tom (MT) were from our stocks. Seeds were

directly sown and germinated in soil in 96-cell plastic �ats. Plants were grown under long-day conditions (16-h light, 8-h

dark) in a greenhouse under natural light supplemented with arti�cial light from high-pressure sodium bulbs (~250 μmol

m-2 s-1) at 25°C and 50-60% relative humidity. Seedlings were transplanted to soil to 3.5 l (S100 and MT) or 10 l (M82) pots

3-4 weeks after sowing. Analyses of fruit ripening, �ower number, seed number, fruit weight, fruit sugar content (Brix), and

in�orescence branching were conducted on mature plants grown in pots. Sugar content (Brix) of fruit juice was quanti�ed

using a digital refractometer (Hanna Instruments HI96811).

RagTag Overview

RagTag succeeds RaGOO as a homology-based genome assembly correction (RagTag “correct”) and sca�olding (RagTag

“sca�old”) tool [15]. RagTag implements general improvements and conveniences for these features but follows the same

algorithmic approach as previously reported. RagTag also provides two new tools called “patch” and “merge” for genome

assembly improvement. RagTag “patch” uses one genome assembly to “patch” (continuously join contigs and/or �ll gaps)

sequences in another assembly. RagTag “merge” reconciles two or more distinct sca�olding solutions for the same assembly.

Finally, RagTag o�ers a variety of command-line utilities for calculating assembly statistics, validating AGP �les, and
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working with genome assembly �le formats. RagTag is open source (distributed under the MIT license) and is available on

GitHub: https://github.com/malonge/RagTag.

RagTag whole-genome alignment filtering and merging

Most RagTag tools rely on pairwise (a “query” vs. a “reference/target”) whole-genome alignments. RagTag supports the use

of Minimap2, Unimap, or Nucmer for whole-genome alignment, though any alignments in PAF or delta format can be

used [23,24]. RagTag �lters and merges whole-genome alignments to extract useful sca�olding information. To remove

repetitive alignments, RagTag uses an integrated version of “Unique Anchor Filtering” introduced by Assemblytics [25].

RagTag can also remove alignments based on mapping quality score, when available. Filtered alignments are then merged to

identify macro-synteny blocks. For each query sequence, alignments are sorted by reference position. Consecutive

alignments within 100 kbp (-d) of each other and on the same strand are merged, taking the minimum coordinate as the

new start position and the maximum coordinate as the new end position. Consequently, unmerged alignments are either

far apart on the same reference sequence, on di�erent reference sequences, or on di�erent strands. Finally, merged

alignments contained within other merged alignments (with respect to the query position) are removed.

RagTag “correct”

RagTag “correct” uses pairwise whole-genome sequence homology to identify and correct putative misassemblies. First,

RagTag generates �ltered and merged whole-genome alignments between a “query” and a “reference” assembly. The

“query” assembly will be corrected and the “reference” assembly will be used to inform correction. Any query sequence

with more than one merged alignment is considered for correction. RagTag breaks these query sequences at alignment

boundaries provided that the boundaries are not within   5 kbp (-b) from either sequence terminus. Users may optionally

choose to only break between alignments to the same or di�erent reference sequences (--intra and --inter). If a GFF �le is

provided to annotate features in the query assembly, the query assembly will never be broken within a de�ned feature.
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When the query and reference assemblies do not represent the same genotypes, unmerged alignments within a contig can

indicate genuine structural variation. To distinguish between structural variation and misassemblies, users can optionally

provide Whole Genome Shotgun (WGS) sequencing reads from the same query genotype, such as short accurate reads or

long error-corrected reads, to validate putative query breakpoints. RagTag aligns these reads to the query assembly with

Minimap2 and computes the read coverage for each position in the query assembly. For each proposed query breakpoint,

RagTag will look for exceptionally low (below --min-cov) or high (above --max-cov) coverage within 10 kbp (-v) of the

proposed breakpoint. If exceptionally low or high coverage is not observed, the merged alignment boundaries are supposed

to be caused by true variation, and the query assembly is not broken at this position.

RagTag “scaffold”

RagTag “sca�old” uses pairwise whole-genome sequence homology to sca�old a genome assembly. First, RagTag generates

�ltered and merged whole-genome alignments between a “query” and a “reference” assembly. The “query” assembly will be

sca�olded and the “reference” assembly will be used to inform sca�olding. The merged alignments are used to compute a

clustering, location, and orientation “con�dence” score, just as is done in RaGOO, and sequences with con�dence scores

below certain thresholds are excluded (-i, -a, and -s) [15]. For each query sequence, the longest merged alignment is

designated as the “primary” alignment. Primary alignments contained within other primary alignments (with respect to the

reference coordinates) are removed. Primary alignments are then used to order and orient query sequences. To order query

sequences, sequences are assigned to the reference chromosome to which they primarily align. Then, for each reference

sequence, primary alignments are sorted by reference coordinate, establishing an order of query sequences. To orient query

sequences, the sequence is assigned the same orientation as its primary alignment. Query sequences with no �ltered

alignments to the reference assembly (“unplaced” sequences) are output without modi�cation or are optionally

concatenated together.

By default, 100 bp gaps are placed between adjacent sca�olded query sequences, indicating an “unknown” gap size

according to the AGP speci�cation (https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Speci�cation/). Optionally,
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RagTag can infer the gap size based on the whole-genome pairwise alignments. Let seq1 (upstream) and seq2 (downstream)

be adjacent query sequences, and let aln1 and aln2 be their respective primary alignments. Let rs, re, qs, and qe denote the

alignment reference start position, reference end position, query start position, and query end position, respectively. The

following function computes the inferred gap length between seq1 and seq2:

𝑔𝑎𝑝𝑠𝑖𝑧𝑒() =  (𝑎𝑙𝑛2
𝑟𝑠 

−  𝑎𝑙𝑛2
𝑞𝑠

) −  (𝑎𝑙𝑛1
𝑟𝑒

 +  𝑙𝑒𝑛(𝑠𝑒𝑞1) −  𝑎𝑙𝑛1
𝑞𝑒

)

Where is the length of seq1. All inferred gap sizes must be at least 1 bp, and if the inferred gap size is too small (-g𝑙𝑒𝑛(𝑠𝑒𝑞1)

or less than 1) or too large (-m), it is replaced with an “unknown” gap size of 100 bp.

RagTag “patch”

RagTag “patch” uses pairwise whole-genome sequence homology to make joins, without introducing gaps, and �ll gaps in a

“target” genome assembly using sequences from a “query” genome assembly. First, RagTag assigns new unique sequence

names to all query and target sequences. Next, RagTag breaks all target sequences at gaps and generates �ltered and merged

whole-genome alignments between the query and target assemblies. Merged alignments that are not close (-i) to a target

sequence terminus or are shorter than 50000 bp (-s) are removed. If an alignment is not close to both query sequence

termini yet it is not close to either target sequence terminus, meaning the target sequence should be contained within the

query sequence, yet large portions of the target sequence do not align to the query sequence, the alignment is discarded.

To ultimately patch the target assembly, RagTag employs a directed version of a “sca�old graph” [16,26]. Nodes in the

graph are target sequence termini (two per target sequence), and edges connect termini of distinct target sequences. The

graph is initialized with the known target sequence adjacencies originally separated by gaps in the target assembly. Next,

merged and �ltered alignments are processed to identify new target sequence adjacencies. For each query sequence that

aligns to more than one target sequence, alignments are sorted by query position. For each pair of adjacent target sequences,
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an edge is created in the sca�old graph. The edge stores metadata such as query sequence coordinates in order to

continuously join the adjacent target sequences. If an edge already exists due to an existing gap, the gap metadata is replaced

with the query sequence metadata so that the gap can be replaced with sequence. If an adjacency is supported by more than

one alignment, the corresponding edge is discarded. To �nd a solution to this graph and output a patched assembly, a

maximal weight matching is computed with networkx and any potential cycles are removed [27]. RagTag then iterates

through each connected component and iteratively builds a sequence from adjacent target sequences. When target

sequences are not overlapping, they are connected with sequence from the supporting query sequence. Unpatched target

sequences are output without modi�cation.

RagTag “merge”

RagTag “merge” is a reimplementation and extension of CAMSA, a tool to reconcile two or more distinct sca�olding

solutions for a genome assembly [16]. Input sca�olding solutions must be in valid AGP format, and they must order and

orient the same set of genome assembly AGP “components”. RagTag iteratively builds a sca�old graph to store adjacency

evidence provided by each AGP �le. First, each AGP �le is assigned a weight (1 by default). Then, for each AGP �le and for

each pair of adjacent components, an edge is added to the sca�old graph, and the edge weight is incremented by the weight

of the AGP �le, just as is done in CAMSA. After the sca�old graph is created, users can optionally replace native edge

weights with Hi-C weights. To do this, Hi-C alignments are used to compute sca�old graph weights according to the

SALSA2 algorithm, which uses the same underlying sca�old graph data structure. To �nd a solution to this graph and to

output a merged AGP �le, a maximal weight matching is computed with networkx and [27] any potential cycles are

removed. RagTag then iterates through each connected component and iteratively builds AGP objects. Unmerged

components are output without modi�cation.

Extraction of high-molecular weight DNA and sequencing

Extraction of high-molecular weight genomic DNA, construction of Oxford Nanopore Technology libraries, and

sequencing were described previously [2]. Libraries for Pacbio HiFi sequencing were constructed and sequenced at the
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Genome Technology Center at UNIL and Genome Center at CSHL. Hi-C experiments were conducted at Arima

Genomics (San Diego, CA) from 2 g of �ash-frozen leaf tissue.

BLAST databases for screening contigs

We built each BLAST database with makeblastdb (v2.5.0+, -dbtype nucl) [28]. We used all RefSeq bacterial genomes

(downloaded on February 11th, 2021) for the bacterial genomes database. We used a collection of Solanum chloroplast

sequences for the chloroplast database, and their GenbBank accession IDs are as follows:

MN218076.1, MN218077.1, MN218078.1, MN218079.1, MN218091.1, MN218088.1, MN218089.1, NC_039611.1,

NC_035724.1, KX792501.2, NC_041604.1, MH283721.1, NC_039605.1, NC_039600.1, NC_007898.3, MN218081.1,

NC_039606.1, NC_030207.1, MT120858.1, MN635796.1, MN218090.1, MT120855.1, MT120856.1, NC_050206.1,

MN218087.1, NC_008096.2

We used a collection of Solanum mitochondrial sequences for the mitochondria database, and their GenbBank accession

IDs are as follows:

MT122954.1, MT122955.1, MT122966.1, MT122969.1, MT122973.1, MT122974.1, MT122977.1, MT122988.1,

NC_050335.1, MT122980.1, MT122981.1, MT122982.1, MT122983.1, MF989960.1, MF989961.1, NC_035963.1,

MT122970.1, MT122971.1, NC_050334.1, MW122958.1, MW122959.1, MW122960.1, MT122964.1, MT122965.1,

MW122949.1, MW122950.1, MW122951.1, MW122952.1, MW122953.1, MW122954.1, MW122961.1, MW122962.1,

MW122963.1, MT122978.1, MT122979.1, MF989953.1, MF989957.1, MN114537.1, MN114538.1, MN114539.1,

MT122958.1, MT122959.1

We used a collection of Solanum rDNA sequences for the rDNA database, and their GenbBank accession IDs are as

follows:
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X55697.1, AY366528.1, AY366529.1, KF156909.1, KF156910.1, KF156911.1, KF156912.1, KF156913.1, KF156914.1,

KF156915.1, KF156916.1, KF156917.1, KF156918.1, KF156919.1, KF156920.1, KF156921.1, KF156922.1, KF603895.1,

KF603896.1, X65489.1, X82780.1, AF464863.1, AF464865.1, AY366530.1, AY366531.1, AY875827.1

Sweet-100 genome assembly

The following describes the methods used to produce SollycSweet-100_v2.0 assembly. We assembled all HiFi reads with

Hi�asm (v0.13-r308, -l0) and we assembled ONT reads at least 30 kbp long (a total of 28,595,007,408 bp) with Flye

(v2.8.2-b1689, --genome-size 1g) [29,30]. The Hi�asm primary contigs were screened to remove contaminant or organellar

contigs. We �rst used WindowMasker to mask repeats in the primary contigs (v1.0.0, -mk_counts -sformat obinary

-genome_size 882654037) [31]. We then aligned each contig to the bacterial, chloroplast, mitochondria, and rDNA

BLAST databases with blastn (v2.5.0+, -task megablast). We only included the WindowMasker �le for alignments to the

bacterial database (-window_masker_db). For each contig, we counted the percentage of base pairs covered by alignments to

each database. If more than 10% of a contig aligned to the rDNA database, we deemed it to be a putative rDNA contig. We

then removed any contigs not identi�ed as rDNA contigs that met any of the following criteria: More than 10% of the

contig was covered by alignments to the bacterial database; More than 20% of the contig was covered by alignments to the

mitochondria database and the contig was less than 1 Mbp long; More than 20% of the contig was covered by alignments to

the chloroplast database and the contig was less than 0.5 Mbp long. In total, we removed 1,015 contigs (35,481,360 bp)

with an average length of 34,957.005 bp, most of which contained chloroplast sequence.

Even though Sweet-100 is an inbred line, to ensure that the assembly did not contain haplotypic duplication, we aligned all

HiFi reads to the screened Hi�asm contigs with Winnowmap2 (v2.0, k=15, --MD -ax map-pb) [23]. We used software from

purge_dups to manually inspect the contig coverage distribution, and we determined that haplotypic duplication was not

evident in the screened contigs [32].
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We used RagTag “patch” to patch the screened Hi�asm contigs with sequences from the ONT �ye contigs, and we

manually excluded three incorrect patches caused by a misassembly in the Flye contigs. We then sca�olded the patched

contigs in three di�erent ways producing three separate AGP �les. First, we used RagTag for homology-based sca�olding,

once using the SL4.0 reference genome and once using the LA2093 v1.5 reference genome (v2.0.1, --aligner=nucmer

--nucmer-params="--maxmatch -l 100 -c 500") [3,4]. In both cases, only contigs at least 100 kbp long were considered for

sca�olding, and the reference chromosome 0 sequences were not used for sca�olding. For the third sca�olding proposal, we

used Juicebox Assembly Tools to manually sca�old contigs with Hi-C data (using “arima” as the restriction enzyme), and

we used a custom script to convert the “.assembly” �le to an AGP �le. We generated generic Hi-C alignments by aligning

the Hi-C reads to the screened contigs with bwa mem (v0.7.17-r1198-dirty) and processing the alignments with the Arima

mapping pipeline (https://github.com/ArimaGenomics/mapping_pipeline) (https://broadinstitute.github.io/picard/)

[33]. We merged the three AGP �les with RagTag “merge” (v2.0.1, -r 'GATC,GA[ATCG]TC,CT[ATCG]AG,TTAA'),

using generic Hi-C alignments to weight the Sca�old Graph (-b). Finally, using the merged sca�olds as a template, we made

four manual sca�olding corrections in Juicebox Assembly tools. The �nal assembly contained 12 sca�olds corresponding to

12 chromosomes and 918 unplaced nuclear sequences.

VecScreen did not identify any “strong” or “moderate” hits to the adaptor contamination database

(ftp://ftp.ncbi.nlm.nih.gov/pub/kitts/adaptors_for_screening_euks.fa) (https://www.ncbi.nlm.nih.gov/tools/vecscreen/).

We packaged the assembly according to the pan-sol v0 speci�cation (https://github.com/pan-sol/pan-sol-spec), and

chromosomes were renamed and oriented to match the SL4.0 reference genome. The tomato chloroplast (GenBank

accession NC_007898.3) and mitochondria (GenBank accession NC_035963.1) reference genomes were added to the �nal

assembly. To identify potential misassemblies and heterozygous Structural Variants (SVs), we aligned all HiFi reads (v2.0,

k=15, --MD -ax map-pb) and ONT reads longer than 30 kbp (v2.0, k=15, --MD -ax map-ont) to the �nal assembly with

Winnowmap2 and we called structural variants with Sni�es (v1.0.12, -d 50 -n -1 -s 5) [34]. We removed any SVs with less

than 30% of reads supporting the ALT allele and we merged the �ltered SV calls with Jasmine (v1.0.10, max_dist=500

spec_reads=5 --output_genotypes) [35,36].
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Sweet-100 gene and repeat annotation

We used Lifto� to annotate the Sweet 100 v2.0 assembly using ITAG4.0 gene models and tomato pan-genome genes as

evidence (v1.5.1, -copies) [1,3,37]. Chloroplast and mitochondria annotations were replaced with their original GenBank

annotation. Transcript, coding sequence, and protein sequences were extracted using g�read (v0.12.3, -y -w -x) [38]. We

annotated transposable elements with EDTA (v1.9.6, --cds --overwrite 1 --sensitive 1 --anno 1 --evaluate 1) [39].

M82 genome assembly

The M82 genome was assembled and annotated following the approach used for the Sweet-100 assembly, with the

following distinctions. First, Hi�asm v0.15-r327 was used for assembling HiFi reads. Also, the M82 ONT assembly was

polished before patching. M82 Illumina short-reads [15] were aligned to the draft Flye ONT assembly with BWA-MEM

(v0.7.17-r1198-dirty) and alignments were sorted and compressed with samtools (v1.10) [33,40]. Small variants were called

with freebayes (v1.3.2-dirty, --skip-coverage 480) and polishing edits were incorporated into the assembly with bcftools

“consensus” (v1.10.2, -i'QUAL>1 && (GT="AA" || GT="Aa")' -Hla) [41]. In total, two iterative rounds of polishing were

used. RagTag “merge” was also used for sca�olding, though the input sca�olding solutions used di�erent methods than the

Sweet-100 assembly. First, homology-based sca�olds were generated with RagTag “sca�old”, using the SL4.0 reference

genome (v2.0.1, --aligner=nucmer --nucmer-params="--maxmatch -l 100 -c 500"). Contigs smaller than 300 kbp were not

sca�olded (-j), and the reference chromosome 0 was not used to inform sca�olding (-e). Next, SALSA2 was used to derive

Hi-C-based sca�olds. Hi-C reads were aligned to the assembly with the generic pipeline described for Sweet-100. We then

produced sca�olds with SALSA2 (-c 300000 -p yes -e GATC -m no) and manually corrected false sca�olding joins in

Juicebox Assembly Tools. We reconciled the homology-based and Hi-C-based sca�olds with RagTag “merge” using generic

Hi-C alignments to re-weight the sca�old graph (-b). Finally, we made four manual corrections in Juicebox Assembly Tools.
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CRISPR-Cas9 mutagenesis, plant transformation, and identification of mutant alleles

CRISPR-Cas9 mutagenesis was performed as described previously [42]. Brie�y, guide RNAs (gRNAs) were designed

manually or using the CRISPRdirect tool (https://crispr.dbcls.jp/). Binary vectors for plant transformation were assembled

using the Golden Gate cloning system as previously described [43]. Final vectors were transformed into the tomato cultivar

S100 by Agrobacterium tumefaciens-mediated transformation according to Gupta and Van Eck (2016) with minor

modi�cations [19]. Brie�y, seeds were sterilized for 15 min in 1.3% bleach followed by 10 min in 70% ethanol, and rinsed

four times with sterile water before sowing on MS media (4.4 g/l MS salts, 1.5 % sucrose, 0.8 % agar, pH 5.9) in Magenta

boxes. Cotyledons were excised 7-8 days after sowing and incubated on 2Z- media [19] at 25°C in the dark for 24 hrs prior

to transformation. A. tumefaciens were grown in LB media and washed in MS-0.2% media (4.4 g/l MS salts, 2% sucrose, 100

mg/l myo-inositol, 0.4 mg/l thiamine, 2 mg/l acetosyringone, pH5.8). Explants were co-cultivated with A. tumefaciens on

2Z- media supplemented with 10 μg/l IAA for 48 hrs at 25°C in the dark and transferred to 2Z selection media

(supplemented with 150 mg/l kanamycin). Explants were transferred every two weeks to fresh 2Z selection media until

shoot regeneration. Shoots were excised and transferred to selective rooting media [19] (supplemented with 150 mg/l

kanamycin) in Magenta boxes. Well-rooted shoots were transplanted to soil and acclimated in a percival growth chamber

(~100 μmol m-2 s-1, 25°C, 50% humidity) before transfer to the greenhouse. Genomic DNA was extracted from T0 plants

using a quick genomic DNA extraction protocol. Brie�y, small pieces of leaf tissue were �ash-frozen in liquid nitrogen and

ground in a bead mill (Qiagen). Tissue powder was incubated in extraction bu�er (100 mM Tris-HCl pH9.5, 250 mM

KCl, 10 mM EDTA) for 10 min at 95°C followed by 5 min on ice. Extracts were combined with one volume of 3% BSA,

vigorously vortexed, and spun at 13.000 rpm for 1 min. One microliter supernatant was used as template for PCR using

primers �anking the gRNA target sites. PCR products were separated on agarose gels and puri�ed for Sanger Sequencing

(Microsynth) using ExoSAP-IT reagent (NEB). Chimeric PCR products were subcloned before sequencing using

StrataClone PCR cloning kits (Agilent).
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By scaffolding and annotating our contigs, we created
the genomic context needed to quantify and qualify the
completeness of the Triticum_aestivum_4.0 assembly,
especially relative to its predecessors.

3
Chromosome-Scale Assembly of the Bread

Wheat Genome Reveals Thousands of
Additional Gene Copies

76



The following sections were previously published in Genetics:

Alonge, M.*, Shumate, A.*, Puiu, D., Zimin, A.V., and Salzberg, S.L. Chromosome-scale assembly of the
bread wheat genome reveals thousands of additional gene copies. Genetics 216.2 (2020): 599-608.
https://doi.org/10.1534/genetics.120.303501

A.S. and M.A. contributed equally to this work. S.L.S. supervised all analysis and manuscript preparation. S.L.S and A.V.Z.

supervised the genome assembly sca�olding and analysis. A.S., M.A., A.V.Z, and S.L.S. edited all of the text. A.V.Z made

Table 3.1. A.S. made Figure 3.4A, 3.4D, and 3.4E. The results section “Annotating the Triticum_aestivum_4.0 genome

assembly” was done and written by A.S. The results section “Triticum_aestivum_4.0 accurately represents gene

duplications a�ecting traits” was done by M.A. and A.S. and written by M.A. The methods section “Chloroplast and

mitochondria genome assembly” was done by D.P. and written by S.L.S. The methods section “Genome annotation” was

done and written by A.S. All other results and methods sections and �gures were done/written by M.A. M.A. wrote the

abstract, background, and discussion, with editing from A.S., A.V.Z, and S.L.S.

77



3.1 ABSTRACT

Bread wheat (Triticum aestivum) is a major food crop and an important plant system for agricultural genetics research.

However, due to the complexity and size of its allohexaploid genome, genomic resources are limited compared to other

major crops. The IWGSC recently published a reference genome and associated annotation (IWGSC CS v1.0, Chinese

Spring) that has been widely adopted and utilized by the wheat community. Although this reference assembly represents all

three wheat subgenomes at chromosome-scale, it was derived from short reads, and thus is missing a substantial portion of

the expected 16 Gbp of genomic sequence. We earlier published an independent wheat assembly (Triticum_aestivum_3.1,

Chinese Spring) that came much closer in length to the expected genome size, although it was only a contig-level assembly

lacking gene annotations. Here, we describe a reference-guided e�ort to sca�old those contigs into chromosome-length

pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting

pseudomolecules with genes. Our updated assembly, Triticum_aestivum_4.0, contains 15.07 Gbp of nongap sequence

anchored to chromosomes, which is 1.2 Gbps more than the previous reference assembly. It includes 108,639 genes

unambiguously localized to chromosomes, including over 2,000 genes that were previously unplaced. We also discovered

>5,700 additional gene copies, facilitating the accurate annotation of functional gene duplications including at the Ppd-B1

photoperiod response locus.

3.2 BACKGROUND

Bread wheat (Triticum aestivum) is a crop of signi�cant worldwide nutritional, cultural, and economic importance. As with

most other major crops, there is a strong interest in applying advanced breeding and genomics technologies toward crop

improvement. Key to these e�orts are high-quality reference genome assemblies and associated gene annotations, which are

the foundations of genomics research. However, the bread wheat genome has some notable features that make it especially

technically challenging to assemble. One such feature is allohexaploidy (2n = 6× = 42, AABBDD), a result of wheat’s

dynamic domestication history [1,2]. This polyploidy results from the hybridization of domesticated emmer (Triticum

turgidum, AABB) with Aegilops tauschii (DD). Domesticated emmer—also an ancestor of durum wheat—is itself an

allotetraploid resulting from interspeci�c hybridization between Triticum urartu and a relative of Aegilops speltoides.
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The resulting bread wheat genome is immense, with �ow cytometry studies estimating the genome size to be ∼16 Gbp [3].

As with most other large plant genomes, repeats, including mostly retrotransposons, make up the majority of the genome,

which is estimated to be ∼85% repetitive [4]. These repeats make this genome especially di�cult to assemble, even given the

recent improvements in long-read sequencing and algorithmic advancements in genome assembly technology. Nonetheless,

early e�orts were made to establish de novo reference genome assemblies for wheat. In 2014, the International Wheat

Genome Sequencing Consortium (IWGSC) used �ow cytometry-based sorting to sequence and assemble individual

chromosome arms, thus removing the repetitiveness introduced by homeologous chromosomes (IWGSC 2014). Despite

this approach, this short-read-based assembly was highly fragmented, and only reconstructed ∼10.2 Gbp of the genome.

Subsequent short-read assemblies using alternate strategies were also developed by the community, though each also

struggled to achieve contiguity and completeness [5,6].

In 2017, we released the �rst-ever long-read-based assembly for bread wheat (Triticum_aestivum_3.1), representing the

Chinese Spring variety [7]. With an N50 contig size of 232.7 kbp, Triticum_aestivum_3.1 was far more contiguous than

any previous assembly of bread wheat, and with a total assembly size of 15.34 Gbp, it reconstructed the highest percentage

of the expected wheat genome size of any assembly. Though this assembly provided a more complete representation of the

Chinese Spring genome, its contigs were not mapped onto chromosomes, and, notably, it did not include gene annotation.

In 2018, the IWGSC published a chromosome-scale reference assembly and associated annotations for bread wheat

(IWGSC CS v1.0, Chinese Spring), providing the best-annotated reference genome yet [4]. Because that assembly was

entirely derived from short reads, it was less complete and more fragmented than Triticum_aestivum_3.1, having a total size

of 14.5 Gbp and an N50 contig size of 51.8 kbp. However, a collection of long-range sca�olding data, including physical

(BACs, Hi-C), optical (Bionano), and genetic maps, enabled most of the assembled sca�olds to be mapped onto wheat’s 21

chromosomes. These pseudomolecules served as a foundation for comprehensive de novo gene and repeat annotation,
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facilitating investigations into the genomic elements that drove the evolution of genome size, structure, and function in

wheat.

Here, we used the IWGSC CS v1.0 assembly (GenBank accession GCA_900519105.1) to inform the sca�olding and

annotation of the more complete Triticum_aestivum_3.1 assembly. The new assembly, Triticum_aestivum_4.0, contains

1.1 Gbp of additional nongapped sequence compared to IWGSC CS v1.0 while localizing 97.9% of sequence to

chromosomes. Comparative analysis revealed that Triticum_aestivum_4.0 more accurately represents the Chinese Spring

repeat landscape, which is heavily collapsed in IWGSC CS v1.0. Our more complete assembly allowed us to anchor ∼2000

genes that were previously annotated on unlocalized contigs in IWGSC CS v1.0. We also found 5799 additional gene copies

in Triticum_aestivum_4.0, showing extensive collapsing of gene duplicates in the IWGSC CS v1.0 assembly. We

highlighted speci�c examples of these extra gene copies, including at the Ppd-B1 locus, where Triticum_aestivum_4.0

accurately re�ects the expected four copies of pseudo-response regulator (PRR) genes in�uencing photoperiod sensitivity.

We additionally found three extra copies of a MADS-box transcription factor gene in T4, demonstrating the potential to

�nd new gene copy number variants (CNVs) that in�uence traits. The Triticum_aestivum_4.0 assembly and annotations

are available at www.ncbi.nlm.nih.gov/bioproject/PRJNA392179.

3.3 RESULTS

Scaffolding the Triticum_aestivum_3.1 genome assembly

Our goal was to utilize both our previously published Triticum_aestivum_3.1 contigs (T3) and the IWGSC CS v1.0

reference assembly (IW) to establish an improved chromosome-scale genome assembly for the Chinese Spring variety of

bread wheat. Figure 3.1 depicts the pipeline used to derive our �nal Triticum_aestivum_4.0 (T4) assembly. We started

with the T3 contigs because they were highly contiguous (N50 = 232.7 kbp) and contained a total of 1.1 Gbp more nongap

sequence compared to the IW assembly. However, we wanted to ensure that our �nal assembly did not exclude any contigs

missing from T3 but present in IW. To incorporate any such “missing” IW contigs, we �rst derived a set of contigs from the

IW assembly by breaking pseudomolecules at gaps. By aligning these IW contigs to the T3 assembly, we identi�ed 4702 IW
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contigs (89,866,936 bp) with sequence missing from the T3 assembly. These sequences along with the T3 contigs

comprised our initial contig set.

Figure 3.1: The Triticum_aestivum_4.0 assembly sca�olding pipeline. A diagram depicting the Triticum_aestivum_4.0 (T4)
assembly sca�olding pipeline, which takes the Triticum_aestivum_3.0 (T3) and IWGSC CS v1.0 (IW) assemblies as input. Gray
cylinders represent input or output genome assemblies, while orange boxes show the steps of the sca�olding process.

We used RaGOO [8]—a reference-guided sca�olding tool—to order and orient these contigs into chromosome-length

sca�olds. This scenario presents a near-ideal context for reference-guided sca�olding because the contigs and the reference

assembly represent the same inbred genotype, and thus we expect no genomic structural di�erences. Although RaGOO

normally utilizes Minimap2 [9] alignments between contigs and a reference assembly, we used NUCmer [10,11] instead, as

it o�ered the necessary �exibility to align these large and repetitive genomes. Speci�cally, NUCmer provided the speci�city
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needed to unambiguously align contigs to a highly repetitive allohexaploid reference genome. Even with high stringency

alignments, RaGOO ordered and oriented most of the assembly (97.67% of bp) into pseudomolecules.

We next sought to remove any false duplications potentially created during the process of incorporating 4702 IW sequences.

We aligned these IW contigs to the RaGOO sca�olds and removed 357 IW contigs from the initial set of 4702 that aligned

to more than one place in the assembly, and, therefore, were no longer deemed “missing” from T3. This produced our �nal

set of contigs, which included the T3 contigs plus 4345 (84,909,842 bp) contigs from IW that contained sequence missing

from T3. The �nal contigs had an N50 length of 230,687 bp (essentially the same as the T3 assembly) and a sum of

15,429,603,425 bp. We then repeated the RaGOO sca�olding step, and polished the resulting sca�olds with POLCA [12]

using the original Illumina reads, yielding the �nal T4 chromosome-scale assembly. Finally, we removed mitochondria and

chloroplast genome sequence from T4 and assembled these genomes separately with Illumina reads.

Despite the highly repetitive nature of the Chinese Spring genome, RaGOO con�dence scores indicate that T4 sca�olding

was consistent with the reference genome structure. This suggests that our high-speci�city NUCmer parameters mitigated

erroneous contig ordering and orientation resulting from repetitive alignments. Dotplots further con�rm that there are no

large-scale structural rearrangements between T4 and IW pseudomolecules. While borrowing its chromosomal structure

from IW, T4 demonstrates superior sequence completeness. 97.9% of T4 sequence (15.09 Gbp) was placed onto 21

chromosomes yielding pseudomolecules that had 1.2 Gbp more localized nongapped sequence than the IW reference

(Table 3.1). This extra sequence was evenly distributed across the genome, with each T4 pseudomolecule containing more

sequence (average of 48.8 ± 8.4 Mbp) than its IW counterpart while having substantially fewer gaps (Figure 3.2).
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Assembly T4 IW T3

All sequence (bp) 15,397,713,314 14,271,578,887 15,344,693,583

Anchored sequence (bp) 15,070,919,678 13,840,498,961 N/A

Table 3.1: Wheat genome assembly completeness. Nongapped sequence length of the Triticum_aestivum_4.0 (T4), IWGSC CS
v1.0 (IW), and Triticum_aestivum_3.1 (T3) assemblies.
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Figure 3.2: A comparison of Triticum_aestivum_4.0 and IWGSC CS v1.0 assembly completeness. An ideogram showing the
distribution of gap sequence in the Triticum_aestivum_4.0 (T4) and IWGSC CS v1.0 (IW) assemblies. The heatmap color intensity
corresponds to the percentage of gap sequence in nonoverlapping 1 Mbp windows along each chromosome. Chromosomes are sorted
by T4 length (left to right, top to bottom), highlighting that each T4 chromosome across all three subgenomes has more sequence and
fewer gaps than its IW counterpart.

Because IW was derived from short reads, it is conceivable that some genomic repeats were collapsed during assembly [13].

Therefore, we hypothesized that T4, a long-read-based assembly, more accurately represents the repeat landscape of the

Chinese Spring genome. As support for this hypothesis, we observe that 101-mers shared by T4 and IW were present at
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higher copies in T4 (Figure 3.3). This observation holds for a wide range of 101-mer copy numbers, suggesting that T4

more accurately represents both lower-order (duplications) and higher-order (transposable elements) repeats. To investigate

a speci�c instance of repeat collapse in IW, we compared centromere sequence content in the two assemblies. As was done

in the original IW publication, we used publicly available CENH3 ChIP-seq data to infer centromere positions in T4

[4,14]. This analysis indicated ChIP-seq peaks corresponding to centromeres for each of the 21 chromosomes. T4 had a

total of 39.1 Mbp more centromeric sequence than IW, highlighting that the long-read-based T4 assembly localized more

centromeric sequence than IW.

Figure 3.3: Shared assembly k-mer count distribution. Histogram of 101-mer copy number in the Triticum_aestivum_4.0 (T4)
and IWGSC CS v1.0 (IW) assemblies. Only 101-mers shared by both assemblies are considered. While IW has more single-copy
101-mers, T4 represents more 101-mers at higher copy numbers.

Annotating the Triticum_aestivum_4.0 genome assembly

We mapped the IW v1.1 high-con�dence annotation onto T4 using an annotation lift-over tool we developed called Lifto�

[15]. Given a genome annotation, Lifto� aligns all genes, chromosome by chromosome, to a di�erent genome of the same

species using BLAST [16]. For all genes that fail to map to the same chromosome, Lifto� attempts to map them across
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chromosomes. The best mapping for each gene is chosen according to sequence identity and concordance with the

exon/intron structure of the original gene model. Out of 130,745 transcripts from 105,200 gene loci annotated on primary

chromosomes in IW, we successfully mapped 124,579 transcripts from 100,831 gene loci. We de�ne a transcript as

successfully mapped if the mRNA sequence in T4 is at least 50% as long as the mRNA sequence in IW. However, the vast

majority of transcripts greatly exceed this threshold, with 92% of transcripts having an alignment coverage of 98% or greater.

Sequence identity is similarly high with 92% of transcripts aligning at an identity of 95% or greater. Of the transcripts that

failed to map, 4634 had a partial mapping with an alignment coverage <50%, and the remaining transcripts failed to map

entirely.

As expected, we observed strong gene synteny between T4 and IW. Of the 100,831 mapped IW genes, 96,148 mapped to

the same chromosome in T4. The remaining 4683 mapped to a di�erent chromosome after failing to map to their expected

chromosome. There is a clear pattern showing many of these genes mapped to a similar location on the same chromosome

of a di�erent subgenome. We also found that the sequence identity of genes mapped to di�erent chromosomes is much

lower, with an average identity of 90.7% compared to 99.3% in genes mapped to the same chromosome. We therefore

hypothesize that these genes are missing in the T4 assembly, and have instead mapped to paralogs in T4 that are not

annotated in IW.

The IW v1.1 annotation also contains 2691 genes annotated on unplaced contigs (“chrUn”). Using Lifto�, we were able to

map 2001 of these genes onto a primary chromosome in T4; 1767 genes were con�dently placed with a sequence identity of

at least 98% while the remaining 234 mapped with a lower identity. To control for di�erences in annotation pipelines

between IW and T4, we used Lifto� to map chrUn genes onto the primary IW chromosomes to look for additional,

unannotated, gene copies. Of the 2001 chrUn genes mapped to T4 pseudomolecules, 78 of these were also mapped to

primary IW chromosomes. This suggests that ≥1923 genes were placed due to improved assembly completeness rather than

di�erences in annotation methods.
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After mapping the IW v1.1 annotation onto T4, we used Lifto� to look for additional gene copies in T4. We required

100% sequence identity in exons and splice sites to map a gene copy. We found 5799 additional gene copies in T4 that are

not annotated in IW v1.1. Of these, 4158 genes have one extra copy, and 567 genes have two or more additional copies, with

a maximum of 84 additional copies (Figure 3.4). IW collapsed most gene copies on the same chromosome rather than

across homeologous chromosomes, with 4062 of the 5799 additional gene copies occurring on the same chromosome, and

97 copies occurring on the same chromosome of a di�erent subgenome (Figure 3.4); 915 gene copies were placed on

di�erent chromosomes. The remaining 725 are extra copies of chrUn genes placed on chromosomes. As was done for

unplaced genes, we also looked for additional IW gene copies present elsewhere in IW. Of our 5799 additional gene copies,

159 were also present in IW, suggesting that at least 5640 of T4 copies are strictly the result of improved assembly

completeness.
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Figure 3.4: Triticum_aestivum_4.0 resolves previously collapsed genic repeats. (A) Histogram depicting the distribution of
the number of additional gene copies found in Triticum_aestivum_4.0. (B) Circos plot showing the locations of all additional gene
copies (http://omgenomics.com/circa/). Lines are drawn from the location of the gene in IWGSC CS v1.0 (IW) on the right half of
the diagram to the location of each copy in Triticum_aestivum_4.0 (T4) on the left half. (C) Dotplot depicting maximal exact
matches (MEMs) between T4 Ppd-B1 (x-axis) and a publicly available Chinese Spring Ppd-B1 sequence (GenBank accession
JF946485.1) (y-axis). Dashed lines indicate the colinear positions of four PRR genes (red labels). (D) Diagram of the MADS-box
transcription factor gene, TraesCS6A02G022700, present in three additional tandem copies in T4 as relative to IW. Ideograms are not
drawn to scale. (E) Plot of the short-read coverage in IW starting 5 kb upstream of TraesCS6A02G02270 and extending to the �rst gap
downstream of the gene. The pink dashed lines show the location of the gene.
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Triticum_aestivum_4.0 accurately represents gene duplications affecting traits

We searched T4 for speci�c examples of functionally relevant gene duplications previously collapsed or missing in IW. We

focused on the Ppd-B1 locus on chr2B because copy number variation of PRR genes at this locus underlies variation in

photoperiod sensitivity among hexaploid wheat varieties [17]. Others have shown that the Chinese Spring variety has four

PRR genes at the Ppd-B1 locus, with one of the copies being truncated [18]. Because the entire ∼200 kbp Chinese Spring

Ppd-B1 locus was previously cloned and sequenced, we were able to assess if this region had been accurately assembled in

both T4 and IW. IW lacks any PRR genes at the Ppd-B1 locus, with fragments of three of the four expected paralogs

(TraesCSU02G196100, TraesCSU02G221500, TraesCSU02G199500) residing on unplaced chrUn sequence. In contrast,

T4 localizes four PRR genes (T4021472, T4021473, T4021474, and T4021475) at Ppd-B1, matching the expected Chinese

Spring copy number state. Alignment of this T4 locus to the known Chinese Spring Ppd-B1 sequence indicated that the

entire locus had been accurately assembled, even correctly representing the three, highly similar, intact PRR genes (Figure

3.4). The successful assembly of Ppd-B1 served as a validation that T4 accurately resolves duplications with high sequence

similarity.

The successful resolution of the Ppd-B1 locus suggested that new functionally relevant CNVs may be discovered among the

large number of localized or duplicated genes in T4. One notable example was a MADS-box transcription factor gene,

TraesCS6A02G022700, which had three additional tandem copies (T4 genes T4081597, T4081598, T4081599, and

T4081600) on T4 chr6A (Figure 3.4). MADS-box transcription factors are known to in�uence traits such as �owering

time and �oral organ development [19,20]. Furthermore, MADS-box gene duplications can quantitatively impact gene

expression and domestication phenotypes in a dosage-dependent manner [21]. To provide further evidence that this gene is

part of a collapsed repeat in IW, we aligned Chinese Spring Illumina reads to IW and calculated the coverage across the gene

±50 kbp of �anking sequence. We observed a spike in coverage indicating a collapsed repeat in IW containing

TraesCS6A02G022700 (Figure 3.4). We further note that this region contains 10,205 bp of gap sequence, suggesting that

this locus had been misassembled in IW. This duplication of a MADS-box transcription factor gene, as well as our analysis
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of the Ppd-B1 locus, highlights how T4, with its superior genome completeness, resolves functionally relevant genic

sequence previously misassembled, missing, or unlocalized in IW.

3.4 DISCUSSION

In one critical aspect, the bread wheat genome exempli�es the challenge of eukaryotic genome assembly. Repeats, which

remain di�cult to assemble, are pervasive in this transposon-rich allohexaploid plant genome. Therefore, the accurate and

complete resolution of the bread wheat genome and the subsequent study of genomic structure especially depends on

high-quality data and advanced genome assembly techniques. In 2017, we published the �rst near-complete and highly

contiguous representation of the bread wheat genome (Triticum_aestivum_3.1), demonstrating the value of long reads for

wheat genome assembly [7]. In our e�orts described here, we used Triticum_aestivum_3.1 as our foundation, while

leveraging the strengths of the IWGSC CS v1.0 reference genome to establish the most complete chromosome-scale and

gene-annotated reference assembly yet created for bread wheat. By sca�olding and annotating our contigs, we created the

genomic context needed to quantify and qualify the completeness of the Triticum_aestivum_4.0 assembly, especially

relative to its predecessors. Compared to the IWGSC CS v1.0 assembly, Triticum_aestivum_4.0 resolves more repeat

sequence, exempli�ed by the improved centromere localization and by the many additional gene copies. The discovery of

these extra gene copies, as well as the localization of 2001 previously unplaced genes, also demonstrates how

Triticum_aestivum_4.0 provides an enhanced representation of Chinese Spring genic sequence.

Gene CNVs are pervasive in hexaploid wheat and are associated with traits such as frost tolerance (Fr-A2), vernalization

requirement (Vrn-A1), and photoperiod sensitivity (Ppd-B1) [18,22–24]. These and other CNVs contributed to the

adaptive success of domesticated wheat, which now thrives in diverse conditions and geographies. This is exempli�ed by the

Ppd-B1 locus, where variation of PRR gene copy number in�uences photoperiod sensitivity. Our successful assembly of the

Ppd-B1 locus, which was unanchored and incomplete in IWGSC CS v1.0, highlights a speci�c example where our

improved assembly accurately re�ected a known CNV genotype in Chinese Spring. This validation suggests that other

functional gene duplications may also be directly encoded in the Triticum_aestivum_4.0 assembly and identi�able by our
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annotation of extra gene copies. We indicated one such potential candidate, the MADS-box transcription factor gene,

which appears with three extra copies in Triticum_aestivum_4.0. We expect that further investigation of the extensive gene

duplications presented in this work will provide additional insights into the role of CNVs in wheat phenotypes.

Structural variants (SVs), including CNVs, comprise a vast source of natural genetic variation in�uencing traits. As

sequencing technologies continue to advance, plant scientists are increasingly using pan-genome analyses to study genome

structure among diverse varieties and ecotypes [25–27]. These studies rely especially on structurally accurate reference

genomes to discover SVs. Our work introduces Triticum_aestivum_4.0 as an improved reference genome resource ideal for

future structural variant analyses in wheat. Furthermore, our comparative genomics analysis showed that a substantial

portion of the Chinese Spring genome was collapsed, missing, or misrepresented when assembled with short reads. This

emphasizes the utility of long reads in future wheat pan-genome analyses, where structural accuracy is key. Generally, our

work provides a preview of the computational genomics analyses that are possible with an accurate wheat reference

genome.

3.5 METHODS

Establishing the initial contig set

We �rst sought to establish the most complete set of contigs representing the genome of T. aestivum Chinese Spring. We

started with the Triticum_aestivum_3.1 contigs (T3) [7] because they comprise 1 Gbp of additional nongap sequence

compared to the IWGSC CS v1.0 (IW) reference assembly. However, when establishing a set of contigs for downstream

sca�olding, we wanted to ensure that we incorporated any contigs unique to the reference assembly, and, therefore,

“missing” from the T3 assembly. To do this, we broke the reference assembly into “contigs” by breaking pseudomolecules at

gaps (at least 20 “N” characters). We then aligned these reference contigs (query) to the T3 contigs (reference) using

NUCmer (-l 250 -c 500) and �ltered them using delta-�lter (-1 -l 5000) to include only reciprocal best alignments at least 5

kbp long [10]. Of the reference contigs that were at least 10 kbp in length, if under 25% of a contig was covered by

alignments, it was deemed a putative “missing” contig.
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We then checked to see if these putative missing contigs would indeed be covered by alignments produced with more

sensitive parameters. The putative missing contigs (query) were aligned again to the T3 assembly with NUCmer, but with a

smaller minimum seed and cluster size (-l 50 -c 200). Alignments were �ltered as before, and, if under 25% of a putative

missing contig was covered by these more sensitive alignments, they were deemed to be validated as missing from T3. These

validated missing IW contigs were combined with the T3 contigs to establish our �nal set of contigs for downstream

sca�olding, which had an N50 length of 230,687 bp and a sum of 15,429,603,425 bp.

RaGOO scaffolding

We performed two rounds of reference-guided sca�olding with RaGOO. We �rst used RaGOO to look for false sequence

duplications, especially those that could have arisen by incorporating “missing” IW contigs. Though RaGOO usually

employs Minimap2 [9] to align query contigs to a reference genome, we used NUCmer to produce high-speci�city

alignments. We aligned our contigs (query) to the IW reference genome (reference) using a very large seed and cluster size (-l

500 -c 1000). Such speci�city in alignments was necessary to unambiguously order and orient contigs with respect to the

highly repetitive allohexaploid reference genome. The resulting delta �le was converted to PAF format using Minimap2’s

paftools. Next, we ran RaGOO using these alignments rather than the default Minimap2 alignments while also specifying a

minimum clustering con�dence score of 0.4 (-i). We also excluded any unanchored IW sequence from consideration (-e).

To remove false duplication of missing contig sequence, we observed that such duplications would align to more than one

place in these RaGOO pseudomolecules. Conversely, contigs that were truly “missing” should only align once (perfectly) to

their ordered and oriented location in the RaGOO sca�olds. We aligned the RaGOO sca�olds (query) to the missing IW

contigs (reference) with NUCmer (-l 50 -c 200) and �ltered alignments with delta-�lter (-q -l 5000) [11]. If a missing contig

had more than one alignment with coverage at least 50% and percent identity at least 98%, it was deemed to be a false

duplicate and removed from the initial contig set. With false duplicates removed, we proceeded with the second round of

RaGOO sca�olding which had all of the same speci�cations as the �rst round.
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We next sought to remove any unanchored contigs that had duplicated sequences among the anchored contigs. The same

previously described process to remove false duplicates was also used here, except that the RaGOO sca�olds along with

unanchored contigs (query) were aligned to the unanchored contigs (reference). Also, the minimum coverage was 75%

rather than 50%. After removing these unanchored duplications, sca�olds were polished with POLCA [12]. For polishing,

we used the Illumina reads from the NCBI SRA accession SRX2994097. POLCA introduced 595,705 bp in substitution

corrections and 1,033,593 bp in insertion/deletion corrections. After polishing, the �nal error rate of the sequence was

estimated at <0.008% or <1 error per 10,000 bases. Finally, we removed any redundant mitochondria and chloroplast

sequences from unplaced contigs, thus resulting in the �nal Triticum_aestivum_4.0 (T4) assembly. T4/IW dotplots were

made by aligning the polished T4 assembly (query) to the IW reference assembly (reference) with NUCmer (-l 500 -c 1000).

Alignments <10 kbp were removed with delta-�lter and were plotted with mummerplot (–fat–layout).

Shared k-mer frequency distribution

Groups of 101-mers were counted in T4 and IW using KMC (v3.1.0, -ci1 -cx10000 -cs10000) [28]; 101-mers shared by T4

and IW were then extracted with kmc_tools “simple” using the intersection function. The 101-mer copy frequency

distribution of these shared k-mers in both T4 and IW (-ocleft and -ocright) was then plotted in Figure 3.3.

Centromere annotation

We annotated centromere sequence in T4 using an approach similar to the original IW publication [4]. First, publicly

available Chinese Spring CENH3 ChIP-seq data (SRR1686799) was downloaded from the European Nucleotide Archive

[14]. Reads were then trimmed with cutadapt (v1.18, -a AGATCGGAAGAG) and aligned to T4 with bwa mem

(v0.7.17-r1198-dirty) [29,30]. Alignments with a mapq score <20 were removed and the remaining alignments were

compressed and sorted with samtools view and samtools sort respectively [31]. Alignments were then counted in 100 kbp

nonoverlapping windows along the T4 genome using bedtools makewindows and bedtools coverage (v2.29.2) [32]. Any

group of two or more consecutive windows with at least three times the genomic average coverage was considered putative

93



centromere sequence, and any such intervals within 500 kbp were merged. These intervals were further merged or removed

by comparing them manually with the CENH3 ChIP-seq alignments, resulting in a single inferred centromere annotation

for each chromosome. Some IW chromosomes have more than one centromeric position reported in the original IW

publication. Accordingly, we picked the longest centromeric interval for each IW chromosome for the comparative analysis

presented in this work.

Chloroplast and mitochondria genome assembly

We took the �rst 20 million Illumina read pairs from the SRR5815659 accession and assembled them with megahit (v1.2.8)

[33]. The resulting assembly contained 145,887 contigs (74.41 Mb) with lengths ranging between 200 bp and 56,565 bp.

Then we aligned these contigs to the T. aestivum reference chloroplast sequence (NC_002762.1) using NUCmer (with

-maxmatch switch to align to repeats) and �ltered the alignments with delta-�lter, keeping the best hits to the reference

NC_002762.1. The reference was covered completely by alignments of only �ve contigs. Then, we aligned these contigs to

each other with NUCmer (-maxmatch –nosimplify) and used the alignments to manually order and orient them into a

single chloroplast sequence sca�old.

To assemble the mitochondrial genome, we aligned the megahit contigs discussed above to the T. aestivum mitochondria

reference sequence (MH051716) with NUCmer (-–maxmatch). We then �ltered the alignments with delta-�lter, keeping

the best matches to the MH051716 reference. This revealed 43 nonchloroplast contigs of least 500 bp in length that

matched best to the mitochondria reference. We then ordered and oriented these 43 contigs using RaGOO (v1.1), setting

the minimum alignment length to 500 bp. The chloroplast and mitochondria sequence are included in our data submission

to NCBI.

Genome annotation

We used Lifto� to annotate the T4 genome using the IW v1.1 gene models [15]. Genes were aligned to their same

chromosome in T4 using BLASTN v.2.9.0 (-soft_masking False -dust no -word_size 50 -gap_open 3 -gapextend 1
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-culling_limit 10). The blast hits were �ltered to include only those that contained one or more exons. For each gene, the

optimal exon alignments were chosen according to sequence identity and concordance with the exon/intron structure of

the gene model in IW. These alignments were used to de�ne the boundaries of each exon, transcript, and gene in T4. We

excluded any transcripts that did not map with at least 50% alignment coverage. Any genes without at least one mapped

isoform were then aligned against the entire T4 genome using BLASTN with the same parameters and placed given they

did not overlap an already placed gene.

To place the chrUn genes, we aligned the genes to the entire T4 genome using the same parameters. We excluded any

transcripts that did not meet the 50% alignment coverage threshold or overlapped an already annotated gene.

To �nd additional gene copies, we aligned all genes (query) to the complete T4 genome (reference) using BLASTN v2.9.0

(-soft_masking False -dust no -word_size 50 -gap_open 3 -gapextend 1 -culling_limit 100, qcov_hsp_perc 100). The

notable di�erences in these parameters are qcov_hsp_perc, which requires 100% query coverage, and culling_limit, which

has been increased from 10 to 100 to increase the number of reported alignments for genes with a highly increased copy

number. We excluded any alignments that did not have 100% exonic sequence identity or overlapped a previously placed

gene. We used g�read to �lter out genes with noncanonical splice sites [34].

Finally, using the same methods as described for high con�dence genes above, we also used Lifto� to map the IW v1.1

low-con�dence annotation onto T4. We successfully mapped 152,900 out of 161,537 low-con�dence genes. Another 1581

genes mapped partially below the 50% alignment coverage threshold.

Ppd-B1 haplotype comparison

To �nd the approximate location of the Ppd-B1 locus in the T4 and IW assemblies, we aligned a Ppd-B1 PRR gene

sequence (GenBank accession DQ885757.1) to T4 and IW with blastn v2.6.0 (-perc_identity 95) [17]. No matches were

found on IW chr2B, though partial matches were found on chrUn. In contrast, four strong matches were found on T4
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chr2B, corresponding to genes T4021472, T4021473, T4021474, and T4021475. We also aligned the entire Chinese Spring

haplotype for this locus, which had been previously cloned and sequenced (GenBank accession JF946485.1), to T4 using

blastn v2.6.0 (-perc_identity 95) [18]. We used these alignments to approximately de�ne the genomic coordinates of

Ppd-B1 in T4. To further validate the accuracy of this locus in T4, we aligned the GenBank JF946485.1 sequence to the T4

locus ±10 kbp �anking sequence to �nd pairwise maximal exact matches (MEMs) at least 50 bp in length. These alignments

are depicted in Figure 3.4 and were generated with mummer v3.23 (-maxmatch -l 50 -b -c). Before alignment, the

GenBank JF946485.1 sequence was reverse complemented to refer to the same strand as our T4 chr2B.

Because the PRR gene annotations used to de�ne T4 Ppd-B1 PRR genes were incomplete in IW, they were also initially

incomplete in T4. To correctly annotate these T4 PRR genes, we used Lifto� to lift-over the GenBank JF946485.1 PRR

gene annotations to T4. These genes are labeled T4021472, T4021473, T4021474, and T4021475 in the �nal annotation.
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[The] long-range sequence information, combined with
our optimized assembly and validation pipeline,
yielded a nearly closed and highly accurate assembly of
the Col-0 genome.

4
The genetic and epigenetic landscape of the

Arabidopsis centromeres
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4.1 ABSTRACT

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show

paradoxically rapid evolution and are typi�ed by complex repeats. We used ultra-long-read sequencing to generate the

Col-CEN Arabidopsis thaliana genome assembly that resolves all �ve centromeres. The centromeres consist of

megabase-scale tandemly repeated satellite arrays, which support high CENH3 occupancy and are densely DNA

methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites with least

divergence and greatest higher-order repetition. The centromeres are invaded by ATHILA retrotransposons, which disrupt

genetic and epigenetic organization of the centromeres. Crossover recombination is suppressed within the centromeres, yet

low levels of meiotic DSBs occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are

evolving via cycles of satellite homogenization and retrotransposon-driven diversi�cation.

4.2 BACKGROUND

Despite their conserved function during chromosome segregation, centromeres show diverse organization between species,

ranging from single nucleosomes to megabase-scale tandem repeat arrays [1]. Centromere ‘satellite’ repeat monomers are

commonly ~100–200 bp, with each repeat capable of hosting a CENPA/CENH3-variant nucleosome [1,2].

CENPA/CENH3 nucleosomes ultimately assemble the kinetochore and position spindle attachment on the chromosome,

allowing segregation during cell division [3]. Satellites are highly variable in sequence composition and length when

compared between species [2]. The library of centromere repeats present within a genome often shows concerted evolution,

yet they have the capacity to change rapidly in structure and sequence within and between species [1,2,4]. However, the

genetic and epigenetic features that contribute to centromere evolution are incompletely understood, in large part due to

the challenges of centromere sequence assembly and functional genomics of highly repetitive sequences.

De novo assembly of repetitive sequences is challenging. As such, most eukaryotic genome assemblies are in a fragmented

state with many repetitive regions completely unresolved, especially the centromeres and other large repeats. Even the most

scrutinized genomes, such as the human GRCh38 and Arabidopsis TAIR10 reference genomes, fail to represent
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centromeres and other large repeats of biological importance. However, recent advances in long-read sequencing, including

Oxford Nanopore (ONT) and PacBio single-molecule technologies, have revolutionized the �eld by enabling substantially

more complete and contiguous genome assemblies. Owing to their increased length and accuracy (10 kbp to >100 kbp with

90–99% mean accuracy), the long reads are capable of spanning and assembling repetitive sequences that are too ambiguous

to resolve with previous sequencing technologies. Notably, using these technologies, the highly repetitive human

centromeres have recently been assembled, leveraging the fact that sequence heterogeneity exists between the satellite

repeats, e�ectively creating regularly spaced unique sequence markers [5–10]. As such, given su�ciently long reads, a

genome assembler can e�ectively bridge from one unique marker to the next, thereby creating a reliable and unambiguous

reconstruction. This core concept, combined with more accurate base-calling and consensus generation, is now leading to

highly accurate and complete representations of complex genomes for the �rst time [5,11].

The Arabidopsis thaliana genome was �rst sequenced in 2000, yet the centromeres, telomeres, and ribosomal DNA repeats

have remained unassembled, due to their high repetition and similarity [12]. The Arabidopsis centromeres are known to

contain millions of base pairs of the CEN180 satellite repeat, which support CENH3 loading [13–17]. We used

ultra-long-read DNA sequencing to establish the Col-CEN reference assembly, which wholly resolves all �ve Arabidopsis

centromeres. The assembly contains a library of 66,129 CEN180 satellites, with each chromosome possessing largely private

satellite variants. Higher-order CEN180 repetition is prevalent within the centromeres and is also chromosome speci�c. We

identify ATHILA LTR retrotransposons that have invaded the satellite arrays and interrupt centromere genetic and

epigenetic organization. By analyzing functional data from mutant lines, we demonstrate that DNA methylation

epigenetically silences initiation of meiotic DNA double-strand breaks (DSBs) within the centromeres. Together, our data

are consistent with satellite homogenization and retrotransposon invasion driving cycles of centromere evolution in

Arabidopsis.
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4.3 RESULTS

Complete assembly of the Arabidopsis centromeres

The Arabidopsis thaliana TAIR10 reference genome is an exceptionally accurate and complete eukaryotic assembly that is

an invaluable resource for plant science [12]. However, TAIR10 fails to represent the telomeres, some rDNAs and the

centromere satellite arrays. To resolve these remaining sequences, we supplemented existing TAIR10 genomic resources

with Oxford Nanopore (ONT) sequencing data from Columbia (Col-0) genomic DNA comprising a total of 73.6 Gbp,

and ~55× coverage of ultra-long (>50 kbp) reads. This long-range sequence information, combined with our optimized

assembly and validation pipeline, yielded a nearly closed and highly accurate assembly of the Col-0 genome (Col-CEN

v1.0). Chromosomes 1 and 3 are wholly resolved from telomere-to-telomere (T2T), chromosomes 2 and 4 are complete

apart from the 45S clusters and adjacent telomeres, and a single gap remains on chromosome 5 (Figure 4.1).

After repeat-aware polishing with R9 and R10 ONT reads and selective short-read polishing, the Col-CEN assembly is

highly accurate with a QV of 33.95 and 45.58 inside and outside of the centromeres, equivalent to an error rate of 1 in

27,696 and 1 in 63,529 nucleotides, respectively. The assembly is highly concordant with TAIR10, with 95.53% of

Columbia BAC contigs aligning with high coverage and identity (>95%), and 99.61% of TAIR10 gene annotations

represented in the assembly (97.49% of genes are exactly represented) (Figure 4.1B). The Col-CEN assembly includes the

5S rDNA arrays on chromosomes 3, 4, and 5, as well as a large mitochondrial genome insertion on chromosome 2 (Figure

4.1A and 4.1C). Furthermore, the assembly reconstructs all �ve centromeres spanning 11,787,742 bp of new sequence,

120 and 98 kbp of 45S rDNA in the chromosome 2 and 4 Nucleolar Organizing Regions (NORs), and the complete

telomeres of the 8 chromosome arms without sub-telomeric NORs (Figure 4.1A–4.1C). We also identi�ed a thionin gene

cluster that was discordant with TAIR10 and after validating the structural accuracy of this locus in Col-CEN, we

hypothesize that this may represent a TAIR10 misassembly or a recent structural variant in our Col-0 line.
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Figure 4.1: Complete assembly of the Arabidopsis centromeres. (A) Genome-wide circos plot of the Col-CEN assembly.
Quantitative tracks (c-j) are aggregated in 100 kbp bins and independent y-axis labels are given as (low tick value, mid tick value, high
tick value, unit of measurement): (a) chromosome labels with centromeres shown in red; (b) genomic features showing telomeres in
blue, 45S rDNA in yellow, 5S rDNA in black, and the Chr2 mitochondrial insertion in pink; (c) genes (0, 25, 51, # of genes); (d)
transposable elements (0, 85, 171, # of transposable elements); (e) Col×Ler F2 crossovers (0, 6, 12, # of crossovers); (f) CENH3 (-1, 0,
3, log2(ChIP/Input)); (g) H3K9me2 (-1, 0, 2, log2(ChIP/Input)); (h) CpG methylation (0, 40, 80, % methylated); (i) CHG
methylation (0, 20, 40, % methylated); (j) CHH methylation (0, 4, 8, % methylated). (B) Plot showing syntenic alignments between
the TAIR10 and Col-CEN assemblies. (C) Genome assembly ideogram with annotated chromosome landmarks (not drawn to scale).
(D) CENH3 log2(ChIP/Input (black) plotted over centromeres 1 and 4 [13]. CEN180 density per 10 kbp is plotted for forward (red)
or reverse (blue) strand orientations. ATHILA retrotransposons are indicated by purple ticks on the x-axis. Beneath are heatmaps
showing pairwise % sequence identity values of adjacent 5 kbp regions. (E) Dotplot analysis comparing the 5 centromere regions, using
a search window of 120 or 178 bp. Red and blue shading indicate detection of similarity on the same or opposite strands, respectively.
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The assembled centromere sequences are characterized by a repeated 178-bp motif (CEN180) that is organized into

higher-order repeats (HORs) (Figure 4.1D, 4.2). We validated the structural and base-level accuracy of the centromeres

using techniques from the Human T2T consortium [5]. Brie�y, we aligned our Col-0 ONT reads to the assembly and

observed even coverage across the centromeres, with few loci showing plausible alternate base signals. We also observed

relatively few ‘missing’ k-mers that are found in the assembly but not in Illumina short reads, which are diagnostic of

residual consensus errors from the ONT reads [18]. Notably, the �ve centromeres are relatively distinct at the sequence

level, with each exhibiting chromosome-speci�c repeats (Figure 4.1E, 4.2. This is consistent with our assembly pipeline

unambiguously separating the �ve centromere sequences. We observe that unique ‘marker’ sequences are relatively

frequent, with a maximum distance between consecutive markers in the assembled centromeres of only 28,630 bp,

suggesting that our ultra-long reads can con�dently span several unique markers and thus reliably assemble centromeric

loci.

The Arabidopsis CEN180 satellite repeat library

We performed de novo searches for tandem repeats to de�ne the centromere satellite library. We identi�ed 66,129 CEN180

satellites in total, with between 11,847 and 15,612 copies per chromosome (Figure 4.2). The CEN180 repeats form large

stranded arrays, with the exception of centromere 3, which has an inverted structure (Figure 4.1D). The length of the

repeat monomers is tightly constrained around 178 bp (Figure 4.2A). We aligned all unique CEN180 sequences

(n=25,192) to derive a genome-wide satellite consensus. Each satellite was then compared to the consensus to calculate a

single-nucleotide variant (SNV) score. Substantial sequence variation was observed between satellites, with a mean of 19.6

SNVs per CEN180 (Figure 4.2A). Each centromere shows essentially private libraries of CEN180 monomer sequences,

with only 0.5% sharing an identical copy on a di�erent chromosome (Figure 4.1E). In contrast, there is a high degree of

CEN180 repetition within chromosomes, with 54.2–65.4% showing one or more duplicates. We also observed a minor class

of ‘CEN160’ tandem repeats found mainly on chromosome 1 (1,289 repeats on Chr1, 43 repeats on Chr4, mean

length=158.2 bp) [17].
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We aligned CENH3 ChIP-seq data to the assembly and observed on average 10-fold log2(ChIP/input) enrichment within

the CEN180 arrays, compared to the chromosome arms (Figure 4.1D) [13]. CENH3 ChIP-seq enrichment is generally

highest in the interior of the main CEN180 arrays (Figure 4.1D). We observed a negative relationship between CENH3

ChIP-seq enrichment and CEN180 SNV divergence (Figure 4.2D–4.2E), consistent with CENH3 nucleosomes

preferring to occupy satellites that are closer to the genome-wide consensus. In this respect, centromere 4 is noteworthy, as

it consists of two distinct CEN180 arrays, with the right array showing both higher SNV divergence and lower CENH3

ChIP-seq enrichment (Figure 4.1D and 4.2D). Together, this is consistent with satellite divergence leading to loss of

CENH3 binding, or vice versa.
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Figure 4.2: The Arabidopsis CEN180 satellite repeat library. (A) Histograms of CEN180 monomer lengths (bp), and single
nucleotide variants (SNVs) relative to the genome-wide consensus. Mean values are shown by the red dotted line. (B) As for A, but
showing widths of CEN180 higher order repeat (HOR) blocks (monomers, ‘mers’), and the distance between HOR blocks (kbp). (C)
Heatmap of a representative satellite region within centromere 2, shaded according to pairwise SNVs between CEN180. (D) Circos
plot showing; (i) GYPSY LTR transposon density, (ii) CEN180 density, (iii) centromeric ATHILA rainfall plot, (iv) CEN180 density
grouped by decreasing CENH3 log2(ChIP/input) (red=high; navy=low), (v) CEN180 density grouped by decreasing higher order
repetition (red=high; navy=low), (vi) CEN180 grouped by decreasing SNVs (red=high; navy=low) and, (vii) CENH3
log2(ChIP/input), across the centromere regions. (E) CEN180 were divided into quintiles according to CENH3 log2(ChIP/input)
and mean values for each group with 95% con�dence intervals plotted. The same groups were analyzed for CEN180 SNVs (red),
higher order repetition (blue) and CG context DNA methylation (purple). (F) Plot of the distance between pairs of HOR blocks
(kbp) and divergence (SNVs/monomers) between the HOR block sequences. (G) Plots of CENH3 log2(ChIP/input) (black) across
the centromeres, compared to CEN180 higher order repetition on forward (red) or reverse (blue) strands. A heat map is shown
beneath that is shaded according to the density of higher order repeats.
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To de�ne CEN180 higher-order repeats (HORs), monomers were considered the same if they shared 5 or fewer pairwise

SNVs. Consecutive repeats of at least 3 monomers below this SNV threshold were identi�ed, yielding 500,833 HORs

(Figure 4.2D). Like the CEN180 monomer sequences, HORs are almost exclusively chromosome speci�c. The mean

number of CEN180 monomers per HOR was 3.69, equivalent to 656 bp (Figure 4.2B), and 91.1% of CEN180 were part

of at least one HOR. HOR block sizes show a negative exponential distribution, with the largest HOR formed of 60

monomers on chromosome 3, equivalent to 10,691 bp (Figure 4.2B). Many HORs are in close proximity (42% are <100

kbp apart), although they are distributed along the length of the centromeres. For example, the average distance between

HOR blocks was 250.7 kbp and the maximum distance was 2.1 Mbp (Figure 4.2B). We also observed that HOR blocks

that were a greater distance apart showed a higher level of SNVs between the blocks (SNVs/monomer) (Figure 4.2F), which

is consistent with satellite homogenization being more e�ective over repeats that are physically closer. The CEN180 groups

with the highest CENH3 occupancy also show the greatest level of higher-order repetition and higher CG DNA

methylation frequency (Figure 4.2D–4.2E and 4.2G). However, one notable exception to these trends is centromere 5,

which harbors 12–22% of HORs compared to the other centromeres, yet still recruits comparable CENH3 (Figure 4.2G).

Invasion of the Arabidopsis centromeres by ATHILA retrotransposons

We observed that centromere 5 shows both reduced CEN180 higher-order repetition and was heavily disrupted by breaks in

the satellite array (Figure 4.2G). Genome-wide, within the main satellite arrays, the vast majority of sequence (>94%) is

CEN180, with only 69 interspersed sequences larger than 1 kbp. Within these gaps we identi�ed 46 intact and 5 fragmented

ATHILA LTR retrotransposons of the GYPSY superfamily, belonging to the ATHILA, ATHILA2, ATHILA5 and

ATHILA6A/6B subfamilies (Figure 4.3A) [19–21]. The intact ATHILA elements have a mean length of 10.9 kbp, and the

majority have highly similar paired LTRs, target site duplications (TSDs), primer binding sites (PBS), polypurine tracts

(PPT) and Gypsy superfamily open reading frames. LTR comparisons indicate that the centromeric ATHILA elements are

young, with on average 98.39% LTR sequence identity (Figure 4.3B), which was higher than GYPSY and COPIA elements

located outside the centromere (Figure 4.3B). We also observed 10 ATHILA solo LTRs that lacked a downstream PBS or
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upstream PPT, which is consistent with post-integration intra-element homologous recombination. Interestingly, we also

observed 5 instances where gaps containing full-length ATHILA or solo LTRs show a duplication on the same

chromosome that are between 8.9 and 538.4 kbp apart, consistent with transposon sequences being copied

post-integration, potentially via the same mechanism that generates CEN180 HORs.
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Figure 4.3: Invasion of the Arabidopsis centromeres by ATHILA retrotransposons. (A) Dotplot of centromeric ATHILA
retroelements using a search window of 50 bp. Red and blue indicate forward and reverse strand similarity. The elements assigned to
di�erent ATHILA families and solo LTRs are indicated. (B) Histograms of LTR percent sequence identity for centromeric ATHILA
elements, compared to GYPSY and COPIA elements outside of the centromeres. Mean values are indicated by the red lines. (C)
CENH3 (orange) and H3K9me2 (blue) ChIP-seq enrichment (log2(ChIP/input)) over CEN180 (n=66,129), centromeric intact
ATHILA (n=46), GYPSY located outside the centromeres (n=3,980) and random positions (n=66,129). Shaded ribbons represent
95% con�dence intervals for windowed mean values. (D) As for C, but analyzing ONT-derived percent DNA methylation in CG
(dark blue), CHG (blue) and CHH (light blue). (E) The number of CEN180 sequence edits (insertions, deletions, and mismatches,
compared to the CEN180 consensus) normalized by CEN180 frequency, in positions surrounding CEN180 (n=66,129), gaps
containing ATHILA sequences (n=61), or random positions (n=66,129). All edits (dark blue) are analyzed, in addition to
substitutions (SNVs, blue), indels (light blue), insertions (light green), deletions (dark green), transitions (pink) and transversions
(orange).
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We analyzed the centromeric ATHILA elements for CENH3 ChIP-seq enrichment and observed a decrease relative to the

surrounding CEN180, yet higher levels than observed in GYPSY elements located outside the centromere (Figure 4.3C).

The ATHILA elements show greater H3K9me2 enrichment compared to �anking CEN180 (Figure 4.3C). We used our

ONT reads to pro�le DNA methylation over the ATHILA and observed dense methylation, at a similar level to the

surrounding CEN180, although with higher CHG-context methylation (Figure 4.3D). Hence, ATHILA elements are

di�erentiated from the surrounding satellites at the chromatin level. Interestingly, when we pro�led CEN180 SNVs around

gaps containing the ATHILA insertions (full length, fragments and solo LTRs), we observed a pronounced elevation in

satellite divergence at the insertion boundaries (Figure 4.3E). This may indicate that ATHILA insertion was mutagenic on

the surrounding satellite repeats, or that transposon insertion in�uenced the subsequent divergence or homogenization of

the repeats. Together this indicates that centromeric ATHILA insertions interrupt the genetic and epigenetic organization

of the Arabidopsis CEN180 satellite arrays.

Epigenetic organization and meiotic recombination within the centromeres

To assess the genetic and epigenetic features of the centromeres, we analyzed all chromosome arms along their

telomere–centromere axes using a proportional scale (Figure 4.4A). Centromere midpoints were de�ned by maximum

CENH3 ChIP-seq enrichment. As expected, CEN180 satellites are highly enriched in proximity to the centromere

midpoints (Figure 4.4A). Gene density drops precipitously as the centromeres are approached, whereas transposons

reciprocally increase until they are replaced by CEN180 (Figure 4.4A). Gene and transposon density are tracked closely by

H3K4me3 and H3K9me2 ChIP-seq enrichment, respectively (Figure 4.4A). H3K9me2 enrichment is observed in the

centromere, although there is a reduction in the center coincident with CENH3 enrichment (Figure 4.4A), consistent

with reduced H3 occupancy caused by CENH3 replacement. Interestingly, a slight increase in H3K4me3 enrichment is

observed within the centromeres, relative to the �anking pericentromeric regions (Figure 4.4A). We observed striking

biases in base composition over the centromeres, which are relatively GC-rich compared to the AT-rich chromosome arms

(Figure 4.4A).
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Figure 4.4: Epigenetic organization and meiotic recombination within the centromeres. (A) Data were analyzed along
chromosome arms that were proportionally scaled between the telomeres (TEL) and centromere midpoint (CEN), which was de�ned
by maximum CENH3 ChIP-seq enrichment. Data analyzed were gene, transposon and CEN180 density, CENH3, H3K4me3,
H3K9me2, H2A.W6, H2A.W7, H2A.Z, H3K27me1, H3K27me3, REC8 and ASY1 ChIP-seq (log2(ChIP/input), % AT and GC
base composition, DNA methylation, SPO11-1-oligos (in wild type and met1) and crossovers. (B) Plot of crossovers (red), CG DNA
methylation (pink), CENH3 (blue), SPO11-1-oligos in wild type and met1 and CEN180 density along centromere 2 (CEN2). (C)
Male meiocyte in early prophase I immunostained for CENH3 (red) and V5-DMC1 (green). Scale bars are 10 μM (upper row) and 1
μM (lower row). (D) Plots of CENH3 ChIP enrichment (grey), DNA methylation in CG (blue), CHG (green) and CHH (red)
contexts and CEN180 SNVs (purple), averaged over windows centred on all CEN180 starts. The red lines show 178 bp increments.
(E) CG context DNA methylation in wild type (green) or met1 (purple) [22], RNA-seq in wild type (green) and met1 (pink) [23] and
siRNA-seq in wild type (green) and met1 (pink) [22], over CEN180 (n=66,129), centromeric intact ATHILA (n=46), GYPSY located
outside the centromeres (n=3,980) and random positions (n=66,129). Shaded ribbons represent 95% con�dence intervals for
windowed mean values.
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Using our ONT sequencing data and DeepSignal-plant, we observed dense DNA methylation across the centromeres in

CG, CHG and CHH contexts (Figure 4.4A) [24]. However, CHG DNA methylation shows relatively reduced frequency

within the centromeres, compared to CG methylation (Figure 4.4A). This may re�ect depletion of H3K9me2 within the

centromeres, which functions to maintain DNA methylation in non-CG contexts [25]. We also observed high ChIP-seq

enrichment of the heterochromatic chromatin marks H2A.W6, H2A.W7 and H3K27me1 within the centromeres (Figure

4.4A) [26,27]. The Polycomb-group modi�cation H3K27me3 was depleted in the centromeres and found largely in the

gene-rich chromosome arms (Figure 4.4A). Enrichment of the euchromatic histone variant H2A.Z was low in the

centromeres, but similar to H3K4me3, it showed a slight increase in the centromeres, relative to the pericentromeres

(Figure 4.4A).

To investigate genetic control of DNA methylation in the centromeres, we analyzed bisul�te sequencing (BS-seq) data from

wild type and eight mutants defective in the CG and non-CG DNA methylation maintenance pathway [25,28].

Centromeric non-CG methylation is eliminated in a drm1 drm2 cmt2 cmt3 mutant, and strongly reduced in kyp suvh5

suvh6, whereas CG methylation is intact in these lines [25,28]. CG methylation in the centromere is strongly reduced in

ddm1 and met1, although non-CG is more greatly reduced in ddm1 than met1 [28]. Hence, dense DNA methylation is

observed within the centromeres that is maintained by canonical pathways, although CG-context methylation is relatively

high compared with non-CG.

Meiotic recombination, including unequal crossover and gene conversion, have been proposed to mediate centromere

evolution [4,29]. We mapped 2,042 crossovers from Col×Ler F2 sequence data that were resolved on average to 1.01 kbp. As

expected, crossovers were potently suppressed in proximity to the centromeres (Figure 4.4A-4.4B). We observed high

centromeric ChIP-seq enrichment of REC8-cohesin and the HORMA domain protein ASY1, which are components of

the meiotic chromosome axis (Figure 4.4A) [30,31]. To investigate the potential for meiotic DSB formation within the

centromeres, we aligned SPO11-1-oligo data from wild type [23]. Overall, SPO11-1-oligos were low within the

centromeres, although we observed an increase relative to the �anking pericentromeric heterochromatin, reminiscent of the
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H3K4me3 and H2A.Z patterns (Figure 4.4A). To investigate the role of DNA methylation, we mapped SPO11-1-oligos

sequenced in the CG DNA methylation mutant met1-3 [23], which showed a gain of DSBs in proximity to the centromere

(Figure 4.4A-4.4B). To provide cytological evidence of recombination close to the centromeres, we immunostained

meiocytes in early prophase I for CENH3 and V5-DMC1, which is a marker of inter-homolog recombination (Figure

4.4C). DMC1-V5 foci were observed along the chromosomes and associated with the surface, but not within, CENH3 foci

(Figure 4.4C). Hence, despite suppression of crossovers, we observe evidence for low levels of meiotic recombination

initiation associated with the centromeres, which are in�uenced by DNA methylation.

Finally, we analyzed chromatin and transcription around CEN180 and ATHILA retrotransposons at the �ne-scale, and

compared wild type and the DNA methylation mutant met1-3. CENH3 nucleosomes show a strongly phased pattern of

enrichment with the CEN180 satellites, with relative depletion in spacer regions at the start and end of the satellites (Figure

4.4D). Interestingly, these CENH3 spacer regions also associate with elevated DNA methylation and CEN180 SNVs

(Figure 4.4D), consistent with CENH3-nucleosome occupancy in�uencing epigenetic modi�cation and genetic

divergence of satellites. In met1, we observed loss of CG-context DNA methylation in both the ATHILA and CEN180

repeats (Figure 4.4E). However, RNA-seq and siRNA-seq counts increased speci�cally in the ATHILA in met1 (Figure

4.4E) [22,23]. Both RNA-seq and siRNA-seq signals increased most strongly in the internal 3′-regions of the ATHILA

(Figure 4.4E), which correspond to ‘TSI’ transcripts and easiRNA populations previously reported [32–34]. This further

indicates that epigenetic regulation of the CEN180 satellites and ATHILA elements are distinct.

4.4 DISCUSSION

The Col-CEN assembly reveals the architecture of the Arabidopsis centromeres, which consist of megabase-scale, stranded

CEN180 arrays, which are invaded by ATHILA retrotransposons. Extensive sequence variation is observed between the

satellites, and the majority of variant monomer sequences are private to each centromere. This is consistent with satellite

homogenization occurring primarily within chromosomes. CEN180 that are the least divergent and with most higher-order

repetition showed the highest CENH3 occupancy. This suggests that CENH3 chromatin may promote recombination
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pathways that lead to homogenization, including DSB formation and repair via homologous recombination. For example,

inter-homolog strand invasion during meiosis has the potential to cause CEN180 gene conversion. In this respect, we note

that CEN180 higher-order repeats show an average length of 656 bp, which is within the range of observed Arabidopsis

meiotic gene conversions [35]. We also see a proximity e�ect on divergence between higher-order repeats, with repeat blocks

further apart showing greater sequence di�erences. These patterns are reminiscent of human alpha-satellite higher-order

repeats, although the alpha-satellite blocks are longer and occur over greater distances [5,36,37]. As meiotic crossover repair

is strongly suppressed within the Arabidopsis centromeres, consistent with patterns across eukaryotes [29,38–40], we do

not consider unequal crossover to be likely within the centromeres. However, we propose that an ongoing,

recombination-based homogenization process maintains the CEN180 library close to the consensus that is optimal for

CENH3 recruitment.

Aside from homogenizing recombination within the CEN180, the centromeres have experienced invasion by ATHILA

retrotransposons. The ability of ATHILA elements to insert within Arabidopsis CEN180 regions is likely determined by

their integrase protein [20,41]. Interestingly, the Tal1 COPIA element from Arabidopsis lyrata shows a strong insertion bias

into the CEN180 when expressed in Arabidopsis thaliana [42], despite satellite sequences varying between these species

[43]. The majority of the centromeric ATHILA elements appear young, based on LTR identity and possess many features

required for transposition, although the centromeres show striking di�erences in the frequency of ATHILA insertions,

with centromeres 4 and 5 being the most invaded. ATHILA elements show lower CENH3 and higher H3K9me2 and

CHG DNA methylation than the surrounding CEN180, and associate with increased satellite divergence at their

boundaries. Hence, ATHILA represent a disruptive in�uence on the genetic and epigenetic organization of the

centromeres. In maize, meiotic gene conversion was observed to act on CRM2 retrotransposons within the centromeres

[29]. Therefore, satellite homogenization pathways may serve as a mechanism to eliminate ATHILA insertions. Indeed, a

gene conversion mechanism may explain the 5 ATHILA intra-chromosome duplications that appear to have occurred

post-integration. We also note that the presence of ATHILA solo LTRs is consistent with homologous recombination

acting on the centromeric retrotransposons following integration. Intriguingly, centromere 5 and the diverged CEN180
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array on chromosome 4, show both high ATHILA density and a striking reduction of CEN180 higher-order repetition.

This is consistent with ATHILA inhibiting CEN180 homogenization, or loss of homogenization facilitating ATHILA

insertion, or both. We propose that each Arabidopsis centromere represents di�erent stages in a cycle of satellite

homogenization and disruption by ATHILA. These opposing forces provide both a capacity for homeostasis, and a

capacity for change, during centromere evolution.

4.5 METHODS

Genomic DNA extraction and ONT sequencing

For genomic DNA extraction, 3 week old Col-0 seedlings were grown on ½ MS media and 1% sucrose and kept in the dark

for 48 hours prior to harvesting. Approximately 10 g of tissue was used per 200 ml of MPD-Based Extraction Bu�er pH 6

(MEB). Tissue was �ash frozen and ground tissue in liquid nitrogen, using a pestle and mortar, and resuspended in 200 ml

MEB. Ground tissue was thawed in MEB with frequent stirring. The homogenate was forced through 4 layers of miracloth,

and then �ltering again through 4 layers of fresh miracloth by gravity. 20% Triton x-100 was added to a �nal concentration

of 0.5% on ice, followed by incubation with agitation on ice for 30 minutes. The suspension was centrifuged at 800g for 20

minutes at 4oC. The supernatant was removed and the pellet resuspended using a paintbrush in 10 ml 2-methyl-2,4

pentanediol bu�er pH 7.0 (MPDB). The suspension was centrifuged at 650g for 20 minutes at 4oC. The supernatant was

removed and the pellet was washed with 10 ml of MPDB. Washing and centrifugation was repeated until the pellet

appeared white and was �nally resuspended in a minimal volume of MPDB. From this point onwards all transfers were

performed using wide bore pipette tips. 5 ml CTAB bu�er was added to the nuclei pellet and mixed via gentle inversion,

followed by incubation at 60oC until full lysis had occurred, taking between 30 minutes and 2 hours. An equal volume of

chloroform was added and incubated on a rocking platform, with a speed of 18 cycles per minute, for 30 minutes, followed

by centrifugation at 3000g for 10 minutes. An equal volume of phenol/chloroform/isoamyl alcohol (PCI, 25:24:1) was

added to the lysate, followed by incubation on a rocking platform (18 cycles per minute) for 30 minutes. The lysate was

centrifuged at 3000g for 10 minutes and the upper aqueous phase was transferred into a fresh tube. The PCI extraction was

then repeated. The extraction was then repeated using only chloroform. 1/10th volume of 3M Sodium Acetate was added to
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the lysate and mixed by gentle inversion. Two volumes of ice cold ethanol were added and mixed by inversion. DNA was

precipitated at -20oC for 48 hours. The precipitated DNA was removed using a glass hook and washed three times in fresh

70% ethanol. The DNA was dissolved in 120 µl of 10 mM Tris-Cl (pH 8.5).

Approximately 5 µg of DNA was size selected to be >30 kbp, using the BluePippin™ Size-Selection System (Sage Science)

and the 0.75% DF Marker U1 cassette de�nition, with Range mode and BP start set at 30,000 bp. Library preparation

followed the Nanopore SQK-LSK109 protocol and kit. Approximately 1.2-1.5 µg of size selected DNA in a volume of 48

µl was used for library preparation. DNA was nic-repaired and end-prepped by the addition of 3.5 μl of NEBNext FFPE

Bu�er and NEBNext Ultra II End Prep Reaction Bu�er, followed by 2 µl of NEBNext DNA Repair Mix and 3 μl

NEBNext Ultra II End Prep Enzyme Mix (New England Biolab, E7180S), with incubation for 30 minutes at 20°C,

followed by 30 minutes at 65°C. The sample was cleaned using 1×volume AMPure XP beads and eluted in 61 μl of

nuclease-free water. Adapters were ligated at room temperature using 25 µl Ligation Bu�er, 10 µl NEBNext T4 DNA

Ligase and 5 µl Adapter Mix for 2 hours. The library was cleaned with 0.4×volume AMPure XP beads, washed using ONT

Long Fragment bu�er and eluted in 15 µl elution bu�er.

Col-CEN genome assembly

Libraries were sequenced on 6 ONT R9 �ow cells and 1 ONT R10 �ow cell, and the resulting .fast5 �les were basecalled

with Guppy (v4.0.15), using the dna_r9.4.1_450bps_hac.cfg and dna_r10.3_450bps_hac.cfg con�gurations, respectively.

This yielded 73.6 Gb of sequence and ~55x coverage of ultra-long reads (>50 kbp). The fastq �les of ONT reads used for

genome assembly are available for download at ArrayExpress accession E-MTAB-10272

(http://www.ebi.ac.uk/arrayexpress/). We trimmed adapters using Porechop (v0.2.4) and �ltered for read lengths greater

than 30 kbp and mean read quality scores >90%, using Filtlong (v0.2.0) (https://github.com/rrwick/Filtlong), which

yielded 436,146 reads with a mean length of 43.9 kbp (19.15 Gbp), equivalent to 161× coverage of the TAIR10 genome.

Flye (version 2.7) was used to assemble the reads, specifying a minimum read overlap of 10 kbp and a k-mer size of 17 [44].
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Contig screen

We performed a comprehensive contig screen using methods inspired by the Vertebrate Genomes Project (VGP), though

adapted for an inbred plant genome [45]. We �rst aligned Flye contigs to the Columbia reference chloroplast (GenBank

accession NC_000932.1) [46], and mitochondria (GenBank accession NC_037304.1) [47] genomes with Minimap2

(v2.17-r941, -x asm5) [48]. Contigs with at least 50% of their bases covered by alignments were considered to be chloroplast

or mitochondria genome sequences and were removed from the assembly.

We next used BLAST to screen for contigs representing bacterial contamination. We �rst masked the Flye assembly with

windowmasker (v1.0.0, -mk_counts -genome_size 131405362) [49]. We then aligned the Flye contigs to all RefSeq bacterial

genomes (downloaded on 2020/05/21) with megablast (v2.5.0, -outfmt "6 std score"), providing the windowmasker

annotations with “-window_masker_db” [50]. We removed BLAST alignments with an E value greater than or equal to

0.0001, a score less than 500, and a Percent Identity less than 98%, and any contigs (four in total) with remaining

alignments were manually inspected. Two of the four contigs were already identi�ed as being chloroplast or mitochondria

sequence and the other two were clearly nuclear contigs, so we determined that no contigs were derived from bacterial

contaminants.

After removing chloroplast and mitochondria contigs, we performed one �nal screen to remove contigs with low read

support. We aligned ONT reads (>=40 kbp) to the contigs with Minimap2 (v2.17-r941, -x map-ont) and removed any

contigs (one in total) with more than 50% of its bases covered by fewer than 15 reads. Though we did not use its standard

pipeline, we made use of purge_dups scripts for this analysis [51]. After screening, the assembly consisted of 10 contigs with

an N50 of 22,078,741 bp.
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Contig scaffolding

Though the �ve Columbia chromosomes were represented by only 10 contigs, we used reference-guide sca�olding to order

and orient contigs, assign chromosome labels, and orient pseudomolecules to match the orientation of TAIR10

chromosomes. We ran RagTag (v1.0.1, --debug --aligner=nucmer --nucmer-params='--maxmatch -l 100 -c 500') using

TAIR10 as the reference genome, but excluding ChrC and ChrM (-e) [52,53]. Three small contigs (3,200, 90,237 and

8,728 bp) consisting of low complexity sequence were not ordered and oriented and were removed from the assembly. After

sca�olding, the 131,388,895 bp assembly was represented in �ve pseudomolecules corresponding to the �ve chromosomes

of the Columbia genome. Chromosome 1 was gapless, while the other chromosomes contained one to four 100 bp gaps

each (9 in total).

Pseudomolecule polishing and gap filling

We corrected misassemblies and �lled gaps in the Columbia pseudomolecules with two rounds of Medaka (v1.2.1) ONT

polishing (https://github.com/nanoporetech/medaka). For the �rst round of polishing, we aligned R9 ONT reads (>=50

kbp) to the pseudomolecules with mini_align (minimap2 v2.17-r941, -m). To avoid overcorrection in the centromere

satellite sequences, we performed “marker-assisted �ltering” to remove alignments not anchored in putatively unique

sequences [5] (https://github.com/malonge/T2T-Polish). We de�ned “marker” k-mers as 21-mers that occurred once in the

assembly and between 14 and 46 times (inclusive) in the Illumina reads. The �rst round of polishing was completed using

`medaka consensus` (--model r941_min_high_g360 --batch_size 200) and `medaka stitch`. The second round of polishing

was performed as for the �rst round, except we aligned all R10 reads instead of R9 reads and the `medaka consensus` model

was set to “r103_min_high_g360”. As a result of ONT polishing, the assembly improved from a QV of 32.38 to 33.17 and

34.12 after the �rst and second rounds, respectively [18]. After medaka polishing, the assembly contained only a single gap

on chromosome 2.

Long-read ONT polishing was followed by short-read polishing of non-centromeres with DeepVariant [54]. We �rst

aligned Columbia genomic DNA Illumina reads to the pseudomolecules with bwa mem (v0.7.17-r1198-dirty) and we
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compressed and sorted alignments with samtools (v1.10) [55,56]. We then created a VCF �le of potential polishing edits

with DeepVariant (v1.1.0, --model_type=WGS),“bcftools view” (v1.11, -e 'type="ref"' -i 'QUAL>1 && (GT="AA" ||

GT="Aa")' ) and “bcftools norm”. To avoid error-prone short-read polishing in the centromeres, we used Bedtools to

remove polishing edits within the centromeres and we used BCFtools to derive a �nal consensus FASTA �le [57,58].

Though short-read polishing did not alter the centromeres, it improved the overall assembly QV to 41.4616.

Telomere patching

We locally re-assembled and patched telomeric sequences for the 8 Columbia telomeres not adjacent to NORs (all but the

beginning of chromosomes 2 and 4). We aligned all R9 reads to the TAIR10 reference with Winnowmap (v1.11, k=15,

--MD -ax map-ont) and for each telomere, we collected all reads that aligned once to within 50 bp of the chromosome

terminus [9]. Using Bowtie [59] (v1.3.0, -S --all -v 0), we counted the occurrences of the telomeric repeat motif

(‘CCCTAAA’) in each read, and the read with the most occurrences was designated as the “reference” and all other reads

were designated as the “query”. Local re-assembly was completed by aligning the query reads to the reference read and

computing a consensus with `medaka_consensus` (v1.2.1, -m r941_min_high_g360). To patch these telomere consensus

sequences into the Columbia pseudomolecules, we identi�ed the terminal BAC sequences for each of the 8 chromosome

arms. For each chromosome arm, we aligned the terminal BAC sequence to the Columbia pseudomolecules and the

telomere consensus sequence with Nucmer (v3.1, --maxmatch). Using these alignment coordinates, the consensus

sequences were manually patched such that everything after the terminal BAC sequence was replaced with telomere

consensus sequence. Telomeres were then manually con�rmed to be structurally valid.

Assembly curation and preparation

After polishing and telomere patching, we performed �nal curation steps to correct lingering misassemblies and screen for

contamination. First, while it was not straightforward to �ll the remaining chromosome 2 gap de novo, we were able to

replace the gap locus with the corresponding region in TAIR10. We found two BAC sequences �anking the gap locus that

aligned concordantly to both the Col-0 pseudomolecules and TAIR10. These BAC contigs were aligned to the
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pseudomolecules and TAIR10 with Nucmer (v3.1, --maxmatch -l 250 -c 500) and the gap locus between the BAC contigs

in the Columbia pseudomolecules was replaced with the corresponding TAIR10 locus between the BAC contigs.

To identify and correct structural misassemblies, we aligned Columbia long-reads to the Columbia pseudomolecules and

called structural variants (SVs). First, we used Bedtools `random` (v2.29.2, -l 100000 -n 50000 -seed 23) to simulate 50,000

100 kbp exact reads from TAIR10. These reads, along with R9 (>=50 kbp) and R10 Columbia reads were aligned to the

Columbia pseudomolecules with Winnowmap (v1.11, k=15, “--MD -ax map-pb” for TAIR10 reads and “--MD -ax

map-ont” for ONT reads). After compressing and sorting alignments with samtools (v1.10), Sni�es (v1.0.12, -d 100 -n -1 -s

3) was used to infer SVs from each of the alignments [60]. SVs with fewer than 30% of reads supporting the ALT allele were

removed and the three resulting VCF �les were merged with Jasmine (v1.0.10, max_dist=500 spec_reads=3

--output_genotypes) [61]. There were a total of three variants called by all three read sets, including two deletions and one

insertion that we corrected. REF and ALT alleles for these SVs were manually re�ned and validated, and ALT alleles were

incorporated into the pseudomolecules using `bcftools consensus`.

Next, we manually inspected all gaps �lled by Medaka and found that a 181 bp region containing a 100 bp gap on

chromosome 5 was incorrectly replaced with 103 bp of sequence and we manually replaced the �lled sequence with the

original gap locus. Finally, we used VecScreen to do a �nal contamination screen. We �rst aligned the Columbia

pseudomolecules to the VecScreen database with blastn (v2.5.0, -task blastn -reward 1 -penalty -5 -gapopen 3 -gapextend 3

-dust yes -soft_masking true -evalue 700 -searchsp 1750000000000 -outfmt "6 std score"). The BLAST alignments did not

yield any “moderate” or “strong” matches to the database, so we determined that there was no contamination.

The �nal assembly contained �ve pseudomolecules with a single gap on chromosome 5, two missing telomeres, and

partially resolved NOR sequence at the beginning of chromosomes 2 and 4. Chromosomes 1 and 3 were gapless and were

completely sequence resolved from telomere-to-telomere (T2T). The �nal Col-CEN assembly FASTA �le includes these 5

pseudomolecules and the Columbia chloroplast and mitochondria reference genomes.
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Genome annotation

Genes were lifted-over from TAIR10 with Lifto� (v1.5.1, -copies -a 1 -s 1) [62]. Since ChrC and ChrM were directly copied

from TAIR10, their lift-over genes were replaced with their original TAIR10 annotations. We then used EDTA (v1.9.6,

--sensitive 1 --anno 1 --evaluate 1) to perform de novo transposable element (TE) annotation, providing transcripts with

“--cds” and the TAIR10 TE library with “--curatedlib” [63,64]. The TE annotation was supplemented with a manual

annotation of centromere gaps using dotplot analysis and further manual annotation of the centromeric ATHILA elements

(see section below). We used LASTZ to identify regions with similarity to 5S, 45S rDNA and the mitochondrial genome.

To generate similarity heatmaps, the centromere region was divided into adjacent 5 kbp regions which were compared using

the pairwiseAlignment (type=’global’) and pid functions in R, using the Biostrings library. Sequences were compared in

forward and reverse directions, and the highest percent sequence identity value kept. These values were then plotted in the

heatmap.

CEN180 repeat annotation

To identify repetitive regions, we divided the genome assembly into adjacent 1 kbp windows. In each window, for each

position, we de�ned 12-mers and exactly matched these sequences to the rest of the window. We identi�ed windows where

the proportion of non-unique 12-mers was greater than 10%, and merged contiguous windows that were above this

threshold. For each region, we generated a histogram of the distances between 12-mers to test for periodic repeats. For

example, if a region contains an arrayed tandem repeat of monomer size N, then a histogram of the 12-mer distances will

show peaks at values N, N×2, N×3 … . The N value was obtained for each region, using the most frequent 12-mer distance.

Next, 5 sequences of length N were randomly chosen from within the region and matched back to the sequence using the

R function matchPattern (max.mismatch=N/3 with.indels=T). For each set of matches we identi�ed overlapping repeats.

If the overlap was less than 10 nucleotides, the overlap was divided at the midpoint between the repeats. If the overlap was

10 nucleotides or greater, the larger repeat was kept. The set of non-overlapping matches with the highest number was kept

for further analysis. These sequence matches were aligned using ma�t (--retree 2 --inputorder) [65], and a consensus repeat
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monomer was derived from the multiple sequence alignment. This consensus sequence was matched back to the region

using matchPattern (max.mismatch=N/3 with.indels=T), and overlaps were treated in the same way.

Our approach identi�ed 66,129 CEN180 repeats with a mean length of 178 bp. The set of unique CEN180 sequences

(n=25,192) were aligned using ma�t (--sparsescore 1000 --inputorder) [65]. A consensus sequence was generated from the

multiple sequence alignment, which was:

5′-AGTATAAGAACTTAAACCGCAACCCGATCTTAAAAGCCTAAGTAGTGTTTCCTTGTTAGAAGACACA

AAGCCAAAGACTCATATGGACTTTGGCTACACCATGAAAGCTTTGAGAAGCAAGAAGAAGGTTGGTTA

GTGTTTTGGAGTCGAATATGACTTGATGTCATGTGTATGATTG-3′. In order to analyze CEN180 diversity, for

each position of the multiple sequence alignment (968 positions), we calculated the proportion of A, T, G, C and gaps. The

alignment for each monomer at each position was then compared to these proportions and used to calculate a single

nucleotide variant (SNV) score for the monomer. For example, if a monomer had an A in the alignment at a given position,

and the overall proportion of A at that position was 0.7, the SNV score for that monomer would increase by 1-0.7. This was

repeated for each position of the alignment, for each monomer. This ‘weighted’ SNV score was used to assess how similar a

given CEN180 monomer is to the genome-wide consensus. Alternatively, to compare pairwise di�erences between two

speci�c monomers, the two sequences were compared along the length of the multiple sequence alignment and each

instance of disagreement counted to give a ‘pairwise’ SNV score.

To identify higher order repeats (HORs) in a head-to-tail (tandem) orientation, each monomer was taken in turn and

compared to all others using a matrix of pairwise SNV scores. If a pair of monomers had an SNV score of 5 or less, and were

on the same strand, they were considered a match. For each match, monomers were extended by +1 unit in the same

direction on the chromosome, and these were again compared for pairwise SNVs. This process was repeated until the next

monomers had a pairwise SNV score higher than threshold, or the repeats were on opposite strands, or the end of the array

was reached, with these conditions de�ning the end of the HOR. We also searched for repeats in head-to-head (inverted)

orientation, which was identical apart from that repeats must be on opposite strands, and when monomers are extended to
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search for HORs, one is extended +1 position along the chromosome, whereas the other decreases -1. HORs were de�ned

for each instance of 3 or more consecutive monomer matches. We de�ne each HOR as consisting of block1 and block2 of

CEN180 monomers. The size of each block was recorded, in terms of monomers and base pairs, in addition to the distance

between the block start coordinates. Cumulative pairwise SNVs per CEN180 monomer were also calculated between each

pair of blocks to provide a ‘block’ SNV score. To measure higher order repetition of each monomer, we summed the HOR

block sizes in mers, such that if a monomer was represented in three 5-mer blocks, it would score 15.

ATHILA annotation

To carefully resolve the sequence of the centromeric ATHILA elements, we used LTRharvest [66] to complement the

EDTA run that was used for the annotation of all Arabidopsis TEs (see above). We ran LTRharvest three times using

‘normal’, ‘strict’ and ‘very strict’ parameters. The parameters were gradually adjusted to allow us to capture the full-length

sequence of the ATHILA family, based on older studies that reported the total and LTR lengths of intact ATHILA

elements [20]. These parameters were -maxlenltr 2500 -minltrlen 400 -mindistltr 2000 -maxdistltr 20000 -similar 75

-mintsd 0 -motif TGCA -motifmis 1 for the ‘normal’ run; -maxlenltr 2000 -minlenltr 1000 -mindistltr 4000 -maxdistltr

16000 -similar 80 -mintsd 3 -motif TGCA -motifmis 1 for the ‘strict’ run; and -maxlenltr 2100 -minlenltr 1100 -mindistltr

5000 -maxdistltr 14000 -similar 85 -mintsd 4 -motif TGCA -motifmis 1 -vic 20 for the ‘very strict’ run. Coordinates of

predicted full-length elements from EDTA, LTRharvest and the manual dotplot annotation of centromeric TEs were

merged and sequences aligned using MAFFT [67]. Through these steps, we were able to pinpoint with base-pair resolution

the external junctions of every ATHILA element, together with the �anking sequence and the internal junctions of the

LTRs with the internal domain (5′-LTR with PBS; PPT with 3′-LTR). Overall, we identi�ed 46 intact elements of which 34

have a detectable target site duplication, 5 fragmented ATHILA and 10 solo LTRs. We further identi�ed open reading

frames (minimum 150 nt) in the internal domain of the 46 intact elements using getorf in EMBOSS [68], and by running

HMMER v3.3.2 (http://hmmer.org/) (-E 0.05 --domE 0.05) using a collection of Hidden Markov Models (HMMs)

downloaded from Pfam (http://pfam.xfam.org/) that describe the coding domains of GYPSY LTR retrotransposons:

PF03732 for gag; PF13650, PF08284, PF13975 and PF09668 for protease; PF00078 for reverse transcriptase; PF17917,
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PF17919 and PF13456 for RNase-H; PF00665, PF13683, PF17921, PF02022, PF09337 and PF00552 for integrase.

ATHILA elements may also contain an envelope-like ORF [20]. To identify this domain (and because there is no HMM in

Pfam that describes envelope-like genes of LTR retrotransposons), we used a previously published HMM developed by one

of the co-authors [69].

ONT DNA methylation analysis

To identify CpG, CHG and CHH methylation contexts we used DeepSignal-plant (v. 0.1) [24], which uses a deep-learning

method based on bidirectional recurrent neural network (BRNN) with long short-term memory (LSTM) units to detect

DNA 5mC methylation. R9 reads were �ltered for length and accuracy using Filtlong (v0.2.0) (--min_mean_q 95,

--min_length 30000. https://github.com/rrwick/Filtlong). Basecalled read sequence was annotated onto corresponding

.fast5 �les, and re-squiggled using Tombo (v 1.5.1). Methylation prediction for the CG, CHG, and CHH contexts were

called using Deepsignal-plant using the respective models:

model.dp2.CG.arabnrice2-1_R9.4plus_tem.bn13_sn16.balance.both_bilstm.b13_s16_epoch6.ckpt,

model.dp2.CHG.arabnrice2-1_R9.4plus_tem.bn13_sn16.denoise_sig1nal_bilstm.both_bilstm.b13_s16_epoch4.ckpt

model.dp2.CHH.arabnrice2-1_R9.4plus_tem.bn13_sn16.denoise_signal_bilstm.both_bilstm.b13_s16_epoch7.ckpt.

The script call_modi�cation_frequency.py provided in the Deepsignal-plant package was then used to generate the

methylation frequency at each CG, CHG and CHH site.

To identify CpG methylation in Nanopore reads we also used Nanopolish (v 0.13.2), which uses a Hidden Markov model

on the nanopore current signal to distinguish 5-methylcytosine from unmethylated cytosine. Reads were �rst �ltered for

length and accuracy using Filtlong (v0.2.0) (--min_mean_q 95, --min_length 15000. https://github.com/rrwick/Filtlong).

The subset was then indexed to the fast5 �les, and aligned to the genome using Winnowmap (v1.11, -ax map-ont). The read

fastq, alignment bam, and fast5 �les were used as an input to the Nanopolish call-methylation function. The script

calculate_methylation_frequency.py provided in the Nanopolish package was then used to generate the methylation

frequency at each CG containing k-mer.
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ChIP-seq and MNase-seq data alignment and processing

Deduplicated paired-end ChIP-seq and MNase-seq reads were processed with Cutadapt v1.18 to remove adapter sequences

and low-quality bases (Phred+33-scaled quality <20) [70]. Trimmed reads were aligned to the Col-CEN genome assembly

using Bowtie2 v2.3.4.3 with the following settings: --very-sensitive --no-mixed --no-discordant -k 10 [71]. Up to 10 valid

alignments were reported for each read pair. Read pairs with Bowtie2-assigned MAPQ <10, including those that aligned

equally well to more than one location, were discarded using Samtools v1.9 [56]. For retained read pairs that aligned to

multiple locations, with varying alignment scores, the best alignment was selected. Alignments with more than 2

mismatches or consisting of only one read in a pair were discarded. Single-end SPO11-1-oligo reads were processed and

aligned to the Col-CEN assembly using an equivalent pipeline without paired-end options, as described [23]. For each data

set, bins per million mapped reads (BPM; equivalent to transcripts per million, TPM, for RNA-seq data) coverage values

were generated in bigWig and bedGraph formats with the bamCoverage tool from deepTools v3.1.3 [72]. Reads that

aligned to chloroplast or mitochondrial DNA were excluded from this coverage normalization procedure.

RNA-seq data alignment and processing

Paired-end RNA-seq reads (2×100 bp) were processed with Trimmomatic v0.38 to remove adapter sequences and

low-quality bases (Phred+33-scaled quality <3 at the beginning and end of each read, and average quality <15 in 4-base

sliding windows) [23,73]. Trimmed reads were aligned to the Col-CEN genome assembly using STAR v2.7.0d with the

following settings: --outFilterMultimapNmax 100 --winAnchorMultimapNmax 100 --outMultimapperOrder Random

--outFilterMismatchNmax 2 --outSAMattributes All --twopassMode Basic --twopass1readsN -1 [74]. Read pairs with

STAR-assigned MAPQ <3 were discarded using Samtools v1.9 [56]. For retained read pairs that aligned to multiple

locations, with varying alignment scores, the best alignment was selected. Alignments with more than 2 mismatches, or

consisting of only one read in a pair, were discarded.
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Small RNA-seq data alignment and processing

Small RNA-seq reads [22], were processed with BBDuk from BBMap v38.22 [75], to remove ribosomal sequences and

Cutadapt v1.18 [70] to remove adapter sequences and low-quality bases (Phred+33-scaled quality <20). Trimmed reads

were aligned to the Col-CEN genome assembly using Bowtie v1.2.2, allowing no mismatches [59]. For reads that aligned to

multiple locations, with varying alignment scores, the best alignment was selected. For each small RNA size class (18–26

nucleotides), TPM values in adjacent genomic windows were calculated based on the total retained alignments (across all

size classes) in the library.

Bisulfite sequencing data alignment and processing

Paired-end bisul�te sequencing reads (2×90 bp) [22,76], were processed with Trim Galore v0.6.4 to remove sequencing

adapters, low-quality bases (Phred+33-scaled quality <20) and 3 bases from the 5′ end of each read [77]. Trimmed reads

were aligned to the Col-CEN assembly Bismark v0.20.0 [78]. Read pairs that aligned equally well to more than one location

and duplicate alignments were discarded. Methylated cytosine calls in CG, CHG and CHH sequence contexts were

extracted and context-speci�c DNA methylation proportions were generated in bedGraph and bigWig formats using the

bismark2 bedGraph and UCSC bedGraphToBigWig tools.

Fine-scale profiling around feature sets

Fine-scale pro�les around CEN180 (n=66,129), randomly positioned loci of the same number and width distribution

(n=66,129), centromeric ATHILA elements (n=50), and non-centromeric GYPSY elements (n=3,980) were calculated for

ChIP-seq, MNase-seq, RNA-seq, small RNA-seq and bisul�te-seq data sets by providing the above-described bigWig �les

to the computeMatrix tool from deepTools v3.1.3 in ‘scale-regions’ mode [72]. Each feature was divided into

non-overlapping, proportionally scaled windows between start and end coordinates, and �anking regions were divided into

10 bp windows. Mean values for each data set were calculated within each window, generating a matrix of pro�les in which

each row represents a feature with �anking regions and each column a window. Coverage pro�les for a ChIP input

sequencing library and a gDNA library were used in conjunction with those for ChIP-seq and SPO11-1-oligo libraries,
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respectively, to calculate windowed log2([ChIP+1]/[control+1]) coverage ratios for each feature. Meta-pro�les (windowed

means and 95% con�dence intervals) for each group of features were calculated and plotted using the feature pro�les in R

version 4.0.0.

Crossover mapping

Total data from 96 Col×Ler genomic DNA F2 sequencing libraries (2×150 bp) were aligned to the Col-CEN assembly

using bowtie2 (default settings), which gave 87.15% overall alignment. Polymorphisms were identi�ed using the alignment

�les with samtools mpileup (-vu -f) and bcftools call (-mv -Oz). The resulting polymorphisms were �ltered for SNPs

(n=522,931), which was used as the ‘complete’ polymorphism set in TIGER. These SNPs were additionally �ltered by, (i)

removing SNPs with a quality score less than 200, (ii) removing SNPs where total coverage was greater than 300, or less

than 50 (mean coverage=170.8), (iii) removing SNPs that had reference allele coverage less than 20 or greater than 150, (iv)

removing SNPs that had variant allele coverage greater than 130, (v) masking SNPs that overlapped transposon and repeat

annotations and (vi) masking SNPs within the main CEN180 arrays. This resulted in a ‘�ltered’ set of 171,947 SNPs for use

in TIGER. DNA sequencing data from 260 wild type Col×Ler F2 genomic DNA (192 from ArrayExpress E-MTAB-4657

and 68 from E-MTAB-6577) was aligned to the Col-CEN assembly using bowtie2 (default settings) and the alignment

analyzed at the previously de�ned ‘complete’ SNPs using samtools mpileup (-vu -f) and bcftools call (-m -T). These sites

were used as an input to TIGER, which identi�es crossover positions by genotype transitions [79]. A total of 2,042

crossovers were identi�ed with a mean resolution of 1,011 bp.

Epitope tagging of V5-DMC1

The DMC1 promoter region was PCR ampli�ed from Col-0 genomic DNA using the Dmc1-PstI-fw and Dmc1-SphI-rev

oligonucleotides. The remainder of the DMC1 promoter, gene and terminator were ampli�ed with oligonucleotides

Dmc1-SphI-fw and Dmc1-NotI-rev. The resulting PCR fragments were digested with PstI and SphI, or SphI and NotI,

respectively, and cloned into PstI-NotI-digested pGreen0029 vector to yield a pGreen-DMC1 construct. To insert 3

N-terminal V5 epitope tags, �rst two fragments were ampli�ed with DMC1-Nco-F and 3N-V5-R and 3N-V5-F and
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Dmc1-Spe-rev and then used in an overlap PCR reaction using the DMC1-Nco-F and Dmc1-Spe-rev oligonucleotides.

The PCR product resulting from the overlap PCR was digested with NcoI and SpeI and cloned into NcoI- and SpeI-digested

pGreen-DMC1. The resulting binary vector was used to transform dmc1-3/+ heterozygotes (SAIL_126_F07). We used

dmc1-seq11 and Dmc1-Spe-rev oligonucleotides to amplify wild type DMC1 allele and Dmc1-Spe-rev and LA27 to

amplify the dmc1-3 T-DNA mutant allele. The presence of the V5-DMC1 transgene was detected with N-screen-F and

N-screen-R oligonucleotides. This oligonucleotide pair ampli�es a 74 bp product in Col and a 203 bp product in

V5-DMC1. To identify dmc1-3 homozygotes in the presence of V5-DMC1 transgenes, we used DMC1-genot-compl-F and

DMC1-genot-compl-R oligonucleotides, which allowed us to distinguish between the wild type DMC1 gene and

V5-DMC1 transgene.

Immunocytological analysis

Fresh buds at �oral stage 8 and 9 were dissected to release the anthers that contain male meiocytes [80]. Chromosome

spreads of meiotic and mitotic cells from anthers were performed, followed by immuno�uorescent staining of proteins as

described [30]. The antibodies used in this study were: α-ZYP1 (rabbit, 1/500 dilution) [81], α-H3K9me2 (mouse, 1/200

dilution) (Abcam, ab1220), α-CENH3 (rabbit, 1/100 dilution) (Abcam, ab72001) and α-V5 (chicken, 1/200 dilution)

(Abcam, ab9113). Chromosomes stained with ZYP1, CENH3 and H3K9me2 were visualized with a DeltaVision Personal

DV microscope (Applied Precision/GE Healthcare). Chromosomes stained with DMC1-V5 and CENH3 were visualized

with a Leica SP8 confocal microscope. Chromosomes stained with H3K9me2 were visualized with a Stimulated emission

depletion nanoscopy mounted on an inverted IX71 Olympus microscope.
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Our work uncovers the prevalence and importance of
SVs in plant genomes and demonstrates the
underexplored roles of SVs in trait variation.

5
Major Impacts of Widespread Structural
Variation on Gene Expression and Crop

Improvement in Tomato
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5.1 ABSTRACT

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent,

diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490

SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale

intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of

SV-gene pairs exhibit subtle and signi�cant expression changes, which could broadly in�uence quantitative trait variation.

By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and

expression levels modi�ed fruit �avor, size, and production. In the last example, higher order epistasis among four SVs

a�ecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our

�ndings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance

and utility in crop improvement.

5.2 BACKGROUND

Phenotypic variation in crop plants is shaped by genetic variation from their wild ancestors, as well as the selection and

maintenance of collections of mutations that impact agricultural adaptations and human preferences [1,2]. The majority of

this variation is quantitative, and now more than ever, a major goal of genetics is to identify and understand how speci�c

genes and variants contribute to quantitative trait variation. In particular, this knowledge is necessary for designing and

engineering favored alleles in crop improvement, enabled by genome editing [3–5]. Although high-throughput short-read

sequencing accelerated the discovery of natural genetic variants among diverse germplasm of major crops, it has also

introduced an unavoidable bias: characterized variants are disproportionately skewed toward single-nucleotide

polymorphisms (SNPs) and small indels [6]. However, decades of research have shown that structural variations (SVs) (large

deletions, insertions, duplications, and chromosomal rearrangements) are important in plant evolution and agriculture,

a�ecting traits such as shoot architecture, �owering time, fruit size, and stress resistance [7]. Compared to SNPs, SVs can

cause large-scale perturbations of cis-regulatory regions and are therefore more likely to quantitatively change gene

expression and phenotypes. SVs can also modify expression levels by directly altering gene copy number. However, despite
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their importance, identifying SVs with short-read sequencing is notoriously di�cult and unreliable, leaving the vast

majority of SVs poorly resolved and their molecular and phenotypic impacts largely hidden [8,9].

High-throughput Oxford Nanopore Technologies (ONT) long-read sequencing now enables a broad survey of

population-scale SV landscapes. Such resources that capture the diversity of SVs, in combination with expression pro�ling

and genome editing, immediately allow for the direct interrogation of the molecular and phenotypic consequences of SVs.

Here, we present the most comprehensive panSV genome for a major crop and study its signi�cance in evolution,

domestication, quantitative genetics, and breeding. We used ONT long-read sequencing to identify SVs from a collection of

100 diverse wild and domesticated tomato accessions. Tomato, in addition to its agricultural and economic importance, has

extensive genetic resources, well-described phenotypic diversity, and e�cient genome editing, making it an ideal system to

investigate the signi�cance of SVs in both fundamental plant biology and agriculture. Our data provided continuous

long-range information that allowed for the sequence-resolved inference of more than 200,000 SVs, the majority being

transposons and related repeat sequences. Patterns of SV distribution revealed extensive admixture and population-scale

introgressions. RNA sequencing showed that gene expression is widely impacted by SVs a�ecting both coding and

cis-regulatory regions. Establishing high-quality de novo genome assemblies for 14 selected genotypes allowed us to resolve

hidden genomic complexity involving SVs. To demonstrate the value of this panSV genome, we directly linked these

complex alleles with multiple domestication and improvement traits a�ecting fruit �avor, size, and productivity. For two of

these traits, modest changes in expression originated from gene copy number variation, and we used CRISPR-Cas9 genome

editing to demonstrate causal quantitative relationships between gene dosage and phenotype. Our work uncovers the

prevalence and importance of SVs in plant genomes and demonstrates the underexplored roles of SVs in trait variation.

5.3 RESULTS

Long-read sequencing of 100 tomato accessions establishes a panSV genome

To deeply survey the landscape of natural structural variation in tomato, we collected long-read sequencing data from a

representative population-scale tomato panel (Figure 5.1A). To this end, we �rst used available short-read sequencing data
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to call SVs from over 800 tomato accessions and then applied the SVCollector algorithm to optimally select 51 diverse

modern and early domesticated samples that maximize SV diversity [10]. We then separately selected an additional 49 wild

species and modern accessions that are used by tomato research and breeding communities. Our �nal set of 100 accessions

captures phylogenetic diversity spanning the closest wild relatives of domesticated tomato (S. pimpinellifolium [SP], S.

cheesmaniae [CHE], and S. galapagense [GAL]), early domesticated forms (S. lyc. var. cerasiforme [SLC]), and “vintage”

cultivars and modern varieties (S. lycopersicum, [SLL]; Figure 5.1A).
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Figure 5.1: The Tomato panSV Genome. (A) SNP-based phylogenetic tree based on short-read sequencing of more than 800
tomato accessions. Major taxonomic groups are marked by colored lines along the circumference. Colored dots indicate a subset of the
100 accessions selected for long-read sequencing. (B) Stacked bar graph showing SV number and type from the 100 accessions.
Colored dots indicate the taxonomic group of each accession, corresponding to colors in (A). (C) Hierarchical clustering dendrogram
of the SV presence/absence matrix across the 100 accessions, with colors corresponding to (A). Bold branches and names highlight an
outgroup of two SLL processing tomato accessions. (D) SVCollector curves of SVs in the three major taxonomic groups. The “greedy”
algorithm determines the order of accessions and depicts the cumulative number of SVs as a function of the number of accessions
included. (E) Graph showing the number of SVs (y-axis) in “no more than” or “at least” the number of accessions indicated on the
x-axis. (F) Histograms of detection frequencies for di�erent SV sizes. (G) Histogram of SV sizes for insertions and deletions. (H)
Annotation of the panSV genome. The proportion of repeat types for all insertions and deletions annotations is shown in stacked bar
graphs. “Count” shows the proportion of individual repeat annotations, and “bp” shows the proportion of cumulative repeat (not
indel) sequence length. “Other” refers to other repeat types. Only indels at least 100 bp in size were considered.

For each of the 100 accessions, we used ONT long-read sequencing to generate a minimum of 40× genome coverage,

achieving a total of 7.77 Tb of long-read data with an average read length N50 of 19.6 kbp. Reads were aligned to the
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recently released SL4.0 reference genome (Heinz 1706, SLL) with NGMLR, and SVs were called with Sni�es [9,11]. We

then �ltered, sequence resolved, and merged all 100 sets of SV calls, revealing 238,490 total SVs (de�ned in this study as >30

bp) that comprise the most comprehensive sequence-resolved panSV genome in plants. Importantly, we con�rmed that the

majority of these variants would not have been revealed using solely short-read sequencing data.

Individual accessions had between 1,928 and 45,840 SVs, with the wild SP, GAL, and CHE accessions harboring the most

structural variation relative to the Heinz reference genome (Figure 5.1B). Insertions and deletions were the most common

SV type, though we also found dozens to hundreds of inversions, duplications, and translocations in all samples. SVs are

with respect to the reference genome and do not necessarily re�ect the underlying evolutionary context. Clustering of the

SV presence/absence matrix revealed a structure that mirrored the larger SNP-based tomato phylogeny, with accessions

clustering within their known taxonomic groups (Figure 5.1C). Interestingly, the SLL “cherry” variety Sweet100 grouped

with the SLCs, and the only two processing cultivars, M82 and EA02054, form a distinct group from the SLLs, suggesting

admixture. Comparative analysis of the long-read SVs showed that SP and SLC have more SV diversity compared to SLL,

consistent with the loss of genetic variation during the domestication and improvement of tomato (Figure 5.1D) [12,13].

This analysis also indicated that even sequencing 100 accessions, many SVs remain to be discovered (Figure 5.1E).

Consistently, the majority of SVs are singletons, or are otherwise rare, although tens of thousands of SVs are common (>5%

detection frequency) (Figure 5.1F). We evaluated SV length distribution, which showed that most SVs were relatively

small: 30.5%: 30–50 bp; 30.5%: 50–200 bp; and 39%: >200 bp (Figure 5.1G). We note that our method has limited ability

to detect larger insertions, because, unlike deletion calling, such detection is bounded by read length. SVs are typically

composed of, or generated by, transposons and related repeats [14,15], and annotation of our panSV genome showed 84%

of deletions and 76% of insertions larger than 100 bp match at least one repeat. Retrotransposon sequences, especially from

Gypsy and Copia elements, are the most prevalent among the annotated SVs (Figure 5.1H).
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Fourteen new high-quality tomato reference genomes

To supplement the panSV genome with additional genomic resources, we selected 14 diverse accessions for genome

assembly and annotation. Combining long- and short-read sequencing data, de novo assemblies using the MaSuRCA

hybrid assembler yielded an average contig N50 of 1.9 Mbp [16]. Reference-guided sca�olding with RaGOO produced

chromosome-scale pseudomolecules that contained, on average, a single copy of 96% of complete benchmarking universal

single-copy orthologs (BUSCO) genes [17,18]. Repeats were annotated using REPET, and genes annotations were “lifted

over” from reference annotations using geneLift [19]. We used these new reference genomes (referred to as “MAS2.0”) to

validate SVs in the same 14 accessions, of which 90% were also found in the assemblies. Owing to the diversity of these

assemblies, which represent multiple SP, SLC, and SLL accessions, we anchored 22% of recently discovered “pan-genome”

genes that are missing from the ITAG reference annotation [20]. These MAS2.0 genomes were critical to link complex SV

loci with functional consequences shown below.

SV distribution reveals extensive admixture and introgression

The chromosomal distribution of SVs from our panSV genome revealed several hypervariable genomic regions relative to

the Heinz reference shared among subsets of SLL accessions (designated SV “hotspots”) (Figure 5.2A). Because SP

accessions have more structural variants than those of SLL, SV hotspots in SLL could re�ect admixture and introgression

between wild and domesticated accessions, which was previously partially explored using SNPs [12,21,22]. Introgression is

a common practice in tomato breeding, through which disease resistance genes and other desirable traits from wild donors

are introduced into SLL breeding germplasm [12]. We found that SV hotspots in SLL correlated with genomic regions that

show high similarity with SP and/or SLC based on the Jaccard similarity of SV content between accessions. For example,

multiple SV hotspots exist on chromosome 4, including a 2-Mbp region common to all SLL accessions that corresponds to

a known unique introgression in the Heinz reference genome (Figure 5.2A) [22]. Most SP accessions show a decrease in

SV frequency in this region, indicating these accessions are closely related to the introgression donor. We also found a large

introgression block shared by �ve SLLs that occupies two-thirds of the chromosome (Figure 5.2B). Notably, two of these

accessions are M82 and EA02054, which also carry large introgression blocks that span nearly all of chromosomes 5 and 11
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(Figure 5.2A), explaining their distinct grouping in SLL and their relatively large number of SVs compared to Heinz 1706,

which is also a processing type (Figures 5.1B and 5.1C).
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Figure 5.2: SV Distribution Reveals Large-Scale Admixture and Introgression between Wild and Domesticated
Genotypes. (A) Heatmap (top) showing SV frequency in 1-Mbp windows (columns) of chromosome 4 relative to the reference
genome. Accessions (rows) are grouped by taxonomic group (colored bars). Dotted colored lines mark three notable regions: black, a
large SV hotspot for 5 SLLs; red, a small hotspot shared by most UFL SLL lines; and yellow, a SP group with reduced SV frequency,
re�ecting a small SP introgression in the reference genome. Circos plot (bottom) depicts genome-wide SV frequency for �ve notable
accessions. Rings depict line plots showing the SV number in successive 1-Mbp windows (y-axes are not shared between rings).
Chromosomes 4, 5, 7, and 11 are highlighted to show regions of high SV frequency. (B) Heatmaps showing admixture and
introgressions on chromosome 4 measured by Jaccard similarity between accessions of SLL and SP (top) and SLC (bottom) in the
same row order as (A) (top). For each 1-Mbp window, the SVs for a given SLL accession are compared to the SVs for all SP (top) or
SLC (bottom) accessions and the maximum Jaccard similarity is reported. Windows with fewer than 5 SVs in the SLL set are excluded
and colored gray. Black and red dotted regions correlate with marked SV hotspots in (A) (top). (C) Timeline of UFL fresh market
variety release over the last century. Approximate periods of introgression of key disease-resistance genes are shown in red, along with
major donor genotypes for Fusarium wilt (I, I2, and I3) and gray leaf spot (Sm). (D) Jaccard similarity for chromosome 11 between
the UFL lines (ordered chronologically) and LA1589, the closest SP to this introgression. Locations of I, Sm, and I2 are shown in red.
(E) The UFL varieties on chromosome 7 showing a small SP introgression in all but two accessions; Fla.7481 and Fla.7907B carry a
unique SV hotspot (left) due to introgression of the I3 resistance gene (red) from S. pennellii.
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Expecting that our panSV genome would illuminate how breeding and introgression have shaped SV content, we examined

11 SLLs included in our 100 genomes from the University of Florida (UFL) tomato breeding program, which has a

well-documented history of disease resistance gene introgression [23]. The devastating fungal disease Fusarium wilt �rst

emerged in the 1930s, and the resistance genes I and I2 (from SP donors) and I3 (from S. pennellii) against three races of

this disease were successively introduced into UFL breeding material between the 1930s and 1980s (Figure 5.2C) [24–26].

Furthermore, the Sm resistance gene against Grey leaf spot was introduced in the 1950s [27]. Molecular mapping and gene

cloning have shown that I and Sm are located on the opposite arms from I2 on chromosome 11. The variants from our

panSV genome demonstrated overlapping introgressions from multiple donors, including those contributing resistance to

other diseases [28], accounting for the large introgression block in the UFL accessions (Figure 5.2D). Interestingly, the

modern breeding line Fla.8111B carries the I, I2, and Sm resistance genes but lacks a large portion of this introgression,

suggesting this region was later purged during selection.

The I3 introgression on chromosome 7 was introduced in the 1980s (Figure 5.2C). The modern breeding lines Fla.7481

and Fla.7907B that carry I3 resistance show a 5-Mbp SV hotspot with low similarity to SP and SLC at the I3 locus,

consistent with the donor being the distant green-fruited wild species S. pennellii (Figure 5.2E). Interestingly, UFL lines

lacking I3 resistance have a 2-Mbp introgression from SP or SLC that �rst appeared in the 1960s and overlaps the I3

introgression. The I3 introgression is negatively implicated with several horticultural characteristics, including reduced fruit

size and increased sensitivity to bacterial spot [29–31]. The earlier introduced SP introgression may have provided tolerance

to bacterial spot or bene�tted other traits, as is likely for many other putative SP or SLC introgressions revealed by our

panSV genome. The large number of SVs from wild species introduced in breeding could have broad functional

consequences.

SVs associated with genes have widespread impacts on expression

SVs may in�uence the expression of nearby genes by altering the sequence or copy number of a gene or by changing the

composition or position of cis-regulatory sequences [32,33]. We explored this relationship with the comprehensive catalog
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of SVs across our tomato panSV genome. Candidate SVs that could potentially impact gene expression were abundant in

our collection. Nearly 50% (112,114) of SVs overlap genes and/or �anking regulatory sequences (±5 kbp of coding

sequence), and among 34,075 annotated genes, 95% have at least one SV within 5 kbp of coding sequences across the 100

genomes, with the majority found in cis-regulatory regions (Figures 5.3A and 5.3B). To explore the impact of SVs on gene

expression, we performed 3′ RNA sequencing (RNA-seq) on three tissues (cotyledons, roots, and apical meristems) for 23

accessions that capture 44,358 gene-associated SVs. We evaluated a total of 21,156 SV-gene pairs and found hundreds of

signi�cant expression changes (Figure 5.3C). Nearly half of the SVs a�ecting coding sequences (deletions of coding

sequence [CDS] start, deletions of exons, and duplications) are signi�cantly associated with di�erences in expression, with

many substantially reducing or eliminating expression. In regulatory regions, 1,534 SV-gene pairs (7.3%) showed signi�cant

di�erential expression across all tissues, and overall, these di�erences were subtler compared to SVs in coding regions (mean

log2 fold change 1.36 and 2.47, respectively).
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Figure 5.3: Gene-Associated SVs Impact Expression. (A) Stacked bar chart showing total counts of SVs overlapping di�erent
genomic features in major taxonomic groups. N represents the number of accessions in each taxonomic group. (B) Percentage of SVs
overlapping di�erent genomic features in 100 accessions. Each point is one sample. Fewer SVs are found within genes compared to
surrounding regulatory regions. (C) Stacked bar charts showing numbers of di�erentially expressed genes a�ected by insertion,
deletion, and duplication SVs overlapping coding sequences (left) and regulatory regions (right; signi�cance is de�ned as an adjusted p
< 0.05). Di�erential expression was tested on common SVs in the 23 accessions used for RNA sequencing (frequency between 0.2 and
0.8; see STAR Methods). (D) ROC curves for the top three SV annotation types, with high AUROC (area under the receiver
operating characteristics) scores across the three tissues demonstrating the ability to identify genes containing SVs using changes in
expression across the accession split. The AUROC is speci�ed within the ROC curve in each case. The steep rise of the curves in the
top panel corresponds to a near-perfect identi�cation of a large fraction of the genes containing SVs based on di�erential expression.
CDS, coding sequence. (E) Di�erential expression signi�cantly predicts genes with SVs. Overall performance of using “SV splits” and
di�erential expression to predict associated gene(s) is shown. Analyses are broken down into 9 categories across three tissues. Each
category is de�ned based on SV type and relative position to genes. Circle sizes and colors represent the signi�cance of performance
(−log10 p-value) and the magnitude of AUROC, respectively. SV categories are ranked in decreasing order of average AUC (area
under the curve) across the three tissues. Note that the signi�cance of performance for each SV type is enhanced by the number of
annotated SV-gene pairs (for example, p < 1 × 10−4 for duplications, although p < 1 × 10−8 for insertions in introns). (F) Volcano
plots for four regulatory SV-gene pair examples with the highest AUROC score highlight the extent of di�erential expression of
SV-containing genes (marked in orange circles), compared to all expressed genes (black dots). p values and expression fold changes are
computed across two groups of accessions (with and without the indicated SV). Data shown are for apex tissue. Exons (orange), UTRs
(yellow), and SVs (red) are not drawn to scale. Distances between genes and SVs are shown.
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Knowing that a substantial fraction of population-scale expression variation is explained by cis-eQTL [34,35], we next

formulated a classi�cation task that uses changes in gene expression to predict the presence of a nearby SV. This classi�er

complements standard fold-change measurements among known SV-gene pairs, and its performance can quantify the

extent to which global expression changes are associated with SVs. Notably, this test is robust to population structure

because global changes in expression or confounding variants can only serve to weaken any one-to-one relationship between

gene expression variation and the existence of a nearby variant.

Broadly, di�erential expression signi�cantly predicts genes with associated SVs (Figures 5.3D and 5.3E). As expected, this

classi�er performs best on the coding sequence SVs (e.g., deletions of exons, apex tissue expression, area under the receiver

operating characteristics [AUROC] > 0.78, and false discovery rate [FDR] < 0.05), as re�ected by the sharp initial rise in

receiver operating characteristic (ROC) curves (Figure 5.3D). The strength of this signature indicates that indirect e�ects

(e.g., trans regulation) do not dominate the observed relationship and also demonstrates the high accuracy of our variant

calls. Importantly, we also observe subtle but signi�cant e�ects of regulatory SVs on gene expression (e.g., deletions

overlapping 3′ �anking sequence, apex tissue expression, AUROC > 0.53, and FDR < 0.05). The AUROC captures the

individual cis-regulatory e�ect size, which is small on a per variant basis. However, in aggregate, these variants have a large

impact on expression variation (Figure 5.3E), suggesting they globally shape expression pro�les. Overall, our results show

that SVs can impact gene expression in both substantial and subtle ways and that many such variants in our panSV genome

may be functionally relevant (Figure 5.3F).

New reference genomes resolve multiple haplotypes for the smoky volatile locus

Our panSV genome, new MAS2.0 assemblies, and expression dataset could help to reveal genes and variants underlying

quantitative trait variation that has been masked by hidden genomic complexity. Many fruit aroma volatile QTLs that

contribute to �avor have been identi�ed through genome-wide association study (GWAS), but only a few have been

functionally characterized [36,37]. One such QTL involves the metabolically linked volatiles guaiacol and methyl salicyate,
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whose “smoky” or “medicinal” �avors negatively in�uence consumer appeal. A previous GWAS identi�ed a candidate gene

E8 (Solyc09 g089580), encoding a putative negative regulator of ethylene biosynthesis involved in fruit ripening [36].

Although transcriptional knockdown of E8 resulted in accumulation of guaiacol and methyl salicylate, other volatiles were

also modi�ed. Furthermore, no causal mutations were identi�ed, likely due to two large gaps �anking E8 in the reference

genome at the time (SL3.0).

A separate study found that mutations in the NON-SMOKY GLYCOSYLTRANSFERASE1 (NSGT1) and NSGT2

paralogous genes, which are physically close on chromosome 9, cause an accumulation of guaiacol (Figure 5.4A) [38].

Whereas NSGT2 shows little expression and is believed to be non-functional, upregulation of NSGT1 during ripening

converts guaiacol to non-cleavable triglycosides, preventing guaiacol volatilization [38]. To investigate whether NSGT genes

could be linked to the smoky QTL, we inspected the previous reference genome SL3.0 and found a partial sequence of

NSGT1 near the gap at the chromosome 9 GWAS locus and another NSGT1 fragment at a second GWAS peak on an

unanchored contig (Figure 5.4B) [36]. Consistently, a recent short-read k-mer-based analysis also linked the two smoky

GWAS peaks and suggested hidden structural complexity [39]. However, all these studies failed to resolve this locus.

Importantly, our new MAS2.0 assemblies not only �lled the gaps �anking E8 with these two NSGT paralogs but also

further revealed coding sequence variants and SVs that are resolved into �ve haplotypes (Figures 5.4B and 5.4C).

149



Figure 5.4: New Reference Genomes Anchor Candidate Genes and Resolve Multiple SV and Coding Sequence Haplotypes
for the “Smoky” Volatile GWAS Locus. (A) Schematic showing a key step of the metabolic pathway underlying the “smoky” aroma
trait. During fruit ripening, activation of glycosyltransferase NSGT1 prevents release of smoky-related volatiles by converting them
into non-cleavable triglycosides (top). nsgt1 mutations result in the release of the smoky volatile guaiacol. (B) Genomic resources used
to resolve the GWAS locus for guaiacol (top) and summary of haplotypes (bottom). The published locus mapped to a region of
chromosome 9 with one candidate gene and multiple gaps and also to an unanchored contig with a fragment of an NSGT gene (top).
MAS2.0 assemblies revealed multiple haplotypes that include copy number variation for the NSGT1 and NSGT2 paralogs and
loss-of-function mutations (bottom). A local assembly revealed haplotype V (asterisk). (C) Schematics depicting the �ve resolved
haplotypes. The assemblies and major taxonomic groups from which the haplotypes were identi�ed are shown below. Red “X”s mark
coding sequence (CDS) mutations. Grey bars mark duplication in haplotype IV. The red rectangle marks a large deletion in haplotype
V. (D) PCR con�rmation of the deletion in haplotype V. Primers (F1, F2, R1) are shown in (C). (E) Quanti�cation of NSGT1/2
expression by RNA-sequencing. Haplotypes are grouped according to functional NSGT1 (I, II, III), nsgt1 CDS mutation (IV), and
nsgt1 deletion (V). Expression data are from pericarp tissue of ripe fruit [37]. (F and G) Guaiacol content of fruits from a previous
GWAS study (F) [36] and a new GWAS analysis using a collection of 155 SP and SLC accessions (G). Mutations in NSGT1 are
associated with guaiacol accumulation. Accessions are grouped as in (E). (H) Quanti�cation of guaiacol and methylsalicylate content
in an SLC x SLC F2 population segregating for the haplotype V 23 kbp deletion. In (E–H), n represents sample size in each group. All
p values are based on two-tailed, two-sample t tests.

Haplotype I is likely ancestral with the NSGT1 and NSGT2 genes �anking E8. Although an NSGT2 coding sequence

mutation is found in all other haplotypes, haplotypes II and III have intact NSGT1, with the latter carrying two copies of

NSGT1 (Figure 5.4C). Finally, copy number and functional variation are extended in haplotypes IV and V; haplotype IV
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has a 7-kbp duplication, including mutant nsgt2 that disrupted NSGT1, rendering it non-functional, and haplotype V has a

large 23-kbp deletion that removes both NSGT1 and E8, leaving only a single mutated copy of nsgt2 (Figure 5.4D).

These haplotypes, along with the previous characterization of NSGT1 [38], suggest that multiple mutant alleles of nsgt1 are

responsible for natural variation in guaiacol (and methyl salicylate) accumulation and the smoky �avor. Using gene

expression and metabolite data from fruits of more than 300 accessions [36,37], we tested associations between functional

(I, II, and III), coding sequence non-functional (IV), and deletion non-functional (V) NSGT1 haplotypes and guaiacol

accumulation. Accessions carrying the mutant haplotypes IV and V, which emerged early in domestication in the SLCs,

exhibited lower combined NSGT1/2 expression levels compared to accessions with functional haplotypes, with no

NSGT1/2 expression detected in the �ve accessions carrying the haplotype V deletion (Figure 5.4E). Consistently, both

mutant haplotypes accumulated more guaiacol, though the e�ect from the rare haplotype V showed weak statistical

signi�cance (Figure 5.4F). We validated these �ndings using a new GWAS panel of 155 accessions comprised primarily of

SP and SLC genotypes [40]. Again, both nsgt1 coding and deletion mutation haplotypes accumulate signi�cantly more

guaiacol than functional haplotypes (Figure 5.4G). Finally, we generated an F2 population between two SLCs segregating

for haplotype V and functional NSGT1, which con�rmed the deletion, lacking both NSGT1 and E8, is associated with

accumulation of both guaiacol and methyl salicylate (Figure 5.4H). Together, our results anchored two NSGT genes to the

smoky GWAS QTL and show that multiple nsgt1 mutations largely explain natural variations of the smoky �avor. This

example demonstrates how our high-quality long-read genome assemblies can resolve complex haplotypes and reveal

causative variants for poorly understood QTLs.

The fruit weight QTL fw3.2 resulted from a tandem duplication of a cytochrome P450 gene

A substantial increase in fruit weight was a major feature of tomato domestication [41]. The genes underlying �ve major

fruit weight QTL have been identi�ed, with the responsible mutations being either SVs or SNPs [42–46]. Among these is

fw3.2, which is strongly associated with a SNP in the promoter of the cytochrome P450 gene SlKLUH, a known regulator

of organ size in multiple species [42,47,48]. The promoter SNP was proposed to account for higher (2- to 3-fold) SlKLUH
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expression (Figure 5.5A), and transcriptional knockdown of this gene results in smaller fruits, though a causative role for

the SNP was unclear.
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Figure 5.5: The Fruit Weight QTL fw3.2 Resulted from a Tandem Duplication that Increased Expression of a
Cytochrome P450 Gene. (A) Published mechanism for fw3.2 positing that a SNP in the promoter of the cytochrome P450 gene
SlKLUH increased expression ∼2-fold, resulting in larger fruits. (B) SV analyses revealed a 50-kb tandem duplication at the fw3.2 locus
that included SlKLUH (left). PCR validation of the duplication (right) is shown. Primers (F1, F2, and R1) are labeled on the left. “No
duplication” refers to the accession without this duplication, and “fw3.2dup” refers to the accession that carries the duplicated copy of
fw3.2 as shown by the PCR product across the duplication junction (F2 + R1). (C) Expressions of genes within the fw3.2 duplication
are ∼2-fold higher. Gene coordinates and the duplication region (top) and RNA-seq boxplots of duplicated and �anking genes
(bottom) are shown. Each point is one biological replicate from one accession. n, number of accessions. (D) An SLC × SLC F2

population segregating for the fw3.2 duplication but �xed for the promoter SNP. Increased fruit weight is associated with the
duplication. (E) CRISPR-Cas9 mutagenesis of SlKLUH in the M82 background. SlKLUH gene model with gRNA targets (top),
PCR genotyping (middle), and representative in�orescences (bottom) of slkluhCR T0 plants is shown. The three slkluhCR T0 plants
shown have mutations in all four copies of SlKLUH and exhibit similar tiny in�orescences, suggesting a null phenotype. Strong
phenotypes were also observed for other T0 plants with sequenced indels (red font), except T0-1, which showed a weaker phenotype
and was fertile, allowing a genetic test of dosage. (F) Altering tomato KLUH gene dosage shows that copy number variation explains
fw3.2. Schematic shows the M82/M82CR slkluh T0-1 (SL) × LA1589 (SP) crossing scheme used to test the phenotypic e�ects of
altering tomato KLUH functional copy number in an F1 hybrid isogenic background. Genotypic groups A and B are isogenic for M82
× LA1589 genome-wide heterozygosity and di�er only in having 3 or 1 functional copies of tomato KLUH, respectively. Genotypic
group C e�ectively has 0 functional copies due to inheritance of the single insertion Cas9 transgene that targets the single SpKLUH
allele in trans. (G) Mutated slkluh alleles and the SpKLUH allele in genotypic group B. Red font, guide RNA targets; cyan font,
mutations. An LA1589 SNP (blue font) permits distinction of KLUH allele parent of origin. All SpKLUH sequences in genotypic
group B are wild type. (H) Decreasing tomato KLUH functional copy number reduces �ower organ size. Representative
in�orescences (left) and quanti�cations of �ower and sepal length (right) from all three genotypic groups are shown. (I) Decreasing
tomato KLUH functional copy number reduces fruit weight. Representative fruits (left) and fruit weight quanti�cation (right) from
genotypic groups A and B are shown. Reducing tomato KLUH copy number from three to one reduces fruit size by 30%. Genotypic
group C plants with mutated SpKLUH alleles fail to produce fruits. Scale bars represent 1 cm in (E) and (H) and 2 cm in (I). In (H)
and (I), N indicates plant number and n indicates �ower/fruit number. All p values are based on two-tailed, two-sample t tests.

Our panSV genome revealed a ∼50-kbp tandem duplication at the fw3.2 locus containing three genes, including two

identical copies of SlKLUH (designated fw3.2dup) (Figure 5.5B). Although SNPs in promoters can a�ect expression by

modifying cis-regulatory elements, we explored whether fw3.2dup is the causative variant, with the hypothesis that an

increase in gene copy number explains the higher expression. In support of this, our expression analyses showed that all

three intact genes within the duplication are expressed approximately 2-fold higher in accessions carrying fw3.2dup (Figure

5.5C). To disentangle the e�ects of these variants on fruit weight, we generated F2 populations segregating for fw3.2dup but

�xed for the promoter SNP and other known fruit weight QTLs. Higher fruit weight co-segregated with the duplication

allele (Figure 5.5D). In contrast, there was no association between the promoter SNP and fruit weight in F2 populations

segregating only for the SNP.

Our results suggested that the duplication carrying SlKLUH could explain fw3.2 due to an increase in gene copy number

and therefore dosage. We tested this by CRISPR-Cas9 targeting SlKLUH in the processing cultivar M82 (carrying fw3.2dup

153



and therefore four functional copies of SlKLUH) with multiple guide RNAs (gRNAs). PCR genotyping and sequencing

of independent T0 plants showed large deletions and small indels in the target sites. The majority of these plants, including

three con�rmed to lack wild-type (WT) alleles, were much smaller than control plants and had tiny in�orescences and

�owers that were infertile (Figure 5.5E).

Fortuitously, one fertile plant (slkluhCR T0-1) showed a weaker phenotype from having both WT and mutant alleles,

allowing us to directly test how changes in SlKLUH dosage a�ect fruit weight. To work in an isogenic background with

uniform cherry type fruits that allows for a robust assessment of fruit size, we crossed the slkluhCR T0-1 with the SP

accession LA1589. As LA1589 has only two copies of SpKLUH (Figure 5.5F), the M82 × LA1589 F1 isogenic hybrids

have three gene copies of KLUH (2 copies SlKLUH and 1 copy SpKLUH). These control F1 hybrids (group A) were

compared with F1 progeny resulting from the cross between slkluhCR T0-1 and LA1589. Several F1 hybrid plants that

inherited the Cas9 transgene produced small organs and were infertile (group C), which we con�rmed was due to

inheritance of mutated and further trans targeting of all KLUH copies. Among F1 plants lacking the Cas9 transgene, a

subset inherited two mutated alleles of SlKLUH and a single functional allele of SpKLUH (group B) (Figures 5.5F and

5.5G). Notably, these group B plants produced 15% smaller �owers and 30% smaller fruits compared to group A plants (1

versus 3 functional alleles of KLUH) (Figures 5.5H and 5.5I). Thus, our panSV genome and functional genetic dissection

using CRISPR-Cas9 genome editing show that the duplication including KLUH, and the corresponding increase in gene

dosage and expression, underlies fw3.2.

Genetic interactions involving four SVs allowed jointless breeding

We revealed thousands of genes with expression variation that could be caused by SVs. These variants might have little or no

phenotypic consequences; however, many may be “cryptic,” having little or no e�ect on their own but causing phenotypic

changes in the context of other variants [49,50]. The “jointless” fruit pedicel is an important tomato harvesting trait that

originated from di�erent mutations from wild and domesticated accessions [51]. The jointless trait allows complete

separation of fruits from other �oral parts and is caused by a transposon insertion that eliminates functional transcripts of
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the MADS-box transcription factor gene JOINTLESS2 (J2). A cryptic insertion in the related ENHANCER OF J2 (EJ2)

gene reduces functional transcripts and causes excessive in�orescence branching with reduced fruit production following

introduction of the jointless trait (Figure 5.6A). Breeders overcame this negative interaction and restored normal

in�orescences by exploiting two natural “suppressor of branching” (sb) QTLs that we designated sb1 and sb3 [52]. We

recently showed that sb3 is an 83-kbp duplication that includes ej2w, which causes a dose-dependent increase of weak allele

expression that compensates for the reduced functional transcripts (Figure 5.6A).
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Figure 5.6: Four SVs in Three MADS-Box Genes Were Required to Breed for the Jointless Trait. (A) Genetic suppressors
were selected to overcome a negative epistatic interaction on yield caused by mutations in two MADS-box genes. The SV mutation
j2TE causes a desirable jointless pedicel that facilitates harvesting. Introducing j2TE in backgrounds carrying the cryptic SV mutation
ej2w results in excessive in�orescence branching and low fertility. The sb1 and sb3 QTLs were selected to suppress j2TE ej2w negative
epistasis. sb3 is an 83-kb duplication harboring ej2w. sb1 is cloned in this study. (B) Quanti�cation of sb1 partial suppression of
branching in the j2TE ej2w background. The SB1 j2TE ej2W and sb1 j2TE ej2W genotypes were derived from F3 families. Each data point is
one in�orescence from F4 plants (n). (C) Delta SNP index (deltaSNPi, QTL-seq) plot shows the sb1 locus contains the TM3-STM3
MADS-box gene cluster. (D) Schematic of the TM3-STM3 locus in the SLL genotypes M82 and Fla.8924, with M82 having an
∼22-kb tandem duplication (designated SB1) containing STM3. (E) RNA-seq showing increased expression of STM3 from the SB1
duplication compared to sb1. (F) CRISPR-Cas9 mutagenesis of the TM3-STM3 cluster (sb1CR) suppresses branching in the j2TE ej2w

background. Schematics at top depict two CRISPR lines with indel mutations in the STM3 and TM3 genes (sb1CR-1) and a large
deletion spanning all three genes (sb1CR-del; top). Representative in�orescences from the indicated genotypes (bottom) are shown.
Arrowheads mark branch points. (G) Quanti�cation and comparison of suppression of in�orescence branching by homozygous and
heterozygous sb1CR-1 and sb1CR-del mutations in the background of j2TE ej2w. Genotypes were derived from F2 populations. N, plant
number; n, in�orescence number. (H) STM3 duplication allele frequency in wild tomato species (distant relatives and SP), early
domesticates and cultivars (SLC and SLL vintage), and modern cultivars (SLL fresh market and processing). (I) Distribution of J2 EJ2
SB1 genotypes in fresh-market and processing/roma tomato types. All j2 fresh-market genotypes carry sb1 and sb3, whereas
processing/roma genotypes have SB1 or sb1, because EJ2 is functional. (J) Schematic showing the history of breeding for the jointless
trait, including when SVs in EJ2 and STM3 arose. The pre-existing sb1 cryptic variant (single-copy STM3) mitigated the severity of
branching caused by introduction of j2TE in varieties carrying the cryptic variant ej2w. Selection of the sb3 cryptic variant (two copies
of ej2w) resulted in the complete suppression of branching and restoration of normal yield. Gradient colored bar represents timeline.
The table summarizes genotypic combinations. Blue and black bold fonts indicate solutions for jointless breeding in fresh market and
processing/roma types, respectively (I and J). In (B), (E), (H), and (I), n represents sample size. p values in (B) and (G) are based on
two-tailed, two-sample t tests.

The cryptic sb1 locus is a partial suppressor of branching, and our previous QTL mapping positioned sb1 to a 6-Mbp

interval on chromosome 1 (Figures 5.6B and 5.6C). We searched for candidate genes and focused on two neighboring

MADS-box paralogs, TM3 (Solyc01 g093965) and SISTER OF TM3 (STM3) (Solyc01 g092950). Notably, STM3 showed

approximately 2-fold higher expression in the branched parental line (M82 j2TE ej2W) compared to the suppressed parent

(Fla.8924 j2TE ej2W). There were no obvious coding or regulatory mutations in this gene; however, the Heinz 4.0 reference

genome has gaps in that area. Our MAS2.0 assemblies �lled the gaps and revealed copy number variation for STM3, with

an extra copy of the gene in the branched parent due to a near-perfect 22-kbp tandem duplication (Figure 5.6D).

Consistently, genotypes with four copies of STM3 showed 2-fold higher expression compared to two copy genotypes

(Figure 5.6E).

To test whether lower dosage and expression from a single STM3 gene is responsible for the sb1 QTL, we used

CRISPR-Cas9 to generate mutant alleles disrupting the complex STM3-TM3 locus. A CRISPR construct with two

gRNAs gave small indel mutations in all copies of the identical TM3/STM3 exon 2 (sb1CR-1), although a second construct
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with four gRNAs deleted the entire locus (sb1CR-del) (Figure 5.6F). Both sb1CR-1 and sb1CR-del plants were slightly late

�owering, but their in�orescences were normal. We then introduced each allele into the highly branched M82 j2TE ej2w

double mutants and identi�ed j2TE ej2w sb1CR-1 and j2TE ej2w sb1CR-del triple mutants from segregating F2 populations.

Importantly, all of these plants (0 functional copies of STM3) showed practically complete suppression of branching

compared to j2TE ej2w double mutants (4 functional copies of STM3) (Figures 5.6F and 5.6G). Moreover, j2TE ej2w plants

that were heterozygous for the CRISPR alleles (2 functional copies of STM3) showed partial suppression of in�orescence

branching, mimicking the e�ect of sb1 (e.g., Fla.8924; 2 functional copies of STM3) (Figures 5.6F and 5.6G). Thus, a

single-copy STM3, and the corresponding lower gene expression, explains sb1.

Short-read-based genotyping of more than 500 accessions spanning tomato taxonomic groups showed that the duplication

of STM3 arose early in domestication, but the ancestral single gene has remained common in tomato germplasm (Figure

5.6H). In fact, the majority of vintage and modern fresh-market accessions have single-copy STM3, indicating that a lower

dosage and expression level provided partial suppression of branching upon the introduction of j2TE into lines carrying ej2w.

The duplication of ej2w, and the resulting increased expression of this weak allele, arose later and was likely selected to

achieve complete suppression of branching. In support, all jointless fresh-market accessions carry both sb1 (single-copy

STM3) and sb3 (duplicated ej2w) (Figure 5.6I). In contrast, breeding for jointless in processing tomato accessions was

achieved by selecting against ej2w (Figure 5.6I). Consistent with this, sb1 and SB1 (duplicated STM3) are present at equal

frequencies in processing tomato accessions, maintaining cryptic variation in the context of in�orescence development

(Figures 5.6I and 5.6J). Our analysis reveals STM3 as a new regulator of tomato in�orescence development, and the

dissection of sb1 shows that the path of jointless breeding depended on four SVs a�ecting the expression levels of three

MADS-box genes and further illustrates how functional consequences of structural variation can remain hidden.
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5.4 DISCUSSION

Raising the curtain on structural variation

Advancements in genome-sequencing technologies continue to revolutionize biology by providing an increasingly

comprehensive view of the genetic changes underlying phenotypic diversity. The recent development of high-throughput

Oxford Nanopore long-read sequencing has provided the opportunity to rapidly reveal the breadth and depth of previously

hidden SVs in complex genomes and across populations [53]. Taking advantage of the expansive genetic diversity of wild

and domesticated tomatoes, we sequenced a collection of 100 accessions and resolved hundreds of thousands of SVs. These

SVs were shaped predominately by transposons [54], are abundant across all chromosomes, frequently reside within or in

close proximity to genes, are often associated with expression, and likely contribute to phenotypic variation. Integrating our

panSV genome, de novo assemblies, and expression data with genome-editing enabled us to resolve and functionally link

SVs to three major domestication and breeding traits. The smoky and sb1 loci, in particular, demonstrate how these

resources were essential to resolve complex haplotypes underlying QTLs where previous assemblies were thwarted by

repeats, especially highly similar long and local duplications. Moreover, our analyses of the smoky and fw3.2 loci show that

presumed causative variation may be incomplete or incorrect. More broadly, most QTLs discovered by GWAS in model and

crop plants reside in regions with multiple candidate genes and variants. In addition to improving GWAS statistical power,

long-read-based discovery of abundant, sometimes complex SVs may immediately pinpoint high-con�dence candidate genes

and variants for functional analyses. Similar progress in understanding the functional impacts of SVs will likely emerge from

generating population-scale panSV genomes in other species [33,55–58].

Duplications, gene copy number variation, and dose-dependent phenotypes

Our panSV genome revealed that fw3.2 and sb1 were both associated with previously hidden duplications. In both plants

and animals, duplications that alter copy number and expression of dosage-sensitive genes were found to modify

phenotypic diversity, including traits important in domestication and breeding [7]. Large, tandem, recent duplications are

one of the most challenging SVs to resolve, and even when a strong candidate gene is present, as with SlKLUH in the fw3.2

duplication, directly testing how modi�ed gene dosage and expression impacts quantitative variation is challenging.
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Enabled by CRISPR-Cas9 genome editing, we generated plants with di�erent gene copy numbers, and therefore dosages,

for SlKLUH and STM3 in the fw3.2 and SB1 duplications, respectively. Establishing a dosage series of isogenic genotypes

not only con�rmed the causality of the duplications and the speci�c genes but also directly demonstrated their quantitative

impact. In particular, heterozygotes of sb1CR alleles (2 copies of STM3 on 1 chromosome) suppressed in�orescence

branching of j2TE ej2W plants to a similar degree as the natural dosage e�ect from single-copy STM3 (1 copy of STM3 on

each chromosome). Similarly, reducing functional KLUH copy number from three to one recapitulated the natural

quantitative e�ect on fruit size of having four or two copies. Manipulating gene copy number by genome editing now

provides a way to systematically interrogate and explore dosage to phenotype relationships [59], which will be important

for guiding the design and engineering of speci�c dosages for crop improvement.

cis-regulatory SVs and quantitative variation

Our panSV genome showed that the majority of gene-associated SVs are in cis-regulatory regions, and many are associated

with subtle changes in expression. Expanding long-read sequencing and expression analyses to a wider population will

reveal even more such SVs. This raises the question to what extent cis-regulatory SVs a�ect phenotypes. For genes that are

dosage sensitive, such as those encoding components of molecular complexes or involved in signaling networks, a subtle

change in expression could alter phenotype [59]. However, the magnitude of the phenotypic e�ect may depend on a

threshold change in expression and could be weak, making detection challenging in population genetics studies where other

mutations and alleles in�uence trait variation. Genome editing could be used to study the e�ects of gene-associated SVs by

recreating speci�c mutations or mimicking the expression e�ects of natural cis-regulatory SVs in isogenic backgrounds. Our

previous work characterizing collections of CRISPR-Cas9-engineered promoter alleles in multiple developmental genes

showed that deletion and inversion SVs can a�ect expression and phenotypic outputs in various, often unpredictable ways

[4]. As SVs could be cryptic, a more powerful and informative approach would therefore be to sensitize the locus or

genome, by combining natural cis-regulatory SVs with engineered SVs in the same promoter or with engineered mutations

in related, potentially redundant genes. Resolving the functional impacts of SVs, particularly those whose e�ects are subtle
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or cryptic, will advance our understanding of genotype-to-phenotype relationships and facilitate the exploitation of natural

and engineered SVs in crop improvement.

5.5 METHODS

Plant material and growth conditions

A hundred tomato accessions were collected from TGRC (Tomato Genetics Resource Center), USDA (United States

Department of Agriculture), University of Florida, EU-SOL (The European Union-Solanaceae project), INRA (The

National Institute for Agricultural Research), IVF-CAAS (The Institute of Vegetables and Flowers, Chinese Academy of

Agricultural Science) and our stocks. The landrace collection (S. lycopersicum var. cerasiforme) was from the seed stocks of

E. van der Knaap. Seeds of S. pimpinellifolium (LA1589), S. lycopersicum cv. M82 (LA3475), and j2TE ej2w mutant are from

Lippman lab.

Seeds were either germinated on moistened �lter paper at 28 °C in the dark or directly sown in soil in 96-cell plastic �ats.

Plants were grown under long-day conditions (16-h light/8-h dark) in a greenhouse under natural light supplemented with

arti�cial light from high-pressure sodium bulbs (∼250 μmol m-2 s-1). Daytime and nighttime temperatures were 26–28 °C

and 18–20 °C, respectively, with a relative humidity of 40%–60%.

Quanti�cation of fruit guaiacol and methylsalicylate contents in this study was conducted from plants grown in North

Florida Research and Education Center-Suwannee Valley near Live Oak, Florida. Analyses of fruit weight in F2 segregation

populations were conducted on plants grown at the University of Georgia (Athens, GA). Analyses of �oral organ size, fruit

weight of F1 hybrid plants and in�orescence branching in F4 generation were conducted on plants grown in the �elds at

Cold Spring Harbor Laboratory (CSHL), Cold Spring Harbor, NY. Seeds were germinated in 96-cell �ats and grown for 32

d in the greenhouse before being transplanted to the �eld. Plants were grown under drip irrigation and standard fertilizer

regimes. Analyses of in�orescence branching in two sbCR j2TE ej2W F2 populations were conducted on plants grown in the

greenhouses at CSHL and Weizmann Institute of Science, Israel.
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Short-read structural variant calling and sample selection

Publicly available short-read data came from a total of four sources [12,13,36,37]. Phylogenetic trees derived from some of

these data have been adapted from their original publication and are shown in Figure 5.1A [40,52]. Phylogenetic

classi�cations (branch coloring) were manually curated according to these previous phylogenetic studies and based on

knowledge of tomato types and breeding classes. First, the raw reads were trimmed with Trimmomatic (v0.32,

LEADING:30 TRAILING:30 MINLEN:75 TOPHRED33) [60]. Reads we aligned to the SL4.0 reference genome with

bwa mem (v0.7.10-r789, -M) [11,61]. Alignments were then compressed, sorted, and indexed with samtools view, sort, and

index respectively (v0.1.19-44428cd) [62]. Next, PCR duplicates were marked with Picard (v1.126)

(https://broadinstitute.github.io/picard/). We removed any samples that had less than 5X alignment coverage or any

samples that had a duplication rate > = 20%. If a given accession had more than one associated BAM �le, they were merged

with samtools.

An ensemble approach was used to call SVs from these short-read alignments. We and others have found that a consensus

among multiple short-read SV callers can achieve higher precision without substantially decreasing sensitivity [63]. We used

3 independent tools to call SVs: Delly (v0.7.3, -q 20), Lumpy (v0.2.13, -mw 4 -tt 0.0) and Manta (v1.0.3, -j 15 -m local -g 30)

[64–66]. For each accession, SV call sets from Delly, Lumpy, and Manta were then merged with SURVIVOR (v1.0.7,

minimum distance of 1kbp, types must match, and a minimum length of 10bp) [67]. Only SVs called by at least 2 of the 3

tools were retained. In total, we produced short-read SV calls for 847 accessions.

We then used SVCollector to select our �rst set of accessions for long-read sequencing [10]. For SVCollector, we further

�ltered short-read SV calls to only include SVs that intersect genes (+/− 5 kbp of �anking sequence). These �ltered SVs were

then used as input into SVCollector (greedy), and the top-ranked SLL (29) and SLC (22) accessions for which we had

available seeds were selected. Aside from these 51 accessions selected with SVCollector, we selected an additional 49
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accessions for long-read sequencing. These included SLL, SP, GAL, and CHE accessions which were not included in the

short-read SV analysis.

Tissue collection and high molecular weight DNA extraction

For extraction of high molecular weight DNA, young leaves were collected from 21-day-old light-grown seedlings. Before

tissue collection, seedlings were etiolated in complete darkness for 48 h. Flash-frozen plant tissue was ground using a mortar

and pestle and extracted in four volumes of ice-cold extraction bu�er 1 (0.4 M sucrose, 10 mM Tris-HCl pH 8, 10 mM

MgCl2, and 5 mM 2-mercaptoethanol). Extracts were brie�y vortexed, incubated on ice for 15 min, and �ltered twice

through a single layer of Miracloth (Millipore Sigma). Filtrates were centrifuged at 4000 rpm for 20 min at 4 °C, and pellets

were gently resuspended in 1 ml of extraction bu�er 2 (0.25 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, 1% Triton

X-100, and 5 mM 2-mercaptoetanol). Crude nuclear pellets were collected by centrifugation at 12,000g for 10 min at 4 °C

and washed by resuspension in 1 ml of extraction bu�er 2 followed by centrifugation at 12,000g for 10 min at 4 °C. Nuclear

pellets were re-suspended in 500 μl of extraction bu�er 3 (1.7 M sucrose, 10 mM Tris-HCl pH 8, 0.15% Triton X-100, 2 mM

MgCl2, and 5 mM 2-mercaptoethanol), layered over 500 μl extraction bu�er 3, and centrifuged for 30 min at 16,000g at

4 °C. The nuclei were resuspended in 2.5 ml of nuclei lysis bu�er (0.2 M Tris pH 7.5, 2 M NaCl, 50 mM EDTA, and 55 mM

CTAB) and 1 ml of 5% Sarkosyl solution and incubated at 60 °C for 30 min. To extract DNA, nuclear extracts were gently

mixed with 8.5 ml of chloroform/isoamyl alcohol solution (24:1) and slowly rotated for 15 min. After centrifugation at

4000 rpm for 20 min, ∼3 ml of aqueous phase was transferred to new tubes and mixed with 300 μl of 3 M NaOAC and

6.6 ml of ice-cold ethanol. Precipitated DNA strands were transferred to new 1.5 ml tubes and washed twice with ice-cold

80% ethanol. Dried DNA strands were dissolved in 100 μl of elution bu�er (10 mM Tris-HCl, pH 8.5) overnight at 4 °C.

Quality, quantity, and molecular size of DNA samples were assessed using Nanodrop (Thermo�sher), Qbit

(Thermo�sher), and pulsed-�eld gel electrophoresis (CHEF Mapper XA System, Biorad) according to the manufacturer’s

instructions.
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Short-read DNA sequencing

Aside from the publicly available data used for short-read-based SV calling, we produced additional short-read data in-house

for use in genome assembly for all but 2 (M82 and Fla.8924) MAS2.0 accessions. Short-read sequencing was performed

according to a previous paper [52]. In brief, libraries were prepared with the Illumina TruSeq DNA PCR-free prep kit from

2 μg genomic DNA sheared to 550 bp insert size. DNA libraries were sequenced on an Illumina NextSeq500 platform at

the Cold Spring Harbor Laboratory Genome Center.

Long-read DNA sequencing

Libraries for Oxford Nanopore genome sequencing were constructed using high-quality HMW DNA. DNA was sheared

to ∼20 kb using Covaris g-tubes or ∼75 kb using Megarupter (Diagenode) and puri�ed with a 1 × AMPure XP bead

cleanup. Next, DNA size selection was performed using the Short Read Eliminator kit (Circulomics). Library preparation

was performed with 1.5 μg of size-selected HMW DNA, using the Ligation Sequencing Kit SQK-LSK109 (Oxford

Nanopore Technologies) following manufacturer’s guidelines. Libraries were loaded on MinION or PromethION �ow

cells and sequenced according to standard protocols. Runs were basecalled with either Albacore v2.3 or with Guppy v2.1

through 3.2. Basecalling was performed using the PromethION r9.4.1 model, with recommended settings for the

SQK-LSK109 kit and the FLO-PRO001 or FLO-PRO002 �owcells. At least 40G of data with mean read quality above or

equal to Q7 were produced for each sample.

Long-read structural variant calling, filtering, and merging

For each of our 100 accessions selected for long-read sequencing, we aligned a maximum of 60X coverage to the SL4.0

reference genome. The SL4.0 reference genome is a recently published preprint that improves to the previous (SL3.0)

tomato reference genome [11]. This PacBio long-reads assembled genome is the most complete and accurate representation

of the Heinz 1706 reference genome to date. ITAG4.0, the reference gene models used in this study, are the accompanying

reference gene annotation set. To call SVs relative to this reference, we aligned reads with NGMLR (v0.2.7, -x ont–bam-�x)

and called SVs with Sni�es (v1.0.11)(–cluster–min_homo_af 0.7 -n 1000) [9]. As is convention, SV labels (insertions,
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deletions, duplications, inversions, and translocations) are de�ned with respect to this single reference genome and do not

necessarily de�ne the underlying mutations causing the genetic variation. We further note that long insertions are

somewhat underrepresented since Sni�es’ power to call insertions is bounded by read-length. For read sets exceeding 60X

coverage, the longest set of reads achieving 60X was used. We then �ltered SVs to remove potentially spurious calls. First, we

identi�ed regions of the reference genome prone to producing false SV calls and removed any SVs intersecting these regions

(a total of 2,961,888 bp of the SL4.0 reference genome). To de�ne these regions, we simulated ONT reads using

SURVIVOR from the SL4.0 reference genome and called SVs with Sni�es. We performed this simulation a total of 9 times

and merged the 9 VCF �les with SURVIVOR (minimum distance of 1kbp, types must match, and a minimum length of

50bp). We then masked any region of the reference implicated in any SV from this simulation, including 2.5 kbp of �anking

sequence. Next, we removed any SVs mapping to the ambiguous reference “chromosome 0” (SL4.0ch00). We also removed

SVs larger than 100 kbp or SVs with a “0/0” genotype.

Using this same process described above, we also aligned Heinz 1706 PacBio reads to the SL4.0 reference genome to assess

the propensity of the reference genome to produce false positives [11]. We called only 75 from these alignments, suggesting

that spurious false positives due to reference bias in our panSV-genome are rare.

For some accessions, duplications were �ltered by observing short-read coverage across putative duplications. To do this, we

wrote a custom tool similar to CNVnator’s genotyping functionality [68]. First, for each accession, we calculated short-read

coverage in non-overlapping 200bp windows of the reference genome using bedtools [69]. The same reads and alignments

as described in “Short-Read Structural Variant Calling and Sample Selection” were used here. Coverage was then corrected

for GC bias using a custom version of the algorithm outlined in Yoon et al. [70]. The global mean coverage was calculated

by �rst removing outliers (using the 1.5 x IQR rule) then �tting a Gaussian distribution to the coverages using SciPy

(stats.norm.�t) [71]. Finally, to verify a duplication, we required that the coverage roughly spanning the duplication

boundaries must be greater than 1.75X the global mean coverage. Only duplications at least 1 kbp in size were considered.

To calculate the coverage of the duplicated region, adjacent 200 bp windows were merged via averaging to obtain 1 window
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close to the true duplication size. The coverage for this window, aligned to the original duplication coordinates (rounded to

the nearest 200bp interval) was then compared to the global mean coverage. The above duplication �ltering was only

performed on samples for which we had short-read data available. The source code for duplication �ltering can be found on

GitHub (https://github.com/malonge/DupCheck).

By default, Sni�es provides supporting reads for each insertion call but reports the insertion sequence from a single noisy

read. To associate each insertion with an accurate sequence, we used Iris (v1.0.1)(https://github.com/mkirsche/Iris). Iris

extracts the reads supporting the insertion sequencing using samtools, computes their consensus using Racon [72], and

then replaces the original insertion sequence with the polished consensus. Finally, we used Jasmine to merge SVs across all

accessions (v1.0.1, min_support = 1 max_dist = 500 k_jaccard = 8 min_seq_id = 0.25 spec_len = 30)(see “Merging SVs

with Jasmine” below). We used the default distance metric for merging, which is Euclidean distance. Brie�y, 2-dimensional

coordinates for each SV are given by (SV start position, SV length). SVs may be candidates for merging if their Euclidean

distance between these 2D points is ≤ 500. The primary SV set was merged across all 100 accessions, though we also

produced group-speci�c merged call sets for SLL, SLC, and SP using the same parameters.

Merging SVs with Jasmine

We developed a new SV merging tool called Jasmine, which is available open-source on GitHub

(https://github.com/mkirsche/Jasmine). Jasmine constructs a graph G in which nodes represent SVs from individual

samples. Edges connect pairs of SVs that may be merged based on criteria such as the distance between their breakpoints,

and in the case of insertions, their sequence similarity. Next, the variants are partitioned based on the reference sequence, SV

type, and strand. To compute the best possible set of SV merges for a given group, Jasmine computes a forest on the graph

which has a few key properties: 1) The edges in the forest are a subset of the edges in G, 2) No tree in the forest contains

multiple nodes representing SVs from the same sample, 3) There are no unused edges in G which can be added to the forest

while maintaining the previous properties, and 4) The sum of the breakpoint distances of edges in the forest is minimized.

To do this, Jasmine uses a variant of Kruskal’s algorithm for computing minimum spanning trees. By considering the edges
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in non-decreasing order of edge weight, Jasmine greedily adds edges to the forest if they will not violate any of the required

properties. To avoid storing this potentially very large network in memory, the network is computed dynamically by �nding

low-weight edges for each node with a KD-tree. Initially, a small constant number of edges incident to each node is stored,

and as these are processed in increasing order of edge weight, new edges to process are added to the set by �nding the next

nearest neighbors for each node. As a result of this optimization, Jasmine is e�cient in terms of both memory and runtime

and can merge the entire set of over 1.7 million tomato SV calls in less than ten minutes on a single thread of a laptop.

We tested the e�cacy of Jasmine on a simulated dataset. In this experiment, we use our merged tomato panSV-genome as

our “ground truth.” This provides us with a realistic distribution of allele frequencies, SV types, and SV genomic positions.

From this merged SV set, we then derived 100 individual SV sets, essentially reversing the merging process. When assigning

variants to their original individual set, we added noise to the SV genomic position. The noise was modeled with a uniform

distribution centered at 50 bp for both the start positions and lengths. In addition, the sequences of insertions were

changed to model 10% sequencing error. Then, we reran Jasmine (using the same parameters as those used for our

panSV-genome) on these noisy individual call sets and compared the results to the original merging. 98.98% of the 19.4

million variant pairs which were merged initially were also merged in the simulated results, while only 0.93% of the merged

pairs from the simulation were unmerged in the original dataset. We also found that of the 238k variant calls which

originally consisted of merged variants from multiple samples, 97.78% of them contained exactly the same sets of variants

after the simulation. The added noise to the variant boundaries caused some previously merged variants to exceed the

distance threshold. Also, some originally close variants in the same sample traded places during the merging process. This

analysis shows that the method is highly robust to variation in the positions and lengths of structural variants across

samples.

MAS2.0 genome assembly

We established de novo genome assemblies and associated gene and repeat annotations for a subset of the 100 accessions

sequenced for SV analysis. This included the PAS014479 (SP), BGV006775 (SP), BGV006865(SLC), BGV007989 (SLC),
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BGV007931 (SLC), PI303721 (SLL), PI169588 (SLL), EA00990 (SLL), LYC1410 (SLL), Floradade (SLL), EA00371

(SLL), M82 (SLL), Fla.8924 (SLL), and Brandywine (SLL) accessions. Collectively, we refer to these assemblies and

annotations as “MAS2.0,” and they are freely available to download at the Sol Genomics Network

(https://solgenomics.net/projects/tomato100).

A hybrid assembly was performed for each accession using the MaSuRCA assembler (v3.3.3 or v3.3.4) [16]. Sequencing

data used for assembly are described in “Short-read DNA sequencing” and “Long-read DNA sequencing”. M82 and

Fla.8924 were not sequenced in-house for this study, but rather come from a previous publication [17]. As is recommended

by the MaSuRCA documentation, no preprocessing was done on any of the sequencing data. For the ONT reads, we used

the longest 35X coverage of reads with an average Phred quality score of at least 7. Library insert sizes for all Illumina data

were set to 500 ± 50. All assemblies employed the Flye unitigger during the �nal stage of MaSuRCA, except M82, which

used default unitigging settings. All other MaSuRCA parameters were set to default values.

Each set of initial draft contigs underwent two rounds of short-read polishing with POLCA (MaSuRCA v3.3.4) [73]. As

input for each of the two rounds of polishing, we used seqtk to randomly sample ⅔ of the Illumina data used during

assembly (https://github.com/lh3/seqtk). After polishing, we screened each set of contigs for bacterial contamination by

aligning them to the tomato SL4.0 reference and a bacterial reference genome. Every RefSeq bacterial genome downloaded

on October 1st, 2019, comprised our bacterial reference. Contigs were mapped to both references with Minimap2 (-k19

-w19) [74]. Any contig covered more by bacterial alignments than by tomato alignments were deemed contaminated and

removed from the assembly. Only the BGV006865 and PI303721 accessions contained contaminated contigs. Finally,

polished and screened contigs were sca�olded according to the SL4.0 reference genome using RaGOO (v1.1) (-T corr) [17].

The MaSuRCA mega-reads associated with the initial assemblies were used for misassembly correction. “Chromosome 0”

of the SL4.0 was not considered during RaGOO sca�olding (-e). We generated dotplots for each assembly by aligning the

�nal pseudomolecules to the SL4.0 reference genome using nucmer (-l 100 -c 500) and �nally plotting with mummerplot
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(–fat–layout) [75]. Finally, we used BUSCO to assess genome completeness (v3.0.2, -l solanaceae_odb10 -m genome -c 10

-sp tomato) [18].

To observe SV concordance between our panSV-genome and the MAS2.0 assemblies, we called SVs from the assemblies

using two techniques. First, we aligned the MAS2.0 assemblies to the SL4.0 reference genome using Nucmer (v3.1,

-maxmatch -l 100 -c 500) and called SVs with Assemblytics (unique_length_required = 500 min_size = 15, max_size =

100500) [76]. Additionally, we simulated 60X coverage of perfect 25 kbp reads from the MAS2.0 assemblies and called SVs

with NGMLR (v0.2.7, -x ont –bam-�x) and Sni�es (v1.0.11, -s 2 -l 15 –cluster –min_homo_af 0.7 -n 1000) with respect

to the SL4.0 reference genome. Combining the Assemblytics and Sni�es MAS2.0 SV sets, we observed the pairwise SV

concordance with the corresponding 14 accessions in our panSV-genome. The % SV overlap for each of the 14 accessions is

as follows: BGV006775: 95.5571, BGV006865: 94.5002, BGV007931: 95.8251, BGV007989: 91.8735, Brandywine:

91.1921, EA00371: 87.8088, EA00990: 86.9073, Fla.8924: 89.4226, Floradade: 84.7832, LYC1410: 93.3863, M82:

90.3600, PAS014479: 92.8686, PI169588: 88.5430, PI303721: 70.9839.

We note that we do not expect perfect overlap between the read-mapping and assembly-based SV calls, since both have

unique fallibilities and biases. For example, larger variants found with one approach may be broken into multiple smaller

variants found by the other approach. Or, the exact position of variants may shift within genomic repetitive elements. Also,

SVs in regions of the genome that fail to assemble may still be detected by aligning reads to a reference genome.

Furthermore, expected variability in nanopore sequencing, along with other factors, likely contributes to the between

accession variation that we observe. Broadly, an average overlap of 90% is a positive indication of SV accuracy and data

quality.

MAS2.0 gene annotation

We used a “lift-over” approach to annotating the MAS2.0 assemblies with gene models. Along with the tomato reference

ITAG4.0 gene models, our reference gene model set included previously published “pan-genome” genes which may be
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missing from ITAG4.0 but present in our assemblies [20]. Gene models were lifted-over onto each of the 14 MAS2.0

assemblies with geneLift (v1.1, -c 90 -i 95) (https://github.com/srividya22/geneLift). Brie�y, geneLift maps reference

cDNA sequences to target assemblies using GMAP and Minimap2 and retains alignments with at least 90% coverage and

95% identity [77]. The remaining non-overlapping GMAP alignments constitute the initial gene models, which are then

supplemented by Minimap2 alignments to unannotated regions providing additional non-redundant gene models. Gene

IDs reported by geneLift match the reference gene IDs and any gene duplications reported have an added su�x “-c”

followed by the respective copy number of the gene to make them unique. Annotated “pan-genome” genes can be

distinguished by a “TomatoPan” gene ID pre�x.

MAS 2.0 and SV repeat annotation

We used REPET to annotate MAS2.0 assemblies and panSV-genome insertion/deletion sequences with repeats [19]. From

each MAS2.0 genome assembly, we built a sub-genome by selecting the longest contigs up to a cumulative size ranging

360-380 Mbp. This allowed us to sample a large portion of the genome while keeping the downstream computation

tractable [78]. Each sub-genome was used to generate libraries of consensus sequences that are representative of repeats

present therein using the TEdenovo pipeline from the REPET package v2.4 (parameters were set to consider repeats with at

least 5 copies). The libraries produced were �ltered to keep only those sequences that are found at least once as a full-length

copy in the respective sub-genomes. Each resulting library of consensus sequences was then used as query for annotation of

respective whole genomes using the TEannot pipeline from the REPET package v2.4. The library of consensus sequences

was classi�ed using PASTEC followed by semi-manual curation [79].

For the annotation of insertions and deletions, the �ltered consensus libraries obtained from ten of the 14 MAS2.0

assemblies (the �rst 10 to be completed) were pooled and appended to those from SL4.0 which were generated previously

using the protocol described above. This combined library was then used as a query for whole genome annotation by

TEannot using default settings.
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PI129033 NSGT local assembly

None of our 14 MAS2.0 assemblies contained the NSGT deletion allele described in “New Reference Genomes Resolve

Multiple Haplotypes for the “Smoky” Volatile Locus.” Therefore, we performed a local assembly of the NSGT locus in

PI129033, a sample known to carry this deletion allele. Using the same long-read alignments as described in “Long-read

Structural Variant Calling, Filtering, and Merging,” we extracted PI129033 reads that aligned to the NSGT locus

(SL4.0ch09:65168601-65653800) using samtools view. These reads were then error corrected with Canu (corOutCoverage

= 999, genomeSize = 475k) and assembled with Flye (–nano-corr,–genome-size 475k) [80,81]. Flye produced a single contig

534,847 bp in length representing the NSGT locus in PI129033. We next sought to polish this contig with short reads to

produce an accurate representation of the locus. To do this, we �rst placed the contig into the SL4.0 reference genome in

order to provide a suitable reference genome for short-read mapping. This avoids the potential poor quality of mapping

when aligning WGS reads to a small segment of the genome. To create this pseudo-reference genome, we �rst started with

the SL4.0 genome and replaced the NSGT locus (SL4.0ch09:65168601-65653800) with our local assembly. We also added

100bp gaps to the �anks of the inserted contig so that we could identify and retrieve it after polishing. We aligned short

reads to this pseudo-reference using bwa and performed two rounds of short-read polishing with Racon (-u). Finally, we

removed the local assembly from the pseudo-reference using samtools faidx and aligned it with Minimap2 (-ax asm5) to the

SL4.0 reference genome to precisely de�ne the deletion coordinates.

SV hotspot and introgression analysis

For each accession, we counted the number of SVs in non-overlapping 1Mpb windows of the reference genome. Bins with a

relatively large number of SVs are informally referred to as “SV hotspots”. SV frequency, shown in heatmap and circos

form, is depicted in Figure 5.2A (http://omgenomics.com/circa/). Our observation of “hotspots” usually results from

visual interpretation of these plots. SV hotspot heatmap rows are ordered within each phylogenetic group (GAL, CHE, SP,

SLC, SLL) by the R “heatmap.2” default row ordering. These ordered groups were then concatenated to produce the �nal

heatmap.
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Since we hypothesized that introgression from wild donors could account for many of the observed SLL hotspots, we

developed a technique to compare accessions to look for genomic regions of SV similarity. The custom Python code used

for this task can be found in a GitHub repository (https://github.com/malonge/CallIntrogressions). The script

“get_distances.py” compares SLL accessions to one or many accessions from any other “comparison” group (SP, SLC,

GAL, or CHE). The algorithm considers successive 1Mpb windows of the reference genome. For each SLL accession, its set

of SVs in a given window is compared to the set of SVs in all accessions in the comparison group in the same window. To

compare two sets of SVs, we calculate the Jaccard similarity, requiring at least 5 SVs in both SV sets. The script then outputs,

for each 1 Mpb window and for each SLL accession, the maximum Jaccard Similarity with any other comparison accession.

If all comparisons for a given window had fewer than 5 SVs in either SV set, an “NA” value is reported.

We calculated similarity for all 45 SLL accessions at the same time by comparing each accession to each non-SLL accession.

Comparisons against GAL and CHE did not yield any candidate introgressions from these groups, so we did not display

those results. In Figures 5.2D and 5.2E, we also show an instance where we compare SLL accessions against a single SP

comparison accession (LA1589).

SV genomic feature annotation

Throughout the manuscript, we describe various relationships between SVs and other genomic features such as genes.

Generally, we annotated our panSV-genome with genomic features using vcfanno [82]. We de�ne an “annotation” as the

association of a particular SV with particular feature IDs (such as a gene ID) based on some relationship. vcfanno annotates

SVs by �nding their intersection (overlap) with genomic feature intervals. Accordingly, some of the annotations reported in

the manuscript can be directly interpreted from vcfanno, such as “Insertions in exons,” or “Deletions overlapping 5 kbp

upstream,” since these can be directly interpreted from feature intersection. Other annotations, such as SV containment of

genes, required some combination of intersection calculations. For example, to detect genes contained by SVs, we �rst

checked if the gene start and end positions intersected a given SV. If that SV intersected both the start and end of a gene, it

contains that gene.
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We ultimately produced many SV/feature annotation classes which are explained in more detail here. In any applicable

annotation, “upstream” or “downstream” refers to the 5′ or 3′ �anking regions of genes, respectively. In supplemental

material, these “upstream” and “downstream” regions may also be referred to as “5′ UTR” and “3′ UTR” respectively.

“Insertions in exons,” “Insertions in introns,” “Insertions in 5 kbp downstream,” “Insertions in 5 kbp upstream,”

“Deletions overlapping 5 kbp upstream,” and “Deletions overlapping 5 kbp downstream” are self-explanatory.

“Duplications” are duplications that contain entire genes. “Deletions of exons” are deletions that delete at least one entire

CDS exon of a gene, but do not delete the entire gene. Finally, “Deletions of CDS start” are deletions that contain 50 bp

upstream and downstream of a CDS start site.

The impact of SVs on gene expression

Data analysis was performed in R using custom scripts. In each tissue (apex, cotyledon, and root), gene expression was

averaged over the biological replicates in each accession (23 accessions with 3 replicates each in apex and root, and 22

accessions with 4 replicates each in cotyledon), and the genes with average expression count of at least 1 across the accessions

were retained for further analysis. We averaged read counts across replicates to e�ectively treat the replicate expression as

estimating a �xed e�ect. These gene expression averages within each accession/tissue were ranked and standardized so that

the values were constrained between 0 and 1. While most of our analyses operate on these rank data, in order to provide

estimates of fold change, we used the average expression pro�les across replicates directly. These values were normalized by

division of total read count of each accession and then fold changes were calculated across these normalized values between

accessions with and without the SV.

Are SV-associated genes differentially expressed?

We �rst de�ned a list of SV-gene pairs based on SV annotations (see SV Genomic Feature Annotation). We �ltered this list

to only include SV-gene pairs that had the SV present in at least 5 and absent in at least 5 of the accessions for which we had

RNA-seq data. For each of the SV-gene pairs, the accessions were split into two groups: with and without the SV. The
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extent of di�erential expression of the associated gene was calculated using a two-sided Mann-Whitney U test across the

accession split. The Mann Whitney U test is a rank-based test that is very robust to underlying distributions in the

expression values. The p values among a speci�c annotation and tissue type were adjusted by applying Benjamini-Hochberg

procedure [83]. The adjusted p values for each annotation and tissue type were aggregated using two methods: Fisher’s

method and a harmonic mean estimate [84,85].

At least half of the SV-associated genes in each SV type were common to all three tissues, exhibiting di�erent levels of

di�erential expression across the same accession split. To determine an average di�erential expression across the tissues, we

used Fisher’s method to aggregate p values across the three tissues for each SV-associated gene and subsequently applied

Benjamini-Hochberg method to limit the number of false positives.

Can we predict SV-associated genes from their differential expression?

For this analysis, we formulated a prediction task: Using the SV annotations as a “ground truth” labeled feature set (the

gene associated with the SV is positively labeled and all other genes are negatively labeled), we measured how well we could

predict the presence of an associated SV (positive label) given di�erential expression. We used AUROC (Area under the

ROC) scores as a measure of the performance of this task, which is calculated as follows: For each SV of a given annotation

type, the p values corresponding to the di�erential expression across the accession split (with or without the SV) was

calculated for all genes in a given tissue via a two-sided Mann-Whitney U test, and the list of p values was ranked (highest

rank corresponds to the most signi�cant p-value). For each SV, AUROC scores were analytically calculated by determining

the positively labeled gene’s position in the ranked list of all gene p values (high AUROC score corresponds to a

near-perfect identi�cation of the SV-associated gene). In other words, genes are predicted to be associated with a variant if

they exhibit excess di�erential expression when comparing accessions with versus without the SV. Conceptually, this can

also be described as our classi�er choosing a series of cuto� positions in this list, generating a ROC curve (and associated

AUROC) by calculating the true and false positive rate associated with each cuto�. Since all genes are a�ected by the
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underlying phylogenetic structure in the data, successful prediction of the true SV-associated gene in the list of all genes

only occurs when predictions are robust to confounding population structure.

We have thus far described our prediction task when considering a single SV-gene pair. To assess the broad impact of SVs on

expression, we combined all SV-gene pairs in a given annotation and tissue type. This is conceptually the same as for single

SV-gene pairs, except the gene labels are combined into an aggregated labeled set where there is one positive gene label for

each SV-gene pair. The resulting ROC curve and associated AUROC e�ectively measures the average performance of the

classi�er over all SV-gene pairs. A high AUROC would indicate SVs globally have a signi�cant impact on associated gene

expression.

Our aggregated classi�er’s performance can be measured by computing an overall p-value as follows. For a given variant and

tissue type, the ranks of p values of all SV-associated genes are removed from the list of sequential ranks of all expressed

genes in a given tissue (for example, the ranks of 17 genes associated with duplications in apex tissue are removed from the

sequence of ranks 1:20029 of the 20029 expressed apex genes). A One-tailed Mann-Whitney U test was performed to

evaluate if the median of the ranks of SV-gene pair p values was lower than the median of ranks of p values of all other

expressed genes. The resulting p-value is depicted by the size of the circle in Figure 5.3E. It is important to note that the

overall p values (circle size) are in�uenced by the number of SV-associated genes used in classi�cation in each case, as well as

the fold change in expression. For instance, duplications in apex have a larger p-value (with 17 variants used in classi�cation)

than insertions in 5 kbp downstream (with 1129 variants used in classi�cation).

Plant phenotyping

To quantify �oral organ size, lengths of sepals and anther cones of closed yellow �ower buds just before opening were

measured. In�orescence complexity was measured by counting the number of branching events per in�orescence.

Flowering time was quanti�ed by counting the number of leaves before the �rst in�orescence.
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NSGT haplotype analyses

Thirteen of the fourteen MAS2.0 genome assemblies �lled the gaps at the chromosome 9 “guaiacol” GWAS locus. To

annotate this region, the full-length protein sequence of NSGT1 was used for BLAST search against the Heinz SL4.0

reference genome and the 14 MAS2.0 assemblies. We used the protein sequence as the query for BLAST to achieve more

sensitive and more contiguous alignments while still allowing for the discrimination of NSGT alleles. Based on the BLAST

results and sequence di�erences, four coding sequence variants including NSGT1, NST2, nsgt1, and nsgt2 are annotated in

these genomes [38]. We observed several accessions missing sequencing coverage at this locus, suggesting a deletion. We

selected one such accession (PI129033) for a local assembly of the deletion haplotype (see “PI129033 NSGT Local

Assembly”). The local assembly revealed the large deletion haplotype V.

Short-read based genotyping

NSGT locus coding sequence variants genotyping

From short-read alignments to the SL4.0 reference genome, we extracted reads overlapping with NGST locus

(SL4.0ch09:65390765-65417476) using samtools view. In addition, we included previously unmapped reads. These

mapped and unmapped read sets were converted back to fastq �les using samtools bam2fq. Subsequently, the reads were

mapped to the unique portion of nsgt1 (117bp,

GTTAGGTTTTAGGGTTTCAATTATGCTTGGAAATTTGGAagaagccatttgaaaggcttgaataaggtttaggtaccATCTTTAA

CAACTACCTCCAAAATTATAAACCTTTTTCTT), nsgt2 (86bp,

CCAATACTTGAATGgttcaaaattagactttgtactttcaagaaaaccttgtGGAACCATTTCTTCAATTGTTTTGTTCACCCCTT

), NSGT1 (100bp,

ATATAATAGCTTCAACAACTTTTTAACCCCTTcatcaatagctttcaattttatcttctcactcaattgCATTGCCTTCAAATGAAT

TTGTTTCCTAGGC) and NSGT2(123bp,

CAAAGGCTTTCTCATCGCGTGGTTTTATTGGTTTCATATCTAATTTCTTGatctcatagtcatgaagaaaaggAAAAGA

TGTAAGGCTTGAACTCCCATAAAGAAATTGGTGGTAAAGGTAGG) simultaneously using bwa mem (-M).

After mapping, reads with edit distance (NM tag) smaller than 15 and a minimum mapping quality of 20 were extracted.
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We used samtools depth to compute the coverage of the �ltered reads across only the core of the unique regions (lower case

sequences above) for nsgt1, nsgt2, NSGT1, and NSGT2. If more than 4 core bp had 0 coverage, we discarded the total

mapped read counts for the sequence. If there was read count support for any of the nsgt1, nsgt2, NSGT1, or NSGT2

haplotypes, we report them as “presence.” Since the “unique” sequence of NSGT1 is also present in nsgt1, if both nsgt1

and NSGT1 were genotyped as “presence,” we only labeled nsgt1 as “presence.” This is based on the observation that no

sequencing resolved haplotypes have both nsgt1 and NSGT1 together. This genotyping was consistent with the observed

haplotypes in our MAS2.0 assemblies.

NSGT locus deletion variant genotyping

From the short-read alignments to SL4.0, we counted the reads with a mapping quality of at least 20 in the middle region of

the haplotype V deletion: SL4.0ch09:65401889-65404136. Accessions with less than 5 mapped reads were genotyped as

“deletion.” The pipeline was benchmarked against PCR genotyped samples including 138 accessions with no deletion and

17 accessions with deletions. Results from our pipeline were 100% consistent with PCR genotyping results.

sb1 duplication genotyping

From the short-read alignments to SL4.0, we extracted the reads mapped to a broad region that contained the sb1

duplication locus: SL4.0ch01:77727550-77765153. For each sample, we also extracted the unmapped reads. Mapped and

unmapped read sets were converted to fastq �les using samtools. Subsequently, we aligned the extracted reads to a portion

of the sb1 locus (SL4.0ch01:77737550-77745153), which avoided high copy number TEs and represented a unique

sequence of this locus. This was done with bwa mem (-M). We counted the number of reads mapped to this locus using

samtools idxstats. The raw counts were normalized based on the total number of reads mapped for each sample. We

manually checked the read alignments to SL4.0 and veri�ed 22 single-copy accessions and eight duplication accessions.

Accessions with normalized coverage lower than mean (veri�ed single-copy accessions) – 1 standard deviation were

genotyped as “single-copy” and accessions with normalized coverage greater than mean (veri�ed duplication accessions) + 1

standard deviation were genotyped as “duplication.”
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Tissue collection, RNA extraction and quantification

For 3′ RNA-sequencing (3′ RNA-seq), seeds were treated with 50% bleach for 20 minutes to homogenize germination and

were germinated in Petri dishes with moistened �lter paper in the dark at 28 °C. Whole root tissues were collected 3 days

after germination with a mixture of several seedlings as one biological replicate and three such replicates for each of a total of

23 accessions. For cotyledon tissues, seedlings after germination at similar stages were transplanted to soil in 96-cell �ats and

grown in the greenhouse. Cotyledons of seedlings were collected when two true leaves start to visibly emerge (10∼11 days

after sowing). Four biological replicates each with several seedlings combined for each of a total of 22 accessions were

collected. For apex tissue, seedlings after germination at similar stages were transplanted to soil in 96-cell �ats and grown in

the greenhouse. For apex tissue collection, seeds were germinated, and seedlings were transplanted as above. Vegetative

apical meristem together with the two youngest/smallest leaf primordia were collected 4 days after transplanting [86]. Eight

to twelve apices were combined as one biological replicate and three replicates were collected for each of a total of 23

accessions. Total RNA was extracted using the RNeasy Plant Mini Kit (QIAGEN) and treated with the RNase Free DNase

Set (QIAGEN) according to the manufacturer’s instructions. Total RNA samples were sent to the Genomic Diversity

Facility at Cornell University for high-throughput 3′ RNA (single-end, read length = 75bp) as described [87].

For quantitative RT-PCR, seeds were germinated on moistened �lter paper at 28°C in dark. After germination, seedlings at

similar stages were transferred to soil in 96-cell plastic �ats and grown in the greenhouse. Shoot apices were collected at the

transition and �oral meristem stage of meristem maturation [86], and immediately �ash-frozen in liquid nitrogen. Total

RNA was extracted as described above. 100 ng to 1 μg of total RNA was used for cDNA synthesis using the SuperScript III

First-Strand Synthesis System (Invitrogen). qPCR was performed with gene-speci�c primers using the iQ SYBR Green

SuperMix (Bio-Rad) reaction system on the CFX96 Real-Time system (Bio-Rad).
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NSGT1/2 expression analysis

Published RNA-seq data of tomato fruit pericarp tissue from 405 accessions were downloaded from SRA PRJNA396272.

Reads were trimmed by quality using Trimmomatic (ILLUMINACLIP:TruSeq3-PE-2.fa:2:40:15:1:FALSE LEADING:30

TRAILING:30 MINLEN:100) and aligned to the cDNA annotation of reference genome sequence of tomato (SL4.0)

using kallisto quant [88]. The output of kallisto generates normalized transcripts per million reads (TPM) which was used

for quantifying NSGT1/2 expression. Because only one copy of NSGT1/2 is annotated in the SL4.0 and sequences of

NSGT1 and NSGT2 are highly similar, we used the TPM of the annotated copy of NSGT (Solyc09 g089585) to represent

the expression level of both NSGT1 and NSGT2.

Metabolite profiling

Published fruit guaiacol contents were obtained from Tieman et al. (2017). To minimize environmental e�ects, only data

from one �eld season (2015) were used. Fruit guaiacol and methylsalicylate contents in our new GWAS panel were

quanti�ed as previously described [36]. Brie�y, at least six fruits (two fruits for each replicate) of red ripe stage were

collected from each variety. Volatile compound identi�cation was determined by gas chromatography-mass spectrometry

and co-elution with known standards (Sigma-Aldrich, St. Louis MO).

3′ RNA-seq data processing and gene expression analysis for individual duplication locus

3′ RNA-seq reads were trimmed by quality using Trimmomatic (v0.36, ILLUMINACLIP:TruSeq3-SE.fa:2:30:10

LEADING:30 TRAILING:30 MINLEN:30 HEADCROP:12) and mapped to SL4.0 reference genome using STAR with

default parameters [89]. Bam �les generated by STAR were sorted by read name and gene expression was quanti�ed as

uniquely mapped reads to annotated gene features in the ITAG4.0 reference annotation using HTSeq-count (–format =

bam–order = name–stranded = no–type = exon–idattr = Parent) [90]. Gene counts were processed in R for visualization.

First, we �ltered expressed genes by only keeping genes with the sum of counts across all samples greater than the sum of

replicates. Then the count table was imported into R package “DESeq2” [91] and normalized counts were used for making

boxplots.
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Generation of F2 populations segregating for the fw3.2 duplication or promoter SNP

The fw3.2 duplication and the derived allele of the promoter SNP are highly, but not completely associated. From our

collection of accessions, we carefully selected four pairs of accessions carrying either single or double copies of fw3.2 but

�xed at the promoter SNP (M9) of KLUH and all other known fruit weight QTL genes. Four bi-parental F2 populations

were developed from each pair of accessions so that the duplication of fw3.2 would segregate. We genotyped the F2 plants by

fw3.2 duplication markers and markers �anking the entire duplicated region. Similarly, six bi-parental F2 populations that

segregated for the promoter SNP but �xed as the single-copy of fw3.2 and other known fruit weight QTL genes were

developed. We genotyped F2 plants using M9 markers. In each population, ten homozygous F2 plants carrying each of the

contrasting genotypes were grown in the �eld. At harvest, we selected 15 to 20 large fruits after mature green stage and

recorded their average weight to represent the potential of largest fruit from a single plant. Poor fruit setting was observed in

population 19S313 so only about 10 representative fruits were used for each plant. In extreme cases, the fruit weight of

three plants were represented by less than 5 fruits.

CRISPR-Cas9 mutagenesis, plant transformation, and selection of mutant alleles

CRISPR-Cas9 mutagenesis and generation of transgenic tomato was performed following our standard protocol [92].

Brie�y, guide RNAs (gRNAs) were designed using the CRISPRdirect tool (https://crispr.dbcls.jp/) [93]. Binary vectors for

gRNAs and Cas9 were assembled using the Golden Gate cloning system as described [4,51,94]. Final binary vectors were

transformed into the tomato cultivar M82 by Agrobacterium tumefaciens-mediated transformation through tissue culture

[95]. Transplanting of �rst generation transgenic (T0) plants and genotyping of CRISPR-generated mutations were

performed as Soyk et al. [51]. Brie�y, CRISPR-targeted region was PCR ampli�ed, and wild-type (WT) size products were

sequenced for T0 plants and those with mutations were selfed or crossed to WT M82 plants for further characterization of

mutant alleles.
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Generation of hybrid plants for different KLUH dosages

To test the dosage-dependent e�ect of KLUH in an isogenic background with uniform “cherry” fruit type, the fertile T0

plant with CRISPR-Cas9 targeting SlKLUH (slkluhCR T0-1) was crossed with the SP accession LA1589. About half of F1

plants carried the Cas9 transgene (1:1 segregation of transgene). Analyses were focused on F1 plants that did not inherit the

Cas9 transgene, because they are a �xed, uniform genotype. In contrast, plants with the Cas9 transgene would be

genetically intractable for dosage analyses, because of the random chimerism that occurs within individual plants carrying

the Cas9 transgene. From eight individual F1 plants without the Cas9 transgene (genotypic group B), KLUH gene PCR

products were cloned and eight individual clones were sequenced. All eight plants were con�rmed to have only mutant

slkluh alleles and a WT SpKLUH allele. Sepal length, �ower length and fruit weight were quanti�ed from these plants. Most

of the F1 plants with the Cas9 transgene showed slightly smaller �oral organs, and several of these plants had extremely small

�oral organs and no fruit set. From four individual F1 plants with the Cas9 transgene that showed tiny �oral organs

(genotypic group C), sepal length and �ower size were quanti�ed. To determine whether this e�ect was due to

trans-targeting of SpKLUH, two plants with extremely small �oral organs were randomly selected and sequenced for

multiple PCR-cloned KLUH alleles. Consistently, sequencing of the two plants showed only mutant alleles for SlKLUH

and SpKLUH, consistent with the CRISPR-Cas9 trans-targeting the SpKLUH gene copy. WT M82 was crossed with

LA1589 and the F1 plants were used as controls.

STM3 Phylogenetic analyses and sequence analyses

Sequences of homologous proteins of STM3 and TM3 were obtained from tomato and Arabidopsis genome and aligned

using the ClustalW2.1 program in Geneious 11.1.5. Phylogenetic tree was constructed using “Geneious Tree Builder” with

Jukes-Cantor genetic distance model and Neighbor-Joining method with 1,000 bootstrap replicates. STM3 and TM3 fell

in the same clade with Arabidopsis �owering time regulator SOC1 [96].
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Delta SNP index plot and genome coverage plot

Mapping of genomic position of sb1 was reported in Soyk et al. [52]. Brie�y, F2 segregation population was generated from

crosses between a branched M82 j2TE ej2W double mutant with an unbranched j2TE ej2W double mutant (Fla.8924). A

group of excessively branched in�orescences (6–36 branches) and a group of clearly suppressed plants (1–4 branches) were

selected. An equal amount of tissue from each plant (∼0.2 g) was pooled for DNA extraction for the two groups using

standard protocols. Libraries were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 μg genomic DNA

sheared to 550 bp insert size and sequenced on an Illumina NextSeq platform at the CSHL Genome Center. After aligning

reads to reference genome (SL3.0), SNPs were called with samtools/bcftools [62,97] using read alignments for the two

genomic DNA sequencing pools in addition to the M82 [98] and Fla.8924 [99] parents. Called SNPs were then �ltered for

bi-allelic high-quality SNPs at least 100 bp from a called indel using bcftools [97]. Read depth for each allele at segregating

bi-allelic SNPs in 100-kb sliding windows (by 10 kb) was summed for the various sequencing pools and allele frequencies

were calculated. Finally, the di�erence in allele frequency (SNP index) between the branched and unbranched pools was

calculated and plotted across the 12 tomato chromosomes. One of the two regions that exceeded a genome-wide 95%

cut-o� in SNP index was located on chromosomes 1 and was named sb1. The candidate interval based on SL3.0 is

SL3.0ch01:80006250-86570024.

To show the genome coverages at the sb1 locus in M82, M82 j2TE ej2W, Fla.8924, and S. pimpinellifolium, we calculated the

coverage from Illumina data using bedtools multicov only counting properly paired reads in 10-kb windows across

chromosome 1. Depths in the four genotypes were normalized by dividing by the average depth using R.

Generation of F2 populations segregating for sb1 CRISPR alleles, j2TE and ej2W

Homozygous sb1CR-1 and sb1CR-del plants were each crossed with M82 j2TE ej2W, respectively, to construct two F2 populations

segregating at those three loci. In the F2 generation, plants were �rst genotyped for j2TE and ej2W mutations at seedling stage

in �ats. All double mutants were transplanted and further genotyped for CRISPR alleles and quanti�ed for in�orescence

complexity/branching.
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Quantification and statistical analysis

“n” is de�ned in all relevant �gure legends. All statistical tests were performed in R. Signi�cance is only ever de�ned for the

SV di�erential expression analysis (Figure 5.3C) and it is de�ned as a p-value less than 0.05. Two-sided Mann-Whitney U

tests were used for analysis in Figures 5.3C–5.3F. The Mann-Whitney U test provides a robust estimate to compute the

signi�cance of the expression change that does not depend on any assumption of underlying distributions. The p values for

these tests underwent FDR correction with the Benjamini-Hochberg procedure. Adjusted p values were aggregated using

Fisher’s method and a harmonic mean estimate. Detailed methods for these analyses can be found in “The Impact of SVs on

Gene Expression.” For expression analysis in Figures 5.4E, 5.5C, and 5.6E, numbers of accessions for each genotype are

presented in the �gures, and di�erences between groups were compared using two-tailed, two-sample t tests. Fruit guaiacol

and methylsalicylate contents were compared between genotypes using two-tailed, two-sample t tests. For quantitative

analysis in sepal length, �ower length, fruit weight, and in�orescence complexity n = number of �owers and in�orescences

quanti�ed was used for two-tailed, two-sample t tests. The number of plants (n = ) used for each genotype is also labeled in

the �gures. For the above analysis, all data points were plotted as single dots in the boxplots. For expression analysis with

qRT-PCR, three biological replicates of pooled meristems were used for each genotype and two technical replicates were

performed for each biological replicate. Mean values of normalized expression were compared using two-tailed, two sample

t tests. For �owering time quanti�cation, number of plants of each genotype is labeled in the �gure. Means ± s.d. were

shown and mean values between groups were compared by two-sample t tests.
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As genome assemblies become more accurate, the
standards by which we judge them must increase as
well, with the ultimate goal of perfectly representing
genomes.

6
Conclusion
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THE PRECEDING CHAPTERS OUTLINE MY CONTRIBUTIONS to the �eld of plant genomics which primarily

involve characterizing plant genotypes. Chapter 0 introduces how long DNA sequencing reads and associated mapping

technologies can produce genome assemblies that completely represent genotypes. Chapters 1 and 2 describe RaGOO and

RagTag, genome assembly sca�olding and improvement methods that facilitate chromosome-scale sequence-resolved

physical maps. RaGOO and RagTag use genome assemblies to improve other genome assemblies — a timely and

convenient methodological solution to a growing demand for assembly sca�olding. Importantly, the exceptional accuracy

of modern reference and draft genome assemblies mitigates RaGOO/RagTag sca�olding errors, even when the genome

assemblies represent distinct genotypes. While draft assemblies will become more accurate and contiguous, they will also be

more numerous, and many will still require sca�olding. Therefore, RagTag’s homology-based patching and sca�olding will

continue to be a cheap and convenient solution for accurate sca�olding at scale.

As genome assemblies become more accurate, the standards by which we judge them must increase as well, with the

ultimate goal of perfectly representing genomes [1,2]. While most future genome assemblies are expected to be

chromosome-scale, researchers must still devise ways to automatically polish, �nish, and validate raw assemblies [3,4]. This

is exempli�ed in chapter 4, where we developed specialized techniques to locally reassemble telomeres, polish centromeres,

and generally validate the COL-Cen reference genome. Beyond this speci�c example, many new so-called “gapless” or

“Telomere-2-Telomere” (T2T) genome assemblies still omit or misassemble rDNAs, telomeres, segmental duplications, and

satellite repeats. Assemblies will likely continue to imperfectly separate haplotypes and/or subgenomes, and as we showed in

our evaluation of the recent human T2T assembly, they will likely harbor systematic technology-speci�c sequencing errors

[1,3]. Correcting such errors is currently a laborious and manual process and a major bottleneck for genome assembly

projects, and a new generation of computational tools is needed to automate this process.

Even if eukaryotic genome assembly eventually becomes a facile process, researchers need tools to store and organize

pan-genomes and their metadata in order to actualize their utility. Already, researchers plan to assemble the genomes of

thousands of humans and other researchers are planning to assemble thousands of fungi, animals, and other eukaryotic
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genomes. In plants, genome assembly will be applied to new cultivars, wild accessions, mapping populations, model

genotypes, and mutant lines. To date, there is a lack of tools to organize and store such vast amounts of genome assemblies,

with most research groups using internal ad hoc systems. To address this problem, we have created the pan-sol speci�cation,

a set of guidelines for storing and organizing sample and associated genome resource data

(https://github.com/pan-sol/pan-sol-spec). The pan-sol speci�cation is in�uenced by the Vertebrate Genomes Project,

which similarly provides genome assembly organizational guidelines [1]. Additional work is needed to improve these

guidelines, build accompanying databases and software, and foster participation from scienti�c communities.

Beyond storing foundational sample and genome assembly information, the genomics community must create new ways to

store large databases and annotations that depend on speci�c assemblies. If this challenge is not addressed, plant genomics

communities will su�er the same fate as human genomics which is dependent on legacy reference builds due to the cost of

transitioning large databases to new and improved references [5]. Advances in cloud computing and “lift over” approaches

show promise as solutions to reannotate new genome assemblies [5–9]. Doing so will enable any individual genome

assembly within a pan-genome to serve independently as a robust reference genome.

Ultimately, the purpose of producing and organizing pan-genomes is to use them to study biological processes and to link

important phenotypes to underlying genotypes. Chapter 5 describes our use of long-reads to catalog SVs in 100 diverse

tomato accessions, ultimately uncovering broad and speci�c examples of SVs in�uencing important phenotypes.

Researchers must continue to sequence more plant genomes to uncover SVs in larger populations. This will enable the

discovery of important rare SVs, and it will also enable more robust genotyping of known SVs. Deeper catalogs of SVs and

accompanying phenotype data will facilitate a broader understanding of the function of natural SV alleles in diverse genetic

backgrounds via robust association mapping, machine learning, and probabilistic modeling. With rich functional

annotation of natural SVs, researchers will be able to more precisely engineer SV alleles to e�ciently produce speci�c

phenotypes [10,11].
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The natural successor to within-species pan-genomics is between-species pan-genomics. Such analysis in plants can reveal

how genome evolution in�uences domestication [12,13], which can in turn be combined with genome editing for de novo

domestication of minor crops [14–16]. Researchers can also leverage pan-genus genomes to study the relationship of gene

orthologs and paralogs as well as the evolution of gene and transposable element families [17–21]. While robust genome

assemblies facilitate cross-species comparisons, new specialized techniques are required for sensitive comparison of diverged

species, including at the intergenic, gene, transcript, coding sequence, and protein level [17,22–25]. Comparing accurate

genome assemblies both within and between species will provide a broad understanding of genome structure, function, and

evolution, further yielding important applications for agriculture.
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