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Abstract

As the interest in reducing carbon emissions continues, wind energy has become a

prominent component of a carbon-free electrical supply. However, as wind continues

to grow its presence in the electrical grid, a better understanding of its potential

contributions is needed. One of the components that is required for this understanding

is deeper knowledge of the physics of wind farms to improve physics-based modeling

and more accurately predict the wind farm power output. Another component is

discovering the extent to which wind farms can dynamically respond to the needs of

the grid through power tracking where the wind farm tracks a power reference signal

controlled by the grid operator.

In this work, we first present a coupled physics-based model for a wind farm to

predict the total power out of wind farms of arbitrary geometry. The model combines

two reduced order models, the first with a smaller scale on the order of individual

turbines, and the other with a larger scale on the order of the scale of the whole farm.

By coupling these two models, and the physics that they capture, the coupled model is

able to provide insight and information on the behavior of the wind farm and predict

the power output for multiple wind farm configurations. The results are verified with

multiple large eddy simulation (LES) wind farm codes.

This work also presents a control-oriented wind farm model and its application to

active power control. This control-oriented model uses a graph theory approach to

represent the wind farm and the interactions between the turbines. This enables the

model to represent dynamic changes that affect the wind farm, such as a change in
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wind direction or a dynamic yaw change. The effect of such changes is challenging

to represent with conventional wake models. The model was validated for both

representing a dynamic wind direction change and a dynamic yaw change. This model

was incorporated into an inner and outer loop control framework where the outer loop

consists of a yaw model-constrained optimal control and the inner loop consists of a

pitch control. The controller was applied to an LES wind farm plant and showed the

potential of dynamic yaw control in different wind farm operating conditions.
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Chapter 1

Introduction

In the past few years, the installed capacity of renewable energy sources, including

solar, wind, and hydro-power, has grown significantly [1]. Additionally, the demand for

these renewable sources continues to grow as low or carbon free energy sources. These

sources are attractive to not only replace current sources of electricity, but also to aid

in electrifying other sectors, such as transportation [2–4]. As a prominent renewable

energy source, wind energy will play a large role in this shift. Some estimates have

wind energy growing by as much as a factor of 10 by 2050 [5]. Indeed, wind energy

has already grown from a niche provider of electricity to providing about 5% of the

global electricity demand [6]. With the opportunity for growth and low emissions,

wind energy is poised to become a much larger part of our electricity supply.

However, the variable nature of wind energy could pose a challenge in incorporating

more wind energy sources in the electrical grid. The current electrical grid in the

United States operates at a frequency of about 60Hz, which is an artifact of AC

power currents produced by electromagnetic generators, and needs to stay very close

to this operating frequency [7]. Conventional generators not only meet the demand for

electricity, but also actively participate in frequency regulation to ensure the grid is

adequately balanced and avoid blackouts. Unlike conventional generators, the output

of a wind farm is heavily dependent on the current weather conditions and also not

always predicable in advance, adding uncertainty to the power output [8]. As wind
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energy becomes an increasingly larger portion of the electricity supply, a wind farm

must also be able to provide some generator services to enable grid stability [7, 9].

While some of these services can be achieved by curtailing the output of wind farms so

they contain a reserve of power, it is against the economic incentives for a wind farm

to operate below maximum power [8]. The goal of this research is then to understand

the physics of wind farms in more depth so that the power predictions become more

accurate, and also to enable wind farms to provide generator services with as little

curtailment as possible.

1.1 Understanding and Modeling Wind Energy
Physics

The first goal mentioned above is improving our understanding of the physics inside a

wind farm. The physics of a wind farm start with the atmospheric boundary layer

(ABL), which is the layer in the earth’s atmosphere that interacts with the ground.

The kinetic energy in the atmosphere is a result of the uneven heating provided by the

sun and the Coriolis forces from the earth’s rotation, which prompts the movement of

the air in the atmosphere [4]. The ABL typically has a height of 1-2 kilometers and

changes throughout the day in response to the heating of the sun [10]. Depending

on current conditions, the ABL can promote more mixing in the air (convective), or

depress mixing (stable), with the intermediate regime between the two being called

the neutral ABL [11]. The velocity profile for a neutrally stable ABL most often

follows the logarithmic or Monin-Obukhov similarity law [10]. This neutrally stable

ABL will be the atmospheric condition addressed in this work.

Wind turbines exist within this turbulent layer and extract energy from the flow

when the wind turns the blades of the wind turbine. This extraction results in an

area of reduced velocity behind the turbine called the wake of the turbine, which is

convected and eventually dissipated by the ABL. Turbines in wind farms interact with
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each other through these wakes, which results in aerodynamic coupling throughout the

wind farm. One of the main goals of physics-based modeling is to better understand

the behavior and the interactions between the wakes in the wind farm, as well as the

interactions between the wakes and the ABL, in order to better predict the future

behavior and power output of the wind farm.

1.1.1 Physics-Based Analytical Modeling

Analytical modeling of wind farms has traditionally fallen into two main categories:

(1) wake models that focus on the velocity deficits (wakes) of turbines and the

interactions among the turbine wakes and (2) top-down representations that examine

the overall effect of the farm on the ABL. Wake models describe the magnitude, profile

and evolution of the velocity deficits arising from the mean-flow kinetic energy and

momentum extraction by individual turbines. This velocity deficit profile and wake

growth law is then combined with a superposition law, which is used to capture wake

interactions between upstream turbines in order to predict the mean velocity seen by

each turbine in the array. There is a vast literature proposing different velocity deficit

representations that range from analytical functions [12–16] to experimental [17, 18]

or data-driven parameterizations [19]. The wake growth is assumed to be linear to

represent turbulent diffusion. A number of different superposition laws for the deficits

[20–23] have also been proposed that rely on a the physics principles of kinetic energy,

mass balance and momentum balance, most commonly leading to quadratic or linear

superposition of the wakes. For example, the widely used Jensen-Katic model [12, 24]

assumes a top-hat velocity profile, linear wake growth and a square superposition of

wake velocity deficits.

On the other hand, top-down representations do not model detailed array velocity

distributions but instead consider large scale interactions of the wind farm with the
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ABL. When the ABL encounters a wind farm, a new developing boundary layer forms

where the wind farms can be thought of as a new roughness encountered by the ABL

flow. Many of these models are based on the notion that in the ‘fully developed’ region

of a large wind farm, the boundary layer is no longer growing and the wind farm is in

balance with the ABL. This concept was introduced by Templin in 1974 [25] and a

complete model was proposed by Frandsen [26], where they specified the last rows

(latter portions) of the farm as the fully developed region, where the farm causes a

modification of the mean velocity profile in the ABL. A number of subsequent models

have built upon the Frandsen top-down model. Such models incorporated a more

detailed description of the mean velocity profile in the turbine array boundary layer

[11], while the theory of developing boundary layers [27] enabled the model to be

applied in both fully developed and developing regions of the wind farm. Top-down

models have also been extended to include various atmospheric stratification conditions

[28, 29] and used in larger atmospheric simulations [30].

In general, wake models are applied to predict the power of individual turbines and

wake behavior in the farm, while top-down models provide an average view that gives

information on the physics of the ABL flow and the large-scale behaviors that begin

to affect large wind farms (deep array effects). Coupled models that seek to leverage

the relative strengths of both approaches have been shown to improve the accuracy of

the hub height velocity estimates and total wind farm power output predictions over

either type of model in isolation. The Frandsen model [31] represents a precursor to

this approach in that it linked the top-down model in the fully developed region to a

wake model at the front of a farm through an intermediate region. While this model

recognized the benefits of both wake and top-down models for different wind farm flow

regimes, the two models were not integrated and the information exchange between

the regions was limited to the transition from one to the other over the intermediate

region.
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The Coupled Wake Boundary Layer (CWBL) model proposed by Stevens et al.

[32, 33] demonstrated that two-way coupling of a wake and top-down model led

to further improvements in power output predictions. This model and subsequent

extensions showed excellent agreement with LES of operational wind farms [33]. As

with the Fransden [31] model this CWBL required a priori identification of developing

and fully developed regions of the farm. In addition, the CWBL model [33] assumed a

regular rectangular array of wind turbines since regular streamwise (sx) and spanwise

(sy) spacings needed to be prescribed, precluding its direct application to wind farms

with arbitrary turbine layouts.

Many wind farm sites have topographical features that dictate irregular wind

turbine arrangements, which complicates the a-priori identification of fully developed

regions and further motivates the development of models that can be applied to a

wide-range of turbine configurations. In Shapiro et al. [22], another coupled model

was proposed that built on the ideas of the CWBL model. This model took important

steps toward full generalization to arbitrary layouts by localizing the top-down portion

of the model to each turbine instead of averaging over an entire region of the wind

farm. A local top-down model for the developing boundary layer [27] then provides a

description of the growth of internal boundary layers for each turbine. This method

enables the model to be applied in both the developing and fully developed region of the

farm and eliminates the need for an empirical specification of the evolution of the wake

growth parameter as a function of distance into the farm. The Shapiro et al. model

also improved upon the CWBL implementation through enhancements of the wake

model including a super Gaussian velocity deficit (wake) profile that approximates a

top-hat profile near the turbine, and then transitions smoothly towards a Gaussian

profile [13, 22, 34] further downstream. Linear superposition was used to account for

wake interactions.

Coupled models have shown great promise in leveraging multiple approaches to

5



wind farm modeling to incorporate more of the physics into the modeling and have

the potential to create models with less parameterization. This approach is thus

worthwhile investigating both for use in modeling irregular wind turbine arrangements

and for use in learning more about wind farm dynamics in general.

1.1.2 Control-Oriented Dynamic Modeling

In the previous section, we discussed models that focus on the in-depth physics of the

wind farm and attempt to capture key aspects of the mechanics of the wind turbine

interactions. Recent work has made significant strides in refining these models in

combination with a variety of wake superposition approaches to generate accurate

estimates of the total farm power output over a range of turbine layouts for fixed

wind directions, see e.g., [20, 22, 23, 32]. Changes in total wind farm power output

for different wind directions have also been characterized in terms of fixed wind inlet

angles to a given wind farm [35]. However, another aspect to consider in the study of

the behavior of the wakes in a wind farm is the dynamic response of a wind farm to

disturbances such as wind direction or dynamic yaw changes. Few studies address the

dynamic behavior of the farm as the wind direction changes, although accounting for

the effect of these changes has been shown to improve power output estimates [36]

and produce more effective wake steering control versus approaches that assumed a

static wind direction [37, 38].

Prevailing methods typically account for small changes in wind direction as an

uncertainty that is included in simulations or models by taking a weighted average

of the results over a range of wind inlet angles surrounding a desired value. Prior

work has demonstrated that averaging the results of Reynolds-averaged Navier-Stokes

(RANS) wind farm simulations in this manner improves predictions of the velocity

deficit in several wind farms when compared to wind farm experimental observations

[39]. This approach also improves the agreement between wake model power output
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predictions and field data [40].

Taking the further step of accounting for dynamically changing wind direction or

sweeps over a range of wind directions is challenging and computationally intensive.

Previous approaches include incorporating the directional changes within a high-fidelity

precursor simulation that then generates inflow conditions for a second LES of the wind

farm [36, 41] as well as simulations with a dynamically changing reference frame [42].

Other work employs a nested simulation framework, where weather phenomena are

modeled in the larger domains, and the wind farm is located in the smallest domain

[43]. These detailed studies have provided a greater understanding of the phenomena

and highlighted the difficulties of modeling the associated dynamic changes in wind

farm power. For example, the LES studies of Munters et al. [36] show that a wind

farm can experience a sharper drop in power output during a dynamic wind direction

sweep than would be predicted through a series of static simulations at each different

but constant wind inlet direction. This unforeseen reduction in power output can have

a number of impacts in terms of forecasting the power available from the wind farm

for the power grid. Control approaches require capturing the effect of these dynamics

in real-time, which limits the applicability of the computationally expensive prior

approaches based on LES or nested models.

In terms of yaw, while static wind turbine yaw has been studied extensively,

resulting in many models for static yaw modeling, both in two dimensions and three

dimensions [44–50], there are few models that account for time-dependent changes in

yaw. The formulation outlined in [44] can represent dynamic changes as it is based

on a partial differential equation (PDE), however the dynamic formulation has not

been validated. The FLOw Redirection and Induction in Steady State (FLORIS)

model from National Renewable Energy Laboratory (NREL) has been adjusted to

take dynamic changes into account between turbines by implementing time delays in

the travel of information between turbines [51]. A similar approach is also employed
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by [52] along with an ensemble Kalman filter to incorporate measurements. Although

the time scale of yaw changes it usually slow compared to pitch changes, accurate

representations of how dynamic yaw changes propagate are important for accurate

wind farm power predictions.

In order to characterize the complete capability of wind, both a deep physical

understanding of wind farm interactions and an understanding of the transient response

of the wind farm to changing conditions are needed.

1.2 Error Correction and State Estimation in Wake
Modeling

Though great progress has been made in modeling the wake interactions in wind

farms, both in static and dynamic situations, all reduced order models must leave out

details of the flow in order to increase the efficiency of the model. These details can be

important, particularly when designing controllers for wind farms. It has been shown

that even as little as a 5% error in, for example, the tip speed ratio, which is the

ratio between the tangential speed of the tip of the turbine blade and the freestream

incoming wind velocity, of a turbine can result in energy loss of 1-3%, which can

contribute to significant energy losses over a year of energy production [53]. In light

of this, work is also being done on how to incorporate measurements taken from a

wind farm to increase the accuracy of the reduced order models.

Wind farms collect an array of data while operating, some of which is called

SCADA (Supervisory Control And Data Acquisition) data. Each turbine collects

measurements of the rotor speed and the power output of the turbine. Additionally,

each turbine typically has an anemometer to measure the wind speed and a wind vane

to measure wind direction. These instruments usually sit on top of the nacelle of the

turbine. While rotor speed and power measurements are typically accurate, the wind

speed and wind direction measurements are prone to errors due to the disturbances
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in the flow that the the rotor and nacelle structure create. Finally, meteorological

masts measure wind conditions in specific locations, and lidar scans can give wind

conditions over an area. [53, 54]

Many research studies have focused on how to use these measurements to improve

wind farm predictions and supplement the wake models used in control. In pursuit of

this, SCADA data and lidar scans have been used to reconstruct the flow conditions

and estimate parameters over the farm in an operational wind farm [55–59], as well

as used to improve the predictions made by wake models. One way of incorporating

measurements is to filter the power measurements from the freestream turbines in the

farm to find an inflow profile for the wake model [22]. This is an improvement over a

uniform inflow since it can represent the varying wind conditions that can occur over

wind farms that span multiple kilometers of space. This is a beneficial correction, but

complex wake interactions in the farm can also necessitate more involved methods to

update the reduced order models.

One of the most common updating methods using wind farm measurements is

the Kalman filter, which updates the estimated states using an optimal gain [60].

When used in wind farm applications, there are a number of variations on the original

Kalman filter formulation that are applied, such as including a Bayesian optimization

scheme [61]. Other forms of the Kalman filter include the extended, unscented, and

ensemble Kalman filters [56]. The ensemble Kalman filter, in particular, is used

extensively in problems with larger state space variables, as would arise in large wind

farms, since it approximates the error covariance matrix using ensembles of the model

to reduce the necessary computations [62]. Ensemble Kalman filters have been shown

to be successful in updating the parameters of wake models to more closely track

the wind farm plant conditions [56, 63–65]. Kalman filtering, particularly ensemble

Kalman filtering, is a useful tool to incorporate wind farm measurements into the

wake model to update the model in real time and remains a popular topic of research
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in this area.

1.3 Active Power Control in Wind Farms

The predominant goal of wind farm control is to increase the capacity factor for a

wind farm. In addition, it is hoped to both increase power and decrease loading

on individual turbines, when possible, and to better integrate wind farms into the

electricity grid [66]. An important part of these goals is being able to provide ancillary

services, which are the services necessary to ensure reliable transmission of power, to

the grid. These services include things like scheduling and dispatch, reactive power

and voltage control, operating reserves, and frequency regulation. In this thesis, we

focus on frequency regulation, which involves using electricity producers to balance the

grid frequency. Since wind farms are compensated for their power production, one of

the focuses of active power control of wind farms is enabling the participation of wind

farms in frequency regulation while minimizing the reduction in the bulk power of the

wind farm. The control actuation of turbines occurs through changing the nature of

the turbine wakes and how much power is extracted from the flow. Three ways that

turbines are controlled are the thrust coefficient, which would be implemented using

generator torque or blade pitch control in the field, yaw, which rotates the turbine in

both directions around the tower of the wind turbine to affect the angle of the incoming

flow, and tilt, which moves the turbine to tilt upwards or downwards, using the nacelle

as the axis of rotation [67, 68]. In a dynamic framework, the thrust coefficient and

turbine yaw are the two most common control strategies. These approaches have been

implemented both separately and in tandem. Studies have been done examining the

effect of tilt [68, 69], however it remains a sparser area of study. This lesser interest

could be due to the structural considerations involved with tilt, which could include

considering the tower of the wind turbine when determining the direction of the tilt

angle and needing the turbine to be able to withstand a relatively large angle of tilt
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for years, as noted in [70].

The following studies employ the thrust coefficient of a wind turbine, which

modulates how much power the turbine is extracting from the flow at any given

moment, as the control variable in active power control. There have been studies

focusing on a power tracking using a distributed optimization framework in the [51, 71],

others that additionally attempt to minimize the loads on the turbines in the farm [72]

or maximize the available power while following a signal [73]. However, all of these

studies use a simplified model for the wind farm, which could reduce their effectiveness.

Studies have also been done using LES as the wind plant, such as in [74], where model

predictive control (MPC) was used to implement a row-based controller on an LES

wind farm plant. The control was effective, but dependent on the turbines being

arranged in a regular array. Another study uses LES as the model in MPC, which

enables full knowledge of the flow to use pitch control to maximize the power output

[75]. Alternatively, PI controllers have also been designed to work on a wind-farm

level, however, in some studies the farm was severely derated in order to provide

enough power for power tracking [76].

Yaw control, or wake steering, has also been used in wind farm control. Due to the

slower timescale of yawing, i.e., the fact that the turbine can only be yawed at a finite

speed, and yawing causes wear on the material components of the wind turbine, most

work has been done on static yaw optimization. In these studies, it has been shown

that yawing can increase the overall output of the wind farm, both in simulations

[77, 78], in experiments [79, 80], and more recently in field tests [47, 81, 82]. In a

dynamic setting, yaw control has mostly been used for power maximization rather

than power tracking. It has been implemented using a model free approach, such

as in [83], in a wind tunnel test. Other approaches include using a heuristic wake

model or LES to generate set points for the yaw controller [82]. Steps have also been

taken to implement a more dynamic wake model in yaw control, which takes into

11



account the delay between turbines [52]. While much work has been done in adjacent

areas, dynamic yaw is not typically applied to power tracking on its own due to its

slower timescale. It was applied in one study using a linear model derived from data

and performed well. However, since the model is derived from a specific data set,

application of the model to operating conditions outside of the initial data set could

reduce the effectiveness of the control [84].

In addition to being applied separately, yaw and pitch control have also been

combined in several applications. Here, we will focus specifically on studies where LES

was used as the wind farm plant, since these studies provide more realistic wind farm

conditions than less detailed wind farm models. The study in [85] is a successor to

the pitch power maximization study [75] and uses LES as the model in model-based

optimal control. By using adjoint equations to find the gradients, this study was able

to use both yaw and the thrust coefficient to dynamically maximize the power output,

finding gains of 25% − 34% in the power output over a control period of 30 minutes.

This paper is an excellent proof of concept for the potential of combined yaw and

pitch control. However, currently, LES is too computationally expensive and time

consuming to use for real-time control applications. Both control methods were also

used in [66] for power tracking, where the yaw control was only activated if there was

not enough power in the farm to meet the power reference signal. This study used

an inner control loop for pitch and an outer control loop for the yaw, both based on

MPC. However, the yaw optimization was performed only every fifteen minutes and

only considered static yaw configurations. Using both yaw and thrust control together

remains a challenging and open area or research that needs further study.

1.4 Outline

This thesis works towards achieving a better understanding of wind farm physics

in order to attain more accurate power prediction as well as towards developing a
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dynamic control-oriented model capable of providing insight into the dynamic response

of wind farms to changing conditions. Furthermore, it works towards including active

yaw control in power tracking using yaw and pitch actuation. The subsequent chapters

include (1) the development and analysis of a physics-based coupled model for arbitrary

wind farm geometries, (2) building a control-oriented model based on graph theory

to capture the dynamic response of the wind farm, (3) incorporating measurements

available to operating wind farms to correct modeling errors, and (4) developing a

pitch and yaw controller that provides power tracking of a power reference signal. The

rest of the thesis is organized as follows.

In Chapter 2, we discuss the physics-based coupled model and validate it on several

nonuniform wind farm configurations. In Chapter 3, we present the control-oriented

graph based model. Chapter 4 covers the incorporation of wind farm measurements

into the wake models for error correction. In Chapter 5, a yaw and pitch controller is

presented and applied to an LES wind farm plant. Finally, conclusions and future

work are presented in Chapter 6.
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Chapter 2

Wake Model Coupling: The Area
Localized Model

In this chapter, we present a coupled, physics-based model, the Area Localized Coupled

(ALC) model, that seeks to improve our understanding of the wake interactions in the

wind farm and to predict the power output of the wind farm. The approach taken

also further advances the goal of increasing model applicability to a wider range of

wind farm geometries and inflow conditions.

The localized approach employed in the ALC model and the model described

in Ref. [22] have the added advantage of providing significantly more information

about the flow field than conventional wake models, top-down models, and the original

CWBL implementation [33]. For example, these prior approaches do not typically

furnish information about the velocity field such as turbulence conditions (friction

velocities above and below turbine layer) within each cell. They instead provide only

mean velocities or use empirical correlations for turbulence intensities, which make it

more difficult to quantify loading characteristics for the turbines.

In this work, the ALC model is applied to two wind farms and its predictions are

compared to LES. The first wind farm is arranged in a circular configuration that

provides an example of a non-rectangular array with streamwise and spanwise spacings

between turbines that vary throughout the farm for any given wind direction. We
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provide a detailed analysis of the velocity predictions for each turbine in this circular

farm over a range of wind inflow directions to illustrate the use of the local turbine

area in the computations and to evaluate the accuracy of the predictions of the model

at both the turbine and farm level. A second wind farm consisting of two regions,

one with regular and the other with random turbine placements, is also considered

over a smaller range of wind directions. The results illustrate the benefits of the

area localized approach in coupling physics-based models for both the turbine wakes

and the ABL and to provide good predictions of the local velocity field and power

produced by individual turbines as well as the total wind farm production.

2.1 Area Localized Coupled (ALC) Model

The ALC model couples a wake model with a super-Gaussian wake profile and linear

wake superposition, with a top-down model for a developing wind farm. Each turbine

has its own instance of the top-down model that is localized to its own “area” and

described by the local planform thrust coefficient. The planform thrust coefficient

represents the momentum extracted from the flow in a developing internal boundary

layer upstream of each of the turbines by accounting for their axial flow resistance

(the localized internal boundary layer concept distinguishes the ALC model from the

[22] approach). The coupling is imposed through a minimization of the difference

between the area average velocities computed from the two models, see Fig. 2-1. This

matching condition is used to determine the wake expansion coefficients for each local

turbine cell. The following subsections summarize the wake model and the top-down

model that are coupled in the ALC model, see Fig. 2-1.

2.1.1 Wake Model

The aim of the wake model is to calculate the streamwise velocity at the hub height of

each turbine in the wind farm. The wake model used here is developed in [22]. When

15



Figure 2-1. Schematic diagram illustrating the ALC model, where the wake
model (left, top view) and top-down model (right, side view) are connected with the
wake expansion coefficient kw and the planform thrust coefficient cft (describing the
momentum loss per unit horizontal area). δu is the wake velocity deficit, U∞ the inlet
velocity at hub-height, ⟨u⟩(z) is the mean velocity profile as function of height z from
the boundary layer (top-down) description, δ is the height of the ABL, z0,lo is the
ground surface roughness length while z0,hi represents the effective surface roughness
height including effects of the wind farm.

evaluated at turbine hub locations, the velocity can be used to predict the power

generated by each turbine. This flow field entering the turbine rotor area is described

as a superposition of individual wakes by the equation

u(x, y, z) = U∞(y, z) −
∑︂

n

δun(x)Wn(x′, r′). (2.1)

where x is the streamwise coordinate (in the direction of the incoming freestream

wind), x′ = x − sn,x is the coordinate relative to the position of the turbine, sn,x,

r′ = [(y − yn)2 + (z − zn)2]1/2 is the radial distance from the center position of the

nth turbine. U∞(y, z) is the incoming freestream mean velocity which can vary across

the inflow plane (y is the horizontal coordinate transverse to the incoming wind), and

in general also as function of vertical coordinate z. In the wake model used in this

paper we will neglect the variations of U∞(y, z) in the vertical direction for simplicity

and set U∞(y) = U∞(y, zh), where zh is the hub-height. δun(x) is the deficit velocity
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of the nth turbine at downstream position x, and Wn(x, r) is the shape function of

wake n. The velocity deficit δun(x) is calculated as the steady-state solution to a

one-dimensional partial differential equation that describes the more generally valid

time-dependent behavior of the wake:

∂δun

∂t
+ U∞

∂δun

∂x
= − 2U

(dw,n(x))2
d(dw,n)
dx

δun(x, t)+

[U∞δu0,n]
[︄

1
∆

√
2π

exp
(︄

−x2

2∆2

)︄]︄
.∞ (2.2)

The equation describes the rate of change of δun when moving downstream at speed U∞

in response to two effects: (1) the transverse diffusion expressed as a wake expansion

term (first term on the equation’s right-hand-side) leading to a decrease of δun, and

(2) the creation of a wake deficit at and near the turbine locations due to the axial

induction (second term). Under the simplifying assumption of steady state flow

conditions, the solution to Eq. 2.2 has the form

δun(x) = δu0,n

[dw,n(x)]2
1
2

[︄
1 + erf

(︄
x

∆
√

2

)︄]︄
, (2.3)

where δu0,n is the initial velocity deficit at the turbine location, dw,n(x) is the wake

expansion function (the normalized location-dependent wake diameter), and ∆ is the

characteristic width of the Gaussian function used to smooth the forcing in Eq. 2.2

along the streamwise direction. The wake expansion function is assumed to be of the

following form

dw,n(x) = 1 + kw,n ln(1 + ex/R), (2.4)

which at large x/R, where R is the radius of the turbine, tends to the classical linear

growth dw,n(x) = kw,n(x/R) but smoothly merges to dw,n(x) = 1 in the near-turbine

region thus preventing values that are not physical. The parameter kw,n is the turbine

specific wake expansion coefficient for turbine n that determines the rate at which the

wake expands as it travels downstream. The expansion of each individual turbine wake
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depends on local flow conditions. For instance, one would expect it should increase

with increasing local turbulence intensity. In the ALC model, the coefficient will be

calculated with an expression of the form

kw,n = α
u∗,n

u∞,n

. (2.5)

where u∞,n is the y-dependent upstream velocity at each turbine and u∗,n is related to

the local friction velocit. The precise form for the local friction velocity to be used in

the model is derived from the top-down model as described in §2.1.2. The coefficient

α is a model parameter that will be determined through the coupling of the wake and

top-down models.

We incorporate effects of spanwise variations in the inflow velocity by determining

the “upstream” velocity u∞,n of each turbine. We first define the turbines that are

not in the wake of others for a given wind direction as “freestream turbines”, to which

we ascribe a y dependent freestream velocity u∞,n = U∞(yn). Here U∞(yn) denotes

the average velocity across the turbine disk based on the incoming flow field. Then,

the nonuniform velocity inflow profile is propagated through the farm to the waked

turbines. In order to find the disk velocity, and thus the power, of the waked turbines,

we need to determine the the disk velocity that would have existed at wind turbine

n without the turbine there. This depends on the wakes of the upstream turbines,

which are accounted for through wake superposition. Wake superposition represents

the combined effect of wakes interacting with each other in the flow. To calculate

u∞,n, i.e., the upstream velocity for the nth turbine, we use the following expression:

u∞,n =
∫︂ R

0

⎡⎣U∞(y) −
∑︂

m ̸=n

δum(sn,x)Wm(sn,x − sm,x, r
′)
⎤⎦ 2πr′dr′, (2.6)

where sn,x is, again, the position of the turbine in the streamwise direction and

r′ = [(y− yn)2 + (z− zn)2]1/2 is the radial coordinate of point (y, z) for turbine n with

rotor center at (yn, zn). The superposition sum is then performed over all turbines
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upstream of turbine n. The nonzero terms in the sum are determined by the wake

shape function Wn, which takes the form of a super-Gaussian

W (x, r) = C(x) exp
⎛⎝−2

(︄
2r

D dw(x)

)︄p(x)
⎞⎠ (2.7)

where r2 = y2 + z2. This function smoothly transitions from a top-hat wake profile

immediately following the turbine into a Gaussian wake profile downstream. The

following functional form for p(x) was proposed to reproduce the shape and rate of

transition from a top-hat to a Gaussian seen in experimental wake data:

p(x) = 2
(︄

1 + D

max(x, 0)

)︄
. (2.8)

The function C(x) can then be shown [22] to have the following form, assuming mass

(or linearized momentum) conservation

C(x) = p(x)
2Γ (2/p(x))2(2/p(x)), (2.9)

where Γ is the gamma function. Finally, the initial velocity deficit is obtained from

an inviscid model and has the traditional form based on actuator disk momentum

theory [22, 67]:

δu0,n = u∞,n (1 −
√︂

1 − CT,n) = 1
2 C

′
T,n ud,n, (2.10)

where CT,n is the coefficient of thrust for the turbine, which determines the amount of

thrust the turbine extracts from the flow. C ′
T,n is the local coefficient of thrust and is

related to the coefficient of thrust through the relation CT,nU
2
∞,n = C ′

T,nu
2
d,n, where

ud,n is the average velocity over the turbine disk area, which is defined later in Eq.

2.23.

In the present work, we use the stead state solution shown in Eq. 2.3 to the PDE

shown in Eq. 2.2, and we do not take into account the time-dependence. However, if

δun(x, t) were to be determined from the time-dependent PDE, the ALC model can

be readily extended to time-varying applications.
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Returning to the steady state case, the wake model is now complete as long as

a value for the parameter α can be specified unambiguously. This is accomplished

through matching with the top-down model described in the next section.

2.1.2 Top-Down Model

As previously discussed, the top-down model [11, 31] regards the wind farm as a

homogenized surface roughness in the atmospheric boundary layer. Assuming a fully

developed (horizontally homogeneous) wind turbine array boundary layer (WTABL)

[11] the velocity profile can be shown to consist of two constant shear stress regions,

one below the turbines and one above the turbines. Each layer has friction velocities,

u∗,lo and u∗,hi, and roughness heights, z0,lo and z0,hi, respectively. The model connects

the two regions through the wind turbine layer, which is defined as zh −R ≤ z ≤ zh +R

where R is the radius of the turbines [11]. A momentum balance results in the following

relationship between the two friction velocities and the planar average velocity ūh at

hub-height zh of the turbines:

u2
∗,hi = u2

∗,lo + 1
2cftū

2
h, (2.11)

where cft is the planform thrust coefficient that represents the momentum extracted

from the flow by the turbines’ axial flow resistance per unit horizonatal area. This

coefficient is obtained from the ALC model coupling, as described in §2.1.3.

In the wind turbine layer, the turbulent flow is assumed to include the effects of an

additional eddy viscosity νw∗. The total eddy viscosity in this region is defined in terms

of the friction velocities in the top and bottom halves of the turbine region. In the

lower region, where zh −R ≤ z ≤ zh, the eddy viscosity is represented as (1+νw∗)κu∗,lo,

and in the upper region, zh ≤ z ≤ zh +R, it is represented as (1+νw∗)κu∗,hi. The extra

eddy viscosity needs to be modeled and it was assumed to have the form νw∗ = 28
√︂

1
2cft

in [11]. By using the known value of the lower surface roughness height z0,lo, and the

20



momentum balance (Eq. 2.11), and enforcing velocity continuity across the vertical

profile, one may derive the roughness height due to the wind farm as [11]:

z0,hi = zh

(︃
1 + R

zh

)︃β

exp
(︄

−
[︃
cft

2κ2 + ζ−2
]︃−1/2

)︄
, (2.12)

where ζ = ln
[︂
(zh/z0,lo) (1 −R/zh)β

]︂
and β = νw∗/(1 + νw∗). Using this result, we can

also calculate the friction velocities in both of the layers:

u∗,hi = u∗
ln(δ/z0,lo)
ln(δ/z0,hi)

, (2.13)

u∗,lo = u∗,hi

ln
(︃

zh

z0,hi

(︂
1 + R

zh

)︂β
)︃

ln
(︃

zh

z0,lo

(︂
1 + R

zh

)︂β
)︃ , (2.14)

where u∗ is the friction velocity of the incoming ABL and δ is the overall ABL height.

Note that the top-down model is based on the planform-averaged momentum

equation and therefore requires averaging over extended horizontal areas. In order to

apply the model in a more localized fashion, horizontal areas associated to each of the

turbines must be defined. We define these areas using Voronoi tessellation (also used

in the model in [22]), which naturally associates cells and their areas to each turbine

n. In particular, each turbine is a node, and the vertices are defined as points that are

equidistant from three separate nodes. Figure 2-2 shows the local areas resulting from

a Voronoi tessellation procedure applied to several different configurations of turbines:

a regular array, a staggered array, a circular configuration, and an entirely random

distribution. The edge cells are defined by using ghost points projected outside of the

array [22].

The Voronoi cells separate the wind farm into planform areas belonging to each

turbine in a way that can be generalized to any wind farm layout. The ALC model

exploits this local turbine area definition to compute friction velocities and roughness

heights individually in each Voronoi cell, which enables the model to provide informa-

tion on flow conditions in the areas around each turbine. Information related to the
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Figure 2-2. Voronoi cells drawn for different farm configurations including (a) a
uniform farm, (b) a staggered farm, (c) a circular farm and (d) a random farm

turbulence of the local flow field is then used for each turbine and cell to determine

appropriate wake expansion coefficients for the wake model.

In order to compute the local friction velocities, we use the notion of a developing

internal boundary layer (IBL) over a wind farm [27, 86] that depends on the streamwise

position x from the start of the farm. The IBL height is modeled according to:

δibl(x) = min
⎡⎣zh + z0,hi

(︄
x− x0

z0,hi

)︄4/5

, δ

⎤⎦ , (2.15)

where x − x0 represents the distance to the beginning of the IBL, i.e., the distance

to the start of the farm directly upstream to turbine n and δ is the height of the

overall ABL. This implies that the friction velocities evolve as a function of x through

the farm, until δibl reaches the final boundary layer height δ in the fully-developed

region. Analysis of the developing wind farm internal boundary layer [27, 87] shows

that the friction velocity evolves similarly to that of a boundary layer flow over a

surface with a smooth-to-rough transition, i.e., the friction velocity increases sharply
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at the transition (the front of the wind farm) but then gradually decreases again as

the IBL grows and the mean velocity gradient decreases. The analysis in [27] shows

that the position-dependent friction velocity u∗,hi(x) can be obtained from Eq. 2.13

by replacing the overall δ by δibl(x) for turbine n. That is to say, we will evaluate

u∗,hi,n for each individual turbine by replacing δ in Eq. 2.13 by δibl(sn,x) evaluated at

the position of turbine n.

When dealing with an irregular wind farm, special care must be taken to properly

define the starting position of the internal boundary layer. Here we choose to define

the IBL start to be located at the freestream turbines, i.e., the turbines in the farm

that only see the upstream incoming velocity and are not affected by the wakes of

other turbines. The process to identify freestream turbines for a given wind inlet

direction is described in the next section. Figure 2-3 shows how we model this as

a boundary layer initialization, defined for the case of a circular wind farm. In this

case the start (“trip line”) of the IBL is defined at the first set of turbines to see the

freestream velocity. Let xn,0 be the x-location on the trip-line directly upstream of

turbine n. The streamwise distance between any given turbine and the boundary layer

“trip line” for turbine n is thus given by sn,x − xn,0, shown with the blue arrow for a

sample turbine in the farm.

In the localized top-down model, calculations can now be performed for each

turbine in its own turbine cell, enabling the localization needed to represent both the

spatial non-uniformities due to arbitrary turbine placements as well as nonuniform

(y-dependent) velocity inflow. In the case of the freestream turbines, the freestream

values of the flow are used. For the remaining turbines, we use the developing

boundary layer framework. For a standard boundary layer, the friction velocity of

a boundary layer flow over a rough surface with roughness z0,lo and inflow velocity

U∞ (mean velocity at hub-height z = zh upstream of the wind farm) would be

given by u∗ = U∞κ/ ln(zh/z0,lo). If the inflow is y-dependent, and if the freestream
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inflow velocity corresponding to turbine n is denoted as U∞,n (it can be computed by

averaging the inflow over the cell), we can write u∗,n = U∞,nκ/ ln(zh/z0,lo). Replacing

in Eq. 2.13 to obtain the actual friction velocity for turbine n, we can write

u∗,hi,n = U∞,n
κ

ln(zh/z0,lo)
ln(δibl(xn)/z0,lo)
ln(δibl(xn)/z0,hi)

. (2.16)

Figure 2-3. Definition of the start of the boundary layer (IBL “trip-line” in red) for
the top-down model starting at the freestream turbines for a wind direction flowing
from left to right in the figure. The blue arrow shows the distance between the trip
line and a sample (the n-th) turbine in the farm. This distance is used to determine
the IBL height for the n-th turbine according to Eq. 2.15.

Once the friction velocity is known, the top-down model provides a prediction for

the mean velocity at hub height [11]. Once the model is applied individually to each

cell, the mean velocity is given by

ūtd
h,n = u∗,hi,n

κ
ln
(︄
z0

z0,hi

(︃
1 + R

zh

)︃β
)︄
. (2.17)

Note that in order to evaluate ūtd
h,n we require z0,hi, which according to Eq. 2.12

depends on the planform thrust coefficient cft. This value can differ from turbine

to turbine since the total turbine forces and momentum exchanges affecting the

development of the local internal boundary layer may differ across the wind farm.

In order to determine cft,n for each individual turbine n, information from the wake
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model (§2.1.1) is required as described in the next section §2.1.3 where the coupling

of the constituent models is presented.

2.1.3 Coupling of wake and top-down models: ALC Model

The wake model and the top-down model are coupled by comparing their respective

predictions of the average planar velocity values in each waked Voronoi cell. In the

top-down model, these are the velocities ūtd
h,n calculated in each Voronoi cell according

to Eq. 2.17. The output of the wake model is a velocity field u(x, y, zh) from Eq. 2.1.

In order to compare the wake model to the top-down model predictions, a cell-averaged

wake model velocity is defined by averaging the velocity field predicted by Eq. 2.1 at

z = zh over each cell for each turbine n. We denote this cell averaged wake model

velocity as ūwm
h,n . The steps are illustrated in Fig. 2-4. The average planar velocities in

each cell are illustrated in Fig. 2-4(c).

Figure 2-4. The planar velocity from the wake model is calculated by taking (a)
the velocity field given by the wake model and considering the planar average in each
Voronoi cell, shown in (b). The average velocity from each cell is shown in (c). (Note
the use of a different color scale.)

Ideally one would want the velocities predicted by the top-down and wake methods

to yield the same cell averaged velocities, for each turbine. Free model parameters

are adjusted to minimize the least-square error between both predictions from the

two approaches. Specifically, recall that the parameter α required to specify the wake
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expansion parameter kw in Eq. 2.5 was left unspecified. We now follow the basic idea

of the CWBL approach [32] to determine the wake expansion coefficient by iterating

on parameter values until the velocities at hub height predicted by each model match.

Since in the ALC model has many cells, we find the α that minimizes the square

difference between the average planar velocities from each model over the cells of

turbines that are in the wake of upstream turbines (called “waked cells”), according

to

min
α

∑︂
n∈wake

(︂
ūwm

h,n − ūtd
h,n

)︂2
. (2.18)

where wake defines the set of waked cells. The summation does not include free-stream

turbines because for those turbines the top-down and wake models would use the

same value of kw which is unaffected by wakes and expected to be different from those

inside the farm. The free-stream turbines are found by setting a threshold on the

velocity deficit of 1%. Specifically, turbine n is denoted as a freestream turbine if

1 − u∞,n/U∞,n < 0.01, (2.19)

where U∞,n is the average freestream velocity over the disk for the nth turbine according

to the inflow profile and u∞,n is the inflow to the nth turbine defined by Eq. 2.6

from the wake model, which takes into account the wakes of upstream turbines. The

procedure is iterative and begins by treating only turbines that fall along the convex

hull of the farm as free-stream turbines. After a first iteration (see below), u∞,n can

be determined and additional freestream turbines can be identified (those complying

with the condition in Eq. 2.19) that may be located further inside the farm and

yet be unaffected by upstream turbines. The minimization is carried out using the

scipy.optimize.minimize function for unconstrained minimization. It uses the default

BFGS optimization method with bounds of 0 ≤ α ≤ 100.

For the waked turbines, we compute a turbine-specific wake expansion coefficient

kw,n, to be used in Eq. 2.4, in terms of the arithmetic mean of the high and low
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cell-specific friction velocities (found from Eq. 2.16 and Eq. 2.14), according to

kw,n = α
1
2
u∗,hi,n + u∗,lo,n

ūtd
h,n

. (2.20)

The denominator (ūtd
h,n) represents the advection velocity for which we use the average

hub height velocity in the cell from the top-down model.

For the freestream turbines, we use the same expression but since they are subjected

to the incoming freestream advection and friction velocities, their expansion coefficient

is evaluated according to Eq. 2.5, or simply

kw,n = α
κ

ln(zh/z0,lo)
(2.21)

and using the same α as for the entire wind farm.

Evaluation of the top-down model still requires specification of the planform thrust

coefficient cft in Eq. 2.12, which in turn determines the evolution of δibl(x) as well

as the top-down mean velocity from Eq. 2.17. The planform thrust coefficient cft is

defined as the total force per unit horizontal area. We argue that the relevant area

affecting the turbulence at turbine n is the area of all the Voronoi cells upstream of the

turbine, as illustrated in the sketch in Fig. 2-5. This is the region over which the IBL

evolves until it reaches turbine n and we therefore consider the vertical momentum

flux averaged over this entire “upstream” area to characterize the evolution of the

boundary layer reaching turbine n.

The local planform area thrust coefficient is then given by

cft,n =
πR2 ∑︁

i∈line
C ′

T,iu
2
d,i∑︁

i∈line
Apf,i(ūwm

h,i )2 , (2.22)

where Apf,n is the planar area of the Voronoi cell for the nth turbine, and line refers

to the cells that would be crossed if a line were drawn from the current cell to the

front of the farm. This area is illustrated in Fig. 2-5, where the line is denoted in red

and the cells included in the calculation are shaded. Moreover, ud,i is the wake-model
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Figure 2-5. Illustration of how the cells are selected for inclusion in the calculation
of the planform thrust coefficient, where the grey cells are included in the calculation
for this particular turbine.

velocity field u(x, y, zh) (obtained from Eq. 2.1) averaged over the rotor disk area Ad

for turbine i:

ud,i = 1
πR2

(︄
1 − C ′

T

4 + C ′
T

)︄ ∫︂∫︂
Ad

u(x = si,x, y, z) dydz. (2.23)

The coefficient cft,n can be thought of as the ratio of the total force applied by the

turbines in the cells upstream including turbine n that affect the local boundary layer

development, and the total horizontal momentum flux associated to the horizontally

averaged mean velocity over the same planform area. The addition of the cells in front

of the current cell is meant to represent the effect of the developing boundary layer

over the farm and links the downstream cells to those upstream, since the turbines in

the upstream cells influence those in their wakes. The coefficient cft,n is then used to

determine a local roughness height z0,hi,n that is then used in the evaluation of δibl(xn)

and u∗,hi,n according to Eqs. 2.15 and 2.16.

Figure 2-6 summarizes the coupling in the ALC model using an example of the

planar average velocity view from each model. Using the developing boundary layer

approach for the entire farm enables the model to find one α value that includes

input from all the waked turbine cells. The top-down model provides the information

required to determine the wake expansion coefficient in the wake model, while the

wake model provides the planform thrust coefficient to be used in the top-down model.
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Figure 2-6. A summary of the ALC model that shows how the planar velocities
between the two models are compared and the difference is minimized.

After the determination of α, the power at each turbine is found by using the velocity

field produced by the wake model with the optimized wake expansion coefficients from

the coupling. In order to compute the power from turbine n, we use

Pn = 1
2ρC

′
PπR

2u3
d,n, (2.24)

where ρ is the density of the air, C ′
P is the local power coefficient and ud,n is the

average disk velocity of the turbine calculated using Eq. 2.23.

From the model description it is apparent that the ALC model provides significantly

more information about the flow than conventional wake models. The ALC model

calculates friction velocities for each of the cells which gives local flow information

regarding turbulence conditions (assuming that turbulent root-mean-square velocities

are proportional to the friction velocity). This local information can be used in

combination with operating conditions to predict other quantities such as the unsteady

loading characteristics for each individual turbine. Additionally, each cell is associated

to an individual wake expansion coefficient, even though only one α is selected for the
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entire farm. Having individual kw values for wakes emanating from each turbine can

represent, for example, situations in which the expansion rate for turbines close to the

entrance is lower than the wake expansion rate further downstream, where turbulence

levels are enhanced.

The next two sections demonstrate the application of the ALC model to two wind

farms that are not arranged in a rectangular lattice pattern. In §2.2.2 we consider a

circular farm while in §2.2.3 we examine a wind farm that includes random turbine

spacings to demonstrate the ability of the model to capture a range of farm geometries.

2.2 Model Validation with LES

2.2.1 LES of Wind Farms

Many of the cases provided in this thesis are validated using LES, so the following

will provide a brief explanation of this simulation method. The flow through a wind

farm, in the neutrally-buoyant case that exists in a neutrally stable ABL, is governed

by the incompressible Navier-Stokes equations

∂ui

∂xi

= 0 (2.25)

∂ui

∂t
+ uj

∂ui

∂xj

= −1
ρ

∂p

∂xi

− ν
∂2ui

∂xi∂xj

+ fi (2.26)

where ui is the ith component of the velocity, ρ is the density of the air, p is the

pressure, ν is the kinematic viscosity, and fi is the ith component of the force per

unit mass applied on the flow from the turbines. These equations also employ

Einstein’s summation convention in regards to repeated indices. These equations can

be simulated directly using Direct Numerical Simulation (DNS). However, the range

of scales necessary (from an ABL height of 1000 m, to resolving the individual turbine

blades) that must be resolved to simulate a wind farm in the atmosphere makes the

use of DNS impossible due to current computing limitations.
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Instead, the method of large-eddy simulation is often employed, as it retains much

of the accuracy of DNS while also reducing the computational burden to achievable

levels. This enables LES to serve as a validation tool for more simple analytical models

of wind farms, and also as a plant model to test wind farm control strategies. Reynolds

Averaged Navier-Stokes (RANS) can also be used for validation, but has the trade

off of lesser accuracy with faster computation. In LES, a filtering operation, denoted

as ·̃, is applied to the Navier-Stokes equations to remove the scales smaller than a

prescribed filter width ∆. The Navier-Stokes equations after the filter is applied have

the form

∂ũi

∂xi

= 0 (2.27)

∂ũi

∂t
+ ∂

∂xj

˜︃ujui = −1
ρ

∂p̃

∂xi

− ν
∂2ũi

∂xi∂xj

+ f̃ i (2.28)

Although filtering is not synonymous with averaging, it does share the property that

enables the decomposition of the advection term in a similar way as the Reynolds

stress u′
ju

′
i = ujui − ujui:

˜︃ujui = ũjũi + ( ˜︃ujui − ũjũi) = ũjũi + σij (2.29)

In this case, σij represents the subgrid stress tensor. Once this decomposition is

applied to the filtered equation, we find the following equations

∂ũi

∂xi

= 0 (2.30)

∂ũi

∂t
+ uj̃

∂ũi

∂xj

= −∂σij

∂xj

− 1
ρ

∂p̃

∂xi

− ν
∂2ũi

∂xi∂xj

+ f̃ i. (2.31)

After the filtering, the viscous term is negligible due to the gradient of the filtered

velocity being smooth. Additionally, the advective term can be rewritten into a

rotational form by adding a "Bernoulli" term, which has the form

−ũj
∂ũj

∂xi

= − ∂

∂xi

(︃1
2 ũjũj

)︃
. (2.32)
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Finally, the subgrid stress tensor can be decomposed into a deviatoric part by removing

its trace σij = τij + 1
3σkk∂ij. Now the trace of the subgrid stress and the Bernoulli

term can be absorbed into a modified pressure term that has the form

p̃∗ = p̃/ρ+ 1
3σkk + 1

2 ũjũj. (2.33)

Substituting these expressions into the filtered equations gives the filtered Navier-

Stokes equations

∂ũi

∂xi

= 0 (2.34)

∂ũi

∂t
+ uj̃

(︄
∂ũi

∂xj

− ∂ũj

∂xi

)︄
= −∂τij

∂xj

− ∂p̃∗

∂xi

+ f̃ i, (2.35)

which is the set of equations solved in LES.

The models in this thesis are validated using two different LES codes. The first is

the Simulator for Wind Farm Applications (SOWFA), with is an LES code developed

by the the National Renewable Energy Laboratory (NREL) [88, 89]. The second is

our in-house open-source JHU LESGO code, which descends from the LES code of

Albertson [90], and simulates Cartesian domains using pseudo-spectral numerics [91].

The JHU LESGO code is used for validation for the ALC model and the control-

oriented model presented in Chap. 3, as well as for a wind farm plant for the control

framework presented in Chap. 5.

The two general simulation techniques for representing wind turbines within a

wind farm simulation are the actuator disk model (ADM), where the turbine forcing is

distributed over the turbine disk area and applied to the flow, and actuator line model

(ALM), where the forcing is distributed along each turbine blade to be applied to the

flow. The LES simulations in this thesis employ the actuator disk model. Velocity

wake profiles from LES using ADM have been shown to be in good agreement with

those using (ALM) [92]. Simulations employing ADM can be accomplished using
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coarser LES grid-spacings as compared to those using ALM, and thus the choice of

ADM enables us to run many more cases (inflow angles) and run simulations for longer

times (aiming for statistical convergence).

2.2.2 Circular Wind Farm

In this section we compare ALC model predictions to LES results generated using

the NREL SOWFA code [88, 89] for the circular wind farm configuration shown in

Fig. 2-7. Comparisons include both total wind farm power and power from individual

wind turbines for 12 wind inflow directions, 30 degrees apart, spanning a full 360

degrees. Figure 2-7 indicates the orientation of the wind directions; the 0◦ direction

corresponds to a wind inflow direction from the north. Angles are then measured in

the clockwise direction (i.e., at 90◦ the flow is going from right to left, and for 270◦ the

flow is going left to right). Given this orientation, the wind farm is symmetric around

the east-west axis but has more complicated wake interactions than a rectangular

lattice as the streamwise and spanwise spacings between turbines are not uniform for

any given wind direction.

Figure 2-7. Orientation of wind direction for the circular farm

The LES of the farm comprises a set of 38 NREL 5-MW reference turbines [93]

represented by actuator disk models. The simulation domain used Nx ×Ny ×Nz =
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Figure 2-8. Average power for the circular wind farm as a function of wind direction
obtained from the NREL LES (•) compared to the ALC model-predicted power with
the model run in 5◦ increments (red line -x-).

500×500×100 grid-points. The inflow has a mean velocity of 8 m/s and was generated

by a precursor simulation. The simulation uses a roughness height of z0 = 0.15 m.

The details of this simulation are available in [94].

Figure 2-8 shows the average power as a function of wind direction obtained from

LES at 30◦ intervals beginning at 10◦, denoted by the blue markers. The model data

is also on the figure, represented by the red line, and will be discussed in more detail

later. The LES data points were found by averaging the total power output of the

LES farm over a time interval spanning approximately 0.75 hours of real time farm

operation, which represents approximately five flow-through times. One flow-through

time represents the time it would take a fluid parcel in the flow to travel from the

inlet to the exit of the farm.

To provide an accurate comparison, the parameters used to evaluate the ALC

model are selected to closely match those of the LES. We therefore use the values for

the NREL 5-MW reference turbine [93], which has a hub height of zh = 90 meters and

a diameter of D = 126 meters. The inflow velocity distribution U∞(y) is found using

average inflow velocity data from the LES. All of the LES have very similar inflow

profiles, so an average over the 12 simulations was used as the ALC inflow profile for
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all wind directions. For the lower roughness height in the model, we use the roughness

value from the LES: z0,lo = 0.15 meters. The maximum boundary layer height was set

to δ = 750 meters, since the LES had a temperature inversion layer at this height,

which caps the growth of the boundary layer.

In addition to the turbine parameters and flow conditions, we match the local

thrust and power coefficients (C ′
T and C ′

P , respectively) of the turbines in the LES

for the ALC model evaluation. Through this process, we determine one value for the

thrust and power coefficients, respectively, over all ALC implementations. In general,

the thrust and power coefficients are determined by the turbine type and its operating

conditions. In our case, we have the power produced as well as the velocity at the

disk for the wind directions 10◦ − 190◦ (in 30◦ increments for a total of 7 directions)

for each turbine from the LES. We extract the coefficients by rearranging Eq. 2.24:

C ′
P,n = 2Pn

πR2u3
d,nρ

. (2.36)

Using this expression, we first average over the time series to find an average

local coefficient of power for each turbine. Figure 2-9 shows the local coefficients of

power calculated for all seven directions, plotted by turbine number. The red triangles

represent unwaked (or freestream) turbines in that orientation and the blue circles

represent the waked turbines. There is significant spread in the local coefficients

of power for the turbines. However, all of the freestream turbines are located at

the bottom of the plot, around C ′
P ≈ 1.4. Since all of the spread occurred in the

waked turbines, where turbulent fluctuations may skew calculations of the local power

coefficient, the waked turbines were judged to be a less accurate measure for this

quantity. Therefore, we use the average value from the unwaked turbines, C ′
P = 1.387,

for the local power coefficient in the ALC model.

Once the average local power coefficient was calculated, Blade Element Momentum
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Figure 2-9. The unwaked (▼) and waked (•) local power coefficients calculated
from the data for wind directions 10◦ − 190◦ (in 30◦ increments)

theory is used to find the relationship between C ′
P and C ′

T :

C ′
P = γC ′

T (2.37)

where the prefactor γ = 0.9032 was determined using the specifications of the NREL

5MW turbine (we are grateful to Dr. Carl Shapiro (personal communication) for

performing this calculation). In the ALC model, C ′
T is used to calculate the planform

thrust coefficient and the local forcing of velocity deficit in the wake model, while C ′
P

is used to calculate the power from the velocity computed at the disk from Eq. 2.24.

The ALC model was run using the parameters outlined above for the cases where

the wind is approaching from 0◦ − 360◦ in increments of 5◦. Figure 2-8 compares the

ALC model power output predictions (red line) to the LES results (blue dots). The

farm is symmetric about the east-west axis, but due to the nonuniform inflow used in

the simulation, the model results are not quite symmetric. We can see that in most

cases the ALC model results match those of the LES, i.e., they fall reasonably close to

the blue symbols. The one noticeable outlier is for the directions 10◦. In this case the

model over-predicts the power, however, the ALC prediction for a 15◦ inflow direction,

which is a small change in inlet angle, provides a closer match to this LES point. This

highlights how small changes in angle can significantly impact the power output of

the wind farm. Such changes are especially apparent, for example, over the range
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90◦-110◦.

Figure 2-10. Model parameter α obtained from the error minimization in the ALC
model as a function of wind direction for the circular wind farm.

Figure 2-10 shows the free parameter α obtained from the error minimization

over the waked portion of the farm, as a function of wind direction. The fact that

the results are on the order of unity (around 2) confirms the validity of the scaling

assumptions underlying Eq. 2.20. However, a non-trivial dependence on angle can be

observed, which is a result of the complicated relationships involved in the model, the

turbine geometric layout and the transverse variations in inflow velocity.

We now compare the post-optimization hub-height velocity field obtained from the

ALC model with the average velocity field from the LES. Figure 2-11 shows (a) the

average velocity field from the LES and (b) the velocity field calculated by the ALC

model when the incoming wind direction is 190◦. We can see that allowing nonuniform

inflow enables the ALC model to reproduce the variations of higher and lower velocities

seen across the LES, which continue back through the wind farm. However, the ALC

model also captures wake superpositions, as can be seen by examining the wakes at

the back of the farm. The LES shows some flow acceleration in between the wakes

which the ALC model does not capture.

We next examine the velocity averages in each Voronoi cell as well as the turbine

power output prediction for a 190◦ inflow direction. The top row of Fig. 2-12 compares
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Figure 2-11. Comparison of (a) the time-averaged velocity field from the LES data
to (b) the velocity field calculated from the ALC model for a wind direction of 190◦.
The arrows indicate the incoming flow direction.

the planar averaged velocities in each Voronoi cell over the farm in Fig. 2-4 for (a) the

LES, (b) the resulting ALC wake model and (c) the resulting ALC top-down model

velocity fields for the 190◦ wind inlet direction. We can see that the wake model,

which provides the output of the ALC model, and the LES average velocity fields

compare well with each other. The freestream turbines agree well, which is a result of

the use of a nonuniform inflow velocity profile. Further back in the wind farm, the

LES average velocity plot has a pattern of cells where some of the cells have a slower

average velocity and thus more wake effects. The wake model is able to capture the

overall patterns of cell velocities well, although there are some cells with lower velocity

in the LES. Note that the wake model and top-down model average cell velocities do

not agree exactly since we minimize the difference over the entire farm to find a global

α value rather than computing individual values of α on a cell-by-cell basis. Using

only one variable in the minimization rather than cell-specific α values enables the

models to inform each other with significantly reduced the computation time over a

multiple α approach, but may reduce the accuracy of the model.
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The differences between the LES and the wake and top-down portion of the models

can be quantified by computing the root mean squared (RMS) error between the cell

velocity values from the LES and from the model. The RMS error was calculated

according to

RMSE =

⌜⃓⃓⎷ 1
N

N∑︂
n=1

(uLES
h,n − um

h,n)2, (2.38)

where uLES
h,n denotes the average cell velocity from LES and um

h,n represents the average

cell velocity from the ALC model (in the figure, (b) wake model and (c) top-down

model). These values are reported in the caption of Fig. 2-12

Next, we compare the ALC approach to some prior wind farm analytical models.

In the second row of Fig. 2-12 we compare scatter plots of the power produced by each

turbine in the farm computed with the Jensen model, the model in [22] and the ALC

model. Here, the LES power is on the x-axis and the model power is on the y-axis, so

points along the 45◦ line (marked as a black dashed line) represent 1 : 1 agreement.

The red triangles denote the freestream (unwaked) turbines, while the blue circles

are the waked turbines. The left plot (d) shows the scatter plot using the Jensen

model with a wake expansion coefficient derived from the average friction velocity of

the inflow, which was k = 0.0653. The middle plot (e) uses the model in [22] with

Voronoi cells and a uniform inflow. In this case, we can see that the uniform inflow

prevents the freestream turbines from capturing the behavior of the LES, causing all

of the freestream turbines to give almost the same value. In the right plot (f), we show

results from the ALC model, where the freestream turbines are much closer to the

45◦ line as a result of the nonuniform inflow profile used. The ALC model predictions

for the waked turbines are also closer to the LES results. The improvement in this

direction is especially prominent in turbines with higher power, whose prediction is

aided by the inclusion of the nonuniform inflow velocity profile. We also calculated

the RMS error between each model and the individual power from LES, evaluated

according the Eq. 2.38 for power rather than velocity, given in the caption of Fig. 2-12.
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Figure 2-12. For a wind direction of 190◦, in (a)-(c) the average planar velocities
is each cell are compared from the following sources: (a) the LES data (un = 7.05
m/s), (b) the ALC wake model (un,wm = 7.08 m/s), and (c) the ALC top-down model
(un,td = 7.21 m/s). The root mean square (RMS) error between the wake model and
the LES cell velocities is 0.135 m/s, and between the top-down model and the LES
cell velocities is 0.282 m/s. The arrows indicate the incoming flow direction. The
scatter plots show the power for the unwaked (▼) and waked (•) turbines compared
to the LES power from (d) the Jensen model (RMSE = 0.241 MW), (e) the model in
Shapiro et al. 2019 (RMSE = 0.299 MW), and (f) the ALC model (RMSE = 0.209
MW), where a 1:1 relationship is represented by a 45◦ line (- -). The average indivual
turbine power from the LES for the 190◦ direction is 1.684 MW,

This is the only direction where a detailed comparison is completed with multiple

analytical wake models, but a comparison for the other LES directions should be

investigated in future work.

Figure 2-13 provides a detailed comparison of the LES field to the wake and top-

down models comprising the ALC model for four different incoming wind directions:

70◦, 130◦, 190◦, and 250◦. Each direction corresponds to a row in the figure, while

each column depicts a different quantity for that direction. The first column shows
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the time averaged LES velocity field with the Voronoi cells drawn in to show the

area over which the planar velocity values are calculated. The first column also has

arrows to indicate the direction of the incoming wind. The second column shows the

cell averaged LES planar velocities calculated from the time averaged LES velocity

fields. The third column shows the average planar velocities from the wake model of

the ALC model, and the last column shows the same quantity from the top-down

model. In all the cases, the wake model is able to predict the pattern of faster and

slower velocity in the cells in the waked region, the back half of the wind farm, of the

LES farm quite well. The pattern of the cells is important in seeing how the turbines

and wakes interact with each other. The accurate prediction is consistent with the

power output comparison in Fig. 2-8, where ALC model matches the LES for the

130◦ and 250◦ degree directions quite well. However, in the 190◦ direction, the model

over predicts the power, which is clear from the slightly higher velocities predicted

from both the top-down and wake models for that wind direction.

We can further examine wake interactions between turbines by examining the

wake expansion coefficient determined as part of the ALC model. Even though only

one parameter is matched across the whole farm (α), the model gives varying wake

expansion coefficients across the farm because each cell has a different freestream

velocity and friction velocity u∗,hi,n, with the freestream friction velocity u∗,n used

for the freestream turbines. Figure 2-14 shows how the wake expansion coefficient

differs across the farm for the same four wind directions shown in Fig. 2-13, this

time with the wind direction changing across the row. A lighter value indicates a

higher wake expansion coefficient, and thus a wider wake, more expansion and velocity

recovery, and more turbulence in the flow. A darker value indicates a lower value

and a stronger wake effect and velocity deficit on the following turbines. Here, we

can see that the wake expansion coefficient is higher overall for the first direction (a)

70◦, but is lower for the later three directions:(b) 130◦, (c) 190◦ and (d) 250◦. The

41



Figure 2-13. Comparison of LES data and the planar velocities given by the ALC
model. For 70◦, (a) shows the average velocity data from the LES with the Voronoi
cells drawn, (b) shows the average planar velocity calculated from (a), (c) shows
the wake model average planar velocity, and (d) shows the same quantity from the
top-down model. The subfigures (e)-(h) show these same quantities for 130◦, subfigures
(i)-(l) show the velocites for 190◦, and subfigures (m)-(p) show the velocites for 250◦.

significantly higher wake expansion coefficient for the case of 70◦ for turbines inside

the wind farm can be attributed to the fact that for this wind direction, several inside

turbines are freestream since they do not fall in wakes. The freestream turbines have

smaller expansion coefficients in their wakes, i.e., the wakes dissipate more slowly

initially. However, once these relatively stronger wakes interact with downstream

turbines inside the farm, the large friction velocity and low mean velocity associated
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with the cells with strong wakes translates into large wake expansion coefficients for

the turbines further downstream. These interactions explain the suddenly large kw

values for the 70◦ degree case.

Figure 2-14. Contour plots shows the value of the wake expansion coefficient
calculated by the model for (a) 70◦, (b) 130◦, (c) 190◦ and (d) 250◦.

In all cases, the freestream turbines have a significantly lower wake expansion

coefficient than the waked turbines. To capture the larger velocity deficit that occurs

behind freestream turbines, we use the freestream friction velocity for the freestream

wake expansion coefficient since they are the first to interact with the incoming flow.

The waked turbines wake expansion coefficients are determined based on Eq. 2.20,

which depends on the local friction velocity and inflow in each cell. The variations in

these values are significantly smaller than the difference between the unwaked and

waked wake expansion coefficients. Another visible trend is that the wake expansion

coefficient is typically the highest in the back center of the farm, as referenced from the

freestream wind direction. This trend reproduces the realistic effect that an increase

of turbulence further back in the farm is due to cumulative wake interactions.

In addition to the planar velocity comparisons presented above, we can also examine

a more quantitative view of the model performance using scatter plots of the individual

turbine velocities for each wind direction. Figure 2-15 shows the scatter plots for all

12 directions provided by the LES data. As in Fig. 2-12 the freestream turbines are

represented by the red triangles, the waked turbines are represented by blue circles and
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Figure 2-15. Scatter plots comparing the power predicted by the ALC model with
the LES data for all the LES wind directions, where (▼) represents the unwaked
turbines and (•) represents the waked turbines and a 1:1 relationship is represented
by a 45◦ line (- -). The RMS error across all of the directions is RMSEALC = 0.197
MW.

the 1 : 1 correspondence line with LES data is represented by the black dashed lines.

As can be expected, the ALC model provides relatively accurate power predictions for

the freestream turbines compared to the LES results, while the results for the waked

turbines have more spread overall. Some of the discrepancies can be explained by the

spread in the local power coefficients calculated from the waked turbines, which is

evident in Fig. 2-9, shown earlier. Since we chose the power coefficient based on the

freestream turbines, the waked turbines could deviate from this constant value in the

LES somewhat, possibly due to wake interactions, causing more spread in the results.

Overall, however, the ALC model reproduces the LES trends quite well for any of the

44



angles considered, with an overall RMS error of 0.197 MW.

2.2.3 Hybrid Regular/Random Wind Farm

In this section, we compare the model to LES of a wind farm layout that mixes

a regular array region with a random region. More specifically, if the flow moves

from left to right, the wind farm starts with an array consisting of four staggered

rows, and then has a total of fourteen additional turbines placed in a random fashion

behind the staggered-array turbines, shown in Fig 2-16. The LES is performed with

the JHU LESGO code [91] with an actuator disk model using a correction factor

accounting for finite grid resolution [95]. The code has been validated in simulations

of several wind energy applications [96–98]. As the inflow, the simulation uses a field

generated by the concurrent-precursor approach [99]. The turbines have a diameter

and hub height of D = zh = 100 meters and a ground surface roughness height of

z0,lo = 0.1 meters is used to prescribe the bottom boundary condition of the LES.

The main simulation domain uses Nx ×Ny ×NZ = 384 × 256 × 128 grid-points. The

Lagrangian scale dependent dynamic subgrid-scale model [100] is used to determine

the eddy-viscosity without adjustable parameters. The turbine (local) coefficient of

thrust is kept constant at C ′
T = 1.33 throughout the simulation. The same parameters

are used in the ALC model. The LES is run over a range of 90◦, from 270◦ to 345◦

in 15◦ increments for a time period of approximately ten flow-through times for the

farm, which translates to roughly 1.75 hours in real time. The data also provide a

well-converged averaged inflow condition for the ALC model application.

First we examine the inflow direction of 270◦. Figure 2-17 shows the comparison

of the time averaged streamwise velocity field at hub-height given by (a) the LES

and (b) the ALC model. The inflow used in the ALC model was taken from the

time-average LES velocity field at x = 0 m in front of the turbines. The dimensionless

wake expansion parameter found through the error minimization was α = 1.68, which
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Figure 2-16. Orientation of the wind direction for the hybrid regular-random wind
farm. This figure shows the locations of the turbines along with the Voronoi cells for
each turbine.

is slightly lower than the values found in the circular wind farm study, but still of

order unity. We can see that the ALC model captures the flow well, and represents

the wakes, particularly in the rear of the farm, quite accurately. The wakes in the

ALC model appear sharper and the velocity is slightly lower in the wake as compared

to the LES results, but their relative speed of decay is similar in both cases. The

comparison also shows the importance of the nonuniform inflow condition in accurately

modeling the overall flow especially near the inlet. The lower panels of Fig. 2-17 show

the average velocities in each of the Voronoi cells obtained from (c) the time and

cell-averaged field from the LES the (d) the mean velocity obtained from the ALC

model (the wake model part). We can see that the cell velocities match well, showing

the same general trends in both cases.

We can also analyze the wake expansion coefficients calculated for the hybrid

wind farm, shown in Fig. 2-18. In this farm, the wake expansion coefficients start

out the lowest at the front of the farm, then increase to their highest values in the
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Figure 2-17. Comparison of the velocity fields (a) of the LES with (b) the ALC
wake model, and the comparison of the hub height average cell velocity from (c) the
LES and (d) the ALC model.

rows immediately after the first rows. The values then gradually decrease from this

point as a function of downstream distance, which follows the expected trend for the

friction velocity development in a smooth-to-rough transition. The boundary layer

flow downstream of the transition, in the third and fourth rows at around 1-1.5 km

in the streamwise direction, displays larger mean shear near the surface (here at the

turbine height) and thus larger turbulence levels and kw. Further downstream, as the

boundary layer approaches equilibrium conditions where the turbines are randomly

placed, the shear decreases and so do the turbulence levels causing a slight decrease

in the wake expansion coefficient

Now we consider the other incoming wind directions over which the LES were

performed in 15◦ increments: 285◦ − 345◦. Figure 2-19 shows a comparison between

47



Figure 2-18. Contour plot of the kw values found in the 270◦ case for the hybrid
wind farm.

the average velocity fields from the LES with the velocity fields predicted by the ALC

Model. While the ALC Model wakes have a slightly different shape when compared to

the LES wakes, the wake expansion coefficients are predicted well. The ALC Model

does well when predicting the strength of the wake of a forward turbine when it

reaches a turbine positioned in its wake, which is essential in predicting the power

output of the farm. This can be seen particularly when considering the comparison

between the fields for 300◦, where the ALC model predicts the cluster of six turbines

in the lower left corner of the farm well. This is particularly important since these

turbines lie in the area of the farm that is most affected by wake effects.

This study is also informative when considering how the changing inflow angle

affects the composition of the wake interactions. For example, the randomly placed

turbines are all waked when the inflow is at 270◦, but many are in the freestream when

the inflow angle reaches 345◦. This change affects the wake expansion coefficient of

the turbines as well as their power outputs. Since the ALC Model enables a separate

calculation of the wake expansion coefficient for each turbine, it enables us to sudy

how the wake expansion coefficients of the turbines react to the change. Figure 2-20

shows how the 29th turbine in the farm, which is denoted by the black circle in Fig.
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Figure 2-19. Comparison of the velocity fields of the LES (left) with the ALC wake
model (right) for the range of inflow directions. The black circles indicate the 29th

turbine, which is referenced in Fig. 2-20.
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Figure 2-21. Scatter plot comparing the power predicted by the ALC model with
LES data from the mixed regular-nonuniform wind farm, where (▼) represents the
unwaked turbines and (•) represents the waked turbines and a 1:1 relationship is
represented by a 45◦ line (- -). The RMS error for this configuration over all directions
is RMSEALC = 0.081 MW.

which for the mixed regular-nonuniform wind farm was 1.75 hours (approximately

11 wind farm flow through times), while it was only 45 mins (approximately 5 wind

farm flow through times) for the circular wind farm. We recall that the ALC model is

designed to predict the mean flow, which requires significant time averaging in LES.

In summary, we can conclude that the ALC model is able to capture the mean flow

and power production of the mixed regular-nonuniform wind farm quite well.

2.3 Conclusions

The Area Localized Coupled (ALC) model combines a wake model and a top-down

model in a localized fashion to create a more generally applicable approach that

51



predicts several useful quantities about wind farms. The model uses Voronoi cells to

divide the wind farm up into areas that belong to each turbine. Since the calculations

can be applied to each cell, the model can be applied to regular as well as irregularly

arranged wind farms. The model includes an important parameter, the wake expansion

coefficient, that is obtained as function of the local turbulence properties as described

by the ratio of the friction velocity to the mean advection velocity. The dependence of

the wake expansion coefficient on the local friction velocity determined from the growth

of a local internal boundary layer enables a localized result involving different position-

dependent wake expansion coefficients across the wind farm. A global parameter α

is selected to minimize the difference in the cell-averaged mean velocity predictions

between the top-down and wake superposition models. In addition, the model can

be implemented using a nonuniform inflow for both the wake and top-down model

constitutive parts. This feature improves the performance of the model for all of the

turbines but especially for turbines near the inflow that are directly exposed to the

position-dependent inflow velocity.

The model was validated using the LES data for two different wind farms. The

first was a circular wind farm. In this case, the model was able to accurately predict

the cells of higher and lower velocity across the wind farm when compared to the time

average LES data. The ALC model also reproduced the velocity patterns in the cells

further back in the farm, where the wake interactions are most important. The ALC

model also captured general trends in the variation of total wind farm power with

wind direction as obtained from LES data, and it predicted the power of individual

turbines well.

The ALC model was also applied to a mixed regular-nonuniform wind farm for

which LES data were also generated. The wind farm started with regular staggered

rows and then continued with a set of randomly placed turbines downstream. The

ALC model-predicted velocity field matched the time-average velocity from the LES
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very well. The model was able to predict the power of individual turbines quite

accurately, as well.

The newly proposed ALC model provides more information than typical wake

models since physically relevant information about position-dependent friction velocity,

internal boundary layer and roughness height becomes available. Since the Voronoi

tessellation is generally applicable to any turbine arrangement, there are no limitations

to applying the ALC to any wind farm geometry, regular, random or mixed. It

can account for position-dependent inflow velocity distributions. Additionally, the

model has the potential to be extended to dynamic, time dependent situations if,

instead of using the steady state solution of the partial differential equation for the

velocity deficit, one uses the full time-dependent solution. It should be noted that

the top-down model assumes a quasi-steady description of the boundary layer and so

further improvements to include time-dependence in the top-down model may still be

required. At any rate, such possible extensions make the ALC model an attractive

and versatile option to be used in wind farm design and control. Future work will

include the validation of this model on operational wind farms and possible extensions

of this framework to a dynamic model.
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Chapter 3

A Graph Model Representation of
Wind Farms

In addition to physics-based modeling to improve our understanding of wake inter-

actions, we also need a way to represent the dynamic response of wind farms to

changing conditions. This chapter outlines a control-oriented modeling approach that

is developed based on an estimation algorithm that leverages a network framework

to compute the time evolution of the wind speed at the turbine hub-height and

corresponding power output throughout the wind farm under dynamically changing

conditions, which is published in [101]. Our approach exploits prior work showing the

promise of representing a wind farm as a network of turbines described by a directed

graph with the turbines as nodes and the interactions between turbines (i.e., the

inter-turbine wake propagation) as edges, see e.g., [57, 58]. Those authors showed

that the combination of such a model with a consensus algorithm led to improved

wind farm speed estimates given noisy field data. The performance of optimal control

algorithms has also been improved by adding constraints based on a corresponding

wind farm graph [102]. A related network model in [103] used correlations between

power output data from turbines to form real-time graphs describing the interactions

between turbines in the wind farm. Graph representations have also been used to study

the arbitrage potential of kinetic energy stored in aligned wind farm configurations
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[104].

These previous studies relied on static graphs that are not designed to account for

the dynamic changes in the turbine interconnections resulting from real-time changes.

Accounting for these dynamics is complicated by the fact that changes in the wind

direction and yaw propagate downstream at different rates depending on the inlet

velocity and the geometry of the wind farm. Therefore changes at the inlet may not

be seen at the outlet until various time delays have passed. We account for these

behaviors by introducing a time-varying graph framework with edge switching [105].

This type of graph model has been widely used to capture similar types of information

propagation structures, such as those in transportation networks [106–108]. We adopt

this model to our problem setting to define the Dynamic Graph model by defining

edges in terms of the time delays associated with the turbine to turbine propagation of

the effects of changes in wind inlet direction or yaw through the farm. This behavior is

captured using a time-dependent adjacency matrix that depends on the individual time

delays associated with each edge. We impose dynamic changes in the graph structure

due to changing conditions through an event-based framework. Our algorithm is then

constructed as an input-output map that outputs predictions of the transient response

of the system to the disturbances. Each step in the algorithm is computationally

efficient enough to be implemented in real-time, horizon-based, control strategies,

which is an advantage over current methods that are able to account for dynamic

wind direction or yaw changes.

In Section 3.1, we present a version of the Dynamic Graph model that focuses on

representing inlet wind direction changes in a wind farm. In Section 3.2, we adapt the

Dynamic Graph model to also incorporate dynamic yaw changes.
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3.1 Model Framework

We represent the wind farm as a directed graph G = (N , E), where the turbines define

the nodes N and the edges E describe the directed interconnections between turbines.

In particular, when the wake of turbine j influences turbine i, there is a directed edge

connecting node j to node i with non-negative edge weight whose magnitude is defined

by the strength of the interaction. In general, a wake model is used to determine the

interconnection structure and the edge weights of the edges since the scope of the

wake needs to be determined in order to define the wake interactions. The adjacency

matrix of G, denoted by Λ, has elements λi,j = 1 if Turbine i is in the wake of Turbine

j and λi,j = 0 if Turbine i is not in the wake of Turbine j. We designate turbines not

affected by the wakes of any of the other turbines as freestream turbines, and these

turbines act as the head nodes of the graph. Clearly, the structure of the wind farm

means that the graph will not always, or perhaps ever, be connected. However, we

can separate the graph into connected subgraphs, composed of leader-follower trees.

The lead turbines are the freestream turbines, i.e., the turbines not affected by wakes

of other turbines, and the follower turbines for each subgraph are all the turbines that

are weakly connected to each leader turbine, i.e., there exists a directed path from the

lead turbine to each follower. In this way, we can sum multiple connected subgraphs

to obtain a representation of the entire system.

Figure 3-1. Example of a graph for an aligned wind farm where turbines 1, 2, and 3
are the lead turbines for the three subgraphs attained for the given wind direction.

Figure 3-1 shows an example of a graph for an aligned wind farm where, based on
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the freestream velocity U∞, nodes 1, 2, and 3 correspond to freestream turbines. For

the given wind direction the graph structure is comprised of three line graphs with the

directed edges shown, where the lead turbine of each graph only affects the turbines

in its column. For example, in Figure 3-1, for the lead turbine, Turbine 1, the follower

turbines would be Turbine 4 and Turbine 7. The three graphs obtained in this example

are a product of the wind direction, the wind farm geometry, and the atmospheric

conditions. For example, different atmospheric conditions could cause interconnections

between the three graphs if, e.g., increased prevailing turbulence levels cause larger

wake expansion coefficients leading to lateral wake overlaps. Arbitrary wind farm

geometries and changing atmospheric conditions may also result in leader-follower trees

that have shared nodes which must be taken into account in the implementation of the

model. The next three subsections describe the building blocks of the input-output

estimation algorithm.

3.1.1 Wind Farm System Graph Identification

We now describe how to identify the steady state graph representation of an arbitrary

geometry wind farm corresponding to a given wind direction. This graph depends on

the geometry and the current atmospheric conditions. Voronoi tessellation is used to

partition the domain into cells obtained by placing each vertex equidistant from three

nodes (turbines). We determine the freestream turbines by drawing a vector from

each turbine location to the front of the farm along the current wind inlet direction.

If the line only crosses one cell, its own, to reach the front of the farm, then it is

determined to be a freestream turbine. Figure 2-2(a) shows an example of the line

drawn to the front of the farm from the ninth turbine.

The turbines that are not identified as freestream for a given wind direction are

then tested to determine if they are in the wake of another turbine. The wake of

each turbine is defined through linear wake expansion with expansion coefficient kw
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Figure 3-2. A simple 10 turbine wind farm example illustrating the process of
defining the wind farm graph. (a) Voronoi cells drawn for a left-to-right wind direction.
The grey shaded cells are the cells on the line from the ninth node (turbine) to the
front of the farm. (b) The leader-follower graphs resulting from applying the algorithm
to this wind farm with left-to-right wind direction. The different colors represent
subgraphs with independent lead turbines.

determined from the atmospheric conditions as

kw = α∗ u
∗

U∞
. (3.1)

Here u∗ is the friction velocity, U∞ is the freestream velocity, and α∗ is a model flow

parameter of order one. A turbine is said to be in the wake of an upstream turbine if a

line with slope kw (in the coordinate frame of the incoming wind direction) extending

from either edge of the upstream turbine hits the given turbine. To streamline the

process, for each non-freestream turbine, we only test the cells that the line drawn to

identify freestream turbines crossed to reach the front of the farm for that particular

turbine. Taking the example in Figure 2-2(a), the cells of the turbines that would be

tested for Turbine (node) 9 are shaded gray. If the upstream turbine’s wake affects

the current turbine, there is an edge defined between these turbines (nodes). The

graph formed using the configuration shown in Figure 2-2(a) and kw = 0.0625 is shown

in Figure 2-2(b), where there is a subgraph associated with each of the freestream

(lead) turbines (nodes 0, 1, 2, and 5) and the different subgraphs are represented by

different colors. In this case Turbine 9 is not in the wake of Turbine 5, even though
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the cell surrounding that turbine is shaded in Fig. 3-2 (i.e., the line crosses through

it). However, a larger value of kw may lead to a connection between these turbines.

Further discussion of the definition of the wake coefficients for each turbine is provided

in the next subsection.

3.1.2 System Dynamics

Having described the process for identifying the system graph, we next specify the

system dynamics. The states of the system are the velocity deficits resulting from the

interactions between each turbine pair (i.e., the edges of the graph). To define this

quantity we use the concept of ‘deficit coefficients’, which represent the normalized

velocity deficits between each turbine pair, see e.g., [109]. Our description of the

deficit coefficient at Turbine i caused by Turbine j, represented by ϕj
i , is adapted

from an existing turbine deficit model [22] that uses a super Gaussian wake profile. In

particular, we apply this model in the far wake limit, where the model assumes a fully

Gaussian wake profile and is employed in the deficit coefficient

ϕj
i = 2a(︂

1 + 2kw∆xj
i

)︂2W
j
i , (3.2)

where a is the induction factor of the turbine, which is related to the local coefficient

of thrust (C ′
T ) by a = C ′

T/(4 +C ′
T ). The direct downstream distance between turbines

j and i normalized by the diameter of the turbines is ∆xj
i . The variable W j

i is the

average of the linear superposition wake function (Eq. 10 in Ref. [22]) for the wake of

Turbine j over the disk area of Turbine i, which represents the extent of the effect of

the wake of Turbine j. This coefficient can be computed as

W j
i = 1

2πR2
i

∫︂ Ri

0

∫︂ 2π

0
W (D∆xj

i , ri,j) ri dθdri, (3.3)

where the variable ri,j, which denotes the distance from the center of Turbine j’s

wake to an infinitesimal point on the disk area Turbine i, is found using ri,j =
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√︂
(Rj + ri cos θ)2 + (ri sin θ)2. Here, Rj is the distance between the center of the wake

from Turbine j and the center of the disk of Turbine i.

The wake expansion coefficient varies throughout the farm depending on the

properties of the farm. The local wake coefficient values for Turbine i, denoted by

kwi
, lie within an interval bounded by a freestream value (k0), and a fully developed,

or waked, value (kwaked). As in the ALC model described in Chapter 2, the ’waked’

region of the wind farm using the height of the internal boundary layer resulting

from the presence of the wind farm in the atmospheric boundary layer [11, 27, 110].

The fully developed ‘waked’ region begins when the height of the internal boundary

layer reaches the maximum boundary layer height, represented by H. Defining the

start of the boundary layer as the location of the freestream turbines, we vary the

wake expansion coefficient linearly between the two values according to the weighting

function

kwi
= k0 +

(︄
δi − δ0

H − δ0

)︄
[kwaked − k0] , (3.4)

where δ0 represents the initial boundary layer height, and δi is the height of the internal

boundary layer at Turbine i, modeled according to Eq. 34 of Ref. [22].

When the model is implemented, the values of k0 and kwaked must be determined.

For k0, the definition from Eq. 3.1 is used, with α∗ = 1. The value of kwaked is more

difficult to determine. In this work, we obtain this value from examining several runs

of the ALC model, from Ch. 2, applied to the study’s wind farm geometry and using

the average value α−value from the most ‘waked’ turbines, or the turbines located at

the rear of the farm.

To form the state vector Φk, the individual deficit coefficients between each turbine

pair are stacked in the form

Φk =
[︂
ϕ1

1 ϕ2
1 ϕ3

1 ... ϕN
1 ϕ1

2 ... ϕN−1
N ϕN

N

]︂T
. (3.5)

Since we model the interactions between each turbine pair individually, the system
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has N2 states, where N is the number of turbines. We use the following update model

for the dynamics of the state vector

Φk+1 = A Φk + Ek, (3.6)

where in this case A = I. The input Ek represents the changes in system state due

to the wind direction changes (events) in our framework. The precise form of Ek is

detailed in 3.1.3.

The output of the system is the total wake deficit coefficient α, which represents

the superposition of the individual deficits that affect a given turbine. The current

output of the system is a function of the states at earlier times, which depends on

edge-specific time delays that arise because of the finite time it takes information to

travel between turbines. This information, which comprises quantities such as changes

in wind direction or in the wake of a forward turbine, is contained in the flow field,

and thus travels at the speed of the flow. In other words, this information is a function

of the velocity of the flow field and the distance between two turbines. The time delay

associated with information travel from Turbine j to i can be approximated as

τ i
k,(i) = D ∆xj

i

uj

, (3.7)

where uj is the local velocity at Turbine j, representing the speed that information

will propagate to Turbine i. The diagonal of the matrix τk will be zeros since there

is no delay of information when moving from a turbine to itself. The corresponding

output equation is given by

αk+1 = Λ(τk)Φk(τk), (3.8)

where Λ(τk) is a time-dependent adjacency matrix and is found from the subgraphs

present at the delayed time. The quantity Φk(τk) represents the states of the system

as a function of the time delays, and describes the delay of information propagation

(here the change in wind direction) through the system. The states are updated at
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every time step, but the effect of that update does not reach the output until after the

time delay. The architecture of this formulation results in a linear superposition of the

wake velocity deficit coefficients. These coefficients are related to the velocity deficit

through δui = αiU∞, which enables the disk velocity of the turbines to be found using

Ud,k+1 = U∞ (1 − αk+1)
(︄

1 − C ′
T

4 + C ′
T

)︄
(3.9)

where C ′
T is the local coefficient of thrust for the turbine.

The power from the wind farm is computed using the disk velocities calculated in

Equation (3.9) as

Pk = 1
2ρ
(︃1

4πD
2
)︃
U3

d,k+1C
′
P (3.10)

where ρ is the air density, πD2/4 is the rotor disk area, and C ′
P is the local coefficient

of power. C ′
P is sometimes assumed to be the same as the local coefficient of thrust

C ′
T (Betz limit), but in applications it is usually less due to losses.

3.1.3 Network Changes

Our time-varying graph is based on a log-file approach [105], where the static directions

are the snapshots, and the changes between two snapshots - or two wind directions

- are cataloged in time. The changes that occur in the graph are then implemented

in an event-based framework, wherein an event is defined when the wind direction

changes. The events are then associated with their application times tk.

For a given event, the model has a current end-goal graph that represents what

the final form of the graph will look like after the changes have been applied. When a

subsequent event occurs, the final graph for the new wind direction is calculated and

compared with the current end-goal graph. Changes between these two graphs are

noted and sorted as a function of the time at which the event state reaches a given

turbine. This time is computed as the streamwise distance between the turbine and

the front of the farm divided by the freestream velocity. Here the front of the farm
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is defined by the turbine at the front (i.e., the one that first experiences the inlet

velocity associated with the new wind direction). Once the changes are defined and

sorted, they are integrated into the existing event framework to be applied at the

appropriate time in the simulation. The input for the system is then a function of the

event parameters that are relevant to the current application time.

Ek = f(Φk, τk,∆Ek) (3.11)

Each input is a function of the new state values Φe,i, the new time delay values τe,i,

and the list of the edge changes ∆Ee,i.

3.1.4 Results

The model is tested using the circular wind, shown in Figure 3-3, farm comprised of

38 5MW NREL reference turbines [93]. The wind direction reference is the inflow

direction from the north at 0◦. Measuring angles in a clockwise direction places the

standard left-to-right inflow to the farm at 270◦, as shown in Figure 3-3. Each turbine

has a height zh = 90 meters and a turbine diameter D = 126 meters.

Figure 3-3. The circular wind farm configuration used to validate the graph model.
The arrows and angles show the orientation of the wind direction.

The model is validated for both the steady state power prediction and the transient

response of the wind farm during a wind direction change. The dynamic results are
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Applications (SOWFA) [88], and at both end points for the Jensen model [12, 24],

the coupled model in Shapiro et al. [22], and the ALC model [110]. The dynamic

response of the graph model in Figure 3-4(a) is compared to the dynamic FLORIS

model implemented with the same direction change, which is represented by the solid

line. The LES have a roughness height of z0 = 0.15 meters and average inflow wind

speed of U∞ = 8.07 m/s. The simulations use an actuator disk model for the turbines.

The wake models use the same turbine parameters and U∞ value. The friction velocity

for the models is calculated using u∗ = U∞ ln(zh/z0,lo). The values for coefficients of

thrust and power are taken from the analysis in [110].

In the graph model, the values of k0 = 0.12 and kwaked = 0.2 were computed from

the average values from runs of the ALC model spanning 90◦ at 15◦ increments. The

initial boundary layer height δ0 is computed using a modified top-down model in the

atmospheric boundary layer [27]. The maximum boundary layer height was set to 750

m, due to a temperature inversion at that height in the LES.

All the models and LES agree well at 280◦ except the Jensen model, but the coupled

model from Shapiro et al. diverges at 270◦. The Jensen model, while lower than

the other models, perhaps because the way we define the wake expansion coefficient

formulation, exhibits a drop in power from 280◦ to 270◦ that is similar in magnitude

to that of the graph model, the ALC model, and FLORIS. Since the Jensen model

is the only model without a data or physics-informed way to determine the wake

expansion coefficient, the power output numbers may be less due to the the assumption

of uniform wake behavior through the farm.

Considering the dynamic response, both of the models exhibit similar trends, with

a ramp down to the 270◦ value. Though the steady-state FLORIS power for 270◦ is

lower than that of the graph model, both models reach a steady state at very similar

times, and the difference in the slope is a result of the variation in the final values.

Modeling differences in the wake deficits likely account for the range of values for the
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power at 270◦. The black dashed line in the figure shows what the predicted farm

power would be if the instantaneous wind direction change was assumed to be valid

through the whole wind farm, (i.e., at each wind direction the steady state output

power is computed from a static model). In this case, the steady-state prediction

would show that all the effects of the change in wind direction are accounted for

around the same time that the dynamic direction models start to show the effects of

the wind direction change. This comparison illustrates that neglecting the dynamic

response to the wind direction change can lead to inaccurate power output predictions.

Figure 3-4 also shows the graph connections at different points during the wind

direction change. The wind direction change is evident in the graph when the initial

graph in Figure 3-4(1) is compared to the final graph in Figure 3-4(5). In the

initial graph, the connections between turbines are predominantly diagonal, while the

connections in the final graph reflect the left-to-right inflow direction. The intermediate

graphs, in Figure 3-4(2)-(4), show how the change of direction propagates through the

farm.

The connections (or adjacency) matrix of the graph does not provide complete

information for the graph model. We must also consider the intensity of the connections,

represented by the weights of the edges. In this context, the weights indicate how

much the wake of the upstream turbine in the edge affects the power of the following

turbine. Figure 3-5(1)-(5), shows the weighted connections of the graph, where darker

colors indicate a stronger connection. We can see the importance of the weights of

the connections by noting that even though the graph for the farm with a 280◦ wind

direction appears to have more connections, the connections are relatively weak across

the farm. The connections in the graph with a 270◦ wind direction are much stronger,

particularly for the aligned turbines in the center, resulting in a lower overall power.

We next apply the graph model to a larger change in wind direction, from 280◦ to

250◦. The rate of change for the wind direction was kept at 2◦ per minute, resulting
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Figure 3-6. The power prediction of the graph model (▶) as the wind direction
changes from 280◦ to 250◦ at a rate of 2◦ per minute, compared with the FLORIS
simulation (-) and the static power from FLORIS (- -) for the same wind directions.
The endpoints are compared with LES data (•), the Jensen model (□), the model in
Shapiro et al.[22] (◦), and the ALC Model from Starke et al. [110] (♢)

dynamic FLORIS, represented by the solid black line. We can see that the trends of

the two models agree well, both exhibiting a dip in power before coming back to a

similar value at the end of the simulation. This is a result of the more aligned nature

of the farm at 270◦, as seen in the previous example. The dynamic responses were

again compared with the static step response, depicting the result if the wind direction

is changed through the whole farm simultaneously, shown by the black dashed line.

While the magnitude and the general trend of these values are similar, the static

response reaches the trough and the final wind direction steady state much sooner

than the dynamic response. This illustrates that using a static model for wind farm

control under a wind direction change would give an inaccurate power prediction,

rendering control of the system less effective. For implementation purposes, the

graph model is significantly faster than the dynamic FLORIS model, with the entire

simulation in Figure 3-6 taking between two and three minutes. This makes the graph

model approximately 20 times faster than the dynamic FLORIS model, which is an
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similar in accuracy to the more detailed wake models compared here.

3.2 Wind Turbine Yaw

The model outlined above accounts for changes in wind direction, but this framework

can also be applied to dynamic yaw changes in a wind farm. When a turbine is yawed,

it affects both the wake shape behind the turbine and also the power produced by the

turbine. The direction of the wake deflection is also modified by the addition of yaw

and this changes the connections between turbines in the graph model representation.

We now describe how the graph model in the previous subsection can be adapted to

account for changes in turbine yaw. As established previously, the states of the graph

model system are the normalized velocity deficit coefficients between each turbine

pair. In order to determine these coefficients for the yaw case, we need a wake model

that can represent the effect of yaw on the wind turbine wake. In this work we use the

wake model for a yawing turbine developed by [49], which describes the deformation

in the wake shape using an analytical function. We now present a short overview of

this model which is explained more fully in [49].

The model is centered on an altered wake expansion function, which manifests in

the wake deficit equation in the following way

δu

U∞
= C(x) exp

[︄
−(y − yc)2 + (z − zh)2

2σ(x, θ)2

]︄
. (3.12)

Here, δu is the wake deficit, U∞ is the freestream velocity, C(x) is the initial velocity

deficit, which is described later, yc is the y-location of the center of the wake, zh is

the turbine height, and σ(x, θ) is the adjusted wake function, which is a function of

both streamwise distance x and polar angle θ. The polar angle is defined as

θ = arctan
(︄
z − zh

y − yc

)︄
. (3.13)

The polar angle and the velocity deficit both depend on the streamwise position of
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the wake center, which is defined as

yc = (π − 1)|t̂|3 + 2
√

3π2t̂
2 + 48(π − 1)2|t̂|

2π(π − 1)t̂2 + 4
√

3π2|t̂| + 96(π − 1)2
sgn(t)̂ − 2

π

t̂[︂
(z + zh)/ξ̃0

]︂2
− 1

, (3.14)

where t̂ is a dimensionless time quantity defined by the approximate analytical solution

t̂(x, z) ≈ −1.3634Uh

u∗

R

ξ̃0
CT cos2 γ sin γ

[︄
1 − exp

(︄
−0.4 u∗

Uin(z)
x

R

)︄]︄
, (3.15)

where R is the turbine radius, u∗ is the friction velocity, and Uin(z) and Uh are the

z-dependent inflow profile and the inflow value at hub height (z = zh), respectively.

The expression

ξ̃0 ≈ R
√︂
A∗ (3.16)

is the initial wake shape based on the projected area of the yawed rotor with

A∗ = 1 − a

1 − 2a = 1 +
√

1 − CT cos2 γ

2
√

1 − CT cos2 γ
, (3.17)

where a is the turbine induction factor and is related to the disk velocity ud by

ud = U∞ cos γ(1 − a). The induction factor is affected by the yaw of the turbine and

the relationship between the induction factor and the local thrust coefficient can be

approximated [44] as

a = C
′
T cos2(γ)

4 + C
′
T cos2(γ) . (3.18)

From this equation, the thrust coefficient can also be calculated based on the local

thrust coefficient as

CT = 16C ′
T

(4 + C
′
T cos2(γ))2 (3.19)

This is the coefficient of thrust used in the Eq. 3.17 above.

Once the wake streamwise centerline and the polar angle are defined, we can

calculate the wake function as

σ(x, θ) = kwx+ 0.4ξ(x, θ), (3.20)
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where the equation is comprised of the standard linear wake expansion kwx, where

kw is the wake expansion coefficient, and a second term to determine the evolution

of the wake shape. The function ξ is a complicated function that depends on the

streamwise distance, the polar angle, the current yaw angle, the dimensionless time,

and the rotation rate of the turbine blades. The function exhibits different behaviors

for different regions of the value of the dimensionless time, so our model uses the

empirically fitted solution for this function that is derived in Appendix B of [49]. The

equation consists of two parts:

ξ(θ, x) = ξ0ξ̂. (3.21)

The first part consists of a an initial wake area defined by

ξ0(θ) = R
√︂
A∗

| cos γ|√︂
1 − sin2 γ sin2 θ

, (3.22)

for which a small γ approximation was given earlier in Eq. 3.16. The second part is

the dimensionless shape of the vortex sheet

ξ̂(θ, t̂) = 1 − αz

⎡⎣ t̂
2

8αz

cos(2θ) +
⎛⎝ −t̂3

24αz

χ sin(2θ) + −t̂3

32αz

cos(3θ)
⎞⎠

+
⎛⎝−1

6
t̂
4

16αz

χ2 cos(2θ) + 5
16

t̂
4

16αz

χ sin(3θ) + −5
48

t̂
4

16αz

cos(2θ) + 7
48

t̂
4

16αz

cos(4θ)
⎞⎠⎤⎦

(3.23)
where αz = 1.263 cos(0.33χ), and χ = 1/(λ sin γ) is the rotation rate, which defined

as the ratio of the strength of the vortex generation due to the rotation blades to the

one generated due to the yaw offset and depends on the tip speed ratio λ.

Finally, to fully define this model, the initial wake deficit C(x) is calculated using

the following equation

C(x) = 1 −

⌜⃓⃓⎷1 − CT cos3(γ)
2σ̃2(x)/R2 (3.24)

where σ̃2 uses a simplified version of Eq. 3.20. The simplified version avoids a

dependence on θ and is defined as

σ̃2(x) = (kwx+ 0.4ξ̃0)(kwx+ 0.4ξ̃0 cos γ), (3.25)
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which uses ξ̃0 from Eq. 3.16 which is defined earlier, and whose asymmetry is used as

a way to approximate the effect of yaw on the velocity deficit.

Using the wake model formulation from [49] above, we can calculate the deficit

coefficient for the graph model. This process applies this wake deficit model to each

turbine pair, and then takes the average of the wake deficit from the jth turbine over

the disk area of the ith turbine, represented by the expression

ϕj
i = 1

Aithdisk

∫︂
ithdisk

C(∆xi,j) exp
[︄
−(y − yc,j)2 + (z − zh,j)2

2σ(∆xi,j, θj)2

]︄
dy dz (3.26)

The states of the model are thus the normalized velocity deficit coefficients calcu-

lated between each turbine pair in the wind farm. To form the state vector Φk, these

individual deficit coefficients are stacked in the form

Φk =
[︂
ϕ1

1 ϕ2
1 ϕ3

1 ... ϕN
1 ϕ1

2 ... ϕN−1
N ϕN

N

]︂T
, (3.27)

resulting in a system with a total of N2 states.

After the individual velocity deficits have been calculated, they are then linearly

superposed using the time-dependent adjacency matrix from the graph to determine

the appropriate wake connections. The disk velocities at each turbine are then found

by multiplying the superposed velocity deficit coefficients by the the streamwise

component of the velocity, since this is the component that produces power,

ud,k = (1 − αk)U∞cos(γk)(1 − a). (3.28)

In the disk velocity equation, the induction factor used is that defined in Eq. 3.18.

The disk velocity can now be used to calculate the power for the wind turbine using

Pk = 1
2πR

2ρ(ud,k)3CP cos(γ)p, (3.29)

where for our case we set CP = CT and the exponent p determines the effect of yaw on

the power and changes for different turbines. The range for p is generally 0.5 ≤ p ≤ 2.
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3.2.1 Time-Delay Formulation

The time-delay between turbines is characterized by τ = ∆x/u, where ∆x = snx,j−snx,i

is the distance between the two turbines and u is the velocity of the wind. However, the

velocity of the wind varies between the turbines as a result of the wake behind the first

turbine. In the previous formulation of the model, the freestream velocity was used to

find the time-delay. Our studies using this model showed that this underestimates

the time delay (since the velocity is slower than the freestream velocity due to the

wake). To improve upon the initial formulation, we derive an analytical result for the

average velocity based on the velocity deficit. We know from 3.12 the expression for

the velocity deficit. For the wake velocity, we use the velocity on the centerline of the

wake, where y = yc and z = zh. This simplifies the velocity deficit equation to

δu

U∞
= C(x). (3.30)

where C(x) is defined by 3.24. We know that the velocity of the flow is found by

subtracting the velocity deficit from the freestream velocity: u = U∞ − δu. We can

then find a more accurate time-delay by integrating the velocity over the distance

between the turbines

τ̃ =
∫︂ snx,j

snx,i

1
U∞(1 − C(x))dx (3.31)

Since most wake models are more accurate in the far field rather than immediately

after the turbine, we adjust the integral to start one diameter downstream of the

forward turbine. Also substituting the previous relations in for C(x) gives the following

expression:

τ̃ =
∫︂ snx,j

snx,i+D

1

U∞

[︃√︃
1 − CT cos3(γ)

(2/R2)(kwx+0.4ξ0̃)(kwx+0.4ξ0̃ cos γ)

]︃dx (3.32)

We now apply a Taylor series expansion to the integrand to simplify the expression. If

we set

y = CT cos3(γ)
(2/R2)(kwx+ 0.4ξ0̃)(kwx+ 0.4ξ0̃ cos γ)

, (3.33)
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we can find the Taylor series expansion for 1/
√

1 − y, which is

1√
1 − y

≈ 1 + y

2 + 3y2

8 + 5y3

16 + O(y4) (3.34)

Using the first order approximation, we an write the integral as

τ̃ =
∫︂ snx,j

snx,i+D

1
U∞

(︃
1 + y

2

)︃
dx

=
∫︂ snx,j

snx,i+D

1
U∞

(︄
1 + 1

2
CT cos3(γ)

(2/R2)(kwx+ 0.4ξ0̃)(kwx+ 0.4ξ0̃ cos γ)

)︄
dx

(3.35)

Performing the integration gives the following expression for the time delay

τ̃ = 1
U∞

[︄
∆x−D + CTR

2 cos3 γ

1.6ξ0̃kw(1 − cos γ)(︄
ln kwsnx,j + 0.4ξ0̃

kwsnx,j + 0.4ξ0̃ cos γ
ln kw(snx,i +D) + 0.4ξ0̃

kw(snx,i +D) + 0.4ξ0̃ cos γ

)︄]︄
.

(3.36)

As can be seen from this expression, in the third term of the integral there is a

singularity when γ = 0. This term will tend to infinity due to the (1 − cos(γ)) term in

the denominator. However, the natural logarithm term will tend to zero as this term

becomes ln(1) when γ = 0. Numerically, this was dealt with by adding a very small

value of the same sign as the cosine term to keep the expression (1 − cos(γ)) from

equalling zero exactly. The logarithmic term seems to dominate the expression as the

yaw goes to zero. Figure 3-8(a) shows the integrated quantity of the time delay over

the range of yaw angles from γ = −20◦ to γ = 20◦. Figure 3-8(b) shows the average

time-delay values found for this range. The average time-delay found for γ = 0 is a

finite value, is not an outlier when compared to the rest of the values and gives the

time delay we would expect for zero yaw.

3.2.2 Validation of the model

The model was first tested in a static capacity by comparison to LES. The setup has

two turbines that are aligned with 7D between them in the streamwise direction. The

first turbine is then set to various yaw positions between −30◦ and 30◦ yaw and the

averaged power results are compared to the model results.
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dynamic wind direction changes and dynamic yaw changes. First, it was applied to a

nonuniform wind farm to demonstrate tracking a transient response of the farm to

a change in wind direction. The model results are comparable with LES and wake

models for a steady wind direction. More importantly, the model performed more

realistically than static models over a wind direction sweep, when validated against

an unsteady RANS model. The yaw formulation of the model was also validated with

LES, both statically and dynamically. The static test showed good agreement with

LES for varying yaw angles. The dynamic test was performed over 120 realizations of

an LES of a dynamically yawing turbine pair. The model was able to capture both the

magnitude and timing of the change in power due to the dynamic yaw. The structure

and speed of the model lends itself to integration into real-time, horizon-based, control

strategies, which is explored in the remaining chapters.
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Chapter 4

Error Correction and State
Estimation in Wake Modeling

The wake models described in the previous chapters provide good representations of

some of the key dynamics in the wind farm that affect the power prediction, such as the

wake deficit and advection and dissipation of the wake. However, they must necessarily

neglect and simplify many aspects of the physical processes affecting the wind farm in

order to reduce the order of the model and the computation time. Notably, the model

has no knowledge of the variations in the power output due to turbulence in the flow,

which is related to the conditions of the incoming velocity, and changing conditions

that can affect the wake expansion coefficient, kw, which determines how the wake

expands as it advects downstream.

Wake models can be improved by incorporating real-time measurements taken

from the wind farm. In this chapter, we outline various ways of incorporating these

measurements and their effects on the wind farm power output. Here, we focus on

using only the power measurements available from operating turbines in a wind farm.

In Section 4.1, we show how a nonuniform inflow for a wake model can be derived

from these measurements. Then, in Section 4.2, we use these measurements to update

the states of a wake model to reduce modeling error using an ensemble Kalman filter.
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4.1 Dynamic Inflow in Wake Modeling

One of the most straightforward ways to improve the prediction of the wake model

is to enable a nonuniform inflow as an inlet condition. Since wind farms can span a

distance of kilometers, the inflow conditions can change significantly across the inflow

area. This is illustrated in Fig. 4-1, which shows an average velocity field from an LES

of a wind farm. The wind farm depicted in Fig. 4-1 is 6 kilometers in the spanwise

direction, which is not an unusual wind farm size, and the black box in the figure

shows the inlet condition of the farm. Clearly, the inlet condition varies quite a bit

over the wind farm span, and this can be exacerbated in operating wind farms by

geological features upstream of the farm. By including these variations in the model,

we can better capture local conditions in the flow.

Figure 4-1. The average velocity field of an eighty four-turbine farm showing the
variation of the average velocity seen at the first row of the farm (denoted by the
black box).

Instantaneous power measurements at each turbine can be filtered using the
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equations for the disk velocity and power from a turbine to find the upstream velocity

U∞,n =
(︄

2Pn

ρAC ′
P,n

)︄1/3 (︄4 + C ′
T,n

C ′
T,n

)︄
. (4.1)

This expression is only valid for the freestream turbines in the farm. The turbine

wakes of upstream turbines distort the velocity measurements of the waked turbines

which prevents the waked turbine power data from providing an accurate measure

of the freestream velocity. The freestream turbines are either determined a priori by

the wind direction, or computed dynamically if the wind direction is unsteady. An

example method for identifying these turbines was shown in Chapter 3.

4.1.1 Incorporation with LES

Since this method uses the instantaneous power measurements from the turbines, it

can be applied in real-time to update the inflow conditions for a given model. In

our implementation, the model is run simultaneously with the wind farm plant (LES

in our case) and the inflow is updated dynamically using the instantaneous power

measurements from the turbines. This procedure is illustrated using a time-dependent

version of the Jensen/Park model [12] to represent the 84 turbine farm, whose geometry

is shown in Fig. 4-1.

The evolution of the velocity field for this case is shown in Fig. 4-2, where the

velocity profile in the spanwise direction is plotted against time. We can see that the

velocity profile is initialized with a constant value and then updates according to the

power measurements. In this case, the change in the freestream velocity takes the

form
dU∞,n

dt
= 1
τfil

⎛⎝4 + C ′
T,n(t)

C ′
T,n(t)

(︄
8Pn(t)

ρπD2C ′
T,n(t)

)︄1/3

− U∞,n(t)
⎞⎠ , (4.2)

for the freestream turbines (shown in the black box in Fig. 4-1) where τfil is the time

constant that determines how quickly the inflow velocity profile is allowed to change,

and the local thrust coefficient is assumed to be the same as the local power coefficient.
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Figure 4-2. The evolution of the inflow velocity field filtered from the freestream
turbines.

The ending profile in Fig. 4-2, shown on the right, is able to reflect the large scale

trends of the inflow profile shown in the LES in Fig. 4-1, which means that it is able

to incorporate the time and space dependent changes in the inflow to the wind farm.

Figure 4-3 shows a comparison between an instantaneous snapshot of the LES

velocity field compared with the wake model of the flow. Since the wake model is

aimed at capturing the time averaged behavior of the farm along with key flow aspects,

it does not match an instantaneous snapshot exactly. However, it is able to reproduce

the faster and slow streaks in the inflow that can be seen in the LES inflow (though

in a more turbulent sense) and also reflects the general placement of wakes and wake

interactions in the farm.

While the wake model is able to dynamically update its inflow based on the power

measurements from the LES, there remain a few challenges with this method. The

main challenge is the fact that while the spanwise velocity is heterogeneous in this case,

the streamwise velocity is constant along each spanwise location. Applying spacial
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Figure 4-3. A comparison between (a) an instantaneous velocity snapshot of the
LES simulation and (b) the wake model with the span-dependent inflow velocity based
on the LES.

variance in both the spanwise and the streamwise directions is an area of current

research in flow field-resolving wake models [112], but the majority of wake models

currently are only equipped for spanwise heterogeneity. This presents the challenge

that the inflow profile changes that occur at the front of the farm will be applied

instantaneously to the whole farm. This is problematic because the previous inlet

conditions are still progressing through the farm with a finite travel time. The fact

that the wake model is trying capture the average effect of the inflow over the whole

farm is why the time constant in Eq. 4.2 is important. It determines how quickly the

inflow should change, and how that change will effect the total power output of the

entire farm.

The Dynamic Graph model, due to its structure, is better equipped to represent

these variations throughout the farm. Since the Dynamic Graph model relies on

the pairwise interconnections between the turbines and does not resolve a complete

velocity field, a changing inflow can be advanced through the farm in the same way as

the varying wake based connections between the turbines. The Dynamic Graph model

can then be implemented alongside LES and use instantaneous power measurements,
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where three turbines are aligned in a single column according to the incoming wind

direction. The figure shows the power from the first turbine in the column, the

freestream turbine, in Fig. 4-4(a), where we can see that the Dynamic Graph model

follows the LES power very well. This makes sense as the Dynamic Graph model is

using the filtered velocity for the first turbine. Then Fig. 4-4(b) and (c) show the

time series for the second turbine and the third turbine, respectively. In these cases,

the model does not match as well, especially on the peaks and turbulent fluctuations,

where more energy is added to the flow from wake meandering, for example. Here,

the model does not have enough information from the inflow to be able to reproduce

these features of the flow. Even so, the model is able to follow the general trend of

the second and third turbines. One of the artifacts of this model is that it takes the

inter-turbine travel time from the first turbine for the second and third turbines to

pick up on the changes in the inflow after they are initialized (which is most obvious

in the inital constant value of the third turbine). The second point of note is that

the variations of the inflow, such as the large troughs and peaks around 800 − 1200

seconds in Fig. 4-4(a) clearly propagated to the second and third turbines, see the

trough at 1000 seconds in Fig. 4-4(b), which shows that this model is able to represent

heterogeneous flow in both the spanwise and streamwise directions due to its inherent

structure.

Figure 4-4(d) shows a comparison between the total power from the column of

turbines from the LES and the Dynamic Graph model. As mentioned above, the

Dynamic Graph model misses the larger turbulent fluctuations in the power. However,

it is able to track the average power output of the wind farm, and looks like a

smoothed-out version of the LES signal. The Dynamic Graph model here exhibits a

lower variability over time when compared with the LES. Since this model is intended

for control-oriented applications, this artifact could affect the control actions selected

using this model. The strength of this model is its ability to represent changing
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conditions in the wind farm. These conditions, such as a wind direction change,

are also typically on a slower timescale, as they can take possibly 10s of minutes to

propagate fully through the farm. Since the events that this model is designed to

represent are also changes that are typically slower and affect the bulk power more

than the turbulent variations, this model is a good candidate to inform the control

decisions in these cases. However, since the model does exhibit less variability than

the LES, it may not be a good candidate for determining pitch control, in its current

form. However, applying a more advanced estimation technique could also improve

the performance and responsiveness of the graph model.

4.2 The Ensemble Kalman Filter

In addition to using a nonuniform inflow, we can also adjust the parameters of a wake

model dynamically to improve the power output estimate. In order to find the update

for the parameters based on the measurements, we employ the Ensemble Kalman

filter (EnKF). The EnKF is an extension of a traditional Kalman filter and is used in

situations with large parameter spaces. Instead of calculating the covariance matrix,

the EnKF extracts the error information from an ensemble of perturbed models, whose

average serves as the ‘true’ state of the system [62].

The following outlines a brief description of the EnKF and it’s application to a

wake model. This estimation method is applied to the types of dynamic wake models

developed in previous work [22], and not to the wake and wind farm models presented

in detail in this thesis. More details of the EnKF and its application to this problem,

which is published in [22], can be found in Appendix A. In this application, the EnKF

is used to reduce the error in the velocity deficits δun (the states of the model) and

the wake expansion coefficients kw,n (the parameters of the model) based on power

measurements at each turbine. In particular, we extend the approach of Shapiro et

al. [65] to incorporate the modified dynamic model presented in [22]. This extension

87



allows the estimation method to be applied to arbitrary turbine configurations, and

include spanwise variations in inflow velocities. The previous approach of Shapiro et

al. [65] was limited to regular wind farm configurations in which all rows were averaged

and the farm could be treated as a single column of representative turbines.

The EnKF assumes that the resulting modeled wind farm system is governed by

discrete update equations of the form

ψk+1 = f(ψk,C′
T k) + Bχk, (4.3)

ξk = h(ψk,C′
T k) + ϵk (4.4)

whereψk+1 = f(ψk,C′
T k) and ξk = h(ψk,C′

T k) are temporal and spatial discretizations

of the wake model, ψk is the vector of the model states, which are the velocity deficits

and the wake expansion coefficients of the turbines, C′
T k is a vector of the local

thrust coefficients at each turbine, and the function h(ψk,C′
T k) maps the states to the

measured quantities (the power at each turbine). Measurement and modeling errors

are represented by the zero-mean white noise processes ϵ and χ, respectively. The

variance of the measurement, state, and parameter noise must be prescribed. In the

examples shown, they are specified as σδu = 0.1 m/s, σk = 0.00025, and σP = 4.83

kW.

An ensemble of 256 wake model implementations, governed by (4.3) and (4.4), is

used to estimate the error covariance of the wake model based on the measurements.

The state and parameter estimates are computed in two steps. First, the wake model

is used to perform an intermediate forecast of the wake model states. Then, power

measurements are used in conjunction with the ensemble estimates in the measurement

analysis step to produce states and parameter estimates. Further details of this method

can be found in [65].

The estimation algorithm is tested using an LES of a 38-turbine wind farm

composed of four staggered rows of six turbines followed by 14 irregularly arranged
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Figure 4-5. Locations of 38-turbine wind farm simulated in LES.
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Figure 4-6. Measured (——) and estimated power production (– – –) for 38-turbine
wind farm. The turbine locations are shown in Figure 4-5.
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Figure 4-7. Comparison of state-estimated dynamic wake model velocity fields at
t = 60 min and LES averaged between t ≈ 57.5 min and t = 62.5 min. (Figure
reproduced from [22])

turbines at the back of the farm, as shown in Figure 4-5. This is also the same

geometry that was used in the hybrid regular-random wind farm validation of the ALC

model in Section 2.2.3. The simulations are performed using the LESGO code [97],

using the concurrent precursor inflow method [99], the Lagrangian-averaged scale

dependent subgrid scale model [100], and actuator disk wind turbine models [11, 113].
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The friction velocity is set to be u∗ = 0.45 m/s and the surface roughness height is

specified as z0 = 0.1 m. The turbines have a rotor diameter of D = 100 m, a hub

height of zh = 100 m, and a local thrust coefficient of C ′
T = 4/3.

The measured and estimated power production for six turbines which are repre-

sentative of the farm are shown in Figure 4-6. The estimated power production shows

very good agreement with measurements. The RMS error has a value of 10.4 kW,

which corresponds to a percent error of 0.8%. The modeled velocity field at t = 60

min is compared to a time-averaged LES velocity field averaged between t = 57.5

min and t = 62.5 min in Figure 4-7. As demonstrated by this plot, the velocity field

generated from the state-estimated dynamic wake model gives realistic velocity fields

at a computational cost that is significantly lower than higher-fidelity approaches

like LES or RANS. Specifically, for this simulation comprised of an ensemble of 256

perturbed wake models, the ensemble calculations are spread over 32 processors, which

means that each processor handles eight of the ensemble members. The average time

to advance these models is 0.9 seconds for a simulation time step of 2.1 seconds, which

means that these calculations can be computed in real time based on typical wind

farm control loops.

4.3 Conclusions

The incorporation of measurements from a wind farm is essential for calibrating wind

farm models and dynamically updating the parameters and input values as conditions

change within the wind farm. In this chapter we outlined two methods of incorporating

the power measurements that are typically available in an operating wind farm. The

first method was filtering the freestream turbines to find a time-dependent velocity

inflow profile that can change in the spanwise direction. Incorporating a spanwise

hetergeneous inflow into wake models improves the large scale matching with LES,

however the entire wind farm experiences the same velocity profile in the streamwise
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direction, which gives rise the the question of how quickly the inflow profile should

react to changes in the LES. On the other hand, The Dynamic Graph model is able to

represent the streamwise changes in time and space as well as the spanwise variations.

This is a novel capability that is starting to be explored for wake models [112]. This

enables the Dynamic Graph model to be able to follow the average trends in the

power produced by the wind farm in time. However, these dynamic models still miss

some of the turbulence-influenced events in the waked turbines, especially when the

waked turbines receive energy from the meandering of turbulent eddies. To adjust

for events like wake meandering and changing conditions throughout the farm, we

design an EnKF that updates the states of the wind farm, the velocity deficit and the

wake expansion coefficient of each turbine, to enable dynamic wake models such as

that in [22] to better reproduce the power output of the LES. This method is able

to represent the LES results in both a quantitative sense, Fig. 4-6, and a qualitative

sense, Fig. 4-7. This approach provides a computationally efficient way to correct

for modeling errors in control applications. This chapter outlines various estimation

techniques that use data from LES to improve the prediction of wind farm models.

These techniques are used to provide error correction when wake models are used in

wind farm control applications.
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Chapter 5

Wind Farm Power Tracking Control
Using Yaw and Pitch

In this chapter we investigate the use of dynamic yaw actuation to augment pitch

actuation in active power output regulation of wind farms. Power regulation (tracking)

is a component of the grid services that it would be beneficial for wind farms to

provide to aid in maintaining the power supply-demand balance of the electrical grid.

Here we focus on secondary frequency regulation, which occurs over a period of tens

of minutes [53]. In this situation, the grid provides a power demand curve and the

wind farm must follow the demand signal. In this chapter, we present a simple pitch

proportional integral (PI) controller framework for power tracking. However, pitch

control can sometimes fall short in power tracking applications, particularly when

the demand signal increases, or ramps up, and possibly exceeds the amount of power

the is available in the farm. There have been many studies that indicate that yaw

can increase the maximum power of a wind farm, both in static [47, 77] and dynamic

applications[52, 85]. In this study, we want to incorporate dynamic yaw into the power

tracking control framework to examine if augmenting pitch control with active yaw

control improves the power tracking capability of a wind farm. Including dynamic

yaw in this process is challenging as yaw changes on a similar timescale as the demand

signal. In order to incorporate yaw, we use a model-constrained optimal control
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strategy, employing the Dynamic Graph model outlined in Chapter 3 as the control

model. We use the method from Chapter 4 to incorporate measurements from the

turbines to estimate a spanwise heterogeneous time-varying inflow to the modeled

farm. The controller is tested on an LES wind farm test plant with actuator disk

turbine models executed using the JHU LESGO code described in Section 2.2.1 [91].

In Section 5.1, we look at a simple proportional integral (PI) controller framework

for power tracking. Then in Section 5.2, we outline a model-based optimal control for

dynamic yaw actuation to augment the pitch control. Finally, in Section 5.4.2, we

tune the controller parameters and compare the performance of the pitch only and

yaw augmented pitch controllers.

5.1 Pitch Controller Formulation

Figure 5-1 shows a block diagram of the controller, where the pitch PI loop is shown

in teal. The PI control receives information from the power feedback from the wind

farm plant. It then calculates a pitch update to adjust the thrust coefficients of the

wind turbines to track the power reference signal.

The PI controller for the pitch control has the form

∆C ′
T = kpeP (t) + ki

∫︂
Tki

eP (τ)dτ, (5.1)

where kp is the proportional control gain, ki is the integral control gain, eP is the

error between the power reference signal and the current LES power, and Tki
is the

timescale of the integral control.

PI control is a control strategy that has been utilized in multiple wind farm control

applications, such as for pitch control in power tracking [76]. However, this pitch

control strategy requires turbine-specific power set points. Since we are only given a

total power reference signal for the farm we need to determine how to distribute this

signal to the individual turbines. The process of determining how the power reference
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Figure 5-1. A block diagram that shows the structure of the pitch PI controller of
the wind farm. The pitch PI controller (shown in teal) update is based on the power
feedback from the LES. The new pitch control is then implemented in the wind farm
LES, represented in the top block with an instantaneous snapshot from an LES wind
farm simulation.

signal should be distributed to each turbine is a nontrivial problem. The fraction

of the power provided to the total power from each turbine varies according to the

incoming velocity and the relative position of the turbine in the farm. In this work, we

present a model-free method that depends on past wind turbine power measurements.

We determine the distribution for each turbine according to

PRef,i =
1/TC′

T

∫︁
TC′

T

PLES,i(τ)dτ

1/TC′
T

∫︁
TC′

T

PLES(τ)dτ PRef , (5.2)

where PRef,i is the individual power reference signal for the ithe turbine, TC′
T

is the

time between pitch controller updates, PLES,i is the LES power for the ithe turbine,

PLES is the total LES power, and PRef is the total power reference signal. This

equation illustrates that we take the average of the LES power for the ithe turbine

over the pitch update time and divide by the average of the total LES power, giving

the average percentage the ithe turbine has contributed to the power since the last

pitch controller update. The power reference signal for the ithe turbine is then found

by multiplying the average percentage with the overall power reference signal. Since
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we take the average over the update time period, this could skew the sum of the

distributed turbine-specific power reference signals, however the error between the

total power reference signal and the sum of the individual power reference signals was

found to be less than 1%.

In order to facilitate a fair comparison, we use the same proportional and integral

gains for the pitch control and the yaw augmented pitch control. The tuning of the

PI gains is discussed later in Section 5.4.1.

5.2 Yaw Controller Formulation

We now discuss the model-constrained optimal control for dynamic yaw actuation.

In this section, we first examine the yaw controller formulation on its own and its

application to a wind farm plant. We also look at a way to quantify the possibilities

of dynamic yaw control.

5.2.1 Controller Formulation

The structure of the yaw model-constrained optimal control is shown in Fig. 5-2, where

the dashed box outlines the controller. The controller is composed of an optimization

solver which uses information from the cost function and the Dynamic Graph model

to find an optimal yaw solution γ⃗ for each turbine. This solution is then given to the

LES wind farm plant.

The optimal control power tracking problem is composed of solving a finite-time

optimal control problem for each controller update. At each iteration, the optimization

solver finds one optimal yaw for each turbine over the finite time horizon T . The

resulting yaw is then applied to the wind farm for a time Ta < T . The problem is then

solved again for a new time frame starting at Ta and ending at Ta + T , representing

one controller update. The power from the farm provides updated initial conditions
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Figure 5-2. A block diagram that shows the structure of the model-constrained
optimal control of the wind farm. The model-constrained optimal controller (shown
in purple) is composed of an optimization solver which minimizes a cost function
constrained by the Dynamic Graph model. The controller then feeds the optimal yaw
to the wind farm LES, represented in the right block with an instantaneous snapshot
from a wind farm simulation.

to Dynamic Graph model by supplying a velocity inflow condition based on current

measurements, as outlined in Section 4.1.

Note that in this application, we are not use MPC, as that would require the

calculation of a full yaw trajectory for each turbine. Due to the structure of the graph

model, which prevents the use of gradient-based optimization at this time, we only

calculate the best yaw value overall for each turbine over the finite time horizon. For

this reason, the time horizon does not encompass the whole control signal, but rather

encompasses a subsection of the control signal at each evaluation. This formulation is

a first step in developing a full MPC framework for dynamic yaw.

The yaw of each turbine, γ, is used as the control variable in the model-constrained

optimal control. For each iteration, the optimization problem finds the best yaw angles
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over the horizon time according to a cost function that minimizes the difference between

the power reference signal and the total LES power output. The cost optimization

has the form

min
γ

[︄∫︂ Ta

0
(PGM − Pref )2dt

]︄
, (5.3)

where PGM is the power from the Dynamic Graph model which is integrated into the

future to predict the behavior of the wind farm. Yaw is incorporated into this problem

through the Dynamic Graph model formulation. The optimization is subject to the

limits

−30◦ ≤ γ ≤ 30◦, (5.4)

since the models for wind turbine yaw are less accurate beyond these points. The

minimization of the objective function is accomplished using Powell’s Algorithm,

see A.2, in Python. Since this version of Python does not support bounds on the

minimization, the bounds on the yaw values were enforced using the minimization

algorithm by not allowing values that fall outside of the allowable yaw range, where if

a value falls outside the viable range, the optimization function exits that evaluation

and the optimization continues.

We first demonstrate a simple implementation in which the optimization process

assumes that the optimal yaw can be applied instantaneously, and is applied at the

start of the time horizon. Figure 5-3 shows the result of one of the optimizations.

The wind farm configuration used is a six-turbine aligned wind farm arranged in two

columns of three turbines each, shown in Fig. 5-3(a). In this case, the optimization

is attempting to reach a final steady power output of 12 MW, shown in Fig. 5-3(b)

by the black dashed line. The un-yawed power of the farm is 11.61 MW, which is

the initial condition for the optimization. The function then attempts to minimize

the difference between the power reference and the wind farm power over the entire

time horizon. Figure 5-3(a) shows the final yaw values of the turbines, where only
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Figure 5-3 that takes this and other timescales important in the dynamic yaw setting

into account.

5.2.2 Yaw Control Results

We now examine the yaw controller performance when applied to wind farm plants for

power tracking. First, we detail the application of the control framework to control

the power output of a wind farm plant represented by the Dynamic Graph model.

Then, the yaw controller is applied to an LES wind farm plant.

The application of the control framework to the Dynamic Graph model wind farm

plant is shown in Fig. 5-4. This is nontrivial due to a few differences between the

application of yaw in the optimization framework and the application of the yaw

control to the wind farm plant. In the case shown in Fig. 5-3, the optimization assumes

that the control is applied instantaneously at the beginning of the time horizon, and

searches for a single set of yaw angles such that the error between the power output

and the power reference signal will be minimized. However, this is an unrealistic

model for the application of the control to the wind farm plant since yaw does not

happen instantaneously. In practice, there is a finite time that a turbine needs to yaw.

In the case shown in Fig. 5-4, we set the yaw rate to 4◦ per minute. The controller is

then run as follows: First, the optimal yaw over the time horizon is found. Then, the

turbines are yawed, according to the set yaw rate, until either they reach the desired

yaw, or it is time for another controller update. The current yaw of the turbines is

then used as the initial conditions for the next update, and the process is repeated.

From this process, one can infer that the turbines will not always reach the target yaw

within one controller update period. Additionally, since the optimization is nonlinear,

it can be dependent on the initial conditions. To lessen this dependence, an ensemble

of optimizations are run, each with differing initial conditions that are perturbed

randomly within ±2◦ from the current yaw. This ensemble of optimizations can be
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a somewhat unrealistic reference signal for solo yaw control due to the slower time

scale of the control, however, we can see here that the yaw control is able to anticipate

the step change before it happens, due to the model-constrained optimal framework.

Finally, we can see that even though the power output increases with the step change,

it is unable to fully reach the final power reference value, and seems to hover with a

constant offset under the power reference signal. This could be a result of using the

average of an ensemble of optimizations.

Following the proof of concept of the proposed dynamic yaw control approach,

we now move on to the application of the controller to an LES plant model. In this

work, we show the case where the yaw control is implemented in LES with a realistic

finite yaw rate time. In this case, the horizon time is 5 minutes, and the controller is

updated every 2 minutes. Additionally, an ensemble of five optimizations is used.

Figure 5-5(a) shows the total power of the farm from the LES, compared with the

uncontrolled LES case, the power reference signal, and the model prediction of the

power for the case where we assume instantaneous yaw implementation. Similarly to

the previous case, we use a step function as the power reference signal. The higher

value of the step function is 6.85 MW, which is based on the average of the uncontrolled

case before the control was applied. The final value of the lower step is 6 MW. Figure

5-5(b) shows the yaw control actions applied to the simulation for each individual

turbine.

In the initial stage of the control, which is the higher part of the step signal, the

LES power is oscillating around the power reference signal already, so the optimal

control action is to change nothing. Then, the control starts to actuate around 10

minutes, which can be seen in how the LES total power starts to differ from the

uncontrolled case at this point. As a result of the finite yaw rate, this case starts to

react to the step change at around 16 minutes, but only reaches a 30◦ yaw 2-3 minutes

later. This slower yawing can be seen reflected in the LES power in Fig. 5-5(a), where
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Figure 5-9. A block diagram that shows the structure of the model-based optimal
control of the wind farm. The outer loop portraying the model-based optimal yaw
controller is shown in purple and the inner loop portraying the pitch PI controller is
shown in teal.

to a feed-forward pitch correction whose purpose is to account for the change in yaw

as it happens, which is included in the PI control as

∆C ′
T = kpeP (t) + ki

∫︂
Tki

eP (τ)dτ + ∆C ′
T,γ, (5.5)

where ∆C ′
T,γ represents the change in the thrust coefficient required to keep the power

constant if the yaw changes. We use a linear approximation to find this change in

pitch following the equation

∆C ′
T,γ = δC ′

T

δ cos(γ) [cos(γ2) − cos(γ1)] , (5.6)

where δC′
T

δ cos(γ) is the derivative of the coefficient of thrust according to the cosine of
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the yaw, and γ1 and γ2 are the original yaw and the final yaw, respectively. The

original and final yaw values are known from the yaw controller output, which if fed

into the pitch controller, as shown in Fig. 5-9. In Eq. 5.6, we linearized the change

in pitch according to cos(γ) to simplify the expression due to the thrust coefficient’s

dependence on this quantity.

We now need to find a way to define the derivative term δC′
T

δ cos(γ) . We use the

power measurements from the farm, starting with the expression shown in Eq. 4.1.

Rearranging Eq. 4.1 to separate the coefficient of thrust and the yaw terms, and using

C ′
T for C ′

P , we find the following equation

2Pn

ρAU3
∞,n

= C ′
T,n cos3(γn)

(︄
C ′

T,n

4 + C ′
T,n

)︄
. (5.7)

We can now take the derivative of the equation with respect to the quantity cos(γ),

and solve for the quantity δC′
T

δ cos(γ) , resulting in the expression

δC ′
T,n

δ cos(γn) =
−3C ′

T,n(C ′
T,n + 4)

cos(γn)(C ′
T,n + 16) , (5.8)

which represents the derivative of the coefficient of thrust with respect to the cosine

of the yaw angle for the nth turbine.

This linear approximation is determined to be reasonably accurate near the turbine,

with an error of within 2.5% within a change of ±1◦ of the initial yaw angle, which is

the range over which this correction will be applied.

5.4 Power Tracking Control Results

The model-constrained optimal yaw controller combined with the PI pitch controller

was tested on an eighteen-turbine wind farm, whose geometry is the same as that

shown in Fig. 5-6. The average velocity from this LES wind farm plant is shown in

Fig. 5-10. The simulations are performed using the JHU LESGO code [97], using the

concurrent precursor inflow method [99], the Lagrangian-averaged scale dependent
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sources such as energy storage devices [114]. The test signal we selected integrates to

zero. The power reference signal has the form Pref(t) = [1 − αd + r(t)]Pbase, where

Pbase is the average power of the wind farm in the five minutes preceding the start of

the control simulation. The time dependent part of the power reference signal r(t)

represents the demands of the grid in an active power control situation, and varies

±8%. The parameter αd is the power setpoint reduction implemented to allow power

tracking of increases in the reference signal. This parameter is referred to as the derate

of the case and also represents a loss in revenue for the wind farm, since the power is

being reduced. The goal of this work is to maximize the control authority while also

minimizing the derate necessary to track the signal.

5.4.1 PI Tuning Parameter Study

We begin by examining the tuning of the parameters for the PI control. The PI

controller gains were tuned using the full yaw and pitch controller. Figure 5-11 shows

some examples of results from the controller using different PI gains. We performed

both a proportional and integral gain study. The proportional gain was tested at

increasing values until the trajectory exhibited worsening oscillations rather than an

improved performance. The success of the power tracking is measured using the root

mean square error (RMSE) of the signal, calculated as

RMSE =

⌜⃓⃓⎷ 1
NST

NST∑︂
i=1

(PLES,i − PRef,i)2, (5.9)

where NST is the number of measurements taken over the timeframe the control is

applied, PLES,i is the total power from the LES at time i and PRef,i is the power

reference signal value at time i.

Figure 5-11 shows some results from the integral gain study, using the same

eighteen-turbine wind farm and LES conditions used in the previous section. In this

study, αd = 0.06 was used, resulting in a 6% derate to the base power of the wind
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This suggests that putting too much weight on the history of the error negatively

impacts the PI control in this application. While the case in Fig. 5-11(b) performs

better than the others shown, we determined that a smaller integral gain was more

successful. The proportional gain was chosen to be kp = 1 to reduce the excessive

oscillations that appeared at higher gain values. Thus, the final values decided upon

from this study to be used in the rest of the results for this section is kp = 1 and

ki = 0.05.

5.4.2 Controller Results

Figure 5-12 shows an example of the control applied to the LES wind farm plant.

Figure 5-12(a) shows the total power of the wind farm, compared with the given

power reference signal and the power output of the wind farm if it was run without

any control at a constant coefficient of thrust and zero yaw. In the total power plots,

the control is turned on after the vertical black dashed line (located at 10 minutes).

In the case shown in Fig. 5-12, αd = 0.04, resulting in a 4% power derate from the

regular operating conditions.

In this case in Fig. 5-12(a), we display the RMSE of both the controlled and the

uncontrolled signal. Here, the controlled signal has an error that is less than half that

of the uncontrolled case. We can also see that the controlled case is able to track the

signal both when it requires more power than the uncontrolled case (minutes 25 − 30),

and also when it requires less power (minutes 30 − 35).

In addition to the total power, we can also look at the control signals. Figure

5-12(b) shows the time series of the yaw of the wind turbines throughout the controlled

time period. The turbines are grouped according to row with each row designated by

a different color. In this application of the controller, the average of an ensemble of

five optimizations was used to determine the yaw control. The number of ensemble

members was reduced to five for this application in order to save computational time
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have an initial value of C ′
T = 4/3, which is meant to represent standard operating

conditions of the farm , though it is not the maximum allowable value that would be

used in greedy control. Greedy control in wind farms occurs when all of the turbines

are attempting to extract maximum power by setting the thrust coefficient to the

maximum value C ′
T = 2. A discussion of how the gains were chosen follows. The

different turbine signals are denoted by different colors. The black line denotes the

average behavior of the thrust coefficient, which can be used to determine how much

pitch actuation is available in the farm at a given time. The three quantities shown in

Fig. 5-12 represent the measures of the yaw and pitch controller.

In Section 5.3, we outlined how a pitch feed-forward control was implemented to

mitigate the effect of the yaw changes on the pitch control. Figure 5-13 shows the

behavior of the pitch correction term compared to the yaw actions that are being

accounted for by the pitch feed-forward method. Figure 5-13(a) shows the coefficient

of thrust yaw compensation term that accounts for the yaw term in the PI control,

and Fig. 5-13(b) shows the yaw actions that the coefficient of thrust term is associated

with. This figure focuses on the second turbine and the sixth turbine (which are in

the the second row and sixth row, respectively) to illustrate the behavior of this term.

One thing to note about this term is that regardless of the sign of the current yaw

of the turbine, the compensation term is positive if the yaw is moving away from zero

and negative if the yaw is moving towards zero. This makes sense, as the power will

reduce if the turbine is yawed further from the zero yaw position, so the coefficient

of thrust should be increased to keep the power steady. This effect is reversed if the

turbine is yawed closer to zero yaw. This behavior is reflected in the Fig. 5-13, where

the positive sections of the compensation term in Fig. 5-13(a) correspond to the yaw

of the turbine moving further from the zero yaw position, and the negative section

in Fig. 5-13(a) correspond to the yaw of the turbine moving closer to the zero yaw

position in Fig. 5-13(b).
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5.4.3 Yaw and Pitch Control Compared to Only Pitch Control

In this section we investigate the performance of the controller when applied to a RegA

and a RegD signal, and compare the performance of the yaw plus pitch controller with

the performance of a controller only using pitch control. The controller was applied

to two different one RegA and one RegD test signal, and the control was implemented

with three different derates: 0%, 2%, and 4% derates for each signal. Further details

regarding these signals are provided in [114]. The performance of the yaw plus pitch

controller was compared to the uncontrolled LES case, but also to the LES case where

only the PI pitch controller was applied and all turbines remained unyawed. The

initial flow and simulation conditions are the same as those outlined in Section 5.4.2,

with an initial thrust coefficient value of C ′
T = 4/3. Both test signals are 40 minutes

long. Figure 5-14 shows the total power from these simulations, where grey denotes

the uncontrolled LES case, blue denotes the yaw and pitch controlled LES case, red

denotes the only pitch controlled LES case, and black represents the power reference

signal. The black dashed line shows where the control is initiated in the simulations.

The type of signal is denoted in the upper left corner, followed by the derate value,

where "D0" denotes a 0% derate, and so on. Qualitatively, the yaw plus pitch control

performs similarly to the only pitch control, with perhaps smaller oscillations in some

portions. Notably, in the inital portion of the control (from 10-20 minutes), both of

the controllers perform very similarly. In this region for the yaw and pitch controller,

the pitch control is dominant due to the delay that is inherent in the yaw control.

Since the pitch control in both controllers, the yaw and pitch controller and the only

pitch control, have the same formulation, the resulting total power from the wind

farm is very similar. Once the yaw control becomes more present in the control, which

takes approximately 5-10 minutes, the controlled signals from the two cases start to

differ.

Quantitatively, we can use RMSE to compare the difference between the yaw and
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Signal Type 4% derate 2% derate 0% derate
Yaw +
Pitch

Pitch Yaw +
Pitch

Pitch Yaw +
Pitch

Pitch

RegA 0.90 0.82 0.84 0.85 0.90 0.93
RegD 0.82 0.84 0.85 0.92 0.97 1.01

Table 5-I. The RMSE for the RegA and RegD Test Signal Comparison

pitch controller and the only pitch controller. The RMSE for each of these cases is

shown in Table 5-I. The average RMSE for the yaw and pitch controller for these six

cases is 0.88, and the average RMSE for just the pitch control is 0.90. We can see

that the yaw and pitch control performs better than just the pitch control for all cases

except the RegA with 4% derate. This is a result of the dip in the total power for

the yaw and pitch control visible around minute 35 in Fig. 5-14 for this case. This

dip is a combination of yaw being applied to the wind farm and a sudden dip in the

overall power caused by a turbulent fluctuation, such that the pitch was unable to

compensate for a short amount of time. Since the yaw control reacts on a slower

timescale, it is unable to react to sudden changes due to turbulent fluctuations. In this

case, the pitch was also unable to compensate for this changing condition since it did

not have enough control actuation available. In these simulations, the yaw and pitch

control offers a slight advantage over just the pitch control, and is able to actively

leverage yaw to improve the control.

Figure 5-15 gives a more detailed view of the total power for the RegA 0% derate

signal in Fig. 5-14, along with the time-dependent yaw and pitch signals applied by

the controller. Figure 5-15(a) shows the total power of the yaw and pitch controlled

LES case compared with the power reference signal (black), the only pitch control (red)

and the uncontrolled LES case (grey). Figure 5-15(b) shows the time-dependent yaw

actions from the simulation. We can understand the yaw actions better by comparing

them to the behavior of the total power and the reference signal. The yaw begins

to activate larger changes just after 20 minutes in the simulation, particularly the
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actuation authority, since the thrust coefficient can increase to its maximum value

of 2. This means that the derates shown above are derated from the average power

when C ′
T = 4/3 and not from the greedy power where C ′

T = 2, building in an addition

derate. We also wanted to investigate the effect of yaw on a wind farm operating in

greedy control conditions where the thrust coefficient actuation is severely limited.

Figure 5-16 shows the result of applying control to a wind farm initialized with C ′
T = 2

(greedy control) and a 2% derate. Figure 5-16(a) shows the total power of the yaw

and pitch controlled LES case compared with the power reference signal (black), the

only pitch control (red) and the uncontrolled LES case (grey). Figure 5-15(b) shows

the time-dependent yaw actions from the simulation and Fig. 5-15(c) shows the

time-dependent thrust coefficient, with the thicker black line showing the average

of all the turbines. Initially, both control schemes struggle to meet the the power

reference signal since there is not enough energy in the uncontrolled power to meet

the demand. However, the yaw and pitch controller is able to leverage yaw to increase

the power available, and is able to better meet the demand during the increase in

the power reference signal, between 25 and 30 minutes. This is notable because both

the uncontrolled LES case and the only pitch case are unable to meet this demand,

suggesting that the yaw control was able to increase the power that could be extracted

from the farm through wake steering. The yaw signal shows that both the first (black)

and second (blue) rows are yawed to nearly 30◦ before this elevated section, which

contributes to the increase in power. After the decrease in the power reference signal,

the yaw and pitch control struggles for a few minutes, but eventually adjusts the yaw

to be able to meet the final steady value. The yaw is adjusted here by reducing the

yaw of the last four rows, while leaving the first two rows yawed. The effect of this

can also be seen in Fig. 5-15(c), where the thrust coefficient lowers during the final

five minutes, showing that using yaw control can help increase the control actuation

in cases where the power reference signal is close to the maximum power the farm can
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provide. These results show that the yaw control can be beneficial in power tracking

but this implementation struggles at fast timescales.

5.5 Conclusions

This chapter proposed a comparison between a yaw and pitch outer and inner loop

control framework and a pitch only control framework to see if adding dynamic yaw

can improved power tracking. The pitch controller in this framework is a simple PI

controller. The yaw outer loop controller proposed takes into account the dynamic

response of the wind farm to determine the control actions. The yaw controller is

based on a model-constrained optimal control design, using the Dynamic Graph model

as the model in order to be able to incorporate the dynamic effect of yaw on a wind

farm. The yaw and pitch controller was applied to an LES wind farm plant and

tested over multiple conditions and signals. First, as a proof of concept, the controller

was shown to be able to follow a signal, improving upon the uncontrolled case by

leveraging both pitch and yaw. Then, the controller was applied to a RegA and a

RegD test signal, which are two different types of secondary frequency signals used by

PJM, an ISO in the United States Eastern Interconnection. The study compared the

performance of the controller when applied to the two test signals for three different

derate values with control that only uses pitch actuation. This study found a slight

improvement using the yaw and pitch controller as compared to using only the pitch

control. Finally, the controller was applied to a case initialized with greedy control,

where the thrust coefficient starts out at its maximum, which is a plausible operating

condition for wind farm. The controller was then applied to the farm to track a power

reference signal that was derated 2% from the greedy power. This case showed that

the yaw control was able to increase the total power in the farm using wake steering

and was able to meet demand when the power reference signal increased above the

uncontrolled power. However, the yaw control lagged behind the power reference
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signal in places due to the timescale that our yaw control operates. This was an initial

study to examine the question of whether augmenting pitch control with dynamic yaw

control is beneficial in power tracking. The next step to answering this question is

developing more computationally efficient methods to apply this control in an MPC

framework. This would enable the controller to have more complete information about

the future of the demand signal and the turbine interactions in the farm. In addition

to active power control, the dynamic response of the wind farm to yaw could be

used advantageously to adjust the pitch to account for turbine yaw that is applied

from a static yaw optimization. Additionally, the Dynamic Graph model is promising

for controlling wind farms through changing conditions such as varying wind inlet

directions and in applying optimal yaw conditions during these changes.
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Chapter 6

Conclusions and Future Work

As wind energy becomes a larger component of the electrical supply, we must fully

understand its capabilities and its new role in the electrical grid. In addition, we

can leverage this new understanding to better design and operate existing and future

wind farms. This thesis seeks to expand upon this current understanding through

physics-based modeling, examining and modeling the transient response of wind farms

to changing conditions and integrating this model into an active power controller.

One of the greatest challenges in wind farm modeling is representing the interactions

between turbines via their wakes. Representing these relationships accurately aids

in more accurate power predictions to improve the design of wind farms. This thesis

provides advancement in the area of coupled models by enabling coupled models to

represent a nonuniform inflow and to become more generally applicable to modeling

the wake interactions in wind farms with arbitrary wind turbine geometries. It also

provides more in-depth analysis of the results of the model which can provide more

insight into wind farm physics. We present the Area Localized Coupled (ALC) model

in Chapter 2 which combines two physics-based models of different scales to provide

local information for each turbine in the farm. More specifically, the ALC model

consists of a wake model, which focuses on the scale of individual turbines, and a

top-down model, which focuses on the scale of the atmospheric boundary layer. The

combination of these scales enables the ALC model to provide more information than
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typical wake models and the localized framework enables its application to any wind

farm geometry. The ALC model was validated against two nonuniform wind farms

in LES for multiple wind inlet directions, and was able to capture both the general

trends in the variation of total wind farm power with wind direction, and the pattern

of the power of individual turbines as well. Additionally, since the wake model used

in the ALC model has a dynamic implementation, the ALC model could be extended

to a time-dependent framework in future work.

While our initial implementation of the ALC model is more suited for wind farm

design and analysis applications, the dynamic reaction of a wind farm to changing

conditions is also necessary to understanding the full capability to wind farms. In

Chapter 3, we present an estimation algorithm, the Dyanmic Graph model, that uses

a graph to represent the relationships between turbines that computes the wind speed

and power of each turbine in the farm under dynamically changing conditions. In

Chapter 1, we mention that representing dynamic changes in wind farm conditions is

challenging and computationally expensive. This model represents the first analytical

dynamic graph-based wind farm model that is capable of representing these changing

conditions. The Dynamic Graph model denotes the turbines as the nodes of the graph

and the turbine interactions as the edges. Under this framework, we only compute the

turbine velocities at hub height, based on their interactions with upstream turbines

captured by the graph edges, rather than estimating a velocity field around each

turbine as in the ALC model. This increases the efficiency of the model at the cost

of the detail provided by a fully-resolved velocity field, however this was judged an

acceptable trade-off for a control-oriented model. The dynamic graph setting enables

the model to represent time-varying changes in the farm behavior due to changing

conditions, such as an incoming wind direction shift or a yaw change. This model is

also the first analytical dynamic yaw model, for which it employs a novel analytic

expression for wake shape deformation under yaw [49]. The Dynamic Graph model
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was validated under a changing wind direction with an unsteady RANS simulation,

and showed good agreement over the transient response. The Dynamic Graph model

was also approximately 20 times faster than the RANS simulation it was compared

with. In addition to a wind direction change, the Dynamic Graph model also showed

good agreement with LES for a dynamic yaw case.

While the wind farm models described above do well representing key factors of the

wind farm, a reduced order model must leave out some of the physics of the full system

to decrease computation time. In Chapter 4 we use measurements from the wind farm

plant for error correction in data estimation due to unmodeled effects. In this work,

we only use the power measurements from the turbines, which is information that

would be available in an operating wind farm. Since wind farms can cover multiple

kilometers of land and the local wind conditions can vary over this area, we first apply

these measurements to implement a nonuniform inflow in a dynamic Jensen wake

model and the Dynamic Graph model. This addition improves the power prediction

of the individual turbines in the farm. Finally, the measurements were also used in

an Ensemble Kalman filter to improve the estimation of the wake deficits and wake

expansion coefficients using the model presented in [22].

In Chapter 5, after the Dynamic Graph model is coupled with the dynamic

nonuniform inflow estimation, it could be applied in an optimal control framework

for power tracking. While dynamic yaw has been applied in power maximization

applications, it has not, to date, been applied to the power tracking problem. This

work performs an initial study to examine if the addition of dynamic yaw control

to pitch control could be beneficial for power tracking. The controller consisted

of an outer loop yaw controller, to account for slower bulk power changes, and an

inner pitch loop controller, to perform faster power adjustments. The outer yaw

loop used model-constrained optimal control, using the Dynamic Graph model as the

controller model. This yaw and pitch controller was applied to an LES wind farm
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plant containing eighteen turbines. The addition of yaw control slightly improved

the controller performance over using only pitch control in this case, and was able to

increase the power output in a greedy control situation. This initial study provided

a proof of concept that dynamic yaw control could improve pitch control in power

tracking, but the next step is to work towards implementing a full model predictive

control framework to take full advantage of the dynamic yaw model. We used Dynamic

Graph model to examine both the limitations of yaw control and the dynamic response

of a wind farm to yaw actions. The capability to predict the dynamic response of the

wind farm to yaw a priori has potential to be useful in adjusting the pitch control to

account for yaw changes as they happen. Additionally, the Dynamic Graph model

could be used for controlling wind farms through changing conditions such as varying

wind inlet directions and in applying optimal yaw conditions during these changes.

While this dissertation has presented advances in wind farm modeling and power

control of wind farms, there is still additional work needed to implement the approaches

outlined previously.

Vast literature exists on representing wind farms on an individual turbine basis

with wake models and on an atmospheric scale with top-down models. We presented

the ALC model that combines these two views to provide more information about

the wind farm than each piece offers. The ALC model compared well with LES and

also was able to offer a rich array of information for additional analysis on the physics

of wind farms. However, it would also benefit from comparison with field wind farm

data. Additionally, open questions still remain around analytically representing wind

farms in stable and convective atmospheric conditions as well as the neutral boundary

layer description used in this work. It would be beneficial if the ALC model could be

extended to be applicable in any atmospheric conditions. The ALC model is currently

a static model, which represents the average power from the wind farm. It would also

be advantageous if this coupled framework could be extended to dynamic settings.
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In addition to static representations, dynamic representations of wind farms are

also needed to inform control action of wind farms to enable optimal operation. Wind

farms are subjected to various changing conditions during operation, such as varying

incoming wind direction, that need to be taken into account in control schemes. The

open question in this area is how to represent these dynamic events in an analytical

framework. The Dynamic Graph model is the first analytical graph-based wind farm

model, and is capable to modeling these dynamic events. This graph-based model

is also one of the first wind farm models that is validated in modeling dynamic yaw

events. However, the model could also benefit from validation with operational wind

farm data and data from multiple atmospheric conditions. Another open question is

this area is how to represent the transition between different atmospheric conditions.

Additionally, the structure of the Dynamic Graph model does not enable gradient-based

optimization currently, which would be a very advantageous adjustment.

Active power control is an important and active area of wind farm research, both

for power maximization and power tracking. Since yaw has been shown to be able to

increase the bulk power of the wind farm, an important question is how to leverage

yaw control in both of these applications. Initial studies have been performed in power

maximization, such as the LES proof of concept study done in [85], which showed

the potential gains of control that possesses perfect information, and in [52] which

was applied to operational turbines. However, in power tracking, to date, only static

yaw control has been applied, such as in [66]. The study presented here represents a

first step towards investigating the benefits of dynamic yaw control in power tracking

applications. In order to more fully understand the impact of yaw, we need a way to

compute a trajectory of yaw signals over a longer time horizon so that we can take

advantage of knowledge of the temporal and spatial scales of wake interactions. This

is a challenge and requires further research into dynamic yaw models and optimization

techniques. Ideally, a full MPC approach could be applied in the outer loop of the yaw
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and pitch controller, to examine the full potential of dynamic yaw control. Finally,

accounting for the dynamic response of a wind farm to yaw changes could also be

applied in static yaw control and in active power control over slower timescales and

conditions with a changing inlet wind direction.

The study of wind farms and their capabilities is a vast and varied subject under-

taken by many dedicated researchers to increase our understanding of wind farms and

to enable wind to continue to grow into a major electrical provider. Through this

research, we can contribute to steps towards a renewable future.
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Appendix A

Algorithms Used

A.1 The Ensemble Kalman Filter

The following is a brief overview of the Ensemble Kalman filter (EnKF) applied in a

wake model framework, as discussed in [22] and extended from [65]. First, in order

to apply the Ensemble Kalman filter, we must start with an array of states. In this

case, the states consist of the wake velocity deficit along the center line of the wake

for each turbine (an array of Nx points running through the center of each turbine in

the streamwise direction) and the wake espansion coefficients for each turbine. These

states are written as

ψ =
[︂
δu1

T , ..., δuN
T , k1, ..., kN

]︂T
∈ RNs , (A.1)

where δui is a column vector representing the discretization of the wake deficit for the

ith turbine, ki is the wake expansion coefficient for the ith turbine and Ns = (Nx +1)N ,

where N is the number of turbines. The column vector of the measured power output

of each turbine is denoted by ξ ∈ RN .

The wind farm system is then governed by the discrete update equations
ψk+1 = f(ψk,C′

T,k) + Bχk

ξk = h(ψk,C′
T,k) + ϵk,

(A.2)

where ψk+1 and ξk are the updated states and measurements at times k + 1 and k,

respectively, ψk is the state vector at time k, C′
T,k is a vector of the local thrust
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coefficients at each turbine and f(ψk,C′
T,k) and h(ψk,C′

T,k) are the temporal and

spatial discretizations of the wake model outlined fully in [22]. The measurement

and modeling errors are represented by ϵ ∈ RN and χ ∈ RN , respectively, which

are zero-mean white noise processes. The process noise is divided into tow vectors,

reflecting the two state categories, χ =
[︂
χT

δu, χ
T
k

]︂T
∈ R2N , where χδu ∈ RN has the

variance σ2
δu, and χk ∈ RN has the variance σ2

k both with zero mean.

While the identity matrix is often chosen for the matrix B, to distribute the error

to all the states, here we only want to apply one error correction to each wake deficit

equation. This necessitates the error term having a lower dimensions enabling it to be

distributed to each wake deficit field independently. This is accomplished by defining

B as

B =
[︄

Bδu

IN×N

]︄
∈ RNs×N , (A.3)

where IN×N is the identity matrix of size N and Bδu distributes χδu to the wake

deficits. We assume that the wake deficits are uncoupled and the resulting noise is

therefore only distributed to each turbine and uncoupled between turbines.

Since the true state is not available in this application, the EnKF estimates the

error statistics of the true state using an ensemble of Ne perturbed wake models. The

wake models are perturbed with statistically independent noise, represented by χ and

ϵ. The ensemble is represented as

Ψ =
[︂
ψ(1), ψ(2), ..., ψ(Ne)

]︂
∈ RNs×Ne , (A.4)

where each ψ(i) represents one of the perturbed wake models. An ensemble of perturbed

measurements is also generated from the measurements of the true system (the wind

farm plant). Each perturbed measurement has the form

ξ(i) = P + ϵ(i), (A.5)

where P is the power measurements from the wind farm. This leads to an ensemble
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of the form

Ξ =
[︂
ξ(1), ..., ξ(Ne)

]︂
∈ RN×Ne , (A.6)

along with an ensemble of measurement perturbations

E =
[︂
ϵ(1), ..., ϵ(Ne)

]︂
∈ RN×Ne . (A.7)

The nonlinear outputs of the ensemble of wake models is then represented as

Ψ̂ =
[︂
h(ψ1), ..., h(ψNe)

]︂
∈ RN×Ne . (A.8)

The mean of the ensemble and output states, which are used in the error statistics

calculation, are found using

Ψ = Ψ1Ne ∈ RNs×Ne

Ψ̂ = Ψ̂1Ne ∈ RN×Ne ,
(A.9)

where 1Ne ∈ RNe×Ne is a matrix where all of the elements are equal to 1/Ne. The

ensemble state perturbation matrix Ψ′ has the form

Ψ′ = Ψ − Ψ̄ ∈ RNs×Ne , (A.10)

and the ensemble output perturbation matrix Ψ̂
′ has the

Ψ̂
′ = Ψ̂ − Ψ̂ ∈ RNs×Ne . (A.11)

Now the two previous update equations A.2 is replaced by the EnKF update

equations. This process has two parts: first, an intermediate forecast step, shown as

k+, is completed using the equation

Ψk+ =
[︂
f
(︂
ψ

(1)
k , C

′(1)
T,k

)︂
+ ξ

(1)
k , ..., f

(︂
ψ

(Ne)
k , C

′(Ne)
T,k

)︂
+ ξ

(Ne)
k

]︂
, (A.12)

and second, an analysis step that has the form

Ψk+1 = Ψk+ + Ψ′
k+Ψ̂

′T
k+

(︃
Ψ̂

′
k+Ψ̂

′T
k+ + Ek+1ET

k+1

)︃−1 (︂
Ξk+1 − Ψ̂k+

)︂
. (A.13)

The estimated wake model states are then stored in the columns of the matrix Ψ,

which represents the ensemble mean matrix.
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A.2 Powell’s Algorithm

Powell’s Algorithm is a conjugate direction method which performs a minimization

without calculating the derivatives. The algorithm is initialized using an initial point

and an initial set of search vectors, represented by s1, ..., sN for an N -dimensional

problem. The method minimizes the function then iterates over the search directions,

finding the minimum of the function in a line search over each search direction. The

minima found in each bi-directional line search can be expresses as

x0 + α1s1, x0 +
2∑︂

i=1
αisi, ..., x0 +

N∑︂
i=1

αisi, (A.14)

where x0 is the initial point and αi is the scalar that determines the minimum in the

si line search direction. The next point is then expressed as

x1 = x0 +
N∑︂

i=1
αisi. (A.15)

A new direction is then added to the search directions, defined by x1 − x0, or∑︁N
i=1 αisi, which can be thought of as the average direction moved during this iteration.

A direction is also dropped from the search directions, to keep the search directions of

size N . In Powell’s modified algorithm, which is what is used in Python, the direction

that achieved the larges decrease in the bi-directional minimization is dropped, if it

satisfies specific conditions. This is to decrease the chances of linear dependence in the

search directions, since the search direction that caused the larges change will also be a

significant part of the new search direction. The conditions for the search directions to

be kept the same is if (1) the function shows no great improvement along the direction

of greatest increase in the iteration, or (2) the direction of the greatest improvement

does not account for a sufficiently large fraction of the new search direction, which

would indicate that several directions are contributing to the minimization.

The algorithm is iterated until there is no significant improvement to the objective

function. [115–117]
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