
DEPENDABLE NEURAL NETWORKS
FOR SAFETY CRITICAL TASKS

by

Molly O’Brien

A dissertation submitted to Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

February 2022

© 2022 Molly O’Brien

All rights reserved

Abstract

Neural Networks (NNs) have demonstrated impressive performance im-

provement over the last decade in safety critical tasks, e.g., perception for

autonomous vehicles, medical image analysis, etc., but, NNs performing

safety critical tasks poses a risk for harm, as NN performance often degrades

when the operating domain changes. Previous work has proposed new train-

ing paradigms to improve NN generalization to new operating domains but

fails to predict what the NN performance in the new operating domain will

be. In addition, performance metrics in Machine Learning (ML) focus on the

average probability of success but do not differentiate failures that cause harm

from those that do not.

In this thesis, we leverage structure in NN behavior based on the environ-

ment context and the NN embedding to predict NN performance for safety

critical tasks in unconstrained environments. We denote factors relating to

the environment context as context features. First, we define performance

metrics that capture both the probability of task success and the probability of

causing harm. We then address the task of predicting NN performance in a

novel operating domain as Network Generalization Prediction (NGP), and

we derive a NGP algorithm from a finite test set using known context features.

ii

Second, we extend our NGP algorithm to identify which context features im-

pact NN performance from a set of observed context features, where it is not

known a priori what features are important. Third, we map structure in the

NN embedding space that is informative about NN performance and derive a

NGP algorithm based on how unlabeled novel operating domain images map

into the embedding space. Fourth, we investigate safety functions for NNs.

Safety functions are standard practice in functional safety where an external

function is added to a process, e.g., a chemical reaction, to improve the overall

safety. We introduce the concept of safety functions for NNs and show that

external logic around NNs can improve the safety for a robot control task

and image classification tasks. We demonstrate these methods on pertinent

real-world tasks using state-of-the-art NNs, e.g., DenseNet for melanoma

classification and FasterRCNN for pedestrian detection.

iii

Thesis Committee

Primary Readers

Gregory Hager
Mandell Bellmore Professor
Department of Computer Science
Johns Hopkins Whiting School of Engineering

Julia Bukowski
Associate Professor, Retired
Department of Electrical and Computer Engineering
Villanova University

Secondary Reader

Austin Reiter
Assistant Professor
Department of Computer Science
Johns Hopkins Whiting School of Engineering

iv

Acknowledgments

Completing a PhD program has been a challenging, exciting, and humbling

process. I could never have made it through this program without support

from advisors, lab mates, colleagues, family, and friends. I am so grateful to

everyone who helped me through this adventure over the last five and a half

years.

First, I would like to thank my advisor Dr. Gregory D. Hager. Over the

years, Greg has pushed me to ask critical questions and see broader impacts

of my work beyond the fixed problem in front of me. Greg is a flexible thinker

and has given me the space to explore different problems, different methods,

and different domains. I am so grateful for Greg’s insightful feedback on

technical writing; Greg has shown me how to write in a way that is more

mathematically precise, more clear, and more eloquent. This thesis would not

have been possible without Greg’s invaluable input.

I would also like to thank the other members of my thesis committee, Dr.

Julia Bukowski and Dr. Austin Reiter. Julia supervised my first technical

research project, on pressure relief values when I was in high school, and her

input has been essential to this thesis. Julia’s expertise in functional safety

and systems engineering gave me a different perspective through which to

v

see my research. Over the last two years, she has helped me to focus my

research and, as the work progressed, she has guided me to extensions that

were both significant and practical. Julia’s assistance in technical writing was

crucial to helping me write more clearly and her attention to detail has vastly

improved the grammar in my writing, e.g., I now know how to punctuate

“e.g.". In addition to this, I am so grateful for Julia’s mentorship that has

helped me navigate through this PhD program. I would also like to thank

Austin who guided me in computer vision applications in the beginning of

my PhD. Austin’s fresh perspective throughout the program has helped me

think about cross-disciplinary applications of my work.

In addition to the three advisors on my thesis committee, I would also like

to thank other mentors who have advised me along the way. I would like

to give a special thanks to Dr. Russ Taylor, with whom I had the pleasure

of working closely in my first year in the PhD program. Russ introduced

me to many different surgical applications and different surgeons. Working

with Russ, I got to see the translation of surgical robots from research to

industry. Russ’s strong mentorship also guided me in technical presentations,

communication, and project management. I would like to thank Dr. Masaru

Ishii for his clinical guidance in the Septoplasty project; he is an innovative

thinker and it was a pleasure to work with him. Thank you to Dr. S. Swaroop

Vedula for his clinical guidance, his insightful questions, and his passion and

curiosity for research. I’d like to thank Dr. Mathias Unberath for his cogent

guidance and creative ideas; I am grateful I have had the opportunity to work

with him in the last months of my PhD. From exida, I am so grateful for the

vi

guidance of Dr. William Goble, Rainer Faller, and Mike Medoff. Thank you,

Bill, Rainer, and Mike, for your technical explanations on functional safety and

your encouragement. The work in this thesis began in an internship with exida

and this thesis would not have been possible without your support. From the

U.S. Food and Drug Administration, thank you to Dr. Aria Pezeshk for your

unique perspective on regulating ML in healthcare. It was so interesting to

learn from Aria about the safety implications of ML in clinical applications.

I am so grateful for the financial assistance I have received over the last

five years. This funding includes the Johns Hopkins Computer Science De-

partment First Year Fellowship, NIH grant R01-DE025265, NIH grant R21-

DE022656, an Intuitive Surgical grant, a fellowship from exida, and a Critical

Path grant from the U.S. Food and Drug Administration, and by an appoint-

ment to the Research Participation Program at the Center for Devices and

Radiological Health administered by the Oak Ridge Institute for Science and

Education through an interagency agreement between the U.S. Department of

Energy and the U.S. Food and Drug Administration.

Thank you to all of the lab mates, colleagues, and friends I have met at

Johns Hopkins. Your insightful feedback and friendship has been such a

wonderful part of this experience. Thank you to Dr. Ayushi Sinha, Dr. Katie

Henry, and Dr. Narges Ahmidi, for being such wonderful friends and mentors.

Thank you to Dr. Jie Ying Wu for your friendship, your technical input, and

your help with CIS homework in our first semester. From the Malone Center

for Engineering in Healthcare, I’d also like to thank Dr. Anand Malpani, Dr.

Jonathan Jones, Dr. Princy Parsana, Benj Shapiro, Dr. Andrew Hundt, Dr. Tae

vii

Soo Kim, Dr. Rob DiPietro, Yotam Barnoy, Jin Bai, Mitchell Pavlak, and so

many other people that I can’t list them all here.

Thank you to all of the faculty for the interesting and challenging courses I

had the opportunity to learn from. Thank you so much to Tracy Marshall for

your help throughout this process and for making every day in Malone Hall

brighter. Thank you to Zack Burwell and Kim Franklin for helping me through

the different stages of the PhD program. Outside of Hopkins, I am so grateful

for the feedback from Azade Farshad on Generative Adversarial Networks

and André Roßbach on the intersection of ML and safety. I’d also like to

thank Cheryl Knobloch, the Director of Women in Engineering at Penn State

University. It was an alumni panel at the Women in Engineering Program

Orientation (WEPO), before freshman year had even begun, that first piqued

my interest in a PhD. Throughout my undergraduate career, Cheryl mentored

and supported me, and her guidance was crucial during my application to

PhD programs.

Finally, I’d like to thank my family for being so supportive in these last

five years and throughout my entire life. I’d like to thank my dad, Chris

O’Brien for originally encouraging me to become an engineer, for supporting

me all through college, for understanding me when I cannot form sentences,

and for his technical support working with exida. I would not have had the

confidence to embark on this PhD journey without your love and support.

Thank you to my mom, Sheri O’Brien, for your love, support, encouragement,

and for your patience talking with me on the phone for hours all the years I

was away at school. Thank you to my siblings, Melissa, Patrick, and Sarah

viii

O’Brien, for your love and support. Thank you to my best friends, Sam Jenkins

and Julia Baldassarre, for your encouragement and for listening patiently as I

try to explain my research. Thank you to all my extending family for being

with me through these years. I love you all, and I could not have done this

without you.

ix

Table of Contents

Abstract ii

Thesis Committee iv

Acknowledgements v

Table of Contents x

List of Tables xv

List of Figures xvi

1 Introduction 1

1.1 Thesis Statement . 4

1.2 Outline . 4

1.3 Contributions . 6

2 Background 8

2.1 Problem Formulation . 10

2.2 Domain Generalization . 12

x

2.2.1 Optimization Techniques 13

2.2.1.1 Invariant Risk Minimization 13

2.2.1.2 Group Distributionally Robust Optimization 14

2.2.1.3 Meta-Learning for Domain Generalization . . 15

2.2.1.4 Robust Feature Extraction 16

2.2.2 Identifying Contexts . 18

2.3 Relating to Generalization . 19

2.3.1 Domain Adaptation . 19

2.3.2 Style Transfer . 20

2.3.3 Few-Shot and Zero-Shot Learning 21

2.3.4 Out-of-Distribution Detection 21

2.3.5 Adversarial Attacks . 22

2.3.6 Robustness . 22

2.3.7 Fairness of Generalization 22

2.3.8 Explainability . 23

2.3.9 Performance Prediction 23

2.4 The Gap . 24

3 Network Generalization Prediction

with a Known Context Space 26

3.1 Methods . 27

3.1.1 Machine Learning Dependability 27

3.1.2 Derivation . 30

xi

3.1.2.1 Discrete-Bounded Context Space 30

3.1.2.2 Discrete-Unbounded or Continuous Context

Space . 31

3.1.2.3 Estimating Undependability 32

3.2 Experiments . 33

3.2.1 Performance during Testing 35

3.2.2 Predicting Model Performance

in Novel Operating Conditions 37

3.3 Discussion . 38

3.3.1 Robot Manipulation Task 38

3.3.2 Dependable NNs in Practical Applications 40

3.4 Conclusions . 41

4 Identifying the Context Subspace 42

4.1 Feature Selection . 43

4.2 Methods . 44

4.2.1 Problem Formulation 44

4.2.2 Defining a Context Subspace 46

4.2.2.1 Ranking Context Features 47

4.2.2.2 Selecting the Context Subspace Dimensionality 48

4.2.3 Using the Context Subspace 50

4.2.4 Network Generalization Prediction 51

4.2.5 Comparing ∆I and I . 51

xii

4.3 Experimental Results . 53

4.3.1 Pedestrian Detection Generalization 53

4.3.2 Defining the Context Subspace 55

4.3.2.1 Ranking Context Features 56

4.3.2.2 Selecting the Context Subspace Dimensionality 56

4.3.3 Using the Context Subspace 57

4.3.4 Pedestrian Detection Generalization Prediction 58

4.3.5 Generalization Prediction for Unseen Datasets 60

4.4 Discussion . 62

4.5 Conclusions . 63

5 Mapping the Embedding Subspace 65

5.1 Methods . 66

5.1.1 Problem Formulation 66

5.1.2 Decision Tree in Embedding Space 68

5.1.3 Approximating Internal Test Set Manifold 68

5.1.4 Inference on External Operating Data 71

5.1.5 Network Generalization Prediction 71

5.2 Experiments . 72

5.2.1 Pedestrian Classification 72

5.2.2 Melanoma Classification 74

5.2.3 Animal Classification 76

xiii

5.2.4 Experimental Setup . 77

5.2.5 Network Generalization Prediction 77

5.2.6 Numerical Network Generalization Prediction Results 78

5.2.7 Graphical Network Generalization Prediction Results . 79

5.3 Discussion . 82

5.4 Conclusions . 84

6 Extensions of NGP Subspaces 85

6.1 Safety Functions for Neural Networks 86

6.2 Safety Function in the Context Space 87

6.2.1 Safety Function in the Context Space Results 88

6.3 Safety Function in the Embedding Space 89

6.3.1 Safety Function in the Embedding Subspace Results . . 90

6.4 Safety Functions Discussion . 93

6.5 Predicting Robustness from the

Context Subspace . 93

6.5.1 Predicting Robustness Results 95

6.5.2 Predicting Robustness Discussion 98

6.6 Conclusions . 100

7 Conclusions 101

Bibliography 104

xiv

List of Tables

3.1 Notation . 28

4.1 Notation. 45

5.1 NGP numerical F1 results for pedestrian, melanoma, and ani-

mal classification tasks with different architectures. 79

6.1 Error prediction F1 scores for pedestrian, melanoma, and ani-

mal classification tasks. 91

6.2 Error prediction F1 scores for classification tasks where the

probability of failure in the operating domain (OD) and archi-

tecture (Arch.) is greater than or equal to 15%. 92

xv

List of Figures

2.1 Context diagram. 9

3.1 The simulated robot manipulation task. To succeed, the robot

must avoid the obstacle, which moves at a constant velocity v

from right to left, starting at time τ, and reach or exceed a goal

location, z, between 0 and 50 inches. τ1: the obstacle has started

moving. τ2: the robot is avoiding collision with the obstacle.

τ3: the robot has successfully reached and/or exceeded its goal

position without colliding with the obstacle. 35

3.2 The observed failures during testing, best viewed in color. Blue

indicates a task failure. Pink indicates a harmful failure. The

task failures (along the left ‘wall’ of the figure) occurred when

the obstacle speed was less than or equal to 0.80 inches/second.

The harmful failures (along the ‘ceiling’ of the figure) occurred

when the robot goal was greater than or equal to 38.47 inches. 36

xvi

3.3 Predicted and observed performance of the trained NN in

Novel Operating Conditions (OC). Left: OC Specification. N (µ, σ2)

denotes a Gaussian with a mean of µ and a standard devia-

tion of σ. The sampled examples x ∼ N (µ, σ2) are clipped

to lie within the specified context C. τ is not listed because

τ ∼ U(0, 10) for all conditions. Right: Predicted and observed

performance of the trained NN in OCs. OC predicted perfor-

mance shown left in light colors. Observed performance shown

right in bold colors. ML Dependability DX̂(f) is shown as solid

green, Task Undependability TX̂(f) is shown as blue hatched,

and Harmful Undependability HX̂(f) is shown as pink dotted

bars. 37

4.1 Overview of Network Generalization Prediction. 44

4.2 Defining the context subspace. 1) Rank Context Features: The

∆I(L, C) between different context features and the loss in the

BDD Test Set for the first three rounds of Algorithm 1. Note that

in iteration one, ∆I(L, C) = I(L, C) so the features’ scores are

non-negative. 2) Select K: We estimate the expected prediction

error for different context subspace dimensionalities, K, and

choose the dimensionality with the lowest expected prediction

error: in this case, K = 3. We form the context subspace with

the three most informative context features: brightness, safety

critical flag, and the scene type. 57

xvii

4.3 BDD Novel Operating Domains. We define operating domains

based on the time of day and the number of pedestrians in

an image. Images with fewer than 5 (N)SC pedestrians fall

under small groups. Images with 5 or more (N)SC pedestrians

fall under large groups. Sample images from the operating

domains are shown. NSC pedestrians are outlined in blue.

SC pedestrians are outlined in red. Drivable area is shown in

random transparent colors. 58

4.4 Network Generalization Prediction (NGP) Results. NSC pedes-

trian recall and SC pedestrian recall are shown separately. The

observed pedestrian recall for the images of each operating

domain are shown in bright blue or red. The NGP predicted

recall is shown in light blue or red. The naïve baseline indicates

the average recall over all pedestrians in the Test Set. Note that

the naïve baseline is the same for every operating domain. . . 59

4.5 Unseen Dataset Novel Operating Domains. Sample images

from the unseen datasets. NSC pedestrians outlined in blue.

SC pedestrians outlined in red. 60

xviii

4.6 Network Generalization Prediction for Unseen Datasets. NSC

pedestrian recall and SC pedestrian recall are shown separately.

The observed pedestrian recall for the images of each novel

dataset is shown in bright blue or red. The NGP predicted

recall is shown in light blue or red. The naïve baseline indicates

the average recall over all pedestrians in the Test Set. Note that

the naïve baseline is the same for both unseen datasets. 61

5.1 Components of a typical feed-forward Deep Neural Network

(NN): convolutional layers, fully connected layers, and the

prediction layer. The prediction layer is also a fully-connected

layer that projects the final embedding, ϕ(x), into the prediction

dimension. 67

5.2 An illustration of the decision tree for mapping NN embed-

dings. Test data lie on a manifold in the embedding space. We

identify structure in the embedding space as it relates to the

NN outcome. For binary classification the possible outcomes

are true positive (TP), false negative (FN), false positive (FP)

and true negative (TN). The structure identified using labeled

test data can be leveraged to predict the NN’s performance on

unlabeled operating data, where the outcome is unknown. Best

viewed in color. 70

xix

5.3 Classification tasks. X indicates the internal dataset that is used

to train the NN classifier and fit the embedding decision tree.

X̂ indicates the unlabeled, external operating dataset. For each

dataset, the top row shows a random sampling of negative

examples, and the bottom row shows a random sampling of

positive examples. 73

5.4 DenseNet JAAD visualized results for Network Generalization

Prediction. 80

5.5 Network Generalization Prediction results for pedestrian classi-

fication, melanoma classification, and animal classification. We

show results for three NN architectures: VGG, AlexNet, and

DenseNet. 82

6.1 A comparison of the NN performance without the safety func-

tion and with the safety function. Task failures are indicated

in blue. Harmful failures are indicated in pink. (a) a reprint of

Figure 3.2 to facilitate comparison. (b) the observed failures in

Testing Conditions with the safety function. (c) a comparison of

the NN ML Dependability, Task Undependability, and Harmful

Undependability with and without the safety function. Note,

the Harmful Undependability is reduced from 5.47% to 0.007%

with the safety function. 88

xx

6.2 Sampling of images from the HAM and SIIM-ISIC Skin Le-

sion datasets separated by malignant/benign labels. For each

category the images are shown according to their hue and satu-

ration with consistent ranges across datasets. Hue/saturation

ranges without available images are shown as solid colors. Note

that the malignant images in the HAM dataset exhibit a smaller

spread over saturation compared to the HAM benign images

or the SIIM-ISIC images. 96

6.3 Left Top: HAM Dataset test image count indexed by image

saturation, note the histogram vertical axes are not at the same

scale. Left Bottom: classifier Sensitivity and Specificity indexed

by image saturation. Right Top: SIIM-ISIC Dataset test image

count indexed by image saturation, note the histogram vertical

axes are not at the same scale. Right Bottom: classifier Sensitiv-

ity and Specificity indexed by image saturation. Sensitivity and

Specificity bars are colored green for high performance and red

for poor performance. 98

6.4 Classifier AUC on sub-populations of the HAM test images.

For each plot, the True Positive Rate is shown on the y-axis and

the False Positive Rate is shown on the x-axis. The overall AUC

curve is shown in black in each plot, the sub-population AUC

curve is shown in green. We define low saturation as < 25%

and high saturation ≥ 25%. We define younger as < 50 years

and older as ≥ 50 years. 99

xxi

Chapter 1

Introduction

Neural Networks (NNs) perform safety critical tasks in unconstrained environ-

ments, e.g., autonomous robot control, perception for self-driving vehicles [1],

and medical image analysis, but the structure of NNs is different from other

safety critical software. Safety critical software is typically regulated by inter-

national functional safety standards, e.g., ISO 26262, IEC 61508. Functional

safety standards leverage various techniques to verify the safety of software,

including requirement specification, i.e., linking required system behavior to

specific code modules, white box testing, i.e., testing specific inputs that cover

all branches or behavior in the code, and code review to identify human error.

These techniques are challenging or impossible to apply directly to NNs, e.g.,

labeled data is used to implicitly specify the correct behavior in supervised

learning, NNs are black box systems, and NN weights cannot be manually

inspected to identify failure cases.

In addition, there is a growing body of evidence that NNs are susceptible

to biases that can discriminate on individuals or subpopulations based on

race, sex, age, disability, etc. When NNs are used in cyber-physical systems,

1

this risk for discrimination is compounded by a risk of physical harm such

that different subgroups face greater risk of harm than others. Pedestrians

with a dark skin-tone face a greater risk of not being detected by autonomous

vehicles and thus being struck by them [2]. The vast majority of images in

publicly available skin cancer datasets are of patients with lighter skin, leaving

patients with darker skin at risk of lower performance [3]. There is an urgent

need for technical solutions that can predict NN performance, and NN harm,

in novel operating domains.

Prior work has investigated how to improve NN performance in novel

operating domains under different research objectives, e.g., domain general-

ization and adaptation, NN robustness, out-of-distribution (OOD) rejection,

and adversarial attacks. The vast majority of research focuses on training,

i.e., improving how NNs learn to achieve better NN performance. But the

definition of “better performance" is typically very limited, i.e., better average

success on a predefined dataset. From the average performance it is not clear

in what conditions performance will be better and for whom performance

will improve.

The domain generalization community proposed that NN performance

changes when the data environment changes, e.g., changes in the appearance

of buildings and the structure of side-walks across cities, changes in medical

scans across different scanner manufacturers, etc.; see Section 2.2 for more de-

tails. For NNs that generalize better, work in domain generalization separates

the data back into the original environments so that the NN can be trained

to perform well across the distinct environments, e.g., unshuffling training

2

data back into the original data environments [4]. But, prior work relies on

multiple datasets or known, observed environment contexts [5] [6].

For many practical applications of NNs, identifying the different envi-

ronments that impact NN performance is challenging. Large datasets with

thousands or millions of examples are used in training and testing where

each example may be complex, e.g., robot task demonstrations, high resolu-

tion images, medical scans, etc. It is often not scalable to manually inspect

failure cases to determine what environment factors lead to changes in NN

performance. Failures are typically attributed to needing “more data", but

identifying specifically what additional examples are needed is not obvious.

Identifying different contexts within a dataset and relating those contexts back

to actionable, interpretable attributes without a priori knowledge of what

impacts NN performance is an open problem.

In this thesis, we propose that the key to predicting NN performance in

a novel operating domain is to discover what environment contexts impact

NN performance. We derive an algorithm to predict NN performance in a

novel operating domain from a fixed, finite test set by identifying different

environment contexts of interest and estimating NN performance in these

contexts. We demonstrate this leads to accurate NN performance predictions

leveraging environment contexts from labeled metadata of interest or from

the NN embedding space.

3

1.1 Thesis Statement

NN generalization in a novel operating domain can be predicted by identi-

fying structure in the environment context or in the NN embedding that is

informative for NN performance.

1.2 Outline

In Chapter 2 we outline our problem formulation and discuss prior works

in domain generalization. In Chapter 3 we develop methods for predicting

NN performance in a novel operating domain, a task we denote Network

Generalization Prediction (NGP). In Section 3.1.1 we propose the metrics

ML Dependability, Task Undependability, and Harmful Undependability to

measure the probability of success, the probability of failing at the task but not

causing harm, and the probability of causing harm, respectively, in a novel

operating domain. We begin by assuming that the factors that impact the

environment context, denoted context features, are both known and observed.

In Section 3.1.2 we derive methods for NGP from a finite test set using the

known context features. In Section 3.2 we demonstrate accurate NGP for

a robot controller trained in simulation via Reinforcement Learning. The

material in Chapter 3 was published as a workshop paper:

• O’Brien, Molly, William Goble, Greg Hager, and Julia Bukowski. "De-

pendable neural networks for safety critical tasks." In Engineering De-

pendable and Secure Machine Learning Systems: Third International

Workshop, EDSMLS 2020, New York City, NY, USA, February 7, 2020,

4

Revised Selected Papers, pp. 126-140. Springer, Cham, 2020.

In general, the environment context that impacts NN performance is un-

known. In Chapter 4 we propose an algorithm to identify which context

features are informative for NGP. These informative context features form

the Context Subspace; see Section 4.2.2. Using the Context Subspace, we

accurately predict the pedestrian recall for a pedestrian detector deployed in

novel operating conditions; see Section 4.3. The material in Chapter 4 was

published as a conference paper:

• O’Brien, Molly, Mike Medoff, Julia Bukowski, and Greg Hager. "Network

Generalization Prediction for Safety Critical Tasks in Novel Operating

Domains." In Winter Conference on Applications of Computer Vision.

2022.

In Chapter 5 we do not assume access to known context features; instead

we leverage the NN embedding. We map the NN Embedding Subspace to

define local regions that are informative for the NN performance; see Section

5.1. We demonstrate accurate NGP across a variety of NN architectures and

image classification tasks including pedestrian classification and melanoma

classification; see Section 5.2. The material in Chapter 5 is under review:

• O’Brien, Molly, Julia Bukowski, Mathias Unberath, Aria Peseshk*, and

Greg Hager*. "Mapping DNN Embedding Manifolds for Network Gen-

eralization Prediction." Under review. 2022.

In Chapter 6 we explore extensions of the subspaces beyond NGP. First, we

investigate adding safety functions, external logic outside the NN to improve

5

safety. In Section 6.2 we find that safety functions substantially increase the

overall safety for a robot control task. In Section 6.3 we use the Embedding

Subspace to reject operating images that are likely misclassified and find a

significant increase in safety. The motivation for this thesis is safety, e.g., how

to measure the safety of a NN, how to predict whether a NN will be safe

in a novel operating domain, etc., but our work has implications broader

than safety critical applications. We define the Context Subspace and the

Embedding Subspace to enable NGP, but we find these subspaces are useful

for other tasks. The dimensions of the context subspace are interpretable

and provide actionable information. In Section 6.5 we leverage the Context

Subspace to determine if a trained NN is expected to be robust. The material

in Section 6.5 was published as a conference paper:

• O’Brien, Molly, Julia Bukowski, Greg Hager, Aria Peseshk, and Mathias

Unberath. "Evaluating Neural Network Robustness for Melanoma Clas-

sification using Mutual Information." In International Society for Optics

and Photonics Conference on Medical Imaging. 2022.

1.3 Contributions

The contributions of this thesis are:

1. Performance metrics to measure both the probability of success and the

probability of harm (Chapter 3).

2. Methods for Network Generalization Prediction (NGP) (Chapter 3).

3. Identifying relevant context features for NGP (Chapter 4).

6

4. Mapping the NN embedding space for NGP (Chapter 5).

5. For the first time, we propose safety functions for NNs and demonstrate

significantly safer performance (Chapter 6).

6. We demonstrate that inspecting the context features that impact NN

performance to determine whether the NN is expected to be robust in

novel operating domains (Chapter 6).

7

Chapter 2

Background

In this thesis, we focus on NN generalization in changing environments.

Changing environments are often described as “distribution shifts" in the

literature. In low dimensional data, e.g., tabular data, the notion of distribution

shift is straight-forward, i.e., the distribution of values across given attributes

changes. But many of the safety critical applications of NNs consider high

dimensional data, e.g., images, and for high-dimensional data modalities

the notion of distribution shift becomes harder to quantify. To help frame

the problem, let us consider the task of image classification. Imagine an

image formation process, see Figure 2.1, where the image is impacted by

the label and the context. The image label describes the class of the primary

subject in the image. The context describes other information about the

image that is not the task label. In Figure 2.1 the available information about

the context, hereafter referred to as context features, are the time of day,

and the weather. Distribution shift in images could refer to changes in the

distribution of different labels in the dataset, or distribution shift could refer

to other shifts in the dataset, i.e., shifts in context. Compensating for changes

8

Figure 2.1: Context diagram.

in label distribution is standard practice in ML, e.g., uniform sampling of

different label classes during training. Understanding and compensating for

distribution shifts in context is more challenging.

It is well known that NN performance often degrades when the context

shifts, e.g., in novel environments [7]. But prior works in domain generaliza-

tion sidestep rigorous context specification by relying on different datasets to

implicitly capture context shift [5], [8]–[12] or by only considering one context

feature that has a spurious correlation with the label [6]. Relying on recording

more and more data to implicitly capture context shifts is expensive in both

time and money, it does not provide insight into what impacts NN perfor-

mance, nor does it guarantee that the shifts in context the NN will observe in

a novel operating domain are captured by previous data collection. Relying

on one known, observed context feature that impacts performance is an over

simplification of most interesting applications. See Section 2.2.2 for a more

9

detailed description of how prior works identify different contexts. Further-

more, while many domain generalization algorithms have been proposed in

the last decade, none has consistently out-performed standard Empirical Risk

Minimization (ERM) [13].

Distribution shift is tied to context shift for high dimensional data modali-

ties, and yet prior work does not address specifying or understanding context

shift in high dimensional data like image classification. In this chapter, we

present our problem formulation and formalize the notation that will be used

in this thesis. We then outline the prior work pertaining to NN generaliza-

tion in unconstrained environments. Finally, we describe the fundamental

technical gap that is bridged by this thesis.

2.1 Problem Formulation

We consider a feed-forward NN, f , where f is composed of convolutional,

linear, and non-linear layers. Let (x, y, c) be a sample from the internal dataset

that is used for training and testing, where x is the input data, e.g., an image,

y is the label, and c is the available context. Recall, c captures additional

information about x that is not the label y, but it is not known whether or how

c impacts the performance of f . If the internal dataset is used for both training

and testing, it is partitioned into a training set (X, y, C) = {(xi, yi, ci)}N
i=1 and

a test set (X, y, C) = {xi, yi, ci}N
i=1 such that the training set and the test set are

disjoint partitions of the internal dataset. During training, the training set is

partitioned into training data and validation data.

Let ℓ(f (x), y) indicate a loss function; the mathematical loss for f on the

10

internal training set is:

E[ℓ(f (X), y)] (2.1)

We define LX as the empirical loss on training data X.

LX = 1/N
N

∑
i=1

ℓ(f (xi), yi) (2.2)

Standard NN training is performed via ERM [14], where f is trained to min-

imize LX. We define g(c) to be the empirical loss in context c. Let I(a, b) be

an indicator function that is equal to 1 if a = b and 0 otherwise. g(c) can be

computed as:

g(c) =
∑N

i=1 I(ci, c) ∗ ℓ(f (xi), yi)

∑N
i=1 I(ci, c)

(2.3)

The empirical likelihood of c in X, pX(c), can be computed as:

pX(c) =
∑N

i=1 I(ci, c)
N

(2.4)

LX can equivalently be computed as:

LX = ∑
c∈C

pX(c)g(c) (2.5)

Therefore, in standard NN training, the emphasis in the training loss on

context c is proportional to the frequency of c in the training dataset X.

In general, the average performance of f on the test set, X, is used as an

indicator for how f will perform on unseen data. The empirical test loss is

computed as:

LX =
1
N

N

∑
i=1

ℓ(f (xi), yi) (2.6)

11

The empirical likelihood of c in X, pX(c), can be computed as:

pX(c) =
∑N

i=1 I(ci, c)
N

(2.7)

The loss for the test set, LX, can be computed as:

LX = ∑
c∈C

pX(c)g(c) (2.8)

Typically, pX(c) ≈ pX(c). Therefore, testing with X may not reveal important

limitations of f , e.g., f may have poor performance in a context c that is rare

in the training set and the test set, the same spurious correlations between c

and y may exist in the training set and the test set, etc.

We are interested in the performance of f when it encounters data X̂ from

a novel operating domain. There is often a context distribution shift between

the internal dataset and the novel operating domain, i.e., pX̂(c) ̸= pX(c). The

expected empirical loss in the novel operating domain is:

LX̂ = ∑
c∈C

pX̂(c)g(c) (2.9)

When the context distribution of X̂ is different from the distribution of X, the

loss of f is not optimized for performance in this domain and it is likely that

the performance of f will degrade; domain generalization aims to address

this problem.

2.2 Domain Generalization

NN performance degrades when the data distribution changes from X to X̂

[7]. Broadly, domain generalization techniques identify different environment

12

contexts within X and then modify standard ERM optimization so that the

performance of f is consistent across environments. First we describe the

optimization techniques that have been proposed, then we outline the different

ways that environments within X have been identified.

2.2.1 Optimization Techniques

2.2.1.1 Invariant Risk Minimization

One of the primary domain generalization techniques is Invariant Risk Mini-

mization (IRM). IRM takes inspiration from causal inference to train NNs that

exploit causal relationships in the task of interest instead of learning spurious

correlations present in the training data [5]. IRM considers multiple training

datasets originating from different environments with the goal of learning f

“which performs well across a large set of unseen but related environments"

[5]. The NN being optimized, f , is decomposed into two components: a

feature extractor, ϕ, and a classifier or predictor, w. ϕ(x) indicates projecting

the input data into some embedding space, where w(ϕ(x)) is equivalent to

passing example x through the entire NN, i.e., w(ϕ(x)) = f (x).

The authors assume that multiple datasets are available and each dataset

is considered one environment context, i.e., c1 → (X1, y1), c2 → (X2, y2),

etc. IRM aims to find a robust feature extractor, ϕ, across all environments

while maintaining a perfect classifier, w by minimizing the following objective

function:
min ∑

c∈C

ℓ(w(ϕ(X)), y|c)

s.t. w ∈ arg min
w

ℓ(w(ϕ(X)), y|c) ∀c ∈ C
(2.10)

13

Note that this is equivalent to

min ∑
c∈C

g(c)

s.t. w ∈ arg min
w

ℓ(w(ϕ(X)), y|c) ∀c ∈ C
(2.11)

Effectively, instead of weighting each environment context, c, by how fre-

quently it was seen in training, IRM weights each context uniformly.

2.2.1.2 Group Distributionally Robust Optimization

Like IRM, Group Distributionally Robust Optimization (DRO) [6] aims to

minimize the worst-case loss of f . With DRO, Sagawa et al. refer to different

groups of data; this is analogous to the different environment contexts we

consider. Recall, pX(c) denotes the probability of environment context c in

the training data. Let pX(C) indicate the overall probability distribution of

contexts in the training set X. Consider the expected loss over the training

data:

LX = E[ℓ(f (X), y|c)], c ∼ pX(C) (2.12)

X is assumed to contain a mixture of different contexts, c, determined by the

environment and the example label y. Now consider a set of distributions G

with g ∈ G , where pg(C) is one context distribution of interest. The worst case

performance of f is:

max
g∈G

E[ℓ(f (X), y|c)], c ∼ pg(C) (2.13)

14

The objective function that DRO minimizes is:

arg min
f
{max

g∈G
E[ℓ(f (X), y|c)], c ∼ pg(C)} (2.14)

which minimizes the worst case loss.

2.2.1.3 Meta-Learning for Domain Generalization

Meta-Learning for Domain Generalization (MLDG) aims to train models

that generalize well by synthesizing potential test domains in training [8].

MLDG assumes access to multiple environment contexts, denoted source

domains in the paper. The internal training set and test set are selected so that

some environment contexts are used only in training and some environment

contexts are used only in testing, i.e., if c ∈ C→ c ̸∈ C, and if c ∈ C→ c ̸∈ C.

The training loss is computed as:

LX =
1
|C| ∑

c∈C

E[ℓ(f (X), y|c)] (2.15)

The test loss is computed as:

LX =
1
|C| ∑

c∈C
E[ℓ(f (X), y|c)] (2.16)

As we have seen in other domain generalization algorithms, the training

and test loss weight each environment context uniformly. Let Θ indicate the

parameters in f . We use the notation L(Θ) to denote the loss for given NN

parameters Θ. After the training loss is computed, Θ is updated to be Θ′. The

meta-learning objective function takes into account both the training set loss

15

and the test set loss:

arg min
f
LX(Θ) + βLX(Θ′) (2.17)

where β is a constant.

2.2.1.4 Robust Feature Extraction

Domain-Adversarial Training of Neural Networks (DANN) was proposed as a

representation learning approach to learn f so that it is robust to environment

context changes, denoted domains by the authors [11]. Let X and y be the

training data and labels respectively and let X̂ be a set of unlabeled operating

data. As in Section 2.2.1.1, we decompose the NN f into a feature extractor, ϕ,

and a linear classifier, w, where w(ϕ(x)) = f (x). With DANN, it is proposed

to add an additional component to the NN architecture, d, where d(ϕ(x)) aims

to predict the context from which the example x originated. The contexts are

defined based on the datasets, e.g., c1 → X, c2 → X̂, etc. The loss associated

with the task is computed as Lϕ,w.

Lϕ,w = E[ℓ(w(ϕ(X)), y)] (2.18)

The loss associated with the context classification is computed as Lϕ,d. Let X

denote the union of X and X̂ and let C denote the domains associated with X .

Lϕ,d = E[ℓ(d(ϕ(X)), C)] (2.19)

The NN is trained by optimizing the adversarial objective function:

arg min
ϕ,w,d
Lϕ,w − γLϕ,d (2.20)

16

where γ is a constant.

Deep CORAL (CORAL) was proposed to align features for labeled train-

ing data X and unlabeled operating data X̂ [12]. Let Cov(ϕ(X)) indicate the

covariance matrix for the feature embedding of data X. The NN is trained to

both minimize the error on the task of interest, and minimize the difference of

feature covariances across the training data and the operating data.

min E[ℓ(w(ϕ(X)), y)] + γ||Cov(ϕ(X))− Cov(ϕ(X̂))||2F (2.21)

where || • ||2F indicates the Frobenius norm.

Other methods to learn robust features include Deep Domain General-

ization via Conditional Invariant Adversarial Networks (CDANN) [9] and

Adversarial Autoencoders with Maximum Mean Discrepancy (MMD) [10].

CDANN extends DANN to deeper NNs and minimizes how P(X|y) changes

across contexts in order to make P(y) constant across contexts. MMD takes

advantage of an autoencoder architecture and an adversarial loss function to

align the feature distributions across different environment contexts. If there

is a known bias in the training data, other previous work has proposed that

robust features can be learned by training the NN to minimize the Mutual

Information between the NN embedding and the known bias [15]. Permuting

images during training has been proposed to implicitly train ϕ in a way that

generalizes to new environment contexts [16].

17

2.2.2 Identifying Contexts

The proposed domain generalization techniques aim to train f so that it gener-

alizes to new environment contexts, and the environment contexts are defined

in two ways: 1. data from multiple environments is available and the NN is

trained to generalize across the environments, or 2. there exists one known,

observed attribute that impacts NN performance, and training addresses

changes in this attribute. IRM [5], MLDG [8], CDANN [9], and MMD [10]

require labeled training data from multiple environment contexts. DANN

[11] and CORAL [12] require labeled training data from one environment

context and unlabeled operating data from another environment context. In

the experiments for DRO, there is one known and observed attribute that

has a spurious correlation with the label; this knowledge is used to form

environment contexts based on different groups of data [6]. Note that none

of these works address the challenge of identifying different environments,

associated with different levels of performance, within one dataset.

The limitations of this approach are being addressed by a new research

direction within domain generalization: hidden-stratification, i.e., the idea that

there are sub-classes within an environment context where the NN performs

poorly. Hidden stratification can lead to harm if the task is safety critical, e.g.,

medical image analysis [17]. Sohoni et al. propose the framework GEORGE

that identifies subgroups of data by clustering examples in the NN embedding

space and training classifiers that demonstrate robust performance across

subgroups, z, where z ∈ c and c ∈ C [18]. Let F be the set of possible NNs.

GEORGE aims to train f so that it performs well across subgroups within the

18

different environment contexts:

arg max
f∈F

min
z∈c ∑

c∈C

ℓ(f (X), y|z) (2.22)

Work in hidden stratification is a promising direction to further improve

NN generalization, but it also underscores that relying on known attributes

or available datasets is insufficient to truly understand what impacts NN

performance and why a NN fails to generalize in a specific application.

2.3 Relating to Generalization

We have framed the problem of NNs in unconstrained environments in terms

of domain generalization, but there are other areas of research that relate

to NN generalization, including domain adaptation, style transfer, few-shot

learning, out-of-distribution detection (OOD), adversarial attacks, robustness,

and fairness of generalization. Underspecification can lead network perfor-

mance to degrade when deployed in operating domains different from the

training domains [19]. Prior work has also investigated how to ensure safety

during network training [20], [21].

2.3.1 Domain Adaptation

Domain adaptation seeks to adjust a trained network to new operating do-

mains. See [22] for a survey of visual domain adaptation techniques. An

adaptation of DRO, Class-conditional Subgroup Robustness (SGDRO), has

been proposed to address the performance of subgroups within each context

by first, learning a GAN to transform samples from one subgroup to another

19

and second, balancing subgroup performance via regularization [23]. Domain

Mixup has been proposed to interpolate between available domains to im-

prove generalization [24] RoyChowdhury et al. propose a method to leverage

unlabeled data in a new operating domain to fine-tune a trained network and

show an increase in pedestrian detection over baseline for a network trained

using sunny images from the Berkely Deep Drive Dataset (BDD100K) [25]

and adapted to rainy, overcast, snowy day, and night images [26]. Liu et al.

address Open Domain Adaptation (generalizing to an unseen target domain)

and Compound Domain Adaptation (generalizing to combined target do-

mains) and demonstrate results on a compound target of rainy, cloudy and

snowy and an open target of overcast images [27].

2.3.2 Style Transfer

In perception, style transfer is used to render images from one domain as

if they were from another; see [28] for a survey. Style transfer can be used

in safety critical tasks to render a novel scenario in a known style. Cycle-

GANs have achieved impressive results rendering photographs as if they

were painted by different artists and transferring the style of similar animals,

e.g., rendering a horse as a zebra [29]. Gong et al. extend CycleGANs for con-

tinuous style generation flowing from one domain to another and demonstrate

results transferring styles between object detection datasets [30].

20

2.3.3 Few-Shot and Zero-Shot Learning

Few-shot (zero-shot) learning aims to learn a task for given operating condi-

tions with little (no) labeled training data. James et al. use a task embedding

to leverage knowledge from previously learned, similar tasks [31] and demon-

strate that a robot can learn new tasks with only one real-world demonstration.

See [32], [33] for surveys of zero-shot learning.

2.3.4 Out-of-Distribution Detection

NNs are trained in limited environments, e.g., to classify dogs and cats. If a

NN is used in an unconstrained environment, an input sample from outside

of that limited training environment, e.g., an image of a bird, standard NNs

will provide an incorrect answer because neither dog nor cat can be correct.

Automatically recognizing OOD samples is a broad area of research that is

relevant to safely deploying NNs in unconstrained environments. Many prior

works use the NN embedding, i.e., the output from the penultimate NN layer,

or the softmax scores to detect OOD samples [34]–[38]. The baseline in [34]

uses the softmax scores to predict whether an image is misclassified in addition

to OOD detection. Previous work has investigated input sample Euclidean or

Mahalanobis distance from training data in the embedding space to identify

OOD and adversarial examples [39]–[41]. Recent work proposed the Multi-

level Out-of-distribution Detection (MOOD) framework for computationally

efficient OOD [42]. Previous work can detect if an input is from an unseen

Operating Domain [43], [44].

21

2.3.5 Adversarial Attacks

NNs are sensitive to noise and common corruptions [45] [46], Adversarial

Attacks can change a NN prediction by modifying only a few pixels [47], NNs

can make errors with high confidence from imperceptible noise and even on

natural images hendrycks2019natural or rotated natural images [48]. Adver-

sarial attacks are also relevant for cyber-physical tasks [49]. For automated

driving, physical stickers or graffiti on street signs can change NN percep-

tion predictions [50]. Adversarial-shape objects can infer with LiDAR-based

autonomous driving navigation systems [51].

2.3.6 Robustness

Robustness in ML is used to refer to maintaining task performance in the

presence of dataset shift and noise or corruptions. See [52] for a recent sur-

vey of robustness in ML. Subbaswamy et al. propose to evaluate a model’s

robustness to distribution shifts with one fixed evaluation set [53] and are

able to identify which shifts in distribution would lead to the worst-case per-

formance. Cygert et al. investigate NN pedestrian detection robustness to

different image distortions [54].

2.3.7 Fairness of Generalization

Training DNNs that are fair to different subpopulations is essential to safely

deploy DNNs in unconstrained environments. ImageNet is one of the most

commonly used datasets in computer vision, the dataset alone has been cited

over 35,000 times in the last ten years. But it has been shown that ImageNet

22

contains offensive language to describe people in the dataset and biased

representation of different groups of people, e.g., programmer, banker, etc. [55]

There is evidence that both pedestrian detection and melanoma classification

can have lower performance for some subpopulations, particularly people

with darker skin tones. Wilson et al. investigated pedestrian detection with

the BDD dataset and found poorer pedestrian prediction for darker skin tones

that is not explained by confounding variables like time of day or occlusion

[2]. Wen et al. performed a systematic review of publicly available skin image

datasets and found a substantial under-representation of darker skin types

[3]. It has been shown that DRO [6] can control the risk to minority groups,

e.g., non-native speakers in speech recognition tasks, without requiring the

identity of the groups [56].

2.3.8 Explainability

Recent work also aims to explain the NN prediction. See [57] for a recent sur-

vey on explainable Deep Learning. Generative Adversarial Network (GAN)

inversion can be used to visualize changes in the embedding space when the

task involves GANs for image generation [58].

2.3.9 Performance Prediction

NN generalization hinges on how well a NN performs in a novel operating

domain. We have outlined the many techniques proposed to improve NN

generalization, but, strikingly, very little work has focused on predicting

exactly how well a NN will generalize. A similar task, Detection Performance

23

Modeling, was proposed in [59] where Ponn et al. train a random forest on

image attributes, e.g., pedestrian occlusion, bounding box size, presence of

rain, etc., to predict whether a specific pedestrian in an image will be detected.

This method requires significant labeled metadata and only makes predictions

for one given pedestrian.

2.4 The Gap

While significant research effort has focused on improving NN performance in

unconstrained environments, very little attention has been paid to predicting

what the NN performance will be in a novel operating domain. State of the

art research focuses training NNs with better performance without proposing

techniques to determine if performance is good enough for a given application

or a given operating environment. Determining whether NN performance is

sufficient is essential for safely deploying NNs in unconstrained environments;

this question can only be answered by predicting how a NN will generalize to

a novel operating domain.

Separately, the different environment contexts considered in domain gener-

alization research are derived from separate datasets or one known, observed

attribute. In general, some context features may be available, but, it is not

clear which of these context features are related to performance degradation.

Additionally, there are usually context shifts between that are not captured by

the context features.

We bridge both of these gaps in this thesis by first proposing a methodology

to predict NN performance in a novel operating domain using one fixed test set

24

(Chapter 3) and then discovering the relevant environment contexts within a

test dataset based on interpretable metadata (Chapter 4) or the NN embedding

space (Chapter 5).

25

Chapter 3

Network Generalization Prediction
with a Known Context Space

In this chapter, we address the challenge of Network Generalization Prediction

(NGP), i.e., predicting NN performance in a novel operating domain from

a fixed test set. We perform NGP for a robot manipulation task where the

environment context is described by a small set of known, observable context

features. In the following chapters, we propose methods to identify the

environment context either from interpretable metadata, see Chapter 4, or

from the NN embedding space, see Chapter 5. To the best of our knowledge,

NGP is a previously unaddressed problem. Additionally, we distinguish

between failures that do not violate safety constraints, which we denote task

failures, and failures that violate safety constraints (whether or not the task is

completed), which we denote harmful failures. We denote the probability of

task success without causing harm as ML Dependability. The contents of this

chapter are as follows:

26

1. We define ML Dependability1 as the probability of completing a task

without harm. We define Task Undependability and Harmful Unde-

pendability to distinguish failures by the consequences: task failures do

not cause harm, harmful failures cause harm.

2. We propose a NGP algorithm to predict the NN performance in novel

operating conditions by re-weighting known test results with knowledge

of the novel operating condition probabilities.

3. We accurately predict the ML Dependability, Task Undependability, and

Harmful Undependability of a NN trained to perform a simulated robot

manipulation task in novel operating conditions using test results.

3.1 Methods

3.1.1 Machine Learning Dependability

We consider the performance of a trained, deterministic NN, f , performing a

safety critical task; see Table 3.1 for the notation used in this chapter. A finite

test set, X = {xi}N
i=1, is available where xi is one test example and y = {yi}N

i=1

indicates the test labels. A NN may be used iteratively within one test example,

e.g., a controller moving a robot incrementally towards a goal, or used once,

e.g., a classifier labelling a sensor reading as valid or faulty. For each test

example, the NN attempts to complete a task without causing harm. The

outcome of deploying a NN in an example is the observed behavior mode. We

define three behavior modes: success, task failure, and harmful failure. A NN
1This is distinct from software Dependability defined in [60].

27

Table 3.1: Notation

f the trained Neural NN
X = {xi}N

i=1 the finite test set
y = {yi}N

i=1 the labels for the finite test set
f (x) the NN prediction for x

s(f (x), y) success indicator for f in example x
t(f (x), y) task failure indicator for f in example x
h(f (x), y) harmful failure indicator for f in example x

X̂ the operating domain
pX(C), pX̂(C) the probability distribution describing

all possible examples during testing,
operation (respectively)

DX̂(f) the dependability of f in conditions X̂
TX̂(f) the task undependability of f in conditions X̂
HX̂(f) the harmful undependability of f

in conditions X̂

v the obstacle velocity [inches/second]
in the robot simulation experiments

τ the obstacle start time [seconds] in the
robot simulation experiments

z the robot goal position [inches] in the
robot simulation experiments

is successful if it accomplished the task without causing harm. A task failure

occurs when the NN failed to complete the specified task but did not cause

harm. Any example where the NN caused harm is labeled a harmful failure,

whether or not the task was completed. We propose three indicator functions

to identify the behavior modes: s(f (x), y) to indicate success, t(f (x), y) to

indicate task failure, and h(f (x), y) to indicate harmful failure.

The environment context or context space of the test set is denoted by

C = {ci}N
i=1 where ci describes the environment context for xi. Note that C

can include multiple context features and in general c is a vector. The input

28

space of a NN is defined as the information the NN observes. The input may

include context features, but need not include context features.

The probability of different contexts within the test set is described as

pX(C). Let X̂ indicate data from a novel operating domain, but we do not

assume that data X̂ is available. Instead, information about the context of

the novel operating domain, pX̂(C), is available. As a motivating example,

imagine a NN detecting pedestrians for an autonomous vehicle. The NN is

trained and tested in Palo Alto but will operate in Seattle. Information, e.g.,

weather patterns, population statistics, can be used to estimate the probabil-

ity of different examples during testing and operation without recording or

labelling data in the operating conditions.

We define Machine Learning Dependability as the probability that a model

will succeed when used in the specified operating domain. We aim to esti-

mate DX̂(f): the ML Dependability of model f deployed under the operating

conditions described by pX̂(C), where pX̂(C) ̸= pX(C). Note that the ML De-

pendability of f under testing conditions, DX(f), is equal to the NN accuracy

or the fraction of successful tests: DX(f) = 1
N ∑N

i=1 s(f (xi), yi).

For this analysis, it is assumed that C is numerical, that pX(C) and pX̂(C)

are known, and that while pX̂(C) ̸= pX(C), the test set covers all contexts c

that are possible in pX̂(C).

29

3.1.2 Derivation

3.1.2.1 Discrete-Bounded Context Space

To perform NGP from a finite test set, we relate the test examples, X, and their

observed behavior modes to the environment context, C. To begin, we assume

C is discrete with finite M possible values, ∪̇M
m=1cm = C. Let I(a, b) be an

indicator function that is equal to 1 if a = b and 0 otherwise. The likelihood of

a given context c in the test set can be computed as

pX(cm) =
1
N

N

∑
i=1

I(ci, cm) (3.1)

where the probability distribution describing examples during testing is

pX(C) = {pX(cm)}M
m=1 (3.2)

The probability distribution describing examples during operation is

pX̂(C) = {pX̂(cm)}M
m=1 (3.3)

Recall that pX̂(C) can be estimated without labeled operating data using prior

knowledge and available statistics about the operating domain.

The ML Dependability of f operating in conditions X̂ is defined as the

probability that model f succeeds when deployed in a context c randomly

sampled from the operating conditions c ∼ pX̂(C).

DX̂(f) = E[s(f (x), y|c)], c ∼ pX̂(C) (3.4)

To simplify notation, let s(c) denote the expected probability of success in

30

context c.

s(c) = E[s(f (X), y|c)] = ∑N
i=1 s(f (xi), yi)I(ci, c)

∑N
i=1 I(ci, c)

(3.5)

DX̂(f) can equivalently be written as:

DX̂(f) =
M

∑
m=1

pX̂(cm)s(cm) (3.6)

pX̂(C) is known; s(c) must be evaluated via testing. If the context subspace

of the NN is truly discrete and M < ∞, then the NN can be exhaustively

tested with M tests. (Note, if M is finite but large it may be infeasible to

exhaustively test the NN. This case may be treated as discrete-unbounded.) In

most applications, the context subspace is discrete-unbounded or continuous

so the NN cannot be tested exhaustively.

3.1.2.2 Discrete-Unbounded or Continuous Context Space

We approximate discrete-unbounded or continuous C as discrete-bounded

by partitioning C into M partitions, with M < ∞. Let the mth partition be

defined as the contiguous region rm of C, such that ∪̇M
m=1rm = C. The reader is

reminded that N test examples are drawn from pX(C) as {xi}N
i=1. Nm examples

lie in each partition where {xm
i }

Nm
i=1 ∈ rm denotes the examples in partition

m. We require the partitions are defined so that at least one test example lies

within each partition, Nm > 0, ∀m ∈ [0, M]. pX̂(C) is equivalently described

by:

pX̂(C) = {pX̂(rm)}M
m=1 (3.7)

31

where pX̂(rm) is computed as: pX̂(rm) = ∑c∈rm pX̂(c) for discrete-unbounded

contexts, or pX̂(rm) =
∫︁

rm
pX̂(c)dc for continuous contexts. s(rm) can be esti-

mated as:

s(rm) ≈
∑Nm

i=1 s(f (xi), yi)

Nm
(3.8)

The overall ML Dependability can now be approximated as:

DX̂(f) ≈
M

∑
m=1

pX̂(rm) ∗ s(rm) (3.9)

3.1.2.3 Estimating Undependability

In a similar manner, we can estimate the undependability of the model f in the

operating conditions X̂. t(f (x), y) = 1 when the task is not completed but no

harm is done, and t(f (x), y) = 0 otherwise. The Task Undependability, TX̂(f),

is the probability that the model will fail to complete the desired task without

causing harm in conditions X̂. We can compute the Task Undependability as:

TX̂(f) = E[t(f (x), y|c)], c ∼ pX̂(C) (3.10)

Let t(rm) denote the expected value of t(f (x), y|c) in rm. TX̂(f) is approxi-

mated by:

TX̂(f) ≈
M

∑
m=1

pX̂(rm) ∗ t(rm) (3.11)

Similarly, h(f (x), y) = 1 in the event of a harmful failure, and is zero oth-

erwise. The Harmful Undependability of the model, HX̂(f), is the probability

that the model will cause harm when operated in conditions X̂, whether or

32

not the task is completed. The Harmful Undependability is computed as:

HX̂(f) = E[h(f (x), y|c)], c ∼ pX̂(C) (3.12)

Let h(rm) denote the expected value of h(f (x), y|c) in rm. HX̂(f) is approxi-

mated by:

HX̂(f) ≈
M

∑
m=1

pX̂(rm) ∗ h(rm) (3.13)

Note that success, task failure, and harmful failure are mutually exclusive, so

DX̂(f) + TX̂(f) + HX̂(f) = 1.

3.2 Experiments

We evaluated the performance of a NN agent trained via Reinforcement

Learning to move a simulated robot in the presence of an obstacle that moves

at a constant velocity, v, starting at time τ. The obstacle moves from right

to left in the scene with its bottom edge 25 inches from the robot base. The

robot’s task is to reach or exceed a goal position, z, while avoiding the obstacle,

see Figure 3.1. The context space, C, is defined as v ∈ [0, 10] inches/second,

τ ∈ [0, 10] seconds, and z ∈ [0, 50] inches. C is bounded, continuous, and

fully observed. The robot starts at 0 inches and is constrained to be within [0,

50] inches2. The simulations last 100 seconds and the NN moves the robot

forward 5 inches or back 5 inches every second. The robot moves for the entire

100 second simulation, even after the goal position is reached. A simulation

only terminates before 100 seconds if the robot collides with the obstacle.

2If the robot tries to move outside this region, the position is clipped. There is no penalty
for trying to move outside the valid region.

33

To succeed, the robot must reach or exceed the goal position before the

end of the simulation and avoid the obstacle for the entire simulation. A

simulation is a task failure if the robot does not reach the goal position but

avoids collision with the obstacle. Any simulation where the robot collides

with the obstacle is a harmful failure. In the following results, the behavior

modes are denoted with the following colors: success is indicated with green,

task failure with blue, and harmful failure with pink.

The NN consists of two linear layers separated by a Rectified Linear Unit

(ReLU) and is trained using a modified version of the PyTorch Q-Learning

tutorial [61]. Each second, the NN observes the position of the obstacle, the

position of the robot, the speed of the obstacle, and the robot goal. Timing

information is not input to the NN. Zero-mean Gaussian noise with a standard

deviation of 0.1, 0.1, 0.5 for v, τ, and z, respectively, is added to the inputs

to simulate sensor noise. The reward function for the NN was designed

so reaching the goal results in a reward of 30 points and colliding with the

obstacle results in a penalty of -50 points. Before reaching the goal position,

the NN receives a small reward of 5 points for moving towards the goal or a

penalty of -5 points for moving away from the goal. Before the obstacle has

passed the robot, the NN receives a reward of 2 points for each time step it is

below the obstacle and a penalty of -2 points each time step it is in the path of

the obstacle. The point values for reaching the goal (+30 points) and collision

(-50 points) were chosen to prioritize safety over task completion. Likewise,

the intermediate rewards were chosen so that moving towards the goal (±5

points) was prioritized above a potential, future collision (±2 points).

34

Figure 3.1: The simulated robot manipulation task. To succeed, the robot must avoid
the obstacle, which moves at a constant velocity v from right to left, starting at time
τ, and reach or exceed a goal location, z, between 0 and 50 inches. τ1: the obstacle
has started moving. τ2: the robot is avoiding collision with the obstacle. τ3: the robot
has successfully reached and/or exceeded its goal position without colliding with the
obstacle.

3.2.1 Performance during Testing

C is bounded and continuous. We sample 100,000 test examples uniformly

from C:

Pτ(X) : v ∼ U(0, 10), τ ∼ U(0, 10), z ∼ U(0, 50)

where U(a, b) indicates a uniform probability distribution from a to b. We

deployed the trained NN in each test example to evaluate the NN performance.

The NN had an ML Dependability of 90.35%, a Task Undependability of 4.18%,

and a Harmful Undependability of 5.47%. See Figure 3.2 for a plot of observed

failures by test example.

Task failures (shown in blue in Figure 3.2) occurred when the obstacle

speed was less than or equal to 0.80 inches/second. Inspection revealed that

the NN learned to wait for the obstacle to pass before moving forward. In

35

many cases the robot moved as far forward as it could, exceeding the input

robot goal. When the obstacle moved very slowly, this strategy did not give

the NN enough time to reach the goal. Harmful failures (shown in pink in

Figure 3.2) occurred when the robot goal was greater than or equal to 38.47

inches.

We partition each dimension of C into 10 equal regions to obtain 1,000

voxels in C. v and τ are divided into regions 1 inch/second and 1 second wide

(respectively). z is divided into regions 5 inches wide. We use these voxels to

predict the model performance in new operating conditions.

Figure 3.2: The observed failures during testing, best viewed in color. Blue indicates
a task failure. Pink indicates a harmful failure. The task failures (along the left
‘wall’ of the figure) occurred when the obstacle speed was less than or equal to 0.80
inches/second. The harmful failures (along the ‘ceiling’ of the figure) occurred when
the robot goal was greater than or equal to 38.47 inches.

36

3.2.2 Predicting Model Performance
in Novel Operating Conditions

We demonstrate that our method can predict the performance of a NN when

deployed in novel operating domains. We define four novel operating do-

mains in Figure 3.3, left. The harmful failures in testing occurred for robot

goals greater than or equal to 38.47 inches. We selected Operating Conditions

1 to simulate safe conditions: z ∈ [0, 30] inches. Operating Conditions 2 simu-

late dangerous conditions: z ∈ [30, 50] inches. We also selected distributions

other than uniform (the testing distribution) to make the prediction task more

challenging. We selected Operating Conditions 3 to introduce a Gaussian

context distribution and focus the obstacle velocity v towards slower speeds

Figure 3.3: Predicted and observed performance of the trained NN in Novel Operating
Conditions (OC). Left: OC Specification. N (µ, σ2) denotes a Gaussian with a mean of
µ and a standard deviation of σ. The sampled examples x ∼ N (µ, σ2) are clipped to
lie within the specified context C. τ is not listed because τ ∼ U(0, 10) for all conditions.
Right: Predicted and observed performance of the trained NN in OCs. OC predicted
performance shown left in light colors. Observed performance shown right in bold
colors. ML Dependability DX̂(f) is shown as solid green, Task Undependability TX̂(f)
is shown as blue hatched, and Harmful Undependability HX̂(f) is shown as pink
dotted bars.

37

to target the area where task failures occurred. Operating Conditions 4 are the

most challenging to predict with Gaussian distributions in v and z focused

towards observed task failures and harmful failures.

We used the partitions defined in Subsection 3.2.1 to predict the model per-

formance. To confirm our predictions, 100,000 simulations were run for each

set of operating conditions. A comparison of our predicted NN performance

with the observed performance is shown in Figure 3.3, above. We accurately

predicted the ML Dependability, Task Undependability, and Harmful Unde-

pendability within 2% of observed results.

3.3 Discussion

3.3.1 Robot Manipulation Task

We see in Figure 3.2 that the NN performance varies by region in C. Partition-

ing C enables these regional variations to emerge when we predict the NN

performance in novel operating conditions.

Overall, we accurately predict the performance of the NN in novel op-

erating domains. Across the four proposed operating domains and three

performance metrics, the error between the predicted and observed perfor-

mance percentage was within 2%. The prediction is poorer for operating

domains with Gaussian distributions as compared to those with uniform

distributions. Finer partitioning of C is expected to lead to better predictions

and may be necessary as the operating domain distributions become more

complex. Both failure modes of the NN, task failure and harmful failure,

38

relate to timing. The current time step was not an input to the NN; subse-

quently the NN did not learn to make decisions based on timing. The NN ML

Dependability could be improved in the future by adding a timing input.

Task failures occurred when the obstacle speed was less than or equal to

0.80 inches per second. The NN learned to wait for the obstacle to pass the

robot before moving past the obstacle, towards the goal. When the obstacle

moved slowly this strategy did not give the robot enough time to reach the

goal. But, in these examples the NN had ample time to reach the robot goal

before the obstacle passed the robot. Adding a timing input could allow the

NN to learn more sophisticated timing strategies.

Harmful failures occurred when the robot goal was greater than or equal to

38.47 inches. The NN learned an incorrect trade-off between moving towards

the goal and avoiding the obstacle. In most of the examples that were harmful

failures in testing, the robot had enough time to avoid collision and reach the

goal before the end of the simulation. But the strategy learned by the NN

did not time the robot’s approach correctly. Interestingly, the reward function

was specifically designed to weight safety over task completion: a collision

resulted in a penalty of -50 points whereas reaching the goal resulted in a

reward of 30 points. While we do not claim that it would be impossible to craft

a reward function to perfectly complete this task without harm, this example

illustrates that designing a reward function that appropriately weights task

requirements and safety constraints is not trivial. See Section ?? for a Safety

Functions that was proposed for this task that is an explainable alternative to

hand crafting reward functions and guarantee a degree of safety for a NN.

39

3.3.2 Dependable NNs in Practical Applications

We make several key assumption in our analysis. The implications of these

assumptions determine how this work can be applied in practical applications.

We assume that C is numerical. Many applications have numerical contexts

such as force sensors and distance sensors, e.g., lidar.

We assume the context is fully observed. A context space may be fully

observed in a constrained, industrial setting. But as learned NNs move

into unconstrained, dynamic environments, it is not possible to assume the

context space is fully observed. In partially observed context spaces, the

key change is that we do not assume one context c maps to exactly one

behavior mode. When we modeled discrete-unbounded and continuous fully

observed context spaces, we modeled the performance of a NN in a region as

s(rm) = E[s(f (X), y|c)], c ∼ rm. This can be extended in the future to model

the distribution of outcomes observed from examples x ∼ c when the context

is only partially observed. The quality of the performance predictions will

vary by how well the partially observed context describes the full context.

We assume pX(C) and pX̂(C) are known. As stated earlier, pX(C) and

pX̂(C) can be estimated empirically from statistical data or context knowledge.

Lastly, we assume both distributions cover the same CS X and that the number

of test samples in each partition is greater than zero. This assumption requires

some care when designing the partitions.

40

3.4 Conclusions

We define and derive the metrics ML Dependability, Task Undependability,

and Harmful Undependability to predict a trained NN’s performance in

novel operating conditions. We demonstrate that our metrics can predict

the performance of a trained NN in novel operating conditions within 2% of

observed performance for a simulated robot manipulation task. In Chapter

4 we address the challenge of a partially observed context space and a high

dimensional problem where it is not known a priori which context features

impact NN performance.

41

Chapter 4

Identifying the Context Subspace

In this chapter we identify the context subspace, CsK , from a set of available

context features. We rank the context features by how much information they

provide about the NN performance; we then select how many context features

should be included in the context subspace for the most accurate performance

predictions. This renders the NGP approach proposed in Chapter 3 tractable

for high complexity problems with partially observed context spaces. Our

contributions in this chapter are as follows:

1. We introduce the concept of a context subspace, a low-dimensional

space, encoding the context features most informative about the network

performance.

2. We propose a greedy feature selection algorithm for identifying the

context subspace by 1) ranking the context features by the information

they provide about the network loss, and 2) selecting the subspace

dimensionality that leads to accurate NGP.

42

3. We leverage a context subspace for accurate NGP for pedestrian detec-

tion in diverse operating domains, with a prediction error from 0.5% to

2% for not safety critical pedestrians (pedestrians not in the road), and a

prediction error from 2% to 5% for safety critical pedestrians (pedestrians

in the road).

4. We demonstrate that the context subspace identified for the Berkeley

Deep Drive Dataset (BDD) can be used to predict pedestrian recall in

completely unseen datasets, the JAAD and Cityscapes Datasets, with a

prediction bias of 10% or less.

4.1 Feature Selection

Selecting which context features to consider for NGP is a feature selection

problem. Feature selection algorithms aim to select a subset of the available

features, typically to use the features as input to train a model for a given task.

Feature selection algorithms can be classified as filter methods, i.e., features

are scored according to their association with the task label, wrapper methods,

i.e., features are selected to minimize task error, and embedded methods,

i.e., features are selected in the model training process [62]. The Mutual

Information [63] is often used in filter methods to measure the information

between a given feature and the desired label [64]. As exhaustive feature

selection search is typically intractable, greedy feature selection algorithms are

often used [65], [66], [67]. Note, greedy feature selection is related to matching

pursuit in the sparse approximation literature [68] and has applications in

compressed sensing [69].

43

Figure 4.1: Overview of Network Generalization Prediction.

4.2 Methods

4.2.1 Problem Formulation

It is well known that in supervised learning, a network, f , is trained to produce

a label, yi, from data, xi, and a loss function, ℓ(f (xi), yi), is used to drive

training. In NGP, we are not training f . Instead, we aim to predict the

performance of a fixed network f , trained via supervised learning, when

deployed in an operating domain, X̂, that differs from the testing domain, X;

see Figure 4.1. The performance of f is measured using test data, X = {xi}N
i=1 ,

and test labels, y = {yi}N
i=1, via a loss function L = {ℓ(f (xi), yi)}N

i=1, where the

elements of L are assumed to be discrete and bounded, e.g., an object detection

flag, whether a safety criteria was satisfied, or a discretized classification error.

X is described via J context features, C = {ci}N
i=1, where ci indicates a J

44

Notation
X = {xi}N

i=1 The test set
y = {yi}N

i=1 The test labels
X̂ The operating domain
f The trained network

L = {ℓ(f (xi), yi)}N
i=1 The test set loss

C The context features
c ∈ C A context vector
g(c) The expected loss of f in c
CSK The context subspace

pX(c), pX̂(c) The probability of c in X, X̂
LX, LX̂ The observed loss in X, X̂

Table 4.1: Notation.

dimensional context vector associated with xi. pX(c) denotes the probability

of encountering c in X. X̂ is described by the probability of encountering c

in X̂, pX̂(c). In many practical applications, the likelihood of encountering a

context may be known without annotated data, e.g., there is a 25% chance of

snow in Boston, etc. Note, labeled test data from X̂ is not required. We assume

that while the distribution of contexts shifts between the testing and operating

domains, i.e., pX(c) ̸= pX̂(c) , the expected network performance in context c

is stable for both the testing and operating domains. Table 4.1 describes the

Notation used in the Methods Section.

As is typical, we approximate the posterior expected loss in X, LX, using

the empirical loss:

LX = E[ℓ(f (X), y)] =
1
N

N

∑
i=1

ℓ(f (xi), yi) (4.1)

We define g(c) = E[ℓ(f (X), y|c)]. Let I(a, b) be an indicator function that is

45

equal to 1 if a = b and 0 otherwise. g(c) can be computed as:

g(c) = ∑N
i=1 I(ci, c) ∗ ℓ(f (xi), yi)

∑N
i=1 I(ci, c)

(4.2)

LX can equivalently be computed as:

LX = ∑
c∈C

pX(c)g(c) (4.3)

Likewise, we can now express the NGP, LX̂, as:

LX̂ = ∑
c∈C

pX̂(c)g(c) (4.4)

This formulation holds theoretically for any number of context features J.

However, as J grows linearly, computing Eqn. 4.4 requires exponentially more

test samples to cover every possible c ∈ C. Thus, we introduce the context

subspace, CSK , a low-dimensional space, encoding the context features most

informative about the network performance.

4.2.2 Defining a Context Subspace

We are interested in selecting the K context features that provide the most

information about the network loss, to include these features in CSK . Let

SK = {sk}K
k=1 be the indices of context features of interest and CSK = {Csk}K

k=1,

where Csk = {csk
i }

N
i=1 are the annotated attributes for each example in the test

set for context feature sk. To select the context features to include in CSK , we 1)

rank the context features by how much information they provide about the

network loss, 2) select the CSK dimensionality K to enable accurate NGP.

46

4.2.2.1 Ranking Context Features

Recall, the Mutual Information is often used to rank features in filter feature

selection algorithms and is computed as I(L, Cj) for loss L and context feature

Cj:

I(L, Cj) = ∑
ℓ∈L

∑
c∈Cj

p(ℓ, c)log(
p(ℓ, c)

p(ℓ)p(c)
) (4.5)

where p(ℓ, c) indicates the joint probability of ℓ and c, and p(ℓ) and p(c)

indicate the marginal probabilities for ℓ and c, respectively. The Interaction

Information is a generalization of the Mutual Information to K features. The In-

teraction Information between L and the context features Cs1 , ..., CsK is defined

as:

I(L, Cs1 , ..., CsK) = I(L, Cs1 , ..., CsK−1) − I(L, Cs1 , ..., CsK−1 |CsK) (4.6)

For two features, this becomes:

I(L, Cs1 , Cs2) = I(L, Cs2)− I(L, Cs2 |Cs1) (4.7)

Where I(L, Cs2 |Cs1) can be computed as:

I(L, Cs2 |Cs1) = ∑
ℓ∈L

∑
c2∈C2

∑
c1∈C1

p(ℓ, c2, c1) × log
(︃

p(ℓ, c2, c1)

p(ℓ, c1)p(c2, c1)

)︃
(4.8)

The computational complexity of I(L, Cs1 , ..., CsK) grows combinatorially with

K. We are interested in ranking the context features by the Interaction Infor-

mation, but computing the exact Interaction Information becomes intractable

as K grows. To make computation tractable, we propose ∆I(L, Cs1 , ..., CsK) to

47

Algorithm 1 Greedy ∆I Context Selection

1: SK = {}
2: for k = 1 : K do
3: s∗k ← argmaxj[I(Cj, L)−∑sk∈SK

I(Cj, Csk)]
4: ∀j ∈ J \ SK
5: SK = SK ∪ s∗k
6: end for
7: g(cSK) = E[ℓ(f (X), y|cSK)]

approximate how much more information including context feature CsK in

the context subspace provides about L.

∆I(L, Cs1 , ..., CsK) = I(L, CsK)−
K−1

∑
k=1

I(Csk , CsK) (4.9)

Intuitively, ∆I(L, Cs1 , ..., CsK) subtracts the redundant information in CsK , that

is ∑K−1
k=1 I(Csk , CsK), from the information it provides about the loss, I(L, CsK).

Note that the computational complexity of computing ∆I(L, Cs1 , ..., CsK) grows

linearly with K. Like the Interaction Information, ∆I(L, Cs1 , ..., CsK) can be pos-

itive or negative. In Section 4.2.5, we show that for independent features in the

context subspace, ∆I(L, Cs1 , Cs2) approaches I(L, Cs1 , Cs2) as Cs2 approaches

perfect information on L. We propose a greedy algorithm to iteratively select

the K most informative features from the context; see Algorithm 1.

4.2.2.2 Selecting the Context Subspace Dimensionality

Selecting the number of features, K, to include in CSK is not trivial. Recall,

the context features are discretized. If each feature has n unique values, the

total number of unique contexts is nK: as the number of context features,

K, increases, the number of unique contexts to describe with the test data

48

increases exponentially. Including more features can lead to a more descriptive

CSK but can also lead to many untested contexts in CSK . To select K, we

compute the expected prediction error for a given subspace dimensionality,

ϵK. Using the K most informative context features, g(cSK) = E[ℓ(f (X), y|cSK)]

can be computed according to Eqn. 4.2. where cSK is a K dimensional feature

vector in CSK . We iteratively compute the prediction error within the test set,

ϵK, to estimate the expected prediction error, ϵ̃K, see Algorithm 2. First, we

randomly partition the test set into a f it set and a val set: X f it, y f it, C f it with

N f it samples and Xval, yval, Cval with Nval samples respectively. We estimate

g f it(cSK) using the f it set. We compute the observed loss from the val set, Lval .

Let pval(cSK) indicate the probability of encountering context cSK in Cval. The

prediction error, ϵK, is the difference between the observed validation loss,

Lval, and the predicted validation loss using g f it(cSK). This procedure can be

iterated multiple times, and the subsequent ϵK’s averaged, to estimate the

expected prediction error, ϵ̃K, for different random f it and val partitions of

the test set. We select the K that minimizes ϵ̃K.

ϵ̃K measures the expected prediction error within X. When the context is

informative about the loss, we expect ϵ̃K to decrease as K increases until an

optimal K∗ is reached, then ϵ̃K will begin to rise as K increases and there are

many untested contexts. If ϵ̃K is flat or increasing as K increases, it indicates

that the context features available are not informative about the loss.

After we have ranked the context features and selected the number of

features to include in the subspace, we can form CSK . The K most informative

context features form the axes of the subspace. Recall, we assumed the context

49

Algorithm 2 Context Subspace Dimensionality Selection

1: ϵ̃K = {}
2: for K = 1 : J do
3: ϵKs = []
4: for iteration do
5: split test set into f it and val set
6: g f it(cSK) = E[ℓ(f (X f it), y f it|cSK)]

7: Lval = 1
Nval ∑Nval

i=1 ℓ(f (xval
i), yval

i)

8: ϵK = |Lval −∑cSK∈CSK pval(cSK)g f it
k (cSK)|

9: ϵKs.append(ϵK)
10: end for
11: ϵ̃K = mean(ϵKs)
12: end for
13: K ← argminK ϵ̃K

features are categorical or numerical and discrete, this yields a finite set of

context partitions, cSK ∈ CSK .

4.2.3 Using the Context Subspace

We use CSK to describe the expected network loss in different contexts, g(cSK),

and to describe the probability of encountering a context in the operating

domain, pX̂(c
SK). We can compute g(cSK) using Eqn. 4.2, note we use the entire

test set to compute g(cSK) once we have selected the subspace dimensionality

K. Recall, we do not assume to have labeled test data in X̂, but we do assume

to know pX̂(c
SK). Individual context feature probabilities can be multiplied to

obtain a joint probability distribution if the context feature probabilities are

assumed to be independent.

50

4.2.4 Network Generalization Prediction

We can now perform NGP, where LX̂ is the predicted loss in X̂:

LX̂ = ∑
cSK∈CSK

pX̂(c
SK)g(cSK) (4.10)

Recall, we selected a small number of informative context features so that it

would be practical to describe the unique contexts cSK ∈ CSK , but there may

be untested contexts in CSK . For conservative predictions, we assume the

maximum loss in untested contexts. The maximum loss may correspond to a

binary failure or a large expected error. Leveraging CSK renders NGP prac-

tical for interestingly complex applications, like perception for autonomous

vehicles. The interested reader is directed to Section 4.2.5 to examine the dif-

ference between ∆I and I. All other readers may proceed to the Experiments

in Section 4.3.

4.2.5 Comparing ∆I and I

We propose ∆I(L, Cs1 , ..., CsK) to approximate the Interaction Information be-

tween K context features and the network loss L, I(L, Cs1 , ..., CsK). The com-

putational complexity of computing ∆I(L, Cs1 , ..., CsK) grows linearly with K,

as compared to the computational complexity of computing I(L, Cs1 , ..., CsK)

which grows combinatorially with K. We investigate the difference between

I(L, Cs1 , ..., CsK) and ∆I(L, Cs1 , ..., CsK). To simplify the notation, we denote Cs1

as C1 and Cs2 as C2. It is trivial to compute the Mutual Information between

the context features and L and select C1 to be the feature most informative

about the loss. We assume C1 has been selected and we compare I(L, C1, C2)

51

and ∆I(L, C1, C2).

I(L, C1, C2) = I(L, C2)− I(L, C2|C1) (4.11)

∆I(L, C1, C2) = I(L, C2)− I(C1, C2) (4.12)

The difference between I(L, C1, C2) and ∆I(L, C1, C2) is

I(L, C1, C2)− ∆I(L, C1, C2) = I(C1, C2)− I(L, C2|C1) (4.13)

As we would like the context features in CSK to be roughly independent, let

us assume that C1 is not informative of C2, i.e., I(C1, C2) = 0.

I(L, C1, C2)− ∆I(L, C1, C2) = −I(L, C2|C1) (4.14)

The reader is reminded that the conditional mutual information is computed

as:

I(L, C2|C1) = ∑
ℓ∈L

∑
c1∈C1

∑
c2∈C2

p(ℓ, c1, c2) × log
(︃

p(c1)p(ℓ, c1, c2)

p(ℓ, c1)p(c1, c2)

)︃
(4.15)

For simplicity, let us consider the point wise conditional mutual information

at ℓ, c1, and c2:

log
(︃

p(c1)p(ℓ, c1, c2)

p(ℓ, c1)p(c1, c2)

)︃
(4.16)

Recall, it was assumed that C1 and C2 are independent, thus p(c1, c2) =

p(c1)p(c2). The joint probability p(ℓ, c1, c2) can also be factored as 1
Z ψ(ℓ, c1)ψ(ℓ, c2).

Thus the point wise conditional mutual information at ℓ, c1, and c2 can be

52

rewritten as:

log
(︃

p(c1)ψ(ℓ, c1)ψ(ℓ, c2)

Zp(ℓ, c1)p(c1)p(c2)

)︃
(4.17)

The term p(c1) occurs in the numerator and denominator; therefore, this

expression simplified to

log
(︃

ψ(ℓ, c1)ψ(ℓ, c2)

Zp(ℓ, c1)p(c2)

)︃
(4.18)

Note ψ(ℓ, c1) ∝ p(ℓ, c1) and ψ(ℓ, c2) ∝ p(ℓ, c2). Thus, the difference between

the proposed ∆I and the Interaction Information is proportional to

∝ log (p(ℓ|c2)) (4.19)

If we consider only combinations of ℓ and c2 that exist in the test set, p(ℓ|c2) >

0. As the new context feature becomes more informative, p(ℓ|c2)→ 1 and the

difference log (p(ℓ|c2)) → 0. This demonstrates that, if the context features

are informative about the loss, ∆I is a good approximation of the Interaction

Information.

4.3 Experimental Results

4.3.1 Pedestrian Detection Generalization

Perception for autonomous vehicles is an active area of research, and systems

that use deep networks to detect and avoid obstacles, like pedestrians, while

driving are commercially available. Some of these commercial systems can

be used in any driving conditions, at the user’s discretion, and the operat-

ing domains can vary significantly in terms of the lighting conditions, e.g.,

53

daytime compared to night, road conditions, e.g., dry roads in clear weather

compared to slippery roads in rainy or snowy weather, and obstacle density,

e.g., a residential street compared to a restricted access highway. It would be

impractical for autonomous vehicle developers to test a perception system in

every possible operating domain, but it is also imperative to know whether it

is safe to use a perception system in a given operating domain. We perform

experiments analogous to an autonomous vehicle developer: we test a fixed

network in one testing domain, X, and predict the network’s performance

in novel operating domains, where the distribution of context features vary

significantly from X. Our goal is to accurately predict the observed network

performance when the network is used in a novel operating domain, X̂.

We test a pretrained Faster RCNN [70] object detector for pedestrian detec-

tion, where the objects detected as person are used as pedestrian detections. In

our analysis, we consider pedestrians whose ground truth bounding box area

is ≥ 300 pixels. We evaluate the network performance at the pedestrian level.

Pedestrians correctly detected with an IoU > 0.5 and a confidence score > 0.5

are assigned a loss of 0; pedestrians that are not detected are assigned a loss of

11. Pedestrians in images with multiple people are considered independently;

images with no pedestrians present are not assigned any loss.

BDD Dataset [25] was recorded across the continental US and includes

data from varying times of day (daytime, dawn/dusk, or night), weather

conditions (clear, partly cloudy, overcast, rainy, foggy, or snowy), and scene

1We are predicting the network’s recall. We do not assign a loss for false positive detections;
this same methodology can be used to predict network precision if that is of interest. We
focus on recall because failing to predict a pedestrian who is truly present in the scene is a
higher safety risk than trying to avoid a pedestrian who is not present.

54

types (city street, residential, or highway). BDD images are of size 720× 1280.

We use 10, 000 images from the BDD Dataset for testing, denoted the BDD

Test Set. We use the remaining 70, 000 images in the BDD Dataset, denoted

the BDD Operating Set, to define novel operating domains. The BDD Test Set

and BDD Operating Set correspond to the BDD “Validation" and “Train" folds,

respectively.

4.3.2 Defining the Context Subspace

We evaluate the network performance at the pedestrian level; therefore, con-

text features are assigned to individual pedestrians. We do not know a priori

which pedestrian attributes are informative about the network loss, so we

include all available context features. The BDD dataset includes metadata on

the image time of day, weather, and scene type. We include the metadata as

context features. We also include the image brightness and the pedestrian

bounding box brightness. We define the road(s) to be the safety critical (SC)

region(s) in the images. Pedestrians in the road are labeled SC, pedestrians

outside the road, e.g., on the sidewalk, are labeled not safety critical (NSC).

The road is defined using the drivable area annotations. Whether a pedestrian

is SC, denoted the safety critical flag, is included as a context feature. To

capture information about the obstacle density in the scene, we include the

total number of pedestrians, the number of SC pedestrians, and the number

of NSC pedestrians in the image as context features.

55

4.3.2.1 Ranking Context Features

We use Algorithm 1 to rank the context features by how much information they

provide about the network loss. When computing the mutual information for

a numerical feature with more than 10 unique values, we uniformly partition

the feature into 10 discrete bins. Categorical features are labeled discretely

with their assigned labels. See Figure 4.2 left for the ∆I computed for the

first three iterations of Algorithm 1. The six most informative features were

found to be: 1) image brightness, 2) safety critical flag, 3) scene , 4) number SC

pedestrians, 5) time of day, and 6) bounding box brightness.

4.3.2.2 Selecting the Context Subspace Dimensionality

To select the number of features to include in the context subspace, we com-

pute ϵ̃K for values of K from 1 to 6. For each dimensionality, K, we compute ϵK

50 times by randomly partitioning the test data into 50% for fitting g(cSK) and

50% for validation. We select the K with the minimum expected prediction

error ϵ̃K over the 50 iterations. K = 3 was found to be optimal, with an average

prediction error of 0.63%; see Figure 4.2 right. We subsequently define the

context subspace with three dimensions: 1) image brightness, 2) safety critical

flag, and 3) scene.

The image brightness is a continuous feature; we uniformly partition the

image brightness into 10 bins. The safety critical flag and the scene type are

discrete and categorical features with 2 and 3 possible values, respectively.

This results in a context subspace, CSK , with 60 discrete contexts, cSK .

56

Figure 4.2: Defining the context subspace. 1) Rank Context Features: The ∆I(L, C)
between different context features and the loss in the BDD Test Set for the first three
rounds of Algorithm 1. Note that in iteration one, ∆I(L, C) = I(L, C) so the features’
scores are non-negative. 2) Select K: We estimate the expected prediction error for
different context subspace dimensionalities, K, and choose the dimensionality with
the lowest expected prediction error: in this case, K = 3. We form the context subspace
with the three most informative context features: brightness, safety critical flag, and
the scene type.

4.3.3 Using the Context Subspace

We use CSK to estimate the expected network loss in a context, g(cSK), and to

describe the probability of encountering a context in X̂, pX̂(c
SK). For all tested

contexts, g(cSK) is computed according to Eqn. 4.2. All untested contexts

are assigned an expected loss of 1, i.e., a 100% chance of failing to detect a

pedestrian. The BDD Operating Set is used to define four novel operating

domains: 1) day, small groups; 2) day, large groups; 3) night, small groups;

57

Figure 4.3: BDD Novel Operating Domains. We define operating domains based on
the time of day and the number of pedestrians in an image. Images with fewer than 5
(N)SC pedestrians fall under small groups. Images with 5 or more (N)SC pedestrians
fall under large groups. Sample images from the operating domains are shown. NSC
pedestrians are outlined in blue. SC pedestrians are outlined in red. Drivable area is
shown in random transparent colors.

and 4) night, large groups; see Figure 4.3. The time of day annotated in the

images was used to assign “day” or “night”. The NSC and SC pedestrians

are considered independently. Pedestrians in images with fewer than 5 (N)SC

pedestrians are categorized as small groups; pedestrians in images with 5

or more (N)SC pedestrians are categorized as large groups, i.e., in an image

with 15 NSC pedestrians and 2 SC pedestrians, the NSC pedestrians would be

labeled ‘large group’ and the SC pedestrians would be labeled ‘small group’.

We compute pX̂(c
SK) for each X̂ by counting the number of pedestrians that

fall into each cSK ∈ CSK and dividing by the total number of pedestrians.

4.3.4 Pedestrian Detection Generalization Prediction

We predict the network loss in the novel operating domains defined in 4.3.3

using Eqn. 4.10. Our network loss is equivalent to the fraction of pedestrians

58

Figure 4.4: Network Generalization Prediction (NGP) Results. NSC pedestrian recall
and SC pedestrian recall are shown separately. The observed pedestrian recall for the
images of each operating domain are shown in bright blue or red. The NGP predicted
recall is shown in light blue or red. The naïve baseline indicates the average recall
over all pedestrians in the Test Set. Note that the naïve baseline is the same for every
operating domain.

that are not detected by the network; we convert the predictions into the

predicted network recall by subtracting the fraction of pedestrians that are not

detected from 1; see Figure 4.4. For reference, we include the average percent

of pedestrians detected in the Test Set as a naïve baseline. We then pass the

BDD Operating Set through the network; the observed recall is computed as

the fraction of pedestrians that were correctly detected. Figure 4.4 illustrates

that our predictions are accurate with NGP accuracy between 0.5% and 2.5%

for NSC pedestrian recall and 2% and 5% for SC pedestrian recall. All the

SC predictions underpredict the observed recall; this demonstrates that our

predictions are conservative. Note, the only prediction with significant error is

for night, large group SC pedestrians. Only one image in the BDD Operating

Set falls into this category, so the observed performance is based on minimal

59

Figure 4.5: Unseen Dataset Novel Operating Domains. Sample images from the
unseen datasets. NSC pedestrians outlined in blue. SC pedestrians outlined in red.

data.

4.3.5 Generalization Prediction for Unseen Datasets

As a preliminary study, we investigate whether the context subspace, CSK ,

defined using the BDD Test Set and the network loss, g(cSK), estimated from

the BDD Test Set provide information about completely unseen datasets.

Unseen datasets include shifts in the context feature distributions, as well as

changes in camera parameters and physical setup that are not captured by

the test set. As such, we expect predictions for unseen dataset to contain bias,

i.e., the prediction error for an unseen dataset will have a consistent non-zero

offset. We are interested in determining the magnitude of this prediction bias

to evaluate the usefulness of NGP across datasets. We perform NGP for the

JAAD Dataset [71], and the Cityscapes Dataset with the gtFine labels [72]; see

Figure 4.5 for sample images. For both datasets, the (N)SC pedestrian image

brightness distribution is computed from the images.

The JAAD Dataset was recorded in North America and Europe; it includes

primarily daytime images from residential and city streets in varying weather

conditions. JAAD images are of size 1080 × 1920. For the JAAD Dataset,

60

Figure 4.6: Network Generalization Prediction for Unseen Datasets. NSC pedestrian
recall and SC pedestrian recall are shown separately. The observed pedestrian recall
for the images of each novel dataset is shown in bright blue or red. The NGP predicted
recall is shown in light blue or red. The naïve baseline indicates the average recall
over all pedestrians in the Test Set. Note that the naïve baseline is the same for both
unseen datasets.

we sampled images every three seconds from the videos to limit temporal

correspondence between frames; this resulted in 1,031 images. Pedestrians in

the road were manually annotated as SC, all others were labeled NSC. Scene

annotations are not available for the JAAD dataset. To estimate the probability

distribution of scenes, the scene type was annotated for a subset of 100 images,

we assume the distribution holds for the entire dataset. The marginal (N)SC

image brightness distributions and scene type distribution are multiplied to

obtain the joint probability distributions for the JAAD Dataset.

61

The Cityscapes Dataset contains 3, 475 images recorded in 50 cities across

Germany in the daytime during fair weather conditions. Cityscapes images

are of size 1024× 2048. We defined the pedestrian bounding boxes using the

outermost edges of the labeled person instance segmentations, and we used

the semantic segmentation of the road to define the SC region in the image.

For Cityscapes, the scene type is known to be “city street”.

We make NGPs for the JAAD and Cityscapes Datasets using g(cSK), esti-

mated using the BDD Test Set; see Figure 4.6. The prediction bias is approxi-

mately 10%, with a minimum prediction error of 5% for SC pedestrian recall

in the JAAD Dataset. We underpredict pedestrian recall for the JAAD Dataset

and we overpredict pedestrian recall for the Cityscapes Dataset.

4.4 Discussion

We make accurate NGPs for the BDD Operating Set, where the observed

recall varies from 47% to 87%. This demonstrates that a fixed test set can be

used to predict a network’s performance in diverse, novel operating domains.

The observed recall for SC pedestrians is about 20% higher than for NSC

pedestrians. This makes intuitive sense, as SC pedestrians tend to be central

in the image and closer to the vehicle. This is encouraging, because the

performance of perception systems for autonomous vehicles will ultimately be

determined by how well they detect SC pedestrians and obstacles. However,

in the BDD Test Set there are many more examples of NSC pedestrians, 11, 169,

than SC pedestrians, 484. This leads to more untested contexts for the SC

pedestrians, which in turn leads to the slight underprediction of SC recall.

62

For unseen datasets, we find a NGP bias of 10%; we believe these results

are promising and that the results indicate the context subspace identified for

one dataset, e.g., one camera setup and one physical setup, can be informative

for unseen datasets. Investigating how network performance changes between

datasets is a challenge we address in Chapter 5.

NGP can be used to link network behavior in novel operating domains to

required levels of performance. The context subspace can be leveraged for

quasi-white box testing by testing the network across variations in context

features that are known to impact network behavior. The context subspace

also makes the network behavior interpretable by elucidating where failure is

more likely. In addition to making the NGP tractable, we believe the context

subspace can be used during network training to extract features that are

robust to changes in the context subspace. The context subspace can also be

used for online error monitoring, e.g., an autonomous vehicle could notify the

driver if it detects the surrounding scene is a context with subpar expected

performance. We believe the context subspace is a tool that can make network

performance more interpretable during training, testing, and deployment.

4.5 Conclusions

We propose the task NGP and leverage a context subspace to render NGP

tractable with scarce test samples. We identify the context subspace automat-

ically and demonstrate accurate NGP for Faster RCNN used for pedestrian

detection in diverse operating domains. We show that the context subspace

identified for the BDD Dataset is informative for completely unseen datasets.

63

We believe that accurate NGP, with an interpretable context subspace, is a step

towards bridging the gap between the high performance of deep networks

and the verification required for safety critical systems. The context subspace

provides actionable information about what context features impact the NN

performance; however, annotated context features are not always available.

In Chapter 5 we map the NN embedding space and demonstrate that a sparse

subset of the NN embedding dimensions can be used for NGP.

64

Chapter 5

Mapping the Embedding Subspace

In Chapter 4 we identified the context features that impact the NN perfor-

mance, but labeled context features are not always available, and distributions

describing the novel operating data are not always known. In this chapter, we

explore the NN embedding space and map regions of the embedding space

that are associated with different NN performance. We leverage this embed-

ding map to predict NN performance in a novel operating domain without

labeled context features, the first NGP algorithm that makes predictions based

solely on how unlabeled operating images map in the NN embedding space.

We demonstrate accurate NGP across diverse image classification tasks, i.e.,

pedestrian classification, melanoma classification, and animal classification,

and are able to outperform our NGP based on the context subspace proposed

in Chapter 4. This chapter proceeds as follows:

1. We fit a decision tree to the NN embedding space that efficiently maps

the manifold of the labeled test data.

2. We extend the NGP algorithm proposed in Chapter 3 to predict NN

65

performance in a novel operating domain based on how the unlabeled

operating domain images map into the NN embedding space.

3. We evaluate our NGP method on pedestrian, melanoma, and animal

classification tasks and demonstrate accurate NGP across different NN

architectures and classification tasks. Additionally, we show that our

NGP method can identify misclassified images when the NN perfor-

mance is poor.

5.1 Methods

5.1.1 Problem Formulation

We consider a trained, feed-forward NN, f , where f (x) denotes the NN pre-

diction; see Figure 5.1. The layers of f , excluding the final layer, are a feature

extractor, denoted ϕ, that projects the input image x into a D dimensional

NN embedding space (embedding space), ϕ(x) ∈ RD; see Figure 5.1. The

NN f is tested with images from an internal test set, i.e., a test set drawn

from the same distribution as the training data. The images in the internal

test set are denoted X = {xi}N
i=1 and are labeled y = {yi}N

i=1. Images from an

external operating set X̂ = {x̂i}M
i=1 are analogous data from a new distribution.

However, for the external operating set we assume that labels ŷ are unknown.

We are interested in finding structure in the embedding space that pro-

vides information about the NN performance; specifically, we aim to link the

embedding space to the NN outcome. The NN outcome, o, can be a function

of both the label and the NN loss. Generally, let ℓ(f (x), y) denote the loss

66

Figure 5.1: Components of a typical feed-forward Deep Neural Network (NN):
convolutional layers, fully connected layers, and the prediction layer. The prediction
layer is also a fully-connected layer that projects the final embedding, ϕ(x), into the
prediction dimension.

associated with the NN prediction f (x) and label y. The outcome is denoted

by:

o(ℓ(f (x), y), y) ≜ o(f (x), y) (5.1)

For simplicity, we use the notation o(f (x), y) to denote the outcome. Depend-

ing on the task, the outcome of interest could be determined by the loss, e.g.,

success or failure, or by the loss and the label, e.g., for melanoma classifi-

cation, in addition to modeling success and failure we may want to model

misclassifying a malignant image separately from misclassifying a benign

image because misclassifying a malignant image is dangerous for the patient.

In the experiments in Section 5.2 we examine binary classification where there

are four possible outcomes, i.e., true positive (TP), false positive (FP), true

negative (TN), and false negative (FN).

67

5.1.2 Decision Tree in Embedding Space

The internal test set embeddings, ϕ(X), lie on some manifold in the high-

dimensional embedding space, see Figure 5.2 Test (1). Decision trees are

able to identify a sparse set of the most informative features given high-

dimensional feature data. We fit a decision tree on the D-dimensional test

set embeddings, ϕ(X), so that the decision tree can predict the observed test

outcomes, o(f (X), y). We set a maximum depth of the decision tree to prevent

the decision tree from overfitting. The decision tree recursively selects the

dimension of the embedding feature that maximizes the information gain

about the NN outcome. After the decision tree is fit, each node in the tree

corresponds to a hyper-plane in the embedding space; see Figure 5.2 Test (2).

Each leaf node in the tree corresponds to a contiguous region in embedding

space identified using a sparse subset of the embedding dimensions that give

the most information (in a greedy sense) about the NN outcome. We refer to

the fitted decision tree as our embedding map, because it maps regions in the

embedding space to observed NN outcomes.

5.1.3 Approximating Internal Test Set Manifold

The embedding map found in Section 5.1.2 contains L leaf nodes that define

contiguous regions in the embedding space, where leaf l is identified using

a sparse subset dl << D of the embedding space dimensions. Note that the

number of dimensions in dl is less than or equal to the maximum depth of the

decision tree. Using the embedding map, we can partition the internal test

68

samples X = {xi}N
i=1 by the leaf to which each sample maps, i.e.,

X = ∪L
l=1Xl, Xi ∩ Xj = ∅ ∀i ̸= j (5.2)

where Xl is the set of Nl test samples that map to leaf l.

Xl = {xl
i}Nl

i=1 (5.3)

We want to link the embedding space to the outcomes observed in testing

and identify the tested regions of the embedding space. Given the contiguous

region in the embedding space defined by leaf l and the test samples Xl that

map to leaf l, we can define the tested region in the embedding space as a

convex hull, Hl, around ϕ(Xl). Let ϕ(X)[d] indicate the dth dimension of the

embedding feature. Then Hl is given by:

Hl = [min(ϕ(Xl)[d]), max(ϕ(Xl)[d])] ∀d ∈ dl (5.4)

See Figure 5.2 Test (3) for an illustration of convex hulls around the test

samples in the embedding space.

The internal test set X has associated labels y. Let y = ∪L
l=1yl be the test

set labels partitioned by the leaf to which each sample maps. yl = {yl
i}Nl

i=1 are

the labels for the test samples that map to leaf l. Let I(a, b) be an indicator

function that is equal to 1 if a = b and 0 otherwise. Assuming each test sample

is equally likely, the probability of outcome a in leaf l can be computed as:

p(a|l) = 1
Nl

Nl

∑
i=1

I(o(f (xl
i), yl

i), a) (5.5)

69

Figure 5.2: An illustration of the decision tree for mapping NN embeddings. Test data
lie on a manifold in the embedding space. We identify structure in the embedding
space as it relates to the NN outcome. For binary classification the possible outcomes
are true positive (TP), false negative (FN), false positive (FP) and true negative (TN).
The structure identified using labeled test data can be leveraged to predict the NN’s
performance on unlabeled operating data, where the outcome is unknown. Best
viewed in color.

70

The boxes in Figure 5.2 Test (3) are colored to match the most likely test

outcome in the leaf region to illustrate linking a region of embedding space to

the NN outcomes observed in testing.

5.1.4 Inference on External Operating Data

We leverage the embedding map on unlabeled, external operating data; see

Figure 5.2 Operating (1). The external operating samples can be mapped

into the NN embedding space as ϕ(X̂); see Figure 5.2 Operating (2). For the

operating samples that map to leaf l, the sample is deemed “inside" the testing

domain if it lies inside the convex hull of the test samples observed at that leaf

node, Hl:

ϕ(x̂)[d] ∈ [min(ϕ(Xl)[d]), max(ϕ(Xl)[d])] ∀d ∈ dl (5.6)

The external operating samples that do not map inside the tested regions are

assigned to leaf L + 1 where the outcome is unknown. The external operating

samples can then be partitioned to the L + 1 leaf nodes:

X̂ = ∪L+1
l=1 X̂l, X̂i ∩ X̂j

= ∅ ∀i ̸= j (5.7)

where X̂l is the set of Ml external operating samples that map to leaf l.

X̂l
= {x̂l

i}Ml

i=1 (5.8)

5.1.5 Network Generalization Prediction

The goal of Network Generalization Prediction is to predict NN performance

for an unlabeled, external operating set from which labeled test data are not

71

available. The probability that a sample in the external operating set maps to

leaf l can be approximated by the fraction of the operating samples that map

to leaf l:

p(l) =
Ml

M
(5.9)

The probability of encountering outcome a in the operating domain is:

p(a) = ∑
l∈L

p(a|l)p(l) (5.10)

p(a) can be computed for each outcome a observed in testing (assuming we

have discrete outcomes and outcome possibilities). The probability of an

unknown outcome can be computed as the probability that external operating

samples map outside the tested regions, i.e., ML+1/M.

5.2 Experiments

In this section we demonstrate that our embedding map can be used to accu-

rately predict NN performance for unlabeled, external operating datasets for

three binary image classification tasks: pedestrian classification, melanoma

classification, and animal classification. Figure 5.3 shows examples of the

images for each of these tasks.

5.2.1 Pedestrian Classification

One of the most safety-critical tasks for autonomous perception systems in self-

driving vehicles is to detect and avoid pedestrians. We consider pedestrians

from three driving perception datasets: Berkeley Deep Drive 100k (BDD)

[25], Cityscapes [72], and Joint Attention in Autonomous Driving (JAAD)

72

Figure 5.3: Classification tasks. X indicates the internal dataset that is used to train
the NN classifier and fit the embedding decision tree. X̂ indicates the unlabeled,
external operating dataset. For each dataset, the top row shows a random sampling
of negative examples, and the bottom row shows a random sampling of positive
examples.

[71]. From the images in these datasets, for positive examples, we cropped

square patches containing pedestrians, with area of greater than 300 pixels.

For negative examples, we cropped random, square image patches of 100 ×

100 pixels. The pedestrian image patches were resized to 100 × 100 pixels. We

use BDD as the internal dataset versus Cityscapes and JAAD that are used as

external datasets. The BDD dataset was recorded in different settings across

the US in varying weather conditions, day and night times. Cityscapes was

recorded in 50 cities in Germany during the day in fair weather conditions.

JAAD was recorded in North America and Europe in mainly daytime settings

with clear weather. Between the internal and external datasets, we expect

changes in image statistics like brightness and saturation as well as some

structural changes in the size and location of pedestrians in the image due

to changes in how roads and sidewalks are laid out in different cities and

countries.

73

5.2.2 Melanoma Classification

Skin cancer is one of the most common cancers, affecting one in five Ameri-

cans throughout their lifetimes [73]. Melanoma is the deadliest type of skin

cancer across all age groups, and early detection is crucial for effective treat-

ment of this disease. Melanomic skin lesions demonstrate a wide variety in

terms of disease expression such as lesion border, asymmetry, actual color, and

diameter. Melanoma incidence varies with age and sex: melanoma is more

common in women than men in patients younger than 50; however, in older

patients melanoma is more common in men [74]. Images of skin lesions can

exhibit additional variation that comes from the image acquisition and subse-

quent processing. For instance, lighting conditions, image capture modalities

(dermascopes, phone cameras, handheld cameras, etc.), focus, motion blur,

color correctness, and image compression can each affect the appearance and

characteristics of an image taken from a lesion.

Due to its high prevalence, skin cancer detection is a popular application

area for machine learning researchers. Similar to how dermatologists visually

inspect the lesions on patients to make a diagnosis, pictures of skin lesions

taken using cameras can be used to train NNs to classify benign versus malig-

nant, i.e., melanomic, lesions. In the last five years, multiple methods in the

literature have described NNs for classification of skin lesions and reported

results that match or exceed those from dermatologists [73], [75]. Further,

there are now some phone applications that claim to automatically classify

skin lesions based on image(s) uploaded by the patient. Generally, NNs are

black box systems that do not provide an understanding of why or how they

74

produce a particular prediction. At the same time, it is well known that NNs

are prone to latching onto irrelevant attributes or characteristics of input data

and moreover their performance can degrade due to minor differences in

image characteristics, e.g., changes in image brightness, saturation, noise, etc.,

or due to differences in the distribution of sub-populations in the data. For

instance, Hosseini et al. have shown that simple impulse noise can break

Google’s Cloud Vision Application Programming Interface [46]. However,

recent studies [2-4] have demonstrated that a typical deep neural network that

contains millions of free parameters can easily distinguish between images

sourced from different origins, even after careful pre-processing pipelines

[76]–[78]. However, deep neural network classifiers exhibit unexpected in-

stability even for simple perturbations [45], [46], especially in domains that

suffer from small sample size problem such as medical imaging.

We address the task of classifying an image of a skin lesion as melanoma

(the positive class), or benign (the negative class). We use the Human Against

Machine 10000 (HAM) dataset [79] for our internal dataset and the SIIM-ISIC

Melanoma Classification (ISIC) dataset [80] for our external dataset. HAM

images are 450× 600 pixels. We resized ISIC images to be the same size, i.e.,

450× 600 pixels. For melanoma classification, the ISIC operating data has

more variation in image appearance, e.g., image saturation and hue, than the

internal dataset.

75

5.2.3 Animal Classification

General animal and object classification is a standard computer vision task

that could have safety implications in the future, e.g., household autonomous

robots will need to differentiate pets from inanimate objects in order to safely

navigate around changing environments. We aim to classify an image as an

animal (the positive class) or an object (the negative class), with STL10 [81] as

the internal dataset. The STL10 images are 96 × 96 pixels and they include

animals: birds, horses, deer, dogs, and cats, and objects: planes, cars, trucks,

and boats. For external datasets we use the Common Objects Day and Night

(CODaN) [82] and CIFAR-10 [83] datasets.

In our NGP experiments, we only include the external dataset images

of classes seen during training. The CODaN animal classes considered are

dogs and cats, and the CODaN object classes considered are cars and boats.

The CODaN dataset was compiled from other existing datasets; we exclude

images taken from ImageNet because the NN classifiers we fine-tuned were

originally trained on ImageNet. The CODaN dataset includes night and day

images that are 256 × 256 pixels; we resized the images to 96 × 96 pixels. The

CIFAR-10 animal classes considered are birds, horses, dogs, cats, and deer.

The CIFAR-10 object classes considered are boats, cars, and trucks. CIFAR-10

images are 32 × 32 pixels, which we resized to 96 × 96 pixels. Note that for

animal classification, both external datasets present some significant change

in image distribution: the CODaN dataset includes night images that were

not present in the internal dataset and the CIFAR-10 dataset has images with

1/3 the resolution of the internal dataset.

76

5.2.4 Experimental Setup

For each classification task, we fine-tune three classifiers with different NN

architectures: VGG [84], AlexNet [85], and DenseNet [86]; the pre-trained

models are available in the PyTorch library. Each round of training considers

100 batches of images with a batch size of 8, where the images are sampled

with a uniform probability for each class. The VGG and AlexNet models

are trained with 10 rounds of training, a learning rate of 1e− 6 and a weight

decay of 1e− 3. The DenseNet models are trained with 4 rounds of training,

a learning rate of 1e− 4, and a weight decay of 1e− 3. VGG and AlexNet

have an embedding space of 4, 096 dimensions. DenseNet projects into an

embedding space of W × H × 1664 where W and H depend on the initial

image size. Like the full DenseNet architecture, we use a Global Average

Pooling (GAP) layer to convert from the 3D embedding to a 1664 dimensional

vector for each image. For each architecture in each task, we fit a decision tree

with a maximum depth of 10 to distinguish four outcomes: TP, FP, FN, and

TN. We refer to the fitted decision tree as our embedding map.

5.2.5 Network Generalization Prediction

We pass the external dataset through the NN to obtain the embeddings, ϕ(X̂).

We subsequently map the external embeddings to leaves in the embedding

map, X̂ = ∪L+1
l=1 X̂l. For each outcome, TP, FN, FP, and TN, we compute the

probability of observing the outcome in the external dataset according to

equation 5.10. If the external dataset has images that map outside the tested

regions, i.e., outside the convex hulls defined as Hl for each leaf, the expected

77

outcome is unknown. The true results are the classification results when the

NN is evaluated using the external dataset labels. We present the NGP results

in two ways: numerically using an F1 score and visually.

5.2.6 Numerical Network Generalization Prediction Results

To facilitate numerical comparison, we show NGP results with an F1 score

[87] where we compare the predicted probability of a correct outcome and

predicted probability of failure with the true probability of a correct outcome

and the true probability of failure. For our NGP algorithm, it is ambiguous

whether the unknown outcomes will be correct or a failure. To address this,

we compute the F1 score in two ways: assuming the unknown outcomes are

correct classifications, denoted “Ours" in Table 5.1, and assuming the unknown

outcomes are failures, denoted “Ours+" in Table 5.1. The two assumptions

reflect optimistic and conservative failure probability predictions. The F1

score shows whether the NGP algorithm accurately predicts overall success

and failure of the NN. We compare against the NGP approach proposed in

Chapter 4, denoted CS NGP. The CS NGP requires distributions of each class

and the distribution of context features to make predictions. For pedestrian

classification we use image brightness, scene type, weather, and time of day as

available context features. For melanoma classification we use average image

hue, saturation, value, patient age, sex, and lesion location as possible context

features. Labeled metadata are not available for the animal classification task

so we cannot include a comparison to CS NGP.

In Table 5.1 we show the numerical F1 NGP results. Our proposed NGP

78

Operating Architecture
Domain NGP VGG AlexNet DenseNet

Ch. 4 0.984 0.964 0.956
Cityscapes Ours 0.985 0.984 0.947

Ours+ 0.972 0.954 0.945
Ch. 4 0.958 0.927 0.954

JAAD Ours 0.988 0.986 0.987
Ours+ 0.959 0.927 0.948
Ch. 4 0.908 0.923 0.971

ISIC Ours 0.935 0.970 0.800
Ours+ 0.935 0.940 0.929

CODaN Ours 0.950 0.901 0.942
Ours+ 0.993 0.984 0.951

CIFAR-10 Ours 0.959 0.928 0.951
Ours+ 0.982 1.000 0.960

Table 5.1: NGP numerical F1 results for pedestrian, melanoma, and animal classifica-
tion tasks with different architectures.

approach can robustly predict performance over different NN architectures,

classification tasks, and different external dataset distributions. The proposed

NGP algorithm consistently makes more accurate predictions than the CS

NGP baseline in Chapter 4 and does not require knowledge about class or

context distributions. Our approach is state of the art in 13 of the 15 examples

while the CS NGP baseline is more accurate only when predicting performance

for Cityscapes, DenseNet and ISIC, DenseNet.

5.2.7 Graphical Network Generalization Prediction Results

Second, we present the full granularity of the NGP results visually in Figure

5.4 and in Figure 5.5. The stacked bar graphs show the predicted probability

of TP, TN, failure, and an unknown outcome. The goal is to have the predicted

79

Figure 5.4: DenseNet JAAD visualized results for Network Generalization Prediction.

results match the ‘True’ results, i.e., the classification results when the NN is

evaluated using the external dataset images and labels. It is common to use

the internal test results to predict NN generalization, so we show the average

test set results as a naive baseline for performance prediction, denoted Test

Results in Figure 5.4 and Figure 5.5.

In Figure 5.4 we show a sample of the NGP visualized results for the JAAD

external dataset with the DenseNet architecture. We show a subset of the

NGP results in Figure 5.4 so that the results can be clearly explained. The

totality of the results are shown in Figure 5.5. The NGP visualized results for

all operating domains and NN architectures are shown in Figure 5.5. In Figure

5.4 the pink bars represent the probability of a failure, i.e., FN or FP. For our

algorithm, the gray bar represents the probability of an unknown outcome.

In Table 5.1 the predictions marked “Ours" correspond to predicting that the

failures shown in pink are failures and the unknown outcomes are correct.

80

In Table 5.1 the predictions marked “Ours+" correspond to predicting that

the failures shown in pink are failures and the unknown outcomes are also

failures. Note that for JAAD, DenseNet the predicted probability of failure

is 10%, which is close the true probability of failure of 12%, while the proba-

bility of failure or an unknown outcome is 21%, which over-predicts failure.

Correspondingly “Ours" is the most accurate prediction for JAAD, DenseNet.

Note that the true probability of failure lies between the predicted probability

of failure and the predicted probability of failure plus the probability of an

unknown outcome. In Figure 5.5 we show the NGP results for all tasks, all

external operating domains, and all NN architectures. Note that our proposed

NGP approach can robustly predict performance over different NN architec-

tures, classification tasks, and different external dataset distributions. Our NN

performance predictions are consistently more accurate than both baseline

methods, CS NGP and the average test results, respectively. Looking at Figure

5.5, it can be seen that this is true for all tasks and all architectures except VGG

for animal classification where we slightly under-predict failure.

The CS NGP method requires labeled distributions for the probability of

the positive and negative classes where our method does not. Note that from

the embedding space we are able to capture not only the probability of failure

but also the overall class distribution for the external domain whether or not

those distributions are the same. In the pedestrian and animal examples, the

probability of positive and negative samples is roughly equivalent. On the

other hand, in the melanoma example it is far more likely to have a benign

image than an image of melanoma. In all tasks we capture accurate overall

81

Figure 5.5: Network Generalization Prediction results for pedestrian classification,
melanoma classification, and animal classification. We show results for three NN
architectures: VGG, AlexNet, and DenseNet.

class distribution for the external operating domain.

5.3 Discussion

We demonstrate that mapping the structure in the NN embedding space can

lead to powerful prediction of NN performance in external datasets across

three high-complexity perception tasks. We consider pedestrian classification

and melanoma classification, both of which are tasks where NNs must per-

form well in unconstrained environments and where commercial products

are available at present. Techniques that can accurately predict NN perfor-

mance in new operating domains without requiring labeled data, such as our

proposed technique, are essential for both the safety and the fairness of NNs.

NN generalization depends on the internal training and testing data, the

82

NN, and the operating domain. Our proposed method does not require

labeled operating data, can predict accurately how a NN will generalize, and

can improve overall performance when the NN performance is poor. The

percent of the operating data where the outcome is unknown can be used to

determine whether it is appropriate to deploy the NN in the novel operating

domain and answer questions like has the NN been sufficiently tested? and have

the right tests been performed?

Our proposed approach is not restricted to binary classification problems,

and is applicable for other feed-forward supervised learning problems, such

as, multi-class classification and object detection. We leverage the structure

in the NN embedding space for NGP, but this structure is likely useful for

other tasks such as OOD rejection. Other directions for future work include

further investigation on the decision tree structure. We began our experi-

mentation with a tree depth of 10 arbitrarily and obtained exceedingly good

results. The decision trees converged without finding the maximum number

of leaves possible, so we did not perform extensive experiments with different

tree depths. Future work could investigate different decision tree depths or

random forests.

We identify the tested regions in the embedding space with convex hulls.

It is not clear that a convex hull is always an appropriate choice. It may be

useful to measure the distance from the test samples to determine if samples

are inside the tested region instead of a binary decision based on whether the

operating samples are inside or outside the convex hull. Additionally, the

convex hull may not be able to capture all kinds of corruptions or shifts of

83

interest. For example, we consider NN classifiers that have been pre-trained

with ImageNet; an adversarial sample that is a perturbed ImageNet image

may still map within a convex hull if it maintains characteristics from the

original dataset.

5.4 Conclusions

We propose a NGP method that can predict NN performance in a novel oper-

ating domain without requiring labeled data, context distributions, or class

distributions. We demonstrate the robustness of the method over three clas-

sification tasks, three NN architectures, and five different realistic external

datasets. More broadly, we believe that NGP is a task that warrants more

attention to enable targeted performance prediction towards a specific operat-

ing domain. We believe this is a promising direction for further research and

can be a step towards dependable and practical NNs for safety critical tasks

in unconstrained environments.

84

Chapter 6

Extensions of NGP Subspaces

We have developed context spaces and embedding spaces to perform NGP,

but these spaces are useful for other tasks. In this chapter, we leverage the

context space (Chapter 3) and embedding subspace (Chapter 5) to improve

the safety of the NN by designing safety functions; see Section 6.1. We also

demonstrate that the context subspace (Chapter 4) can be used to predict

whether the NN performance is robust without requiring information about

the operating domain. This chapter contributes extensions of the previous

technical chapters as follows:

1. Chapter 3: We design a safety function to reduce harmful failures in

the simulated robot manipulation task under testing conditions. We

reduce the harmful failures, in one example, by a factor of 700 while

maintaining a high probability of success.

2. Chapter 5: We leverage the embedding subspace to identify regions

where testing found a high probability of failure and design a safety

function to reject unseen operating images that map to these failure

85

embedding regions. Our error rejection safety function outperforms a

baseline when the NNs has an overall probability of failure over 10% in

testing.

3. Chapter 4: We inspect the context subspace found for a melanoma

classifier and determine that saturation, which is not a clinically relevant

feature, impacts the NN performance. We predict that the NN will not be

robust in novel operating domains; further testing confirms that the NN

performance degrades significantly when used on skin lesion images

from an unseen dataset.

In Section 6.1 we present background information about safety functions. In

Section 6.2 and Section 6.3, we present safety functions for the work in Chapter

3 and Chapter 5, respectively. In Section 6.5 we present our work predicting

robustness based on the context feature ranking algorithm from Chapter 4.

6.1 Safety Functions for Neural Networks

Safety functions are external functions used in functional safety when the

system, e.g., a chemical plant, has an unacceptable level of risk inherent to

the task [88]. When the system encounters a hazardous condition, e.g., high

pressure, the safety function, e.g., a pressure relief valve, acts to bring the

system to a safe state, e.g., the pressure relief valve allows some material

to move to another chamber and the overall pressure returns to a safe level.

The internal decision-making structure of a NN is obscured by thousands or

millions of learned weights that cannot be inspected. It is highly likely that

86

NNs, when used in safety critical tasks, have an unacceptable inherent level

of risk. For the first time, we design safety functions for NNs performing

safety critical tasks. Using the context space, see Section 6.2, or the embedding

subspace, see Section 6.3, we identify hazardous conditions for the NN and

intervene to improve the safety of the NN.

6.2 Safety Function in the Context Space

In Chapter 3 we proposed a NGP algorithm for problems with a known,

observed context space. In Section 3.2 we evaluated our NGP algorithm on

a simulated robot control problem where a NN moved a robot arm linearly

towards a goal location across the path of a moving obstacle. The context

space of the problem was defined by the speed of the moving obstacle, v, the

time the obstacle started moving, τ, and the robot goal location, z. See Section

3.2 for the full details of the robot control problem.

Testing revealed that harmful failures only occurred with robot goals, z,

greater than or equal to 38.47 inches. We designed a safety function to reduce

harmful failures by clipping the robot goal input to the network to be between

[0, 38.47− δ] inches. We chose δ = 0.5 inches. The reader is reminded that the

NN continues to move the robot after the goal position is reached, until the

simulation ends at 100 seconds. Clipping the robot goal input to the NN was

intended to make the NN behave more conservatively1; it was still possible

for the robot to exceed the clipped goal and reach the original goal position.

The safety function did not change the conditions for success: for a simulation

1This is a similar idea to Control Governors [89].

87

Figure 6.1: A comparison of the NN performance without the safety function and
with the safety function. Task failures are indicated in blue. Harmful failures are
indicated in pink. (a) a reprint of Figure 3.2 to facilitate comparison. (b) the observed
failures in Testing Conditions with the safety function. (c) a comparison of the NN
ML Dependability, Task Undependability, and Harmful Undependability with and
without the safety function. Note, the Harmful Undependability is reduced from
5.47% to 0.007% with the safety function.

to be successful the robot had to reach the original goal position. 100,000 new

test scenarios were sampled from the Testing Conditions and run with the

safety function. With the safety function, the NN had a ML Dependability of

95.19%, a Task Undependability of 4.81%, and a Harmful Undependability

of 0.007%. Figure 6.1, above, offers a side-by-side comparison of observed

failures and NN performance with and without the safety function.

6.2.1 Safety Function in the Context Space Results

The safety function results, see Figure 6.1, reveal that in most of the examples

that were harmful failures in testing, the robot had enough time to avoid

collision and reach the goal before the end of the simulation. But the strategy

learned by the NN did not time the robot’s approach correctly. Interestingly,

88

the reward function was specifically designed to weight safety over task

completion: a collision resulted in a penalty of -50 points whereas reaching the

goal resulted in a reward of 30 points. The NN learned an incorrect trade-off

between moving towards the goal and avoiding the obstacle. While we do

not claim that it would be impossible to craft a reward function to perfectly

complete this task without harm, this example illustrates that designing a

reward function that appropriately weights task requirements and safety

constraints is not trivial. Safety functions are an explainable alternative to

hand crafting reward functions and guarantee a degree of safety for a NN.

The safety function reduced the number of harmful failures by a factor

of 700. With our safety function, the only harmful failures that remain occur

when the robot goal and the obstacle speed reach the maximum limit seen

in the simulation, i.e., the harmful failures occur at the outer boundary of

the scenarios seen in training. Surprisingly, even though our safety function

clipped the input robot goal, it converted many harmful failures into successes.

Clipping the robot goal made the NN behave more conservatively, i.e. the

NN waited for the obstacle to pass before moving as far forward as it could.

In general, we expect safety functions to reduce the probability of harmful

failures, but we do not expect them to increase the probability of success.

6.3 Safety Function in the Embedding Space

In Chapter 5 we map the NN embedding space based on the test outcomes,

e.g., false positives, true negatives, etc. We define regions in the embedding

space associated with the different outcomes and perform NGP based on

89

how unlabeled operating images map into the embedding regions. When

we perform NGP in Chapter 5, we predict the probability of failure in the

novel operating domain, i.e., the fraction of operating domain images that

will have incorrect predictions. We can also leverage the embedding map

to predict whether individual images have been misclassified; this task is

called error prediction in the literature. For each leaf node in the embedding

map, there are Nl test samples that map to the leaf. We identify leaf nodes

where more than 50% of their associated test samples were failures as failure

leaves. In the error prediction task, we have M unlabeled operating domain

samples. When an operating sample maps to a failure leaf, we predict the

operating sample will be misclassified, resulting in m rejected samples from

the operating domain. We define the safety function so that the NN does not

make a prediction for the m rejected samples but the NN makes a prediction

for the M−m remaining samples. As it is ambiguous whether the unknown

outcomes will be correct or a failure, we assume that images that map to an

unknown outcome will be correctly classified. To compare against a baseline,

we use the ranking in [34] and predict that the m lowest scoring samples will

be misclassified. We report error prediction results using the F1 score, where

we denote correct predictions as the positive class and incorrect predictions as

the negative class.

6.3.1 Safety Function in the Embedding Subspace Results

We present the error prediction results in Table 6.1 for the pedestrian classi-

fication, melanoma classification, and animal classification tasks presented

90

Operating Architecture
Domain Error Pred. VGG AlexNet DenseNet

NN 0.962 0.944 0.863
[34] 0.954 0.932 0.809

Cityscapes Ours 0.949 0.920 0.902
NN 0.971 0.949 0.935
[34] 0.961 0.932 0.901

JAAD Ours 0.952 0.915 0.939
NN 0.885 0.879 0.741
[34] 0.845 0.834 0.646

ISIC Ours 0.905 0.928 0.822
NN 0.949 0.891 0.938
[34] 0.946 0.880 0.936

CODaN Ours 0.945 0.867 0.923
NN 0.958 0.918 0.949
[34] 0.957 0.910 0.943

CIFAR-10 Ours 0.954 0.899 0.933

Table 6.1: Error prediction F1 scores for pedestrian, melanoma, and animal classifica-
tion tasks.

in Section 5.2. Note, neither our proposed error prediction approach nor the

baseline outperform keeping all the NN predictions in many experiments.

However, our proposed error prediction approach outperforms both the NN

and the baseline specifically when the overall NN performance is poor.

In Table 6.2 we reprint the results from Table 6.1 for the operating domains

and the NN architectures where the observed probability of failure throughout

the operating domain is greater than or equal to 15%. When the NN perfor-

mance is poor, our error prediction approach outperforms the NN and the

baseline in three of five experiments. However, for the animal classification

task, there are two examples where the NN performance is poor and our NGP

algorithm does not predict a high probability of failure: CODaN, AlexNet

91

OD Cityscapes ISIC CODaN CIFAR-10
Arch. DenseNet VGG AlexNet DenseNet AlexNet AlexNet
NN 0.863 0.885 0.879 0.741 0.891 0.918
[34] 0.809 0.845 0.834 0.646 0.880 0.910

Ours 0.902 0.905 0.928 0.822 0.867 0.899

Table 6.2: Error prediction F1 scores for classification tasks where the probability of
failure in the operating domain (OD) and architecture (Arch.) is greater than or equal
to 15%.

(20% probability of failure) and CIFAR-10, AlexNet (15% probability of failure).

In these examples we predict an unknown outcome with a probability of 15%,

and 13%, respectively (see Figure 5.5 for the NGP predictions for all tasks and

architectures). The external datasets for animal classification represent two of

the largest distribution shifts we encounter: CODaN includes day and night

images where the internal dataset only includes daytime images. CIFAR-10

images are originally 32× 32 pixels but we resize them to be 96× 96 to match

the size of the internal dataset images; this is a dramatic reduction in image

resolution for the NN. It is not surprising that most of the failures stem from

images that map outside the tested region, but this means that our proposed

error prediction method is not as effective for very large domain shifts.

Interestingly, for operating domains and NNs with a probability of failure

below 15%, neither the baseline nor our proposed method improves on the

NN performance when all predictions are kept; see Table 6.1. This makes

sense, because if the NN is performing well, we want to take advantage of all

of its predictions.

92

6.4 Safety Functions Discussion

We present two examples of safety functions for NNs: one based on hazards

identified in the context space, Section 6.2, and one based on hazards identified

in the NN embedding space, Section 6.3. In the safety function designed

for the robot control context space, our safety function was hand-crafted.

Targeted safety functions could prove a scalable approach for ensuring safety

in dynamic environments, and may be more feasible than retraining the NN

for different operating conditions. The safety function for error prediction

in image classification was not learned, but it took advantage of the feature

projection learned by the NN. We compare against the baseline in [34], which

performs error projection based on the softmax scores from the final NN

layer. Our embedding map leverages information about the structure of the

embedding space. This is fundamentally different than leveraging information

from the softmax scores and can be a complementary source of information. In

the future, we expect safety functions for NNs to become a key tool to render

NNs practical for safety critical tasks.

6.5 Predicting Robustness from the
Context Subspace

In Chapter 4 we proposed a context feature ranking algorithm, Algorithm 1,

to rank the available context features by how much information they provide

about the NN performance. We propose that this ranking algorithm can be

useful to inspect what impacts NN performance. It is well known that NNs

93

can fail to generalize if during training the NN learns to extract features that

are not discriminative for input data with a different distribution. For instance,

a NN may learn features that are based on spurious correlations within the

training data if the samples used in training exhibit a bias in terms of one or

more characteristics. NN robustness is particularly important in medical ap-

plications. For Melanoma classification, lesion rotation in the image and image

hue have been identified as factors that can impact classification performance

[90]. NNs detecting MRI scan location even after careful post-processing [78],

[77]. It has been shown that NNs can classify skin lesions based solely on

the surrounding skin without information about the skin lesion [91]. Gen-

tian violet skin markings have been shown to increase the false positives

for melanoma classification with NNs [92]. This is an problem that may not

be easily caught since the test set is often a subset of the same overarching

dataset from which the training data was derived and therefore has the same

distribution, including the spurious correlations. In this section, we leverage

Algorithm 1 to inspect which context features impact the performance of a

melanoma classifier for the purpose of evaluating if the NN is relying on

clinically relevant or spurious features. See Section 5.2.2 for an overview of

melanoma classification. We utilize a combination of context features that are

either part of the dataset (e.g. patient age) or can be calculated directly based

on images (e.g. image brightness or hue) for this purpose.

94

6.5.1 Predicting Robustness Results

The HAM10000 (HAM) dataset [79] contains 7,470 unique lesions over 10,015

images of size 450× 600 pixels, including 1,113 images of melanoma from

614 unique lesions. We split the HAM dataset into three folds: 3,137 images

for training, 357 images for validation, and 4,544 images for testing. The

images are randomly assigned to folds, and all images belonging to the same

lesion are assigned to the same fold to avoid data leakage. We fine-tune a

pretrained VGG [93] network for melanoma classification with the training

fold of the HAM dataset; training images are sampled with replacement so

that 50% of training images are benign and 50% are malignant. (Pre)cancerous,

non-melanoma samples were specifically excluded from training and testing

in the HAM dataset2. The melanoma classifier achieves an AUC of 0.852 on

the HAM test images3.

The SIIM-ISIC Melanoma Classification (SIIM-ISIC) Dataset includes im-

ages captured over 22 years from six different centers taken with or without

polarized light using a contact or noncontact dermascope [80]. The SIIM-ISIC

dataset contains 33,126 lesion images from 2,056 patients, including 584 im-

ages of melanoma. Images are labeled as benign or melanoma. The images

vary in size from 480× 640 pixels to 4000× 6000 pixels. We resize each image

in the SIIM-ISIC dataset to 450× 600 pixels to conform to the input image size

from the HAM dataset. See Figure 6.2 for a visualization of images sampled

2The dataset labels ‘vasc’, ‘bkl’, ‘df’, ‘nv’ were assigned benign label. ‘mel’ was assigned
malignant. (Pre)cancerous, non-melanoma samples ‘bcc’ and ‘akiec’ were excluded.

3We consider this performance adequate for the robustness analysis presented here as
it is reasonably close to the AUC of the winning team in the 2018 MICCAI HAM Disease
Classification Challenge who achieved an AUC of 0.885 on the more challenging 7-disease
classification task [94].

95

Figure 6.2: Sampling of images from the HAM and SIIM-ISIC Skin Lesion datasets sep-
arated by malignant/benign labels. For each category the images are shown according
to their hue and saturation with consistent ranges across datasets. Hue/saturation
ranges without available images are shown as solid colors. Note that the malignant
images in the HAM dataset exhibit a smaller spread over saturation compared to the
HAM benign images or the SIIM-ISIC images.

from both datasets. Note that the malignant images in the HAM dataset ex-

hibit a smaller spread over hue and saturation compared to the HAM benign

images or the SIIM-ISIC images. The classifier trained on the HAM dataset

achieves only an AUC of 0.599 on the SIIM-ISIC dataset. This suggests that

the classifier has latched onto some spurious correlation in the HAM dataset.

We aim to identify which context features impact the NN performance. In

the HAM dataset, the metadata available are the patient age, the patient sex,

and the lesion location. We are also interested in context features that describe

the image properties. The pixels in digital images are described using a color

space; Red-Green-Blue (RBG) is the most common color space, but the Hue-

Saturation-Value (HSV) color space is easier to interpret because it considers

hue (color), saturation, and value (brightness) independently. Therefore, we

include the average image hue, saturation, and value as context features. We

consider patient age, patient sex, lesion location, image hue, image saturation,

and image value as the context features with Algorithm 1.

96

We rank the context features according to Algorithm 1. The resulting rank-

ing of the context features is as follows: 1. image saturation, 2. patient sex,

3. patient age, 4. lesion location, 5. image brightness, 6. image hue. As men-

tioned in Section 5.2.2, the incidence rate of melanoma is related to patients’

sex and age. However, image saturation is not a clinically relevant feature.

We investigate the number of benign and malignant training images indexed

by image saturation and the classifier sensitivity and specificity indexed by

image saturation; see Figure 6.3. Note that all the melanomic training images

are with lower saturation, 0%− 38%, while the benign training images have

saturation from 0%− 70%. In the lower saturation region, the classifier has

a high sensitivity and low specificity. From the HAM dataset it is not clear

what the sensitivity is for images with saturation > 40%. This indicates that

the classifier has not learned to distinguish melanomic and benign lesions in a

meaningful way. We examine the classifier’s performance on the SIIM-ISIC

dataset indexed by saturation and find that the classifier has higher sensitivity

and lower specificity in low saturation images, but has significantly worse

specificity on the SIIM-ISIC dataset than the HAM dataset, see Figure 6.3.

We define sub-populations according to the three context features that

are most indicative of the NN performance: image saturation, patient sex,

and patient age. Most of the HAM images have a saturation between 0%

and 50%, so we define low saturation as < 25% and high saturation ≥ 25%.

The incidence of melanoma for men and women changes around 50 years,

so we define younger as < 50 years and older as ≥ 50 years. Based on the

breakdown of performance shown in Figure 6.4 for the HAM dataset, we can

97

Figure 6.3: Left Top: HAM Dataset test image count indexed by image saturation,
note the histogram vertical axes are not at the same scale. Left Bottom: classifier
Sensitivity and Specificity indexed by image saturation. Right Top: SIIM-ISIC Dataset
test image count indexed by image saturation, note the histogram vertical axes are not
at the same scale. Right Bottom: classifier Sensitivity and Specificity indexed by image
saturation. Sensitivity and Specificity bars are colored green for high performance
and red for poor performance.

observe that the network has non-uniform performance across the different

sub-populations. In particular, as previously shown in Figure 6.3 most of

the melanoma images fall into the low-saturation bin, and we see that the

classifier AUC is ≤ 0.74 on the low-saturation images compared to ≥ 0.93

across the high-saturation images.

6.5.2 Predicting Robustness Discussion

In this section we leverage Algorithm 1 in a novel way which allows us to

inspect whether a trained NN is utilizing clinically relevant features. This in

turn informs us about whether the classifier is expected to be robust when

deployed on real world data with a different distribution. We demonstrated

98

Figure 6.4: Classifier AUC on sub-populations of the HAM test images. For each plot,
the True Positive Rate is shown on the y-axis and the False Positive Rate is shown on
the x-axis. The overall AUC curve is shown in black in each plot, the sub-population
AUC curve is shown in green. We define low saturation as < 25% and high saturation
≥ 25%. We define younger as < 50 years and older as ≥ 50 years.

that our melanoma classifier relied chiefly on image saturation, instead of

clinically relevant features, thereby precluding the classifier from general-

izing in a robust or fair way. We have proposed a method to reveal what

context features the NN may be using when producing a classification. This

information can help better evaluate the robustness and fairness of a trained

network, and identify the root-cause for potential degradation of performance

across different datasets or subpopulations of data. Our method can be used

to identify gaps in the training data or problems with the NN that should be

addressed prior to deployment.

99

6.6 Conclusions

We have shown that the context spaces (Chapter 3 and Chapter 4) and the

embedding space (Chapter 5) can be used to improve the NN safety and to

predict the NN robustness. The focus of this dissertation is NGP, but we

believe the methods we developed for NGP have broader applications. We

outline ideas for future work and our conclusions in Chapter 7.

100

Chapter 7

Conclusions

When NNs perform safety critical tasks in unconstrained environments, pre-

dicting how the NNs will generalize is essential for safety. In Chapter 3, we

developed an algorithm for Network Generalization Prediction (NGP) from a

finite test set to predict NN performance in novel operating domains. Under-

standing which factors impact NN performance in high-complexity tasks is

challenging, so we proposed the context subspace (Chapter 4) and the embed-

ding subspace (Chapter 5) to map NN performance based on interpretable

context features or the DNN embedding, respectively. Both the context sub-

space and the embedding subspace can be used to accurately predict the NN

performance in novel operating domains.

The context subspace relates NN performance to interpretable context

features and renders NGP tractable for complex problems when it is unknown

which factors impact NN performance. In Section 6.5 we demonstrated that

the context subspace also has extensions beyond NGP; specifically, we show

that the most informative context features for medical image analysis can be

inspected to see if they are clinically relevant and thus predict whether the

101

NN is expected to be robust in novel operating domains. The embedding

subspace relates regions of the NN embedding to different outcomes, e.g.,

false positive, true negative, etc. Finding the embedding subspace does not

require the labels and distributions, but it does require unlabeled operating

data. The embedding subspace automatically identifies which novel operating

samples are unlike those seen before and which operating samples will likely

result in incorrect predictions.

For the first time, we propose safety functions for NN, i.e., external func-

tions that can mitigate risk inherent in the NN. In Section 6.2 and Section

6.3 we demonstrate that safety functions for NNs can improve safety in a

robot control problem and image classification problems, respectively. As

NNs become more integrated in cyber-physical systems that operate in un-

constrained environments, e.g., self-driving vehicles, medical image analysis,

robot control, etc., techniques like NGP and safety functions will become

increasingly important for safety. We believe the work in this thesis can help

address a pressing need for techniques to systematically evaluate NNs in

high dimensional problems and provide actionable guidance on why a NN is

failing, when it is safe to deploy, and how to improve NN performance.

This thesis opens up many directions for future research. Uncertainty

estimation is an area of active research in ML. We have developed methods

for deterministic NGP, but in the future NGP with uncertainty estimation

would have many applications in safety critical tasks. We believe there are

also other uses for context and embedding subspaces. The context subspace

provides actionable information that can be used to target training or testing

102

data collection for contexts with poor performance.

NNs are increasingly performing safety critical tasks in unconstrained en-

vironments. The work in this thesis provides a strong technical foundation for

NNs applied to safety critical tasks and for ML research to better understand

and predict NN performance.

103

Bibliography

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” arXiv preprint arXiv:1910.07738,
2019.

[2] B. Wilson, J. Hoffman, and J. Morgenstern, “Predictive inequity in object
detection,” arXiv preprint arXiv:1902.11097, 2019.

[3] D. Wen, S. M. Khan, A. J. Xu, H. Ibrahim, L. Smith, J. Caballero, L.
Zepeda, C. de Blas Perez, A. K. Denniston, X. Liu, et al., “Characteristics
of publicly available skin cancer image datasets: A systematic review,”
The Lancet Digital Health, 2021.

[4] D. Teney, E. Abbasnejad, and A. v. d. Hengel, “Unshuffling data for
improved generalization,” arXiv preprint arXiv:2002.11894, 2020.

[5] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk
minimization,” arXiv preprint arXiv:1907.02893, 2019.

[6] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally
robust neural networks for group shifts: On the importance of regular-
ization for worst-case generalization,” arXiv preprint arXiv:1911.08731,
2019.

[7] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubra-
mani, W. Hu, M. Yasunaga, R. L. Phillips, S. Beery, et al., “Wilds: A bench-
mark of in-the-wild distribution shifts,” arXiv preprint arXiv:2012.07421,
2020.

[8] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to general-
ize: Meta-learning for domain generalization,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

104

[9] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep
domain generalization via conditional invariant adversarial networks,”
in Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 624–639.

[10] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 5400–5409.

[11] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural
networks,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–
2030, 2016.

[12] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep
domain adaptation,” in European conference on computer vision, Springer,
2016, pp. 443–450.

[13] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,”
arXiv preprint arXiv:2007.01434, 2020.

[14] V. Vapnik and V. Vapnik, “Statistical learning theory wiley,” New York,
vol. 1, no. 624, p. 2, 1998.

[15] B. Kim, H. Kim, K. Kim, S. Kim, and J. Kim, “Learning not to learn:
Training deep neural networks with biased data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 9012–9020.

[16] S. A. Taghanaki, M. Havaei, A. Lamb, A. Sanghi, A. Danielyan, and
T. Custis, “Jigsaw-vae: Towards balancing features in variational autoen-
coders,” arXiv preprint arXiv:2005.05496, 2020.

[17] L. Oakden-Rayner, J. Dunnmon, G. Carneiro, and C. Re, “Hidden strat-
ification causes clinically meaningful failures in machine learning for
medical imaging,” in Proceedings of the ACM Conference on Health, Infer-
ence, and Learning, ser. CHIL ’20, Toronto, Ontario, Canada: Association
for Computing Machinery, 2020, pp. 151–159, ISBN: 9781450370462. DOI:
10.1145/3368555.3384468. [Online]. Available: https://doi.org/10.
1145/3368555.3384468.

105

https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1145/3368555.3384468

[18] N. Sohoni, J. Dunnmon, G. Angus, A. Gu, and C. Ré, “No subclass left
behind: Fine-grained robustness in coarse-grained classification prob-
lems,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 19 339–19 352.

[19] A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel,
C. Chen, J. Deaton, J. Eisenstein, M. D. Hoffman, et al., “Underspecifi-
cation presents challenges for credibility in modern machine learning,”
arXiv preprint arXiv:2011.03395, 2020.

[20] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite
markov decision processes with gaussian processes,” in Advances in
Neural Information Processing Systems, 2016, pp. 4312–4320.

[21] Y. Zhang, D. Balkcom, and H. Li, “Towards physically safe reinforcement
learning under supervision,” arXiv preprint arXiv:1901.06576, 2019.

[22] G. Csurka, “Domain adaptation for visual applications: A comprehen-
sive survey,” arXiv preprint arXiv:1702.05374, 2017.

[23] K. Goel, A. Gu, Y. Li, and C. Ré, “Model patching: Closing the subgroup
performance gap with data augmentation,” arXiv preprint arXiv:2008.06775,
2020.

[24] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang, “Adversar-
ial domain adaptation with domain mixup,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 6502–6509.

[25] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving video database with scalable annotation
tooling,” arXiv preprint arXiv:1805.04687, 2018.

[26] A. RoyChowdhury, P. Chakrabarty, A. Singh, S. Jin, H. Jiang, L. Cao,
and E. Learned-Miller, “Automatic adaptation of object detectors to new
domains using self-training,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 780–790.

[27] Z. Liu, Z. Miao, X. Pan, X. Zhan, S. X. Yu, D. Lin, and B. Gong, “Com-
pound domain adaptation in an open world,” arXiv preprint arXiv:1909.03403,
2019.

[28] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style transfer:
A review,” IEEE transactions on visualization and computer graphics, vol. 26,
no. 11, pp. 3365–3385, 2019.

106

[29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in The IEEE
International Conference on Computer Vision (ICCV), 2017.

[30] R. Gong, W. Li, Y. Chen, and L. V. Gool, “Dlow: Domain flow for adap-
tation and generalization,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 2477–2486.

[31] S. James, M. Bloesch, and A. J. Davison, “Task-embedded control net-
works for few-shot imitation learning,” arXiv preprint arXiv:1810.03237,
2018.

[32] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey of zero-shot
learning: Settings, methods, and applications,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 10, no. 2, p. 13, 2019.

[33] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly,” IEEE
transactions on pattern analysis and machine intelligence, vol. 41, no. 9,
pp. 2251–2265, 2018.

[34] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and
out-of-distribution examples in neural networks,” CoRR, vol. abs/1610.02136,
2016. arXiv: 1610.02136. [Online]. Available: http://arxiv.org/abs/
1610.02136.

[35] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-
distribution image detection in neural networks,” English (US), 2018.

[36] S. Mohseni, M. Pitale, J. Yadawa, and Z. Wang, “Self-supervised learning
for generalizable out-of-distribution detection,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5216–5223, 2020.
DOI: 10.1609/aaai.v34i04.5966. [Online]. Available: https://ojs.
aaai.org/index.php/AAAI/article/view/5966.

[37] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 21 464–21 475.

[38] V. Sehwag, A. N. Bhagoji, L. Song, C. Sitawarin, D. Cullina, M. Chiang,
and P. Mittal, “Analyzing the robustness of open-world machine learn-
ing,” in Proceedings of the 12th ACM Workshop on Artificial Intelligence
and Security, ser. AISec’19, London, United Kingdom: Association for
Computing Machinery, 2019, pp. 105–116, ISBN: 9781450368339. DOI:

107

https://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136
https://doi.org/10.1609/aaai.v34i04.5966
https://ojs.aaai.org/index.php/AAAI/article/view/5966
https://ojs.aaai.org/index.php/AAAI/article/view/5966

10.1145/3338501.3357372. [Online]. Available: https://doi.org/10.
1145/3338501.3357372.

[39] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for
detecting out-of-distribution samples and adversarial attacks,” Advances
in neural information processing systems, vol. 31, 2018.

[40] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting ad-
versarial samples from artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[41] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D.
Song, M. E. Houle, and J. Bailey, “Characterizing adversarial subspaces
using local intrinsic dimensionality,” arXiv preprint arXiv:1801.02613,
2018.

[42] Z. Lin, S. D. Roy, and Y. Li, “Mood: Multi-level out-of-distribution
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, pp. 15 313–15 323.

[43] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-
distribution image detection in neural networks,” arXiv preprint arXiv:1706.02690,
2017.

[44] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting out-
of-distribution image without learning from out-of-distribution data,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[45] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

[46] H. Hosseini, B. Xiao, and R. Poovendran, “Google’s cloud vision api is
not robust to noise,” in 2017 16th IEEE international conference on machine
learning and applications (ICMLA), IEEE, 2017, pp. 101–105.

[47] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 5, pp. 828–841, 2019.

[48] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Explor-
ing the landscape of spatial robustness,” in International Conference on
Machine Learning, PMLR, 2019, pp. 1802–1811.

[49] A. K. Shekar, L. Gou, L. Ren, and A. Wendt, “Label-free robustness
estimation of object detection cnns for autonomous driving applications,”
International Journal of Computer Vision, pp. 1–17,

108

https://doi.org/10.1145/3338501.3357372
https://doi.org/10.1145/3338501.3357372
https://doi.org/10.1145/3338501.3357372

[50] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A.
Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on
deep learning visual classification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 1625–1634.

[51] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li, “Adversarial
objects against lidar-based autonomous driving systems,” arXiv preprint
arXiv:1907.05418, 2019.

[52] N. Drenkow, N. Sani, I. Shpitser, and M. Unberath, “Robustness in deep
learning for computer vision: Mind the gap?” arXiv preprint arXiv:2112.00639,
2021.

[53] A. Subbaswamy, R. Adams, and S. Saria, “Evaluating model robustness
to dataset shift,” arXiv preprint arXiv:2010.15100, 2020.

[54] S. Cygert and A. Czyżewski, “Evaluating calibration and robustness of
pedestrian detectors,” in International Conference on Multimedia Commu-
nications, Services and Security, Springer, 2020, pp. 98–111.

[55] K. Yang, K. Qinami, L. Fei-Fei, J. Deng, and O. Russakovsky, “Towards
fairer datasets: Filtering and balancing the distribution of the people
subtree in the imagenet hierarchy,” ser. FAT* ’20, Barcelona, Spain:
Association for Computing Machinery, 2020, ISBN: 9781450369367. DOI:
10.1145/3351095.3375709. [Online]. Available: https://doi.org/10.
1145/3351095.3375709.

[56] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang, “Fairness
without demographics in repeated loss minimization,” in International
Conference on Machine Learning, PMLR, 2018, pp. 1929–1938.

[57] N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable deep learn-
ing: A field guide for the uninitiated,” arXiv preprint arXiv:2004.14545,
2020.

[58] W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang, “Gan
inversion: A survey,” arXiv preprint arXiv:2101.05278, 2021.

[59] T. Ponn, T. Kröger, and F. Diermeyer, “Identification and explanation of
challenging conditions for camera-based object detection of automated
vehicles,” Sensors (Basel, Switzerland), vol. 20, no. 13, 2020.

[60] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

109

https://doi.org/10.1145/3351095.3375709
https://doi.org/10.1145/3351095.3375709
https://doi.org/10.1145/3351095.3375709

[61] A. Paszke, Reinforcement learning (dqn) tutorial, https://pytorch.org/tutorials
/intermediate/reinforcement_q _learning.html, 2019.

[62] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learn-
ing: A new perspective,” Neurocomputing, vol. 300, pp. 70–79, 2018.

[63] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual infor-
mation,” Physical review E, vol. 69, no. 6, p. 066 138, 2004.

[64] J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural computing and applications, vol. 24,
no. 1, pp. 175–186, 2014.

[65] R. Khanna, E. Elenberg, A. Dimakis, S. Negahban, and J. Ghosh, “Scal-
able greedy feature selection via weak submodularity,” in Artificial Intel-
ligence and Statistics, PMLR, 2017, pp. 1560–1568.

[66] I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis, and V.
Christophides, “A greedy feature selection algorithm for big data of
high dimensionality,” Machine learning, vol. 108, no. 2, pp. 149–202, 2019.

[67] J. Jiao, Y. Zhu, H. Ye, H. Huang, P. Yun, L. Jiang, L. Wang, and M. Liu,
“Greedy-based feature selection for efficient lidar slam,” arXiv preprint
arXiv:2103.13090, 2021.

[68] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Transactions on information
theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[69] G. Braun, S. Pokutta, and Y. Xie, “Info-greedy sequential adaptive com-
pressed sensing,” IEEE Journal of selected topics in signal processing, vol. 9,
no. 4, pp. 601–611, 2015.

[70] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

[71] A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Are they going to cross?
a benchmark dataset and baseline for pedestrian crosswalk behavior,”
in Proceedings of the IEEE International Conference on Computer Vision
Workshops, 2017, pp. 206–213.

[72] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

110

[73] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and
S. Thrun, “Dermatologist-level classification of skin cancer with deep
neural networks,” nature, vol. 542, no. 7639, pp. 115–118, 2017.

[74] F. Morgese, C. Sampaolesi, M. Torniai, A. Conti, N. Ranallo, A. Gi-
acchetti, S. Serresi, A. Onofri, M. Burattini, G. Ricotti, et al., “Gender
differences and outcomes in melanoma patients,” Oncology and therapy,
vol. 8, no. 1, pp. 103–114, 2020.

[75] L. R. Soenksen, T. Kassis, S. T. Conover, B. Marti-Fuster, J. S. Birkenfeld,
J. Tucker-Schwartz, A. Naseem, R. R. Stavert, C. C. Kim, M. M. Senna, et
al., “Using deep learning for dermatologist-level detection of suspicious
pigmented skin lesions from wide-field images,” Science Translational
Medicine, vol. 13, no. 581, 2021.

[76] C. Wachinger, B. G. Becker, A. Rieckmann, and S. Pölsterl, “Quantifying
confounding bias in neuroimaging datasets with causal inference,” in
International Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, 2019, pp. 484–492.

[77] E. Ferrari, P. Bosco, G. Spera, M. E. Fantacci, and A. Retico, “Common
pitfalls in machine learning applications to multi-center data: Tests on
the abide i and abide ii collections,” in Joint Annual Meeting ISMRM-
ESMRMB, 2018.

[78] B. Glocker, R. Robinson, D. C. Castro, Q. Dou, and E. Konukoglu, “Ma-
chine learning with multi-site imaging data: An empirical study on the
impact of scanner effects,” arXiv preprint arXiv:1910.04597, 2019.

[79] P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset, a large
collection of multi-source dermatoscopic images of common pigmented
skin lesions,” Scientific data, vol. 5, no. 1, pp. 1–9, 2018.

[80] V. Rotemberg, N. Kurtansky, B. Betz-Stablein, L. Caffery, E. Chousakos,
N. Codella, M. Combalia, S. Dusza, P. Guitera, D. Gutman, et al., “A
patient-centric dataset of images and metadata for identifying melanomas
using clinical context,” Scientific data, vol. 8, no. 1, pp. 1–8, 2021.

[81] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics, JMLR Workshop
and Conference Proceedings, 2011, pp. 215–223.

[82] A. Lengyel, S. Garg, M. Milford, and J. C. van Gemert, “Zero-shot do-
main adaptation with a physics prior,” 2021. arXiv: 2108.05137 [cs.CV].

111

https://arxiv.org/abs/2108.05137

[83] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[84] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-
scale image recognition, 2015. arXiv: 1409.1556 [cs.CV].

[85] A. Krizhevsky, One weird trick for parallelizing convolutional neural net-
works, 2014. arXiv: 1404.5997 [cs.NE].

[86] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely
connected convolutional networks, 2018. arXiv: 1608.06993 [cs.CV].

[87] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding classifiers
to maximize f1 score,” ArXiv, pp. 1402–1892, 2014.

[88] M. Medoff and R. Faller, Function Safety And IEC 61508 Development
Process. Sellersville, PA: exida, 2014.

[89] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and com-
mand governors for systems with constraints: A survey on theory and
applications,” Automatica, vol. 75, pp. 306–328, 2017.

[90] X. Du-Harpur, C. Arthurs, C. Ganier, R. Woolf, Z. Laftah, M. Lakhan,
A. Salam, B. Wan, F. M. Watt, N. M. Luscombe, et al., “Clinically rele-
vant vulnerabilities of deep machine learning systems for skin cancer
diagnosis,” The Journal of investigative dermatology, vol. 141, no. 4, p. 916,
2021.

[91] A. Bissoto, M. Fornaciali, E. Valle, and S. Avila, “(de) constructing bias
on skin lesion datasets,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[92] J. K. Winkler, C. Fink, F. Toberer, A. Enk, T. Deinlein, R. Hofmann-
Wellenhof, L. Thomas, A. Lallas, A. Blum, W. Stolz, et al., “Association
between surgical skin markings in dermoscopic images and diagnos-
tic performance of a deep learning convolutional neural network for
melanoma recognition,” JAMA dermatology, vol. 155, no. 10, pp. 1135–
1141, 2019.

[93] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[94] N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza, D. Gut-
man, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, et al., “Skin le-
sion analysis toward melanoma detection 2018: A challenge hosted
by the international skin imaging collaboration (isic),” arXiv preprint
arXiv:1902.03368, 2019.

112

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1608.06993

	Abstract
	Thesis Committee
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Outline
	Contributions

	Background
	Problem Formulation
	Domain Generalization
	Optimization Techniques
	Invariant Risk Minimization
	Group Distributionally Robust Optimization
	Meta-Learning for Domain Generalization
	Robust Feature Extraction

	Identifying Contexts

	Relating to Generalization
	Domain Adaptation
	Style Transfer
	Few-Shot and Zero-Shot Learning
	Out-of-Distribution Detection
	Adversarial Attacks
	Robustness
	Fairness of Generalization
	Explainability
	Performance Prediction

	The Gap

	Network Generalization Prediction with a Known Context Space
	Methods
	Machine Learning Dependability
	Derivation
	Discrete-Bounded Context Space
	Discrete-Unbounded or Continuous Context Space
	Estimating Undependability

	Experiments
	Performance during Testing
	Predicting Model Performance in Novel Operating Conditions

	Discussion
	Robot Manipulation Task
	Dependable NNs in Practical Applications

	Conclusions

	Identifying the Context Subspace
	Feature Selection
	Methods
	Problem Formulation
	Defining a Context Subspace
	Ranking Context Features
	Selecting the Context Subspace Dimensionality

	Using the Context Subspace
	Network Generalization Prediction
	Comparing ΔI and I

	Experimental Results
	Pedestrian Detection Generalization
	Defining the Context Subspace
	Ranking Context Features
	Selecting the Context Subspace Dimensionality

	Using the Context Subspace
	Pedestrian Detection Generalization Prediction
	Generalization Prediction for Unseen Datasets

	Discussion
	Conclusions

	Mapping the Embedding Subspace
	Methods
	Problem Formulation
	Decision Tree in Embedding Space
	Approximating Internal Test Set Manifold
	Inference on External Operating Data
	Network Generalization Prediction

	Experiments
	Pedestrian Classification
	Melanoma Classification
	Animal Classification
	Experimental Setup
	Network Generalization Prediction
	Numerical Network Generalization Prediction Results
	Graphical Network Generalization Prediction Results

	Discussion
	Conclusions

	Extensions of NGP Subspaces
	Safety Functions for Neural Networks
	Safety Function in the Context Space
	Safety Function in the Context Space Results

	Safety Function in the Embedding Space
	Safety Function in the Embedding Subspace Results

	Safety Functions Discussion
	Predicting Robustness from the Context Subspace
	Predicting Robustness Results
	Predicting Robustness Discussion

	Conclusions

	Conclusions
	Bibliography

