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Abstract

We develop the task of assembly understanding by applying concepts from

computer vision, robotics, and sequence modeling. Motivated by the need to

develop tools for recording and analyzing experimental data for a collabora-

tive study of spatial cognition in humans, we gradually extend an application-

specific model into a framework that is broadly applicable across data modal-

ities and application instances. The core of our approach is a sequence model

that relates assembly actions to their structural consequences. We combine

this sequence model with increasingly-general observation models. With each

iteration we increase the variety of applications that can be considered by our

framework, and decrease the complexity of modeling decisions that designers

are required to make.

First we present an initial solution for modeling and recognizing assembly

activities in our primary application: videos of children performing a block-

assembly task. We develop a symbolic model that completely characterizes the

fine-grained temporal and geometric structure of assembly sequences, then

combine this sequence model with a probabilistic visual observation model

that operates by rendering and registering template images of each assembly

hypothesis. Then, we extend this perception system by incorporating kine-
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matic sensor-based observations. We use a part-based observation model that

compares mid-level attributes derived from sensor streams with their corre-

sponding predictions from assembly hypotheses. We additionally address the

joint segmentation and classification of assembly sequences for the first time,

resulting in a feature-based segmental CRF framework. Finally, we address

the task of learning observation models rather than constructing them by

hand. To achieve this we incorporate contemporary, vision-based action recog-

nition models into our segmental CRF framework. In this approach, the only

information required from a tool designer is a mapping from human-centric

activities to our previously-defined task-centric activities.

These innovations have culminated in a method for modeling fine-grained

assembly actions that can be applied generally to any kinematic structure,

along with a set of techniques for recognizing assembly actions and structures

from a variety of modalities and sensors.

Primary advisor: Sanjeev Khudanpur

Co-advisor: Gregory Hager
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Chapter 1

Introduction

Enabled by large datasets collected from YouTube [58, 36, 41] and powerful

neural classifiers, the field of action recognition has made impressive progress

in “web-scale” applications. Web-scale applications usually involve the classi-

fication of a very large set of short video clips (on the order of tens of seconds

to a minute) drawn from a diverse set of high-level action categories—for ex-

ample, the benchmark dataset UCF101 contains classes like playing guitar,

playing piano, cutting in kitchen, and skydiving. Because they per-

form classification at a semantic (as opposed to physical) level, these systems

can take advantage of contextual information in the scene, such as the appear-

ance of the background or the presence of an object.

Web-scale action recognition is an important task, and is critical for sup-

porting video search and retrieval tools. However, action recognition systems

also have use in situated environments—application-specific settings like col-

laborative robotics, surgical training, or manufacturing [46]. These applica-

tions require systems that are capable of finer-grained distinctions. Rather

than deciding whether a video clip is an instance of cutting in kitchen or
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skydiving, action recognition systems that analyze cooking videos might need

to distinguish between slicing off the stalk of an onion and dicing it.

This dissertation focuses on a particularly complex application of situated

action recognition: perceiving the assembly of an object from its constituent

parts. In this task, a system must make predictions about whether individ-

ual parts are joined and how they are oriented with respect to one another.

Instead of using contextual cues to disambiguate between action categories,

these assembly processes require systems that can reason geometrically and

temporally, relating the structure of an assembly to the manipulation actions

that created it.

1.1 Motivation

Applications of assembly action understanding fall into two broad categories:

automation and analysis. In the automation of assembly activities, a percep-

tion system provides information about the current state of a spatial assembly

to a higher-level planner. In this capacity its function is similar to that of an

observer in the closed-loop control paradigm. For example, when a collabora-

tive robot is working with a human partner to build a piece of furniture or an

industrial part, the robot must be able to perceive which parts are connected

and where, and it must be able to reason about how these connections can

change as the result of its human partner’s actions.

In the analysis of assembly activities, the system’s predicted action se-

quence is used to compute a set of downstreammeasures—for example, whether

an action will result in an erroneous construction. This need can arise in indus-
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trial process monitoring and manufacturing applications, where an automated

system might verify a product as it progresses through the assembly line or be

used to instruct workers on the proper assembly of a new part. Interestingly,

it also can be applied to behavioral studies of spatial cognition. The methods

described in this dissertation were motivated by the development of a system

for automatic, quantitative measurement of spatial reasoning skills in children

and adults.

1.2 Thesis statement and contributions

This dissertation is based on the idea that understanding assembly actions

requires a spatio-temporal model that relates those actions to their structural

effects. We show that such a model has several uses: it enables detailed be-

havioral analyses, aids in the development of multimodal assembly perception

systems, and provides a prior model that can guide the output of neural clas-

sifiers in structured prediction tasks.

In Chapter 3 we present a general method for modeling assembly actions

and their structural effects, and demonstrate its application to the visual per-

ception and analysis of assembly behaviors. This chapter is based on a prior

publication in the IEEE Winter Conference on Applications of Computer Vi-

sion (WACV), along with two applications published in Cognitive Science:

• J. Jones, G. D. Hager, and S. Khudanpur. “Toward Computer Vision

Systems That Understand Real-World Assembly Processes”. In: 2019

IEEE Winter Conference on Applications of Computer Vision (WACV).

2019, pp. 426–434. doi: 10.1109/WACV.2019.00051
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• Cathryn S Cortesa et al. “Characterizing spatial construction processes:

Toward computational tools to understand cognition”. In: Annual Meet-

ing of the Cognitive Science Society. 2017, pp. 246–251

• Cathryn S Cortesa et al. “Constraints and Development in Children’s

Block Construction”. In: Annual Meeting of the Cognitive Science So-

ciety. 2017, pp. 246–251

In Chapter 4 we modify the application-specific perception system of Chapter

3 to address the more general task of sensor-based perception of assembly

sequences. We develop a framework for constructing observation models that

makes use of kinematic sensor-based attributes, and apply our method to

videos of IKEA furniture assembly in addition to the block-assembly scenario

of Chapter 3. The methods of this chapter were published in Robotics and

Automation Letters:

• J. D. Jones et al. “Fine-Grained Activity Recognition for Assembly

Videos”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 3728–

3735. doi: 10.1109/LRA.2021.3064149

In Chapter 5 we further generalize the methods of Chapter 4, focusing on learn-

ing observation models using video-based action recognition. In doing so, we

take the opportunity to revisit the relationship between assembly actions and

a task-oriented state that was established in Chapter 3. This chapter con-

tains previously-unpublished work that was was influenced by a collaborative

publication at AAAI:

4
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• Tae Soo Kim et al. “DASZL: Dynamic Action Signatures for Zero-shot

Learning”. In: AAAI (2021)

In summary, the main contributions of this dissertation are the following:

• A structured sequence model for assembly actions;

• A system for the collection, annotation, and analysis of multimodal data

from a behavioral study of spatial cognition;

• Vision and sensor-based perception systems for recognizing assembly

structures;

• A method for integrating vision-based neural classifiers with a structured

assembly model.
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Chapter 2

Background

2.1 Motivation: Cognitive study

The methods in this dissertation were originally motivated by studies in cog-

nitive science, which examine the development of spatial reasoning skills in

children using the assembly of DUPLO block structures as an experimental

methodology [7, 9].

Figure 2.1: Video collection system
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Figure 2.2: IMU in 3D-printed enclosure

Figure 2.3: Blocks fitted with IMU enclosures

We developed a system that collects multi-modal data during such child

behavioral studies. In these studies, children from 4–8 years of age are asked to

copy one of the six models in Figure 2.4. Each model can be constructed from

a set of eight blocks—four 2x2 square blocks and four 2x4 rectangular blocks,

each in colors blue, yellow, red, and green. During an experimental trial, the

child participant is given the exact set of blocks that is required for the model

they have been asked to copy. A university ethics review board approved all

study procedures, and participants and their legal guardians provided informed

assent and consent, respectively.

Our data collection system records video using a Primesense Carmine

RGBD camera mounted in a top-down orientation, as shown in Figure 2.1.

It also wirelessly streams inertial measurements from each block using eight

7



Figure 2.4: Target models to be assembled from the blocks

mBientlab metawear CPRO inertial measurement units (IMUs). Each DU-

PLO block was custom-modified to fit a 3D-printed enclosure that holds an

IMU and implements the fittings that allow DUPLO blocks to connect to each

other (see Figure 2.2).

The system records video at 30 frames per second, and streams IMU sam-

ples at 50 Hz. All samples are marked with a global timestamp at the time the

data collection computer receives them, allowing signals to be synchronized for

later analysis. After data collection, these recordings are analyzed with the

goal of revealing individual differences between participants. The remainder

of this dissertation is concerned with enabling these psychophysical analyses

by first developing a representation that captures the fine-grained details of

assembly behavior, then developing perception methods capable of automati-

cally inferring these representations from recordings. In doing so, we develop
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a framework for modelling and perceiving assembly activities that applies not

just to the recordings from this study, but to assembly scenarios in general.

2.2 Related work

The assembly of an object from atomic parts is an application of significant

interest in engineering fields, and several prior works in robotics and computer

vision have addressed various forms of this task. However, our motivating

study requires a level of detail and generality that existing methods cannot

provide. In this dissertation we synthesize detailed models of spatial assemblies

developed in robotic perception with general-purpose methods for vision-based

action recognition.

2.2.1 Applications of assembly perception

Since the early 1990s, assembly processes have been examined in the planning

community for the purpose of autonomous construction. Initially, de Mello

and Sanderson [24] used an AND-OR graph to represent and search through

the set of all (error-free) assembly plans. Knepper and colleagues [38] extended

this framework to generate distributed assembly plans (i.e. plans for multiple

workers) and applied their method to furniture pieces. An alternative line

of work uses hierarchical task networks (HTN), which break down the top-

level task into a series of sub-tasks using a tree-like data structure similar

to a context-free grammar (CFG), and which include the previous AND-OR

graphs as a special case [21]. When applied to the assembly of a structure,

the sub-tasks of an HTN usually represent useful or semantically-meaningful
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sub-assemblies (e.g. the nose or tail of an airplane). There is an interest in

learning HTNs from human demonstrations, to do away with the need for

detailed, task-specific plan programming [21, 50].

Several works in the human-robot interaction (HRI) community establish

concrete applications of assembly action recognition systems. Moreover, since

each system is developed ad hoc for the application, they demonstrate the need

for a unifying framework for this task. Gupta and colleagues [16] developed

a user interface that tracks the assembly of a DUPLO model. This work

represents the model’s state using each block’s pose in a voxelized space, and

updates the state as users add to it one block at a time. Although this system

implicitly uses a grammar on block construction when it creates the set of

update candidates, it does not represent the kinematic constraints imposed by

block connections. Furthermore, it only maintains a single hypothesis when

tracking the structure. This is feasible for their interface, whose users build one

block at a time, carefully display the model in multiple viewpoints, and correct

system errors if necessary. But a system that operates autonomously or works

with less-engaged users (like a collaborative robot) will need a mechanism

for operating under incomplete information and for correcting past inference

errors.

Later, Hadfield and colleagues [17] implement an assembly parsing system

for their experiments in child-robot interaction. In this application, a robot

supervises children as they attempt to build planar, rectangular structures

made up of four to six parts. Their system infers the assembly’s structure

by tracking each part’s pose (6-DoF position and orientation) using RGB and

10



depth video and comparing against a set of pre-defined connection hypotheses,

which they incorporate into the state of their tracker. Finally, Wang and

colleagues [68] use an assembly parsing system in a human-robot collaborative

assembly setting. They use a HTN to define an assembly plan for IKEA

furniture, then track progress to assist human builders. Their system tracks

part positions from first-person videos using fiducial markers, and determines

part connections heuristically by comparing the relative pose between two

parts to a set threshold. They also detect connecting and screwing actions,

which the robot used to better orient the part for the convenience of its human

partner.

2.2.2 Spatio-temporal structure for assembly percep-
tion

In robotic perception, methods have largely focused on discerning time-invariant

kinematic structures by using instrumented sensing systems. Although prior

work exists going back to the late ’90s [10, 29, 55], the first complete probabilis-

tic model for identifying kinematic systems was developed by Sturm and col-

leagues [62, 63, 60, 59, 61]. Using a graphical model to account for probabilistic

dependencies between objects, this method estimates a time-invariant kine-

matic system from position data obtained using fiducial markers and, in one

experiment, from plane-fitting on range data. Later, Niekum and colleagues

[53] extend this model to perform changepoint detection of time-varying kine-

matic systems. Using their method, they identify configurations which can

alter the kinematic behavior of a system (for example, the angle at which a

stapler’s hinge locks in place). In a related line of work, Mart́ın-Mart́ın and
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Brock use a hierarchy of extended Kalman filters to estimate static kinematic

systems by tracking features in an RGB-D video stream [49]. They also extend

their method to multiple modalities by including a robot’s end-effector motion

as another observation signal.

These efforts have produced a rigorous and detailed theoretical framework

for the estimation of kinematic structures from a variety of pose or location

data (i.e. object poses, feature point locations, or end-effector configurations).

However, even methods that analyze time-varying kinematic systems currently

lack a framework for describing systems that evolve dynamically—for example,

due to the effects of assembly actions.

Conversely, a thread of work in activity recognition that was roughly con-

temporary with the aforementioned publications in robotics focus on the tem-

poral structure of assembly. These approaches address a simplified version of

the assembly setting in which there is at most one way to connect each pair

of parts and in which once connected, parts are never disconnected. In other

words, they treat assembly actions at the object level, rather than at the level

of intra-object contact points. This prevents systems from recognizing the full

range of assembly actions that may be encountered in realistic deployment

scenarios.

Summers-Stay and colleagues [64] apply an action grammar to the task of

parsing a handful of kitchen and craft activities—namely cooking vegetables,

making sandwich, sewing a toy, card making, and assemble a machine.

This work is part of a larger effort to develop a formal grammar on manipula-

tion actions in analogy to the Minimalist Program (an influential framework
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in the field of theoretical syntax) [72, 71, 15]. Central to their approach is

the MERGE operator, which they use to represent actions and compute their

effects. They observe that just as a noun and a determiner can be combined

to form a noun phrase, distinct object instances are combined into composite

entities during manipulation actions. However, where the non-terminal nodes

in a syntactic parse tree represent interpretable linguistic concepts, the non-

terminals in their activity trees simply represent the order in which objects

were combined. Additionally, this grammar has no mechanism for handling

the disassembly of an object—they note that future work should study “the

ability to build up trees based on disassembly and transformation as well as

assembly”.

A similar effort by Vo and Bobick [66] uses hand-defined probabilistic

context-free grammars (PCFGs) to instantiate a graphical model for the pur-

pose of segmenting and classifying compositional action sequences. They eval-

uate their method on a dataset of of toy-airplane construction videos, which

they created and introduced in the same work, along with cooking and human

activity datasets. Like the work of Summers-Stay and colleagues, this system,

given an assembly video, produces a parse tree whose terminal nodes repre-

sent primitive objects and whose non-terminals represent composite entities

(i.e. partial assemblies of the final product). However, this work additionally

required that non-terminals correspond to interpretable sub-parts, such as the

nose, wings, body, and tail of an airplane. While this requirement suits the

hierarchical structure of a PCFG, it may be unrealistic for actual assembly

parsing applications—any build sequence that does not conform to the pre-
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specified sequence of sub-parts cannot be recognized by their model, even if it

results in a final assembly that is present in the dataset. For instance, their

framework has no way to represent an unexpected assembly sequence in which

someone builds the body, then builds part of the nose, then builds the tail,

and finally comes back to finish the nose.

Outside of assembly applications, recent work in computer vision has be-

gun to address the estimation of structured variables. Within these structured

problems, the degree of precision varies. As an example from action recog-

nition, Koppula and colleagues [39] model human-object interactions using a

spatio-temporal graph. These interactions are described at a relatively coarse

level (for example, “subject opening microwave”). At a more abstract level,

some recent work in computer vision has focused on parsing semantic graphs

from images [30, 70]. Motivated by image retrieval applications, these methods

seek not only to identify and localize objects, but also to estimate relation-

ships shared between pairs of objects (for example, “man riding horse”). At

the finest-grained level are methods which estimate physical image parses.

The sequential scene parsing system developed by Hager and Wegbreit [18]

estimates a graph whose vertices represent objects and whose edges represent

support relationships between objects. Similarly, Jahangiri and colleagures

[27] and Wu and colleagues [69] estimate structured, physical representations

from images, although these representations are not posed as graphs explicitly.

These methods in computer vision and action recognition ultimately fall

short in actual assembly parsing applications because of their coarse-grained

representations of assembly actions. Our application adds a level of detail
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beyond object-level action recognition or adjacency relationships: in addition

to describing which two objects are connected, we also must describe pre-

cisely how they are connected by specifying the exact kinematic relationship

between the two objects. By relating action sequences to an assembly’s kine-

matic structure, our representation captures the full variability of assembly

situations.

2.2.3 Domain-general vision systems for assembly

Most contemporary action recognition research has focused on very large

datasets of human-centric actions that give a high-level summary of the events

occurring in a video. As representative examples, consider two prominent,

publically-available benchmark datasets: Something-Something [13] and Ki-

netics [6]. Each item in these datasets is a short (<30 seconds) video clip with

a single (semantic) action label—for instance, picking up a shoe or washing

dishes. The goal in these evaluations is to assign every clip its correct action

label.

The most successful methodologies for this task have centered on learning

high-quality representations. In most state-of-the-art methods (for example,

I3D [6], TSM [47], and SlowFast [12]), a pretrained object-classification archi-

tecture such as ResNet [22] is inflated in the temporal dimension and fine-tuned

on the target dataset. These methods require minimal input from the user

and, in most circumstances, perform very accurately after they are trained.

Fundamental assumptions in this approach are that the items in the output

vocabulary are abstract, disjoint labels with nothing in common, and that
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model outputs can be treated independently given the neural representation.

Because of this, these methods are rarely applied in situations where video

labels have complex structure, and none of these methods directly supports

user-defined model structure.

Another family of approaches in action recognition focuses on fine-grained

video understanding. This subfield was comprised of smaller datasets with

more complex label structure, which focus more on application-level analy-

sis than high-level human behavior. For example, an item in the JIGSAWS

dataset is comprised of a video of a practice surgery along with the entire

sequence of actions that occur [2]. Methods in this area tend to focus more

on capturing the structure of the task through symbolic reasoning: stochastic

parsers based on regular or context-free grammars captured temporal struc-

ture [26], while attribute grammars represented part-based structure [11, 48].

In general, these symbolic methods provide a direct way to impose constraints

that come from first-principles knowledge about the problem structure. How-

ever, most existing methods require too much user input in the form of ob-

servation models or symbolic grammars. In many applications of fine-grained

action recognition, researchers may not yet have a detailed understanding of

how observations are generated or what structure governs the evolution of an

action sequence. This can lead to models with weak representations and an

arbitrary or non-intuitive grammar. For example, the previously-mentioned

work by Vo and colleagues augments a sequence model with a latent variable

that represents task progress. This purely-symbolic method is highly robust

[66], but it requires a special-purpose model crafted by hand for every appli-
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cation, and the relationship of their latent variable to the task is never made

explicit—thus there is no general principle for applying this method to a new

application domain.

As neural representation learning methods improved, a handful of meth-

ods combined ideas from both pattern recognition and symbolic reasoning

techniques—most notably the segmental CNN [43]. This approach uses a

segmental CRF to guide the output of a VGG-inspired vision module. This

model operates directly on the action sequence, learning a dense set of pair-

wise action-transition parameters which have no direct interpretation in the

context of the task. In Chapter 5 we build on these approaches to produce a

flexible method that can be trained to recognize the assembly of any structure.

We equip this hybrid model with modern neural architectures, eliminating the

need for handcrafted observation models. We also equip it with a part-based

sequence model that jointly tracks the action sequence along with a theoret-

ically meaningful state variable representing task progress. This plays to the

strengths of symbolic sequence models while minimizing the need for ad hoc

modeling.

In summary, the modeling and recognition of assembly sequences is a

broadly-useful task in robotics and computer vision, with a variety of estab-

lished applications. However, most solutions to date have been either too spe-

cific (completely solving a single problem instance), or too general (partially

solving many problem instances) to constitute a reusable framework that ad-

equately captures an unconstrained setting like that of our motivating study.

In this dissertation we combine concepts from symbolic sequence modelling,
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sensor-based robotics, and deep computer vision into a single framework that

applies not only to our application scenario, but to the assembly of kinematic

structures in general.

18



Chapter 3

A first-principles model for
assembly activities

3.1 Introduction

Motivated by a desire to enable better human-robot collaboration and finer-

grained behavioral analyses, researchers in computer vision and robotics have

recently begun to approach the challenging problem of assembly action recog-

nition [16, 17, 68, 33, 25]. In assembly activity recognition, a perception

system must understand the construction of a structure (e.g. a piece of furni-

ture or a toy block tower) as it is built up from a set of primitive objects. This

task requires perception at a finer level of detail than most activity recog-

nition research to date. Typical action recognition methods are concerned

with modeling scene-level information, and usually involve the classification

of a very large set of short video clips, each on the order of tens of seconds

to a minute, and each exemplifying one of a diverse set of high-level action

categories. For example, the benchmark dataset UCF101 entails recogniz-

ing actions like playing guitar, playing piano, cutting in kitchen, and
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skydiving. In this setting, a video’s background is sufficient to distinguish

between most actions (e.g. skydiving and playing guitar). In fine-grained

action recognition, on the other hand, there is less inter-class variability be-

tween categories. [54]. For instance, a system that automatically generates a

recipe from a cooking video will need to distinguish between action categories

defined at a finer level than cutting in kitchen—it needs to understand

what is being cut, and when. These approaches are generally concerned with

perception at the level of objects, rather than scenes.

Understanding assembly actions requires perception at a level of geomet-

ric detail even finer than object-level, which, to our knowledge, has not been

attempted in the action recognition literature to date. Systems must perceive

not only which objects are connected to each other and when, but also where

they are connected—that is, which specific contact points (screw holes, for

example) are connected between two parts. In short, assembly action recogni-

tion requires a framework that unifies both semantic and geometric computer

vision.

In this chapter, we describe a method for performing fine-grained structural

parsing of time-series derived from spatial assemblies. As a case study, we

apply this method to the specific task of parsing the construction of block

structures from video. This process provides an interesting setting to test

methods for very fine-grain geometric inference, time-series video parsing, and

occlusion-robust image parsing.
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Figure 3.1: A finite-state machine that accepts action sequences, and whose
states are kinematic linkages. This system represents all the assembly se-
quences that have the same initial structure as the sequence in Figure 3.2, and
whose actions add or remove the blue and green square blocks.

3.2 Representation of assembly processes

Previous approaches to recognizing assembly actions (or equivalently, assembly

structures) are scattered across several sub-disciplines in vision and robotics,

and each addresses its own task independently. However, in this chapter we

observe that there is a fundamental structure to the problem that is shared by

all methods. We develop a framework that unifies approaches based on action

recognition and approaches based on kinematic model estimation. We treat an

assembly process as a sequence of kinematic structures which transition from

one to another as the result of a (human) user’s action. We define a variety of

comparisons between kinematic linkages and assembly sequences, and describe

how this framework has been used to understand build patterns in studies of

spatial cognition. Then, we use our model to recognize assembly actions in a
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toy block building task.

Figure 3.2: Partial example of an assembly process. The builder alters the
state by adding or removing blocks in specific ways.

3.2.1 Assembly structures as kinematic constraint graphs

Consider as an example the assembly sequence shown in Figure 3.2, in which

a person begins with two rectangular blocks aligned along their long sides and

consecutively adds two square blocks. Each action the builder takes causes the

assembly to transition to a new state, with a different set of kinematic links.

Generalizing the example above, we represent a spatial assembly as a graph

whose vertices correspond to primitive objects (i.e. its component parts). If

two objects are joined to each other, the vertices representing them are joined

by an edge representing the constraint imposed by that joint. Finally, each

edge is associated with a label that parameterizes its constraint.
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Formally, we define the state of a spatial assembly as a edge-labeled graph

G = (V , E , ψ,P ,J , L).

• The vertex set V = {v1, . . . , vn} is a collection of labels identifying ob-

jects.

• The edge set E = {e1, . . . , em} is collection of labels identifying undi-

rected edges that join pairs of distinct vertices.

• The incidence function ψ : E → V ⊗ V is a mapping from edge labels

to the undirected edges they identify. We write each undirected edge as

ei = (vj, vk) with vj < vk.

• The vocabulary of connection points P identifies all the locations on each

object where another object can be connected—for example, a screw hole

in a piece of furniture, or a stud or hole in a DUPLO block.

• The joint vocabulary J ⊆ P ⊗ P parameterizes all possible physical

connections between any pair of objects. Impossible connections, such

as one between two DUPLO studs, are not present in this vocabulary.

• The edge labeling function L : E → J is a mapping from edges to their

physical connections, represented in the joint vocabulary.

In the case of our Blocks study, we represent the connection point vocab-

ulary using a discretized coordinate system whose axes are aligned with the

studs on each part. We define the joint vocabulary to be a discretized ver-

sion of SE(3), representing the relative pose of one block in the coordinate

23



frame of the other (rotations are constrained to ninety-degree increments in

the horizontal plane).

In some situations we will encounter assemblies whose objects form mul-

tiple, disjoint sub-parts. In terms of our graph representation, each sub-part

corresponds to a separate connected component in the graph.

3.2.2 Actions and assembly sequences

A builder assembles an object over time by taking actions that change that

object’s kinematic structure. In general, kinematic changes can take many

forms: for example, many folding mechanisms such as chairs or gates are

capable of locking into a stable configuration with fewer degrees of freedom.

They could also describe changes in physical support relationships between

objects in a scene, as in the work of Hager and Wegbreit [19].

In this chapter we focus on the assembly (or disassembly) of kinematic

structures. We define assembly actions as kinematic changes that add or

remove parts from the structure. Each action consists of an action type

(connect, disconnect, or identity) and a partial kinematic graph δs. Un-

like our representation of spatial assemblies, the partial graph δs only contains

edges for joints that will change. With this information, we can compute the

successor set of any state s:

• connect(s, δs) := s ∪ δs

• disconnect(s, δs) := s \ δs

• identity(s) := s
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Thus, given an spatial assembly and an action, we can construct the re-

sulting spatial assembly. We can also perform the inverse operation: given a

final assembly s′ and an initial assembly s, we can construct the action that

caused this change,

s′ − s :=

⎧⎪⎨⎪⎩
connect(·, s′ \ s) Es ⊂ Es′
disconnect(·, s \ s′) Es′ ⊂ Es
identity(·) Es′ = Es.

(3.1)

Note that this operation is only defined in the case that Es′ ⊆ Es or vice versa:

in any other situation, there is not a single action that transforms s into s′.

Instead, this transformation would require multiple actions.

Although the assembly process’s start and end states can in principle be

any states, in our experiments we will always begin at the state in which no

objects are connected (we call this the empty state, because its edge set is

empty).

3.3 Measuring differences between spatial as-

semblies

Usually, a model’s state space is considered to be a set without any extra

structure. This makes the comparison of states straightforward: the only

possibility is to measure whether they are the same item or not. However,

because its state is grounded in the fine-grained geometric structure of a spatial

assembly, our framework admits analyses at multiple levels. This allows us to

evaluate not only if two states differ, but also to measure how.

The canonical evaluation of equivalence in the kinematics literature mea-

sures if two mechanisms have the same general connectedness structure—that
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Figure 3.3: Schematic diagram illustrating a correct four-block model (left)
and a commonly-encountered, incorrect copy (right). These assemblies are
topologically equivalent, but they are not geometrically equivalent.

is, if their edge sets are equivalent. We call this type of measurement topo-

logical equivalence. This type of measurement characterizes the degrees of

freedom in a linkage, but will not distinguish between two states that differ in

the location of a single block placement. In the context of our experimental

study it is critical to note the exact placement of each block, because minor er-

rors such as the one illustrated in Figure 3.3 (in which the locations of the blue

and green blocks are exchanged) are frequently encountered. To disambiguate

between these assemblies, we introduce the concept of geometric equivalence:

two linkages s and s′ are geometrically equivalent if they are topologically

equivalent (thus they have the same connected components C), and for each

connected component c ∈ C, there exists a rigid transformation that registers

s′c to sc.

3.4 Application to behavioral study

This framework, along with associated data collection, annotation, and anal-

ysis systems, has enabled qualitative and statistical analyses for a project
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studying the development of human spatial cognition [7, 9]. In these studies,

our framework was used to annotate assembly actions for more than 600 videos

and parse them into the kinematic structures they produce. Then, these struc-

ture sequences were aggregated into group-level state machines for the purpose

of visualization and quantitative analysis. Measures used in downstream sta-

tistical analyses include the in/out degree of a state in the state machine, the

edit distance between each path and a selected reference path, and whether a

state is “correct” or not—i.e. , whether it is a sub-assembly of the goal state.

Details of this study, including preliminary findings, have been published in

[7] and [9].

3.5 A first-principles model for classifying as-

sembly sequences

In this section we provide a probabilistic model of an assembly process, from

which we derive an algorithm for recognizing an assembly process from video.

We base our model on a time-series structure inspired by a partially-observable

Markov decision process (POMDP), which originates in the optimal control

literature [4]. However, unlike typical control problems, our task is not to take

a sequence of actions which optimizes some reward function, but rather to

recognize the sequence of states resulting from actions that are being taken by

an agent.
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3.5.1 Observation model

Our graph-based representation of an assembly is sufficient to differentiate

between assemblies with different structures, but not to render an image of the

assembly process. We must additionally specify the global pose pi ∈ SE(3) of

each sub-part (i.e. each connected component in the state graph—recall that

we define the set of a graph’s connected components as C). For notational

convenience, we collect these poses into the variable p =
(︁
p1, . . . , p|C|

)︁
.

We model the joint probability of an image I, generated by state s in pose

p, as

P(It, pt, st) = P(It | pt, st) P(pt | st) P(st) . (3.2)

If we have an appearance and a shape model for each object, and the

camera parameters are known, we can generate a template T by rendering

each sub-part using the poses in p. Disconnected sub-parts may be rendered

independently if we ignore collisions and occlusions.

To account for the error incurred by rendering an idealized template, we

model each pixel of the observed image as an independent Gaussian random

variable, with mean given by the template pixel value and variance σ2 (which

we treat as a hyperparameter). Letting the mask M represent nuisance pixels

in the image,

P(It | pt, st) =
∏︂

i,j /∈M

N (It(i, j);T (i, j; pt), σ
2). (3.3)

To model the pose distribution of each sub-part, we assume the orientation

is uniformly distributed on the unit sphere and the translation is uniformly

distributed on a bounded volume of R3 visible to the camera.
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3.5.2 Process model

In an assembly process, the state st is constructed or deconstructed through the

actions a0, . . . , at−1 of some agent. In the case that we have partial information

about the actions that were taken (for example, the posterior distribution from

a black-box action recognition system), we can use it to construct the state

transition probabilities:

P(st | st−1) =
∑︂

at−1∈A

P(st | st−1, at−1) P(at−1 | st−1) (3.4)

However, it is common that such information is not available. In this case

we can treat the assembly process as a Markov chain and estimate the state

transition distribution directly.

Combining this with our observation model in Section 3.5.1, we obtain a

final expression for the joint probability of all observed and inferred variables:

P(I1:T , p1:T , s1:T ) =
T∏︂
t=1

P(It | pt, st) P(pt | st) P(st | st−1) (3.5)

This is represented by the graphical model in Figure 3.4.

3.5.3 Inference

Given I1:T , we estimate the state sequence using a Viterbi-style decoding al-

gorithm on the graphical model in Figure 3.4. That is, we solve the problem

p∗1:T , s
∗
1:T = argmax

p1:T ,s1:T

P(I0:T , p1:T , s1:T ) (3.6)

using max-sum message passing [40]. The solution to this problem may be

explained as a hypothesize-and-test or analysis-by-synthesis approach. For
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s0 s1 · · · sT

a1 · · · aT

p0 p1 · · · pT

I0 I1 · · · IT

Figure 3.4: Graphical model corresponding to Equation 3.5. Each shaded
region depicts a sequence of input, intermediate, or output variables. From
top to bottom: assembly actions, assembly states, block poses, and observed
keyframes.
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each image, we generate a set of hypotheses about the assembly state. We

evaluate each hypothesis locally by rendering a template and registering it to

the observed image. Finally, we decode globally by choosing the most probable

sequence of hypotheses according to our model.

3.5.3.1 Hypothesis generation

The time-series structure in our problem allows us to efficiently select and

decode hypotheses using the Viterbi algorithm with beam search [28]. At each

time step t, we prune any hypothesis with low probability—i.e., any state st

with

max
pt

P(I1:t, p1:t, s1:t) < Gmax
pt,st

P(I1:t, p1:t, s1:t) , (3.7)

where G is a fixed constant. We then construct the hypothesis set for the

next sample by running our model forward one step in time and including any

state with nonzero prior probability. This adaptive pruning method allows the

system to ignore most states when it is certain about a sample, but to consider

more hypotheses when its uncertainty increases.

Every assembly process begins with a special state in which no objects are

connected to each other. We call this state the empty state because its edge

set is empty, and initialize the hypothesis set with only this state.

3.5.3.2 Template registration

At each time step we evaluate state hypotheses locally using P(It, p
∗
t | st), the

joint probability of the image and the best assembly pose under the hypoth-

esis. We compute this best pose using template registration: once we have

a hypothesis for the block state, we render a template T in a canonical pose
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pc for each sub-part in the assembly. Under the assumption that all object

motion is planar, we can optimize over the pose in the pixel coordinates of the

image rather than in the world coordinate frame.

Since the pose is uniformly distributed, the log probability log P(It, pt | st)

of the image in a particular pose is proportional to the log likelihood log P(It | pt, st),

which itself is proportional to a simple sum-of-squared-errors (SSE) distance

metric. Thus, the registration problem for each sub-part’s template is

R∗, τ ∗ = argmin
R,τ

∑︂
(i,j)/∈M

∥I((i, j))− T (R(i, j) + τ ; pc, s)∥2 , (3.8)

where (R, τ) is a rigid motion in the space of pixel coordinates. This is a non-

linear least-squares optimization problem, which can be solved using standard

methods. For implementation details, see Section 3.6.3.2.

3.6 Parsing Block Construction Processes

We apply the algorithm in Section 3.5.3 to the task of parsing videos of DUPLO

block building activity, previously described in Chapter 2.

3.6.1 Dataset description

3.6.1.1 Controlled dataset

To evaluate our system under conditions which match the core modeling as-

sumptions, we constructed a controlled dataset. We collected video and inertial

measurement data from 30 experimental trials. We performed five examples of

each of the six models in Figure 2.4 ourselves, taking care to ensure that there

was an unobstructed view of each assembly as it was being created. Each video
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in the dataset was annotated with the actions that occurred, along with their

start and end times. These actions were parsed to construct a state sequence

for each video. In total, 46 unique states were encountered in this dataset.

For each state in a video, a video frame that captured an unobstructed view

for each assembly state was hand-picked. In what follows, we refer to these

frames as keyframes.

3.6.1.2 Child’s play dataset

To evaluate the robustness of our system, we constructed a dataset from our

recordings of child behavioral experiments, previously mentioned in Chapter

2. In each of the 145 videos, a child participant attempted to copy one of

the six models shown in Figure 2.4. The data collection and annotation setup

was identical to the one for the controlled dataset. When marking keyframes,

if there was no clear view available for a state, the least-occluded frame was

selected. See [8] for more information about the data collection and annotation

process.

Figure 3.5: Example keyframes from a block assembly video. Each image
represents the clearest view of a block assembly in the video.

As any parent can attest, children don’t always do things the way you

expect. This dataset contains many confounding factors, such as significant

and frequent occlusion of the spatial assembly by children’s hands and arms.

Furthermore, 311 unique states were encountered in this dataset compared to

46 for the controlled dataset, 60.8% of these states have only one observed
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example, and the empty state accounts for 13.8% of all observations. This

results in a highly skewed prior on the state space (see Figure 3.6).

Figure 3.6: Prior distribution of states in the child’s play dataset. Horizontal
axis shows the (sorted) state index, vertical axis shows the state probability.

Figure 3.7: Image preprocessing pipeline

3.6.2 Image pre-processing

3.6.2.1 Background subtraction

We remove the background by fitting a plane to the depth image and masking

all pixels within a set distance from the plane. We also mask the left-most por-

tions of each image, since this region almost never contains the block assembly

and frequently contains distracting objects.
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3.6.2.2 Semantic segmentation

Semantic segmentation is necessary due to the presence of hands and other

confounding objects in the frame. We use a simple method based on color-

space segmentation and majority voting.

Pixel-level classification: To mitigate the effects of partial occlusions,

we need a classifier that predicts whether pixels in the foreground of an image

belong to blocks or hands. We define c0 to be the class of blocks pixels, and

c1 to be the class of hands pixels. Since we do not have a dataset that is

manually annotated with these labels, we constructed a proxy by combining

the keyframes from Section 3.6.1.1, which we assume do not contain hands,

and a set of images from the child’s play dataset, which we assume all contain

some portion of a hand. We constructed the child’s play image set by randomly

selecting 30 videos, then randomly selecting one frame for each state graph in

the video.

For classification we chose a latent-variable mixture model. The latent

variable k indexes a set of K Gaussian distributions with unit covariance, and

is shared between both pixel classes. The probability of an image under this

model is

P(I) =
∏︂

(i,j)/∈M

1∑︂
n=0

K∑︂
k=1

P (cn) P(k | cn) P(I(i, j) | µk) . (3.9)

We estimate the means µk of each Gaussian distribution by training a mini-

batch K-means [57] model on the proxy dataset described above. We esti-

mate the conditional probabilities P(k | cn) by computing histograms of Gaus-

sian components for the clear-view and obstructed-view images, and P(c0) =
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P(c1) = 0.5 by our construction of the training set.

Using this model, we classify each pixel by assigning it to the nearest Gaus-

sian component and assigning the Gaussian component to its most probable

image class. To mitigate potential failures in the background model, we also

assign pixels to the background class if their saturation or depth values are

below set thresholds.

Segment-level classification: We segment frames into superpixels using

the implementation of SLIC [1] in scikit-image [67]. Then, we assign segments

larger than a set threshold to the background to avoid detecting obviously

incorrect objects such as sleeves or arms. Finally we group contiguous pixels

assigned to the same class, giving a set of segments which we use as object

proposals.

3.6.3 Other implementation details

3.6.3.1 Parameter estimation and hyperparameters

We estimate the state-to-state transition probabilities of the model in Figure

3.4 using the empirical distribution of the training set. We set the appearance

model of each block to maximally-saturated colors: red, blue, yellow, or green.

For RGB data we set the the observation variance σ2 to 1, and for depth we

set it to 100. Finally, we choose K = 32 Gaussian components for the mixture

model used during semantic segmentation.

3.6.3.2 Inference

Template registration: We solve the optimization problem associated with

registering a template to an image frame (described in Equation 3.8) using the
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Trust Region Reflective algorithm [5] implemented in SciPy [31]. We initialize

τ at the centroid of each of the image segments classified as blocks in Section

3.6.2.2 and sample 25 uniformly-spaced values on the unit circle for R. We

treat any pixels classified as hands as missing data, leaving them out when

computing the value of the SSE objective. In the case that a block assembly

has more than one connected component, we compute the best assignment of

components to image segments using the Hungarian algorithm [51].

Decoding: To compensate for preprocessing errors and occluded seg-

ments, we apply add-one smoothing [28] to the HMM state transition prob-

abilities when inferring the state sequence the child’s play dataset. We add

one extra count to each transition leading into the empty state, and one extra

count to each transition leading out of the empty state. We set the Viterbi

pruning coefficient G to zero when evaluating the system in Sections 3.7.1.1

and 3.7.1.2, and investigate its effect separately in Section 3.7.1.3. When doing

combined RGBD inference, we register RGB and depth templates separately

and send the sum of their resulting log probabilities as the input to the Viterbi

decoder. This is equivalent to assuming that the color and depth modalities

are independent.

3.7 Experimental Setup and Results

To test the system’s performance in a setting that matches the modeling as-

sumptions, we first evaluate it on the controlled dataset. We train using the

full child dataset and test on the full controlled dataset.

To test the system’s usefulness in a real-life setting, we evaluate it on the
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child’s play dataset. In this dataset, state sequences are annotated for every

video, but keyframes are only annotated for 72 videos. This means we can

train the HMM’s state transitions on all 145 videos, but our test set is limited

to the 72 videos with annotated keyframes. We use leave-one-video-out cross

validation and report average metrics across folds.

3.7.1 Evaluation

We evaluate accuracy, precision, and recall at three levels of granularity. At

the block level, we ask whether the system has correctly estimated which blocks

have been incorporated into the model, i.e. correctly detected vertex mem-

bership in each connected component. The edge level measures whether the

system has correctly estimated which pairs of blocks are joined in the model,

i.e. correctly identified each edge present. The state level is the most precise,

measuring if the system has correctly estimated every block, edge, and edge

label (corresponding to relative block poses).

3.7.1.1 Controlled dataset

Table 3.1 shows the results of our system on the controlled dataset. State

accuracy is above 90% when parsing RGB data, with precision and recall

nearly matching this performance. These results show that our system works

well when the observed data match the expectations of our model. As may

be expected, performance is worse when parsing depth data. Since half the

blocks look identical to each other when color is ignored, the system has no way

of distinguishing between different states with the same adjacency structure.

However, results on combined data show that including depth frames along
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modality state acc. state prec. state rec.

rgb 92.53 91.14 91.14

depth 59.58 51.36 51.36

combined 92.50 91.14 91.14

edge acc. edge prec. edge rec.

rgb 97.11 99.54 97.48

depth 78.55 85.02 84.22

combined 97.11 99.54 97.48

block acc. block prec. block rec.

rgb 98.00 99.62 98.33

depth 87.83 91.60 92.09

combined 98.00 99.62 98.33

Table 3.1: Results, controlled dataset (macro-averages)

with RGB does no worse than RGB on its own—in this situation, it may be

the case that the <8% of confusions from the RGB modality simply do not

have corroborating information in the depth modality.

3.7.1.2 Child’s play dataset

Table 3.2 shows the results of our system on the child’s play dataset. From

these results we see that although system performance degrades at the finest-

grained level of detail, the system’s multiple hypotheses and implicit prior

world model enable robust estimates at a coarser level. Specifically, an edge

precision better than 91% indicates that the system usually predicts a state

that is similar to a subset of the ground-truth state. Again, system perfor-

mance is lower when parsing depth data. The system’s performance is worse
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modality state acc. state prec. state rec.

rgb 62.02 62.84 56.14

depth 32.92 21.42 20.49

combined 59.72 53.47 53.63

edge acc. edge prec. edge rec.

rgb 67.01 91.28 69.19

depth 41.27 50.18 52.80

combined 69.05 84.90 72.25

block acc. block prec. block rec.

rgb 71.44 93.20 73.47

depth 60.40 70.15 77.25

combined 76.05 90.84 79.36

Table 3.2: Results, child’s play dataset (macro-averages)

using combined RGB and depth data than using RGB data alone, which may

be a sign of a sub-optimal fusion strategy—rather than providing corroborative

information, the depth modality likely assigns enough confidence to incorrect

predictions that it decreases the RGB modality’s overall performance.

3.7.1.3 Effect of Viterbi pruning

Although we did not prune any states during inference in sections 3.7.1.2 and

3.7.1.1 to obtain the best possible system performance, we investigate its ef-

fect here. Figure 3.9 and Figure 3.11 show our system’s performance on the

controlled and Child’s Play datasets (respectively) as the Viterbi pruning co-

efficient G is varied. In both cases, it is possible to ignore large proportions

of the state space before noticeable performance degradation is incurred. Fig-
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Figure 3.8: Controlled dataset

Figure 3.9: System performance on our controlled dataset as a function of the
Viterbi pruning coefficient. From top to bottom: state metrics, edge metrics,
and proportion of states visited.
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Figure 3.10: Child’s play dataset

Figure 3.11: System performance on the Child’s Play dataset as a function
of the Viterbi pruning coefficient. From top to bottom: state metrics, edge
metrics, and proportion of states visited.
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ure 3.9 shows that the system’s high confidence on the clear evidence of the

controlled dataset leads to significant efficiency gains. Even at the most con-

servative value for G, it visits fewer than 9% of the possible states on average.

This trend continues, though to lesser effect, in the child’s play dataset results

in Figure 3.11. The challenging nature of the child’s play dataset, in addition

to the transition smoothing we apply into and out of the empty state, lead to

much greater uncertainty during inference. However, the state space can still

be pruned by about 60% on average before performance degrades noticeably.

3.8 Conclusion

In this chapter we have outlined a model for recognition of assembly processes,

derived a probabilistic inference algorithm, and applied it to parsing RGB

videos of a block construction task. We evaluated on two datasets: one in

a controlled setting, and another consisting of unconstrained data collected

from child behavioral experiments. Results show that our system performs

almost perfectly when data conditions match the modeling assumptions, and

continues to give sensible results under much more challenging data conditions.

Results from these experiments suggest new research directions, particu-

larly in fine-grained action recognition and in occlusion-robust computer vi-

sion. In this work the state parser operates on its own, but this model can

work alongside an explicit action recognition system to enable more efficient

and more accurate inference.

The methods and experiments presented here rely on one manually iden-

tified keyframe per state. When there is no single unoccluded view available
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for a state, it may be possible to reconstruct most of the model image by

aggregating information across multiple consecutive frames. Furthermore, re-

moving the reliance on manual keyframe extraction is a natural next step in

developing truly autonomous systems.

Finally, the multiple sensor modalities in our datasets offer a unique chance

to explore methods for RGBD + IMU data fusion. For instance, IMU signals

could be used as input for the explicit action recognition system described

above. Alternatively, orientation estimates could be derived from the IMU

signals to improve template registration. This is addressed in the subsequent

chapter.
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Chapter 4

Multimodal perception for
assembly activities

4.1 Introduction

In Chapter 2 we established that most previous applications for perception of

assembly structures have consisted of ad hoc systems for a particular appli-

cation instance. In many of these cases, the application domains make use

of instrumented sensors such as augmented-reality tags, the pose of a robotic

end-effector, or embedded inertial measurement units (IMUs). A higher-level

framework that unifies these sensor models would reduce the amount of ex-

pertise required to construct these systems, making them more general and

easier to use for practitioners.

In Chapter 3 we developed a generic framework for modeling assembly

sequences, but our perception system used an observation model that was

developed for our particular case study. This limited the generality of our

approach. In this chapter we develop a part-based framework for defining ob-

servation models that is well-suited to applications with instrumented sensors.
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We demonstrate the generality of this method by evaluating on a new dataset

of IKEA furniture assembly, which consists of egocentric RGB videos and AR

markers, in addition to our primary case study.

s0 s1 · · · sM

a1 · · · aM

p0 p1 · · · pM

I0 I1 · · · IM

Figure 4.1: Graphical model depicting the generation of a video sequence from
an assembly process. The shaded regions depict the various processing stages
into which the task is frequently decomposed. From bottom to top: object
recognition, object tracking, kinematic perception, action recognition. Each
variable in the figure corresponds to a segment of the video—i.e. variables
indexed with 0 correspond to the video segment depicting the assembly in its
initial state and so on.
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4.2 A discriminative model for joint classifica-

tion and segmentation

In the assembly action recognition setting, we observe a sequence of discrete-

time samples x = x1, . . . , xT . Here x usually represents a video, but could

also be a sequence of object poses or other intermediate attribute predictions.

Each individual assembly sm is realized as a segment of these samples: the

m-th assembly generates the observation segment xbm , . . . , xem , where bm is

the beginning index of segment m and em is its ending index. We will use s =

s1, . . . , sT to refer to the assembly labels for each individual sample 1, . . . , T .

In this chapter, our systems are tasked with segmenting and classifying an

observation sequence, producing as output a sequence of assembly structures

s = s1, . . . , sT .

In Figure 4.1 we illustrate a graphical model which depicts the generation

of a video sequence from an assembly process1.

We implement our models using a segmental conditional random field

(CRF). This family of models is useful in the assembly action recognition

setting because it generalizes both traditional probabilistic methods (e.g. hid-

den Markov models, which we use in Chapter 3, or their segmental general-

izations) and contemporary neural methods (complex, learned features that

feed into a logistic classifier, which we make use of in this chapter and in

Chapter 5) [65]. Segmental CRFs provide the flexibility to implement first-

principles, probabilistic methods for applications with few to no examples to

1In defining this generative process we are not prescribing that all approaches to assembly
action recognition be strictly generative, or even probabilistic—rather, we use it as a tool
to examine the problem and compare methods.
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train on, to incorporate statistically-learned classifiers (e.g. neural networks)

when datasets are big enough that learning can improve performance, and to

enforce temporal consistency in the model’s output.

4.2.0.1 Scoring assembly sequences

The total score of a sequence under a segmental CRF is constructed by com-

bining the individual scores of each segment with sequence-level information

produced by scoreseq. This function takes two consecutive spatial assemblies

as input, and produces a vector of transition features which model the rela-

tionship between assembly actions and kinematic structure as output. The

total score of a sequence can be expressed mathematically as

score (x, s) =
M∑︂

m=1

score (xbm:em , sm, sm+1)

+W T
seq scoreseq (sm, sm+1) .

(4.1)

In Equation 4.1, bm is the beginning index of segment m, em is the ending

index, and xbm:em = xbm , . . . , xem is the part of the observed sequence cor-

responding to that segment. Wseq is a vector of real-valued coefficients that

scales the effect of each transition feature. In our experiments we use a single

transition feature: the empirical log transition probabilities estimated from

a set of training data (in contrast to our previous work in Chapter 3, these

probabilities are not smoothed).

We score each individual segment using a weighted combination of obser-

vation features, produced by the function scoreobs. These scores model the

relationship between observations and kinematic structures (or actions), and

48



usually include object poses as an auxiliary variable:

score (x, sm, sm+1) =
∑︂
t

W T
obs scoreobs (xt, sm, sm+1) . (4.2)

Again, Wobs is a vector of coefficients that determines the contribution

of each observation feature. Our observation features score state transitions :

they can depend on both the current assembly structure sm and the next

assembly sm+1. This allows us to score action-related evidence and assembly-

related evidence using the same framework—for example, identifying a screw-

driver in use is a good indication that a screwing or unscrewing action is hap-

pening at that instant. On the other hand, observing that two parts move with

a constant relative pose means they are probably connected on the same struc-

ture. For action features, we use the notion of assembly difference a = s′ − s

defined in Section 3.2.2 to compute an action score scoreobs (xt, sm, sm+1) =

score(xt, sm+1−sm) = score(xt, am+1). For assembly features, scoreobs (xt, sm, sm+1) =

score(xt, sm). The exact observation will depend on the characteristics of the

application data—for example, we use distances between estimated object

poses for a furniture-assembly task with AR markers, and we use pixel-level

template registration scores along with IMU-based attributes for the block-

play dataset.

As we just established, a segmental CRF takes advantage of temporal

structure by breaking down a sequence’s score into a sum over conditionally-

independent segment transitions. Our representation of a spatial assembly has

a similar graphical structure, but in this case edges represent physical depen-

dencies rather than temporal ones. For instance, we could measure each part’s

pose independently as a set of unary features corresponding to the vertices of
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the spatial assembly. Likewise, we could measure the relative pose between ev-

ery pair of parts as a set of pairwise features corresponding to the edges of the

spatial assembly. This decomposition is well-suited to data collected from in-

strumented sensors, because it is usually possible to obtain high-quality, direct

measurements from each part (in our experiments, datasets feature per-part

IMU sensors or AR markers).

We use this notion to define a part-based observation model. We factor the

score of a spatial assembly into a sum over the scores of each possible edge,

i.e.

scoreobs (xt, sm) =

|V|∑︂
i=1

i−1∑︂
j=1

score
(︂
f̂ ij (xt) , fij (sm)

)︂
. (4.3)

To score each pair of vertices we estimate the value of some physical attribute

from our observation xt, like the difference in translation between parts i and

j, or whether parts i and j are on the same rigid body. Then, we predict

the value of that same attribute for a hypothesized spatial assembly sm and

compare the similarity between the estimated and predicted values. We define

f̂ ij (xt) to represent the estimated value, and fij (sm) to be the predicted value.

As Sturm and colleagues point out [62], edges in a kinematic constraint

graph are only conditionally independent when the graph is tree-structured

(for example, in a kinematic chain). Our observation model can be interpreted

as a second-order approximation, where higher-order dependencies are ignored

for reasons of computational efficiency. Experimentally, we will show this

approximation performs quite well.
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4.2.1 Segmenting and classifying assembly sequences

To recognize assembly actions we need to find s∗(x), the best labeling of as-

sembly structures for a particular observation sequence x = x1, . . . , xT , i.e.

s∗(x) = argmax
s∈S⊗T

M∑︂
m=1

em∑︂
t=bm

W T
obs scoreobs (xt, sm, sm+1) +W T

seq scoreseq (sm, sm+1) .

(4.4)

In some cases segment boundaries for these labels are already known—

for example, they may be provided by an upstream change point detector

or by hand, as was done in Chapter 3. In this case, the Viterbi algorithm

solves Equation 4.4 in O(|S|2T ) time, where S represents the vocabulary of

spatial assemblies. If boundaries are not known a priori, the sequence can be

jointly segmented and classified using a segmental generalization of the Viterbi

algorithm with worst-case runtime complexity O(|S|2T 2). The quadratic de-

pendence in the sequence length can be reduced to a constant factor O(k|S|T )

if there is an upper bound on the duration of a segment [56] or the number of

segments in a sequence [44].

4.3 Experiments

In this section we present two experiments evaluating the performance of our

method on datasets that were collected during studies targeted at human-

robot interaction or spatial cognition. As yet, no public benchmarks exist for

testing assembly action recognition methods in the general case. However, the

datasets we consider illustrate two realistic application scenarios.
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4.3.1 IKEA furniture

We first apply our model to the furniture-assembly demonstration dataset of

Wang, Ajaykumar, and Huang [68]. In this dataset, 12 participants demon-

strated the assembly of an IKEA chair in two different conditions, resulting

in a total of 24 videos. The authors made 18 of these videos available to us

(corresponding to both conditions for 9 of the 12 participants). In the first

condition participants were asked to assemble the structure as efficiently as

possible, and in the second they were asked to demonstrate its assembly “like

a YouTuber”. The chair consists of six different parts: the left and right sides,

two support beams, a seat, and a backrest. The left and right sides have

three contact points (screw holes), while the rest of the parts have two. In

Figure 4.2 we show the component parts laid out before assembly, and the

finished chair after assembly. In these trials first-person video was collected

from two Logitech C930 cameras which were stacked vertically and mounted

on the participant’s head. To facilitate easier tracking, every furniture part

was also marked with several AR tags.

Figure 4.2: LEFT: IKEA parts before assembly. RIGHT: Assembled IKEA
chair.

We labeled each video with the assembly actions that happen in it. For
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ease of implementation, the partial kinematic graph δs that defines an action

is annotated one edge at a time. All labels have the following format:

action(object1, object2, contact points).

The action can be one of connect or disconnect. Each of the object

arguments identifies one of the six available parts in the setup. The contact

points identify which screw holes in each part are connected to each other.

We parse these action sequences to produce a corresponding sequence of

assembly configurations. Because the beams of the chair are symmetric and

identical, some assemblies are indistinguishable from each other. When pars-

ing, we consider assemblies and actions equivalent up to a swap in the place-

ments of the two beams or a 180-degree rotation of a beam in the X-Y plane.

In total, there are 11 unique assembly structures in the dataset.

4.3.1.1 Observation features

We obtain an estimated part pose from each bundle of AR markers and each

camera using the ALVAR augmented-reality software library. We then average

these pose estimates to obtain a single pose for each part: we compute the

Euclidean mean for the position, and the L2 chordal mean for the orientation

[20].

Using the estimated part poses, we compute the translation between each

pair:

f̂ ij(I) = τ̂ i(I)− τ̂ j(I) = δτ̂ ij(I) (4.5)

Similarly, for each hypothesis assembly structure s, we predict the translation
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between each pair of parts:

fij(s) = τi(s)− τj(s) = δτij(s) (4.6)

We compare estimated part transforms with predicted ones using the Eu-

clidean distance (scaled by a constant factor λ). To prevent the model from

preferring assembly structures with more degrees of freedom, we impose a con-

stant penalty α if a pair of parts is not connected in the hypothesis assembly

structure s:

scoreobs (It, sm) = −
|V|∑︂
i=1

i−1∑︂
j=1

λ∥δτ̂ ij (It)− δτij (sm)∥Eij(s)

+α(1− Eij(s)).

(4.7)

In Equation 4.7, Eij(sm) represents element i, j of sm’s adjacency matrix

E(sm), and parameters λ and α are learned during training.

4.3.1.2 Experimental Setup

We use a leave-one-video-out cross-validation setup. For each fold, we estimate

the log transition probabilities, along with parameters α and λ, on the 17

training videos, and evaluate performance on the single held-out test video.

We set both Wobs and Wseq to one for every observation and sequence feature.

We report frame-level accuracy and edit score averaged across folds, along

with their standard deviations. Frame-level accuracy measures the proportion

of samples that were labeled with the correct state sequence, and evaluates

the system’s overall performance in the joint segmentation and classification

task. The edit score is defined in [42] as 1 − d(s, s′)/max{|s|, |s′|}, where

d(s, s′) is the Levenshtein edit distance. This metric evaluates performance
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at the segment level: it penalizes sequences with mis-classified or mis-ordered

segments, but not sequences that only differ in misaligned segment boundaries.

4.3.1.3 Results

Table 4.1: IKEA furniture-assembly results

Frame Accuracy Segment Edit Score

assembly 69.0±13.3 94.0±9.0

Figure 4.3: Illustration of a recognition experiment for the IKEA task. In this
example, the model confuses the order in which beam parts were connected to
the left side of the chair. The system’s performance on this sequence is close
to is average performance: frame accuracy is 74.8% and segment edit score is
83.3%.

In Table 4.1 we report metrics evaluated on assembly sequences. The sys-

tem’s average assembly edit score of 94% shows that it almost always retrieves

the correct assembly sequence. This is due in part to the sequence model

and the constrained nature of the dataset—errors that might occur if the ob-

servation model were operating independently (e.g. due to part occlusion or

tracking errors) get corrected when when we require that each assembly ac-

tion must be consistent with the last. The average framewise accuracy of the

system is around 70%, which shows that the system is not operating solely
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on sequence-model information. When our system makes an error, it usually

misclassifies an action near the beginning of a sequence or makes small mis-

takes in identifying segment boundaries. In Figure 4.3 we present an example

sequence exhibiting both of these error types.

4.3.2 Toy Blocks

Next, we return to the DUPLO-assembly dataset of Chapter 3. This dataset

is based on the construction of six abstract DUPLO assemblies, and exhibits

some interesting challenges in computer vision that have not yet been solved:

the block model is frequently occluded during the build process, the assembly

and parts can be moved around arbitrarily in the frame, extremely high pre-

cision (<15mm) is necessary in order to determine the exact nature of each

connection (i.e. which studs are joined), there is much more variability in the

attested assemblies; more than 300 unique assemblies result from 145 videos.

We labeled these videos using the same format as the IKEA dataset. In

total, there are 311 unique assemblies in the dataset.

4.3.2.1 Observation features

Our experiments in this chapter build on the system we developed in Chapter

3, which recognizes assemblies from videos alone by rendering template images

of spatial assemblies and registering them to observed video frames. The

former method was precise, but not accurate: the visual modality captures

the complete scene, which contains all the fine-grained detail necessary to

disambiguate different connections between the same pairs of parts. However,

the scene also contains noise, like distracting and occluding objects, and there
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are several opportunities for upstream failures in the processing chain. We

augment this video model with features from the inertial data source, in the

belief that these modalities should complement each other well. The inertial

modality is accurate, but not precise: our inertial signals are not subject to

noise or occlusion, but they can only determine if pairs of blocks are moving

together on the same rigid body. However, including information from the

visual modality should resolve the inertial model’s ambiguities.

Image features As in Chapter 3, we use a pixel-level observation model

for our video features. We render an image of the hypothesis, then register it

to the segment using a sum of square errors objective. We use the score of the

best registration to represent an image’s compatibility with a given assembly

hypothesis:

scoreIMG
obs (It, sm) = max

p∈P(sm)
−

∑︂
(r,c)/∈M(It)

∥It(r, c)− T (r, c;x)∥2 (4.8)

In Equation 4.8, P(sm) is the set of object poses consistent with the constraints

imposed by assembly structure sm, T (·;x) is a rendered template image cor-

responding to object poses x, and M(It) is a mask that identifies skin pixels

in the image. We ignore skin pixels in the registration score because they can

occlude the block models.

Inertial features We incorporate information from the IMU signals by

predicting which blocks are connected (i.e. on the same rigid body). We rep-

resent this quantity using an indicator variable cij. Its value is 1 if parts i and

j are on the same rigid body, and 0 if they are not. Using a learned classifier,
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we estimate the value of cij from observed angular velocity measurements ω:

f̂ ij(ω) = P(cij | ωi, ωj) . (4.9)

We also predict its value for a hypothesized structure s:

fij(s) = P(cij | s) , (4.10)

cij,t can be determined from the assembly structure s by checking whether

object i and object j are in the same connected component (i.e. whether a

path exists connecting vertex i and vertex j). Thus, fij(s) is a one-hot vector.

We rescale both attributes so their entries are in the range (-1, 1) instead

of (0, 1), and we compare estimated part transforms with predicted ones using

the inner product. This way, estimated and predicted attributes contribute a

positive score if their predictions agree, and contribute a negative score if their

predictions do not:

scoreIMU
obs (ωt, sm) =

|V|∑︂
i=1

i−1∑︂
j=1

⟨︂
2f̂ ij(ωt)− 1, 2fij(sm)− 1

⟩︂
. (4.11)

Connection classification We train a temporal convolutional network

(TCN) [45] to predict cij. We use 5-fold cross-validation on the all 145 videos

of the blocks dataset, and hold out 25% of the training data to use as validation

in each fold. We train using cross-entropy loss for 15 epochs, and choose the

model with highest F1 score on the heldout set. We use the Adam optimizer

with a learning rate of 0.001. Our network has 6 layers with the following

number of channels: [8, 8, 16, 16, 32, 32], and kernel size 25. We use a

dropout rate of 0.2. Overall, the performance of this model is quite good: it

retrieves block connections with an accuracy of 92.8 ± 1.5%, precision 87.1 ±

3.1%, recall 93.6 ± 1.8%, and F1 score of 90.2 ± 1.6%.
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4.3.2.2 Experimental Setup

In this experiment, we evaluate our system on the subset of 61 videos with

keyframes using leave-one-out cross-validation. We create the observation fea-

ture vector by concatenating image and inertial features, and we set bothWobs

and Wseq to one for every observation and sequence feature. We use ground-

truth segments and keyframes, making this a sequential classification task

rather than joint segmentation and classification. For each fold, we estimate

the model’s state space and state transition parameters using 61 videos and

test on the remaining one. Since videos are pre-segmented in this experiment,

we only report the edit score (and not the frame-level accuracy).

4.3.2.3 Results

Table 4.2: Results: Block-building dataset

Edit Score (assembly)

VIDEO 61.2±36.3

VIDEO + IMU 77.5±28.6

Figure 4.4: Example of an error produced by our system (model orientation
is arbitrary in these images). TOP: Predicted sequence. BOTTOM: Ground-
truth sequence. The edit distance is 50%, but the model’s incorrect predictions
are similar to the ground truth.

In Table 4.2, we compare the performance of the baseline video-only model
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with the IMU-video fusion system. Including our IMU features improves the

average assembly edit score by 16% absolute, corresponding to a 42% relative

reduction in error rate. This performance is especially impressive in light of

three observations: first, the system is selecting from more than 130 assemblies

at every sample. Second, more than 20% of the assemblies in this dataset only

occur once. Because we estimate the model’s vocabulary from the assemblies

attested in the training set, this imposes an upper bound of around 80% on

our system performance. Finally, system errors tend to be similar to the true

assembly in appearance and shape (in Figure 4.4 we visualize an example).

Table 4.3: Results: Ablation study

Edit Distance Rel. Improvement

IMU 59.7

VIDEO 56.5 5.66

VIDEO + IMU 45.2 25.0

VIDEO + IMU + SEQ 22.5 101

In Table 4.3 we show the results of an ablation experiment examining the

contribution of each feature in our model. The first column is the normalized

assembly edit distance (i.e. one minus the edit score), and the second column

is the improvement in edit distance relative to the IMU-only baseline. The

inertial and visual modalities operate more-or-less equally alone at roughly

60% error rate. Fusing modalities improves the average error rate by 25%

relative to the visual modality alone. Finally, decoding these fused scores

with our sequence model gives an additional 100% improvement in error rate
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relative to the IMU-only baseline. Taking these results together with those of

Table 4.2, we can conclude that all three sources of information contribute to

the overall performance of our system.

4.4 Conclusion

In this chapter we outlined a general method for recognizing assembly actions

from observation sequences, along with features that take advantage of a spa-

tial assembly’s special structure. Then, we evaluated our method empirically

on two application-driven data sources: on an existing IKEA furniture dataset,

our system recognizes assembly actions with an average framewise accuracy of

70% and an average edit score of 90%, while on a block-building dataset that

requires fine-grained geometric reasoning to distinguish between assemblies,

our system attains an edit score of 77%.

In this chapter we show our methods work well in two settings: instru-

mented toy blocks and furniture pieces with AR markers. However, in a prac-

tical assembly-understanding application, it may not be desirable to augment

video observations at all. In these situations, depth cameras could be used as

the main sensing modality, and part identities and poses could be estimated

through point-cloud registration. A similar method was used effectively in

[19].

This work opens up interesting directions for future research. Representing

all possible assembly structures can be both a blessing and a curse: while it

allows us to parse assembly actions at the level of detail required for applica-

tions, it also causes the vocabulary that we must search through to explode
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in size. In this work we have sidestepped the issue by limiting our vocab-

ulary to the assemblies that we encounter at training time, but our blocks

experiments show that further performance gains will require a way to recog-

nize previously-unseen assemblies without searching exhaustively through all

possible assemblies. Second, developing a robust and application-general ob-

servation model for video data could improve the performance and usability of

assembly action recognition systems. This would require learned models that

require relatively few training sequences and which are also robust to partial

occlusions—since 3D models of each part are usually available in assembly sce-

narios, we believe that simulation-to-real transfer is an intriguing possibility

for this line of work.
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Chapter 5

Understanding assembly
activities through video-based
action recognition

5.1 Introduction

As computer vision techniques mature, researchers are beginning to consider

applications in the analysis of everyday tasks. Rather than providing a high-

level summary of what is happening in a video, systems for task-oriented

analysis need to understand how events in a video relate to the goal of the task,

and whether that goal is being achieved. This requires a level of understanding

beyond simple pattern recognition.

To date, approaches to these tasks have tended to fall within two broad

categories: in applications, researchers usually focus on ad hoc approaches

that provide a satisfying solution for a particular problem instance. On the

other hand, researchers focused on core methodology have provided solutions

that apply in many scenarios, but which tend to fall short of the needs of an

actual application instance.
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In this chapter we take an intermediate approach. We give a complete and

general solution to a ubiquitous application in the computer vision, human-

computer interaction, and robotics literatures: namely, the task of under-

standing the assembly of an object from its parts. Our method is comprised

of two components: one focused on application-generic action recognition,

and another focused on application-specific symbolic reasoning. Our action

recognition component eliminates the need for ad hoc observation models,

which required manual specification and hand-tuning in our previous meth-

ods, presented in Chapters 3 and 4. Our symbolic reasoning component, on

the other hand, prevents the system from needing to learn overly complex out-

put mappings, and grounds the model output in the theoretically-motivated

understanding of our application domain, developed in Chapter 3.

Our approach also delves into an interesting aspect of video understanding

applications. We investigate the relationship between the instantaneous ac-

tions that occur in a video and a persistent state related to task progress. The

majority of conventional tasks in video understanding, such as action recogni-

tion, human-object interaction, or video captioning, all occur instantaneously

in time. In contrast, for task-focused video analysis it is essential to track

some persistent state related to task progress, either explicitly or implicitly.

For example, a system that evaluates cooking videos will benefit from the

ability to understand the status of the dish—have the eggs been scrambled in

the pan? Likewise, for furniture assembly a system should understand which

parts are connected to each other. Given conventional methods, it is not pos-

sible to derive this information from an action recognition system directly: the
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relationship between actions and the task state is not known.

In this chapter we show that a system combining out-of-the box neural

action recognition models with a sequence model that relates actions to their

structural effects performs well in tracking task progress. We represent spa-

tial assemblies as discrete vectors whose elements are part connections, and

action-recognition outputs as partial observations of the transitions between

these vectors. We construct perception systems for spatial assembly sequences

and assembly actions based on two principles: first, learn a representation

that implicitly captures the dynamics of assembly videos. Then, use symbolic

reasoning to explicitly enforce structure in the model output.

5.2 Methods

Similar to Chapter 4, in this chapter we are concerned with jointly segmenting

and classifying an input video I, represented as a sequence of frames I1, . . . IT .

However, in this scenario our method produces a generic sequence of labels

y = y1, . . . , yT as output. The label yt could be the current action at, the

current state of the spatial assembly st, or both: the pair (at, st). We use

a hybrid spatiotemporal model with both neural and symbolic components,

which we modify to take advantage of the structure of spatial assemblies and

actions that modify the assembly. The basic approach of this model is twofold:

first, use statistical learning to find a representation of the input video that

implicitly captures the structure of the task. Then, use symbolic reasoning to

constrain the output of the model by tracking task progress along with actions.

This way it will only produce globally-consistent label sequences.
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5.2.1 Symbolic representations for assembly processes

A core feature of our model is that it tracks task progress jointly with the ac-

tion. In Chapter 3, we have established that a natural representation of task

progress for assembly scenarios is the state of the current assembly structure

s, which can be represented as a kinematic constraint graph [35]. We pa-

rameterize a spatial assembly as an edge-labeled graph where nodes represent

parts, edges represent part connections, and edge labels specify the type of

connection (if any) that is present between every pair of constituent objects.

We likewise parameterize an assembly action as a difference between spatial

assemblies. We use the same graph structure to represent which edges are

changed by the action, but augment it with an additional symbol that repre-

sents whether the action is an addition (connect) or removal (disconnect) of

parts. In the special case of a degenerate action (i.e. an action that changes

nothing in the spatial assembly), we define the action to be identity. In

what follows we will refer the to set of all realizable spatial assemblies as the

assembly vocabulary S, and the set of all realizable assembly actions as the

action vocabulary A.

For convenience, in this chapter we represent spatial assemblies as a fully-

connected, undirected graph with N vertices (where N represents the number

of potential parts in an assembly structure). If two parts are not connected,

the corresponding edge is assigned a special background label ϵ. We use Cij

to represent the number of possible connections between parts i and j, and

define the maximum number of possible connections between any two parts

as C := maxi,j Cij. Since an assembly action consists of a kinematic graph

66



and an action label, we can represent the kinematic graph component of an

assembly action similarly. In this case connections represent changes from one

assembly to another, and the background label ϵ means a joint is not changed

by the action.

5.2.1.1 Human-centric and task-centric actions

As mentioned in Section 5.1, most computer vision datasets annotate actions

at a coarser level than the assembly action representation we have just out-

lined. These labels usually give a high-level summary of what is happening

in the video, rather than exactly identifying the status of the task. For want

of better nomenclature, we will distinguish between these paradigms by call-

ing the former ‘human-centric’ and the latter ‘task-centric’. For example, a

video segment that is labeled as the human-centric action screw leg might

be labeled as the task-centric action connect(leg screw 1, tabletop hole

3).

Since our objective in this chapter is to predict the task state from action

recognition scores, we need a way to relate human-centric action labels to

task-centric ones. Our primary observation is that human-centric actions can

be thought of as partial observations of task-centric actions. Returning to

the example of the last paragraph, the human-centric label tells us that a

connection rather than a disconnection is occurring, and that one of the parts

involved is the table leg. However, it gives no information about the other part

involved in the connection or where the connection was made (for instance, if

the second part is a tabletop it likely has several screw holes to choose from).
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5.2.1.2 Part-based embedding of a spatial assembly

In this chapter we additionally introduce a method for constructing a vector

embedding of a spatial assembly graph. Compared with the graph-based rep-

resentation of Chapter 3, this vector representation facilitates visualizing and

comparing sequences of spatial assemblies and is more compatible with the

output of contemporary neural network frameworks. We base our represen-

tation on the observation that because its vertices are consistently ordered, a

spatial assembly s can be uniquely identified by a vector of edge labels. We

map spatial assemblies to their vector representations as follows: start with

a matrix of edge labels L ∈ {0, . . . , C}N×N , whose elements Lij correspond

to the index label of the connection between parts i and j. Since the spatial

assembly graph is undirected, this matrix is symmetric. We flatten the upper-

triangular portion of this matrix into a discrete-valued vector to obtain our

representation e ∈ {0, . . . , C}
N(N−1)

2 . We embed assembly actions using the

same approach, but include an additional dimension that encodes the type of

the action (i.e. connect, disconnect, or identity)—thus for action embed-

dings, e ∈ {0, . . . , C}
N(N−1)

2
+1

For any ordered vocabulary V , it is possible to construct what is called a

“one-hot” vector embedding [52]. In this method, each item is embedded in

{0, 1}|V| by mapping it to the standard basis vector ei corresponding to the

item’s position in the vocabulary. Thus, every entry but one in this vector is

zero. Our method uses the spatial assembly’s graph structure to reduce the

size of the embedding from the number of items in the assembly vocabulary

|S|, to the maximum number of edges in the graph N(N−1)
2

. Thus it scales
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only quadratically in the number of parts, where the alternative could scale

combinatorially.

5.2.2 Neural action recognition

We use a neural network to compute a task-specific representation of the input

video, z := f(x;W ) ∈ R|A|×T , where A represents the action vocabulary. Our

goal is for this representation to approximate the conditional distribution over

assembly sequences: zit ∝ log P(at = i | x).

We implement this process in two steps: first, we train a convolutional

classifier to predict action labels from short clips extracted in overlapping

windows. Then, we train a neural sequence model on the convolutional clas-

sifier’s output. These models are trained independently due to GPU memory

constraints, but the separation is also convenient for purposes of abstraction.

The convolutional classifier produces short-term information about the scene,

and acts as a low-level pattern recognizer. The role of the sequence model,

on the other hand, is to perform mid-level temporal smoothing and/or sensor

fusion. The output of this model is then passed to a structured inference layer,

which performs high-level symbolic reasoning.

To demonstrate the extent to which our method does not depend on

domain-specific modeling, we use the same hyperparameters for all neural

models. All I3D models use a ResNet-50 backbone, and we set the size of

each LSTM hidden state to be 512 dimensions. Models are trained with the

cross-entropy loss and the Adam optimizer. Models are trained on manually

labeled action segments, but in validation and test phases we process videos
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in overlapping windows with fixed size and stride length.

5.2.3 Symbolic reasoning

Given the neural representation z, we use a segmental CRF to impose struc-

tural constraints on the system’s output. For our application, we define the

latent variable of the CRF to be the joint human-centric action and assembly

sequence, y = y1, . . . , yT where yt = (st, at). Although the size of the joint

action and assembly vocabulary (which we denote as Y) in the worst case

is |S||A|, in practice it is much smaller because many actions and assembly

states are incompatible with each other.

5.2.3.1 Scoring

For any CRF, the posterior probability of the latent variable sequence y is

computed by normalizing a real-valued score function

log P(y | z) = score(z, y)− log
∑︂
y

exp score(z, y). (5.1)

To simplify notation, we rewrite the framewise assembly predictions y =

y1, . . . yT as a sequence of M segments with durations d = d1, . . . , dM : y =

(a1, s1, d1), . . . , (aM , sM , dM). The overall score of the sequence decomposes

into a sum over each segment. We break this term into three parts: a tran-

sition term score(am, sm, am−1, sm−1), a duration term score(dm, am, sm), and
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an observation term
∑︁bm+dm

t=bm
score(zt, am, sm). Thus,

score(z, d, l) =
∑︂
m

score(am, sm, am−1, sm−1, dm, z) (5.2)

=
∑︂
m

score(am, sm, am−1, sm−1) + score(dm, am, sm) (5.3)

+
bm+dm∑︂
t=bm

score(zt, am, sm).

We next focus on defining the individual scoring functions in Equation

5.2, beginning with the data term score(z, a, s). Even though our primary

interest is to operate on action scores as inputs, this framework is capable of

scoring both actions and assemblies. We further decompose the data score as

an independent combination of the action and assembly scores: score(z, a, s) =

score(z, a) + score(z, s). For the action term score(z, a), we directly use the

output of a neural action-recognition model such as I3D. We obtain the spatial

assembly term score(z, s) by introducing the edge-label vector e as a latent

variable. In a conventional probabilistic model, we would use a log-likelihood

as our data score and marginalize over the individual edge label predictions to

obtain the final assembly score

score(z, s) = log P(z | s) (5.4)

=
∑︂
j

log
∑︂
ej

P(zj | ej) P(ej | s) . (5.5)

However, for undirected models like the CRF, we have more freedom in the

comparison we choose. In our experiments we use the attribute-based frame-

work we developed in Chapter 4. We compare edge labels predicted from the
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observation x with those predicted from the assembly hypothesis s:

score(z, s) =
∑︂
j

⟨êj(z), ej(s)⟩. (5.6)

The transition prior score(a, s, a′, s′) represents the probability that an ac-

tion a taken when the assembly’s state is s will produce state s′, and action a′

occurs next. Assuming that any action a′ is equally likely, score(a, s, a′, s′) ∝

score(a, s, s′). Our task in this situation is to determine if the human-centric

action a can transform the spatial assembly from state s to s′. Recalling the

discussion from Section 5.2.1.1, we can compute this by checking if the task-

centric action as := s′ − s is in e(a), the set of task-centric actions that are

compatible with a:

score(a, s, s′) =

{︄
0 s′ − s ∈ e(a)

−∞ s′ − s /∈ e(a)
(5.7)

Thus, to transfer this approach to a new application, the only new information

that must be supplied is the mapping e(·). If a dataset has both human-

centric and task-centric labels, this mapping could be learned at training time;

otherwise it must be specified manually. In our experiments we will address

two situations. In the case of our blocks dataset we will recognize task-level

actions directly, reducing e(·) to an identity mapping. In the case of the IKEA

dataset we define this mapping manually, but in a part-based manner: we

combine use each action’s object and verb information (published alongside

the dataset [3]), with the kinematic information of our assembly structure.

The duration scores for each state are defined similarly: any duration up

to the maximum segment duration found in the training set is allowed with

score = 0, but longer durations receive a penalty of score = −∞.
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5.2.3.2 Decoding

In this section we address the problem of decoding (i.e. producing jointly-

most-probable) outputs from our model. In contrast with our assembly-

decoding application of Chapter 4, here there are three scenarios of interest.

We first consider the direct case, where the model inputs are joint action and

assembly scores, and the desired model output is the joint action and assem-

bly sequence. In this case, the output can be obtained through conventional

Viterbi-style decoding on the original score function:

y∗ = argmax
s,a

score(z, s, a). (5.8)

The conventional solution to this problem has runtime complexity O(|Y|2DT )

(where D is the maximum allowable duration for any segment) [56].

In our experiments, we are usually interested in slightly different problem

formulations than direct joint-decoding. For instance, one of the most useful

applications to us is mapping outputs from a neural action recognition model

to the best assembly sequence. In this case, model inputs are action scores, and

the desired output is assembly labels. In this case the observation and duration

models only depend on the current action am. We can eliminate the state

sequence s by marginalizing over it. (Here we introduce ψ(·) := exp score(·)

to simplify notation)

ψ(z, d, s) =
∑︂
s

∏︂
m

ψ(am, sm, am−1, sm−1)ψ(dm, am, sm)
bm+dm∏︂
t=bm

ψ(zt, am, sm)

(5.9)

=
∏︂
m

∑︂
am

bm+dm∏︂
t=bm

ψ(zt, am)ψ(dm, am)ψ(am, sm, am−1, sm−1). (5.10)
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Likewise, we can marginalize over the assembly sequence s to turn the

sequence model into a decoder that only outputs physically-realizable action

labels:

ψ(z, d, a) =
∑︂
s

∏︂
m

ψ(am, sm, am−1, sm−1)ψ(dm, am, sm)
bm+dm∏︂
t=bm

ψ(zt, am, sm)

(5.11)

=
∏︂
m

bm+dm∏︂
t=bm

ψ(zt, am)ψ(dm, am)
∑︂
sm

ψ(am, sm, am−1, sm−1) (5.12)

In each case, we compute the model output in two steps: first log-marginalize

to obtain score(z, d, s) or score(z, d, a), then proceed with a conventional segmental-

Viterbi decoding algorithm.

5.3 Experiments

In this section we show that neural models form a flexible and high-performing

basis for assembly action recognition methods. Then we demonstrate that

additionally including our symbolic parser allows these models to reason jointly

about assembly actions and their effect on the state of the spatial assembly.

We use this mechanism to improve performance on the action recognition task

and to predict task progress when only human-centric action recognition labels

are learnable.

We evaluate our method on two datasets of assembly videos: one focused

on recognizing task progress, and the other focused on recognizing human

activity. Our domain-agnostic approach allows us to use the same observation

model for both datasets. While we use domain-specific knowledge to tailor the

sequence model to each application, our joint action and assembly formulation
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allows us to reuse the same model for both action recognition and assembly

tracking tasks—the only difference is which variable is selected as output.

5.3.1 Evaluation metrics

We focus on five metrics when evaluating our systems: edit score, framewise

accuracy, precision, recall, and F1 score. The edit score represents the number

of insertions, deletions, or substitutions required to transform the system’s

output assembly or action sequence into the ground-truth sequence. It is

normalized by the sequence length and subtracted from 1 to produce a number

between zero and one, with higher scores representing better performance [43].

The framewise accuracy measures the fraction of frame-level labels that were

predicted correctly. The precision and recall measure the system’s performance

on all labels except the background class (i.e. ‘no action’ or ‘no connection’):

they measure the proportion of ground-truth labels correctly retrieved by the

system and the proportion of the system’s labels that match ground truth,

respectively. The F1 score is the geometric mean of the precision and recall.

When evaluating performance on the assembly recognition task, we use

edge-level versions of precision, recall, and F1. Instead of treating each spatial

assembly in the output or label sequence as an atomic unit, we use our method

from Section 5.2.1.2 to represent the spatial assembly as a vector of edge labels.

Our edge-level versions evaluate average precision, recall, and F1 scores over

all the edges in the assembly sequence, rather than over the spatial assemblies

as a whole. As a result, they measure the proportion of edge labels that were

retrieved correctly, rather than the proportion of times the model produces an
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output that perfectly matches the assembly label. When the model’s output is

not perfectly correct, these measurements give us an idea of how much overlap

there is between the model’s output and the ground-truth label.

We trained and evaluated all models using 5-fold cross validation, and

report metrics averaged over all videos in the dataset.

5.3.2 Experiment 1: Blocks

In this section we evaluate on an expanded version of our Blocks dataset from

Chapter 3. This version is made up of 185 videos of children performing a

block-building copy task. As described in Chapter 3, action labels in this

dataset represent the addition or removal of part connections—in other words,

this dataset is labeled directly with task-centric actions, rather than human-

centric ones. By parsing these actions in time, we produce a corresponding set

of spatial assembly labels. This annotation scheme results in a challenging la-

bel set with a large vocabulary that captures fine-grained physical distinctions:

overall there are 424 actions and 458 assemblies.

5.3.2.1 Results: Action recognition

We first performed an ablation experiment investigating the performance of

our method in the action recognition task. Table 5.1 shows the results. The

baseline I3D model identifies assembly actions fairly well, with an F1 score

of nearly 50%. For this dataset, temporal smoothing with a neural sequence

model does not improve performance in a meaningful way: the model slightly

improves the edit distance at the expense of retrieval metrics. It is likely that

instead of learning an improved model, this LSTM learns that the background
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action tends to last for a long time. This would be in line with what we ex-

pect, given that the Blocks dataset is very long-tailed with an over-represented

background class—it is likely that there are simply not enough instances in

the dataset to learn a sequence model of anything else. Finally, our symbolic

module outperforms the LSTM in every metric, with significant gains over

the baseline classifier in edit score and precision. This shows that symbolic

reasoning can improve performance in low-resource scenarios.

model edit acc. prec. rec. F1

I3D 40.9 61.0 56.6 44.8 48.6
I3D+LSTM 48.4 62.3 40.2 34.5 34.4
I3D+CRF 59.7 63.3 61.6 44.5 50.1

Table 5.1: Action recognition results on the Blocks dataset

5.3.2.2 Baseline assembly recognition model

To compare application-agnostic models based on neural action classifiers with

previous work based on task-specific modeling, we first develop a baseline

model for joint segmentation and classification of assembly videos. The vision-

based methods we used previously in Chapters 3 and 4 were based on template

registration, and relied on hand-selected keyframes to function. Due to the

high runtime complexity of the method, it cannot scale to the joint segmen-

tation and classification setting: for each frame in the input, the previous

method requires solving a nonlinear least-squares objective using an iterative

method for every assembly in the vocabulary.

Our approach consists of a similar data-processing procedure to that of
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Chapter 3. We first subtract the background by fitting a plane to the depth

image. Then, we use Mask-RCNN [23] to remove any image segments that

are detected as person class with confidence ≥ 0.5. However, rather than

rendering-based template registration, our method uses a CNN-based object

classifier to predict the label of each edge in the assembly. Thus its runtime

scales only quadratically in the number of parts in an assembly, and can be

sped up significantly by parallelizing operations on a GPU. Finally, we decode

the model’s output using the segmental CRF of [43]. This approach marks

the first fully-automatic solution to the problem of joint segmentation and

classification of spatial assemblies for the blocks dataset.

We used a ResNet-50 model pretrained on Imagenet as the backbone of our

vision-based system. Our model outputs a vector z := f(x;W ) ∈ R|C|×|V|×T .

By training with a cross-entropy loss, we hope to produce a final output zijt ∝

log P(eit = j | x), where eit is the i-th element of the edge attribute vector et

associated with the spatial assembly st.

We started by pre-training this model on synthetically-rendered images of

all the spatial assemblies in our vocabulary. All rendered images are 128×128

pixels in size. When pre-training, we randomize the position and orientation of

the spatial assembly and randomly apply occlusion masks. Next, we train this

model on the videos in the blocks dataset. After removing the background and

any occluding hands or other distracting objects from the frame, we compute

proposal bounding boxes from the resulting image by taking a 128×128-pixel

crop around the center of every contiguous segment. The final output of the
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model is a sum over its output for each proposal segment xp:

score(x, ·) =
∑︂
p

f(xp;W ). (5.13)

When decoding the final output of our model, we define our transition

scores to be binary-valued: if two states differ by the addition or removal of

one block, then a transition is allowed between them. If they differ by the

addition or removal of more than one block, a transition is not allowed.

5.3.2.3 Results: Assembly recognition

We first perform an ablation study investigating the behaviour of our base-

line model. Table 5.2 shows the results. The ResNet model alone achieves

moderately high precision, though its recall is significantly lower. This behav-

ior is expected, because in most frames the entire structure is not visible due

either to partial occlusion or preprocessing errors. However, these missed de-

tections are compensated for by the mid-level LSTM. This model significantly

improves recall, leading to better performance across the board. However, the

edit score is still quite low. By imposing some simple segment transition and

duration rules, the segmental CRF dramatically improves this edit score at no

significant cost to overall accuracy or edge retrieval.

Although the focus of this chapter is on vision, for the sake of comparison

we additionally include the IMU-attribute features defined in Chapter 4 as

input to our baseline model. We fuse the outputs of the IMU and video

streams at the edge level by concatenating them and using them as input

to the LSTM sequence model. Including these features leads to significant

performance improvements: overall, it decreases most measurements of system
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error by half.

Finally, in the last row of Table 5.2 we compare the performance of our

application-agnostic action recognition model to the vision-only baseline. De-

spite incorporating far fewer domain-specific modeling decisions, our action

recognition system performs on par: it has slightly higher edit and accuracy

scores, but slightly lower precision. This likely indicates that our method

still predicts the background class slightly more frequently compared to the

baseline.

model edit acc. prec. rec. F1

RESNET 3.5 35.7 78.0 49.1 58.7
+LSTM 15.4 50.1 83.1 82.1 81.4
+CRF 53.2 52.9 83.8 81.9 81.6
+IMU 64.5 73.5 90.4 93.0 91.9

I3D+CRF 55.5 55.7 79.9 81.3 79.8

Table 5.2: Assembly recognition results on the Blocks dataset

5.4 Experiment 2: IKEA dataset

We also evaluate our methods on the IKEA-ASM public benchmark dataset

[3]. This dataset comes with its own unique characteristics and challenges:

it consists of 372 videos with 33 unique action types. In each video, the

builder assembles one of four furniture items: a TV bench, a coffee table, a

side table, or a drawer. In contrast to the blocks videos, this dataset was

labeled with human-centric actions rather than task-centric ones. We use this

dataset to demonstrate the use of our method in predicting task progress from
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human-centric actions. For the purpose of evaluation, we additionally labeled

a subset of 14 videos (3.8% of the dataset) with ground-truth assembly actions.

These videos were chosen uniformly at random from each furniture item in the

dataset.

Since this dataset has no task-level labels, we need to construct assembly

and action vocabularies. We define the assembly vocabulary as the set of all

valid sub-graphs of the four furniture pieces. We define the action vocabulary

as the set of all valid differences between spatial assemblies: A := {s′−s ∀s, s′ ∈

S ⊗ S : s ⊆ s′}. Finally, we define a part-based mapping from human-centric

actions to task-centric actions by using information provided in the original

dataset publication. This table provides the verb and object for involved every

action. We map every verb to an assembly sign (i.e. connect, disconnect, or

no action), then use this along with part information to construct e(a), the

set of task-centric actions that are compatible with the human-centric action

a.

5.4.1 Results: Action recognition

We report the results of our action recognition experiment in Table 5.6. Our

baseline I3D model gives moderate performance, with edit score and accuracy

both around 45%. Smoothing predictions with an LSTM improves both met-

rics significantly—it gives a 45% and 57% relative relative reduction in error

rate, respectively. However, postprocessing with our symbolic reasoning mod-

ule does not have any meaningful effect on the model’s performance. This

is counter to the results shown on the Blocks task in the previous section,
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and illustrates the effect of dataset conditions on the relative contributions

of these models: while the blocks dataset consists of hundreds of unique ac-

tions that are directly related to the structure of the task, this IKEA dataset

contains only a few dozen unique actions, and only a handful of those are

relevant to task progress. This results in two main practical differences: first,

the overall sequence model for this dataset will be much less sparse than that

of the Blocks dataset, resulting in a model that rules out far fewer hypothe-

sis sequences. Second, the smaller size of the action vocabulary will result in

an easier task for the neural sequence model to learn—this could explain the

difference in performance between the two LSTM modules.

model edit acc. prec. rec. F1

I3D 44.3 45.6 48.5 90.3 61.0
+LSTM 64.4 71.7 73.0 96.9 82.1
+CRF 64.8 71.8 73.1 96.9 82.1

Table 5.3: Action recognition on the IKEA-ASM dataset

We additionally examine performance by furniture type in Table 5.4. We

point out here that the system’s performance on the shelf drawer is significantly

lower than the rest of the furniture items. This is likely because the TV

bench, coffee table, and side table all share a significant proportion of their

sub-structure: all three are comprised of a tabletop and four legs, possibly

with other parts. Thus, the assembly actions for the shelf drawer are under-

represented in training dataset.
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model edit acc. prec. rec. F1

Lack TV Bench 65.8 76.5 78.0 96.3 85.9
Lack Coffee Table 68.0 76.3 77.5 96.5 88.6
Lack Side Table 69.8 80.5 82.8 95.4 88.2
Kallax Shelf Drawer 53.9 53.9 53.9 100 69.1

Table 5.4: Action recognition results per furniture item

5.4.2 Results: Zero-shot assembly recognition

In these experiments we show that even when our sequence model does not

significantly improve performance in human-centric action recognition, it can

still be used to construct a high-performing assembly recognition system—even

when there are no assembly labels to train on.

In the zero-shot setup, we train the neural models of the previous section to

recognize human-centric actions on 80% of the videos in the dataset. The test

set consists of the 14 videos that were labeled with assembly-level actions—

a subset of the remaining 20% of heldout videos. At test time, we use the

neural observation models along with our symbolic sequence model to produce

assembly-level predictions. We evaluate by comparing these predictions to the

ground-truth assembly labels.

We report our results in Table 5.5. Overall, our system performs extremely

well. Even though the action recognition model’s performance is imperfect

(with accuracy less than 72%), on this task our method recognizes assem-

blies with nearly 80% frame-level accuracy and achieves 100% edit score—this

means it perfectly identifies the assembly sequence every time, and the only

source of error is the placement of segment boundaries.
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model edit acc. prec. rec. F1

I3D+LSTM+CRF 100 78.3 90.9 97.6 93.7

Table 5.5: Assembly recognition results on the IKEA-ASM dataset

model edit acc. prec. rec. F1

Lack TV Bench 100 67.3 80.5 98.4 87.9
Lack Coffee Table 100 78.6 90.8 99.7 94.5
Lack Side Table 100 89.3 97.7 97.2 97.4
Kallax Shelf Drawer 100 70.5 90.1 95.3 92.5

Table 5.6: Assembly recognition results per furniture item

5.5 Conclusion

In this chapter we have described a general-purpose method that combines

ideas from deep learning and symbolic reasoning to jointly segment and clas-

sify assembly videos. By jointly modeling assembly actions along with the task

state, we can perform action recognition or track task progress with the same

sequence model. We evaluate our approach on two assembly-oriented video

datasets: one based on toy block play, and the other based on the assembly of

IKEA furniture. On the first, we show our symbolic method outperforms an

LSTM-based sequence model in the action recognition task, and gives compa-

rable performance to a handcrafted baseline model in tracking task progress

while requiring far less application-specific modeling. On the second, we give

the first known results for joint segmentation and classification of assembly

actions and demonstrate strong performance (perfect edit distance) in a zero-

shot task progress tracking experiment. We hope this work will inspire further
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research in neuro-symbolic action recognition and task-oriented video under-

standing.
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Chapter 6

Conclusion

In this dissertation we have developed the task of assembly understanding

by applying concepts from computer vision, robotics, and sequence modeling.

Motivated by the need to develop tools for recording and analyzing experi-

mental data for a collaborative study of human spatial cognition, we gradu-

ally extended an application-specific model into a framework that is broadly

applicable across data modalities and application instances. The core of our

approach is a sequence model that relates assembly actions to their structural

effects. In each main chapter of this dissertation we combine this sequence

model with increasingly-general observation models. With each iteration we

increase the variety of applications that can be considered by our framework,

and decrease the complexity of modeling decisions that system designers are

required to make.

In Chapter 3 we presented an initial solution for modeling and recognizing

assembly activities in our primary application: videos of children performing

a block-assembly task. First, we developed a symbolic model that completely

characterized the fine-grained temporal and geometric structure of assembly
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sequences: it can be applied to any kinematic structure and distinguishes

even such minute differences as reflection or shift errors in the placement of a

part. Then, we combined this sequence model with a probabilistic observation

model that operates by rendering and registering template images of each

assembly hypothesis. Given a coarse 3D model of each block and a sequence

of manually-specified keyframes, we were able to identify the spatial assembly

sequence performed in each video with 62% accuracy.

In Chapter 4 we extended the perception system of Chapter 3 by incorpo-

rating sensor-based observations. The primary contribution of this chapter is a

part-based observation model that compares mid-level attributes derived from

sensor streams with their corresponding predictions from assembly hypotheses.

We additionally addressed the joint segmentation and classification of assem-

bly sequences for the first time in this chapter, resulting in a feature-based

segmental CRF framework. In our experiments we demonstrated an edit score

of nearly 95% in jointly segmenting and classifying assembly sequences for a

new application: egocentric videos of IKEA furniture assembly with fiducial

markers. Then, we showed that incorporating attributes derived from IMU

sensors into the system from Chapter 3 reduced the error rate by more than

40% relative to our previous, video-only implementation.

Finally, in Chapter 5 we focused on learning observation models rather than

constructing them by hand. To achieve this we incorporated contemporary,

vision-based action recognition models into the segmental CRF of Chapter

4. Under this approach, the only information required from a user is a map-

ping from human-centric activities to the task-centric activities we defined in
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Chapter 3. Experimentally, we established the first joint segmentation and

classification results for our primary application of block-assembly videos. We

showed that a baseline neuro-symbolic system based on our original imple-

mentation in Chapter 3 achieved an edit score of 53%, and that including

the sensor-based attributes of Chapter 4 additionally improved performance

to 65%. Compared to the video-only baseline, our action-recognition system

achieved comparable performance while requiring fewer modeling decisions.

We additionally showed that the same model can be used to recognize actions

rather than spatial assemblies, giving a 23% improvement in edit score rela-

tive to an LSTM-based sequence model. We then proceeded to apply the same

framework to a second, larger dataset of IKEA furniture assembly. Here we

showed that using our model, spatial assemblies can be recognized even when

only human-centric action labels are available at training time: in a zero-shot

assembly recognition experiment, we identified spatial assembly sequences with

100% edit score.

This work has culminated in a flexible model that blends contemporary

approaches in deep learning with the classical theories of kinematics and prob-

abilistic sequence modeling. Going forward, there are many opportunities for

applying and improving this methodology. For instance, there is still an open

question regarding how previously-unseen spatial assemblies may be reliably

detected. Our part-based assembly model represents a step in this direction,

but preliminary experiments have shown that conventional neural classifiers

do not learn this structure during training. There are also many alternative

neurosymbolic methods to consider: perhaps jointly training the LSTM and
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CRF sequence models could result in better performance, or an LSTM with the

Connectionist Temporal Classification loss [14] could give similar performance

while reducing the complexity of the symbolic model. Finally, this frame-

work could be implemented in robotic perception systems for more robust

autonomous construction, or improved human-robot collaborative assembly.
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