
TECHNIQUES FOR HIGH PERFORMANCE MATCHING

A Dissertation

by

PING WANG

Submitted to the O�ce of Graduate and Professional Studies of

Texas A&M University

in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Paul V. Gratz

Committee Members, Alex Sprintson

Krishna Narayanan

Riccardo Bettati

Head of Department, Miroslav M. Begovic

August 2021

Major Subject: Electrical and Computer Engineering

Copyright 2021 Ping Wang

ABSTRACT

With the growth of big data application demands, improving high-performance comput-

ing (HPC) becomes an essential industry task. High-performance matching is a critical perfor-

mance path for HPC communications because it signi�cantly impacts computing performance

and profoundly a�ects networking performance. This dissertation focuses on improving the

high-performance matching in HPC networks to keep up with the increasingly heavy demands

of evolving applications.

This dissertation is tackling the matching problem from both the computational and network

aspects. On the one hand, the Message Passing Interface (MPI) is a de facto standard for the com-

munication of parallel processes in an HPC network [1]. MPI has delivered an excellent perfor-

mance for running large-scale scienti�c applications in petascale systems. Along with the petas-

cale system, the exascale system is evolving to run even larger applications where the computing

job size increases dramatically. This trend enlarges the message queues and degrades the MPI

message matching performance. With the increasing requirement of big data applications, MPI

message matching is a critical performance path for HPC communications. On the other hand,

with the blooming of network techniques and the fast-growing size of network applications, users

are seeking more enhanced, secure, and various network services. In an HPC network, the HPC

cluster comprises multiple interconnected nodes in a switched network. With the integration of

software-de�ned networking (SDN) technology into the HPC network, both the computational

and network resources can be allocated e�ciently according to the applications’ requirements.

Thus, SDN switches are deployed in HPC networks to support high-performance, di�erentiated

network services and guarantee the diverse users’ needs, such as �rewall, load balancing, and

quality of service [2]. In an SDN switch, packet classi�cation classi�es incoming packets to �ows

according to the rules generated in the control plane, which is a switch’s core function. Therefore,

packet classi�cation becomes a critical performance path for the HPC network.

First, this dissertation presents GenMatcher, a generic and software-only arbitrary matching

ii

framework for fast and e�cient searches on packet classi�cation. The goal is to represent arbi-

trary rules with e�cient pre�x-based tries. In order to generate e�cient trie groupings and expan-

sions to support all arbitrary rules, we propose a clustering-based grouping algorithm to group

rules based upon their bit-level similarities. Our algorithm generates near-optimal trie groupings

with low con�guration times and provides signi�cantly higher match throughput than prior tech-

niques. Experiments with synthetic tra�c show that our method can achieve a 58.9X speedup

compared to the baseline on a single-core processor under a given memory constraint [3]
1
.

Second, to further improve the GenMatcher performance, this dissertation proposes GenS-

Matcher, an e�cient Single Instruction Multiple Data (SIMD) and cache-friendly arbitrary match-

ing framework. GenSMatcher adopts a trie node with a �xed high-fanout and a varying span for

each node depending on the data distribution. The layout of the trie node leverage cache and

modern processor features such as SIMD instructions. To support arbitrary matching, we inter-

pret arbitrary rules into three �elds: value, mask, and priority, and then propose the GenSMatcher

extraction algorithm to process the wildcard bits to support randomly positioning wildcards in

arbitrary rules. At last, we add an array of wildcard entries to the leaf entries, which stores the

wildcard rules and guarantees matching results. Experiments show that GenSMatcher outper-

forms GenMatcher under a large scale of the ruleset and key set regarding search time, insert

time, and memory cost. Speci�cally, with 5M rules, our method achieves a 2.7X speedup on

search time, and the insertion time takes ∼ 7.3 seconds, gaining a 1.38X speedup; meanwhile,

the memory cost reduction is up to 6.17X.

Third, to guarantee MPI ordering feature and high-performance matching for big applica-

tions on MPI tag matching, this dissertation introduces a new hybrid data structure and match-

ing mechanism to address the performance challenges, reducing the matching operation time in

the posted receive queue (PRQ) and unexpected message queue (UMQ). The hybrid data struc-

tures are composed of tries and hash maps. We evaluate our mechanism on microbenchmarks

1
This paragraph is reprinted with permission from GenMatcher: A Generic Clustering-Bashed Arbitrary Match-

ing Framework by Ping Wang, Luke McHale, Paul Gratz, Alex Sprintson, 2018. ACM Transactions on Architecture

and Code Optimization, Volume 15, Issue 4, Article No. 51, https://dl.acm.org/doi/10.1145/3281663.

iii

and existing MPI applications with di�erent numbers of processes. Experiments with synthetic

message �ow show that our method can achieve a 20X search time speedup compared to the

single-core processor’s baseline. For the PICSARlite application, we integrated our Hybrid and

Intel mechanism into the MPICH library and evaluated their performance on the Ada cluster of

Texas A&M University, which has 793 general compute nodes. The experiment outcome shows

that our proposed Hybrid mechanism can achieve up to 1.55X speedup compared to the MPICH

library method.

iv

DEDICATION

To my husband, Derek, and my loving parents

v

ACKNOWLEDGMENTS

First and foremost, I would like to sincerely thank my advisor, Paul V. Gratz, for his endless

support, advice, and insight. Paul always kept faith in me, guided me to explore the research

problems from various aspects, and mentored and encouraged me to tackle them. I would not

complete my research without Paul’s advice and support.

I would also like to thank my committee members, Alex Sprintson, Krishna Narayanan, and

Riccardo Bettati, for their helpful feedback on my research. During my time at TAMU, I was very

fortunate to have been a part of the Internet 2 Technology Evaluation Center. I want to thank

Walt Magnussen for the two-years funding support and public safety experience. Also, I would

like to thank the Texas A&M High Performance Research Computing Center. Thanks for the

environment and techniques support.

I would like to acknowledge my colleagues at Computer Architecture, Memory Systems and

Interconnection Networks (CAMSIN). I was very fortunate to work with you all. Special thanks to

Mian Qin and Luke McHale. Thank both of you for always helping me debugging and discussing

issues in my research.

Finally, I would like to thank my husband and my parents, who have unconditionally sup-

ported me during my Ph.D. journey. I am very fortunate to have all your love and support.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Paul V. Gratz,

Professor Alex Sprintson, and Professor Krishna Narayanan of the Department of Electrical and

Computer Engineering and Professor Riccardo Bettati of the Department of Computer Science

and Engineering.

Chapter 5 was collaborate with Pavel Shamis of ARM Inc.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by the teaching assistant fellowship from Texas A&M Univer-

sity.

vii

NOMENCLATURE

PRQ Posted Receive Queue

UMQ Unexpected Message Queue

HPC High Performance Computing

SDN Software De�ned Network

SIMD Single Instruction Multiple Data

SMP Symmetric Multiprocessing

SSE Streaming SIMD Extensions

AVX Advanced Vector Extensions

MPI Message Passing Interface

OGAPS O�ce of Graduate and Professional Studies at Texas A&M

University

B/CS Bryan and College Station

TAMU Texas A&M University

TCAM Ternary Content-addressable Memory

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . v

ACKNOWLEDGMENTS . vi

CONTRIBUTORS AND FUNDING SOURCES . vii

NOMENCLATURE . viii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xii

LIST OF TABLES . xiv

1. INTRODUCTION* . 1

1.1 High-Performance Matching . 1

1.1.1 Packet Classi�cation . 2

1.1.2 MPI Tag Matching . 5

1.2 Dissertation Statement . 8

1.3 Dissertation Organization . 8

2. BACKGROUND* . 9

2.1 Data structures . 9

2.1.1 Array. 9

2.1.2 Binary trie . 10

2.1.3 Binary Pactricia trie . 11

2.1.4 M-ary trie . 12

2.1.5 Adaptive radix trie. 13

2.1.6 Height optimized trie . 14

2.1.7 Hash table . 18

2.2 Hardware . 19

2.2.1 SIMD instruction set . 19

2.2.2 TCAMs . 19

2.3 Conclusions . 20

ix

3. GENMATCHER: A GENERIC CLUSTERING-BASED ARBITRARY MATCHING FRAME-

WORK* . 21

3.1 Introduction . 21

3.1.1 Motivation . 22

3.1.2 Relationship with Prior Art . 23

3.2 Related Work. 23

3.3 GenMatcher . 25

3.3.1 Map Phase . 26

3.3.2 Group Phase . 28

3.3.3 Build Phase . 29

3.3.4 Objectives and Challenges . 30

3.4 The GenMatcher Grouping Algorithm . 31

3.4.1 Similarity Function . 31

3.4.2 GenMatcher Grouping Algorithm . 32

3.5 Evaluation . 35

3.5.1 Methodology . 35

3.5.2 Comparison with Brute Force Grouping . 37

3.5.3 Scalability . 39

3.5.4 Performance Comparisons . 40

3.5.4.1 Search time: . 40

3.5.4.2 Memory cost: . 43

3.6 Conclusions . 46

4. GenSMatcher: A GENERIC SIMD-BASED ARBITRARY MATCHING FRAMEWORK 48

4.1 Introduction . 48

4.2 Background . 51

4.2.1 Relationship with Prior Art . 52

4.2.2 Motivation . 56

4.2.2.1 Why we study arbitrary matching? . 56

4.2.2.2 Why we adopt HOT data structure? . 56

4.3 GenSMatcher design . 57

4.3.1 Insert operation . 57

4.3.2 Search operation . 65

4.4 Evaluation . 65

4.4.1 Methodology . 66

4.4.2 Performance Comparisons . 66

4.4.2.1 Search time: . 67

4.4.2.2 Insert time:. 70

4.4.2.3 Memory cost: . 71

4.4.3 Scalability . 72

4.5 Conclusion . 73

5. A HYBRID MESSAGE MATCHING MECHANISM FOR HPC COMMUNICATIONS 74

x

5.1 Introduction . 74

5.2 Motivation. 75

5.3 Design . 76

5.3.1 Hybrid Data Structure Design . 76

5.3.2 PRQ Matching Framework . 78

5.3.3 PRQ_T Data Structure . 79

5.3.4 PRQ_H Data Structure . 82

5.3.5 UMQ Matching Framework . 83

5.4 Evaluation . 84

5.4.1 Methodolody . 84

5.4.2 Microbenchmark performance . 85

5.4.2.1 Search time: . 85

5.4.2.2 Search attempt: . 86

5.4.2.3 Memory cost: . 87

5.4.3 NPB benchmark performance . 88

5.4.4 PICSARlite benchmark performance . 90

5.5 Conclusions . 92

6. CONCLUSION . 93

REFERENCES . 95

xi

LIST OF FIGURES

FIGURE Page

1.1 Tag matching framework . 7

2.1 Binary trie data structure. 10

2.2 Binary Pactricia trie data structure. 11

2.3 M-ary Pactricia trie data structure. 12

2.4 ART data structure. 14

2.5 An example of a rule set. 15

2.6 An example of construction of HOT data structure. 16

3.1 Arbitrary packet matching. 21

3.2 GenMatcher framework. 26

3.3 Grouping examples.. 29

3.4 Build trie examples. 30

3.5 Time complexity comparison. 38

3.6 GenMatcher grouping algorithm scalability. 39

3.7 Con�guration time comparisons between Bitweaving and GenMatcher.. 40

3.8 Search time speedup comparison, normalized against Linear. 41

3.9 Memory cost versus the number of groups at di�erent rule sample sizes. 44

3.10 Performance comparisons at di�erent memory threshold. 45

3.11 Memory cost per rule. 46

4.1 Insertion procedure of a wildcard ruleset. 62

4.2 Insertion procedure of a pre�x ruleset. 64

xii

4.3 Search time performance comparison with respect to di�erent number of rules on

a small scale. 67

4.4 Search time performance comparison with respect to di�erent number of keys on

a large scale. 68

4.5 Search time performance comparison with respect to di�erent number of rules. 69

4.6 Insert time performance comparison.. 71

4.7 Memory cost comparison. 72

5.1 Send message side matching framework . 78

5.2 The detail data structure for PRQ_T . 81

5.3 Receiver message side matching framework . 83

5.4 Execution time. 86

5.5 Search time speedup. 86

5.6 Total search attempt. 87

5.7 Memory cost. 88

5.8 NPB Benchmark IS performance comparisons with respect to various number of

processes. 89

5.9 Total search attempts over IS Benchmark. 89

5.10 PRQ and UMQ queue length over IS Benchmark. 90

5.11 PRQ and UMQ queue length over PICSARlite Benchmark. 90

5.12 PICSARlite Benchmark performance comparisons with respect to various number

of processes. 91

xiii

LIST OF TABLES

TABLE Page

3.1 The number of trie nodes for BF and GenMatcher. 37

3.2 The number of groups for BF and GenMatcher. 38

3.3 Grouping result on Rule num = 4096 . 42

3.4 The number of trie nodes result on Rule num = 4096 . 42

3.5 The number of inserted rules result on Rule num = 4096 . 43

3.6 Grouping result on Rule num = 8192 . 45

3.7 Expansion result on Rule num = 8192 . 45

4.1 Complexity comparisons of the di�erent trie data structure . 53

4.2 An example of a wildcard ruleset. 58

4.3 An example of a pre�x ruleset . 63

4.4 Evaluation Parameters . 66

4.5 Parameters of the trie. 68

4.6 The number of wildcard entries inserted in the trie . 70

4.7 The insert time speedup between GenSMatcher and GenMatcher on a large scale . . 71

4.8 The memory cost comparisons between GenSMatcher and GenMatcher on a small

scale . 71

4.9 The memory cost comparisons between GenSMatcher and GenMatcher on a large

scale . 72

5.1 Message types in PRQ . 77

5.2 Message types in PRQ_T. 77

5.3 Message types in PRQ_H . 77

5.4 Node types in trie data structure . 81

xiv

5.5 PRQ_T entries . 82

xv

1. INTRODUCTION*

1.1 High-Performance Matching

Over the past decades, with the increasing demands of high-performance data centers, there

has been a steady evolution in the high-performance computing (HPC) industry. To process the

large volume applications and achieve higher performance, the interconnect is the enabling tech-

nology. Traditionally, a high-performance compute cluster consists of a single-node CPU, which

has been evolved to multi-nodes across the entire cluster. Furthermore, the processor has been

developed from single-core to many-core. To keep pace with the heavy demands for Terascale

performance, Petascale performance, and even Exascale performance in the industry, the compa-

nies must keep seeking new techniques to improve performance and satisfy applications’ needs.

High-performance matching is a critical performance path for HPC communications because

it has a signi�cant impact on computing performance and has profound e�ects on networking

performance. This dissertation focuses on improving the high-performance matching in HPC net-

works to keep with the heavy demands for growing applications. The data center is composed

of three parts: compute, networks, and storage. The dissertation is tackling the matching prob-

lem in both compute and network aspects. From the computing aspect, the computing job size

grows with the growth of Exascale computing. This trend causes the message passing interface

(MPI) message queue to grow, degrading the MPI tag matching performance. Thus, MPI message

matching is a critical performance path for HPC communications. From the networking aspect,

users have required high demand for more secure, reliable, and various network services as the

network technology keeps growing fast and network applications retain emerging. Packet clas-

si�cation is a critical component in a switch network. Moreover, with SDN and cloud computing

*Section 1.1.1 is reprinted with permission from GenMatcher: A Generic Clustering-Bashed Arbitrary Matching

Framework by Ping Wang, Luke McHale, Paul Gratz, Alex Sprintson, 2018. ACM Transactions on Architecture and

Code Optimization, Volume 15, Issue 4, Article No. 51, https://dl.acm.org/doi/10.1145/3281663.

1

proposed, the Internet requires high-performance packet classi�cation of multi-�elds. Therefore,

the packet classi�cation in a switch is a critical component for HPC communications.

1.1.1 Packet Classi�cation

Packet classi�cation is an enabling function for a variety of applications within networking,

including Quality of Service (QoS), security, monitoring, and multimedia communications. The

emerging distributed computing and big data applications require impose strict requirements for

data processing delays and throughput. On the other hand the emergence of Software De�ned

Networking (SDN) and a push towards more general purpose networking hardware is driving

the need for optimized software approaches to high throughput matching. Accordingly, in this

dissertation we present a generic and e�cient pure-software mechanism for arbitrary matching.

Our algorithm can be used in a broad range of packet classi�cation application, including SDN

packet processing pipeline.

In general networking applications, packet classi�cation typically includes bit-wise matching

of a key against a pre-de�ned rule set [4, 5, 6, 7, 8]. The key is typically a a subset of packet header

�elds, but might also include other meta-data derived from the packet header.

The matching functions used in packet classi�cation typically come in four forms:

• Exact match: An exact match rule corresponds to exactly one matching key (i.e. no wild-

card bits).

• Rangematch: A range match rule de�nes a sequential set of possible matching keys. This

form of matching is occasionally used in de�ning a rule which covers multiple matching

ports (e.g. from 1− 30 inclusive).

• Arbitrary match: An arbitrary match rule contains wildcards (i.e. a wildcard bit can be

either 0 or 1) at any bit position, matching 2n possible keys for each wildcarded bit.

• Pre�xmatch: In pre�x matches, all the wildcards must uniformly cover the low-order bits

of the rule.

2

While there exists a large body of research on packet matching, most of this work focuses

on pre�x and range matching. With the developing trends towards new SDN services, big data,

and High Performance Computing (HPC) matching is no longer performed with �ve standard

header �elds. New classi�cation applications examine additional �elds, increasing rule �exibility.

Further, parallel computing techniques for machine learning and big data analytics are blooming

and can process increasing volumes of data simultaneously. Thus, more generic packet matching

methods are required to deal with all the various matching requirements
1
.

Pre�x matching has been most heavily studied in prior work [9]. An essential improvement

for software-based pre�x matching is the trie data structure [9]. A trie is a binary tree data

structure that signi�cantly accelerates matching by bounding the search complexity to the tree

depth instead of the total rule count.

While tries can signi�cantly accelerate matching for situations where pre�x matches are de-

�ned, ultimately, this approach is insu�cient to meet all matching needs. In particular, tries

cannot be directly used in non-pre�x, arbitrary match scenarios where wildcards may appear at

any bit-position. Unfortunately, as we will describe, in most current applications, while pre�x

matches may be de�ned for particular �elds of a rule when multiple �elds of type other than

exact match are de�ned in a rule, the problem becomes one of arbitrary matching. Accordingly,

this dissertation proposes a software framework for arbitrary matching, which considers the per-

formance trade-o� between search time and memory cost. This framework aims to achieve the

highest search throughput, under a given memory constraint, for generic arbitrary matching.

We propose GenMatcher, a generic clustering-based arbitrary matching framework and a

software-based arbitrary matching approach. The basic idea of GenMatcher is to transform

the ruleset into a minimal (under a given memory bound), optimized set of pre�x format rule

groups. All rules are carefully organized into a minimal number of groups, such that each group

constructs a trie – transforming the group’s subset of arbitrary match rules into pre�x match

rules.

1
Range matching can be trivially transformed into a small number of pre�x matches. Thus we do not discuss it

further.

3

Creating a minimal set of pre�x rule groups from the initial arbitrary rules requires a careful

transformation. GenMatcher [3], uses a correlation clustering-based grouping algorithm. To

enable this clustering grouping algorithm, GenMatcher �nds the relationships among all rules

and allocates them into separate groups according to their similarities. For a given number of

rules N , the GenMatcher grouping algorithm’s complexity is O(N2). This performance is an

enormous improvement versus the complexity of a brute force search for the optimal grouping,

which we show has a complexity of O(NN).

After GenMatcher �nds the best grouping of rules, we employ a bit swapping algorithm based

on prior work [10] to rearrange the bit order, such that the largest possible pre�x match is con-

structed. After the bit swapping operation, if there are any rules with wildcard bits outside of

the pre�x, we expand these rules to ensure all rules become pre�x rules. Because of this rule

expansion, memory may rapidly exceed the available memory in the system. Thus, one objective

of GenMatcher is to improve search time under a given memory bound. Finally, GenMatcher

inserts these transformed pre�x rules into trie data structures, one trie per group. Then for each

incoming key, we traverse all the tries to �nd a match.

Challenges: GenMatcher employs its grouping algorithm to allocate all the rules into minimal

groups under a given memory constraint threshold. In general, clustering [11, 12, 13, 14, 15, 16,

17, 18] is a powerful tool for �nding the underlying structure of a large data set [19, 20]. Our

goal is to apply the clustering result to build a data structure for e�cient arbitrary matching.

To implement the e�cient arbitrary matching, we must address several challenging technical

problems:

• We need to determine a similarity function to correlate and group the rules.

• We need to develop a grouping algorithm to maximumly group similar rules together based

on the similarity function.

• We must guarantee that the grouping algorithm will produce a data structure that can

satisfy performance requirements while remaining within a given memory constraint.

4

Contributions: GenMatcher is a generic arbitrary matching approach that can deal with ar-

bitrary rules without requiring speci�ed human hints or other con�guration metadata. Our

GenMatcher has the following features:

• We introduce GenMatcher, a generic arbitrary matching framework, which can process

any form of matching used in packet classi�cation. GenMatcher is the �rst framework we

know for optimizing general, bit-wise arbitrary matching under a given memory bound.

• We develop a novel similarity function for use in correlation clustering-based grouping.

This similarity function is the �rst function to be used in arbitrary matching to the best of

our knowledge. The similarity function is a bit-wise based, e�cient means to extract the

relationship between rules. Any two rules in a rule table have a di�erent similarity value

based on the overlapping wildcard distributions. The similarity value is used to allocate

all the rules into minimal groups under a memory constraint to balance search time with

memory cost.

• Unlike prior arbitrary matching techniques, GenMatcher does not require specialized hard-

ware. It is a pure software approach that can be applied to any general matching problem.

Since GenMatcher utilizes a binary trie data structure to improve performance further, we ex-

plore the optimization of trie data structure. Thus, we propose GenSMatcher, an e�cient SIMD

and cache-friendly arbitrary matching mechanism. GenSMatcher can take advantage of the mod-

ern processor features.

1.1.2 MPI Tag Matching

MPI is a de facto standard for the communication of parallel processes in High-Performance

Computing (HPC) network [1]. It de�nes how data is moved from the address space of one process

to another. HPC network requires the provider to move data faster among the various HPC

cluster nodes and eliminate wasted compute time. The MPI standard de�nes how the processes

communicate with each other via tag matching operations. Because of this, the tag matching

performance plays a crucial role in HPC performance.

5

The emerging HPC applications require the imposition of strict requirements for data process-

ing delays and throughput. Accordingly, in this dissertation, we present a hybrid data structure

for MPI tag matching to improve MPI communication. The message envelope is used to dis-

tinguish messages whose information consists of a tuple of �elds: {contextID, rankID, tag},

represented by (c, s, t). A receive operation can receive a sending message if its envelope matches

the source, tag, communicator values speci�ed by the receive operation [21].

As shown in Figure 1.1, there are two tables used for matching. One table is posted receive

queue (PRQ), which stores the message envelop speci�ed by the receive operations. The other one

is the unexpected message queue (UMQ), which stores the non-matched message envelop from

the sending operations. Send operation and receive operation are triggered by MPI_Send() and

MPI_Recv(), respectively. The two operations are asynchronous and independent. In Figure 1.1,

the solid line represents the procedure for the send operation. The dashed line represents the

receive operation’s procedures.

The sending message searches through the PRQ and checks if there is a matching received

message. If it is a match, the matched receive message will be deleted from the PRQ, and the

sending message payload will be stored into the bu�er speci�ed by the received message. If it

is a non-match, the sending message will be inserted into the UMQ. For the receive operation

side, when a new receive operation arrives, it will search through the UMQ to check if there is

a matching sending message. If it is a match, the matched entry will be deleted from UMQ, and

the corresponding send message’s payload will be stored into the bu�er speci�ed by the received

message. If it is a non-match, the received message will be inserted into the PRQ.

Note, there are three operations for both PRQ and UMQ: search, delete, and insert. The two

tables’ �elds are represented by (p, c, s, t), which stands for message sequence ID (priority), com-

municator index, source rank ID, and tag value. MPI messages are matched using three �elds

(c, s, t). P is used for keeping the order of messages, which guarantees the order semantic. At the

end of application processing, all the send messages and receive messages are matched perfectly.

In Figure 1.1, we can see that all the values of each �eld for send messages are speci�ed

6

MPI_Send

(c, s, t)

Trigger

Send

Operation

(c, s, t)

Search

Match

Unexpected Message Queue

(UMQ)

No

Insert

Delete Yes

1

2

3

MPI_Recv

(c, s, t)

Trigger

Recv

Operation

(c, s, t)

Search

Match

YesDelete

2

No

Insert

3
1

Send Message (SM)

Receive Message (RM)

Posted Receive Queue

(PRQ)

p c s t

1 2 9 6

2 3 3 4

p c s t

1 2 * *

2 2 3 *

p c s t

3 1 * 3

4 3 3 *

p c s t

3 1 5 3

4 2 3 6

Figure 1.1: Tag matching framework

numbers. However, for receive messages, there may have a wildcard on the �eld source or tag.

This is the reason why we need to guarantee the order semantic. Since the received message

can have a wildcard on-�eld source and tag, there might have multiple matches between send

messages and receive messages. The semantic order rules guarantee that the pair with the highest

priority sending and receiving messages will always match the result when there are multiple

match candidates. Thus, to guarantee correct application processing, the match result always

needs to be the highest priority.

The challenge of MPI tag matching is to achieve high performance while guaranteeing the

order semantic. Currently, the linked list is a traditional data structure to store all the messages

and guarantee the communications between processes across cores run successfully. However, as

the applications scale up, the linked list’s length becomes very large, and the search performance

is signi�cantly degraded. Thus, improving the tag matching performance is a crucial problem.

7

This dissertation proposes a hybrid data structure combined with a trie and hash map, which can

process the wildcard messages e�ciently and improve the matching performance.

1.2 Dissertation Statement

In this dissertation, we introduce three application-driven arbitrary matching mechanisms

that can improve the matching performance. First, We propose GenMatcher, a generic, software-

based arbitrary matching framework. All rules are represented in exact or pre�x format and

inserted into a binary trie. Second, we explore the SIMD and cache-friendly data structure and

develop a SIMD-based arbitrary matching mechanism, namely, GenSMatcher. GenSMatcher out-

performs GenMatcher and achieves up to 2.7X search time speedup. Finally, we propose our

Hybrid MPI tag matching mechanism in order to improve the HPC matching performance.

1.3 Dissertation Organization

In the remaining chapters, Chapter 2 summarizes the current matching mechanism in terms

of software and hardware aspects. Chapter 3 introduces a generic clustering-based arbitrary

matching framework (GenMatcher). Chapter 4 extends the GenMatcher and proposes a generic

SIMD-based arbitrary matching mechanism (GenSMatcher). Chapter 5 introduces a hybrid mes-

sage matching mechanism for HPC communications and shows how this new mechanism can

e�ectively improve the matching performance. Finally, Chapter 6 concludes this dissertation.

8

2. BACKGROUND*

This chapter presents a background of matching mechanisms. We summarize the current

technologies for generic matching from both software and hardware aspects. From the software

side, we mainly focus on data structures. From the hardware side, we consider cache e�ciency

and data-level parallelism.

In this dissertation, we study the matching operations at bit-level. The matching operations

are composed of two objects. One is the ruleset that builds the database. The other is the key

set, which traverses the database and tries to �nd a match. For di�erent applications, the proper-

ties/distributions of the ruleset and key set might be di�erent. However, from the bit-level view,

all the data are bit-0, bit-1, or bit-∗1
. The matching operations in various applications typically

come in four forms: Exact match, Range match, Arbitrary match, and Pre�x match, where the ar-

bitrary match is the generic form that covers all the di�erent matching types. After determining

the matching types, we present the existing matching mechanisms from both the software and

hardware aspects.

2.1 Data structures

We build the database by inserting all the rule sets into a data structure to search into and

implement the matching operations. This section introduces all the common data structures and

explains how to implement the matching operations using these data structures.

2.1.1 Array

An array is the most straightforward data structure to store the data set. For the insertion

operations, all the rules are inserted into the array. The time complexity isO(N), whereN is the

*Section 2.2.2 is reprinted with permission from GenMatcher: A Generic Clustering-Bashed Arbitrary Matching

Framework by Ping Wang, Luke McHale, Paul Gratz, Alex Sprintson, 2018. ACM Transactions on Architecture and

Code Optimization, Volume 15, Issue 4, Article No. 51, https://dl.acm.org/doi/10.1145/3281663.

1
The symbol ∗ denotes the wildcard bit, which can be either bit-0 or bit-1.

9

number of rules. For the search operations, the time complexity is O(N). If N is a large number,

the matching performance will be getting worse. To improve the search performance, next, we

present the trie data structure.

R1: 00000000

R2: 00000010

R3: 00000011

R4: 11111100

R5: 11111111

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1

1

1

1

1

0

0

R1
R2 R3

R4 R5

Figure 2.1: Binary trie data structure.

2.1.2 Binary trie

Tries are tree data structures that a node’s children share a common pre�x. That is, the trie

data structure stores the rules by its digital representation [22]. If a rule is an integer, each bit of

the rule is inserted into the trie. If a rule is a string, each char character will be inserted into the

trie. The trie is an order-preserving structure, which is the unique feature of its data structure. A

binarytrie is the basic trie structure, in which each node can have at most two children, known

as the left child and right child. Compared to linear search via an array, the trie search’s time

complexity is O(h), where h is the trie height, typically determined by the length of the rule’s

digital representation. In general, trie has a better performance than O(N). Suppose a rule is an

8-bit integer whose bits are inserted into the trie following the bit-order during the insert process.

Bit-0 will be inserted into the left child path, and bit-1 will be inserted into the right child path.

Thus, the trie height will be 8. During the search process, for each 8-bit key, it searches through

10

the entire trie to �nd if there is a match. Thus, the search might be slow due to a considerable

tree height.

Figure 2.1 shows an example of a binary trie. In this binary trie data structure, �ve rules are

inserted into the trie. R1, R2, R3, R4, and R5 are leaf nodes. All other nodes are internal nodes.

Each node has at most two children. For an 8-bit rule, each bit is stored into a trie node. The

�gure shows that the height of the trie is 8. Accessing a trie node generally produces at least one

cache line �ll [23]. Therefore, the lower bound of the counts of cache line �lls is the height of

the trie. In the worst case, the searching process needs to traverse from the root node to the leaf

node. To improve the search performance, reducing the trie heights and the number of cache line

�lls is needed. Next, we will introduce the Binary Pactricia [24] trie.

R1: 00000000

R2: 00000010

R3: 00000011

R4: 11111100

R5: 11111111

R1

00
1

1
0

R2 R3 R5R4

00 11

000000 111111

Figure 2.2: Binary Pactricia trie data structure.

2.1.3 Binary Pactricia trie

In Figure 2.2, a binary Patricia trie is depicted. From the �gure, we see �ve rules stored in this

binary Patricia trie, which has four inner nodes (including the root). Thus, binary Patricia trie

has the property: N − 1 inner nodes and N leaf nodes, where N is the number of rules stored

in the trie data structure. In contrast to the binary trie, the binary Patricia trie cut down the trie

11

height by bypassing the nodes with a single child (left child or right child) [25]. The key idea

is to compress the rule path. For a long path where the nodes have only one side child, we can

compress the multiple nodes into one single node. Compared with Figure 2.1, the trie height is

reduced from 8 to 3. However, since this Patricia trie is still in binary, the Patricia trie still has

a signi�cant tree height with a more extensive data set. Therefore, we introduce the M-ary trie

next.

R1: 00000000

R2: 00000010

R3: 00000011

R4: 11111100

R5: 11111111

R3R2
R1

00

R5R4

00 11

000000 111111

10
11

Figure 2.3: M-ary Pactricia trie data structure.

2.1.4 M-ary trie

In order to further decrease the trie height, we enlarge the span from 1-bit to M -bit. Here

we take M = 2, where M is the span, and 2M is the upper bound of the counts of children of

each trie node, known as the fanout. As shown in Figure 2.3, the children of each node have

bit-00, bit-01, bit-10 and bit-11. In comparison with Figure 2.2, we see that the overall trie height

is reduced from 3 to 2.

Although increasing the span can reduce the trie height, there can still be downsides. The

increased span decreases the trie height linearly while the memory cost increases exponen-

tially [26]. Since the span is �xed, each node is allocated with 2M pointers in an array, no matter

what the data distributions are. Thus, for sparsely distributed rules, a large amount of memory

12

is wasted given that the majority of the pointers allocated to the nodes are empty. The number

of children of each node, namely the fanout, is generally smaller than the value 2M , especially in

the lower level of a tree.

From the SIMD instruction aspect, modern CPUs allow performing multiple comparisons

using a single SIMD instruction. M-ary trie can make use of SIMD instructions to reduce the

the number of comparison. From the aspect of cache e�ciency, since increasing M decreases

the number of cache line �lls, then the number of cache misses is reduced. This improves cache

e�ciency. However, it also enlarges the node size, leading to more wasted memory. Thus, it is

vital to �nd the sweet spot between the search performance and memory cost. Next, We introduce

some trade-o� data structures.

2.1.5 Adaptive radix trie

Considering the above traditional binary search trie data structures or M-ary trie, they cannot

make full use of the modern hardware features since they do not allow for cache utilization and

SIMD utilization optimally. [26] proposes an adaptive M-ary radix tree, whose maximal fanout

can go up to 256 children. This paper utilizes four di�erent node types to reduce memory cost

and improve cache e�ciency depending on data distribution. Also, it utilizes SIMD instructions

to improve the search performance via data-level parallelism.

Figure 2.4 represents an adaptive radix trie (ART), where each rectangle is a trie node that

has a di�erent node size according to their children counts. If a node has many children, we

assign the node with a bigger size. Otherwise, the node is allocated to a smaller size. You can

see that a larger rectangle has more pointers that point to its respective children in the �gure.

The ART node is con�gured with a relatively large span and a varying fanout depending on the

corresponding node size, balancing the search time performance and memory cost. Since the

trie’s height is determined by the rule length and the span size, the height is not a�ected by the

adaptive node’s design. However, the adaptive nodes lead to a more negligible memory cost by

reducing the nodes’ sizes. Consequently, given a constrained memory size, we can choose a larger

span, resulting in a smaller height. Hence, ART enhances the search performance along with the

13

memory cost. Because of the �xed span size, the trie height is still determined by the rule length.

Thus, the ART is an unbalanced trie when the data is sparsely distributed.

Figure 2.4: ART data structure.

For all the tries mentioned earlier, the trie node’s span size is a �xed value. However, nowa-

days the big data are all application-driven. Various applications have di�erent data distributions.

Some big data is more sparsely distributed. That data is inserted into a trie, in which each level

has a di�erent data size. If a �xed span size is used, there will be a large amount of memory

wasted. In order to alleviate this impact from sparse data, we must build a �exible data structure

suitable for data-dependent applications.

2.1.6 Height optimized trie

Height Optimized Trie (HOT) [25] is a new data structure designing for a main-memory

database with high performance and low memory cost. Unlike each node in ART with a �xed

span size and various fanouts, HOT proposes that each node has its respective span size depend-

ing on the data distribution. For a conventional trie, it has an exact span and data-dependent

fanout. However, HOT produces a data-dependent span
2

and an explicit maximum fanout
3 k. In

the details, HOT proposes a composite node composed of k binary Patricia trie node. Thus, each

composite node has a �xed maximal number of children/leaf Binary Node, but each child may

2Span is de�ned as the number of bits of a node, e.g., the binary trie has a span of 1.

3
In any tree data structure, the fanout of a node is de�ned to be the number of children the node has. The fanout

of a tree is de�ned to be the maximum fanout of any node in the tree.

14

involve di�erent bit positions. That is, each compound node has a di�erent span size and span

bits.

To trade o� the memory cost and search performance, HOT stores the partial rules extracted

from the discriminative bits, which are the discriminating bits between the di�erent rules. There-

fore, the memory cost is decreased, especially for the sparse data. We demonstrate a ruleset in

Figure 2.5. Each rule is an 8-bit data and HOT insert rules based on the discriminative bits be-

tween di�erent rules stored in the trie. We index the bit from the least signi�cant bit to the most

signi�cant bit. Thus, the rightmost bit is bit-0, and the leftmost bit is bit-7.

R1: 00000000

R2: 00000010

R3: 00000011

R4: 11111100

R5: 11111111

R6: 11011111

R7: 00010000

Figure 2.5: An example of a rule set.

For building the trie, HOT insert rules one by one. Before any insertion, HOT traverses the

trie until the compound node with the missing match BiNode 4
is found. Here we assume k = 3

such that each compound node can have up to 3 leaf children nodes. For the �rst rule R1, they

insert the rule into the root since the trie is empty and there is no comparison. For the second

rule,R2, because the trie is not empty, before insertingR2, HOT needs to traverse the current trie

data structure to �nd the missing match BiNode in a compound node. For this case, we compare

R2 00000010 with R1 00000000 and �nd the missing match BiNode bit-1. Therefore, a �rst new

discriminating BiNode bit-1 is constructed and added into the a�ected compound node as long

as the compound node has less than k leaf entries after insertion. For the third rule R3, HOT

4BiNode is a binary Patricia node in a compound node.

15

traverse the trie �rst and �nd the missing match bit-0. Next, a second new discriminating BiNode

bit-0 is generated and placed in the dedicated compound node.

For ruleR4, the new discriminative bit is bit-7, as shown in Figure 2.6 (c), this compound node

already has three leaf entries. Thus, a new compound node is created, as shown in Figure 2.6 (d).

The Rule R5 generates the discriminating bit-1 under the bit-7 path, as shown in Figure 2.6 (e).

For rule R6, it generates the new discriminative bit-5 and a new compound node. Finally, for the

last rule R7, it creates discriminative bit-4 shown in Figure 2.6 (g).

.
.

R2 R3

R1

0 1

R4 R5

bit−7

0 1

bit−1

0 1

0 1

bit−1

(e)

.
.

R2 R3

R1

.
.

0 1

0 1

R6

R4 R5

bit−1

bit−7

0 1

bit−1

0 1

0 1

bit−5

(f)

R4
.

.

R2 R3

R1

0 1

0 1

bit−7

0 1

bit−1

(d)

R2 R3

R1

(c)

bit−1

0 1

0 1

bit−0(a)

R1

R2R1

0 1

bit−5

bit−7

0 1

R7

.
.

0 1

0 1

R6

R4 R5

bit−1

.
.

R2 R3

R1

0 1

0 1

(b)

bit−1

0 1

bit−0
bit−0 bit−0

bit−4

bit−1

(g)

Figure 2.6: An example of construction of HOT data structure.

In Figure 2.6 you can see the insertion process of these seven rules. From the Figure 2.6 (g)

note that each rule has its respective span bits. R1 involves bit-7 bit-4, and bit-1. R2 andR3 have

bit-7, bit-4, bit-1, and bit-0. R4 and R5 have bit-7, bit-5, and bit-1. R6 involves bit-7 and bit-5.

R7 involves bit-7 and bit-4. Thus, for this rule data set, the discriminative bits set is { bit-7, bit-5,

bit-4, bit-1, bit-0 }. Only its associated discriminative bits are inserted in the trie data structure

16

to save each rule’s memory cost. As shown in Figure 2.6, the BiNode is represented by the circle,

and the red area is a compound node with the maximal three-leaf entries.

In summary, the insert process is as follows:

1. Extract the discriminative bits from the new rule that needs to be inserted, namely, partial-

Rule.

2. Utilize SIMD instructions to compare the partialRule with each compound node’s inserted

entries level by level.

3. Find the matched entry index from the leaf node (compound node).

4. Utilize executeForDi�ngKeys() to check if the matched entry is the same as the inserting

Rule. If it is true, get the new discriminative bit and get the insertion information. Other-

wise, the inserting rule will be abandoned since the value is already in the trie.

5. Follow the k-constraint rule to insert the new BiNode and the value in the leaf node.

For the search process, HOT proposes the following steps:

1. The partial key is extracted from the incoming key via the Discriminative bits.

2. Utilize SIMD instructions to compare the partial key with each compound node’s inserted

entries level by level.

3. Find the search result index from the leaf node (compound node).

4. Since HOT only inserts partial keys into the trie data structure, after �nding the matched

index of the leaf node, the whole rule value in the leaf node needs to be compared with the

full incoming key to guaranteeing the matching is correct.

We conclude the properties of HOT data structure as follows:

• The height/complexity of HOT depends on the length of the rules and the relations among

all the rules since they build the trie using the discriminative bits between the new rule and

the current trie data structure.

17

• HOT only stores partial rules utilizing their discriminative bits in their BiNode.

• The partial rules are stored in lexicographic order.

• The path to a leaf node represents the partial rule of the whole rule stored in the leaf node.

Thus, rules need to be stored in the leaf node and guarantee the correct match result.

• HOT does not require re-balancing operations, and any insertion orders of rules result in

the same trie.

• HOT utilizes SIMD instructions to process the data in parallel.

The goal of HOT is to optimize the trie height in order that a maximum number of partitions

along a path from the root node to any leaf node is minimized [25]. Because of the properties of

HOT, it is an ideal data structure to perform arbitrary matching due to its smaller trie height and

memory cost. Also, its node layout gets the bene�ts from cache e�ciency and SIMD-optimized

search.

2.1.7 Hash table

Hash tables are another famous data structure for matching operations since hash tables have

the search time complexity O(1), which is much faster than the tree search time complexity

O(log2N), whereN is the ruleset’s size. The search time complexity is faster than the trie search

time complexity O(h), where h is the trie’s height. Although the search time is much faster, it

only supports the exact match. It cannot support arbitrary matches. Also, we need to consider

the collision problem when the data set is large. Therefore, arbitrary matching cannot use the

traditional hash tables to improve the matching performance.

Trie data structure is ideal for arbitrary matching applications. This is because the application

is generally signi�cant. Although the trie data structure’s search time complexity is not as fast

as O(1), with the increasing size of the data set, the time complexity of trie O(h) is independent

of the data size.

18

2.2 Hardware

For the hardware side, we consider the SIMD utilization and Ternary Content-Addressable

Memories (TCAMs) implementation. Modern CPUs support simultaneous comparisons in paral-

lel using a single SIMD instruction [26].

2.2.1 SIMD instruction set

Modern Processors are featured with wide vector units, known as SIMD [27], exploiting data-

level parallelism. Intel’s Streaming SIMD Extensions expand the register width from 32-bit to

128-bit, to support processing four single-precision �oating-point numbers at one time. The sub-

sequent Intel Advanced Vector Extensions (AVX) and Intel AVX2 was further extended to process

256-bits of data at one time. The successor Intel Advanced Vector Extension 512 is able to operate

on 512-bits of data with a single instruction.

SIMD instructions are supporting various operations. This dissertation mainly uses compar-

ing operations, bit operations, and register I/O operations. In contrast to comparing scalar types’

operations, there cannot be a single true or false result for a SIMD comparison. Instead, there

will be multiple boolean values in the result. The register width determines the size of this vec-

tor of boolean values. A vector of boolean values is named a mask. For bit operations, we utilize

boolean logic operations, selective bit moving operations, bit counting, and bit extract operations.

Concerning the register I/O operations, we utilize broadcast load operations.

In this dissertation, we utilize SIMD instruction to improve the performance in search perfor-

mance and memory cost.

2.2.2 TCAMs

The TCAMs [28] represent a hardware-based approach to matching. A TCAM is a specialized

memory array with integrated comparison logic, where each entry stores a rule that is encoded

in a ternary format (i.e. 0, 1, and ∗). Thus, arbitrary rules can be stored in a TCAM directly.

The TCAM can compare keys against all stored rules in parallel and return the match result with

the highest priority. TCAMs take O(1) time to �nish the search and generate a match result.

19

However, TCAM cells require much higher area and power than traditional static random ac-

cess memory (SRAM) arrays. As a result, TCAMs are expensive and often have limited capacity.

Nevertheless, TCAMs have become the industrial standard for high-throughput packet classi�ca-

tion [29], which takes a signi�cant role in matching applications. However, TCAM parameters,

such as rule length and number of entries are determined at the hardware design time, often

making them a poor �t for the SDN paradigm of network application de�nition/con�guration at

runtime.

2.3 Conclusions

This chapter summarizes the current data structure and hardware design for matching oper-

ations. According to arbitrary matching features, we choose the trie data structure to implement

the matching operation. In the following chapters, we will introduce our proposed trie data struc-

tures to improve the matching performance.

20

3. GENMATCHER: A GENERIC CLUSTERING-BASED ARBITRARY MATCHING

FRAMEWORK*

3.1 Introduction

Packet classi�cation methods rely upon packet content/header matching against rules. Thus,

throughput of matching operations is critical in many networking applications. Further, with the

advent of Software De�ned Networking (SDN), e�cient implementation of software approaches

to matching are critical for the overall system performance.

Much prior work exists in both software and hardware based approaches to improve lookup

performance for tables containing network IP addresses [30, 31]. IP lookup is typically de�ned

as a composite pre�x matching function, as illustrated in the left table in Figure 3.1. In this table

there are �ve rules (R1-R5) which de�ne the circumstances under which packets must undergo

one of three actions (A, B, or C). Here, rules are de�ned using two �elds (Field1 and Field2)

where each bit is exact (0s or 1s in the table) or wildcarded (* in the table). If a given key is covered

by rule’s Field1 and Field2, then the key is considered matching and returns the de�ned action.

Here, as is typical in networking applications, each �eld is a pre�x match, thus all wildcards are

constrained to the least-signi�cant bit positions of each �eld.

Rules Field 1 Field 2 Priority Action

R1 10** 11** 1 A

R2 1*** 101* 2 B

R3 00** 10** 3 A

R4 10** 1*** 4 C

R5 100* 110* 5 B

Rules Field 1 Priority Action

R1 10**11** 1 A

R2 1***101* 2 B

R3 00**10** 3 A

R4 10**1*** 4 C

R5 100*110* 5 B

Figure 3.1: Arbitrary packet matching.

*Reprinted with permission from GenMatcher: A Generic Clustering-Bashed Arbitrary Matching Framework

by Ping Wang, Luke McHale, Paul Gratz, Alex Sprintson, 2018. ACM Transactions on Architecture and Code Opti-

mization, Volume 15, Issue 4, Article No. 51, https://dl.acm.org/doi/10.1145/3281663.

21

3.1.1 Motivation

Arbitrary matching is the most general form of matching, covering all the other types of

matching patterns, including the exact, range, and pre�x match. Further, while traditional IP

packet classi�cation is typically de�ned in terms of pre�x matches on individual �eld of the packet

header, when multiple sets of such pre�x de�ned match �elds are de�ned together in each rule,

the matching function becomes arbitrary. In Figure 3.1, each rule’s Fields have di�erent pre�x

masks de�ned (i.e. there are di�erent numbers of *’s in each rule for each Field). While each

�eld could be processed individually as a pre�x match with a trie as described above, this would

require a separate trie traversal for each �eld, with the match not determined until the results

from all trie traversals are completed and combined. This approach restricts opportunities to

optimize the data structures across the entire rule.

Alternately, matching might be accelerated by combining all Fields into a single match func-

tion, as shown on the right table of Figure 3.1. This approach means that the entire set of extracted

header Fields can be compared against the rules in one operation, which does lend itself to op-

timizations as the entire rule is considered as whole. Doing so however, changes the matching

function to arbitrary match as shown in Figure 3.1. Thus tries may not be used directly, motivat-

ing the need for new approaches to accelerate arbitrary matching.

We further note that arbitrary matches have applications beyond traditional network classi-

�cation. With the emergence of big data, more and more applications need to leverage bit-wise

matching. In HPC systems, the Message Passing Interface (MPI) standard de�nes a set of rules,

known as tag matching [32, 33]. Tag matching is designed for matching source-send operations

to destination-receives. Instead of matching the packet header of the switch network, there are

many MPI message �elds which must match a sender and its corresponding receive functions:

1). the communicator
1
, 2). the user tag, including a wildcard speci�ed by the receiver, 3). the

source rank
2
, including a wildcard speci�ed by the receiver, 4). the destination rank. Thus, the

1
In HPC system, the communicator is the process group ID in multi-core system.

2
The rank is the stack address of a message that shows where the message comes from.

22

tag matching mechanism is a form of arbitrary matching.

3.1.2 Relationship with Prior Art

While pre�x matching is heavily studied, arbitrary matching, particularly in software, re-

mains a highly under-examined area. Among the few works in this area, Meiners et. al proposed

Bitweaving [10], a non-pre�x approach to compressing packet classi�ers. We note that their

approach was designed to compress rules for use with a ternary content-addressable memory

(TCAM) [34]. [10] proposed a bit swapping algorithm to transform non-pre�x rules into pre�x

rules. This was combined with a bit merging operation to reduce the number of rules. As this

mechanism is intended to reduce the number of rules that need to be stored in a TCAM [35], the

algorithm makes no further optimization to the rule set.

In this chapter, in order to avoid the hardware and energy cost of TCAMs, and to provide a

general software-based solution, we propose a generic, software, arbitrary matching mechanism

while keeping the door open to hardware acceleration.

3.2 Related Work

Prior work on arbitrary matching mainly falls into two categories: TCAM-based solutions

and algorithmic solutions. The TCAMs [28] represent a hardware-based approach to arbitrary

matching. TCAMs are generally unavailable in general purpose complexity. Signi�cant research

has been done on TCAM compression techniques [10, 36] to reduce the number of entries stored

in TCAM. One such method de�ned by Meiners et. al is Bitweaving [10]. The primary aim

of Meiners et. al in Bitweaving [10] was the compression and reformatting of rules such that

they could be e�ciently implemented in a TCAM. Their proposed technique is composed of a bit

swapping algorithm and a rule merging algorithm. For bit swapping, �rst, they sort the rules by

the number of wildcards in each rule. Second, they separate rules from the rule table into groups.

Within each group, a single permutation is applied to each rule’s bits to produce a reordered rule.

After grouping, all the rules become pre�x rules. They also propose a bit merging operation. In

each group, if the hamming distance between any two adjacent rules is 1 then the rules will be

23

merged into one rule with bit ∗ on that position. For the hamming distance to be 1, there can

only be one bit position di�erence between rules. After �nishing the bit merge operation, the

new merged rules will be processed by TCAM.

Bitweaving’s intent was to produce rules which could be used in a TCAM, however, there is

much to be learned from this work for the application of software-only arbitrary matching. In or-

der to process any type of rules in our GenMatcher, we adapt Bitweaving’s bit swapping algorithm

to transform rules into a pre�x format to the maximum extent. In the Bitweaving mechanism, all

the rules are able to be transformed to a pre�x format by applying a large swapping algorithm.

We note that, critically, Bitweaving makes no attempt at expanding rules to minimize the number

of groups. Thus, rules are broken into groups wherever a pre�x match is not possible. Unlike

Bitweaving, the objective of GenMatcher is to minimize the number of groups within a memory

threshold, our technique expands the non-pre�x wildcards to reduce the number of groups under

a given memory threshold, which improves the search performance at some memory cost.

Although the approach here is intended for generic matching, there is much to be learned

from prior work, software solutions based packet classi�cation. He et. al. [37] proposed the

SmartSplit algorithm. They split a large rule set in several subsets and using di�erent packet

classi�cation algorithms for di�erent subsets. Although this approach decreases memory con-

sumption, as well as increases classi�cation speed, it still su�ers from rule duplication and cut

decision con�guration cost. Inoue et. al. [38] proposed multidimensional-cutting via selective bit-

concatenation to accelerate many-�eld packet classi�cation. However, the method they propose

to generate lookup tables is complicated and there is no guarantee for a correct classi�cation. Ko-

gan et. al. [39] split the rules into two parts: independent order rules and order-dependent rules.

The independent rules are divided into multiple groups, and the dependent rules are processed in

the TCAM. Although they avoid impacting space and time complexities, it only focuses on range

matching and requires a false positive test.

Other approaches [40, 41] perform packet classi�cation on multi-core processors. Qi et. al.

propose a technique which is able to support very large rule sets [40]. The approach, however,

24

su�ers from memory expansion and can only support up to 1K 5-�eld rules. Qu et. al. [41]

proposed an e�cient bit-string aggregation technique to avoid excessive memory usage on multi-

core processors. Lu and Sahini [42] propose a collection of hash tables to represent a multi-

dimensional packet classi�cation table. This work focuses on range matching. For a large size of

rules and a many-�eld packet, the complexity of building the trie will become large. Several other

software-based packet classi�cation algorithms have been proposed which only deal with some

speci�c rules or sub-rules but not the general form of the matching problem [37, 38, 39, 41, 42, 40].

By contrast GenMatcher is a generic arbitrary matching mechanism for any form of matching.

Several groups considered representations based on rule disjointness [5, 6, 43] and addressed

e�cient time-space tradeo�s for multi-�eld classi�cation, where �elds are represented by ranges.

In these works, they assign all rules into multiple disjoint groups, where every group obeys a

structural property on a subset of bit indices of a rule. Unlike their work, GenMatcher considers

the rule as a whole, which results in a smaller time complexity for grouping.

3.3 GenMatcher

In this section, we present an overview of our design. GenMatcher is a generic clustering-

based arbitrary matching framework for software packet processing, with the following design

goals:

• Performance: It processes packets at high speed under a limited memory cost.

• Generality: It supports any type of bit-wise matching with rules of arbitrary length and

wildcards.

To achieve these goals GenMatcher leverages prior work wherein e�cient trie data struc-

tures are generated from sets of pre�x rules. To this end, GenMatcher consists of 3 phases: map,

group and build trie, as shown in Figure 3.2. The goal of these phases is to generate subsets of

rules (groups), setup as pre�x matches, from which tries can be generated through a combina-

tion of bit swapping (rearranging the bits in the rules) and rule expansion (wherein wildcards

are enumerated). Our framework aims to keep the number of groups and amount of expansion

25

Rules Priority Action

R1 *101 1 A

R2 *011 2 B

R3 1**0 3 C

R4 1*** 4 C

(1)

Map

(2)

Group

(3)

Build Trie

Mask Value Priority Action

R1 1000 0101 1 A

R2 1000 0011 2 B

R3 0110 1000 3 C

R4 0111 1000 4 C

T1

101*

011*

T2

10**

1***

G1

*101

*011

G2

1**0

1***

0

1 0

11

1
T1

0

1
T2

Figure 3.2: GenMatcher framework.

to a minimum to keep performance high while minimizing memory cost. As the full space of all

possible groupings with expansion is untenable for any reasonable number of rules, our frame-

work is a heuristic which aims to achieve optimal grouping and expansion without requiring a

full search. These phases are detailed in this section.

3.3.1 Map Phase

In map phase, �rst, we parse rules into four �elds, represented by the rule.value, rule.mask,

rule.priority, and rule.action �elds.

De�nition 1. (Rule expression). Each rule has four properties: value, mask, priority, and action,

as shown in Figure 3.1. These properties have the following de�nitions:

• Rule.value: Represents the non-wildcarded component of the desired match with the wild-

card portions set to 0. Generated by parsing all ∗’s (wildcards) in the rule and replacing them

with 0s, keeping all other bits unchanged.

• Rule.mask: The bit-mask used to clear the wild-card components of the key for com-

parison against the Rule.value. Generated by parsing all ∗’s and replacing them with 1’s,

clearing all other bits.

• Rule.priority: Where there are multiple rules which match a given key, we choose the

rule with the highest priority (1 being the highest). This is provided as input or inferred by

the order of rules initially given.

26

• Rule.action: Action to take place as the result of a match, enumerated. e.g., forward the

packet to port A, B, or C. Provided as input.

Priority is an important property in matching applications. In packet classi�cation, priority

is used to preserve the order semantic of the rules in a rule table, which determines the order of

insertion into the trie data structure. The smaller the order value of the rule in the rule table, the

higher the priority of the rule. Thus, the rules with higher priority will be inserted earlier, which

eliminates the insertion of redundant information. In MPI tag matching, the order semantic of

the messages must be preserved. Here, order is represented by the priority property. If a sender

sends two messages in succession to the same destination, and both match the same receive, then

this operation cannot receive the second message if the �rst one is still pending. If a receiver posts

two receives in succession, and both match the same message, then the second receive operation

cannot be satis�ed by this message, if the �rst one is still pending [44].

After being processed, each rule is now expressed as a set: {value, mask, priority, action}.

Given this set, we de�ne the matching process following the operations described in De�nition 2.

De�nition 2. (Match function).

f(key, mask, value) = (AND(!mask, key) = value).
match = true, if AND(!mask, key) = value;

match = false, else.

Example 1. Assume a rule R1 is 1**0**11, then its Mask is 01101100, and its value is 10000011.

Also assume a key 10001011.

10001011 & 01101100 = 10001011 & 10010011 = 10000011, which equals Rule.value.

∴ Key 10001011 matches with R1.

Instead assume the incoming key is 01101011.

27

01101011 & 01101100 = 01101011 & 10010011 = 00000011, which does not equal Rule.value.

∴ Key 01101011 does not match with R1.

If multiple rules match, we always choose the one with the highest priority. The match result con-

sists of the priority of the matched rule and its corresponding action. Upon match, the matched

rule’s action attribute will be returned to the application.

3.3.2 Group Phase

In the group phase, we exploit the correlation between rules, observing the similarity of their

wildcard patterns, with the goal of transforming all rules into pre�xes. Here we have the goal

of minimizing the number of groups (since more groups require more search time) while mini-

mizing the amount of rule expansion necessary to construct a trie from each group. Thus before

continuing we formally de�ne rule expansion:

De�nition 3. (Expand operation). Expand the non pre�x wildcard bits into 1’s and 0’s.

Example 2. Assume rule R1 is 10*011. Here R1 is a non-pre�x rule.

After the expansion operation the rule will now be expanded to two new rules without wildcards:

100011 and 101011.

Instead assume rule R2 is 1**0**, where the rightmost *’s form a pre�x in common with other rules

in the group.

After expansion this will result in four rules: 1000**, 1010**, 1100**, and 1110**.

Thus, the resulting number of expanded rules is determined by the number of non pre�xed ∗ bits. We

de�ne the number of ∗ in the middle of a rule as E. Thus, the number of expanded rules is 2E .

Di�erent grouping algorithms generate di�erent resultant groupings. For the rule table shown

in Figure 3.2, there are many possible groupings possible; Figure 3.3 illustrates two possible group-

ings. The �rst group result is the single groupG1. The second group result is the two groupsG1′

and G2′. We note, as we will show, building a trie from the single group, G1 will require some

expansion because a single pre�x match is not possible for this set of rules, while building tries

for each group G1′ and G2′ will not require expansion.

28

Rules

*101

*011

1**0

1***

Group

G1

*101

*011

1**0

1***

(a) Group into one group (b) Group into two groups

G1’

*101

*011

G2’

1**0

1***

Rules

*101

*011

1**0

1***

Group

Figure 3.3: Grouping examples.

Since the goal of the group phase is to minimize the number of groups while minimizing the

amount of rule expansion necessary to construct a trie for each group, we �rst attempt to put all

rules into one group. If this does not cause the the memory cost to go beyond the given threshold,

the group result is the entire rule table; otherwise, we employ our proposed GenMatcher grouping

algorithm to split the rules into multiple groups. In the GenMatcher grouping policy, we assign

a rule to a group based on the similarity between the rule and the core of the group. Even the

rule’s similarity is quali�ed, we need to check the memory cost status of the group if it accepts

the new rule. If the memory cost is still within the threshold after the group has absorbed this

rule, the rule will be assigned to this group; otherwise, the rule will be assigned to a new group.

Thereafter, the number of group is increased.

3.3.3 Build Phase

In the trie build phase, we employ the bit swapping algorithm [10] to rearrange the bits within

the rules in each group, such that the wildcards accumulate to the right-most position of the bit

string. After swap operations, if some of rules in each group are still not in a pre�x format, we

need to expand the non-pre�x rules into pre�x rules.

In Figure 3.4 (a), there is only one group G1, generated in the group phase. After the swap

operation, three rules, 1*10 , 1*01 and *1**, remain which are not in pre�x format. Thus we must

expand the three rules into six rules in-order to allow a single trie to be built for this group.

29

G1

*101

*011

1**0

1***

G1

1*10

1*01

01**

*1**

G1

1010

1110

1001

1101

01**

01**

11**

Swap

(a) Single group with expansion (b) Two groups without expansion

G1’

*101

*011

G2’

1**0

1***

Swap

Swap

G1’

101*

011*

G2’

10**

1***

Figure 3.4: Build trie examples.

As shown in Figure 3.4 (b), we must construct two di�erent swap operations to produce pre�x

matches for each group G1′ and G2′. After the swap operations, all the rules in each group are

in a pre�x format. Thus, this second set of groups requires no expansion. As we can observe

from Figure 3.3 and Figure 3.4, the groupings chosen in the group phase determines the number

of tries and the number of expanded rules.

3.3.4 Objectives and Challenges

As discussed previously, to utilize the e�ciency of a trie data structure in performing search

operations, each rule must be a pre�x match. Thus, rules should be split into groups where each

group can be bit-swapped to make the largest possible pre�x matches. Since each trie must be

traversed sequentially, a larger number of groups will result in a longer time to �nish searching

than a smaller number
3
. Thus, our strategy is to employ rule expansion to decrease the number

of groups, which also tends to reduce the search time. A potential problem with this approach,

however, is that the expansion increases the number of trie nodes in the trie data structure, which

increases memory utilization. Ultimately, if memory utilization exceeds the system memory limit,

the search performance will dramatically su�er.

Objective: Since we must transform arbitrary rules into pre�x rules, we may have multiple

groups and many rule expansions. Our objective is to minimize the search time while not ex-

3
The size/depth of each trie itself also impacts search time. Since the complexity of trie search, however, grows

as O(h) where h ∼ logn typically, the number of tries tends to have a greater e�ect on search time than the size of

the trie.

30

ceeding the memory threshold, de�ned thus:

• Search time: determined by the number of groups and the trie data structure for each

group.

• Memory cost: determined by the number of trie nodes, which is largely increased through

rule expansion.

Challenges: Di�erent grouping results lead to di�erent trie data structures, represented by the

number of groups and the number of trie nodes. Thus, we need to resolve the trade-o� between

the number of groups and the number of trie nodes to obtain an optimal performance balance.

In this chapter, we propose the GenMatcher grouping algorithm to form optimized groupings

for pre�x match searching to achieve high search throughput with a �xed, given memory cost

threshold.

3.4 The GenMatcher Grouping Algorithm

In this section, we present the correlation clustering-based (GenMatcher) grouping algorithm

in detail.

3.4.1 Similarity Function

Recalling the goal of our application, we want to minimize the search time while not exceeding

the memory threshold. In order to minimize the search time, the grouping algorithm needs to

generate as few groups as possible, while keeping expansion to a minimum, thus reducing the

required memory. We therefore must maximumly group similar rules together with similarity

de�ned as having the most wildcard positions in common.

Since the number of groups and the number of trie nodes are mainly determined by the wild-

card distribution in each rule, we can observe the similarity from the rule.mask �eld. Considering

two rules R1 and R2, we de�ne the similarity function s(R1, R2) as follows.

De�nition 4. The similarity between ruleR1 andR2 is collected from their wildcard distribution,

31

as de�ned in Eq. 3.1.

s(R1, R2) =

M(R1.mask & R2.mask), if R1.mask 6= 0 ∧R2.mask 6= 0

1, if R1.mask = 0 ‖ R2.mask = 0

(3.1)

where M(·) counts the number of 1’s set in a bitstring.

Since expansion is determined by the wildcard distribution, the intersection of similarities

among rules with non-zero mask is the key factor in grouping. If R1.mask 6= 0 ∧ R2.mask 6=

0, the similarity equals to the number of ∗ that appear on both R1 and R2; If R1.mask =

0 ‖ R2.mask = 0, which means that we always can group these two rules together since there is

no expansion. Because rules which have mask = 0 (i.e. no wildcards) cause no rule expansion and

can be placed equally in any group, so we set the similarity to 1
4

whenR1.mask = 0 ‖R2.mask =

0. If the rule is 64-bit, the similarity belongs to [0, 64], where 0 denotes no similarity between two

rules.

3.4.2 GenMatcher Grouping Algorithm

We now present our correlation clustering-based GenMatcher grouping algorithm for the

group phase in GenMatcher. Given a set D of rules, our GenMatcher algorithm generates a set

O of groups. It requires a parameter θ, the given memory threshold.

The pseudocode of GenMatcher grouping is shown in Algorithm 1. The algorithm consists

of two steps. In the �rst step (lines 2-10), the caculateMatrix function computes the similarity

of any two rules in the rule set D = {R1, R2, · · · , RN} utilizing De�nition 4. In the second

step (lines 12-27), the assignCluster function assigns rules into groups according to the similarity

matrix SN×N , calculated by the caculateMatrix function.

In the second step, the rule that has the most correlation with other rules in the rule set is

4
In our GenMatcher grouping policy, if the similarity between a rule and the core of a group is 1, the rule will be

assigned to a group if it does not break the memory limitation. We arbitrarily choose the value 1 because it is small

enough that does not a�ect the selection of the core of a group, which we want to have the greatest summation of

similarities between itself and any other rules.

32

Algorithm 1 GenMatcher Grouping Algorithm.

Input: D = {R1, R2, · · · , RN}
Output: O = {G1, G2, · · · , Gnum}

1: Set θ = 64MB

2: function calculateMatrix(D)

3: SN×N ← ∅, LN×1 ← ∅
4: for i=1; i ≤ N; i++ do
5: for j=1; j≤ N; j++ do
6: Sij ← s(Ri, Rj)
7: Li ← Li + Sij

8: end for
9: end for

10: end function
11:

12: function assignCluster(D, SN×N , LN×1)

13: index← argmax
i∈D

(LN×1)

14: for i=1; i ≤ D.size(); i++ do
15: if Sindex,i > 0 ∧ total memory cost < θ then
16: H[1]← Ri

17: else
18: H[2]← Ri

19: end if
20: end for
21: O ← H[1] /* a new group is generated */

22: if H[2].size() == 0 then
23: return O
24: else
25: assignCluster(H[2], SN×N , LN×1)
26: end if
27: end function

33

chosen as the core of a new group. The procedure is shown in line 13. The index is the index

of the core of the new group. If the similarity between a rule and the core is positive and under

the given memory limit, the rule is added to the vector H[1]; otherwise, it is added to the vector

H[2]. H[1] is a new group of the output O. H[2] is a vector storing all the rules not quali�ed in

H[1]. H[2] will be processed in function assignCluster until empty. After we obtain the grouping

result O, we can build the trie data structure, as shown in Figure 3.2. Thereafter, we process the

binary search operations for all the incoming keys.

We now present, in Lemma 1, the time complexity of the GenMatcher algorithm. In Lemma

2, we examine the determinant factors of search performance for our GenMatcher algorithm.

Lemma 1. The time complexity of our GenMatcher grouping algorithm is O(N2), where N is

the number of rules.

Proof. For the function calculateMatrix (lines 2-10), the time complexity is O(N2). For the func-

tion assignCluster (lines 12-27), the time complexity is O(N ∗ num), where num is the number

of groups. Thus, the time complexity of the GenMatcher algorithm is dominated by the function

calculateMatrix, which is O(N2).

Lemma 2. For our GenMatcher grouping algorithm, the search performance is primarily deter-

mined by the number of groups; the fewer groups, the better the search performance. When the

number of groups is �xed, fewer trie nodes always performs better.

Proof. Let us compare two di�erent groupings constructed using an identical set of rules. Assum-

ing that each trie generated by the two groupings are balanced, the performance will not impacted

by bias keys. The �rst grouping results in N trie nodes contained within a single group. The sec-

ond grouping results in M trie nodes across two groups; one group has M1 trie nodes, the other

one has M2 trie nodes. The average search attempts
5

for the �rst grouping is log2(N). Since

we assume tries must be searched sequentially to get the matched result, the average search at-

tempts for the second grouping is log2(M1) + log2(M2), where M1 +M2 =M . Thus, the search

5
The number of search attempts for a given key is the depth that a key needs to traverse in a trie data structure

before a match can be determined.

34

performance of a single group performs better than two groups when

log2(N) < log2(M1) + log2(M2) = log2(M1M2)

=⇒ N < M1M2

If M1 = M2, log2(N) < 2 log2(
M
2
) =⇒ N < M2

4
. If the number of groups is G, then the

statement is true when N < M1M2 · · ·MG. As G increases, M1M2 · · ·MG is more than likely

larger thanN , especially when theG groups have an even number of trie nodes, that is,N < MG

GG .

In general, M � G. Therefore, as G increases, MG
will always grow faster than GG

; thus, we

can say that the search performance is primarily determined by the number of groups.

Let us now consider two groupings with an identical group size, generated by the same rule

set. If the keys are unbiased, the grouping result with the least number of trie nodes has fewer

search attempts. As the search time is determined by the number of search attempts, the search

time is proportional to the number of trie nodes. If the keys are biased, a grouping with more

trie nodes might perform better when the trie data structure is unbalanced. As needed, we can

employ tree balance techniques [45, 46, 47, 48, 49, 50] to rebalance the data structure. Thus, when

the number of group is �xed, fewer trie nodes always performs better.

3.5 Evaluation

In this section, we evaluate GenMatcher on rule sets generated from packet capture (PCAP)

traces. We �rst present the evaluation methodology, followed by the correctness and scalability of

the GenMatcher grouping algorithm. Finally, we compare the results obtained versus previous

techniques.

3.5.1 Methodology

We program GenMatcher framework in C++, leveraging our in-house developed binary trie

data structure and the linear vector data structure in C++ standard library (STL). A rule gener-

ation heuristic developed by McHale et. al [51] was used to synthesize a set of rules relevant

35

to a given packet capture (PCAP) trace. Rules used in this project consisted of IPv4 source and

destination addresses, resulting in a key width of 64-bits. Keys used to measure matching perfor-

mance were constructed using the source and destination IPv4 address of every packet extracted

from the given PCAP trace. The PCAP dataset (equinix-sanjose.dirA.20120119-125903) examined

in this chapter was taken from an internet backbone link and provided by CAIDA [52]. CAIDA’s

anonymization preserves relative �ows across packets in a trace. These traces provide a more

realistic dataset with less entropy compared to randomly generated rules and keys.

For the rule tables, we use our generator to generate 11,000 rules based on the CAIDA PCAP

data [52]. We randomly pick 10 di�erent sets of rule samples with 6 di�erent rule table sizes (256,

512, 1024, 2048, 4096, 8192). We extract 28,744,877 keys from the traces as previously described.

We set a memory cost threshold of 64 MB. We evaluate our GenMatcher on a real system with 512

GB DRAM and Intel Xeon E5-2697A V4 32-core 2.6GHz processor. L1d cache is 32k, L1i cache is

32k, L2 cache is 256k, and L3 cache is 40960k. All tests are executed with one single thread.

We evaluate the performance in terms of search time, con�guration time, and memory cost.

First, in order to show the correctness and scalability of the GenMatcher grouping algorithm,

we compare GenMatcher against a brute force group search algorithm. For the brute force algo-

rithm, the objective is to �nd the optimal group results which results in the minimal number of

groups with minimal number of trie nodes while not exceeding the memory threshold. The time

complexity of the brute force algorithm is O(NN), where N is the number of rules.

Second, we compare GenMatcher against two arbitrary matching algorithms: the Linear arbi-

trary matching algorithm, which serves as a baseline, and a software-only version of the Bitweav-

ing [10] algorithm. Linear arbitrary matching employs C++ STL vectors to build a rule table and

search the rules sequentially. The goal of Bitweaving is the compression and reformatting of rules

such that they could be best implemented in a TCAM. Their proposed technique is composed of

a bit swapping algorithm and a bit merging algorithm. In the bit swapping stage, they employ a

grouping policy. First, they sort the rules by the wildcard positions and the number of wildcards

in each rule. After sorting, the rules with similar wildcard distribution are moved next to each

36

other. Second, they start grouping rules from the beginning of the sorted rule list. They de�ne

a cross-free condition to determine if the adjacent rules can be grouped together. If the rules’

wildcard distribution has intersection and all the wildcards can be swapped to the right side of

the rules by applying a same permutation pattern, the rules can be grouped together; otherwise,

they will make another group. The grouping process will not stop until the last rule in the rule

list has been examined. Within each group, a single permutation is applied to each rule’s bits to

produce a reordered rule. Bitweaving employs its grouping policy to transform all the non-pre�x

rules into pre�x rules. After grouping, all the rules in each group are in a pre�x format.

3.5.2 Comparison with Brute Force Grouping

In Lemma 2, we prove that the search performance is determined by the number of groups

and trie nodes. Thus, if the GenMatcher algorithm generates the same groups and number of

trie nodes compared with the brute force (BF) algorithm, theGenMatcher algorithm is achieving

the optimal grouping. Since the brute force algorithm is an NP-complete problem, we can only

evaluate it on small rule samples due to the runtime limitation. We randomly choose 10 di�erent

sets of rule samples ranging from 10 rules to 20 rules from the overall rule set.

Table 3.1: The number of trie nodes for BF and GenMatcher.

Rule# 10 11 12 13 14 15 16 17 18 19 20

BF 338 435 452 464 535 587 666 708 671 724 734

Gen 338 435 452 464 535 587 666 708 671 724 734

Table 3.1 and Table 3.2 shows the number of trie nodes and the number of groups generated by

the GenMatcher algorithm and the brute force algorithm on selected rule samples
6
. As shown

in Table 3.1 and Table 3.2, we observe that GenMatcher and BF generate the same number of trie

6
Since the rules were chosen randomly, sometimes a larger set of rules produces a slightly larger pre�x (and

smaller trie), than a smaller set of rules. Thus, 18 rules has less nodes than 17.

37

Table 3.2: The number of groups for BF and GenMatcher.

Rule# 10 11 12 13 14 15 16 17 18 19 20

BF 2 2 2 2 2 2 2 2 2 2 2

Gen 2 2 2 2 2 2 2 2 2 2 2

nodes (Gen represents GenMatcher). In each case the same number of groups were generated

as well. Since the search performance is determined by the number of trie nodes, the search

performance of the two algorithms are the same.

0

100

200

300

400

500

600

700

800

900

10 11 12 13 14 15 16 17 18 19 20

P
ro

c
e

s
s
 t

im
e

 (
s
)

The number of rules

BF GenMatcher

Figure 3.5: Time complexity comparison.

With respect to the time complexity, the BF is much worse than GenMatcher algorithm.

The average process time for grouping 10 to 20 rules is shown in Figure 3.5. The process time for

GenMatcher is ineligible at only 1 µs since the size of the rule samples is very small. However,

the process time for BF increases exponentially with the number of rules. The process time of

generating the group results for BF is nearly 13 minutes when the rule sample size = 20.

Overall, the performance of our proposedGenMatcher algorithm for this range of rule counts

matches optimal. Further, the time complexity of GenMatcher is much better than the BF algo-

rithm.

38

0.0009 0.0016 0.0078 0.0244
0.0917

0.2265

0.9061

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 256 512 1024 2048 4096 8192

C
o

n
fi

g
u

ra
ti

o
n

 t
im

e
 (

s)
The number of rules

Figure 3.6: GenMatcher grouping algorithm scalability.

3.5.3 Scalability

To show the scalability of GenMatcher, we evaluate its con�guration time by scaling up

the number of rules from 128 to 8192. Figure 3.6 shows the con�guration time (i.e. the time to

generate all tries) of GenMatcher when scaling the number of rules. The con�guration time

consists of two parts. One is the time for processing GenMatcher to get the group results. The

other one is to build the trie data structure based on the group results. Thus, the con�guration

time is a summation of the process time and the build time, where the build time is the summation

of rule rearrange time and rule insertion time, which are happened during build trie phase. The

rule rearrange time is the time cost during bit swapping operation. The rule insertion time is

the time cost for inserting all the rules into the trie data structure. As expected, con�guration

time increases with the number of rules. However, for a 8192 rules, the con�guration time of

GenMatcher is less than one second. Thus, GenMatcher incurs little overhead for a large set

of rules.

SinceBitweaving andGenMatcher both have group phase and build trie phase, their con�g-

uration time elements are the same. Figure 3.7 shows the con�guration time comparisons in terms

of build time and process time with respect to Bitweaving and GenMatcher. Bit represents

Bitweaving, and Gen represents GenMatcher. Here we see that Bit_build and Gen_build

both take less time than Bit_process and Gen_process. On the 8192 case, we observe that

Gen_build is larger than Bit_build. This is because GenMatcher generates less groups than

39

0

0.2

0.4

0.6

0.8

1

128 256 512 1024 2048 4096 8192

C
o

n
fi

g
u

ra
ti

o
n

 t
im

e
 (

s)
The number of rules

Bit_build Gen_build Bit_processs Gen_process

Figure 3.7: Con�guration time comparisons between Bitweaving and GenMatcher.

Bitweaving by trading o� memory for performance. The insertion time of GenMatcher is

larger than Bitweaving due to the rule expansion. For the process time comparison, since the

time complexity of Bitweaving’s grouping is O(N), which is smaller than O(N2), Bit_process

is smaller than Gen_process. Although the con�guration time of GenMatcher is larger than

Bitweaving, the resulting search performance is much better than Bitweaving, which is the

goal of our GenMatcher framework. The search performance is described in Section 3.5.4.

3.5.4 Performance Comparisons

We compare GenMatcher against Linear and Bitweaving in terms of search time and mem-

ory cost.

3.5.4.1 Search time:

Figure 3.8 shows the search time speedup with respect to Linear, Bitweaving and Gen-

Matcher. For all the 6 di�erent rule sizes (256, 512, 1024, 2048, 4096, 8192), GenMatcher achieves

the best performance. In the �gure, for each rule size, performance of 10 di�erent scenarios (ran-

domly chosen rules) are shown.

In the �gure we see thatGenMatcher generally provides greater speedups for larger numbers

of rules. This is because the performance of Linear degrades (linearly) with increasing numbers

of rules, while the performance of both GenMatcher and Bitweaving tend to be dominated by

the number of groups each technique creates.

40

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

S
e

s
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

Linear Bitweaving GenMatcher

(a) Rule num = 256.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

Linear Bitweaving GenMatcher

(b) Rule num = 512.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

Linear Bitweaving GenMatcher

(c) Rule num = 1024.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

Linear Bitweaving GenMatcher

(d) Rule num = 2048.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

Linear Bitweaving GenMatcher

(e) Rule num = 4096.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

Linear Bitweaving GenMatcher

(f) Rule num = 8192.

Figure 3.8: Search time speedup comparison, normalized against Linear.

Between Bitweaving and GenMatcher, since the search time is determined by the number

of groups and the number of trie nodes within the given memory threshold, the performance is al-

ways better with fewer groups. Because Bitweaving generates more groups than GenMatcher,

GenMatcher always outperforms Bitweaving.

The Rule num = 4096 case, shown in Figure 3.8 (e), shows an interesting behavior. In the

�gure we see that both Bitweaving and GenMatcher produce substantially better results for

41

Table 3.3: Grouping result on Rule num = 4096

S# 1 2 3 4 5 6 7 8 9 10

Gen 2 1 1 1 1 2 2 2 2 2

Bit 62 1 1 1 1 62 62 62 60 62

Table 3.4: The number of trie nodes result on Rule num = 4096

S# 2 3 4 5

Gen 43163 42284 42806 42839

Bit 48522 47414 47610 48065

scenarios 2-5 than for the others. Table 3.3 shows the number of groups generated for each

scenario by the two techniques. Here we see that GenMatcher and Bitweaving both generate

only one group for scenarios 2-5. Despite having the same number of groups, GenMatcher

still produces better performance. This is because GenMatcher generates a smaller number of

trie nodes than Bitweaving, which is shown in Table 3.4. The di�erent number of trie nodes is

obtained by the di�erent number of inserted rules in trie data structure, as shown in Table 3.5.

In our GenMatcher, we insert rules by its priority order. In Bitweaving, it sorts the rules by an

ascending order of the number of wildcard in a rule [10], which breaks the rules’ priority order.

Thus, Bitweaving does not insert rules by its priority order, which result in redundant trie nodes

in trie data structure.

Since Bitweaving typically generates a large number of groups to maintain the given mem-

ory threshold, its performance is even worse than Linear when the number of rules is small.

However, the performance of Bitweaving improves with increasing rules. When the number of

rules is up to 4096, as shown in Figure 3.8 (e), Bitweaving surpass Linear.

Out of the 6 di�erent rule counts,GenMatcher achieves the best performance onRule num =

8192. On average, GenMatcher achieves an 58.9X speedup compared to the baseline. To sum-

42

Table 3.5: The number of inserted rules result on Rule num = 4096

S# 2 3 4 5

Gen 1913 1923 1908 1926

Bit 3125 3197 3156 3102

marize, the best search performance can be achieved by minimizing the number of groups while

remaining under the memory cost threshold.

3.5.4.2 Memory cost:

Figure 3.9 shows the memory cost with respect to 10 di�erent scenario # on various number

of rules. Out of the 6 di�erent rule counts, Linear has the least memory cost, which is determined

by the number of rules. The memory cost of Linear is the product of the number of rules and

the size of a rule. The size of a rule consists of two 64-bit words for the mask �eld and value

�eld. Thus, the size of a rule is 16B. Both Bitweaving and GenMatcher are based on trie data

structures, thus the cost is determined by the number of trie nodes. Their memory cost is the

product of the number of trie node and the node size. The trie node consists of two pointers

(each pointer is 64 bit) and one integer (32 bit). The node size is 8 + 8 + 4 = 20B.

Between Bitweaving and GenMatcher, without rule expansion, the memory cost is consis-

tent, depending on the number of groups. The fewer number of groups, the smaller the memory

cost. However, the memory cost is more diverse when rule expansion occurs. In Figure 3.9 (a, b, c,

d), Bitweaving always consumes more memory than GenMatcher. This is because the number

of groups generated by Bitweaving is larger than that generated by GenMatcher, and there is

no rule expansion for both of them.

We take the Rule num = 4096 and Rule num = 8192 cases as examples. Table 3.3 shows

the grouping results for Rule num = 4096. The performance is consistent with the number of

groups. Note that on scenarios 2, 3, 4, and 5, the cost of Bitweaving and GenMatcher are lowest

because the number of the groups are the smallest and there is no rule expansion.

43

0.004096

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 c

o
st

 (
M

B
)

Scenario #

Linear Bitweaving GenMatcher

(a) Rule num = 256.

0.008192

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 c

o
st

 (
M

B
)

Scenario #

Linear Bitweaving GenMatcher

(b) Rule num = 512.

0.016384

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 c

o
st

 (
M

B
)

Scenario #

Linear Bitweaving GenMatcher

(c) Rule num = 1024.

0.032768

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 c

o
st

 (
M

B
)

Scenario #

Linear Bitweaving GenMatcher

(d) Rule num = 2048.

0.065536

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 c

o
st

 (
M

B
)

Scenario #

Linear Bitweaving GenMatcher

(e) Rule num = 4096.

0.131072

23.77712

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10M
e

m
o

ry
 c

o
s
t

(M
B

)

Scenario #

Linear Bitweaving GenMatcher

(f) Rule num = 8192.

Figure 3.9: Memory cost versus the number of groups at di�erent rule sample sizes.

Table 3.6 and Table 3.7 shows the grouping result and expansion result forRule num = 8192,

respectively. Note that, since there is a large number of expanded rules on scenario 2, 3, 4 and 9,

though GenMatcher generates less groups than Bitweaving, GenMatcher requires much more

memory. As shown in Figure 3.9 (f), on scenario 2, 3, 4 and 9, GenMatcher has a greater memory

cost than Bitweaving. To achieve the best search performance, we trade-o� memory cost. This

meets our objective: minimize the search time while not exceeding the memory threshold.

44

Table 3.6: Grouping result on Rule num = 8192

S# 1 2 3 4 5 6 7 8 9 10

Gen 2 2 1 2 2 2 2 2 2 2

Bit 5 9 3 9 7 5 7 5 9 7

Table 3.7: Expansion result on Rule num = 8192

S# 1 2 3 4 5 6 7 8 9 10

Gen 51360 55088256 536887296 55088256 51360 0 12880 51360 55088256 51360

Bit 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10

8 MB 1.95 1.9417 1.9432 1.9449 1.9164 1.9316 1.9727 1.9365 1.9482 1.9507

16 MB 1.9751 1.9634 1.9432 1.9665 1.9416 1.9316 1.9944 1.9762 1.9698 1.9905

32 MB 1.9751 2.8357 23.777 2.8389 1.9416 1.9316 1.9944 1.9762 2.8422 1.9905

64 MB 1.9751 2.8357 23.777 2.8389 1.9416 1.9316 1.9944 1.9762 2.8422 1.9905

0

5

10

15

20

25

M
e

m
o

ry
 c

o
st

 (
M

B
)

Scenario #

8 MB 16 MB 32 MB 64 MB

(a) Memory cost.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

S
e

a
rc

h
 t

im
e

 s
p

e
e

d
u

p

Scenario #

8 MB 16 MB 32 MB 64 MB

(b) Search time speedup.

Figure 3.10: Performance comparisons at di�erent memory threshold.

Figure 3.10 shows the performance of GenMatcher at di�erent memory thresholds (8 MB, 16

MB, 32 MB, 64 MB). For all 10 scenarios examined, GenMatcher only produces a signi�cantly

di�erent memory cost for the third text. In this test, GenMatcher chooses to create fewer groups

when more memory is available, through the more aggressive use of rule expansion. These fewer

groups lead to a signi�cant performance improvement as shown in Figure 3.10 (b), where thresh-

olds of 32 MB and 64 MB perform signi�cantly better. We note that, GenMatcher is highly con-

servative when con�gured to maintain a given memory threshold, thus the actual memory used

45

is often much lower than the threshold. This is because GenMatcher uses a heuristic at grouping

phase to estimate the upper bound of memory which might be used during the expansion phase.

This heuristic often leaves some memory on the table but is much faster (at con�guration time)

than iteratively grouping and expanding to hit a given memory target.

Figure 3.11 shows the memory cost per rule with respect to Bitweaving and GenMatcher.

For all the 6 di�erent rule sizes (256, 512, 1024, 2048, 4096, 8192). For all cases except 8192,

GenMatcher has a lower memory cost per rule than Bitweaving. In the 8192 case, to preserve

matching performance by reducing groups, GenMatcher expands more rules than Bitweaving

(while remaining under the de�ned memory budget), thus, GenMatcher uses more memory per

rule than Bitweaving. However, GenMatcher maintains a better search time in return for the

extra memory per rule.

0

100

200

300

400

500

600

700

800

900

1000

2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2

M
e

m
o

ry
 c

o
st

 p
e

r
ru

le
 (

B
y

te
)

The number of rules

Bitweaving GenMatcher

Figure 3.11: Memory cost per rule.

3.6 Conclusions

This chapter proposes GenMatcher, a generic, arbitrary, software-only matching mechanism

for fast, e�cient, searches under a given memory threshold. GenMatcher employs our proposed

grouping algorithm to assign the arbitrary rules with the greatest similarities into the same group.

GenMatcher generates a minimal number of groups within a memory threshold, and is able to

build an e�cient trie data structures to perform fast binary searching. For a rule table with a size

46

8192, GenMatcher achieves a mean speedup of 58.9X over a Linear baseline.

47

4. GenSMatcher: A GENERIC SIMD-BASED ARBITRARY MATCHING FRAMEWORK

This chapter presents a generic SIMD-based arbitrary matching mechanism that further im-

proves the matching performance. First, we introduce a background of a height-optimized trie

data structure. Second, the motivation of our GenSMatcher is presented. Then, the design section

describes a detailed implementation of GenSMatcher. Finally, the evaluation section compares our

SIMD-based arbitrary matching mechanism with our previous proposed GenMatcher in search

performance, memory cost, and insertion time.

4.1 Introduction

Packet classi�cation is the critical component in a switch network, which classi�es/forwards

internet packets to �ows according to the pre-de�ned rules generated by the di�erent network

applications and their con�gurations [53]. With the advent of SDN technology, the applications

have become more �exible since the control plane is decoupled from the data plane. This separa-

tion increases the demand for software-based generic packet classi�cation methods. In traditional

switch networks, rules consist of �ve �elds: source IP address, destination IP address, source port

number, destination port number, and protocol [54]. However, in an SDN switch network, the

rules have more �elds as de�ned in OpenFlow [55], a de facto standard of SDN. OpenFlow de-

�nes the communication mechanism and message format between the control plane and the data

plane. The latest OpenFlow ver. 1.5 de�nes 45 di�erent �ow match �elds, in which about half

of them involve wildcards [56]. Therefore, the multi-�eld packet classi�cation problem becomes

more complex and challenging [57, 40, 38].

While there exists plenty of research on packet classi�cation, most of them focus on pre�x and

range matching [9]. With the prevalence of High-Performance Computing (HPC) applications,

the software-de�ned network technique will be deployed in HPC networks [58], requiring high-

performance packet classi�cation [59]. Di�erent applications generate various ordering of multi-

�elds, resulting in wildcard rules with diversi�ed wildcard bits. Such a variety of wildcard bits

48

renders multi-�eld packet classi�cation a challenging function for SDN devices. There are four

di�erent matching types for packet classi�cation: exact match, pre�x match, range match, and

arbitrary match [3]. Pre�x match and arbitrary match both contain wildcard bits. The wildcard

bits of pre�x match is located at the end of a rule, whereas arbitrary matches may have wildcard

bits at any bit position. Since all matching types can be represented in arbitrary matches, the

essential task is to improve the generic arbitrary matching performance.

There are few prior works on arbitrary matching. Meiners et al. proposed Bitweaving [10],

a hardware-based compress approach to reduce the number of ternary content-addressable mem-

ory (TCAM) rules. Bitweaving utilizes the TCAM, which is expensive, power-hungry, and capacity-

limited. Therefore, the Bitweaving method is not suitable for large data applications. We intro-

duced the GenMatcher [3], a software-based generic clustering-based arbitrary matching frame-

work, which is implemented with a binary trie data structure. Compared to the linear search

and bitweaving [10] method, GenMatcher gained a signi�cant speedup on search performance.

Although GenMatcher improved the arbitrary matching performance, it does not leverage the

modern processor features, such as SIMD instruction. Besides, GenMatcher cannot keep up with

the scalable performance with the sizeable blooming scale of input since the binary-trie data

structure cannot satisfy the high-performance matching needs. Ultimately, with the demand for

high-performance matching from big data and HPC applications, GenMatcher restricts the room

for improvement in search performance and memory cost. Thus, the high-performance arbitrary

matching is still an open problem.

Binna et al. proposed the height optimized trie (HOT) data structure, which takes advantage

of the SIMD instruction and modern cache features that exploit data localities to accelerate the

searches and reduce memory usage. Unfortunately, HOT can not be directly applied for arbitrary

matching because HOT does not support wildcard rules. In addition, HOT is incapable of priori-

tizing results. Since wildcard matching can have multiple matching results, the priority feature is

needed to choose the correct candidate, usually with the highest priority. Due to this, there is no

existed work related to the modern processor feature supported arbitrary matching. In order to

49

�ll out this gap, this chapter aims to achieve a high-performance search throughput and memory

cost by utilizing the modern processor features for arbitrary matching.

A key to achieve high matching performance is to ensure that the matching data structure

can utilize the modern CPUs’ advanced features. This chapter proposes GenSMatcher, a generic

SIMD-based arbitrary matching framework, which utilizes the SIMD modern feature to improve

the matching performance in search time and memory cost. Our proposed GenSMatcher employs

the Height Optimized trie (HOT) data structure presented by Robert Binna et al. [25], in which

the trie node is composed of a �xed upper bound of binary trie node. The trie node has a data-

dependent span and a �xed maximum fanout, enabling a consistently high fanout for arbitrary

key distributions and e�cient search using the SIMD feature.

To process arbitrary matching, we propose a novel mechanism to deal with the wildcard

rules. First, we de�ned wildcard rule representation [3]. After the interpretation of wildcard

rules, we can insert them into the HOT data structure. Second, HOT only carries partial bits of

a rule, represented by the discriminative bits, which e�ciently reduces the memory cost. Since

the wildcard rules have ∗, which can be either 1 or 0, we propose a novel algorithm to extract the

e�ective partial bits based on the rules’ distribution. Third, to guarantee the integrity of wildcard

rules’ information, we must store the rules’ complete bits in the corresponding leaf nodes.

Wildcard rule representation: We design a rule representation method that can interpret wild-

card rules into three �elds. The representation allows us to insert the wildcard rules into the trie

data structure.

Challenges: HOT is able to represent a rule with only partial bits, which reduces the memory

footprint. However, we cannot use its discriminative bit selection method to choose the partial

bits for a wildcard rule. To enable wildcard matching operation, we design a GenSMatcher ex-

traction algorithm to obtain a wildcard rule’s partial bits to guarantee the matching outcome.

As wildcard rules can cause multiple matching rules for an incoming key, we must choose the

highest priority to get the correct matching result. Therefore, we need to use some extra space

for the leaf node to store the wildcard rules. Our goal is to utilize the modern processor features

50

to improve the arbitrary matching performance. To implement the e�cient arbitrary matching,

we must address these challenging technical problems:

• We must modify the HOT data structure to support wildcard matching.

• We need to develop a partial bits extraction algorithm to choose the a�ected discriminative

bits from the corresponding node’s discriminative bits set.

• We must guarantee that the arbitrary matching result is correct.

Contributions: GenSMatcher is an advanced arbitrary matching framework that can take ad-

vantage of modern processor’s features. The contributions are:

• GenSMatcher is an enhanced SIMD-based arbitrary matching framework, processing any

type of matching.

• We develop a novel GenSMatcher extraction algorithm to extract the e�ective partial bits

of a wildcard rule.

• Experiments show that GenSMatcher achieves search time speedup by utilizing the SIMD

feature on average by 2.7X compared to GenMatcher, and up to 6.17X reduction for the

memory footprint.

4.2 Background

Arbitrary matching can be implemented either by hardware-based or software-based ap-

proaches. TCAM [29] is a hardware-based solution which can process the arbitrary rules in

parallel. Nonetheless the TCAM is power-hungry and expensive, and it cannot scale with the

number of rules [28], especially for the big data and HPC applications. This dissertation will fo-

cus on the software-based approach. The goal is to develop a data structure that is e�cient for

high-performance arbitrary matching.

We have witnessed the rapid evolution of processor architecture and memory system, whose

new features have been proven bene�cial to arbitrary matching [22, 23, 60, 26]. Meanwhile,

51

trie is a lexicographic data structure where nodes can share their common pre�x. Even with the

increasing size of data sets, the trie height is independent of the rule size; instead, it is determined

by the length of the rule and the node design. In particular, traditional tries cannot be directly

used in arbitrary matching where wildcards may appear at any bit positions [3]. However, the trie

can be applied for the arbitrary rules via certain transformations. Our previous work proposed a

generic arbitrary matching framework, GenMatcher. GenMatcher can convert the arbitrary rules

into pre�x rules inserted into a binary trie data structure. The search performance of a binary

trie depends on the trie depth, which equals the length of a rule. Hence we need to decrease the

trie height in order to improve the search performance. In this chapter, we will concentrate on

optimizing the trie data structure to achieve high-performance arbitrary matching.

4.2.1 Relationship with Prior Art

Table 4.1 shows the complexity comparisons between all the following trie data structures,

where W is the key length, M is the span size, and T 1
is the trie node size. The space complexity

in Table 4.1 are based on the worst case.

GenMatcher [3] groups rules and converts wildcard rules into pre�x rules, which are later in-

serted into a binary trie data structure. For a 64-bit integer rule set, the worst trie height will be 64

if there are no wildcard rules. During the search process, we have to search each bit sequentially

to get a matching result. The trie heights should be reduced for optimized performance. There-

fore, we need to optimize the trie data structure from cache e�ciency and modern processor

utilization to reduce the height.

We explore the Patricia trie (or radix tree) [24], a compressed version of a trie. In a binary trie,

for a 64-bit integer, each trie node can have up to two edges: bit-0 and bit-1. Each non-wildcard

bit will be stored in the trie as a trie edge, while in a Patricia trie, multiple bits can be stored in

1
The trie node size of each trie data structure in Table 4.1 is unique, determined by its trie node layout.

2
Here the binary trie is a complete tree and each trie node has two pointers.

3
Patricia trie is a path-compressed trie whose height might be reduced based on the data distribution. On average,

W ′ ≤W .

4
Since the ART trie node can have di�erent span sizes, M ′

represents its average span size.

5W ′′
is determined by the data distribution, and W ′′ < W ′

.

52

Table 4.1: Complexity comparisons of the di�erent trie data structure

Trie height

Space

complexity

SIMD feature

Binary

trie

O(W) O(2W · T)2
No

Patricia

trie

O(W ′)3 O(2W
′ · T) No

M-ary trie O(W/M)
O((2M)(W/M) ·

T)
Yes

ART trie O(W/M ′)4
O((2M

′
)(W/M ′) ·
T)

Yes

HOT trie O(W ′′)5 O(2W
′′ · T) Yes

the Patricia trie as a single edge. Thus, multiple binary nodes can be compressed into one node,

which reduces the trie height and decreases the number of nodes resulting in saving memory.

To further decrease the trie height, we study the M -ary trie, whose span is M . In contrast to

binary trie, M -ary trie increases the span from 1-bit toM -bit. The maximum number of children

of each trie node is 2M . Since modern CPUs allow multiple comparisons to be performed with

a single SIMD instruction, M -ary reduces the search time with a smaller height. Consequently,

the number of cache misses is reduced because 2M comparisons can be performed for each cache

line loaded from main memory [26]. Hence, compared with the binary trie,M -ary trie is not only

more e�ective in searching by utilizing SIMD instruction, but it is also cache-friendly. Further-

more, the trie height is reduced from W to W/M , where W is the key length. However, as the

span size increases, the memory cost increases exponentially because each node is allocated 2M

pointers in an array. Nowadays, some big data applications are more sparsely distributed, which

causes a large amount of memory wasted. Thus, for di�erent applications, we need to adopt vary-

ing span sizes to save memory costs. Therefore, we explore the adaptive radix tree [26] (ART)

data structure next.

While a traditional radix tree requires the trade-o� of tree height with memory cost by setting

53

a globally valid span parameter, ART proposes a node represented with a varying span size. The

number of child nodes determines the size. If a node has many child nodes, ART assigns an

enormous span to this node; otherwise, it obtains a smaller span. Thus, the adaptive nodes lead

to a lower memory cost by decreasing the number of empty pointers. However, since the trie

height is determined by the key length and the span size, the ART trie might be unbalanced due

to the various span sizes.

For all the tries mentioned earlier, the node and span bits
6

are �xed elements. If the data set

is sparsely distributed, the data structure is likely an unbalanced trie. To solve this problem, we

need to explore a radix tree with nodes of equal fanout and various span bits. Meanwhile, with

the increasing speed gap between cache access and main memory access, improving cache be-

havior becomes a crucial task to improve the performance in main memory data processing [61].

Thus, we start to pay attention to memory reference locality and cache behavior to improve the

matching performance further. For a binary trie, trie search presents signi�cant challenges due

to irregular and unpredictable data accesses during trie traversal [62]. Typically the size of a

block/cache line is 64 bytes [63]. The processor will read or write an entire cache line when any

location in the 64-byte region is read or written [63]. Good memory reference locality leads to

fewer cache misses, which can reduce the memory access time.

To leverage the memory cost and search performance, Robert Binna et al. [25] propose a

height optimized trie (HOT) data structure, which retains a consistently high fanout and reduces

the overall height. HOT is a new data structure designing for the main-memory database with

high performance and low memory cost. A conventional trie node has a �xed span bits and data-

dependent fanout, while HOT trie node features data-dependent span bits and a �xed maximum

fanout
7 k [25]. The design of k is set to 32 since 32 is an optional value considering the trade-o�

between the cache-friendly and fast update. Thus, each trie node has the same maximum number

of children, but each child may cover di�erent bit positions.

6
Span bits denote the speci�ed bit positions that the trie node edge crosses.

7
In any tree data structure, the fanout of a node is de�ned to be the number of children the node has. The fanout

of a tree is de�ned to be the maximum fanout of any node in the tree.

54

To save memory cost, HOT stores partial key information representing this key, which intro-

duces discriminative bits. The discriminative bit is de�ned as the bit position that has di�erent

values. For the integer data set, the values are "0" and "1". If any bit position has both values 0 and

1, this bit position will be included in the discriminative bits set. The partial key is extracted from

the whole key using these discriminative bits. For the node layout, HOT utilizes three di�erent

sizes of the partial key: 8-bit, 16-bit, 32-bit. The data distribution determines the node type’s se-

lection since the size is equal to the number of discriminative bits among all the keys/rules in the

data set. For example, comparing bit string "10" with "11", the discriminative bit is bit-0 position

(least signi�cant bit). If here comes another bit string "00", we obtain another new discriminative

bit position, bit-1. If the data set only has these three rules, the 8-bit format of the node is selected

since we only have two discriminative bits: bit-0 and bit-1. Of course, with the increasing size of

the data set, the size of the discriminative bits set will be larger, requiring a bigger node size.

The details of insert and search operation are explained in Section 4.3. First, HOT de�nes

the extract operation to obtain all the discriminative bits from the input data set. Next, HOT

compares the extracted partial keys/rules to the inserted partial data. The comparison operations

occur in both insert and search operations. HOT node has a �xed maximum of 32 children,

which is e�cient for utilizing SIMD instructions. It can compare one search key with 32 x 8-bit

keys in parallel by utilizing AVX. HOT searches through the current data structure during the

insert process to check if the rule is already inserted. If it is true, the insert operation is �nished

and returns 0. Otherwise, the procedure will �nd the missing match BiNode8
and create a new

discriminative bit using this missing match bit position. Therefore, each inserted rule has a unique

combination of discriminative bits, demonstrating a customized span’s property. HOT extracts

discriminative bits from the search key during the search process and then traverses through the

HOT to �nd if there is a matching. Since the HOT data structure is optimized for cache e�ciency

and allows for e�cient, SIMD-optimized search [25], it is an excellent framework to reference

for our wildcard matching. However, the HOT does not support arbitrary matching. This article

8
BiNode is the binary trie node.

55

proposes GenSMatcher, which extends the HOT data structure to support arbitrary matching

operations.

4.2.2 Motivation

Our focus is on wildcard matching. The goal is to �nd a data structure that is e�cient for

wildcard matching. This section discusses the need for wildcard matching and explains why we

study arbitrary matching and why HOT is a good reference.

4.2.2.1 Why we study arbitrary matching?

In general, there are four di�erent matching types: exact matching, pre�x matching, range

matching, and arbitrary matching. The de�nition of arbitrary matching is that the de�ned rules

can be represented in any format, including the other three matching types. Therefore, arbitrary

matching is a more generic matching type. From the applications aspect, in this dissertation, we

mainly consider about two applications: packet classi�cation and MPI tag matching. These ap-

plications require arbitrary matching operations since the de�ned rule format may have wildcard

bits at any position. Furthermore, there has been little work done related to arbitrary matching.

With the increasing demands of big data processing, arbitrary matching becomes more prevalent.

Thus, improving the arbitrary matching performance is a crucial and challenging task.

4.2.2.2 Why we adopt HOT data structure?

For HOT data structure, their node layout is cache-friendly. Also, the insert and search op-

erations utilize AVX instructions to take advantage of parallel computing. Most importantly,

they store each rule’s discriminative bits into the data structure instead of the entire rule, which

reduces the overall trie height and saves memory cost. However, the HOT does not support ar-

bitrary matching. This chapter proposes GenSMatcher, which extends the HOT data structure

to support arbitrary matching operations.

For an arbitrary matching operation, a rule may have wildcards for an arbitrary matching op-

eration, e.g., 101**0, where the wildcards ∗ are not located at the end of the bit string. HOT only

needs to insert the discriminative bits that distinguishing between the new rule with the inserted

56

rules. If a rule is an arbitrary rule, the discriminative bit sets cannot be updated correctly due

to the wildcard’s uncertainty. To solve this problem, we propose the GenSMatcher extraction

algorithm, which masks out the wildcard bits positions, excluding from its node’s discrimina-

tive bits set. Therefore, each node’s discriminative bits set will no longer include the wildcards

bit-positions. By adding this new feature, we can deal with arbitrary rules. Since we ignore the

wildcard bit-positions, we must store the wildcard rules in the leaf node to guarantee the cor-

rect matching. After these data structure modi�cations, the arbitrary rules can be inserted with

their complete information. In addition, the search key can traverse the trie to �nd the accurate

matching result.

4.3 GenSMatcher design

In this section, we present our GenSMatcher design for supporting arbitrary matching. We

interpret rules into three �elds for a wildcard rule: value, mask, and priority �eld de�ned in 1.

An example of a wildcard rule set is shown in Table 4.2. In the table, we note that wildcard ∗ bit

is interpreted to bit-0 in the value �eld and interpreted to bit-1 in the mask �eld. In this chapter,

we de�ne the least signi�cant bit (LSB) position as bit-0 position. We take this wildcard ruleset as

an example. The most signi�cant bit (MSB) is bit-4. Thus, the discriminative bits set of each node

can have at most �ve bit-positions. We will present the updated insertion and search operations

in the following sections.

4.3.1 Insert operation

In order to support arbitrary matching, we design a separate procedure for insertion, which

refers to extractMask, extractMaskFromSuccesiveByte, and ExecuteForDi�ngKeys functions. Since

a rule might have wildcard bits ∗, we need to ignore this wildcard bit position in a node to guar-

antee that all the rules’ partial information inserted into the trie data structure is determinate.

Therefore, we de�ne a new function extractMask to extract the a�ected discriminative bits from

the corresponding node’s discriminative bits set. In this chapter, we denote the discriminative bits

as DBbits, which are the bit positions that have a distinctive value. In the extractMask function,

57

Table 4.2: An example of a wildcard ruleset

Rules Value Mask Priority

R1: 00101 00101 00000 1

R2: 10110 10110 00000 2

R3: 11110 11110 00000 3

R4: 11101 11101 00000 4

R5: 0*11* 00110 01001 5

R6: 1*10* 10100 01001 6

R7: 0*0** 00000 01011 7

R8: 0*1** 00100 01011 8

R9: 1**** 10000 01111 9

�rst, we check if the mask �eld is 0, if it is true, return extractMask = 0, otherwise, we omit the

wildcard bits shown in the mask �eld from the bit positions of DBbits.

For example, if mask = 00101, which shows that the bits are wildcard bits on the bit-0 and

bit-2 position of a rule. If the current DBbits = 10100, which demonstrates that bit-2 and bit-

4 positions are the distinguishing bits. Thus, we need to omit this bit-2 position since this bit

position is shown in the mask �eld. Consequently, we utilize the bitwise xor operation to omit

the a�ected bit position. 00101 ∧ 10100 = 10001. We note that the bit-2 of DBbits becomes 0

after the xor operation, which omits the wildcard bit-2. Then, we utilize the extract instruction

_pext_u64() to extract the bits position value where the bit position is ”1” in DBbits. For doing

so, we obtain the value of extractMask, which represents the a�ected bit positions excluding the

wildcard bits.

Next, we process the searchForInsert function, which is used to check if the new rule is already

inserted in the trie data structure to avoid duplicated insertion. First, we traverse the trie from

the root node to the leaf node and try to �nd a match during this process. For doing the traversal

in each level, we extract the partial rule from the inserting rule by utilizing the extract instruction

_pext_u64(rule.value,DBbits) to obtain extractedRst, where DBbits is the discriminative bits

set of the current node. If this rule’s mask value is 0, then the partial rule is equal to extractedRst.

58

Otherwise, the partial rule is calculated by _pext_u64(extractedRst, extractMask). By doing

this, we omit the wildcard bits to guarantee the correct match result. If we interpreted the wild-

card bit ∗ to either bit 0 or bit 1, we would lose some of the rules’ information. Hence, the search

result cannot always be correct. The full procedure of calculating partial rule/key of the whole

rule/key is shown in Function extractMaskFromsuccessiveByte() in the Algorithm 2.

Algorithm 2 GenSMatcher Extraction Algorithm.

1: function extractMask(rule.mask,DBbits)
2: if rule.mask == 0 then
3: extractMask = 0
4: else
5: extractMask = _pext_u64((DBbits ∧ rule.mask), DBbits)
6: end if
7: end function
8:

9: function extractMaskFromsuccessiveByte(rule,DBbits)
10: extractedRst = _pext_u64(rule.value,DBbits)
11: if rule.mask == 0 then
12: rst = extractedRst
13: else
14: rst = _pext_u64(extractedRst, extractMask)
15: end if
16: end function
17:

The result of function searchForInsert(root, rule) is the matched rule. Since we only insert

a portion of the rule information, we need to compare the matched rule with the inserting rule

by utilizing function executeForDiffingKeys() to obtain the new missing binary node and

update the corresponding node’s DBbits.

For the original executeForDiffingKeys() function, HOT compare the exact rules/keys.

However, for implementing arbitrary matching during the comparisons, we need to consider the

wildcard bits. Thus, the new comparison function new_executeForDiffingKeys() involves

two new arguments: mask �eld of matched rule and inserting rule, respectively, de�ned in De�-

59

nition 5.

De�nition 5. The missing match binary bit between matched rule oldRule and inserting rule

newRule is calculated in Eq. 4.1.

A = oldRule.value | oldRule.mask | newRule.mask

B = newRule.value | oldRule.mask | newRule.mask

flag_mask =

0, if A 6= B

1, if A = B && newRule.mask > 0

(4.1)

where A and B are de�ned as the bitwise OR operation between oldRule and newRule. The

bitwise OR operation ignores all the wildcard bits from these two di�erent rules, such that we

obtain the exact discriminative bit after comparisons. The flag_mask is the identi�cation �ag

for selecting di�erent insertion procedures. If A is not equal to B and an exact discriminative

bit distinguishing between oldRule and newRule, the �ag is set to be false. If A equals B, and

at the same time newRule has wildcard bits, this shows that a new wildcard rule needs to be

inserted. In this case, the �ag would be set to true. Alternatively, if the �ag becomes false, we

utilize HOT’s insertion procedure. Otherwise, the wildcard rules will be inserted utilizing our

proposed procedure. We demonstrate the details later.

First, the rule is a wildcard rule containing wildcard bits. Because we do not insert the wildcard

bits position into the trie, we need to insert this wildcard rule into the a�ected leaf binary nodes.

Therefore, we create a �xed-size array for the Binary node structure to store wildcard rules as a

linked list. Second, we �nd the a�ected subtree, represented as the �rst index of the subtree and

the subtree’s number of entries. We insert the wildcard rule into these a�ected leaf entries.

Take the rule set in Table 4.2 for example. Here we assume k = 32, the LSB is the bit-0 position

60

and BiNode is a binary node. The insertion procedure is shown in Figure 4.1. For the �rst rule

R1 : 00101, we insert it into the root node in Figure 4.1 (a). For the second rule R2 : 10110,

we �nd a new discriminative bit position bit-4, thus two respective BiNode are created. At the

same time, the bit position bit-4 is put into DBbits of the root node. Also, R1 and R2 are stored

into the leaf BiNode entries, as shown in Figure 4.1 (b). For rule R3 : 11110, we extract the bits

positions ofDBbits of the root node, that is bit-4 position of ruleR3, and obtain the matched rule

R2. Next, we compare the matched rule R2 with rule R3, which produces a new discriminative

bit of bit-3 position. After insert the ruleR3, the trie data structure is shown in Figure 4.1 (c). For

rule R4 : 11101, we extract the bits of DBbits: bit-4 and bit-3 and obtain the matched rule R3.

Then we compare the matched rule R3 with rule R4, which creates a new discriminative bit-1

position, as shown in Figure 4.1 (d). Note that the DBbits has {bit-4, bit-3, bit-1} so far.

For ruleR5 : 0∗11∗, we extractDBbits : {bit-4, bit-3, bit-1} and obtain 0∗1. By traversing the

trie root, we obtain the matched rule R1. Next, we compare rule R1 with rule R5 by implement-

ing new_executeForDiffingKeys() function, and generate discriminative bit position bit-1.

Because the wildcard bit ∗ of rule R5 is at bit-3 position, flag_mask is false such that this wild-

card rule will be inserted using the original insertion procedure. For rule R6 : 1 ∗ 10∗, we extract

{bit-4, bit-3, bit-1} and obtain 1 ∗ 0, which matches with rule R4 that has the same bits at bit po-

sitions {bit-4, bit-1}. For comparison between ruleR4 and ruleR6, oldRule is ruleR4, newRule

is rule R6, and A = 11101 | 00000 | 01001 = 11101, B = 10100 | 00000 | 01001 = 11101. We

note that A = B, thus, flag_mask is true, which triggers our new insertion procedure. First, we

need to �nd the a�ected subtree, where the wildcard rule R6 will be inserted. From comparing

rule R4 with rule R6, in the Figure 4.1 (e) we see that rule R6 a�ects the trie starting from the

bit-3 position of rule R4’s path. Because the bit-3 on rule R6 is a ∗, it a�ects the two children "0"

and "1". There is only one child on the "0" path. The leaf entry rule R2 is a�ected. There are two

leaf entries on the "1" path: ruleR4 and ruleR3. Since the bit-1 position of ruleR6 is 0, only rule

R4 is a�ected. Therefore, the number of a�ected leaf entries is 2: rule R2 and rule R4.

First, we �nd the a�ected subtree, whose �rst entry index of the subtree is 2, ruleR2, counting

61

R6

R6

R6

R6
R6

R9
R6

R9

R9
R8 R8

R8 R8

R2 R3

R1

(c)

0 1

0 1

bit−4

bit−3
R2R1

(b)

0 1

bit−4

(a)

R1

R1

0 1

0 1

R3

R2

R4

bit−1

bit−3

0 1

bit−4

(d)

0 1

R1 R5

bit−1

R6

10

bit−4

bit−2

0 1

R1 R5

R7

10

bit−1

10

bit−4

bit−2

0 1

R1 R5

R7

10

bit−1
0 1

0 1

R3

R2

R4

bit−3

10

bit−4

bit−2

0 1

R1 R5

R7

10

bit−1

0 1

bit−4

0 1

bit−4

R6

0 1

R1 R5

bit−1

0 1

0 1

R3

R2

R4

bit−3

bit−1

(e)

0 1

0 1

R3

R2

R4

bit−3

bit−1

(f) (g)

0 1

0 1

R3

R2

R4

bit−3

bit−1

0 1

0 1

R3

R2

R4

bit−3

bit−1bit−1

(h) (i)

Figure 4.1: Insertion procedure of a wildcard ruleset.

from the leftmost side and index starting from 0. The number of a�ected entries is 2; that is, the

a�ected leaf entries are rule R2 and rule R4. Second, we insert this wildcard rule R6 into the

leaf entries rule R2 and rule R4. As shown in Figure 4.1 (f), the wildcard rule is represented as a

rectangle.

For rule R7 : 0 ∗ 0 ∗ ∗, since its bit positions bit-3, bit-1 are all ∗, we only extract bit-4 and

obtain matched rule R1. We compare rule R1 with R7 and produces a new discriminative bit

position bit-2, which will be added into the root node’s DBbits. Thus, the DBbits has {bit-4,

bit-3, bit-2, bit-1}. The current trie is shown in Figure 4.1 (g). For ruleR8 : 0∗1∗∗, we extract the

62

Table 4.3: An example of a pre�x ruleset

Rules Value Mask Priority

R1: 01001 01001 00000 1

R2: 11100 11100 00000 2

R3: 11110 11110 00000 3

R4: 11011 11011 00000 4

R5: 011** 01100 00011 5

R6: 110** 11000 00011 6

R7: 00*** 00000 00111 7

R8: 01*** 01000 00111 8

R9: 1**** 10000 01111 9

non-wildcard bit position: bit-4 and bit-2, and obtain the matched rule R1. We compare R1 with

R8 by utilizing Eq. 4.1,A = 00101 | 00000 | 01011 = 01111,B = 00100 | 00000 | 01011 = 01111.

We note that A = B; thus, flag_mask is true, which triggers our new insertion procedure. For

rule R8, the a�ected subtree mask is 000110, which shows that the a�ected leaf entries are index

1 and index 2, which are rule R1 and rule R5, as shown in Figure 4.1 (g).

For the last rule R9 : 1 ∗ ∗ ∗ ∗, we extract the non-wildcard bit position: bit-4, and obtain

matched ruleR4. We compare ruleR6 withR9 and calculate flag_mask, whose value is 1. Next,

we collect the a�ected subtree. Since rule R9 has wildcards ∗ on all bits position except the bit-4,

we note that the a�ected leaf entries are rule R2, rule R4, and rule R3. Thus, we insert this new

wildcard rule R9 into the wildcard rule list under these three leaf entries. The �nal trie is shown

in Figure 4.1 (i). Note that we insert seven wildcard rules into the wildcard rule list container of

the a�ected leaf entries, which guarantees that all of the rules information is inserted.

For the ruleset in Table 4.2, we see that the wildcard bits ∗ are at random positions and not

always at the end. Since the trie is a lexicographic data structure, di�erent positions of wildcard

bits build various data structures. This is because the rules’ bits are inserted in order from the

MSB to LSB. If the wildcard bit is on the upper level, this will a�ect more leaf entries, resulting

in more insertion of wildcard rules. If the ruleset is changed to all pre�x rules, the number of

63

R6

R9
R9

R8 R8
R8 R8

R2R1

(b)

0 1

bit−4

(a)

R1

R2 R3

R1 R1

R6
R6

R6

R9

10

bit−4

0 1

R1 R5

R7

10

10

bit−4

0 1

R1 R5

R7

10 0 1

0 1

R3

10

bit−4

0 1

R1 R5

R7

10

0 1

bit−4

0 1

bit−4

0 1

R1 R5

0 1

0 1

R3

bit−1

(e)

0 1

0 1

R3

bit−1

(f) (g)

0 1

0 1

R3

bit−1

0 1

0 1

R3

bit−1bit−1

(h) (i)

(c)

0 1

0 1

bit−4

bit−1

0 1

bit−4

(d)

0 1

0 1

R3

bit−1

bit−2

R4

R2

0 1

R1 R5

bit−2 bit−2

R4

R2

bit−2bit−2

R4

R2

bit−3

bit−2

bit−2

R4

R2

bit−2

R4

R2

bit−3

bit−2

bit−2

bit−2

bit−3

R4

R2

Figure 4.2: Insertion procedure of a pre�x ruleset.

inserted wildcard rules will be decreased. The rule set in Table 4.3 is a transform of the ruleset in

Table 4.2. Its insertion procedure is shown in Figure 4.2.

Comparing the �nal trie between Figure 4.2 (i) and Figure 4.1 (i), we observe that the two trie

data structure are di�erent. First, the DBbits of each rule are di�erent. We take rule R4 as an

example. In Figure 4.1 (i) rule R4 is composed of {bit-4, bit-3, bit-1}, while in Figure 4.2 (i) rule

R4 consists of {bit-4, bit-2}. Second, in Figure 4.1 (i) there are seven wildcard rules inserted into

the trie, whereas in Figure 4.2 (i) only six wildcard rules are inserted. This is because Figure 4.2 (i)

has all pre�x rules, but Figure 4.1 (i) has arbitrary rules that have wildcard bits ∗ at any position.

64

However, the height of the trie is the same. Thus, in contrast to arbitrary rules, pre�x rules

consume less memory.

4.3.2 Search operation

For a search operation, we traverse from the root node to the leaf node of the trie. The pro-

cedure is as follows:

1. We extract the partial key from the incoming key by utilizing the search node’s discrimi-

native bits set.

2. We utilize SIMD comparison instructions to compare the extracted partial key with the trie

node’s entries.

3. After the comparison, if we �nd the matched item, we will move to the next level and go

back to step (2), and we will not go to step (4) until the leaf node is reached; Otherwise, it

is a non-match, return false.

4. We compare the matched entry with the incoming key in terms of the full bits to check if

there is an accurate match. If it is a match, then return true. Otherwise, check if the size of

the wildcardRuleList is empty. If it is empty, then return false. Otherwise, the wildcard

rules in the list need to be compared with the incoming key. The matching result will be

the �nal match result.

Our proposed GenSMatcher extracts the e�ective discriminative bits to guarantee accurate

partial rules insertion to support wildcard matching in HOT. During searching, GenSMatcher

can obtain the correct match result due to the wildcard rule array.

4.4 Evaluation

This section evaluates GenSMatcher on rulesets generated from packet capture (PCAP)

traces and random generators. GenSMatcher is our advanced arbitrary matching framework,

which is SIMD and cache-friendly. We �rst demonstrate the evaluation methodology, followed

by performance analysis. Finally, we deliver the scalability of the GenSMatcher.

65

4.4.1 Methodology

We integrate GenSMatcher with HOT [25] data structure in C++ and employ two di�er-

ent rule generation methods to generate the rulesets. The rules are 64-bits integers generated

from the IPv4 source and destination addresses. First, we employ a heuristic rule generation

method [51] to synthesize the PCAP rulesets, where 11,000 rules are generated based on the

CAIDA PCAP data [52]. We choose �ve various set samples with di�erent sizes (924, 2742, 3892,

5136, 7062) and extract unique 1,044,618 keys from the traces to show the scalable performance.

Second, we use our random generator (generate random 64-bit integer) to create 2 di�er-

ent rule table sizes (10,000, 100,000) and 4 di�erent key set sizes (10,000, 100,000, 100,000,000,

1000,000,000) with various match ratios: {0.5%, 1%, 2.5%, 5%, 10%, 25%, 50%}, that is, the per-

centage of keys that �nd a match. With 30% wildcard rules, the number of wildcard rules is

calculated as 30% × rule size. Speedup is de�ned as GenMatcher search time / GenSMatcher

search time. We evaluate our GenSMatcher on a real system using one single thread, in which the

processor is Intel i9-9900 16-core 3.1GHz with a 32 GB DRAM. The cache hierarchy consists of a

32k L1d, 32k L1i, 256k L2, and 16384k L3 cache.

Table 4.4: Evaluation Parameters

small_keySet 10,000

big_keySet 100,000,000

bigger_keySet 1000,000,000

small_ruleSet 10,000

big_ruleSet 100,000

4.4.2 Performance Comparisons

We compare GenSMatcher against GenMatcher regarding search time, insert time, and

memory cost.

66

4.4.2.1 Search time:

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

924 2742 3892 5136 7026

Sp
ee

du
p

(G
en

SM
at

ch
er

 v
s G

en
M

at
ch

er
)

Number of rules

Figure 4.3: Search time performance comparison with respect to di�erent number of rules on a

small scale.

We utilize two di�erent benchmarks to evaluate search time performance. We evaluate the

performance by employing the ruleset and key set generated by PCAP traces. The search time

performance is represented in Figure 4.3. This simulation evaluates �ve di�erent rule sizes (924,

2742, 3892, 5136, 7062). Note that with the increasing number of rules, the speedup of GenS-

Matcher against GenMatcher is not linear because the trie height mainly determines search

time. Table 4.5 shows the trie heights and match ratios of the corresponding test cases. With

the same trie height, the larger the match ratio, the more signi�cant the speedup. For the cases

(2742, 3892, 5136, 7062), their trie height is all 3. Case 7062 has the most considerable speedup

2.03 since its match ratio has the most signi�cant value, 37.8%. We observe that case 924 has trie

height 2, which is smaller than other cases’ height of 3. It was expected to outperform the other

cases. However, it did not beat case 7026. This is because the match ratio of the case 924 is only

8%, which creates more comparisons.

We evaluate the search time performance by utilizing the random generated 64-bit rule bench-

mark on a larger scale. Figure 4.4 shows the search time speedup regarding GenSMatcher

and GenMatcher. The number of rules is 10,000, the size of small_keySet is 10,000, the size

67

Table 4.5: Parameters of the trie

#Rules 924 2742 3892 5136 7026

trie height 2 3 3 3 3

Match ratio 8% 31.1% 25.3% 29.8% 37.8%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.5% 1.0% 2.5% 5.0% 10.0% 25.0% 50.0%

Sp
ee

du
p

(G
en

SM
at

ch
er

 v
s G

en
M

at
ch

er
)

Match Ratio

Speedup_with_wildcard_small_keySet

Speedup_with_wildcard_big_keySet

Speedup_with_wildcard_bigger_keySet

Speedup_without_wildcard_smal l_keySet

Speedup_without_wildcard_big_keySet

Speedup_without_wildcard_bigger_keySet

Figure 4.4: Search time performance comparison with respect to di�erent number of keys on a

large scale.

of big_keySet is 100,000,000 and the size of bigger_keyset is 1000,000,000.

First, in the �gure, we see that GenSMatcher produces substantially better results than Gen-

Matcher on both with 30% wildcard rules and without wildcard rules scenarios. This is because

the search time performance of both GenSMatcher and GenMatcher are dominated by the

search depth of their data structure, while the average search depth of GenSMatcher is smaller

than GenMatcher.

Second, we observe that GenSMatcher provides more signi�cant speedups for larger match

ratios. In the GenSMatcher framework, we add a �xed-size array in the leaf node entries. This

array stores the wildcard rules. During a search process, the key needs to traverse the trie from the

root node to the leaf node. If the matched leaf node entry has a non-empty array, the key needs

to search through the array sequentially. If the match result is a non-match, the key searches

68

through the whole array. Otherwise, the key might only search a portion of the array. Therefore,

a non-match consumes more comparisons than a match, and thus the larger the match ratio, the

greater the speedup.

Third, Figure 4.4 shows that the benchmark without wildcard rules has a slightly better per-

formance than the benchmark with 30% wildcard rules when the match ratio is greater than or

equal to 5%. This is because no array is inserted in the leaf node entries, which accelerates the

search process and results in a greater speedup.

Last, we see that under a �xed-size ruleset, the speedup with small_keyset is much more sig-

ni�cant than big_keySet and bigger_keySet. This is because of the system running overhead. The

speedup is achieving stability when the key size becomes su�ciently large enough to minimize

the overhead impact. Here we see no big di�erence between the big_keySet (100,000,000) and the

bigger_keySet (1000,000,000). The search time speedup is up to 2.7X.

0

0.5

1

1.5

2

2.5

3

5% 10% 25% 50%

Sp
ee

du
p

(G
en

SM
at

ch
er

 v
s G

en
M

at
ch

er
)

Match Ratio

Speedup_with_wildcard_small_ruleSet

Speedup_with_wildcard_big_ruleSet

Speedup_without_wildcard_small_ruleSet

Speedup_without_wildcard_big_ruleSet

Figure 4.5: Search time performance comparison with respect to di�erent number of rules.

Figure 4.5 shows the search time speedup concerning two di�erent rule sizes. The number of

keys is 100,000,000, the size of small_ruleSet is 10,000, and the size of big_ruleSet is 100,000.

As shown in Figure 4.5, we see that the speedup performance of big_ruleSet is greater than

small_ruleSet on match ratio {5%, 10%, 25%}. However, on the 50% case, the big_ruleset speedup

69

is smaller than the small_ruleset. Since theGenMatcher data structure is a binary trie, each rule’s

depth is equal to its non-wildcard bits. The maximal depth for a rule is 64 because we use a 64-bit

integer. The depth of GenSMatcher data structure is determined by the relationship between the

rules since we build the data structure using their discriminative bits. Therefore, there is no linear

trend towards the increasing number of rules, which shows the scalability of our GenSMatcher.

Table 4.6: The number of wildcard entries inserted in the trie

#Rules 924 2742 3892 5136 7026

Wild_rule entries 2 1235 837 1989 3783

4.4.2.2 Insert time:

We evaluate the insert time performance utilizing two sets of benchmarks. For the �rst set,

we employ the ruleset and key set generated by PCAP traces, as shown in Figure 4.6 (a). For the

other set, we utilize the ruleset and key set created by a random generator as shown in Figure 4.6

(b). Figure 4.6 (a) shows the speedup comparing GenSMatcher against GenMatcher. The insert

time is determined by the number of rules and the inserted wildcard entries. In Figure 4.6 (a),

note that the 924 rule case has the best speedup since the rule size is the smallest and the number

of wildcard entries is only 2. Table 4.6 shows the number of wildcard entries inserted in the trie.

Figure 4.6 (b) represents the insert time performance in a larger scale. Table 4.7 shows the in-

sert time speedup of GenSMatcher versusGenMatcher in the large scale. As shown in Table 4.7,

the speedup is decreasing with the increasing number of rules. Nonetheless, inserting 5,000,000

rules is about 7.3 seconds, and the speedup is about 1.38. Thus, the insert time performance of a

large-scale data set is stable.

70

Table 4.7: The insert time speedup between GenSMatcher and GenMatcher on a large scale

#Rules 10000 50000 100000 500000 1000000 5000000

Speedup 2.31 2.37 2.14 1.56 1.48 1.38

4.4.2.3 Memory cost:

Figure 4.7 (a) shows the memory cost for 5 di�erent rule sets on a small scale. In the �gure, we

note that the memory cost increases as the number of rules grows. For GenMatcher, we insert

all the non-wildcard bits into the trie. In contrast to GenMatcher, GenSMatcher only inserts

the discriminative bits into the trie. Therefore, in general, GenSMatcher saves more memory

than GenMatcher. Also, GenSMatcher needs to insert some wildcard entries when there are

no discriminative bits between the rules with wildcard bits.

Table 4.8: The memory cost comparisons between GenSMatcher and GenMatcher on a small scale

#Rules 924 2742 3892 5136 7026

Reduction 3.53 2.44 2.36 2.31 2.37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

924 2742 3892 5136 7026

Sp
ee

du
p

(G
en

SM
at

ch
er

 v
s G

en
M

at
ch

er
)

Number of rules

(a) A small scale.

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

10000 50000 100000 500000 1000000 5000000

In
se

rt
tim

e
(n

s)

Number of rules

GenSMatcher GenMatcher

(b) A large scale.

Figure 4.6: Insert time performance comparison.

71

0.74
0.95

1.76 1.88

2.42

0.21
0.39

0.75 0.81
1.02

0

0.5

1

1.5

2

2.5

3

924 2742 3892 5136 7026

M
em

or
y

co
st

 (M
B)

Number of rules

GenSMatcher GenMatcher

(a) A small scale.

1

10

100

1000

10000

10000 50000 100000 500000 1000000 5000000

M
em

or
y

co
st

 (M
B)

Number of rules

GenSMatcher GenMatcher

(b) A large scale.

Figure 4.7: Memory cost comparison.

Table 4.9: The memory cost comparisons between GenSMatcher and GenMatcher on a large scale

#Rules 10000 50000 100000 500000 1000000 5000000

Reduction 3.94 3.74 3.65 3.45 3.37 6.17

Figure 4.7 (b) shows the memory cost performance with respect to GenSMatcher and Gen-

Matcher in a large scale up to 5,000,000 rules. In the �gure, the memory cost is represented in

log scale. From the �gure we see that the trend is consistent with the Figure 4.7 (a). Table 4.8 and

Table 4.9 shows the reduction of memory cost with respect to GenSMatcher and GenMatcher.

Note that the reduction becomes larger with the increasing number of rules. The reduction is up

to 6.17X when the number of rules is 5,000,000.

4.4.3 Scalability

In the evaluation, we utilize two di�erent sets of benchmarks to cover di�erent scales of rule

sets and key sets. We evaluate the performance by scaling the rule size from 924 up to 5 million

rules for the ruleset. For the key set, we demonstrate the performance by scaling from 10,000

up to 1,000,000,000 search operations. With respect to search time performance, compared to

GenMatcher, GenSMatcher achieves up to 2.7X when the rule size is 100,000 and key size is

72

1000,000,000. For insert time performance, GenSMatcher outperforms GenMatcher because of

the partial rules insertion and SIMD-based comparisons. The insert time is about 7.3 seconds

when the rule size is 5,000,000. For memory cost, GenSMatcher consumes less memory than

GenMatcher. For a rule size of 5,000,000, the memory cost is about 1.11 GB.

4.5 Conclusion

This chapter proposesGenSMatcher, an e�cient SIMD and cache-friendly arbitrary match-

ing mechanism. GenSMatcher interprets arbitrary rules into three �elds: value, mask, and

priority to be able to insert into an advanced trie-based data structure. GenSMatcher em-

ploys our proposed extraction algorithm to process the wildcard bits and insert arbitrary rules

with randomly positioned wildcards. To guarantee accurate match results with wildcard rules,

GenSMatcher adds an array of wildcard entries to the leaf entries, which stores the wildcard

rules. Experiments show that GenSMatcher achieves search time speedup by utilizing the SIMD

feature on average by 2.7X compared to GenMatcher, and up to 6.17X reduction for the memory

footprint.

73

5. A HYBRID MESSAGE MATCHING MECHANISM FOR HPC COMMUNICATIONS

5.1 Introduction

MPI is a famous parallel programming model for developing parallel scienti�c and big data

applications [64]. Its implementations rely upon rapid sender/receiver matching to achieve high

throughput messaging. With the increasing requirements of big data applications reliant on MPI,

it is crucial to improve the matching throughput.

For the message tuple (c, s, t), note that the contexID/communicator c restricts the rank/process

space, and the rank s restricts the tag space for a given request [65]. There are mainly three di�er-

ent data structures for both posted receive queue (PRQ) and unexpected message queue (UMQ):

• Linked-list-based design: There is one big linked list for both PRQ and UMQ. This data

structure can easily guarantee the order semantic. Most open-source MPI libraries such as

MVAPICH2, MPICH, and OpenMPI typically use a simple doubly linked list data structure

to maintain the requests posted by the application [66]. The matching operation complexity

of a best-case is O(C), where C is a small constant. However, the search time increases as

the queue length grows. It is not scalable concerning the speed of operation. The matching

operation complexity is O(N) on a worst-case, where N is the linked list length.

• Rank-based design: The design allocates a linked list for each rank ID. There will be n

linked lists, where n is the number of processes in a job. The job’s size determines memory

cost. That is, the memory requirements grow linearly with the number of processes. For

this method, we need to carefully trade o� the need for performance with the memory

overhead to achieve the best performance and scalability [66].

• Bin-based design: This design employs hash tables to allocate messages into di�erent bins.

The search complexity is O(1), but collisions can occur. Compared to rank-based design,

the bin-based design tries to improve the performance of search time under a limited mem-

ory capacity.

74

Zounmevo et al. [65] proposed a multidimensional queue traversal mechanism whose op-

eration time and memory overhead grow sub-linearly with the job size. This data structure is

designed only for large message queues. Flajslik et al. [67] proposed a bin-based data structure

for tag matching. This paper utilized a hash map to reduce search time for matches in the PRQ

and UMQ. To maintain the required MPI ordering semantics, they also utilized a globally ordered

list to preserve the order for UMQ data structure. If the application posts many received oper-

ations with wildcard, the posted receive messages need to be searched through the linked list.

Thus, this scheme is not scaled with the increasing number of wildcard receive messages. Since

there will be some wildcard messages, the rank-based and bin-based design need to use a di�er-

ent linked list to store the wildcard messages. As the number of wildcard messages grows, the

search performance will be degraded signi�cantly.

Bayatapour et al. [66] proposed a design that allows the MPI library to adapt to di�erent

communication patterns and dynamically switch to the most appropriate design to deliver the

best performance with minimal overhead. In [66], the scheme always starts with the default

double linked list design. Once the average number of messages surpasses the threshold value,

the design is switched to the bin-based structure or the rank-based structure. However, they did

not give any detail on how to choose the threshold. Also, they did not analyze the overhead for

switching among the di�erent schemes.

In order to improve the matching performance and to guarantee the semantic requirement,

this chapter proposes a hybrid data structure to reduce the impact of wildcard messages.

5.2 Motivation

Emerging HPC applications impose strict requirements for data processing delays and through-

put. Message matching performance is the key to achieve high throughput. The application sends

messages and receives messages to perform the tag matching operations and complete the com-

munications between the cores in an interconnection network. Since the received message may

have a wildcard on the source or tag �eld, there might be multiple matches between the receive

messages and sending messages. To guarantee the correct communications between processes,

75

we need to preserve the order of semantic rules such that the set with the highest priority sending

and receiving messages will always be the correct match result when there have multiple match

candidates.

As the application scales up, it requires a more extensive interconnection network that in-

cludes more cores and utilizes more processes, which generates a more complex PRQ and UMQ.

The challenge of MPI tag matching is to achieve high performance while guaranteeing the order

semantic. Currently, linked lists are a traditional data structure to store all the messages and

guarantee communication between processes across cores run successfully. However, with more

extensive applications, the length of linked lists becomes very large, and the search performance

is signi�cantly degraded. Besides, there is a lack of data structures and approaches that support

wildcard messages. Thus, it is crucial to develop the tag matching mechanism to process wildcard

messages e�ciently.

5.3 Design

In our design, we use 4-tuple (p, c, s, t) instead of (c, s, t). p represents the insertion order of

the message sequence, including sender message and receiver message.

5.3.1 Hybrid Data Structure Design

The preserve order semantic operation occurs in two cases:

• For (SM, PRQ) match, when one sender message matches with multiple receiver messages

in PRQ, we pick the oldest receiver message.

• For (RM, UMQ) match, when one receiver message matches multiple sender messages in

UMQ, we pick the oldest sender message.

As the receiver messages are stored into PRQ, there are four types of messages in PRQ, as

shown in Table 5.1. In order to improve the matching performance while preserving the semantic

order, we proposed a hybrid data structure composed by a trie and a hash map. We utilize the trie

data structure to take advantage of the wildcard messages. Thus, we split all 4 types of messages

76

into two parts: one part stored into trie, the other part stored into hash map, as shown in Table 5.2

and Table 5.3 respectively.

Table 5.1: Message types in PRQ

c s t
1 ∗ ∗
2 2 ∗
2 2 3

2 ∗ 3

Table 5.2: Message types in PRQ_T

c s t
1 ∗ ∗
2 2 ∗

Table 5.3: Message types in PRQ_H

c s t
2 2 3

2 ∗ 3

Since the sending message are stored in UMQ, there is only 1 type of message in UMQ. The

�elds of the tuple are all speci�ed with no wildcard.

77

5.3.2 PRQ Matching Framework

As shown in Fig. 5.1, there is two various data structure for PRQ matching, which are bin-

based data structure (PRQ_H) and trie-based data structure (PRQ_T). In PRQ, if the message is a

MPI_ANY_TAG, it will be inserted into the PRQ_T. Otherwise, it will be inserted into the PRQ_H.

Thus, PRQ = PRQ_H
⋃
PRQ_T .

Delete

SM

Yes

No

UMQ_H UMQ_T

IS_MATCH

Insert SM into Both

Delete

PRQ_T

No

Yes

PRQ_H

IS_MATCH

Search Both

cmp

Choose The oldest Message

c s t

1 2 2

1 4 2

1 3 3

1 3 7

Figure 5.1: Send message side matching framework

For the bin-based data structure, we employ a hash function to allocate the messages into

di�erent bins. If a collision occurs in any bin, the message will be stored in the bin as a linked

list. For the trie-based data structure, we insert the corresponding messages as a pre�x format.

Since the PRQ entries are inserted into two di�erent data structures, the search operations need

to be performed in PRQ_T and PRQ_H in parallel to preserve the semantic order. If the search

result from PRQ_T and PRQ_H both match, we need to compare the matched sequence ID and

choose the oldest message. If neither of the search results matches, we need to insert the SM into

PRQ_T and PRQ_H.

78

5.3.3 PRQ_T Data Structure

According to our MPI application, there are only two types of message in PRQ_T, as shown

in Table 5.2. Note that, the two types are all pre�x format: (c, s, ∗) and (c, ∗, ∗). The search

complexity is O(C), which C is 2 or 3. From the message �eld view, we need to search the �eld

c and s sequentially. The trie has three levels, in which the �rst level includes all the c values.

All the s values are covered in the second level. The third level represents the sequence order for

each message. O(log
(lc+ls)
q). The total memory cost is calculated as:

MEM = trieNode.size ∗ trieNode.count (5.1)

where

trieNode.size = keyArray.size+ pointerArray.size

If there are lots of null pointers in the pointer array, this will result in a big memory waste.

Our goal is to decrease memory waste while guaranteeing search performance. We adopt the

adaptive node size idea from the ART paper [26]. The node size is determined by the number of

children they have. Our adaptive node trie data structure has three levels and two types of trie

nodes: inner node and leaf node. On the �rst level, the nodes can only be an inner nodes. On the

second level, the nodes can be either inner node or leaf node. On the third level, the nodes can

only be a leaf node, which stores the message’s priority. Since the length of a message can only

be two values, we do not need to make a balanced tree. Instead, we need to save memory costs

to make the data structure space more e�cient.

Note that the �rst level represents the data distribution of c. The number of communicators

determines the size of the root node’s children. The second level represents the data distribu-

tion of s. The size of the node is determined by the number of processes in each corresponded

communicator.

79

For all the messages in PRQ_T, we need to do some pre-operations before building the trie

data structure. Since the radix tree is an index structure, we need to sort the node by their integer

value. First, we sort the c value in ascending order in PRQ_T. After sorting, we can get the

number of communicators, which determines the number of root node’s children. Second, for

each di�erent c value, we sort the s value, which determines the node size. Since all the messages

will be inserted in order, we do not need to sort the third level values. In the end, we obtain

ordered messages in PRQ_T.

We apply six di�erent trie node types for our trie data structure: Node4, Node16, Node32,

Node64, Node128, and Node256. The pointer size is 8 bytes. The key size is 1 byte.

• Node4: can store up to 4 child pointers. The node consists of an array of key-value and an

array of pointers for children. The size of each array is 4.

• Node16: can store up to 16 child pointers. The node includes an array of key values and an

array of pointers of size 16. A key can be searched in parallel utilizing SIMD instructions.

• Node32: can store up to 32 child pointers. The node includes an array of key-value and

an array of pointers with a size 32. A key can be found with parallel comparisons using

SVE-256 bit instructions.

• Node64: can store up to 64 child pointers. The size of the key array and pointer array is 64.

A key can be searched in parallel comparisons using SVE-512 bit instructions.

• Node128: can store up to 128 child pointers. The size of the key array and pointer array is

128. A key can be searched in parallel comparisons using SVE-1024 bit instructions.

• Node256: can store up to 256 child pointers. The size of the key array and pointer array is

256. A key can be searched in parallel comparisons using SVE-1024 bit instructions.

Table 5.4 shows the above six node types’ attributes, where n is the number of keys in the

node.

80

Table 5.4: Node types in trie data structure

Type Children

Memory

(bytes)

Search mode

Search

complexity

Node4 2-4 4+4·8 Serial O(n)

Node16 5-16 16+16·8 SVE-128 bit O(1)

Node32 17-32 32+32·8 SVE-256 bit O(1)

Node64 33-64 64+64·8 SVE-512 bit O(1)

Node128 65-128 128+128·8 SVE-1024 bit O(1)

Node256 129-256 256+256·8 SVE-1024 bit O(1)

P2

Tree

1 2 3 * * *

2 3 4 5 * * * * 5 6 *

0 1 2 3

0 1 2 3 0 1 2 3

*NULL

c

leaf

Depth 0 / Root

Depth 1

s

P1 P4 P5 P7
Depth 2leaf P3 P6NULL NULL NULL NULL NULL NULL

Figure 5.2: The detail data structure for PRQ_T

We choose the suitable node size to build the trie to minimize the total memory cost. After

we sort the message in PRQ_T, we can know how many children each node has. For the �eld c,

the node type is determined by the number of communicators. For the �eld s, the node type is

determined by the number of di�erent processes.

For the leaf node, we store the priority/sequence number into the leaf. Every leaf node has a

unique value to preserve the semantic order. The data distribution in PRQ_T determines which

node type and how many node types we need to choose to minimize the total memory cost.

Take Table 5.5 as an example. Three di�erent �elds represent the message: p, c, s, representing

message sequence ID, communicator ID, and process rank ID, respectively.

The detailed data structure is shown in Fig. 5.2. For this PRQ_T example, we utilize Node4
1

1
Note that the root has three children, communicator 1 has four children, and communicator 3 has two children.

81

Table 5.5: PRQ_T entries

p c s
P1 1 2

P2 2

P3 1 3

P4 1 4

P5 1 5

P6 3 5

P7 3 6

with a key array and a pointer array
2
. For all the messages in PRQ_T trie data structure, there

are two di�erent lengths of the message: 8-bit and 24-bit. In Fig. 5.2, the message P2’s length is

8, which has the c part. Other messages are all 24-bit, which are all leaf nodes at the last level.

In this chapter, we determine the inner node type according to the number of children of

their parents, minimizing the memory waste. For the leaf node, we store the sequence ID of the

message into the leaf node.

5.3.4 PRQ_H Data Structure

There are two types of messages in PRQ_H, as shown in Table 5.3. Note that one type is

�lled with all speci�ed integers, and one type has a wildcard in the source �eld. These two types

of messages are inserted into a hashmap data structure. Since there may be a message with a

wildcard in the source �eld, the hash function is given as:

hash(c, s, t) = (c+ t) % NUM_BINS (5.2)

Thus, communicator 1 and communicator 3 are Node4 type. They have a key array and a pointer array with a size

of 4.

2
The pointer in a pointer array is represented as ∗ in Fig. 5.2

82

5.3.5 UMQ Matching Framework

UMQ stores the unexpected messages, including all de�ned messages, including �led c, s,

and t. If we want to use trie data structure in UMQ, we need to insert all the messages into both

UMQ_T and UMQ_H data structure, as shown in Fig. 5.3. When the application posts a new

receive message, the search operation is performed through UMQ_T if the received message is

a MPI_ANY_SOURCE. Otherwise, the search operation is performed through UMQ_H. For the

insertion of UMQ, the UMQ_H and UMQ_T are built in parallel. The search operation is just

performed in one data structure, which depends on the receiver message type.

The UMQ_T data structure is similar to the PRQ_T. Since the messages in UMQ are all spec-

i�ed tuples, the only di�erence is the length of messages. The length of messages in UMQ_T

has only one value, which equals the sum of all the length of c, s, and t. Thus, the leaf node of

UMQ_T can just appear at the last level. The UMQ_H data structure is the same as the PRQ_H.

Note that the search operation happens between RM and UMQ_H. Since RM might have a wild-

card, UMQ_H utilizes the same hash function as the PRQ_H.

RM

IS_ANY_TAG

YesNo SearchSearch

Yes

UMQ_H UMQ_T

IS_MATCH IS_MATCH

NoInsert RM

Delete Both

PRQ_H PRQ_T

No

Yes

Insert RM

c s t

1 2 2

1 * 2

1 * *

1 3 *

Figure 5.3: Receiver message side matching framework

83

If the search results is a match, we need to delete the matched entry in both UMQ_H and

UMQ_T, otherwise, we need to insert RM into the corresponded PRQ. If the RM has a wildcard

in the tag �eld, we insert RM into PRQ_T. Otherwise, we insert RM into PRQ_H.

5.4 Evaluation

In this section, we evaluate the proposed hybrid data structure on our generated micro-

benchmark, and NAS Parallel Benchmark (NPB) [68] applications and PICSARlite [69] applica-

tion. We �rst present the evaluation methodology. Secondly, we compare the results against the

previous approaches.

5.4.1 Methodolody

We program the MPI tag matching framework in C and generate our micro-benchmark in

Python. In our micro-benchmark, we randomly generate received messages with anySource and

anyTag �eld. Messages used in this project consist of tuples (c, s, t). Each �eld is represented

as an integer. Besides, we record the orders for each message in order to guarantee the semantic

order.

We generate our application for the micro-benchmark consisting of two lists of messages:

Sending Message (SM) and Receive Message (RM). To learn more about the impact of di�erent

application traces, we generate di�erent maximum depths of the queue for an application (32, 64,

128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072). We evaluated our hybrid data

structure on a system using one single thread, where the processor is Intel Xeon E5-2697A V4

32-core 2.6GHz with a 512 GB DRAM. The cache hierarchy consists of a 32k L1d, 32k L1i, 256k L2,

and 40960k L3 cache. We evaluate the performance in search time, the number of search attempts

in PRQ and UMQ, and memory cost. We compare the hybrid data structure against three di�erent

data structures for MPI tag matching:

• Baseline: Linked-list data structure.

• MPI_list: Array + Linked-list data structure.

84

• Intel: Hashmap data structure.

For the NPB application and PICSARlite application, we integrate our proposed Hybrid method

and Intel method into the MPICH-3.2.1 library. The MPICH library utilizes the Linked-list data

structure to implement the tag matching process, which is represented as Lib in the performance

�gures. We implement Hybrid and Intel method in the MPICH library and compare the search

time performance. We evaluate Integer Sort (IS) benchmarks in NAS parallel benchmark 3.3.1.

In our evaluation, we run the class C problem size. The evaluations are conducted on the Ada

High-Performance research Computing cluster at Texas A&M University. The Ada cluster has

793 general compute nodes equipped with Intel Xeon E5-2670 v2 (Ivy Bridge-EP), 10-core, 2.5GHz

processors. Nodes are connected through FDR-10 In�niband host channel adapters.

5.4.2 Microbenchmark performance

We compare the Hybrid data structure against the previous three di�erent data structures

regarding search time, search attempt, and memory cost.

5.4.2.1 Search time:

We run scaling simulations using the generated point-to-point workload with up to 131072

messages in a queue. The scaling results of execution time are presented in Figure 5.4, and Fig-

ure 5.5 shows the speedup of our proposed hybrid matching algorithm over the Baseline, Intel,

andMPI_list for varying maximum depth of the queue. Figure 5.4 shows that ourHybrid perfor-

mance is getting better with the increasing maximum depth of the queue. Note that the Hybrid

outperforms the best when the depth is reaching 4096. Compared to the Baseline, the speedup is

up to 50X. Compared to the MPI_list, the speedup is up to 2X. We see that our proposed Hybrid

outperforms the best with the increasing depth of the queue. For all matching algorithms, the

search time is dominated by the number of search attempts. As we can see in Figure 5.6, our

proposed Hybrid match algorithm has the best performance indicated by its small number of

search attempts.

85

Figure 5.4: Execution time.

Figure 5.5: Search time speedup.

5.4.2.2 Search attempt:

Figure 5.6 shows the total search attempts for point-to-point communications. We evaluate

the search attempts as the number of comparisons. TheBaseline utilizes a single linked list. Note

that the Baseline has the most signi�cant number of search attempts. With the the increasing

86

maximum depth of the queue, the length of the linked list grows. Accordingly, the number of

search attempts is increasing with the increased length of the linked list. Since our proposed Hy-

brid matching algorithm utilizes tree search, the search attempt is much smaller than traversing

an extensive linked list with a larger queue, which results in the best performance. This result is

consistent with the search time performance.

Figure 5.6: Total search attempt.

5.4.2.3 Memory cost:

Figure 5.7 represents the memory cost for the four di�erent matching algorithms. Note that,

the memory cost of Baseline and MPI_list are the same. This is because both of them have the

same total length of items. Since our generated benchmark has almost 30% of wildcard messages

on the receiver side, the Intel matching algorithm has two large linked-lists on both PRQ and

UMQ. Thus, the memory cost of Intel has the worst performance. For our proposed Hybrid

matching algorithm, the memory cost is close to the Baseline and MPI_list when the queue

depth is small. As the process count increases, the memory cost of the Hybrid exceeds the

Baseline and MPI_list method. Since the goal of our proposed Hybrid matching algorithm

87

is to improve the search performance under a reasonable memory cost, the memory cost is the

tradeo�.

Figure 5.7: Memory cost.

5.4.3 NPB benchmark performance

This section evaluates our proposed Hybrid mechanism by utilizing existing NPB application

benchmarks. We use Lib as the baseline and depict the time speedup of Hybrid and Intel versus

Lib. Figure 5.8 shows the time performance of the IS benchmark with respect to Hybrid, Lib,

and Intel at 3 di�erent numbers of processes (32, 64, 128). The execution time is the total time,

including the communication time and computation time. The communication time is the sum

of time spent in MPI for communication and synchronization, which occurred in the MPI library.

The computation time is the sum of time spent outside the MPI library. Figure 5.8 (a) shows the

MPI communication time performance comparisons and Figure 5.8 (b) represents the execution

time performance comparisons.

The IS benchmark performs all-to-all communication and leverages MPI_Alltoall collective

operations. Therefore, Figure 5.9 shows that the number of search attempts of PRQ and UMQ in-

creases with a more signi�cant number of processes. In Figure 5.8, we see that the execution time

88

(a) MPI communication time. (b) Execution time.

Figure 5.8: NPB Benchmark IS performance comparisons with respect to various number of pro-

cesses.

and MPI communication time are decreasing with the increasing number of processes, which is

because there are more processes involved in parallel processing the application, which reduces

the computation time. For the MPI communication time, from Figure 5.10 we see that the queue

length of Lib is not increasing linearly as the process count grows. Therefore, the MPI commu-

nication time is not increasing with a larger size of processes. For the Intel method, we see that

its PRQ length is 0 since there have no wildcard messages in IS benchmark.

Figure 5.9: Total search attempts over IS Benchmark.

89

Figure 5.10: PRQ and UMQ queue length over IS Benchmark.

5.4.4 PICSARlite benchmark performance

PICSARlite [69] is a subset of the PICSAR suite that allows testing smaller electromagnetic

Particle-In-Cell kernels. This application makes use of point-to-point communications, which

transmits messages between a pair of processes where sender and receiver cooperate with each

other [70], that is, two-sided communication. To the best of my knowledge, there are not many

applications involving wildcards in receive operations. PICSARlite is one of these applications

using MPI_ANY _TAG wildcard messages.

Figure 5.11: PRQ and UMQ queue length over PICSARlite Benchmark.

Figure 5.12 represents the PICSARlite performance concerning three di�erent matching mech-

anisms over three di�erent counts of processes (32, 64, 128). Lib is the baseline. Figure 5.12 (a)

shows the MPI communication time comparisons, where we see that the MPI communication

time is reducing with the increasing number of processes due to the increasing queue depth of

the PRQ and UMQ of Lib and Intel method, as shown in Figure 5.11. In the �gure, we see that the

PRQ and UMQ of Lib are increasing with a large number of processes. For the Intel, the depth of

PRQ is not changing, but the UMQ depth is increasing. However, for our proposed Hybrid, the

tree depth is not increasing linearly with the increasing number of processes. Thus, Figure 5.12

90

(b) shows the MPI communication time speedup performance, where the Hybrid is increasing

with a larger number of processes. From the �gure, we see that in contrast to the Lib, Hybrid has

the best speedup performance on cases 64 and 128. In the �gure, we see that Hybrid’s speedup is

up to 1.55X. Figure 5.12 (c) shows the total search attempts performance. From the �gure, you can

see that Lib increases signi�cantly on 128 processes while Hybrid does not change much due to

their di�erent data structures. Figure 5.12 (d) represents the total execution time performance,

including the MPI communication time and the computation time. In the �gure we note that

Hybrid outperforms Lib and Intel. Lib has the worst performance since it utilizes the linked

list for its tag matching data structure.

(a) MPI communication time. (b) MPI communication time speedup.

(c) Total search attempts. (d) Execution time.

Figure 5.12: PICSARlite Benchmark performance comparisons with respect to various number of

processes.

91

5.5 Conclusions

This chapter proposes a new hybrid data structure and matching mechanism to reduce match-

ing operation time, processed in PRQ and UMQ. The hybrid data structure is composed of a trie

and hash map. We evaluate our mechanism on our generated micro-benchmark and existing MPI

applications over varying numbers of processes. We compare our proposed mechanism with the

baseline and Intel scheme on a single node and an HPC cluster, respectively. Experiment results

show that our proposed Hybrid outperforms the baseline and intel mechanism in terms of MPI

communication time. For the PICSARlite application, the MPI communication time speedup is

up to 1.55 X.

92

6. CONCLUSION

High-performance computing usage has been increasing due to the high demand for big data

applications, not only for scienti�c applications but also in commodity applications. In an HPC

network, the HPC cluster is a system of multiple interconnected nodes in a switched network [58].

At each node, the MPI is the communication protocol of parallel processes in HPC networks

which pass messages over the network to synchronize and coordinate each process’s results.

Also, the node is connected through an SDN-based switch, in which the forwarding hardware is

decoupled from the control decision, control plane. SDN-based HPC networks can program the

control plane for di�erent application requirements and choose the optimal resources and con-

�guration to satisfy users’ various performance requirements. Since high-performance matching

is a vital part of improving the performance of HPC networks, it is essential to study the accel-

eration techniques for high-performance matching.

This dissertation discussed the arbitrary matching problems on packet classi�cation and MPI

tag matching applications. First, we propose GenMatcher: a generic software-only arbitrary

matching mechanism for fast and e�cient searches under a limited memory threshold [3]. Since

GenMatcher employs our proposed mapping and grouping approaches to assign the arbitrary

rules with the most signi�cant similarities into the same group, it generates a minimal num-

ber of groups within a memory threshold [3]. It can build a binary trie to perform fast binary

searches. Second, we introduce GenSMatcher: an e�cient SIMD and cache-friendly arbitrary

matching mechanism. GenSMatcher takes advantage of the SIMD instruction and modern cache

features that exploit data localities to accelerate the searches and reduce memory usage. Third,

we present the hybrid matching framework: integrating a trie and hash map data structure for

MPI tag matching. Our hybrid mechanism can process wildcard messages more e�ciently.

The proposed high-performance arbitrary matching mechanisms can be deployed in other

matching applications, such as string data. With the growth of enormous data application de-

mands and the diverse QoS requirements, these generic arbitrary matching mechanisms become

93

fundamental techniques for high-performance matching.

94

REFERENCES

[1] S. M. Ghazimirsaeed, R. E. Grant, and A. Afsahi, “A dedicated message matching mecha-

nism for collective communications,” in Proceedings of the 47th International Conference on

Parallel Processing Companion, ICPP ’18, (New York, NY, USA), Association for Computing

Machinery, 2018.

[2] T. Shen, D. Zhang, G. Xie, and X. Zhang, “Optimizing multi-dimensional packet classi�cation

for multi-core systems,” J. Comput. Sci. Technol., vol. 33, no. 5, pp. 1056–1071, 2018.

[3] P. Wang, L. McHale, P. V. Gratz, and A. Sprintson, “Genmatcher: A generic clustering-based

arbitrary matching framework,” ACM Trans. Archit. Code Optim., vol. 15, Nov. 2018.

[4] T. Inoue, T. Mano, K. Mizutani, S. I. Minato, and O. Akashi, “Rethinking packet classi�cation

for global network view of software-de�ned networking,” in 2014 IEEE 22nd International

Conference on Network Protocols, pp. 296–307, Oct 2014.

[5] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster, “Exploiting order

independence for scalable and expressive packet classi�cation,” IEEE/ACM Transactions on

Networking, vol. 24, pp. 1251–1264, April 2016.

[6] K. Kogan, S. I. Nikolenko, P. Eugster, A. Shalimov, and O. Rottenstreich, “E�cient FIB repre-

sentations on distributed platforms,” IEEE/ACM Transactions on Networking, vol. PP, no. 99,

pp. 1–14, 2017.

[7] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern matching queries in

hybrid CPU-FPGA architectures,” in Proceedings of the 2017 ACM International Conference

on Management of Data, SIGMOD ’17, (New York, NY, USA), pp. 403–415, ACM, 2017.

[8] K. Kogan, S. I. Nikolenko, P. Eugster, A. Shalimov, and O. Rottenstreich, “FIB e�ciency

in distributed platforms,” in 2016 IEEE 24th International Conference on Network Protocols

(ICNP), pp. 1–10, Nov 2016.

95

[9] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and taxonomy of IP address

lookup algorithms,” IEEE Network, vol. 15, pp. 8–23, Mar 2001.

[10] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A non-pre�x approach to compressing

packet classi�ers in TCAMs,” IEEE/ACM Transactions on Networking, vol. 20, pp. 488–500,

April 2012.

[11] C. E. Andrade, M. G. Resende, H. J. Karlo�, and F. K. Miyazawa, “Evolutionary algorithms for

overlapping correlation clustering,” in Proceedings of the 2014 Annual Conference on Genetic

and Evolutionary Computation, GECCO ’14, (New York, NY, USA), pp. 405–412, ACM, 2014.

[12] X. Pan, D. S. Papailiopoulos, S. Oymak, B. Recht, K. Ramchandran, and M. I. Jordan, “Parallel

correlation clustering on big graphs,” CoRR, vol. abs/1507.05086, 2015.

[13] K. Wagsta� and C. Cardie, “Clustering with instance-level constraints,” in Proceedings of the

Seventeenth International Conference on Machine Learning, ICML ’00, (San Francisco, CA,

USA), pp. 1103–1110, Morgan Kaufmann Publishers Inc., 2000.

[14] K. Wagsta�, C. Cardie, S. Rogers, and S. Schrödl, “Constrained k-means clustering with

background knowledge,” in Proceedings of the Eighteenth International Conference onMachine

Learning, ICML ’01, (San Francisco, CA, USA), pp. 577–584, Morgan Kaufmann Publishers

Inc., 2001.

[15] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal independent set and

matching are parallel on average,” CoRR, vol. abs/1202.3205, 2012.

[16] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney, “Model-based overlapping

clustering,” in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowl-

edge Discovery in Data Mining, KDD ’05, (New York, NY, USA), pp. 532–537, ACM, 2005.

[17] C. Luo, W. Pang, and Z. Wang, Semi-supervised Clustering on Heterogeneous Information

Networks, pp. 548–559. Cham: Springer International Publishing, 2014.

96

[18] Y. Gu and C. Wang, “A study of hierarchical correlation clustering for scienti�c volume data,”

in Proceedings of the 6th International Conference on Advances in Visual Computing - Volume

Part III, ISVC’10, (Berlin, Heidelberg), pp. 437–446, Springer-Verlag, 2010.

[19] B. Leibe, K. Mikolajczyk, and B. Schiele, “E�cient clustering and matching for object class

recognition,” in Proc. BMVC, pp. 81.1–81.10, 2006. doi:10.5244/C.20.81.

[20] A. McCallum, K. Nigam, and L. H. Ungar, “E�cient clustering of high-dimensional data sets

with application to reference matching,” in Proceedings of the Sixth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’00, (New York, NY, USA),

pp. 169–178, ACM, 2000.

[21] M. P. Forum, “MPI: A message-passing interface standard,” tech. rep., University of Ten-

nessee, USA, 2012.

[22] N. Askitis and R. Sinha, “HAT-trie: A cache-conscious trie-based data structure for strings,”

in Proceedings of the Thirtieth Australasian Conference on Computer Science - Volume 62,

ACSC ’07, (AUS), p. 97–105, Australian Computer Society, Inc., 2007.

[23] M. Mäsker, T. Süß, L. Nagel, L. Zeng, and A. Brinkmann, “Hyperion: Building the largest

in-memory search tree,” in Proceedings of the 2019 International Conference on Management

of Data, SIGMOD ’19, (New York, NY, USA), p. 1207–1222, Association for Computing Ma-

chinery, 2019.

[24] D. R. Morrison, “PATRICIA-practical algorithm to retrieve information coded in alphanu-

meric,” J. ACM, vol. 15, p. 514–534, Oct. 1968.

[25] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, “HOT: A height optimized trie in-

dex for main-memory database systems,” in Proceedings of the 2018 International Conference

on Management of Data, SIGMOD ’18, (New York, NY, USA), p. 521–534, Association for

Computing Machinery, 2018.

97

[26] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful indexing for main-

memory databases,” in 2013 IEEE 29th International Conference on Data Engineering (ICDE),

pp. 38–49, April 2013.

[27] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt,

and P. Dubey, “FAST: Fast architecture sensitive tree search on modern cpus and gpus,”

in Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’10, (New York, NY, USA), p. 339–350, Association for Computing Machinery, 2010.

[28] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-matching using TCAM,” in

Proceedings of the 12th IEEE International Conference on Network Protocols, 2004. ICNP 2004.,

pp. 174–183, Oct 2004.

[29] Y. Ma and S. Banerjee, “A smart pre-classi�er to reduce power consumption of TCAMs

for multi-dimensional packet classi�cation,” SIGCOMM Comput. Commun. Rev., vol. 42,

p. 335–346, Aug. 2012.

[30] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy, “Guarantee IP lookup performance

with FIB explosion,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 39–50, Aug. 2014.

[31] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, “Compressing IP forwarding

tables: Towards entropy bounds and beyond,” in Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM, SIGCOMM ’13, pp. 111–122, 2013.

[32] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda, “Adaptive and dynamic de-

sign for MPI tag matching,” in 2016 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 1–10, Sept 2016.

[33] P. Lemarinier, K. Hasanov, S. Venugopal, and K. Katrinis, “Architecting malleable MPI ap-

plications for priority-driven adaptive scheduling,” in Proceedings of the 23rd European MPI

Users’ Group Meeting, EuroMPI 2016, (New York, NY, USA), pp. 74–81, ACM, 2016.

98

[34] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete redundancy removal for

packet classi�ers in TCAMs,” in IEEE INFOCOM 2008 - The 27th Conference on Computer

Communications, April 2008.

[35] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A systematic approach towards mini-

mizing packet classi�ers in TCAMs,” IEEE/ACM Transactions on Networking, vol. 18, pp. 490–

500, April 2010.

[36] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “Split: Optimizing space, power, and through-

put for TCAM-based classi�cation,” in 2011 ACM/IEEE Seventh Symposium on Architectures

for Networking and Communications Systems, pp. 200–210, Oct 2011.

[37] P. He, G. Xie, K. Salamatian, and L. Mathy, “Meta-algorithms for software-based packet

classi�cation,” in 2014 IEEE 22nd International Conference on Network Protocols, pp. 308–319,

Oct 2014.

[38] C. L. Hsieh and N. Weng, “Many-�eld packet classi�cation for software-de�ned networking

switches,” in 2016 ACM/IEEE Symposium on Architectures for Networking and Communica-

tions Systems (ANCS), pp. 13–24, March 2016.

[39] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eugster, “SAX-PAC (scalable

and expressive packet classi�cation),” in Proceedings of the 2014 ACM Conference on SIG-

COMM, SIGCOMM ’14, (New York, NY, USA), pp. 15–26, ACM, 2014.

[40] Y. Qu, S. Zhou, and V. K. Prasanna, “Scalable many-�eld packet classi�cation on multi-core

processors,” in 2013 25th International Symposium on Computer Architecture and High Per-

formance Computing, pp. 33–40, Oct 2013.

[41] Y. Qi, B. Xu, F. He, X. Zhou, J. Yu, and J. Li, “Towards optimized packet classi�cation al-

gorithms for multi-core network processors,” in 2007 International Conference on Parallel

Processing (ICPP 2007), Sept 2007.

[42] H. Lu and S. Sahni, “o(logw)multidimensional packet classi�cation,” IEEE/ACMTransactions

on Networking, vol. 15, pp. 462–472, April 2007.

99

[43] S. I. Nikolenko, K. Kogan, G. Rétvári, E. R. Bérczi-Kovács, and A. Shalimov, “How to represent

IPv6 forwarding tables on IPv4 or MPLS dataplanes,” in 2016 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 521–526, April 2016.

[44] M. P. I. Forum, “MPI: A Message-Passing Interface Standard Version 3.1,” 06 2015. Chapter

author for Collective Communication, Process Topologies, and One Sided Communications.

[45] Y. K. Sia, H. G. Goh, S. Y. Liew, and M. L. Gan, “Spanning multi-tree algorithm for node and

tra�c balancing in multi-sink wireless sensor networks,” in 2015 12th International Confer-

ence on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2190–2195, Aug 2015.

[46] D. Drachsler, M. Vechev, and E. Yahav, “Practical concurrent binary search trees via logical

ordering,” in Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’14, (New York, NY, USA), pp. 343–356, ACM, 2014.

[47] S. V. Howley and J. Jones, “A non-blocking internal binary search tree,” in Proceedings of

the Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA ’12, (New York, NY, USA), pp. 161–171, ACM, 2012.

[48] H. Song, M. Kodialam, F. Hao, and T. V. Lakshman, “Building scalable virtual routers with

trie braiding,” in 2010 Proceedings IEEE INFOCOM, pp. 1–9, March 2010.

[49] H. Lim and H. Y. Byun, “Packet classi�cation using a bloom �lter in a leaf-pushing area-

based quad-trie,” in Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ANCS ’15, (Washington, DC, USA), pp. 183–184,

IEEE Computer Society, 2015.

[50] J. Lee, H. Byun, J. H. Mun, and H. Lim, “Utilizing 2-D leaf-pushing for packet classi�cation,”

Computer Communications, vol. 103, pp. 116 – 129, 2017.

[51] L. Mchale, J. Case, P. V. Gratz, and A. Sprintson, “Stochastic pre-classi�cation for SDN data

plane matching,” in Proceedings of the 2014 IEEE 22Nd International Conference on Network

Protocols, ICNP ’14, (Washington, DC, USA), pp. 596–602, IEEE Computer Society, 2014.

100

[52] “The CAIDA Anonymized 2012 Internet Traces - 2012, Kc Cla�y, Dan A ndersen, Paul Hick.”

http://www.caida.org/data/passive/passive_2012_dataset.xml.

[53] A. Fiessler, S. Hager, and B. Scheuermann, “Flexible line speed network packet classi�cation

using hybrid on-chip matching circuits,” in 2017 IEEE 18th International Conference on High

Performance Switching and Routing (HPSR), pp. 1–8, June 2017.

[54] H. Alimohammadi and M. Ahmadi, “Common non-wildcard portion-based partitioning ap-

proach to sdn many-�eld packet classi�cation,” Computer Networks, vol. 181, p. 107534, 2020.

[55] O. N. Foundation, “Open�ow switch speci�cation,” tech. rep., ONF, USA, 2015.

[56] S. Shirali-Shahreza and Y. Ganjali, “Rewi�ow: Restricted wildcard open�ow rules,” SIG-

COMM Comput. Commun. Rev., vol. 45, p. 29–35, Sept. 2015.

[57] T. Shen, D. Zhang, G. Xie, and X. Zhang, “Optimizing multi-dimensional packet classi�cation

for multi-core systems,” J. Comput. Sci. Technol., vol. 33, no. 5, pp. 1056–1071, 2018.

[58] S. V. Krishna, A. Shrivastava, and S. J. Wagh, “SDN in high performance computing for sci-

enti�c and business environment (SBE),” in 2017 International Conference on Computational

Intelligence in Data Science(ICCIDS), pp. 1–8, 2017.

[59] S. Date, H. Abe, D. Khureltulga, K. Takahashi, Y. Kido, Y. Watashiba, P. U-Chupala,

K. Ichikawa, H. Yamanaka, E. Kawai, and S. Shimojo, “An empirical study of sdn-accelerated

hpc infrastructure for scienti�c research,” in Proceedings of the 2015 International Conference

on Cloud Computing Research and Innovation (ICCCRI), ICCCRI ’15, (USA), p. 89–96, IEEE

Computer Society, 2015.

[60] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner, “KISS-tree: Smart latch-free in-memory

indexing on modern architectures,” in Proceedings of the Eighth International Workshop on

Data Management on New Hardware, DaMoN ’12, (New York, NY, USA), p. 16–23, Associa-

tion for Computing Machinery, 2012.

101

http://www.caida.org/data/passive/passive_2012_dataset.xml

[61] J. Rao and K. A. Ross, “Cache conscious indexing for decision-support in main memory,” in

Proceedings of the 25th International Conference on Very Large Data Bases, VLDB ’99, (San

Francisco, CA, USA), p. 78–89, Morgan Kaufmann Publishers Inc., 1999.

[62] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious algorithms,”

in Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,

(USA), p. 285, IEEE Computer Society, 1999.

[63] “Why software developers should care about CPU caches.” https://medium.com/

software-design/why-software-developers-should-care-about-cpu-caches-8da04355bb8a.

xml.

[64] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “RDMA read based rendezvous protocol for

mpi over in�niband: Design alternatives and bene�ts,” in Proceedings of the Eleventh ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, (New

York, NY, USA), p. 32–39, Association for Computing Machinery, 2006.

[65] J. A. Zounmevo and A. Afsahi, “An e�cient MPI message queue mechanism for large-scale

jobs,” in 2012 IEEE 18th International Conference on Parallel and Distributed Systems, pp. 464–

471, Dec 2012.

[66] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda, “Adaptive and dynamic de-

sign for MPI tag matching,” in 2016 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 1–10, Sept 2016.

[67] M. Flajslik, J. Dinan, and K. D. Underwood, Mitigating MPI Message Matching Misery,

pp. 281–299. Cham: Springer International Publishing, 2016.

[68] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,

P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.

Weeratunga, “The NAS parallel benchmarks—summary and preliminary results,” in

Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91, (New

York, NY, USA), pp. 158–165, ACM, 1991.

102

https://medium.com/software-design/why-software-developers-should-care-about-cpu-caches-8da04355bb8a.xml
https://medium.com/software-design/why-software-developers-should-care-about-cpu-caches-8da04355bb8a.xml
https://medium.com/software-design/why-software-developers-should-care-about-cpu-caches-8da04355bb8a.xml

[69] “Picsarlite benchmark.” https://proxyapps.exascaleproject.org/app/picsarlite.xml.

[70] N. Sultana, M. Rüfenacht, A. Skjellum, P. Bangalore, I. Laguna, and K. Mohror, “Understand-

ing the use of message passing interface in exascale proxy applications,” Concurrency and

Computation: Practice and Experience, vol. n/a, no. n/a, p. e5901, 2020.

103

https://proxyapps.exascaleproject.org/app/picsarlite.xml

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION*
	High-Performance Matching
	Packet Classification
	MPI Tag Matching

	Dissertation Statement
	Dissertation Organization

	BACKGROUND*
	Data structures
	Array
	Binary trie
	Binary Pactricia trie
	M-ary trie
	Adaptive radix trie
	Height optimized trie
	Hash table

	Hardware
	SIMD instruction set
	TCAMs

	Conclusions

	GENMATCHER: A GENERIC CLUSTERING-BASED ARBITRARY MATCHING FRAMEWORK*
	Introduction
	Motivation
	Relationship with Prior Art

	Related Work
	GenMatcher
	Map Phase
	Group Phase
	Build Phase
	Objectives and Challenges

	The GenMatcher Grouping Algorithm
	Similarity Function
	GenMatcher Grouping Algorithm

	Evaluation
	Methodology
	Comparison with Brute Force Grouping
	Scalability
	Performance Comparisons
	Search time:
	Memory cost:

	Conclusions

	GenSMatcher: A GENERIC SIMD-BASED ARBITRARY MATCHING FRAMEWORK
	Introduction
	Background
	Relationship with Prior Art
	Motivation
	Why we study arbitrary matching?
	Why we adopt HOT data structure?

	GenSMatcher design
	Insert operation
	Search operation

	Evaluation
	Methodology
	Performance Comparisons
	Search time:
	Insert time:
	Memory cost:

	Scalability

	Conclusion

	A HYBRID MESSAGE MATCHING MECHANISM FOR HPC COMMUNICATIONS
	Introduction
	Motivation
	Design
	Hybrid Data Structure Design
	PRQ Matching Framework
	PRQ_T Data Structure
	PRQ_H Data Structure
	UMQ Matching Framework

	Evaluation
	Methodolody
	Microbenchmark performance
	Search time:
	Search attempt:
	Memory cost:

	NPB benchmark performance
	PICSARlite benchmark performance

	Conclusions

	CONCLUSION
	REFERENCES

