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Abstract  

Harmonic sounds or harmonic components of sounds are often fused into a single percept 

by the auditory system. Although the exact neural mechanisms for harmonic sensitivity remain 

unclear, it arises presumably in the auditory cortex because subcortical neurons typically prefer 

only a single frequency. Pitch sensitive units and harmonic template units found in awake 

marmoset auditory cortex are sensitive to temporal and spectral periodicity, respectively. This 

thesis is a study of possible computational mechanisms underlying cortical harmonic selectivity.   

To examine whether harmonic selectivity is related to statistical regularities of natural 

sounds, simulated auditory nerve responses to natural sounds were used in principal component 

analysis in comparison with independent component analysis, which yielded harmonic-sensitive 

model units with similar population distribution as real cortical neurons in terms of harmonic 

selectivity metrics. This result suggests that the variability of cortical harmonic selectivity may 

provide an efficient population representation of natural sounds.  

Several network models of spectral selectivity mechanisms are investigated. As a side 

study, adding synaptic depletion to an integrate-and-fire model could explain the observed 

modulation-sensitive units, which are related to pitch-sensitive units but cannot account for 

precise temporal regularity. When a feed-forward network is trained to detect harmonics, the 

result is always a sieve, which is excited by integer multiples of the fundamental frequency and 

inhibited by half-integer multiples. The sieve persists over a wide variety of conditions including 

changing evaluation criteria, incorporating Dale’s principle, and adding a hidden layer. A 

recurrent network trained by Hebbian learning produces harmonic-selective by a novel 

dynamical mechanism that could be explained by a Lyapunov function which favors inputs that 
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match the learned frequency correlations. These model neurons have sieve-like weights like the 

harmonic template units when probed by random harmonic stimuli, despite there being no sieve 

pattern anywhere in the network’s weights.  

Online stimulus design has the potential to facilitate future experiments on nonlinear 

sensory neurons. We accelerated the sound-from-texture algorithm to enable online adaptive 

experimental design to maximize the activities of sparsely responding cortical units. We 

calculated the optimal stimuli for harmonic-selective units and investigated model-based 

information-theoretic method for stimulus optimization. 

Primary Reader and Advisor: Dr. Kechen Zhang 

Secondary Reader: Dr. Xiaoqin Wang 
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CHAPTER 1:  

Introduction 

The auditory system detects pressure changes down to a few dozen 𝜇Pa and ranges from 20-

20kHz. It converts the two waveforms the ears pick up into a rich auditory scene with multiple 

auditory objects, many of which feature a highly salient pitch. Pitch is vital to source-separate an 

acoustic scene (Assmann & Summerfield, 1990; de Cheveigné et al., 1995), and is to a 

significant degree innate in humans (Clarkson & Rogers, 1995; Rogers et al., 1996). Pitch 

perception has been found in birds (Cynx & Shapiro, 1986), cats (Evans & Whitfield, 1964; 

Heffner & Whitfield, 1976), macaques (Tomlinson & Schwarz, 1988), and marmosets 

(Osmanski & Wang, 2011). The mechanism and utility of pitch perception and harmonic 

processing is explored in this thesis from a computational modelling perspective. Sounds must be 

segregated and classified. Numerous studies under diverse experimental conditions found that 

binaural cues help with sound segregation, see (Schwartz et al., 2012) for a review. However, 

monaural cues stimuli are also very important for this task and will be the focus of this thesis. 

 

1.1 Harmonic sounds and perception 

Non-inanimate sounds such as animal vocalizations (Agamaite et al., 2015; Singh & Theunissen, 

2003) including human speech (Houtgast & Steeneken, 1973; Rosen, 1992), and music (Peretz & 

Zatorre, 2005) typically have information distributed across a wide range of frequencies. These 

frequencies are often harmonically related: these sounds have spectral energy at small integer 

multiples of a fundamental frequency (f0) and the waveforms repeat with a fixed time interval t0 

= 1/f0 (Von Helmholtz, 1912). Harmonic sounds are allowed to have missing components. For 

example, a “perfect fifth” has a 3:2 ratio of frequencies and so is missing the fundamental 



 

 2 

frequency. The underlying physics of resonance in string and wind instruments (of which vocal 

chords could be considered a hybrid) is responsible for making harmonicity so common 

(Campbell et al., 2004). Given their ubiquity, the auditory system must develop mechanisms for 

processing harmonic sounds. Furthermore, cortical associative learning is likely to produce 

harmonic associations. 

Marmoset calls are often harmonic and serve different roles: “Twitters” are bird-chirp-

like and may represent territory claims; whistling “phee” calls as well as rapidly “warbling” trill 

calls are used for within-group contact (Agamaite et al., 2015; Bezerra & Souto, 2008; Epple, 

1968; Pistorio et al., 2006). Hybrids and other types of calls are made as well, and each type of 

call has a variety of uses (Pistorio et al., 2006), thus marmosets likely benefit from mechanisms 

to detect harmonicity and make for a good model species for electrophysiological experiments.  

Harmonics are highly perceptually salient. These sounds are fused into a single percept 

with a pitch at f0 and this pitch is present even when the component at f0 is removed, a 

phenomenon called the residue pitch or “missing fundamental” (Jackson & Moore, 2013; 

Licklider, 1956; Schouten, 1968). A mistuning of a component of 1-3% is usually enough to 

have it perceived as a separate sound (Moore et al., 1986) and the threshold for detection of 

mistuning a component for a 200Hz fundamental is about 2Hz from the fundamental to the 10th 

harmonic (Moore et al., 1985). However, the relative accuracy degrades at much higher 

frequencies where phase-locking is weak (Hartmann et al., 1990).  

Conversely, non-harmonic sounds (apart from pure tones) have much weaker pitch than 

harmonic sounds. Spectrally delocalized “broadband” sounds such as waterfalls, consonants, and 

white noise lack precise spectral structure and as expected have absent or very weak pitch. 

However, inharmonic sounds with strong peaks in their spectral structure still have significantly 
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degraded pitch despite having well-concentrated spectral energy (Boer, 1956; Schouten et al., 

1962). 

The perceptual segregation and classification of harmonic sounds is useful for 

segregating different sound sources (Bregman, 1994; Darwin & Carlyon, 1995; Houtsma & 

Smurzynski, 1990) or for processing vocal communication sounds in noisy environments (Bates 

et al., 2011; de Cheveigné et al., 1995; Feng et al., 2006). The segregation of multiple voices 

“cocktail party” but not the perception of single voices is degraded when the sounds are made 

inharmonic by shifting the carrier frequencies (Popham et al., 2018). The pitch-shift of the out-

of-place component is exaggerated even if the harmonic complex is mistuned as a whole and 

regardless of a ±500ms delay of the oddball component (Brunstrom & Roberts, 2001). Neural 

responses in the macaque cortex are enhanced to the mistuned component for tone-sensitive 

neurons (Fishman & Steinschneider, 2010). The accuracy of f0 discrimination degrades for 

harmonic stimuli that are missing more than the first 10 components, but if the odd components 

are mistuned 3% the performance is nearly equal to that with those components removed (which 

is equivalent to doubling the f0 value) (Bernstein & Oxenham, 2008). This is further evidence 

that components with even slight mistuning are ignored for the purposes of building up an object. 

Musical perception also relies on harmonic processing. Octave equivalence is the process 

in which tones octave apart “rhyme” with each-other (Borra et al., 2013; Deutsch & Boulanger, 

1984). So-called consonant chords, which have better alignment of their harmonics, are 

musically preferred to dissonant chords (Krumhansl, 1979; Malmberg, 1918; McDermott et al., 

2010). 
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1.2 Ecology and acoustic environments 

An acoustic environment is a random variable that the auditory system analyzes. Summary 

statistics such as mean and standard deviation are very concise but miss much of the statistical 

structure. On the other hand, neurons are likely to be efficient encoders over the stimuli they tend 

to encounter and in doing so preserve most of the information (Day & Delgutte, 2016; Lewicki, 

2002; Simoncelli & Olshausen, 2001; Smith & Lewicki, 2006) and achieve this in part by 

redundancy reduction (Barlow, 2001; Barlow & others, 1961). Also, a sparse-encoding 

computational method reproduced experimentally measured STRF’s in the inferior colliculus 

(IC) (Carlson et al., 2012).  

Principle component analysis (PCA) minimizes the reconstruction square error when the 

number of stored components is limited. This can be approximated biologically with Sanger’s 

rule, which is a modified Hebbian rule: 𝑤𝑖̇ ~〈𝑦𝑖(𝑥 − ∑𝑗≤𝑖 𝑦𝑗𝑤𝑗)〉  (Oja, 1992); a real biological 

system is a mixture of “hardwiring” and plasticity. 

Independent Component Analysis (ICA), which tries to find statistically independent 

components in the data, is another compression method. In practice, algorithms approximate ICA 

by maximizing kurtosis and/or by enforcing a sparsity constraint. ICA has had a lot of success 

including reproducing Gabor filters in the primary visual cortex as well as gammatone-like filters 

in the auditory nerve (AN) (Lewicki, 2002) and cortical receptive fields (Blättler & Hahnloser, 

2011). However, studies investigating if harmonic selectivity can arise from this are lacking. 

Both PCA and ICA yield an optimized population of neurons. Summary statistics can be 

compared to what was found in (Feng & Wang, 2017) in terms of mistuning sensitivity and 

harmonic preference over tones. Similar in vivo and in silico statistics make it more likely that 

harmonic selectivity follows the efficient coding hypothesis. Furthermore, information-based 
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algorithms are more generalizable than traditional curve-fitting methods (the latter performs 

poorly with extrapolation).  

 

1.3 Subcortical anatomy and harmonic processing 

The auditory system performs remarkably sophisticated subcortical processing. Several layers of 

high-speed subcortical nuclei analyze information both in the time and frequency domain before 

it reaches the (much slower) cortex. See Figure 1.1 for an overview of the pathways. 

 

Figure 1.1: The most important connections in the auditory ascending pathway. DCN, PVCN, AVCN: 

Cochlear nucleus (dorsal, posterior ventral, anterior ventral). LSO, MSO:  Lateral and medial superior 

olivary complex. DNLL, VNLL: Dorsal and ventral nucleus of the lateral lemniscus. IC: The inferior 

colliculus. MGB: The medial geniculate body (the thalamus). Figure from (Pickles, 2013). 

 

Throughout the system there is a tonotopy in which regions sensitive to different 

frequencies are arranged in distinct laminae (Abeles & Goldstein, 1972; Fishman et al., 1998, 

2013; Kalluri et al., 2008; Sadagopan & Wang, 2008; Schwarz & Tomlinson, 1990). At higher 

levels, particularly in the cortex, the response is more likely to be sparse and unable to be driven 

by simple stimuli such as tones (Hubel et al., 1959). Also, at higher and higher levels the sound 

is as well as progressively less phase-locked to temporal stimuli from several kHz at the AN to 



 

 6 

below 100Hz at the cortex; the numerous studies supporting this picture are summarized in 

(Pickles, 2015).  

At the cortical level it is very important that the animal is awake during 

electrophysiological experiments as even light anesthesia drastically changes the response 

properties of neurons, in particular removing (Decharms & Merzenich, 1996) the sustained 

response found in awake (Bieser & Müller-Preuss, 1996; Chimoto et al., 2002; Wang et al., 

2005) animals. Any study under anesthesia thus introduces a large amount of experiential error if 

used to model awake animals; this thesis focuses on awake Marmoset studies to compare against. 

The first step, mechanical transduction, essentially transforms mechanical vibrations in 

air to hair-cell vibrations and then to neural signals in the auditory nerve (AN). From then on 

there is little, if any, mechanical cues to all but the loudest sounds. This transduction process 

filters sounds into relatively constant Q-factor bands with a much sharper high-frequency cutoff 

than low-frequency cutoff (Yang et al., 1992). This is followed by compression and rectification 

and low-pass filtering (Shamma et al., 1986; Shamma & Morrish, 1987). This process produces 

nonlinearity in the cochlea which causes harmonic “distortion products” (Robles et al., 1991). 

However, the response to tones is always single-peaked and purely excitatory in the auditory 

nerve, with the “best frequency” (BF) designated as the peak of the neuron (Kiang et al., 1967).  

The cochlear nucleus processes nearby frequencies at once. Surround inhibition sharpens 

the input and improves spike timings which may help with pitch perception (Oertel et al., 1990; 

Rhode, 1995; Winter & Palmer, 1995). There are hints of harmonic processing at the cochlear 

nucleus level in which some neurons have a much smaller secondary peak that tends to be 

harmonically related to the BF (Marsh et al., 2006). 
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 There is also a limited degree of across-spectral processing and temporal-structure 

processing in the inferior colliculus (IC), the main processing center below the cortex. The IC 

integrates nearby spectral bands with center-surround patterns; with a strong non-linearity that 

complicates predicting complex spectra responses from pure tunes (Ehret & Merzenich, 1988). 

Multipeaked neurons have been found in the IC (Portfors & Wenstrup, 2002). The IC also has 

neurons sensitive to modulation frequency, with bandpass neurons as well as other response 

types; these neurons seem to form an axes perpendicular to the tonotopy (Langner et al., 2002). 

Modulation is potentially a mechanism to detect pitch that can complement raw frequency 

mechanisms.  

However, the overall behavior of the ascending IC pathway was found to be mono-

spectral: the units tend to have single-peaked receptive fields or in the type O neurons nearby 

doublets without receptive fields that span multiple octaves (Kostlan, 2015). They responded to 

harmonics similarly to a superposition of the individual tones and the type I neurons could be 

used to construct a cortical neuron that would be receptive to harmonics (Kostlan, 2015). It is 

possible that some of the reports of subcortical multipeaked tuning are instead a harmonic 

distortion product nonlinearity generated by the speakers or signal processing. 

 

1.4 Cortical anatomy and harmonic processing 

The thalamus is the last step before the cortex, and has been found to contain multipeaked 

neurons (Villa, 1990) but due to the heavy recurrent connections between it and the cortex it has 

been suggested to combine them as one “thalamocortical” unit (Pickles, 2013). 

 Thus, the different frequency laminae from the IC must be combined in order the for 

auditory system to extract pitch as per the mechanisms suggested in (Goldstein, 1973) and 
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(Cohen et al., 1995). The auditory cortex is likely the main place where said integration happens. 

Lesions here impair pitch perception in a missing fundamental task but not the non-missing 

fundamental control task (Zatorre, 1988). Lesions also impair sound discrimination of 

vocalizations and vowel-like sounds but not tones and other simple sounds (Hefner & Heffner, 

1986; Kudoh et al., 2006; Whitfield, 1980). In the primate auditory cortex, shown in figure 1.2, 

there is a central “core” region which includes the primary cortex “A1” and the primary-like 

rostral region R. Surrounding this is a “belt” which has its own sub-regions (Kaas & Hackett, 

2000). 

 

Figure 1.2: The core and belt regions of the Marmoset auditory cortex. Figure from (Feng & Wang, 

2017). 

 

Neurons in the core region typically have a tonotopy and are sensitive to individual 

spectral components and/or specific modulation frequencies (Fishman et al., 2013; Schwarz & 

Tomlinson, 1990; Fishman et al., 1998; Kalluri et al., 2008). 

At low frequencies, below 1kHz, a pitch region of the marmoset cortex contains neurons 

which are selective to click trains of a particular frequency and temporal regularity (Bendor & 

Wang, 2005, 2010). Other neurons in this region are receptive to modulation frequencies but not 
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the precise timing (Gao et al., 2016). Similar “pitch centers” were found in humans and 

macaques (Norman-Haignere et al., 2013, p.; Patterson et al., 2002; Penagos et al., 2004).  

At higher frequencies, spectral integration is in the cortex is occurring. Although the 

majority of neurons are single-peaked, multipeaked neurons have been found in songbirds 

(Lewicki & Konishi, 1995; Margoliash, 1983), bats (Fitzpatrick et al., 1993; Suga et al., 1983), 

cats (Abeles & Goldstein, 1972; Matsubara & Phillips, 1988; Phillips & Irvine, 1981; Qin et al., 

2005; Sutter & Schreiner, 1991), marmosets (Aitkin & Park, 1993; Kadia & Wang, 2003; 

Sadagopan & Wang, 2009), and macaques (Rauschecker et al., 1997). Also, distant inhibition, 

where energy far from BF suppresses the neuron, was found in marmosets (Kadia & Wang, 

2003), bats (Kanwal et al., 1999), cats (Sutter et al., 1999), and gerbils (Kurt et al., 2008; Moeller 

et al., 2010). Broad receptive fields were found to extend up to 5 octaves in the rat A1 (Kaur et 

al., 2004). Anatomical evidence for distant connections exists: there have been long-range 

recurrent connections within various cortexes including A1 (Gilbert, 1998; Gilbert & Wiesel, 

1979; McGuire et al., 1991; Moeller et al., 2010; Wallace et al., 2002). In the cat A1 

supergranular layers, these connections can span two octaves and be a few mm long (Kadia et 

al., 1999; Matsubara & Phillips, 1988; Ojima et al., 1991; Reale et al., 1983; Wallace et al., 

1991; Winer, 1992). It has been shown in the cat cortex that these connections are periodic along 

the tonotopic axis (Wallace et al., 1991). Indeed, the auditory cortex of many species has widely-

separated connections that are much more distant than basic center-surround patterns are. 

In some cases these peaks are harmonically related, for example a bat cortical unit that is 

sensitive to the first several overtones of its BF (Suga et al., 1979, 1983). However, multipeaked 

units are not always harmonic (Kanwal et al., 1999). Harmonic sensitivity was found in A1 and 

the anterior auditory field of ferrets (Kalluri et al., 2008) and in evoked field potentials in A1 of 
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macaques (Fishman et al., 1998, 2013). Octave two-tone facilitation was found in multi-unit 

recordings in the macaque A1 (Brosch et al., 1999) and the cat A1 (Brosch & Schreiner, 2000). 

Octave-separated tones also produce better firing synchrony between to multi-unit clusters in the 

macaque cortex than other ratios (Brosch et al., 2013), and Multispectral activity with octave 

spacing was found in the human auditory cortex by FMRI (Moerel et al., 2015). 

Multipeaked units in the aforementioned studies often had non-linear facilitation, where 

the response to two or more tones placed in the different peaks was greater than the sum of the 

responses to the single tones. 

Spectrally-dense stimuli with multiunit recordings revealed that the frequencies of ~3, 5, 

10, and 20 kHz (approximate powers of two) were overrepresented in the cat auditory cortex 

(Noreña et al., 2008). A similar pattern has been found in bats (based around their sonar 

fundamental) (Suga et al., 1983). This is a different property than facilitation to octave-spaced 

tone-pairs but it also suggests octave-based organization. Thus the auditory cortex is a hotbed of 

harmonic spectral integration. 

In the marmoset core auditory cortex, spectrally-based harmonic processing is also 

common. This occurs for resolved harmonics, which ranges up to the fourth component at low 

frequencies through the sixteenth harmonic component at higher frequencies (Osmanski et al., 

2013). Although 80% of marmoset cortical units sampled in (Kadia & Wang, 2003) are single-

peaked, about half of these had significant two-tone facilitation effects. About 20% of cortical 

neurons sampled were multipeaked neurons, within which there was a disproportionate 

representation of small-integer ratios (such as 3/2 or 2/1) between the BF of these neurons and 

faciliatory and inhibitory frequencies (Kadia & Wang, 2003). Some of these neurons were in the 

marmoset vocalization range of 4-16 kHz (Agamaite et al., 2015; Pistorio et al., 2006) with a 4-8 
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kHz fundamental (DiMattina & Wang, 2006). In (Feng & Wang, 2017), about 25% of the 

neurons sampled were estimated to be harmonic temple units which a sieve-like receptive field 

that is excited by integer multiples of their best fundamental frequency Bf0. These units are 

shown in figure 1.3 and figure 1.4 The criteria was neurons that fire to their best harmonic 

stimuli at least three times as much as to when said stimuli is fully mistuned and at least twice as 

much to tones of any frequency.  

 

 
Figure 1.3: A marmoset cortical harmonic template unit. The unit responds to harmonics far more than to 

tones. Figure from (Feng & Wang, 2017). 
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Figure 1.4: Two marmoset cortical harmonic template units. The unit responds to harmonics far more 

than to mistuned harmonic complexes. Figures from (Feng & Wang, 2017) 

 
 

These template units will tend to extract harmonic sounds from noisy auditory scenes as a 

single object or percept, and units with inhibitory harmonic selectivity could be removing 

unwanted harmonic background stimuli (Wang, 2013). 

 

1.5 Computational models of pitch perception and harmonic processing 

A computational pitch model is a function that converts the sound waveform into an estimate of 

the perceived pitch and pitch salience. Pitch is nontransitive, enabling Shepard tones which are a 

loop of sounds of endlessly “increasing” pitch (Braus, 1995). There are several models of 

extracting the pitch from the waveform (de Cheveigné et al., 1995). However, the neuronal 

mechanisms that produce pitch perception are not fully understood. 
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Time-domain models 

Pitch can be estimated by looking for temporal regularity of the sound. As pitch is driven by 

periodicity, a simple model is to compute autocorrelations: 𝑟(𝜏) =
∫(𝑥(𝑡)𝑥(𝑡−𝜏))

2
𝑑𝑡

∫ 𝑥2𝑑𝑡
  , where the 

pitch is  
1

𝑎𝑟𝑔𝑚𝑎𝑥𝜏>𝜖(𝑟)
 (De Cheveigne, 2005). It has been proposed (Licklider, 1956) that the 

auditory system computes 𝑟(𝜏) across various 𝜏 and BF values (i.e. a bank of bandpass filters) in 

its pitch processing, which could be summed over BF (Meddis & Hewitt, 1991). This would be 

implemented with delay lines combined with coincidence detectors (Licklider, 1956). 

 Temporal models should produce similar phase results to human perception. Bohr’s 

phase rule indicates that phase of spectrally resolved components usually has little effect on the 

sound’s pitch, however for highly unresolved components ALT phase will tend to sound an 

octave higher than SIN or COS phases (De Boer, 1976). This property is also a feature of some 

autocorrelation models (De Cheveigne, 2005). However, it is possible to generate click trains 

with the same autocorrelation function but different pitches by making sequences of hybrid 

randomized and fixed intervals (Pressnitzer et al., 2002), so a simple autocorrelation function 

isn’t sufficient in all cases. Several modifications of these models have been developed. For 

example,  𝑟′(𝜏) =
1−∫(𝑥(𝑡)−𝑥(𝑡−𝜏))

2
𝑑𝑡

∫ 𝑥2𝑑𝑡
 gives the cancellation model which can be implemented 

with inhibitory neurons acting as gatekeepers (De Cheveigné, 1998). The strobed temporal 

integration model correlates the signal to click trains of various frequencies (that have been 

filtered) (Patterson et al., 1995). These models may account for some phase (in)sensitivities in 

pitch perception.  

A related method is to compute interspike-interval (ISI) histograms, which requires a 

model of spikes generation or experimental data such as the cat AN in (Cariani & Delgutte, 
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1996). The autocorrelation function, if preceded with a spike generator, is equivalent to an all-

order ISI histogram because it is agnostic to how many spikes lie between two spikes separated 

the interval 𝜏 (De Cheveigne, 2005). In contrast, a first-order histogram only counts spikes if 

they have no spike in-between them. First-order ISI’s have been used in pitch perception models 

(Cariani & Delgutte, 1996; Rhode, 1995). However, when there is a bank of neurons all-order 

statistics have much higher sample sizes so low-order ISI statistics may be more prone to error 

(De Cheveigne, 2005).  

The mean rate of click trains has also been found to affect perception: in which the 

perceived pitch drops to a click train if clicks are randomly removed, even though the location of 

the peak of the ISI histogram and auto-correlogram is unaffected (Carlyon, 1996). 

Various neural-network implementations have been developed that attempt to more 

closely approximate the underlying neural processes. A feed-forward coincidence detector 

network was developed to explain periodicity sensitivity in the cortex (Huang & Rinzel, 2016). 

Balanced excitation and inhibition can detect signal periodicity in the inter-click-interval (ICI) 

ranges observed of the periodicity sensitive units with the inhibitory time-constant controlling 

the best-ICI (Bürck & van Hemmen, 2009). It’s also possible to compute the pitch through 

instantaneous correlations across different pairs of BF AN fiber activities with no delay line: the 

rectification steps produce harmonic distortions that in turn produce positive correlations 

between harmonically-related AN fiber spikes (Shamma & Klein, 2000). 

 

Frequency-domain models 

Pitch can also be estimated by the spectral components of a sound. Ohms pitch law is one of the 

earliest (1843) models which simply assumes pitch to be the location of the spectral energy 
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(Whitfield, 1980). However, this fails to detect the missing fundamental among other 

inaccuracies, so there are several pattern-matching models to improve upon this. In Goldstein’s 

theory of pitch perception each fundamental frequency is given a template pattern, which is a list 

of frequencies that includes all the resolved (separated by at least the local cochlear bandwidth) 

components (Duifhuis et al., 1982). In this model sounds are Fourier-transformed into a list of 

components. The pitch of a sound is the maximum likelihood estimator overall all templates, 

assuming additive gaussian noise to the location of the components in said sound (Duifhuis et al., 

1982). The Wightman pitch perception model also computes the Fourier transform of the sound, 

but it then taking it’s absolute value and computing the maximum of its Fourier transform 

(Wightman, 1973). This works well for harmonic complexes with many components, but doesn’t 

work well for pure tones. The Terhardt model is similar, except that it uses the estimated 

cochlear loudness instead of the Fourier transform and uses templates to match against (Terhardt, 

1974). These spectral-based pitch models essentially measure modulation spectra in the power-

spectrum. 

Various neural network models of frequency-based harmonics were developed. A model 

that is trained on banks sounds (which get stored in long-term memory) and then template-

matched with short-term memory from the sound played was developed (McLachlan, 2011). 

Pitch was also extracted by a sparse-coding compression applied to the responses of a bank of 

AN fibers; said selectivity was mostly attributed to spectral-domain cues (Barzelay et al., 2017).  

Models can be derived directly from experimental data. Random harmonic stimuli (RHS) 

was played to marmoset harmonically-selective units and the spectral weights were inferred from 

a linear regression model (Feng & Wang, 2017); see figure 1.5. In some cases these weights 

formed a sieve-like pattern of excitation at integer multiples of Bf0 and inhibition at half-integer 
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multiples (Feng & Wang, 2017). Similar results were achieved by modelling the response to 

RHS stimuli using a fixed number of Gaussian-tunes excitatory and inhibitory units (Feng & 

Wang, 2017).  

 
 

 

 
 
Figure 1.5: Modelling harmonically selective units with a spectral sieve. The sieve can be modelled as 

linear weights (above) or as a neural network with separate excitatory and inhibitory neurons with 

Gaussian receptive fields (below). The former is more relevant to this chapter. Figure from (Feng & 

Wang, 2017). 

 

Because pitch perception in marmosets appears similar to humans (Song et al., 2016) a 

similar spectral sieving process is likely happening in humans as well.  
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1.6 Objectives of this dissertation 

The two main objectives are developing models to elucidate harmonic processing as well as 

developing stimuli that are most useful in experiments. This breaks down into three main 

directions of exploration: 

 

1: Learning harmonic selectivity from statistical structure 

Neural computation evolved in an ecosystem and it thus must efficiently handle the statistics of 

said ecosystem. Can cortical harmonic selectivity can deduced from the statistics of natural 

sounds based on information-theoretical principles of coding? Applying independent component 

analysis (ICA) with harmonic sounds has been able to reproduce harmonic selectivity (Terashima 

& Hosoya, 2009), but this study used a Fourier transform rather than a subcortical model.  

Although no comprehensive inferior colliculus (IC) model has been developed to feed in 

to the cortex, a generic, realistic model has been developed for the AN (Zilany et al., 2013), the 

ascending pathway is mostly mono-spectral all the way up to the marmoset IC (Kostlan, 2015; 

Pickles, 2013). Given that we want to use the realistic range of Q-factors and represent the 

information that the input network has, we decided to use an AN model instead of a Fourier 

transform. 

 

2a: Learning harmonic selectivity with feedforward and recurrent networks 

Subcortical models need to be explored in order to find out what model is best to feed into the 

cortex. Developing a comprehensive subcortical model is very difficult, but it is worthwhile to 

develop more limited models to help inform what simplifications must be made for feeding into 

the cortex.  
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 Supervised learning models, unlike PCA or ICA, can be used to force networks to have 

harmonic selectivity. It is possible that a sieve is the most selective. However, the general 

problem is non-linear and there are numerous network topologies that are biologically realistic. 

Finally, real neural weights almost always obey a sign restriction known as Dale’s principle in 

which neurons only output all-excitatory or all-inhibitory efferents, i.e the downstream synapses 

of a neuron are chemically alike (Eccles et al., 1954; Strata & Harvey, 1999). It is an open 

question as to whether a sieve is a robust pattern that survives these complications. 

 We focus on the spectral domain in order to focus our analysis on harmonic template 

units. To account for the limited resolution of the auditory system, we apply a Gaussian 

convolution to approximate the receptive fields of type I neurons in the IC (which are the most 

spectrally selective IC units).  

Recurrent networks may make another mechanism of harmonic selectivity. They make up 

much of the cortex and can exhibit several behaviors such hysteresis, oscillations, and pattern 

completion/separation not found in feedforward networks (Khalil & Grizzle, 2002). Training is 

often done with some kind of Hebbian learning, of which there are many realistic models. These 

effects may be useful for some types of problems such as time-series stimuli with 

autocorrelation. 

 

2b Analysis of recurrent networks by Lyapunov functions 

Recurrent networks have rich theory that can be analyzed in the context of harmonic processing; 

various behaviors are discussed in (Amit & Amit, 1992). Any neural network with a Lyapunov 

function, of which discrete or continuous Hopfield networks are (Hopfield, 1982, 1984) or any 

symmetric network (Cohen & Grossberg, 1983) is guaranteed to settle into a stable equilibrium 
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(Dale’s principle introduces an asymmetric term but it is still possible to have a Lyapunov 

function in some cases). Lyapunov functions can be used to optimize problems such as the 

travelling salesman problem (Hopfield & Tank, 1985). Setting the Lyapunov function to an 

engineering objective function has been used as a control-systems tool (Ngo et al., 2005; Tee et 

al., 2009). For a recurrent network, we can reverse this problem and ask what objective function 

is solved by a harmonically-selective network, and how it relates to log-likelihood.  

 

3: Optimal stimulus design 

Stimuli almost always are tailored to experiments, and this process can be improved further with 

computational methods.  

 A simple method is to find the stimuli that maximizes the response of the neuron, in order 

to inform us about what the neuron’s receptive field is. Neurons get sparser at higher and higher 

levels in the auditory system (Pickles, 2013). The stimuli that best drive them get more and more 

complex, raising the question of how to find and describe them. The spike-triggered average for 

white noise has been used for the AN but it usually fails at higher levels (Jane & Young, 2000). 

Random spectral shapes have been used to deduce IC response properties (Slee & Young, 2013) 

but only give spectral information and explore only a small part of stimulus space. So-called 

sound textures have been developed that provide a relatively compact way of representing a rich 

repertoire of sounds: In (McDermott & Simoncelli, 2011) a sound texture is a collection of 

summary statistics. However, the model is slow and there the space is large, so improvement 

here is warranted. 

If a model is available, stimuli can be designed to best reduce uncertainty in the models 

parameters. This can be extended to multiple models. This is different from optimizing response: 
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for a neuron with a BF at 1000Hz will response the most to a tone at 1000Hz but tones near the 

edges of the receptive field best reduce uncertainty about its BF. Optimal stimulus design has 

proven successful in silico for feed-forward networks (DiMattina & Wang, 2006) and two-unit 

recurrent ones (Doruk & Zhang, 2019). This is adapted to harmonic Hebbian networks. 
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CHAPTER 2:  

Learning harmonic structure from natural sound statistics 

 

2.1 Introduction 

How are harmonic structures of natural sounds encoded in the auditory system? At low-frequencies 

the pitch center in the marmoset auditory cortex (close to the anterolateral border of fields A1 and 

R) contains modulation sensitive neurons and pitch sensitive neurons, the latter of which is 

sensitive to the temporal regularity of click trains (Bendor & Wang, 2005). The range of 

modulation-sensitivities can be described with simple integrate and fire models with synaptic 

depletion (Gao et al., 2016). However, the pitch-sensitive neurons lack a supporting computational 

model. Harmonic selectivity was also observed at higher frequencies in in the core region of 

marmoset auditory cortex (Feng & Wang, 2017), in which harmonic template neurons fired to a 

best harmonic stimuli at least three times as much as to when said stimuli is 50% mistuned and at 

least twice as much to any tone. This selectivity appears to originate from alternating excitatory 

and inhibitory receptive fields at different frequencies, according to a linearized weight model 

based on harmonic stimuli with per-component randomized intensities (Feng & Wang, 2017). 

Crucially, this can be thought of as a weight vector which tends to be excited by integer multiple 

frequencies of a Bf0 and inhibited by half-integer multiples of Bf0. A harmonic sound fits into this 

spectral sieve and optimally drives the neuron.  

 A natural question to ask is if the neurons, as a population of weight vectors can be 

derived from the stimulus statistics of natural sounds. It is likely that sensory neurons efficiently 

encode environmental stimuli (Simoncelli & Olshausen, 2001). Efficiency can be boosted 

through redundancy reduction (Barlow, 2001; Barlow & others, 1961). The optimal weight-
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vector population depends on what properties we care about most. Minimizing the RMS 

decoding error for a given number of units yields principal component analysis, but it cannot 

explain the Gabor-like simple cell receptive fields in visual area V1 (Field, 1994).  However, 

Gabor-like filters can be obtained by a sparse coding strategy in which a constraint on the total 

activity or an L1-norm is added (Olshausen & Field, 1996). Similar results have been obtained 

by several other methods, including independent component analysis (Bell & Sejnowski, 1997; 

Van Hateren & van der Schaaf, 1998), which is related to a sparseness constraint (Olshausen & 

Field, 1996), stacked denoising autoencoders (Vincent et al., 2010) and direct optimization of 

Shannon mutual information (Huang et al., 2017). 

 Audition has seen similar success in using this principle to predict neural receptive fields.  

Independent component analysis has been used to reproduce auditory-nerve-like filters when 

trained on tooth-tapping sounds (Bell & Sejnowski, 1995, 1997). A related method that assumes 

a stimulus distribution 𝑝(𝑥) ∝ exp (−|𝑥|𝑞) with the exponent inferred from the data (q<2 for 

almost all classes of natural sounds) reproduced gammatone-like filters when applied to natural 

sounds (Lewicki, 2002). The method has been extended to include the time domain in (Klein et 

al., 2003; Smith & Lewicki, 2006). In (Blättler & Hahnloser, 2011) sparse STRFs are 

demonstrated on bird songs, even when a given song is highly overrepresented in the training set 

(i.e. a self-vocalized song). This has been applied this to human speech in the gerbil IC (Carlson 

et al., 2012).  

There are other paradigms besides sparsity. STRFs that maximize efficient coding were 

observed to change with respect to different stimuli (Zhao & Zhaoping, 2011), which help bridge 

the world of experimental STRFs with information-theoretically optimal models. The sustained 

response neurons in the IC could be modelled by looking for rewarding varying responses; the 
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model produced sparse responses despite having no sparsity constraint or penalty in it (Carlin & 

Elhilali, 2013). Maximal causal analysis can be used to build spectro-temporal receptive fields 

from a collection of nonnegative generative fields and a sparse model was found to have a better 

fit to the ferret A1 (Sheikh et al., 2019). Finally, second-order STRFs can model responses to 

European starling songs in the starling caudo-medial nidopallium, which is loosely analogues to 

the auditory belt cortex (Kozlov & Gentner, 2016). Despite the success of these extensions and 

alternatives, sparsity remains a powerful tool for generating a population of neural responses 

from the stimuli.  

The success of sparse coding extends to harmonic selectivity. Adding an L1-norm 

penalty to PCA created harmonic-selective receptive fields (Terashima & Hosoya, 2009) using 

Fourier transformed sounds, although only highly harmonic soundbanks (speech and piano) were 

able to produce multipeaked harmonic units (Terashima & Hosoya, 2009). However, a Fourier 

transform is only a simplified approximation of the auditory periphery that has a fixed frequency 

resolution bandwidth. Will this result still hold given a more realistic model? 

We apply an auditory nerve (AN) model that includes realistic Q-factors and compression 

and two-tone nonlinearities (Zhang et al., 2001; Zilany et al., 2013), which were not considered 

in existing studies. In the existing models, some form of harmonic sensitivity might be implied in 

some units, but to examine whether it is sufficient to explain the biological data, they need to be 

systematically compared against the harmonic selectivity measured in auditory cortex. Inclusion 

of the AN model is justified because all auditory neurons downstream derive their inputs 

ultimately from AN responses, so it allows to analyze the harmonic sensitivity of the resultant 

learned models and compare them directly with known cortical neurons in marmoset auditory 

cortex.  
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In addition to the biological justification, there are reasons that these properties are 

relevant for ICA models of sound processing in general and harmonic processing in particular. 

ICA models such as (Lewicki, 2002) depend on the kurtosis of the sound statistics. However, the 

compressive non-linearity of the AN could reduce, or even reverse said kurtosis, which could 

change the ICA’s behavior fundamentally. For the distortion products of the AN are at sums and 

differences of frequencies (Zilany et al., 2013), which could create harmonics in non-harmonic 

sounds, fill in missing fundamentals, or even interfere with the weaker components of a 

harmonic sound. For capturing any of this potential phenomenology, a quantitively accurate AN 

model is very important. The AN model used with a two-layer model (with a 1-norm activity 

penalty and a 2-norm reconstruction-error penalty) produced a variety of compact spectro-

temporal receptive fields (STRFs) in the first layer and as well as excitation-inhibition second-

layer features (Mlynarski & McDermott, 2017).  

We consider the feasibility of producing harmonic selectivity given the finite tuning 

widths of the AN and the rectifying nature of the cortex. In sum, we will apply PCA and ICA to 

AN model outputs. We compare the results with existing neurophysiological data and make 

several experimental predictions with regard to harmonics sensitivity of auditory neurons. 

Further realism can be accomplished by adding auditory nerve (AN) models. An AN 

model used with a two-layer model (with a 1-norm activity penalty and a 2-norm reconstruction-

error penalty) produced a variety of compact spectro-temporal receptive fields (STRFs) in the 

first layer and as well as excitation-inhibition second-layer features (Mlynarski & McDermott, 

2017). 
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2.2 Methods 

Sound Stimuli 

We have compiled banks of sounds from several sources. There are a wide variety of types of 

sounds available when making a sound bank and both the temporal and spectral structures should 

be considered.  

 

Marmoset vocalizations 

The three major marmoset call types (see Figure 2.1 for various sound examples) typically have 

a second harmonic at twice the 𝑓0. The auditory cortex of marmosets appears to integrate spectral 

and temporal cues from their calls to form higher-level objects (Wang et al., 1995). We used an 

in-house marmoset call bank which was recorded from a marmoset colony in the Johns Hopkins 

University (Agamaite et al., 2015). Marmoset vocalizations were sampled at 50 kHz. There were 

2292 “phee” calls (average 1.35 s long) with energy concentrated to the 7-9 kHz region, 1919 

“trill” calls (average 0.51 s long) with energy concentrated around 6-8 kHz, and 1676 “twitter” 

calls (average 1.21 s long) with energy primarily in the 6-10kHz range. These vocalization 

samples also had significant natural background noise below 0.75 kHz. 

 

Generic bank 

We also have a generic soundbank that is a compilation of many different sounds from a variety 

of sources (Free Sound Effects Archive, 2016, http://www.grsites.com/archive/sounds/). The 

generic bank has 1108 sounds total and has a wide range of durations (4.85 seconds on average). 

Most of the sounds in bank were sampled to 11 kHz with a few at 22 kHz and 44 kHz. The bank 

covers a wide-range of sounds: bird calls, mammalian and other animal vocalizations, human 
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speech and other sounds, industrial machinery, vehicles, musical instruments, and uncategorized 

“miscellaneous” sounds. Each category is approximately equally represented; many 

“uncategorized” sounds fit into one of the aforementioned categories. The generic bank has very 

few if any marmoset vocalizations (the individual sounds are not labeled). Most of the spectral 

energy is in the range of 0.02-5 kHz. 

 

Vowels 

We have a sound bank of vowels in human English speech (Hillenbrand et al., 1995). Each 

sound is a single vocalization of a word starting with h and ending with d with a vowel or vowel-

with-transition in the middle, such as “heard”. Many words are nonsense words such as “hawd”. 

There are 540, 576, and 552 man, woman, and child voices respectively, and multiple different 

speakers. All sounds were originally sampled to 16kHz. 

 

Harmonics, mistuned harmonics, and white noise 

Finally, we also employ three types of artificially generated sounds. Each tone within a harmonic 

or mistuned complex has equal amplitude and random phase. Harmonic 𝑓0 values are randomly 

distributed, uniformly on a log scale, from 50 Hz to 5000 Hz. Each complex includes between 2 

and 25 components, which covers most harmonic sounds; 2 is the bare minimum and human 

vowels can have 40 substantial components; see (Schnupp et al., 2011) for a discussion on 

various sound stimuli. The only difference between mistuned harmonics and harmonics is that 

the former has a per-sound frequency shift of each component. The shift ranged from zero to the 

sound’s f0, uniformly distributed. White noise is modelled as a random soundwave where each 

element is sampled from a gaussian distribution with zero mean and a fixed variance; each 
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element is independent from every other element. Sounds were set to 25 dB total energy except 

the harmonics/mistuned harmonics which were set to 25 dB per component. 

 

Generating the training data 

We have used two types of training data, namely, the direct training data of the raw sound waves 

themselves (despite the term “raw” we do allow resampling, but perform no other processing on 

them), and the AN training data. Samples from these banks are shown in figure 2.1 The natural 

sounds were resampled if necessary to make the sampling rate at 50 kHz for the direct data, and 

100 kHz for the AN data, and all sounds were normalized to 25 dB. For the real banks, sounds 

were randomly selected for training, and windows were randomly selected within each sound; it 

was possible for overlapping sound-windows combinations to be selected but the fraction of 

overlapping windows was small for the generic bank and marmoset calls. The time interval of 

each sound snippet was always set to 10 ms, preceded by a 5 ms ramp to avoid artifacts in the 

AN model; no ramp was necessary for the direct training data. We always picked 10000 samples 

from each sound bank. The start time of each snippet was chosen randomly with a uniform 

distribution, and we allowed different snippets to have partial overlaps. The total window size 

was 100 seconds and the two banks had 5612 seconds and 6111 seconds of audio, respectively, 

for a coverage fraction of only around 1.7%, and the chance for overlapping windows was only 

about 3 ×10-4. The coverage fraction was larger in the vowel bank as there were only 271 

seconds of audio, but it is unlikely this significantly changed the overall pattern of the weight 

vectors. Each file was equally likely to be selected in the generic bank but the selection 

probabilities were weighted in the marmoset calls and vowels so that there was a 1/3 probability 
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of being in each category. The synthetic sounds were time-invariant and required no resampling 

since they were generated at the same sample frequency they were used. 

The AN training data involved more processing to generate. The AN model includes 

surround inhibition, saturation, and other nonlinearities (Zhang et al., 2001; Zilany et al., 2013). 

This computational model is written in C++ and integrated with MATLAB. Roughly speaking, 

the raw sound waves are passed through a gammatone filter followed by several non-linearities 

such as power-law adaptation, compression, and an output Boltzmann sigmoid model (Zilany et 

al., 2013). The raw sound waves were sampled at 100 kHz and fed into the model. For 

simplicity, no head-related-transfer-function was used here. The AN model was exposed to the 

given sound for a period of 30 ms prior to the time window that was extracted for training, 

allowing the response to stabilize, sounds were ramped for the first 5 ms of this padding. The 

expected spiking rate of a high-spontaneous fiber was used; no randomness or spike generation 

was in the model (we removed the randomness in the code). We used 240 model AN units 

logarithmically spaced from 0.125 kHz to 20 kHz, which was the range of best-frequencies 

allowed by the model. Then we linearly interpolated the results to create a total of 720 units. This 

interpolation, reduced the number of AN model computations we needed to perform and store 

but it only generated at most a 1.2% RMS error in the firing rates after the average firing rate 

was subtracted out. Finally, the responses were averaged over time within the 10ms long 

window; just as the raw sound waves only had a temporal dimension, the AN model only had a 

frequency dimension after the averaging. 
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Figure 2.1: Examples of sounds used in the training dataset. This shows the raw sound waves (top), 

spectrograms (middle) and the cochleagram of the model auditory nerve’s responses (bottom). The 

frequencies of the spectrograms are shown on log scale for easy comparison with the AN model bank. The 

spectrograms are at a time resolution of 10 ms and all sounds are clipped to 500 ms long in this figure. The 

AN model bank has good spectral resolution at low frequencies to clearly resolve the harmonics and also 

retain good time resolution at high frequencies to track the twitter’s sweeps. The barking and engine sound 

are from the generic bank and the phee, trill, and twitter are from the marmoset dataset. The frequency scale 

is logarithmic and the colorbar is in dB for the spectrogram and spikes/s for the cochleagram. 
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Time windows 

For both the raw waveform model and the AN model, we used a 10ms window since that was 

found to be near optimal. Longer windows demand more training examples because there are  

more degrees of freedom to train; under-training creates weight vectors with more noise added, 

longer windows require more computation power. Windows shorter than around 10 ms introduce 

window-dependent artifacts for the raw sound waves, and at shorter than around 5 ms the 

window size completely controls the weight vector structure (Figure 2.2). This suggests that 

there is strong temporal coherence around 5 ms that sets the scale of the weight vectors as long 

as the window size is significantly longer than 5 ms. This could be investigated further by 

examining autocorrelations. For the AN model we also used a 10ms window (not including the 

30 ms of padding) but since time was averaged to emphasize spectral information, the window 

size was not nearly as important in determining the shape of the weight vectors. 

At or above 10ms, the structure of the weight vectors no longer depends on window-size 

all that much (Figure 2.2), and the 20 ms case looks much like two 10 ms cases attached together 

and the 50 ms case looks like five 10 ms cases set side-by-side (not shown). Although this is 

only a visual analysis, there are other reasons to believe that 10ms is reasonable. The window 

used in (Lewicki, 2002) was a very similar 8 ms window on speech “because it covers the 

relevant time scale for a broad range of AN fibers” and “captures most of the short-range 

temporal correlations in the sound ensembles as revealed by the auto correlation functions”. Thus 

10 ms, which was also used in (Lewicki, 2002) and elsewhere in the literature, is likely a good 

window choice. 
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Figure 2.2: The effect of different window sizes on the trained weight vectors. They are trained on the raw 

waveforms in the generic bank. Shown is the zero-padded discrete Fourier transform of the 5 most important 

weight vectors in descending order of importance for various window sizes. The x-axis is the number of 

cycles and y-axis is spectral energy. On this plot a sinusoidal weight vector that completes a single 2π cycle 

within its window will show a “lump” of energy at x=1. Each pink curve represents where the spectral 

energy would be for a constant time-period sinusoidal column; a longer window will fit more cycles of a 

given time-period. Above 5-10 ms the curves tend to follow the pink lines (though weight vectors of similar 

importance may swap order), indicating nearly constant widths in the time domain; if a 20 ms weight vector 

were shown in the time domain it would look like two of the 10 ms time vectors side-by-side from Figure 

3, indicating that little new structure is gained by moving from 10 to 20 ms. 

 

Weight Training 

The steps outlined above gave us a matrix of data X where each of the 10,000 columns of X is a 

single training instance. Here each column is a sound sample of 10 ms at 50 kHz for the direct 

wave case; for the AN model case, each column consists of 720 AN fiber responses described 
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above, each averaged over 10 ms. The final outcome of the training is a weight matrix W of which 

each column is a weight vector, a single weight vector determines the input to a hypothetical 

cortical unit given a certain stimulus. We used PCA and a slightly-modified fastinfomax for our 

ICA. We apply the algorithm for both the ICA and PCA on the raw sound waves and a model AN 

bank (Zhang et al., 2001; Zilany et al., 2013).  

For the PCA we simply used MATLABs PCA function on XT. This gave us a series of 

vectors of descending fraction of explained variance. 

For the ICA, many ICA algorithms have been proposed in the literature (Comon & 

Jutten, 2010; Himberg et al., 2004). We used fastinfomax (Huang et al., 2017) which tends to 

produce final results very similar to the infomax ICA (Bell & Sejnowski, 1995) but with faster 

convergence. We used fastinfomax on the square setting (equal numbers of inputs and outputs) 

with the default parameters except for a few modifications. The original algorithm enforces 

orthogonality of the iterated matrix C using Ghram-Schmidt. Here we used the formula Cortho = 

𝐶/√𝐶𝑇𝐶 (Horn et al., 1988). This avoided the preferential treatment that Ghram-Schmidt gives 

to the first few vectors and was found to be faster in MATLAB. After the orthogonalization is 

relaxed we used an even looser normalization criteria than that in the original algorithm: we 

simply constrained the Frobenius norm of C matrix to be n for an n by n matrix (i.e. what an 

orthogonal matrix’s norm would be). This constrained only a single degree of freedom. 

ICA generates a list of weight vectors that can be ranked much like PCA components. In 

the PCA case you rank vectors by the fraction of variance explained. The total fraction of 

variance explained by any subset of PCA vectors is the sum of the fractions of variances 

explained by each vector. This isn’t the case with the ICA as the vectors are no longer 

orthogonal. However, we can still calculate an “importance” of each vector which is the amount 
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of variance explained by that vector alone. This means larger weight vectors are less important 

because they need to amplify a smaller signal.  

Our method also calculates the number of weight vectors (i.e the effective rank of X). The 

rank is computed by the minimum number k0 of singular values needed such that the sum of 

squares of the largest k0 values is 99% of the sum of squares of all singular values (Huang et al., 

2017). Furthermore, the resulting penalty functions favor sparsity in activity by rewarding 

outliers (Huang et al., 2017). 

 

Harmonicity Detection 

We considered a hypothetical unit receiving input directly from the AN model bank with a 

weight vector from W. The output or firing rate of that cortical unit is 

 

 y = max(0,wTs),      (1) 

 

where vector s is the responses of the auditory nerves to either tones, harmonics, or mistuned 

harmonics and w is the weight vector obtained by unsupervised learning. A rectification-linear 

model is realistic because cortical neurons are rarely driven near saturation (Douglas et al., 1995; 

Gutnick & Mody, 1995). Furthermore, they have faster learning than sigmoidal models so long 

as a global control on the firing rate is included (Glorot et al., 2011). 

The maximum response to tones and harmonics was found by testing a grid of 

frequencies and then locally optimizing the frequency around the most responsive location to 

polish up the result. From this, the facilitation index and periodicity index were calculated as:  
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                                                 𝐹𝐼 =
𝑦ℎ𝑚−𝑦𝑡𝑜𝑛𝑒

𝑦ℎ𝑚+𝑦𝑡𝑜𝑛𝑒
,             (2) 

 

                                                       𝑃𝐼 =
𝑦ℎ𝑚−𝑦𝑚𝑖𝑠𝑡𝑢𝑛𝑒

𝑦ℎ𝑚+𝑦𝑚𝑖𝑠𝑡𝑢𝑛𝑒
      (3) 

 

where 𝑦𝑡𝑜𝑛𝑒 and 𝑦ℎ𝑚 are the best tone response and harmonic response, respectively, and 

𝑦𝑚𝑖𝑠𝑡𝑢𝑛𝑒is the response to the best harmonic stimuli but mistuned by half of f0. The FI is a 

measure of how much the response favors harmonics over tones and the PI is how much it favors 

harmonics over mistuned harmonics. Harmonic template units were defined in (Feng & Wang, 

2017) as units with both FI>0.33 and PI>0.5. We applied these indices to our simulation results 

to allow direct comparison with the experimental data.  

The stimuli are different from (Feng & Wang, 2017) due to our lack of a one-octave 

radius bound on the harmonics, but a comparison is still reasonable. In (Feng & Wang, 2017) the 

best-frequency of a neuron was found and then a one-octave radius bound around said frequency 

was used to restrict the components of the soundwave. However, the concept of BF is unnatural 

for multipeaked units: many receptive fields in both our study and (Feng & Wang, 2017) have 

two or more comparable peaks. Choosing a BF entails picking a peak just because it is slightly 

taller. Furthermore, many of the units in (Feng & Wang, 2017) had extremely little responses to 

tones, making a BF hard to find in the first place. Many of our results are fairly narrow anyway, 

so adding a one-octave bound wouldn’t change in responses all that much. Finally, in an in vivo 

model there are animal comfort and broadband adaptation issues with presenting loud sounds, 

thus the desire to minimize the energy as much as possible. Although not perfect, removing the 

one-octave bound probably doesn’t make a fundamental difference. 
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Population statistics 

Each weight vector defines a cortical unit so the weight matrix as a whole can be considered a 

population. Thus, we can use the binomial and ranksum statistical tests to make inequality 

inferences about the different populations and how likely it is to find each unit type given 

different training conditions and use the two-sample Kolmogorov-Smirnov test to make 

inferences about differences in distributions. 

 

2.3 Results 

Training directly with raw sound waves in our datasets tended to produce filters that look like 

sinusoids; in other words, the resultant filters often resemble Fourier components (Figure 2.3).  
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Figure 2.3: Top raw-sound weight vectors for three soundbanks. Shown is the top six PCA and ICA 

weights for the generic, marmoset, and harmonic soundbanks. As indicated by the numbers, the ranking 

was based on the fraction of variance explained by PCA or ICA. The y-scale is normalized. Sometimes 

the PCA weight vectors come in pairs of stimuli that are shifted by a phase, such as the first two 

marmoset examples. This is much like the SIN vs COS phase Fourier components.  
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From a mathematical point of view, this result is expected. The random sound sampling 

will mean that the expected value of the covariance between two points in time will only depend 

on the separation, i.e. for a random sound snippet x, 𝐸(𝑥𝑖 − 𝑥𝑗) = 𝑓(|𝑖 − 𝑗|) where f is a one-

dimensional function that encodes the auto-correlation. This means that the covariance matrix is 

a symmetric Toeplitz matrix because each diagonal is constant. A symmetric Toeplitz matrix’s 

eigenvalues form a Discrete Fourier series (Makhoul, 1981). A perfect Fourier series for the PCA 

weight vectors would only occur given an infinite number of samples, but our sample size was 

still sufficient to yield nearly a Fourier series in most cases (Figure 2.3). 

There are exceptions to this, however. The components from artificial harmonics or 

mistuned harmonics tended to look like each one has multiple frequencies rather than a single 

sine wave and the ICA components from marmoset calls have high frequency carrier that falls in 

the ~6-9 kHz range of the typical marmoset call dominant frequencies. Slightly further down the 

marmoset PCA weight vectors there is also a high-frequency carrier (not shown). Vowels are 

similar to the generic bank, and white noise produces almost-white vectors for both the PCA and 

ICA (not shown). None of our training produced wave shapes that were compact in time. The 

ICA and PCA methods tend to be similar, although the ICA has more noise. For the other 

training sets, the more important weight vectors tend to oscillate at lower frequencies. The 

generic bank components and first few marmoset ICA components are very much like a slightly-

out-of-order Fourier series (see Figure 2.3). The rule-of-thumb that ICA tends to be sparser than 

PCA does not apply here.  

Although the direct training sets never produced sparse weight vectors, this is not due to 

the details of fastinfomax. We were able to reproduce the gammatone-like filters reported by 

(Lewicki, 2002) when we applied fastinfomax to the same sound bank he used (See figure 2.4). 
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Thus the lack of sparseness should be due to the datasets we used which had a more diverse 

range of sounds. 

 

 
 

 

Figure 2.4: Weight vectors of hand-selected “non-harmonic environmental sounds”. This dataset was 

hand-selected in (Lewicki, 2002) and the weights are shown in their Figure 1a. Both our figure and his 

figure exhibit wavelet-like weight vector. Note that their Figure 1a is sorted by frequency while ours is 

sorted by our importance metric, yielding a different order. Other than that technicality the results are 

qualitatively similar. 
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To measure how compact a weight vector 𝑤𝑖  is, we computed its width 𝜎 as follows: 

ωi =
𝑤𝑖

2

∑ 𝑤i
2 

𝑛

𝑖=1

, 

𝜇 = ∑ 𝜔𝑖𝑡𝑖 

𝑛

𝑖=1

,  

                                                   𝜎 = (∑ 𝜔𝑖(𝑡𝑖 − 𝜇)2 
𝑛

𝑖=1
)

1/2
,    (4) 

where n is the number of elements in the weight vector and 𝑡𝑖 is the time that corresponds to the 

weight element 𝑤𝑖 . This is essentially treating the square of the weights at each time 𝑡𝑖 as a 

probability density function and computing its standard deviation. Weight vectors that are more 

spread out over a wider range of times will have a larger 𝜎. These distributions are usually 

different from each other. All of the direct training sets (1.5910-23 < p < 0.0334, ranksum) 

except for white noise (p=0.5) were smaller for the ICA than the PCA, but the difference was not 

great. The direct training widths for all PCA and ICA cases averaged between 2.16 ms and 2.89 

ms. The greatest difference was the marmoset calls, at a ratio of widths ICA/PCA = 0.78 (p = 

1.5910-23), but all other cases the ratio was between 0.9 and 1 even in cases where the statistics 

were stronger due to having a larger number of weight vectors. Despite the high significance, 

these actual differences were relatively small. 

The training based AN data produced results qualitatively different from above. We find 

that the ICA-based model generates much more compact receptive fields which are not always 

more selective to harmonic sounds than the receptive fields generated by the PCA-based model. 

We can still ask to what extend the ICA is more or less compact than PCA, we simply use the 

log of frequency in place of time. The ICA weight vectors are much more narrower than the 

PCA, averaging across all banks only 𝜎 = 0.48 octaves for the ICA vs 0.88 octaves for the PCA 
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(Figure 2.5). The only exception to this rule is for marmoset calls where the ICA was slightly 

wider (p = 0.0044), but on everything else the ICA was narrower (5.410-25 < p < 1.510-5). For 

mistuned harmonics and vowels the ICA/PCA ratio of compactness was 2.7 and 2.5, 

respectively. For the generic bank the ratio was 4.08 (0.27 vs 1.12 octaves). These large 

differences stand in stark contrast to the direct training sets (see Figure 2.5). 
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Figure 2.5: The top six weight vectors for PCA and ICA on the AN model. This is shown with both a 

linear scale (top) and log scale (bottom). The faded lines show the weighted response to a “sliding tone” 

such that at each frequency the curve is the dot product of the weight vector and the AN responses to said 

frequency. Below 500 Hz and above 10 kHz the AN responses begin to die down. 
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Sparsity 

By regarding the filters obtained from training as a population of neurons, we examined their 

responses to natural or artificial stimuli. We expect that the ICA filters should produce sparser 

population activity because of the earlier results in the literature (Bell & Sejnowski, 1997; 

Olshausen & Field, 1996; Van Hateren & van der Schaaf, 1998). To examine whether this is the 

case, we performed the following tests. For each weight vector we have a distribution of 

responses to the sound bank that the vector was trained on; that is, the input for a single cortical 

unit is a random variable and each element of wTX is a sample of the input, giving us a 

distribution to work with; sparser responses should indicate heavier tails. Indeed, the ICA had 

greater kurtosis for almost all cases. This was highly significant by the rank-sum test (p=0.00090 

for vowels, 1.0610-85 < p < 2.910-5 otherwise) with only two exceptions. For the direct white 

noise case the response was forced to be a normal distribution of zero mean so getting any 

sparsity whatsoever was impossible. The AN marmoset case also failed to achieve significance 

(p=0.052). Often the ICA kurtosis was much greater than the PCA; the median kurtosis ratio was 

about 4 times in the AN generic bank and direct wave harmonic case and it was over 7 times in 

the AN harmonic case. When we added a rectification step, i.e. max(wTX,0), the statistical 

differences got a little weaker but remained significant. 

The activity ratio in (Olshausen & Field, 1996) is an inverse metric of sparsity and makes 

sense only when we rectify to prevent negative responses. We see results that do not disagree 

with the PCA having a higher activity ratio (being less sparse). Compared with the kurtosis 

measure, the activity ratio for the direct sound wave model yielded compatible results 

(PCA>ICA, 10-300 < p < 0.00043) but gave somewhat different results for the AN model cases: 

although the results were also consistent for the generic bank (p=0.037), for the marmoset calls, 
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vowels and harmonics, the ratio was not significantly different from 1 (p=0.08, p=0.5, and 

p=0.121) and the white noise results even indicated that ICA was less sparse (p=0.026) although 

white noise is very unnatural and only serves as a control. However, lack of significance does not 

necessarily mean disagreement with the kurtosis results. The overall evidence still strongly 

indicates that the ICA filter’s response distributions are sparser, and higher statistical 

significance was seen in the kurtosis measure than the activity ratio. 

 

Harmonic selectivity 

All training cases yielded harmonic-template weight vectors using the criteria of Feng & Wang 

(2017) as shown in equations (2) and (3). An example of a couple template-vectors is shown in 

Figure 5.  

Both PCA and ICA can produce harmonic selectivity but the harmonically selective 

weight vectors show different patterns of excitation and inhibition. The Fourier-transformed 

direct training sets can be selective, but they did not yield large selectivity differences, except for 

white noise (which was more likely to have template units, calling into question the validity of 

this metric for the direct training sets). Furthermore, the direct sets did not represent harmonic 

waveforms in the time-domain. 

The AN training cases, on the other hand, have template-vectors with sieve-like patterns, 

but they are modified as shown in Figure 2.7 (the pattern for the top 5 most selective units is 

similar for the top two shown in this figure). The sieves for the PCA cases are skewed to be 

approximately linearly spaced on a log scale, i.e. the lower frequency components are spaced 

more closely. The ICA sieves tend to be restricted, consisting of a relatively narrow range of 

harmonic numbers. The ICA harmonics case, on the other hand, produces many more non-
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chirped, broad sieves. This leads to far greater harmonic selectivity: the FI distribution of the 

ICA harmonic case, as well as the fraction of template units, was much higher than any other 

case (1.210-17 < p < 9.110-6, see figure 2.8). 

 
Figure 2.6: Examples of a harmonic template unit weight vectors. We have a strongly harmonically 

selective unit (left) and the center region of a slightly selective unit (right) obtained by ICA learning. The 

response of each unit is taken as the dot product of its weight vector (top panels) and the AN response 

pattern (middle and bottom panels) to a given sound, followed by rectification so that the responses 

cannot be negative. The thick vertical grey lines indicate each unit’s Bf0. The top panels show the weight 

vectors along with idealized sinusoidal “sieves” that are aligned to Bf0. The middle panels show the 

responses of AN fiber array to an idealized harmonic stimuli at Bf0, with the dashed lines showing the 

stimulus frequencies. The sieve’s excitation regions match perfectly with the locations of peak AN 

responses so that each unit responds much more strongly than it does to tones. The bottom panels show 

that when a half-Bf0 mistuning is added to the stimuli, the AN responses land on the inhibitory regions of 

the sieve so that each unit is inhibited. The unit in the left panels matches the sieve over several cycles 

and thus responds 8.6 times as strongly to harmonics at its Bf0 than its maximal response to tones. The 

match of the unit in the right panels is only 2.4 times as much, barely exceeding the 2.0 criteria for a 

harmonic template unit, because the oscillations have approximate uniform spacing only on a log scale. 

Neither of the units responded at all to the mistuned stimuli because strong inhibition kept them below 

threshold.  
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These differences also make the ICA-harmonic template-vectors more selective to a single 

Bf0 than the template-vectors in the other cases. The chirping or range-restriction means that each 

weight vector is selective to a wider range of f0 values because the fit is not precise; this produces 

a multipeaked response to harmonics (not shown). However, in the ICA harmonic case we find 

selectivity to a single f0 value (not shown).  

 
Figure 2.7: The most harmonically selective PCA and ICA weight vectors. Top half: The most selective 

vectors. Bottom half: The second most selective vectors. The PCA and ICA weight vectors are obtained 

with the auditory nerve model, where selectivity was evaluated by the minimum of the FI and PI indexes. 

Only the center regions of the weight vectors are shown. The vertical dashed lines mark multiples of Bf0 

and the vertical red line is the BF for tones. The blue curve is the weight vector and the red curve is the 

AN responses for a harmonic complex for a fixed stimuli at Bf0 (not sliding as in Figure 4); the input to 

the cortex was calculated by taking the dot product of the two curves. 
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All training combinations having at least 10% of harmonic template units, but there were 

differences between banks (even beyond the case of ICA harmonics). Since we have 7 different 

banks we can make 21 pair-wise between-bank comparisons, which corresponds to a Bonferroni 

corrected p value threshold of 0.0024 for significance. Using this cutoff, the generic bank, 

harmonics, and mistuned harmonics were both more likely to have template units than white 

noise or the in vivo data (1.510-5
  < p < 1.810-3); the generic bank had 50% template units, vs 

27% for in vivo. White noise was also less likely to get harmonic template units than vowels 

(p=0.00085). All other bank vs bank differences were insignificant (0.007 < p < 0.5). 

We can also detect differences in the FI and PI distributions using the Kolmogorov-

Smirnov test, comparing bank vs bank for all 4 combinations of PCA and ICA and FI and PI, 

also with p<0.0024: 

• All in vivo cases were different from any bank (1.810-18 < p < 0.00059), except for the 

marmoset FI (due to lower statistical power). 

• White noise was different in 14 of the 24 bank vs bank comparisons across the 4 

combinations (8.510-18 < p < 2.210-4), but these differences were sporadic with no simple 

pattern. 

• Harmonics were different from everything else in the ICA FI case (1.210-15 < p < 4.910-5). 

It was different from everything except the marmoset (again, due to statistical power) and 

mistuned harmonic cases for PCA PI case (3.110-13 < 8.310-8). Finally, it was different 

from white noise and mistuned harmonics in the ICA PI case (p=3.7410-8, and 1.4410-5), 

as well as in vivo (p=1.8310-18). 

• Mistuned harmonics were also different from the bank and vowels for the PCA and ICA PI 

cases (8.410-17 < p < 8.410-5). 
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• The only other bank vs generic bank difference was the vowels vs generic bank in the ICA PI 

case (p=0.0016).  

Thus, the main result of all of this is that harmonic selectivity is very strong for filters trained by 

ICA with harmonics, but the in vivo data were better (though far from perfectly) matched by the 

other categories. These distributions are summarized in Figure 2.8 and Figure 2.9. 

 

 
 

Figure 2.8: Cumulative distributions of the FI and PI. These are for AN models of various training sets, 

the x-axis is the cumulative probability. The ICA harmonics stands out as highly significant at increasing 

the FI distribution. The gray curves represent the in vivo experimental data (Feng & Wang, 2017). 

Compared with all the models, the in vivo FI has a broader range, and the in vivo PI lies below all the 

theoretical curves. 
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Since the results seem to lack the diversity or heterogeneity of the experimental data, we 

wonder whether adding variable threshold would produce more diverse units. We measured 

harmonic selectivity for a random non-zero threshold, as would be found in the cortex. For each 

weight vector w we calculated the standard deviation d of the cortical input given w and the 

training data (the standard deviation of wTX). We then added a random normally distributed 

threshold with mean 𝜇d and standard deviation 𝜎d, where 𝜇 and 𝜎 represent a normalized bias 

and spread of thresholds. We tested a grid of 𝜇 and 𝜎 to find what parameters create the closest 

match to experimental distribution of PI and FI, based on average Kolmogorov-Smirnov test 

statistics. The greater kurtosis of ICA vs PCA in almost all cases was still the case with this non-

zero threshold. We found that 𝜇 of -2/3 and 𝜎 of 10/3 gave the best match of all values tested, 

however the exact value didn’t affect the results much and a 𝜇 of 0 and 𝜎 of 4 gave slightly 

worse test statistics but more realistic FI distribution results as shown in Figure 2.9. We conclude 

that just adding a variable threshold was sufficient to produce units with PI and FI distributions 

that were roughly comparable with the neurophysiological data, with it understood that we could 

also introduce variations in other factors to increase heterogeneity in the neural population.  
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Figure 2.9: Cumulative distributions of the FI and PI under a randomized threshold. In this figure we use 

a relative 𝜎 = 4. The PI distributions are a much better match to the in vivo case than the zero threshold 

model. 
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2.4 Discussion 

The goal of this study is to examine whether harmonic selectivity found in the marmoset 

auditory cortex could be accounted for by efficient coding of natural sounds that contain 

harmonic structures. As a control, we first performed PCA and ICA on the raw sound waves 

from multiple natural and artificial sound sources and found that the weight vectors tended to be 

broad and periodic, much like Fourier series (Figure 2.3). The exception to this was the case of 

marmoset vocalizations where the two methods picked up on the high frequency 6-9 kHz carrier. 

With a smaller dataset restricted to “ambient sounds” as used in (Lewicki, 2002), we reproduced 

compact wavelets from ICA learning. The sounds in that dataset have far less perceived pitch 

than most sounds in other banks, even less than most background-noise sounds. Also, they tend 

to be “crackly” such as fire, and in the time domain these sounds are similar to very compact 

random clicks with little other obvious higher-order statistical structure. This property likely 

enables ICA models to produce compact wavelets. However, with our much larger and more 

diverse datasets we found that both PCA and ICA training on raw sounds tended to produce 

unrealistic units for harmonic selectivity. Neither method produced sparse units, and the less 

important weight vectors often had more sinusoidal-like oscillations, although the ICA results 

sometimes were slightly narrower.   

Adding a proper AN model allows for greater biological realism, incorporating effects 

such as Q-factors, two-tone suppression and power-law nonlinearities. Since our purpose here 

was to learn harmonic units based on spectral weight pattern, the overall role of the AN model 

was not fundamentally different from the weight vectors on the raw sound waves because they 

both served to approximately transform the sounds into the spectral domain. The PCA weight 

vectors for the AN model were similar to a windowed version of the direct wave, in that the 
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components were sinusoid-like and less important components showed more oscillations (Figure 

4). The windowing was determined by the location of energy in data X and acted to confine the 

weight vectors. However, the ICA model tended to form more compact wavelets that occurred in 

different places within the window, thus they only responded to a sub-region of X. For mistuned 

harmonics and vowels, ICA weight vectors averaged over twice as compact as the ICA results, 

and for the generic bank, they were four times more compact (as quantified by the width defined 

in equation 4).  

 

Both ICA and PCA can yield realistic levels of harmonic selectivity 

Despite the large difference in the AN-model-trained receptive fields, ICA and PCA generated 

similar ranges of the harmonic selectivity metrics FI and PI (equations 2 and 3), which were not 

too different from the ranges of selectivity observed in the marmoset when a randomized 

threshold was added to the model. The ICA results based on artificial harmonic sounds were an 

exception: we saw a very strong harmonic selectivity with FI values well above what was found 

in the cortex. However, vowels and marmoset calls did not yield high selectivity despite 

containing harmonic components. Marmoset calls rarely have more than 2-3 harmonic 

components, which is far fewer than most stimuli in our artificial harmonic training set. Also, the 

vowels have harmonics at a narrower range of f0 values than our harmonic training set, and at 

much lower f0 values than the best fundamental frequency (Bf0) values of units trained on that 

training set. At these low frequencies, Q-factors are so low that picking out individual 

components becomes more difficult. Thus it appears that ICA can be very sensitive to harmonics 

under contrived conditions that rarely occur in vivo. 
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ICA with AN model shows more realistic tuning curve width and BF range 

The efficient coding hypothesis states that neurons optimize their firing distributions to 

maximize information about the stimulus (Barlow, 2001; Barlow & others, 1961), but how does 

it apply in the marmoset auditory cortex? The fastinfomax ICA algorithm we use is based on 

maximizing Shannon mutual information, and does it do a better job at predicting cortical 

response than simply decorrelating the stimuli as does PCA? However, the FI and PI harmonic 

selectivity metrics do not show much difference between ICA and PCA, except for harmonic 

stimuli where the ICA’s high FI and template unit proportion is way above in vivo levels. Thus 

these metrics are not useful at differentiating PCA and the efficient-coding-based ICA.  

Cortical tuning widths and distribution of BFs seem to mirror the generic bank ICA 

behavior; the generic bank with its wide range of sounds is the most realistic training case. Like 

our results, the cortical units tend to be relatively compact with usually 1-3 peaks (Kadia & 

Wang, 2003). This is in contrast to the broader and greater number of peaks found in the PCA 

case. However, a more careful scrutiny with a variety of quantitatively shape metrics needs to be 

done in the future to conclusively determine whether harmonic selectivity in the auditory cortex 

is PCA or ICA-based, or neither. 

 

Biological relevance of PCA and ICA learning 

We have compared PCA, which decorrelates the data but does not remove statistical dependency 

beyond the second order, with an ICA algorithm based on (Huang et al., 2017), which produces 

results with comparable quality to the infomax ICA (Bell & Sejnowski, 1995), but it is 

numerically more robust and does not require equal input and output dimensions while still being 

as fast as Fast ICA (Hyvarinen, 1999). Although we did not explicitly model how the learning 
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takes place in the auditory system, both PCA and ICA can potentially be implemented by 

biologically plausible learning rules. PCA is essentially a Hebb rule whereas the infomax ICA is 

essentially an anti-Hebb rule (Bell & Sejnowski, 1995). Hebbian learning produces PCA-like 

behavior (Oja, 1992). Adding a convex non-linearity to Hebb’s rule means unusually strong 

stimuli will dominate the plasticity and cause sparseness (Brito & Gerstner, 2016). Biological 

mechanisms can potentially implement approximations to ICA. Volume transmission feedback 

(Zoli et al., 1999) can regulate and stabilize the global activity.  

 

Relation with harmonic selectivity in auditory cortex 

As mentioned in this Chapter’s introduction, both ICA and PCA can potentially be realized with 

a local learning rule combined with a global activity regulator that stabilizes the overall firing 

rate. In the brain, the wiring and synapses determine local connections while diffusion of 

neurotransmitters outside of the synapses affects neuronal activity on regional or global scales 

(Agnati et al., 1995). In an artificial neural network, the local Hebbian learning rule finds the 

components and the global term keeps the overall activity from exploding to infinity (Oja, 1992). 

Hebbian learning will pull weight vectors toward the largest eigenvector, extracting the largest 

principle component (Oja, 1992), or recursively extracting smaller and smaller components 

(Sanger, 1989). For ICA learning one possible local rule adds a cubic term that amplifies the 

Hebbian learning at large firing rates, rewarding a heavy-tail (Hyvärinen & Oja, 1997). 

The sparsity inherent to brain activity is more consistent with ICA-like behavior rather 

than PCA which finds the linear transformation that minimizes the square error (Linsker, 1988). 

ICA but not PCA can reproduce Gabor filters in vision (Olshausen & Field, 1996) and 

gammatone filters in audition (Lewicki, 2002). Nonlinear multistage compression algorithms in 
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the form of a deep neural networks have proven very useful in image and sound recognition in 

the machine learning field (LeCun et al., 2015), but these do not have to resemble the cortex with 

sparse activity. For more complex tasks that the brain accomplishes, it may be the case that 

sparse responses are a much better representations for performing complex tasks beyond V1 

(Olshausen & Field, 1996), such as for responding to stimuli as specific as an individual’s face or 

voice.  

Our model predicts that the harmonically selective neurons could be made of excitatory 

and inhibitory weights arranged as a sieve with even spacing in the frequency domain on a linear 

scale; such sieves are selective to harmonics over tones and mistuned harmonics (Figure 2.6). 

This model is consistent with the finding by the simulations in (Terashima & Hosoya, 2009) and 

the experiments in (Feng & Wang, 2017) who found similar weight vector patterns by fitting a 

linear model to the responses elicited by random spectral stimuli. This interleaving excitatory-

inhibitory pattern of connections could potentially be tested in future anatomical studies. Our 

model is also able to make testable predictions at the population level. The statistics of harmonic 

neurons such as the sparsity of population activity in response to a given stimulus set as 

predicted by the model could potentially be tested in real auditory neurons.  

Although our model neglects all the intermediate steps before the cortex, those steps 

rarely integrate multiple spectral bands, they instead build up a single band from a narrow range 

of frequencies and integrate other properties such as spatial location (Pickles, 2013). As our 

model focuses on spectral integration, it probably corresponds to the step from the thalamus to 

primary cortex most closely. In the future our work could be extended by incorporating realistic 

thalamic response properties. 
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Other models of harmonic selectivity, such as the temporal periodicity detection in 

(Bendor & Wang, 2005), could complement the spectral sieving. This could be tested by training 

a time-domain model on click trains with various periods and amounts of jitter, as the pitch-

sensitive neurons in (Bendor & Wang, 2005) responded less strongly to jittered click trains. Even 

with complex spectral-temporal training paradigms, ICA would likely end up being more 

compact in whatever space the weight vectors are in than PCA.  

Finally, we mention several factors that could explain the remaining discrepancy between 

model and experimental data in the FI and PI distributions. If the PI distributions are matched by 

a randomized threshold the FI distribution in vivo remains broader than the distributions on any 

of the training sets (Figure 8). The actual distribution of the in vivo thresholds (i.e. the effective 

thresholds that result from the very complex underlying neural network) is unknown. We choose 

a normal distribution for its simplicity and symmetry and then find the best 𝜎; it also was 

convenient to express 𝜎 as a dimensionless ratio with respect to the range of inputs. 

Technical difficulties with experimentation such as electrode-induced property changes, 

baseline drift, and adaptation could add noise and broaden the distribution. Also, the resolution 

limits of BF collection could make it hard to find as precisely the BF and Bf0. The stochastic 

nature of Poisson-like spike trains would introduce additional randomness which was not 

accounted for in the simulation. The in vivo responses used a one-octave radius cutoff around 

BF, which was deemed artificial for the neurons that were multipeaked. The use of this cutoff 

likely does not make a large change, but it conceivably could have softened the in vivo PI 

distribution since there would be less components acting together to build up a strong inhibition 

when mistuned. 
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CHAPTER 3:  

Training harmonicity selectivity in feedforward neural 

networks 

 

3.1 Introduction 

In Chapter 2 we showed that summary statistics can produce harmonically selective units in a 

similar proportion to what was found in the marmoset cortex in (Feng & Wang, 2017). Here we 

reverse this question: if harmonic selectivity is desired, what do the weights look like for 

feedforward cortical networks? 

 

The subcortical levels are monospectral 

The peripheral auditory system begins in the cochlea, where sounds are broken down into a 

frequency-time representation (Pickles, 2013). A harmonic sound that is resolved will be 

separated in the frequency domain, while an unresolved sound will produce temporal repetition 

in the firing pattern of the auditory nerve (AN) fibers (Bernstein & Oxenham, 2003; Bidelman & 

Khaja, 2014; Carlyon & Shackleton, 1994). Throughout the auditory system is a tonotopy, which 

is mechanically defined in the cochlea and propagates all the way up to the cortex. The system 

has interaction between nearby isofrequency laminae at all levels.  

The inferior colliculus (IC), the main processing center below the cortex, integrates 

nearby spectral bands with center-surround patterns; with a strong non-linearity that complicated 

predicting complex spectra responses from pure tunes (Ehret & Merzenich, 1988). The IC also 

has neurons sensitive to modulation frequency, with bandpass neurons as well as other response 

types; it is likely that these neurons form an axis perpendicular to the tonotopy (Langner et al., 
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2002). Modulation is potentially a mechanism to detect pitch that can complement raw frequency 

mechanisms. However, the ascending IC neurons in the Marmoset have not been found to 

integrate widely-separated sounds (Kostlan, 2015). 

Psychophysical evidence bolsters this “monospectral subcortical performance” picture. 

There is degraded harmonic discrimination performance in hemispherectomy patients (Zatorre, 

1988) or other disabilities without a loss of tone discrimination ability (Whitfield, 1980). Given 

the relatively monospectral nature of the IC and below, we will assume that the cortex is where 

harmonicity is constructed. 

 At the cortex, it is unclear the mechanisms behind developing such selectivity in the first 

place, i.e. if it can be explained through a learning model. As shown in Chapter 2, it is possible to 

train a degree of harmonicity using summary statistics, namely independent component analysis, 

that produces roughly similar harmonic selectivity population histograms to the marmoset cortex 

as found in (Feng & Wang, 2017). It is also reasonable that a supervised learning model will 

produce sieve-like selectivity. However, given the wide range of possible network topologies, 

nonlinearities, local minima in training bio-algorithms, the choice of the training set, Dale’s 

principle, and the performance metric(s) it is unclear whether a sieve is a universal property of 

harmonically-selective networks. 

 

Can temporal cortical models be used? 

The cortex also responds to temporal periodicity: some neurons are modulation sensitive with 

various synchronization and best modulation frequency patterns. As shown later in this chapter, 

these can be explained with integrate and fire models modified to account for synaptic depletion. 

More relevant to producing a fine-tuned pitch perception are the so-called pitch sensitive neurons 
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at low frequencies that are very sensitive to regularity in click trains (Bendor & Wang, 2005, 

2010). A simple model of these is elusive, however. Long short term memory (LSTM) networks 

can learn precise timing (Gers et al., 2002) but it is questionable as to how relevant LSTM is to 

biology as well whether it could act quickly enough. Indeed, better micro circuitry mapping is 

needed before we have locked down enough degrees of freedom to build models that are 

reasonably likely to be qualitatively correct, thus we will focus in the spectral domain. 

 

Is a sieve trivial? 

It is likely that training a feed-forward network selective to harmonics makes it a spectral sieve, 

but given the nonlinearities, considerations with deep neural networks, Dale’s principle, and 

different training options as well as constraints a sieve isn’t the only possibility and thus should 

be verified. 

 

3.2 Methods 

Spectro-temporal subcortical models 

We explored trying to build a broad spectral-temporal model of the subcortical parts of the 

auditory system. The timestep at all levels is 0.01ms. 

One recurring theme is lowpass filtering during subcortical processing. We make heavy 

use of a first order lowpass filter which is equivalent to an RC circuit and has an impulse 

response 𝐾~exp (−2𝜋𝑡𝐹𝑐) where 𝐹𝑐 is the corner frequency and the filter is discretized and 

normalized to sum to one (unit gain at zero frequency).  

For each unit above the AN, it is possible to specify the threshold and best frequency in addition 

to the type of the unit. 
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From air to eardum:  

The first step of converting sounds into percepts is the acoustics of getting the sound to 

the eardrum. We used the experimentally measured head-related-transfer function for the 

Marmoset from (Slee & Young, 2010). We used the HRTF in for the superiorly olivary complex 

trials, otherwise we didn’t apply any HRTF model because sound localization wasn’t crucial in 

those cases. The system is linear, so the time-domain HRTF of the nearest azimuth and elevation 

to the desired stimulus is convolved with the input stimulus to calculate the eardrum waveform. 

The auditory nerve model: 

We developed a simple auditory nerve model which provides an alternative to (Zilany et 

al., 2013). Our model isn’t “better”, it is comparable in computational speed and accuracy. 

However, our model is more easily controllable being written in pure MATLAB and includes 

most of the same features. Also, it allows us to see which features are needed to best simulate the 

actual auditory nerve. 

We define a spectral gammatone filter which is then convolved with the sound waveform, 

which is commonly used in the AN, see (Katsiamis et al., 2007): 

 𝐾 = 𝑡3 exp(−2𝜋𝐸𝑅𝐵𝑡) cos(2𝜋𝛽𝐵𝑓𝑡) , 𝐸𝑅𝐵 = 0.0247𝛼 ((4.37
𝐵𝑓

𝐻𝑧
) + 1000) 

This kernel is then normalized to have unit gain for the ideal-tuned sinusoid. We calculate this 

for 𝛽, 𝛼 = {1,1} and 𝛽, 𝛼 = {0.7,2}. The former is used for quieter sounds than the latter, namely 

we use a linear combination of the two convolutions based on the envelope’s amplitude (with 

“full loudness” defined at 100 dB). The envelope is calculated by a first-order band-pass filter of 

the sound around BF. This gives us a nearly-linearly filtered signal. 
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 We then calculate the envelope of said nearly-convolution (Hilbert transform). We need 

to compress said envelope, so we define a sigmoid mechanical compression function that far 

from zero it behaves like the 𝑝-th power and near zero is linear: 

 𝑔𝑝(𝑥, 𝑝) = sinh (𝑎𝑠𝑖𝑛ℎ (
𝑥

𝑝
) , 𝑝) 

We then map the envelope to mechanical motion with: 

 𝑔𝑚(𝑥) = 𝑥𝑜𝑛𝑔𝑝(𝑥/𝑥𝑜𝑛 , 𝑝)(1 − 𝑔𝐿) + 𝑥𝑔𝐿 , 𝑥𝑜𝑛 = √10
3

, 𝑥𝑜𝑓𝑓 = √10
10

, 𝑔𝐿 = 𝑥𝑜𝑛/𝑥𝑜𝑓𝑓 , 𝑝 = 0.32 

This function represents outer hair cell sound amplification in the cochlea, which was first 

discovered by (Gold, 1948). It is the identity at small levels (full linear amplification regime) but 

gets a compressive nonlinearity around 𝑥𝑜𝑛. Finally, it becomes linear again after 𝑥𝑜𝑓𝑓, which 

represents very loud sounds overwhelming the amplifier and the cochlear again becomes a linear 

system.  

Call 𝑥𝑓𝑖𝑙𝑡 the result of the “almost linear” convolution. Call 𝐻𝑚 the envelope that is 

compressed through the 𝑔𝑚 function. The total mechanical motion is the fine-structure of 𝑥𝑓𝑖𝑙𝑡 

combined with the envelope of 𝐻𝑚. The formula for this is 𝑟 = 𝑥𝑓𝑖𝑙𝑡𝐻𝑚/𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑥𝑓𝑖𝑙𝑡). For a 

tone at Bf at zero dB, the motion would have an root-mean-square of 1.0 and the amplifier would 

be at maximum gain. 

 We calculate the normalized hair-cell current with a sum of two sigmoid functions: 

𝐼ℎ𝑎𝑖𝑟 =
1

2
(𝑔𝑠(𝑘0(𝑟 − 𝑏0)) + 𝑔𝑠(𝑘1(𝑟 − 𝑏1))), 𝑔𝑠(𝑥) =

1

1 + exp (−𝑥)
 

The gains and thresholds on the sigmoid depend on how sensitive the unit is: 

𝑏0 = 𝑙𝑔𝑡(14.25, 4.75), 𝑏1 = 𝑙𝑔𝑡(61.75, 4.75) 

𝑘0 = 𝑙𝑔𝑡(0.278,0.9), 𝑘1 = 𝑙𝑔𝑡(0.06, 0.9) 

The log-interpolate function is:  
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𝑙𝑔𝑡(𝑥, 𝑦) = exp (log(𝑥) (1 − 𝛼) + log(𝑦) 𝛼) 

With 𝛼 continuously varying from zero (for the low spontaneous fibers) to one (for the high 

spontaneous fibers). The normalized hair current ranges from zero to one. 

 We apply a low pass filter to calculate the normalized depolarizing current:  

𝐼𝑒𝑥𝑐 = 𝐾𝑙𝑜𝑤1 ∗ 𝐾𝑙𝑜𝑤2 ∗ 𝐼ℎ𝑎𝑖𝑟 

Each low-pass filter is a first order filter with a corner frequency of 1400 Hz and 2400Hz, 

respectably. 

 The un-adapted firing rate is an approximate leak, integrate, and fire function (the actual 

implementation uses additional code to prevent numerical overflow): 

𝑅𝑢𝑛𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = ln (1 + exp (
𝐼𝑒𝑥𝑐

𝐼𝑙𝑒𝑎𝑘
− 4)) 

 We use an adaptation model which calculates a “fatigue factor”, again with first-order 

low-pass filters: 

𝐹𝐹 = ∑wiKlow,τ𝑖
−1 ∗ 𝑅𝑢𝑛𝑎𝑑𝑎𝑝𝑡𝑒𝑑;  𝑅𝑎𝑑𝑎𝑝𝑡𝑒𝑑 =

𝑅𝑢𝑛𝑎𝑑𝑎𝑝𝑡𝑒𝑑

1+𝐹𝐹
;  𝑤𝑖 = {1, 1.4, 2, 2.8},    𝜏 = {1, 4, 16, 64}𝑚𝑠  

Finally we multiply by a global rate of into spikes per second: 𝑅 = 𝑅𝑎𝑑𝑎𝑝𝑡𝑒𝑑2300
𝑠𝑝

𝑠
 

No neuron can fire anywhere near that quickly, but transients in the peri-stimulus-time histogram 

can be higher for extremely brief periods of time.  

 The auditory nerve model can reproduce the fundamental properties of the auditory 

nerve’s response to tones. In terms of temporal response, there is strong phase-locking up until 

just over 2kHz, which is shown in figure 3.1. By 5kHz, the phase-locking is very weak as shown 

in figure 3.2. These match the auditory nerve phase-frequency sensitivities in (Zilany et al., 

2013). 
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Figure 3.1: PSTH’s of an AN fiber unit at 2000 Hz. Phase-locking is strong up to and including this 

frequency. 

 

Figure 3.2: PSTH’s of an AN fiber unit at 5000 Hz. Phase-locking is much weaker than the 2000Hz case. 
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The auditory nerve model reproduces the total average response in (Zilany et al., 2013) to 

tones of various frequencies. At BF there is a sigmoid curve of the response to tones of various 

dB shown in figure 3.3. The response map of a single unit to tones with different frequency and 

dB shows the classic skewed-V response, shown in figure 3.4. 

 

 
Figure 3.3: Rate-level functions in comparison to experimental data refenced in (Zilany et al., 2013). The 

BF and tones are 2kHz. 

 

 

Figure 3.4: Steady-state response map of a model high spontaneous AN unit. This is to pure tones, in 

spikes/second. Its BF is 2kHz. The fiber saturates at high sound pressure levels. 
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The cochlear nucleus model: 

The next part of the ascending pathway from the auditory nerve is the cochlear nucleus. 

We use corner frequencies of 𝐹𝑐𝑛 ranging from 500-700Hz to match the capabilities of the 

cochlear nucleus neurons as seen in (Rhode et al., 2010). 

Primary-like units: These units behave like the AN fibers so have similar properties 

(Rhode et al., 2010). These simply are AN fibers but with an added first-order low-pass filter at 

corner frequency 𝐹𝑐 = 700𝐻𝑧. For these simulated units, their temporal response to a tone at BF 

is shown in figure 3.6. 

Type 2 units: These units are sharpened by surround inhibition. 7 inhibitory AN units are 

used spaced linearly on a log scale ± 3 octaves from Bf weighted by a gaussian with a sigma of 

three octaves. The total inhibitory weight is scaled to sum to 4 and is passed through a first-order 

lowpass filter of 𝐹𝑐 = 700𝐻𝑧. This filtered inhibition is subtracted from the activity central 

excitatory AN unit and first-order-low-passed to 700Hz. Finally it is passed through a sigmoid 

gain (50% at 250 spikes/s, 1000 spikes/second maximum rate, gain of 0.025 s/spike). The effect 

of inhibition is apparent in figure 3.5. This pattern of applying a filter and gain at the end is used 

for most types of units. Note that the actual sustained rate doesn’t get anywhere near 1000 

spikes/s. Their temporal response (not shown) is very similar to the primary-like units although it 

is a little slower. 
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Figure 3.5: Primary-like and type 2 CN unit response maps. Surround inhibition sharpens the type 2 unit 

slightly (right). 

Type 4 units: Type 4 units that are excited by a wide range of frequencies but inhibited 

by type 2 units (Rhode et al., 2010). Our model uses a gaussian bank as explained previously that 

is added together and filtered but is used as excitatory rather than inhibitory stimuli. A type two 

unit is subtracted out from this excitation (with a weight of 2). This is then first-order-lowpassed 

at 700Hz and a gain is applied (50% at 100 spikes/s, 1000 spikes/second maximum rate, gain of 

0.025 s/spike). Their temporal response to a tone at BF can be inhibitory, if we define “BF” as 

the center of the receptive field. This is shown in figure 3.6. 

Onset units: These have a strong but short-lived response to a wide range of frequencies 

(Rhode et al., 2010). We create a gaussian bank of AN fibers as in the Type 2 units. This bank is 

used for both the excitatory and inhibitory parts of the network: The inhibitory part is delayed 

3ms and twise first-order-lowpassed to 500Hz. The excitation minus 2.3 times the inhibition is 

then first-order lowpassed (700 Hz) and sigmoid-gained (50% at 260 spikes/s, maximum 1000 

spikes/s, gain of 0.0175 s/spike). Their temporal response to a tone at BF is shown in figure 3.6. 

Primary notch units: These units have a gap, or “notch” in their response but otherwise 

are primary-like (Rhode et al., 2010). An onset unit is delayed 3 ms, first-order-lowpassed 
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to500Hz and multiplied by 0.8. This is subtracted from a primary-like unit. The result is first-

order-lowpassed (700 Hz) and sigmoid-gained is applied (50% at 450 spikes/s, maximum 1800 

spikes/s, gain of 0.01 s/spike). Their temporal response to a tone at BF is shown in figure 3.6. 

Pauser units: These units have a short transient response and then take time to build back 

up to a steady state (Rhode et al., 2010). The excitatory neuron is an AN unit. The inhibitory 

neuron is an onset unit which is 5dB more sensitive. It is weighted by a factor of three, delayed 

3ms, and first-order-lowpassed to 25 Hz (which is much slower than other timeconstants). The 

excitation minus inhibition is first-order-low-passed (700 Hz) And sigmoid-gained (50% at 450 

spikes/s, maximum 1700 spikes/s, gain of 0.01 s/spike). Their temporal response to a tone at BF 

is shown in figure 3.6. 

Chopper units: These units respond to the total amount of sound, and have some 

oscillations when a sound is first given which decay over time (Rhode et al., 2010). The model 

here is very different from previous models. These units are modelled as a continuous population 

of noisy integrate-and-fire units. Let 𝑦(𝜈) be the number of neurons at dimensionless voltage 𝜈 

(zero is the equilibrium with no input, and one is when the neurons fire). When neurons fire we 

assume that 𝜈 is reset to zero.  

We compute the forward and reverse fluxes which represent neurons changing their 

voltage. The equation governing the evolution of the population distribution is given by: 

𝜕𝑦

𝜕𝑡
=

𝜕𝑦

𝜕𝑡
 𝐿𝑒𝑎𝑘 +

𝜕𝑦

𝜕𝑡
 𝑁𝑜𝑖𝑠𝑒 +

𝜕𝑦

𝜕𝑡
 𝐼𝑛𝑝𝑢𝑡 +

𝜕𝑦

𝜕𝑡
 𝐹𝑖𝑟𝑒 

Leakage acts to concentrate the population near zero:    𝜏
𝜕𝑦

𝜕𝑡
 𝐿𝑒𝑎𝑘 = 𝜈

𝜕𝑦

𝜕𝑡
+ 𝑦 

Noise spreads the population out: 
𝜕𝑦

𝜕𝑡
 𝑁𝑜𝑖𝑠𝑒 = 𝐷

𝜕2𝑦

𝜕𝜈2 

The input shifts the population to higher voltages: 
𝜕𝑦

𝜕𝑡
 𝐼𝑛𝑝𝑢𝑡 = −𝑗𝑒𝑥𝑡

𝜕𝑦

𝜕𝑡
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We enforce a Dirichlet boundary condition of zero at 𝜈 = {−1,1}. The boundary at −1 is 

artificial but it is so very little mass even reaches it. We compute the firing rate by looking at the 

fraction of neurons per unit time that cross the boundary at 1: 

𝑅 = −𝐷
𝜕𝑦

𝜕𝜈
 𝜈=1 

The firing rate is “injected” back at 𝑣 zero (with the [] indicating if-statements): 

𝜕𝑦

𝜕𝑡 𝐹𝑖𝑟𝑒
= lim

𝜖→0

𝑅

𝜖
[2𝑣 > −𝜖][2𝑣 < 𝜖] 

The initial condition approximately solves 
𝜕𝑦

𝜕𝑡
= 0 for 𝑗𝑒𝑥𝑡 = 0, i.e. it is an equilibrium condition. 

Parameters: 𝜏 = 10𝑚𝑠, 𝐷 = 1.75𝑠−1, 
𝑗𝑒𝑥𝑡

𝐴𝑁𝑟𝑎𝑡𝑒
= 1.3𝑠𝑝−1,

𝑜𝑢𝑡𝑝𝑢𝑡

𝑅
= 0.53 𝑠𝑝  

There are several numerical considerations. 61 grid points are used ranging from -1 to 1. 

Numerical diffusivity is estimated and accounted for by reducing the amount of diffusion added 

(however, for stability we do not let it go below zero). The fraction of mass that would cross the 

boundary is calculated each timestep, used 𝑅, and shifted down by 1, avoiding the need to 

actually estimate the derivative at that point.   

The total firing rate is 0.53 spikes divided by 𝑅 (because 𝑅 has units of 𝑠−1). No filtering 

is used, but the noise in the model will act like a lowpass filter. Their temporal response to a tone 

at BF is shown in figure 3.6. 
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Figure 3.6: Instantaneous firing rates of model cochlear nucleus neurons. A: Primary-like. B: Type 4, C: 

Primary-notch. D: Chopper. E: Onset. F: Pauser. Note that the type 4 units can be inhibited by tones at 

their BF. 

 
The inferior colliculus model: 

The inferior colliculus combines a collection of primary-like cochlear nuclear units. The 

collection are weighted-summed together, first-order low-passed at 200Hz, and sigmoid-gained 

with a gain of 1/1000 s/spike (adjusting the weights instead) and variable maximum rate and 

thresholds. We only consider the spectral response maps to tones in building the model, 

matching the unit types as closely as possible to (Schreiner & Winer, 2005). The weights and 

locations are shown in table 3.1. 
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Unit type Unit description BfCN/BfIC dBCN-dBIC Weights Sigmoid 

parameters* 

V Broad {1.0,0.7,1.5,0.5,2.0} {-10, 10, 10, 

10, 20, 20} 

All 1.67 300, 825, 1/1000 

I Narrow {1.0,0.5, 2, 1, 0.25} {-15, 30, 30, 

30, 20} 

{10, -6, -6, 

40, -50} 

, 250, 1/1000 

O Non-monotonic {1.0, 0.5, 2, 1, 0.25} {-15, 30, 30, 

30, 20} 

{30, -30, -30, 

-30, -30} 

, 325, 1/1000 

Table 3.1: Model IC unit parameters. Each IC unit has multiple CN primary-like units feeding in, the 

relative value of which are listed here. *Sigmoid parameters is listed {50% level in sp/s, maximum in 

sp/s, gain in s/sp}.  

 

The type V units use a collection of excitatory units to broaden the receptive field. The 

type I units use center-surround patterns to keep themselves as sharp as possible (real-like type I 

unit can maintain sharpness at higher frequencies than our model. The type O units use high 

threshold inhibitory units to prevent response at high amplitudes, but this is only one of many 

type O patterns which would each require a separate row to be added to table 3.1. The responses 

are shown in figure 3.7. 
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Figure 3.7: Model inferior colliculus neurons. These showing a loose resemblance to the response maps 

of type V (A) I (B) and O (C) neurons. The type I neuron fails to be as narrow as it should be despite our 

best efforts at using surrounding inhibition to sharpen the receptive field. What is shown is the steady-

state response to pure-tones of the specified frequency and intensity. 

 

However the model hit difficulty at the IC in terms of performance issues but more 

importantly a combinatorial explosion of the degrees of freedom. Thus we settled on modelling 

the IC as a gaussian convolution, where we worked with both fixed-bandwidth and fixed-Q-

factor kernels. This only considers type I neurons, which is reasonable given we are looking for 

the maximally spectrally selective neurons. Note that the ascending IC neurons in marmosets 

were not found to integrate across disparate frequency bands, the (narrow) range of frequencies 

essentially make the sharpest neurons respond as a center-surround EI pattern rather than being 

strongly multipeaked neurons (Kostlan, 2015). 
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Temporal cortical modelling 

We briefly explored temporal models of cortical neurons in which sounds are click trains with no 

definition of stimulus frequency. Neurons have been found with a variety of click-train-response 

properties. Some are synchronized to the waveform while others aren’t, and there are lowpass, 

highpass, and bandpass responses; this is shown in figure 3.8 (Gao et al., 2016). Computational 

models of these neurons would need to look at synaptic time constants. 

  

Figure 3.8: Modulation-sensitive neurons in the marmoset A1. A: The envelopes and subthreshold 

response, with the modulation frequency 2 Hz (left) and 4 Hz (right). A: The envelopes. B, C: A 

synchronized units that phase-locks to a click train, with the inter-click interval raging from 2 to 100 ms. 

The sub-threshold is the average of five trials. Figure from (Gao et al., 2016). 

 

We extend the model from (Bendor, 2015). Briefly summarizing their model: it was an 

integrate-and-fire model in which there is a bank of jittered excitatory synapses and inhibitory 

synapses. Each synapse, when “triggered” by a click, generates a rise-fall conductance 

~
𝑡

𝜏
exp (−

𝑡

𝜏
). The timing of the triggering is jittered randomly with a gaussian noise. There are 
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leakage currents and noise currents as well. When the neuron exceeds it’s threshold it fires and 

it’s voltage resets. 

The model was extended by including a “vitality” parameter. Synapses deplete when they 

are used and take time to recover. To compute the vitality at the next timestep, we have:  

 𝑣𝑗,𝑡+1 = min (1, 𝑣𝑗,𝑡 (1 −
Δ𝑡

𝜏𝑠𝑎𝑡
) +

Δ𝑡

𝜏𝑠𝑎𝑡
) [𝑆𝑡+1 = 0], where 𝜏 is the time-constant for recovery, Δ𝑡 

is the timestep, and [𝑆𝑡+1 = 0] tests whether no stimulus has been played at that timestep. This 

the vitality gets “reset” to zero after the synapse fires and recovers exponentially, as summarized 

in figure 3.9. 

 

Figure 3.9: Demonstration of the “synaptic vitality” at work. A: The EPSC and IPSC’s created from a 

synapse firing. There is random jitter to the location of the curves (not shown). B, C: Depleted synapses 

don’t fire as strongly, so the summed conductances isn’t as much as a linear addition would be. D: The 

underlying vitality over time that depletes and recovers. Figure from (Gao et al., 2016). 
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Our extended model sometimes had extremely high synaptic conductances that would 

create numerical instability. To prevent this, we calculated the equilibrium voltage: 

𝑉𝑒𝑞 =
𝑉𝑟𝑔𝑙𝑒𝑎𝑘 + ∑ 𝑔𝑗𝑡𝐸𝑗 + 𝐼𝑛𝑜𝑖𝑠𝑒𝑗

𝑔𝑙𝑒𝑎𝑘 + ∑ 𝑔𝑗𝑡𝑗
 

If the ratio between the total conductance and the capacitance fell below the timestep, the 

voltage was set to 𝑉𝑒𝑞 instead of integrating the time-dynamics. This represents the membrane 

time constant falling below the timestep. 

We used the range of parameters shown in table 3.2. 

Parameter Meaning Value(s) 
Δt Timestep 0.0001 s 

td Global delay (visual appearance only) 0.01 s 
τsat Synaptic depletion time constant 0-0.025 s for excitatory, 0.0075 s for 

inhibitory synapse 
Ej Synapse zero-current voltage 0 mV for excitatory, -85 mV for inhibitory 
We Excitatory synaptic weight Set per-neuron to make the maximum firing rate 

about 50-55 spikes/s over a 10Hz-500Hz range 

of click train frequencies. 
Inoise White noise current 800 pA. Note: Inoise scales ~ Δt

1/2 
for an 

equivalent model at a different Δt. 
Σsyn Synaptic jitter standard deviation 0.001 s 
gleak Leakage conductance 25 nS 

C Membrane capacitance 0.25 nF 
Vr Resting voltage -60 mV 
Vt Threshold voltage for spiking -53 mV 
I/E Inhibitory/Excitatory conductance ratio 0-2 
τsyn Synaptic time constant of rise-fall 0.005-0.025 s 
dI How much more delayed is inhibition 

than excitation, on average 

-0.002s to 0.007s (negative values indicate 

inhibition arrives earlier on average). 

Table 3.2: Parameter values and ranges used for the integrate-and-fire model. Parameters are named as 

used in (Bendor, 2015). 

 

We also developed a way to test for statistical significance of Fourier components. 

Consider a discrete noisy signal x = k sin(2π f – Θ)+ ε, sample rate r. The noise ε is a time-series 

with some autocorrelation but with no sinusoidal structure. The null-hypothesis is k = 0. Let X 

be the square magnitude of the Fourier transform of x* where x* is resampled and/or padded x 
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such that the index on X that corresponds to f, if = 1+N f/r, is as close to an integer as possible. 

We want to see if the signal at if significantly rises above random chance.  

We assume that the noise contribution to X is IID (independent and identically 

distributed) in the vicinity of if. Here, “vicinity” means any index between max(0.8if, if – 150) 

and min(0.8if, if + 150) (inclusive), but not including if -1, if , or if +1. Let m be the sample 

median of the noise in the vicinity of X (the median is more robust to outliers). Let n be the 

number of degrees of freedom (number of bins “in the vicinity”).  

The heuristic is a balance of two competing factors. If it is too wide, it may misestimate 

the background noise level because the background is not white-noise and thus varies with 

frequency. This could either inflate or deflate the p-value. If it is too narrow, there are less 

degrees of freedom which makes rejecting the null hypothesis harder.  

For large n the test statistic 1.3863𝑋𝑖𝑓,𝑛𝑢𝑙𝑙/𝑚~𝜒2
2  (a 𝜒2 distribution with 2 degrees of 

freedom). With a corresponding p-value of p = 1 − 𝑋2
2 (1.3863 Xif/m), where 𝑋2

2is cumulative 

distribution of 𝜒2
2. This is because 1.3863 is the median of 𝑋2

2. For small n-values, we have to 

use the equivalent of the T-test to account for uncertainty in the true median. We  

compute p-values numerically by Monte Carlo sampling the cumulative test-statistic distribution, 

Tn(z) under the null hypothesis. Then we run our test on the data to get z and calculate p (z) = 1 

– T -1(z), where T -1(z) is the inverse function of T (z). This ensures that null-hypothesis p-

values will be uniformly distributed on [0-1) as it should be in any significance test. This method 

is very general so will work as long as care is taken for numerical stability at the tails. For small 

n the p-values will be higher on average, which makes rejection more difficult (Bloomfield, 

2004).  
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 We also adapted a power-law fitting model. For each model neuron, we calculated a 

time-dependent spike rate and mean membrane potentials (excluding the spikes) by placing a 10 

ms window every 1 ms (with overlap). We fit the data with a least-squared power-law model 

from : 

𝐹𝑟 = 𝑘(𝑉 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)𝑝[𝑉 > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] 

where 𝐹𝑟 is firing rate, 𝑉 is the membrane potential, p is the exponent and k is a gain factor. 

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑is not the biophysical threshold, but is instead a free parameter determined by the 

regression and represents the point above which it becomes feasible for EPSP’s to trigger the 

neuron (Priebe et al., 2004).  

For parameter stability, we found it necessary to add a weighting factor, weighting bins 

with more spikes more heavily in the regression but with the weights being constant for bins 

below 1% of the maximum number of spikes in any one bin.  

Our extension of the model was able to reproduce “negative monotonic neurons” that 

respond preferentially to low (10Hz) click train frequencies. It also was able to reproduce both 

the presence and absence of synchronization, see figure 3.10. 
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Figure 3.10: The integrate-and-fire model’s results. A: Subthreshold and dot-plot of a “synchronized” 

model neuron that phase-locks to the click train down to  an inter-click interval of about 20 ms, below 

which it ceases to have a sustained response. B: a “mixed” neuron that phase-locks at low frequencies but 

fails to do so at higher frequencies. C: A non-synchronized “+” unit that doesn’t phase-lock and any of 

the frequencies supplied but prefers smaller ICI’s. D: A non-synchronized “-” unit that doesn’t phase-lock 

and any of the frequencies supplied but prefers ICI’s around 100 ms. E: the average membrane potential, 

phase-locking p-value, spike rate, and Rayleigh test statistic of the four neurons. In the first and second 

row, the light blue curve is the membrane potential when spikes are allowed and the other colors is the 

potential when spikes are disabled (allowing it to rise higher). F: One plane in parameter space that 

contains all four kinds of units, with the effects of changing two other parameters shown by arrows (Gao 

et al., 2016). Figure from (Gao et al., 2016). 
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However, our model failed to produce the pitch sensitivity to temporal regularity as found 

in (Bendor & Wang, 2010). Lacking a model of pitch and periodicity, we decided to focus on 

spectral models for harmonic selectivity. 

 

 

Training stimuli 

Stimuli were modified harmonic complexes with various ranges of fundamental frequency, jitter, 

intensity range, and mistuning (exact values need to be summarized in a table). In all cases the 

background stimuli were “degraded” versions of the harmonic stimuli, i.e. higher jitter or 

mistuning ranges (combinatorics need to be summarized in a table). Random seeds were used for 

repeatability. 

 

Spectral subcortical models 

Stimuli are represented as lists of spectral location and energy intensity (see below for 

descriptions of what stimuli are used). For training, 256 stimuli were used.   

Subcortical input was computed at 80 channels linearly spaced from zero to 4.5 times the 

training fundamental frequency. It was generated by convolving the stimuli with a gaussian 

kernel that integrates to one with 𝜎 that was 3 bins (channels) for most test cases but 1.2 bins for 

the “narrow” case and 7.5 bins for the “broad” case: 
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𝑆𝑢𝑏𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙 =
1

𝑍
∑𝑝𝑖𝑒𝑥𝑝 (−

𝐵𝑓−𝑓𝑖

2𝜎2 ), where 𝐵𝑓 is the vector of best-frequencies, 𝑓 is the stimulus 

frequency, 𝑝 is the stimulus intensity, and 𝑍 normalizes the kernel. The effect of applying this 

convolution to is shown in figure 3.11.  

Figure 3.11: Example training stimuli and subcortical input. The stimuli are represented as vertical bars, 

while the input is the curve. A: Background stimuli (stimuli for which the network must not respond to). 

B: Target stimuli, for which the network is trained to respond to. The zero frequency would most 

realistically correspond to an extremely low frequency neuron that is close to zero on this linear scale. 

 

Noise model 

The network output was calculated without any sort of randomization. However, we estimated 

how noise would propagate. There are three potential sources of noise, with different simulation 

runs using different sources. Input noise is the amount of noise in the stimuli vector. Neural noise 

is noise added after the gain function for each batch of neurons. Finally, output noise is added at 

the very end. 

 Noise is propagated through the network. The variance is tracked at each step, and 

assumed to be infinitesimally small: for 𝑥 → 𝑔(𝑥) the variance would propagate as 
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 𝑣𝑥 → 𝑣𝑥 (
𝑑𝑔

𝑑𝑥
(𝑥))

2

 

When several variances are added (when a neuron gets a weighted input from other neurons) we 

assume they add linearly (statistically uncorrelated). We also assume lack of correlation between 

a neuron’s added output variance and the noise that it adds. 

 The noise variance can be either constant or proportional to the response. The latter case 

models a Poisson distribution. However, the output is modelled as a normal distribution; in the 

interest of simplicity we don’t capture higher order moments. The default noise used was 

“output” Poisson noise with variance 0.1 when the maximum firing activity of 1.0 is reached, but 

the weights were insensitive to different noise levels and models. 

 

Neural network topology 

Neural networks were set up with various feed-forward topologies, both obeying Dale’s principle 

or not. Feed-forward networks had between 2-4 layers (0-2 hidden layers), feeding to a single 

output unit. The input layer had 80 channels (160 neurons if Dale’s principle was invoked). 

Higher layers had progressively fewer neurons. A sigmoid gain was used. The simplest network 

we used is shown in figure 3.12, and the simplest Dale’s-principle-respecting network is shown 

in figure 3.13 and shown in a different way in figure 3.14. 

 

 

 



 

 80 

 

Figure 3.12: Diagram of the simplest feed-forward training network. The input layer (black) convolves 

the stimulus with a gaussian kernel which represents it’s receptive field (each blue curve). For most 

experiments the kernel has a fixed width, but we occasionally tried fixed Q-factor instead (fixed ratio of 

width to center frequency). The neurons have zero threshold and no saturation (i.e. identity gain function). 

The output neuron (cyan) has a sigmoidal gain function and non-zero threshold. 

 

 

Figure 3.13: Diagram of the sign-constrained network that respects Dale’s principle. Red curves are 

excitatory, blue curves are inhibitory. The weights are independently adjustable, giving us twice the 

number of weights to train. 

 

 

Figure 3.14: The sign-constrained network represented differently. It is sometimes easier to visualize the 

system if we concatenate the excitatory weights and inhibitory weights into one vector. This is 

mathematically equivalent to the [previous] figure. 

 

Neural network model 

We developed a method to associate both a discreet time model and a continuous time model 

with the underlying dynamics of the system. In the discreet model, each neuron’s state is given 

by 𝑠𝑖,𝑡+1 = ∑ ∑𝑊𝑗𝑖𝑦𝑗,𝑡𝑙𝑎𝑦𝑒𝑟 , where the outer sum is over all layers that connect to the target 
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neuron’s layer, W is the weight matrix, 𝑏 is the threshold, and g is the gain function. The 

neuron’s firing rate is given by: 𝑦 = 𝑔(𝑠 − 𝑏) for a sigmoidal gain g. There is a special input 

layer which is set to the stimuli. 

For the continuous model, we have a similar equation with an additional leakage term, 

and it is solved by the adaptive Runga-Kutta 4-5 method, which was found to be robust.  

𝑑𝑠𝑖

𝑑𝑡
𝜏−1 = ∑ ∑𝑊𝑗𝑖𝑦𝑗

𝑙𝑎𝑦𝑒𝑟

 − 𝑠𝑖 

In a steady-state situation the continuous model’s activity is equal to the discrete model’s 

activity. The discrete model is used for supervised learning in this Chapter because it is much 

easier to calculate gradients. The continuous model is used for the Hebbian recurrent cases in 

Chapter 4 because it better tracks temporal dynamics. 

 

Supervised training and testing 

Networks were trained by applying 128 iterations of the conjugate gradient method to an 

objective function with penalties for weights that have the wrong sign or get too big in 

magnitude. The penalty function, which is piecewise defined but differentiable, is a combination 

of the weight magnitude penalty function and the sign penalty function: 

2𝑋~ max (0, (( ∑𝑤𝑖𝑗
𝑝)

1
𝑝 − 𝑊𝑚𝑎𝑥)

2

) + ∑max (0, (−𝑠𝑖𝑗𝑤𝑖𝑗)
2

) 

Where 𝑠𝑖𝑗 is the sign restriction function, 1 forces a positive sign, -1 forces a negative sign, and 0 

allow either sign. The p-norm is usually 1 or 2. The objective function uses one of two criteria. 

The first is the “D’” of the output: 𝐷′ =
(𝑦−0.5)(2𝐿−0.5)

𝜎
, 𝐿 ∈ {0,1}, where L is the label. The 

second is based on expected value of the accuracy: 
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𝑎 = 𝜙 (
𝑦 − 0.5

𝜎
(2𝐿 − 0.5)) , 𝐿 ∈ {0,1} 

The strength of the penalty is set so that the relative violation is around 1-5% (assuming 

that the optimization was hitting the penalty is applying in the first place). After gradient descent, 

the weights are projected onto the nearest set of allowed weights to remove this minor violation. 

The effectiveness of a trained network on a harmonic stimulus is shown in figure 3.15. 

 

Figure 3.15: How a sieve network detects harmonics. The blue curves represent the subcortical input of a 

harmonic sound. They activate the excitatory weights (blue neurons) but avoid the inhibitory weights (red 

neurons). This maximizes how strongly the output neuron is driven. 

 

Effective linear weights 

If all gain functions are replaced with the identity function, a feed-forward network produces an 

output scalar that is a linear function of the input. We call this weight vector the effective linear 

weights. These are defined for feed-forward networks but not recurrent networks. 

 

Linearized weights around an input 

Neural networks given a stimulus can be evaluated by linearized weights. This is accomplished 

numerically with a difference quotient, by computing (
𝑑𝑦

𝑑𝑥
)𝑖 ≈

Δ𝑦

Δ𝑥𝑖
=

1

2𝜖
(𝑦(𝑥 + 𝜖𝛿𝑖) −

𝑦(𝑥 − 𝜖𝛿𝑖)) where x is the input stimuli vector and y is the scalar output. Care was taken to 

ensure that the relative numerical precision and discretization errors are less than 1%. 
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RSS weights 

We calculate RSS weights as in (Slee & Young, 2013). For a matrix of stimuli columns 𝑋 we fit 

the response as a linear regression pattern: 𝑦 = 𝑎𝑥 + 𝑏 + 𝜖, 𝜖~𝑁(0, 𝜎). We generate 512 

background stimuli as our 𝑋. In practice the RSS weights were very similar to the linearized 

weights so we show the latter; RSS weights are essentially linearized weights but with a large 

finite difference quotient. 

 

Facilitation and periodicity indexes 

We calculate these indexes as in (Feng & Wang, 2017), except that we only consider a single 

harmonic fundamental frequency (the one we use for training). 

If necessary, we add a small ridge on the matrix that gets inverted such that 
𝜆

max 𝑀𝑇𝑀

𝜆_ min 𝑀𝑇𝑀
≤

4𝑛, where 𝑛 is the number of stimuli. We don’t compute any quadratic regression terms because 

the number of degrees of freedom is very high (we do explore quadratic terms in Chapter 4, 

however).  

 

Sieveness and linclassness 

Two vectors can be measured as to how similar their directions are: 

𝐶(𝑥, 𝑦) =
𝑥∙𝑦

|𝑥||𝑦|
  

This index ranges from -1 (vectors pointing in opposite directions) to 1 (vectors pointing in the 

same direction). 

 We calculate the sieveness by comparing the effective weights to a sieve: 

𝑠𝑖𝑒𝑣𝑒𝑛𝑒𝑠𝑠 = 𝐶(𝑤𝑒𝑓𝑓 , cos (2𝜋𝐵𝑓/𝑓0))  
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We calculate the linclassness by comparing the effective weights to a linear classifier: 

𝑙𝑖𝑛𝑒𝑎𝑟𝑛𝑒𝑠𝑠 = 𝐶(𝑤𝑒𝑓𝑓 , ⟨xL=1⟩ − ⟨xL=0⟩)  

Where xL=0 and xL=1 are the average subcortical input for the background and foreground 

stimuli. 

 

3.3 Results 

Sieves are robust 

Harmonic sieves emerge naturally and appear to be a universal feature of harmonicity detection 

at a particular bf0, not just an effect of a linear classifier. Changing the source of noise (or 

switching between constant-variance and Poisson noise) had little effect on the weights. Also, 

the evaluation criterion had little effect on the weights. The basic sieve result is shown in figure 

3.16.  

 

Figure 3.16: The weight vector for the simplest harmonic training case. The weights are very similar to a 

sieve (green curve). They are even closer to a linear classifier (red curve). The zero-frequency component 

actually would correspond to a very low frequency unit. 
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 Some changes did have an effect on the sieve, but didn’t degrade it’s vector-strength 

significantly. The closer to linearity that the neural network is operating under the closer the 

weights come to an optimal linear classifier, so when strong weights were allowed (which brings 

the neurons toward their rails, enhancing nonlinearity), the sieve was further from a linear 

classifier. When the network was trained with a hidden layer, the input to the hidden layer acted 

as a sieve in the dimension corresponding to the frequency while being more or less random in 

the dimension corresponding to the input to the output neuron; training was slower with two 

levels and unsuccessful from random initial conditions with three levels, but if it had been 

successful it is likely the results would still be a sieve. 

When the input is broken down into an excitatory layer (only positive weights allowed) 

and an inhibitory layer (only negative weights allowed), the positive parts of sieve are assigned 

to the excitatory layer and visa-versa. 

The stimuli had some effect on the sieve, but again preserved the sieve unless the 

problem became too hard for the network to do much of anything. When the convolution width 

became less than about 0.2 f0 the network and the linear classifier begin to get noticeably sharper 

than a sine-wave. In the limit of no convolution the weights and classifier became a comb of 

Dirac-deltas concentrated on the integer values (with no Dirac deltas on the half-integer values). 

When the convolution width gets above about 0.3 f0 the weights (again both for the network and 

the linear classifier) show strong edge effects and weakened oscillations; the oscillations become 

negligible above around 0.5 f0.  

The background stimuli represent a degraded version of the target stimuli, where 

“degraded” means further from harmonicity in terms of having components that are not 

harmonic, i.e. mistuning. When the components in the background stimuli were mistuned 
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globally, with the same mistuning across all trials, the sieve did become. However, neither per-

component or per-trial mistuning changed the linear response or sieve significantly nor did the 

amount of per-component energy “height” randomization in the stimuli affect the sieve 

noticeably. Thus neural-network sieves are very robust and quite similar to linear classifiers over 

a wide range of parameters. 

 

Sieves respect sparsity constraints 

When the weight constraint becomes sparser (1-norm instead of 2-norm) the sieve has sharper 

peaks. A similar phenomenon occurs for Poisson noise, however it only happens in cases when 

weights to intermediate neurons were forced to be all positive or all negative. 

One may consider a modified sieve of the form: 

 𝑤~𝑠𝑔𝑛𝑝𝑜𝑤 (sin (
2𝜋𝑓

𝑏𝑓0
) , 𝑞) , 𝑠𝑔𝑛𝑝𝑜𝑤(𝑥, 𝑝) = 𝑠𝑔𝑛(𝑥)|𝑥|𝑝  

In this form 𝑞 = 1 represents a sieve and 𝑞 > 1 represents a spiky sieve, which was the case in 

the one-norm. This modified sieve with 𝑞 > 1 is qualitatively similar to the results shown in 

3.17.  
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Figure 3.17: The weight vector for 1-norm-constrained training case. The weights form a sieve pattern, 

but they are sparser, with more values near zero and a few large values. 

 

 

Dale’s principle splits the sieve 

When Dale’s principle is used the network behaves almost identically to the sign-agnostic 

version. There are two banks of neurons, one is excitatory and one is inhibitory. If the sign-

agnostic case would produce a positive (negative) weight at a given Bf the excitatory weight is 

positive (zero) and the inhibitory weight is zero (negative) for the corresponding Bf values. 

Training takes more iterations to converge as the problem is more nonlinear but it converges to 

almost the same behavior as a sieve anyways. This division of labor is shown in figure 3.18. 



 

 88 

 

Figure 3.18: The weight vector for the Dale’s principle training case. The sieve is split between the 

excitatory and inhibitory parts.  

 

RSS weights are also sieve-like 

RSS weights resemble sieves as well, in line with the sieves. They are much nosier than the 

actual weights because they are essentially deconvolving the blurred subcortical input back into 

the stimuli. They still are a sieve, as shown in figure 3.19. 
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Figure 3.19: RSS linear weights showing a sieve-like structure. 512 RSS stimuli were used. 

 

If it can be solved, it is a sieve 

The sieve was the only solution that was found. We tried networks with hidden layers, as well as 

many other combinations. Figure 3.20 shows a network with one hidden layer, and figure 3.21 

shows a network with two hidden layers. There never was a case where the network failed to 

have a high sieveness score while having a reasonably high accuracy. The combinations used are 

summarized in table 3.3. 
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Figure 3.20: A one-hidden-layer network. There is an intermediate layer of neurons with a sigmoid gain 

(tan color). 

 

 

Figure 3.21: A two-hidden-layer network. There are two intermediate layers of networks (tan color).  
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Table 3.3: Summary of training conditions, accuracy, and performance. 

 

 

3.4 Discussion 

Optimal linear classifiers are sieves 

The optimal linear classifier weight vector with a 2-norm constraint for the z-score metric is 

proportional to the difference of the average of the harmonic and the background stimuli. This is 

a sieve in most cases, which explains the robustness of the sieve. Sparsity inducing norms work 

as expected: producing sparser weights (kurtosis of the weights-as-probability-distribution). 

Poisson noise models tends to act similar as it disfavors strong responses in some training cases.  
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Optimal classifiers and log likelihood 

We can consider the background and foreground stimuli as coming from two distributions, and 

make an optimal classifier that selects which distribution has more probability density at a given 

point. If we have two normal distributions the log likelihood ratio is quadratic. With equal 

covariances the loglikelihood ratio is linear and a linear classifier is optimal.  

 Our two distributions (the background and foreground subcortical input) aren’t precisely 

equal-variance or even gaussian. However, the problem seems to be close enough to linearity 

that a linear classifier works well for all the problems tested. 

 

Locality constraints as biological budgeting 

Axoplasm takes space and energy, so the brain tries to minimize distances between connected 

neurons by wiring neurons locally when possible. If a sieve can be built with only local 

connections it is advantageous. A multi-level network with locality constraints proved difficult to 

train, but if there is a way to train it still may provide an alternative to a single-summary neuron 

sieve. 

 

Breaking down a sieve into excitation and inhibition 

Splitting up the excitation and inhibition separately yields very similar results to a linear sieve. 

Dale’s principle demands that, for example, glutamatergic synapses can’t become GABAergic 

synapses as easily as a weight can switch from positive to negative in silico. However, a similar 

effect can be achieved by having an independent set of excitatory and inhibitory neurons feeding 

into the same neuron.  
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Future experiments 

For a harmonic template unit there may be “excitatory” and “inhibitory” units that feed into it 

and could be found electrophysiologically. The “inhibitory” units would respond preferentially 

respond to half-integer multiples of some Bf0 (or odd-integer multiples of ½ bf0). Due to the 

tonotopy, it may be possible to trace a template neuron retrograde to see where it gets input from 

and use a second electrode to probe the best-frequencies of the region, similar to the trans-

synaptic modified GFP two-photon calcium tracers used in (Maskos et al., 2002). 

Harmonic template units only respond to a single best frequency. However, it may be the 

case that broadly tuned harmonic template units exist and can be found by experiments. We 

discuss this highly nonlinear problem more in Chapter 5. 
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CHAPTER 4:  

Training harmonicity selectivity in recurrent neural 

networks 

 

In Chapters 2 and 3 we showed that two different training paradigms can produce harmonic 

selectivity in feedforward networks. However, recurrent networks are paramount in the cortex. 

They have also seen numerous successes in machine learning; convolutional recurrent networks 

have seen success in including for removal of noise in speech (Hu et al., 2020; Strake et al., 

2020). Here we address recurrent networks, which are pervasive in the cortex. 

 

4.1 Introduction 

The abundance of auditory cortical recurrent networks 

The model in (Feng & Wang, 2017) has no recurrent connections, but the cortex is highly 

recurrent. In addition to the extensive physiological evidence, recurrent networks have several 

hallmarks. Hysteresis may be one of the most obvious examples, as Hopfield networks admit a 

non-increasing Lyapunov function which can have multiple local minima “memories” (Hopfield, 

1982, 1984). Another advantage is pattern completion, in other words content addressable 

memory (Hopfield, 1982, 1984). They also make stimulus specific adaptation more robust to 

changes in the neural network’s parameters, which is useful for directing attention to novel 

stimuli (Yarden & Nelken, 2017).  

Dye-injection experiments have found recurrent connections in the cat auditory cortex 

which are disproportionately at ratios that have relatively large greatest common factors (Wang, 
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2013). A summary of one such experiment is shown in figure 4.1. This indicates likely 

harmonicity in recurrent connections between cortical neurons. 

    

Figure 4.1: A cat auditory cortical dye-injection experiment. The experiment is (shown in A) in which the 

injection is in a neuron at best frequency 11.4 kHz. The best frequencies in are mapped throughout the 

cortex, and the location of each labelled neuron is used as a proxy of it’s best frequency. These locations 

are compiled into a histogram. The peaks of neurons at 1.5*11.4kHz and 2*1.4kHz suggests a recurrent 

connections between harmonically-related units. The fundamental frequency would be at 0.5*11.4kHz 

with the injection site at twice the fundamental frequency and the connections at three and four times the 

fundamental. Figure from (Wang, 2013). 

 

Training of recurrent networks 

Learning processes in the cortex must maintain global stability while extracting statistical trends 

in the data. The balance between the positive feedback needed to “lock on” to a pattern and 

maintaining global stability is a challenge for local learning methods. The classic Hopfield 

network, which only finds second-order correlations, relies on the gain function to saturate for 

stability (Hopfield, 1982, 1984; Little, 1974). However, the highest-performing machine learning 

activation functions tend to be “ReLU” or “softplus” functions that don’t saturate (Agarap, 2018; 

Agostinelli et al., 2014). Furthermore, the cortex itself under most conditions operates in the 

regime way below saturation, instead the rate is maintained at a much lower set-point (Hengen et 

al., 2013). Thus saturation is not the likely mechanism for global stability. 
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Learning is spike-timing dependent. It was found that Hebbian reinforcement was much 

weaker at higher input frequencies (Markram & Tsodyks, 1996), which has a stabilizing effect to 

the total activity. Volume transmission may also act as a regional or semi-global stabilization 

method (Zoli et al., 1999).  

A wide variety of Hebbian timing functions have been measured. For excitatory to 

excitatory connections, we have (most commonly) the “classic” patter of strengthening the 

weight when the preceding synapse fires first and weakening the weight when the order is 

backwards, with a sharp change near zero timing difference (Caporale & Dan, 2008). 

Connections from excitatory cells to inhibitory cells followed a reversed timing rule (Caporale & 

Dan, 2008). Connections from inhibitory cells to excitatory cells followed a variety of rules 

(Caporale & Dan, 2008). This wide range of rules is likely due to the extreme variety of 

inhibitory cell types (Bota & Swanson, 2007). 

We are most interested in how weights change over a long period of time in a neural 

network. To do so requires averaging the Hebbian learning over time. For the “classic” case of 

excitatory neurons, suppose two EPSP’s come in at the same time. It is more likely for the 

neuron to fire and it will fire after said EPSP’s and reinforce the connection. Thus this rule, 

averaged over a bank of stimuli, approximates the Hopfield training of 〈xxT〉 from (Hopfield, 

1982, 1984).  

The story of “time-averaging” is more complex for inhibitory connections. Suppose 

inhibitory-to-excitatory connections have fixed weight with no learning rule. A concordant EPSP 

pair hitting the inhibitory neuron will tend to reduce the connection to it, and in turn reduce the 

strength of inhibition. This is also similar to the Hopfield learning case. However, the inhibitory 

neurons have a menagerie of learning rules, of which the function is unclear. 
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The neural network itself must also be simplified into a mathematical model. We assume 

that the stabilization processes that prevent excessive activity can be approximated as sigmoidal 

neurons that saturate. Each neuron could in fact represent a microcircuit that stabilizes itself. 

Also, we assume that the weights have a fixed norm as there are also mechanisms. 

We will be considering a simple Hebbian learning with global normalization as well as a 

Dale’s principle inspired learning rule with separate excitatory and inhibitory inputs. Most of the 

results will focus on the Dale case. This represents an averaging over time of excitatory and 

inhibitory models. 

 

4.2 Methods 

Neural network topology 

Recurrent networks had one (hidden) recurrent layer which feed into itself and a single output 

layer, with 80 frequency channels. A unit sigmoid gain function was used. 

Two recurrent network models were used. The sign-agnostic network (80 recurrent 

neurons) is shown in figure 4.2 and the network with separate excitatory and inhibitory regions 

(160 recurrent neurons) is shown in figure 4.3.  

 

Figure 4.2: A sign-agnostic recurrent network. The input layer convolves the stimuli and is linear, and 

gives weights of +1 to the recurrent network. The recurrent layer has sigmoid gain, and weights between 

it can be positive or negative. The best selectivity happens with a fixed K, but variable K (fixed Q-factor) 

was also considered.   
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Figure 4.3: A recurrent network respecting Dale’s principle. The best selectivity happens with a fixed K, 

but variable K (fixed Q-factor) was also considered. The input layer convolves the stimuli and is linear, 

and gives weights of +1 to the recurrent network. The recurrent layer has sigmoid gain. The left half of 

the layer emit excitatory inputs to itself and the right half. The right half emits inhibitory inputs to itself 

and the left half. Only identity weights are shown across E vs I for brevity. 

 
Neural network and noiseless model 

We use the same model as the feed-forward chapter, but only in the continuous time domain and 

without noise. However, the expected firing rate isn’t any different with or without our (simple) 

model, so removing the noise doesn’t change the mean response. 

 

Subcortical input 

Stimuli are represented the same way as Chapter 3 (as a list of locations and energies). However, 

we considered both fixed with and fixed q-factor subcortical models: 

𝑆𝑢𝑏𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙𝐵𝑊 =
1

𝑍
∑𝑝𝑖𝑒𝑥𝑝 (−

𝐵𝑓−𝑓𝑖

2𝜎2 ),    𝑆𝑢𝑏𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙𝑄 =
1

𝑍
∑𝑝𝑖𝑒𝑥𝑝 (−

𝐵𝑓−𝑓𝑖

2(𝜎𝑓𝑖)2) 

The variety of stimuli location-energies we used for training and evaluation are described in 

other sections of this chapter. Example stimuli are shown in figure 4.4. 
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Figure 4.4: Subcortical inputs for stimuli for fixed BW and for fixed Q. A: Tone stimuli, fixed BW. B: 

Harmonic stimuli (fixed BW). C: Tone stimuli, fixed Q.  D: Harmonic stimuli, fixed Q. Only the red 

stimulus is used for training.  

 

 We also define a subcortical temporal adaption model. This model is used when the 

stimulus over time is a step function. Before the step the input is zero. During a step input, the 

excitatory and inhibitory input are given by an sum of exponential rises with different time 

constants: 

𝐼𝑒𝑥𝑡,𝐸 = ∑𝑘𝐸,𝑖 (1 − 𝑒𝑥𝑝 (−
𝑡 − 𝑡𝑜𝑛

𝜏𝐸,𝑖
)) , 𝐼𝑒𝑥𝑡,𝐼 = ∑𝑘𝐼,𝑖 (1 − 𝑒𝑥𝑝 (−

𝑡 − 𝑡𝑜𝑛

𝜏𝐼,𝑖
)),   𝑡𝑜𝑛 ≤ 𝑡 ≤ 𝑡𝑜𝑓𝑓 

After the input is over, both of these decay: 
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𝐼𝑒𝑥𝑡,𝐸 = ∑𝑘𝐸,𝑖 (1 −  𝑒𝑥𝑝 (−
𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛

𝜏𝐸,𝑖
)) exp

(𝑡𝑜𝑓𝑓 − 𝑡)

𝜏𝐸,𝑖
 , 𝑡 > 𝑡𝑜𝑓𝑓 

𝐼𝑒𝑥𝑡,𝐼 = ∑𝑘𝐼,𝑖 (1 −  𝑒𝑥𝑝 (−
𝑡𝑜𝑓𝑓 − 𝑡𝑜𝑛

𝜏𝐼,𝑖
)) exp

(𝑡𝑜𝑓𝑓 − 𝑡)

𝜏𝐼,𝑖
 , 𝑡 > 𝑡𝑜𝑓𝑓 

The total temporal input strength multiplier is the excitation subtracted from the 

inhibition, but normalized so that the steady-state input is unity: 

𝐼𝑒𝑥𝑡 =
𝐼𝑒𝑥𝑡,𝐸 − 𝐼𝑒𝑥𝑡,𝐼

∑𝑘𝐸,𝑖 − ∑𝑘𝐼,𝑖
 

We use 𝜏𝐸 = {6.375, 12.75}, 𝑘𝐸 = {1,1}, 𝜏𝐼 = {15}, 𝑘𝐼 = {1.75} . This generates an 

onset-sustained-offset curve which is shown in figure 4.10. The subcortical input at each point in 

time is multiplied by this value. 

 

Hebbian training and testing 

We considered two training methods. The first is a Hebbian sign-agonistic method based on the 

activity of a neural network. Stimuli for this are harmonics with randomized heights.  It allows 

neurons to simultaneously give excitation to and inhibition to other neurons. The recurrent 

weights are updated in a batch: 𝑊𝑖𝑗,𝑡+1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜂⟨𝑦𝑖𝑦𝑗⟩ + (1 − 𝜂)𝑊𝑖𝑗,𝑡), and the output 

weights are learned using a similar formula: 𝑤𝑖,𝑡+1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜂⟨𝑦𝑜𝑢𝑡𝑝𝑢𝑡𝑦𝑟𝑒𝑐𝑢𝑟,𝑖⟩ +

(1 − 𝜂)𝑤𝑖,𝑡), where 𝑦 = 𝑔(𝑥 − 𝑏) is the response x-b is the state and g is a sigmoid gain 

function, with 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑊) = 𝑘𝑊/||𝑊||
𝑓𝑟𝑜𝑏𝑒𝑛𝑜𝑢𝑠

 for a user-prescribed k. With 𝜂 = 0.8 and 

8 batched steps we get the network to converge to well within 5% of it’s final value. The effects 

of this training are summarized in figure 4.5. 

We also have a sign-constrained learning rule that is based on the stimulus statistics. 

Neurons are divided into two equal groups, excitatory and inhibitory, given the recurrent weights 
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this rule (in this case 𝑥 represents the subcortical input). We first define a ridge matrix that 

penalizes connections that are far away from each-other: 

𝑊𝑅𝑖𝑑𝑔𝑒,   𝑖,𝑗 = exp (−
(𝑖 − 𝑗)2

𝜎𝐵𝑊,𝑟𝑖𝑑𝑔𝑒
2 + (0.5(𝑖 + 𝑗)𝜎𝑄,𝑟𝑖𝑑𝑔𝑒)

2) 

We then define the four weight quadrants, of which three use Hebbian or anti-Hebbian learning: 

𝑥+ = 𝑥 − min (𝑥) 

𝑊𝐸𝐸 = 𝑘𝐸𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(⟨𝑥+
𝑇𝑥+⟩) 

𝑊𝐸𝐼 = 𝑘𝐸𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(⟨𝑥+
𝑇𝑥+⟩) 

𝑊𝐼𝐸 = −𝑘𝐼𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑊𝑅𝑖𝑑𝑔𝑒) 

𝑊𝐼𝐼 = −𝑘𝐼𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(⟨𝑥+
𝑇𝑥+⟩) 

The use of the stimulus statistics produces similar results as using the neural activity. 

However, it is much easier to control. A set of parameters that make highly selective harmonic 

template units are listed in the results section of this chapter. The training stimulus for this is a 

single harmonic stimuli with constant heights; randomized heights would produce a significant 

ridge. Many assays required computing a steady state response to various stimuli. This was 

estimated by fixing the subcortical input and measuring the network’s activity after 20 time 

constants. 

 

Figure 4.5: How training produces an egg-crate network. When presented with a harmonic stimulus, the 

subcortical inputs excite neurons at integer multiples of the fundamental frequency. That cause Hebbian 

reinforcement of the weights between them. 
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Eigen-analysis of linearized dynamics over time 

Recurrent networks admit a non-trivial Jacobian in between the state of the network and the rate 

of change of the state. The Jacobian is: 𝐽 =
𝜕(

𝜕𝑦

𝜕𝑡
)

𝜕𝑦
 , where 𝑦 is the network state. 

 We are most interested in the Jacobian at the middle of a hysteresis cycle loop; see figure 

4.6. This gives us at least one unstable eigenvector. 

 
Figure 4.6: Finding the point in the approximate center of the hysteresis loop. Shown is a hysteresis loop 

(the rising curve is blue, the falling curve is red). The green circles are the points of fastest change. The 

orange circle is the average of the green circles and is where the Jacobian gets calculated. 

 

 

4.3 Results 

 
We are able to produce harmonically selective units that under the experiments in (Feng & 

Wang, 2017) would resemble some of the harmonic template units measured. The Hebbian 

learning rule produces egg-crate recurrent weights. We also have hysteresis, pattern completion, 

and/or oscillation depending on the parameters used; these are hallmarks of recurrent networks. 

 

Weights are an eggcrate 

 

The weights that are trained under Hebbian rule resembles egg-crates, see figure 4.7 and figure 

4.8. These egg-crates have excitatory connections between integer multiples at inhibitory 
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connections between half-integer multiples of the fundamental frequency. The half-integer-

integer connections are saddles in the egg-crate and have nearly zero weight. The sign-agnostic 

case with a fixed bandwidth generate the “classic” egg-crate shown in figure 4.7. The sign-

agnostic case with a variable bandwidth also generates an egg-crate but the peaks get broader 

(and the “valleys” get narrower) at higher frequencies as seen in figure 4.8. 

 

 

Figure 4.7: The recurrent weights for a fixed bandwidth sign-agnostic case. These weights are an egg-

crate. 

 

 

Figure 4.8: The recurrent weights for a fixed Q-factor sign-agnostic case. These weights are eggcrate-like 

but with a “variable width”. 
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 The statistical-based Dale’s principle learning case, under our training rule, produces a 

weight matrix with three egg-crate sections (one of which is inverted) and an upside-down ridge 

shown in figure 4.9. 

 

 
Figure 4.9: The recurrent weights for the Dale’s principle case. A: for a fixed bandwidth. B: For a fixed 

Q-factor  (with a restricted color range to show the shorter, broader peaks more clearly). 
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The following results are all for the fixed-bandwidth Dale’s principle case. Although all 

cases can produce a degree of harmonic selectivity, the aforementioned case was found to give 

the best results with the correct choice of parameters. 

 

Response to a fixed stimulus over time 

We tested the network on a fixed harmonic stimulus at the training f0 = Bf0. The stimuli before 

and after subcortical processing are shown in figure 4.10.

 

Figure 4.10: Presenting a fixed stimulus to the network. A: The stimulus and subcortical input for a 

harmonic network. B: The subcortical onset/transient/offset model. The blue curve in A is multiplied by a 

time-dependent scalar, which is The cyan curve in B. 

 

The network activated very strongly to this stimuli near integer multiples of Bf0. The 

state of the network shows strong depolarization for both the excitatory and inhibitory neurons 

near the integer multiples of Bf0 as shown in figure 4.11. The activity shows a similar, if more 

confined, pattern as seen in figure 4.12.  
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Figure 4.11: The network state over time to a fixed harmonic stimulus. We use Dale’s principle under a 

fixed bandwidth. A: The state over time of the entire network, values at zero indicate the neuron is firing 

at 50% it’s maximum rate. B: The state over time of three integer-multiple excitatory units. C: The state 

over time of three half-integer multiple excitatory units. D: The state overt time of three integer-multiple 

inhibitory units. It is similar to the excitatory units in shape but a weaker effect, as is the half-integer 

multiple inhibitory units vs the half-integer excitatory units (not shown). 
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Figure 4.12: The network response over time to a fixed harmonic stimulus. We use Dale’s principle under 

a fixed bandwidth. A: The response over time of the entire network. B: The response over time of three 

integer-multiple excitatory units. C: The response over time of three half-integer multiple excitatory units. 

D: The response over time of three integer-multiple inhibitory units. It is similar to the excitatory units in 

shape but a much weaker effect, as is the half-integer multiple inhibitory units vs the half-integer 

excitatory units (not shown). 
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Response to tones, harmonics, and mistuned harmonics 

Tones, harmonic, and mistuned harmonic stimuli, shown in figure 4.13, are used to assess the 

networks selectivity to the presence and the tuning of harmonics. The network’s integer-multiple 

units prefer harmonics over tones or over mistuned stimuli, see figure 4.14. 

 

Figure 4.13: Stimuli and subcortical input to assess harmonic selectivity. We use tones (A), harmonics 

(B), and mistuned stimuli (C). 

 

 

Figure 4.14: Response maps to tones, harmonics, and mistuned stimuli. The neuron is excitatory with 

bf=2bf0. The neuron responds to harmonics(B) at Bf0 much more than to tones (A) and mistuned stimuli 

(C).  
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Facilitation index (preference for harmonics over tones) and periodicity index (preference 

for harmonics over mistuned complexes) are the metrics of harmonic selectivity used in (Feng & 

Wang, 2017). These are shown in figure 4.15 with their histogram in figure 4.16. Our integer-

multiple units meet both criteria, as do units near integers. The inhibitory units actually are 

somewhat more harmonically selective. The half-integer multiple units and their nearby 

neighbors aren’t selective at all to harmonics. 

 

 

 

Figure 4.15: The FI and PI of each unit. We only allow for harmonics at Bf0 for the purposes of 

calculating FI and PI. FI>0.33 and PI>0.5 make a neuron qualify as a harmonic template unit. These are 

based on the neuron’s response not the state. 
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Figure 4.16: The histogram of FI and PI values. Vertical dashed lines indicate the cutoffs above which a 

unit is considered a “harmonic template unit”. 

 

Random harmonic stimuli and regression weights 

Random harmonic stimuli measure the network’s response to randomized harmonic stimuli, but 

with a fundamental frequency of half of Bf0, as done in (Feng & Wang, 2017). These stimuli are 

shown in figure 4.17. Regression models are then ran on the vector of responses against the 

matrix of stimuli energies.  
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Figure 4.17: A sample of random harmonic stimuli. They are all at half of the network’s bf0, with 

randomized amplitudes per component. 

 

The regression models estimate the linear and quadratic RHS weights of the neuron. One 

such neuron, which is excitatory and at an integer multiple of Bf0, is shown in figure 4.18. The 

linear weights form a spectral sieve. 
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Figure 4.18: The RHS linear and quadratic weights for a single unit. A: The linear weights for both the 

state and activity. B: The quadratic weights for the activity (the weights for the state are very similar in 

shape). The top three eigenvectors of the quadratic weights are shown in (C) while (D) shows all the 

quadratic eigenvalues. 

 

All of the units at integer multiples have sieve-like patterns, whether they are excitatory 

or inhibitory, see figure 4.19. Units at half-integer multiples usually have a center-surround 

response superimposed on a small “anti-sieve” like response as shown in figure 4.20. Both 

patterns, as well as other patterns, were found in (Feng & Wang, 2017). 
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Figure 4.19: Integer-unit RHS weights and eigenanalysis. This is for units at bf=bf0 (A,B,C), bf=2bf0 

(D,E,F), and bf=4bf0 (G,H,I). Each triplet of subfigures uses the same format as A,B, and C of the 

previous figure. 
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Figure 4.20: Halfinteger-unit RHS weights and eigenanalysis. This is for units at bf=3/2bf0 (A,B,C), 

bf=5/2bf0 (D,E,F), and bf=7/2bf0 (G,H,I). 

 

The notable difference between our simulated RHS weights and the experimental weights 

is that we are using a linear scale rather than dB because we assume a significant amount of 

subcortical compression implicit in the model. The weights show a sieve-like pattern with an 

extra strong component at the BF, which is similar to some examples in (Feng & Wang, 2017). 
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Despite being a linearization, the shape of the weights did not depend strongly on the location 

around which RHS is taken. 

 

Reponses to a rise-fall stimuli and eigen analysis in the hysteresis loop 

A rise-fall stimulus is a stimulus that gradually gets stronger and weaker throughout time, but is 

fixed in terms of its relative spectral components. The network shows hysteresis when given this 

stimulus, suddenly turning on and off (no matter how slow the ramp is), as seen in figure 4.21. 

The level in which the network turns on is higher than the level in which it turns off. 

 

Figure 4.21: The state and response to a rise-fall stimuli. A: The state over time. B: The stimulus intensity 

over time (no adaptation model is applied). C: The state and response for a neuron at BF=2Bf0. D: The 

state and response for a neuron at BF=5/2Bf0. 
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In the center of the hysteresis loop there is one unstable eigenvector shown in figure 4.22. 

This eigenvector is a sieve for both the excitatory and inhibitory parts of the network. There is 

also an eigenvector that is made more stable by the recurrent weights, it is an anti-sieve in the 

excitatory part and a sieve in the inhibitory part. All the other eigenvectors are degenerate and 

represent the leakage term in the network dynamics. 

 

 

Figure 4.22: Eigen analysis in the middle of the hysteresis loop. A: The eigenvalues of the state Jacobian 

at the fastest change. There is one positive eigenvalue indicating first-order instability. B: The largest and 

smallest eigenvectors (the imaginary part is shown, but is zero for both). This is based on the state of the 

neuron, which more clearly shows the dynamics of the network in certain ways than the response. 

 

Pattern completion 

Our network is able to have similar activation patterns to stimuli missing a single component, 

illustrated in figure 4.23, than to stimuli with all their components present. This represents a 

filling-in of the missing component. 
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Figure 4.23. Stimuli with missing components. The black curve represents the complete harmonic 

stimulus, while the other curves are stimuli missing one component. 

 

The filling in produces enough depolarization in the excitatory neurons to drive to them 

well above their threshold; see figure 4.24. The filling in effect is delayed by about 3 time-

constants as shown figure 4.25. 
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Figure 4.24: The network state for stimuli with missing components. A,B,C,D are missing the 

fundamental, second component, third component and fourth component respectively.  
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Figure 4.25: Selected neural states for stimuli with missing components. Red indicates neurons that are at 

the location of the missing components. Blue indicates neurons that are not at the location of the missing 

components. The red curve rise almost as much as the blue curves, indicating a filling in which is slightly 

delayed. A: The whole trajectory. B: Same as A but zoomed in, showing the rising part only in order to 

emphasize the delay in the red curves. 

 

Oscillation 

Some parameter sets showed oscillation, in particular the parameters with strong inhibition-to-

excitation as well as strong excitation-to-inhibition. An example of these parameters is shown in 

figure 4.26. This was sometimes combined with hysteresis. 
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Figure 4.26: Oscillation under a different parameter set. The feedbacks from excitation to inhibition back 

to excitation are very high. A: The network state under a rise-fall harmonic stimulus, at higher intensities 

there is a shorter period of oscillation. B: The response under a fixed harmonic stimulus. 

 

Sensitivity to parameter changes 

Changing one parameter at a time has usually a broadly excitatory effect or inhibitory effect, see 

table 4.1. Excitatory effects also strengthen hysteresis (or even keep the network permanently 

activated), while inhibitory effects weaken it. A 10-20% change in many cases was sufficient to 

cause significantly different behaviors. 

Feedback strength is the 1-norm of the weights divided by the number of neurons in the 

destination layer (number of channels). This is thus the average weight from all neurons feeding 

into a given neuron averaged over all destination neurons. 
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Parameter Default value (oscillation value) Effect of increasing (decreasing has 

opposite effect) 

Feedback E→E 5.25 (10.0)  Strongly excitatory 

Feedback E→I 5 (20.0) Strongly inhibitory 

Feedback I→E 20 (also 20) Strongly inhibitory 

Feedback I→I 7 (0.0) Weakly excitatory 

Threshold E 3 (4) Strongly Inhibitory 

Threshold I 4.75 (12) Strongly Excitatory 

Stimulus strength* 16 (12) Weakly excitatory 

Inhibitory 

bandwidth 

25% of total range (also 25%) Little effect for modest changes. 

Table 4.1: Effects of changing individual parameters. A feedback of one means the average row 1-norm is 

one, i.e. 〈∑ 𝑊𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡,𝑖𝑗𝑗 〉 = ±1. The default values are used for most results, but the “oscillation value” 

is only used for figure 4.26. *for the default parameter set, it is important to set the stimulus strength such 

that the center of the hysteresis loop for the best-harmonic stimulus is about 30% of the strength used for 

assessing FI and PI. A pure tone has the same strength as a single component of a harmonic stimulus, 

which means that pure tones have several times less total energy overall. 

 

Secondary parameter effects 

We want to separate out effects in directions that are orthogonal to overall network 

sensitivity/excitability: we seek to quantify the average excitability of the network, and project 

the parameter space down to a parameter subspace with a moderate “excitability”. We then can 

explore this subspace. 

 We have seen that the network has a varying amount of hysteresis. At low values the 

output is a soft sigmoid. At moderate values the output begins to harden, and at high values it has 

a classic hysteresis loop. 

 Another secondary effect is how strong the center component of the RHS weights is 

relative to the other components. Excitatory-to-inhibitory weights make keeps the RHS weights 

more sievelike and less center-surround. 
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Eggcrate FI is limited, unless variation in population is accounted for 

Pure tones need to activate it enough to trigger the positive feedback, so an FI of 0.5 was the 

highest reasonable value without extreme sensitivity to parameters and/or very strong hysteresis.  

A real neural population has a range of thresholds for units at any given bf. The higher threshold 

ones would have FI and PI up to 1, even if the lower threshold neurons are needed. Indeed, (Feng 

& Wang, 2017) found a continuous range of PI and FI values and thus needed to hand-select the 

cutoffs. 

 

Covariance learning as an alternate rule 

Our learning rule is ⟨𝑥 − 𝑥𝑚𝑖𝑛⟩⟨𝑥 − 𝑥𝑚𝑖𝑛⟩𝑇. However, we also considered a “covariance” 

learning rule which is ⟨𝑥⟩⟨𝑥⟩𝑇-min(⟨𝑥⟩⟨𝑥⟩𝑇). The former is more realistic for Dale’s principle 

based learning, but the latter is also plausible. It produces a small secondary egg-crate at half 

integer multiples, as seen in figure 4.27, and is not as selective to harmonic stimuli. 

 

Figure 4.27: The covariance learning rule. This yields a smaller secondary egg-crate at half-integer-half-

integer locations. A: Learning under fixed BW. B: Learning under fixed Q (with a restricted color range 

to show the less tall peaks more clearly). 
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Response of a combined feedforward and recurrent network 

We also modelled combined feed-forward recurrent networks, where the recurrent network is 

used as the input to a single output unit that is weighted as a sieve. These networks perform only 

marginally better than pure feedforward networks for harmonicity detection, but show hysteresis, 

pattern completion, and oscillation like our pure recurrent networks. There is no qualitatively 

different behavior these “hybrid” networks have compared to the purely recurrent networks. 

 

4.4 Discussion 

We demonstrate an alternative mechanism for selectivity to harmonic sounds which is based on 

“eggcrates” rather than sieves. Despite this, neurons still resemble sieves in terms of estimates of 

the RHS weights of the neuron. The recurrent nature of the network adds a variety of effects. 

 

Input dynamic range 

Our model was evaluated for inputs of a fixed amplitude and does not work across a wide 

dynamic range of inputs. However, we don’t include any compressive nonlinearities at the 

subcortical level. Fortunately, the type I units in the inferior colliculus (of which our subcortical 

model is based on) are usually very “flat” above a certain dB level, see (Schreiner & Winer, 

2005) for an overview of the various unit types and their response properties. 
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Egg-crates as an alternate to sieves 

Our network behaves much like a sieve in that it has high periodicity and facilitation indexes as 

well as sieve-like RHS weights. In a real neural network there would be a range of thresholds as 

well, which would produce some neurons with higher thresholds and thus even higher indexes of 

selectivity and sparser response overall.  

 Our network displays hysteresis, a fundamental feature of recurrent networks, which 

benefits from the subcortical transient response. Suppose a stimulus produces a sustained 

response for which the network is in a bi-stable state. The stimulus itself wouldn’t be able to turn 

the network from “off” to “on” but it would be able to sustain the network in the “on” state. 

However, the strong onset transient response makes it likely the input exceeds the bi-stable 

region and forces the network to turn “on”. Similarly, the offset response produces an inhibitory 

stimuli that may switch the network “off” in cases where the bi-stable region includes the 

“background” or “distractor” stimuli. 

 Pattern completion and oscillation are also important properties of recurrent networks. 

Pattern completion produces content-addressable memory typical of Hopfield networks 

(Hopfield & Tank, 1985) which allows reconstruction of a stimulus even if parts are missing. 

Oscillation may be physiological or pathological as in seizures and it does not play an obvious 

role in harmonicity detection. 

 A hybrid feed-forward and recurrent network model, in which the recurrent layer feeds 

into a feedforward network, was found to behave similarly to a recurrent network and thus is 

hard to differentiate from it. However, as the subcortical pathway is primarily monospectral in its 

response to tones and harmonics (Kostlan, 2015) and the cortex is highly recurrent a purely 

recurrent model is more parsimonious. 
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Experimental considerations 

In a sieve, the neurons with BF values at integer multiples of the fundamental frequency are 

excitatory, while the half-integer-sensitive neurons are inhibitory. However, in the recurrent case 

they are co-tuned. Mistuned components will cause side-band inhibition that reduces the 

response to harmonic stimuli, rather than directly inhibiting the total response. For a harmonic 

template unit there may be “excitatory” and “inhibitory” units that feed into it and could be 

found electro-physiologically. If “inhibitory” units would respond preferentially respond to half-

integer multiples of some bf0 (or odd-integer multiples of ½ bf0) this suggests a feed-forward 

mechanism of selectivity. However, if there is co-tuning it suggests a recurrent mechanism of 

selectivity. Co-tuning was found in the cortex, which increases spike-timing precision for 

detecting the onset response (Wehr & Zador, 2003). 

Due to the tonotopy, it may be possible to trace a template neuron retrograde to see where 

it gets input from and use a second electrode to probe the best-frequencies of the region. 

Hysteresis, pattern completion, and oscillation are unique to recurrent networks and don’t occur 

in feed-forward networks. Hysteresis has a theoretical benefit for autocorrelated time series, 

which is discussed more in Chapter 5. Pattern completion is good for stimuli identification. 

Oscillation could represent seizure like state or physiological oscillations. Artificial manipulation 

of the amount of excitation and inhibition could potentially change the behavior by creating or 

removing hysteresis and/or oscillation.  
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CHAPTER 5:  

Analysis of harmonically selective recurrent networks 

 

5.1 Introduction 

In Chapter 4 we showed that Hebbian training on harmonic stimuli could generate networks that 

contain harmonically selective neurons. Recurrent networks have a complex theory of which 

some will be analyzed and discussed in this chapter. 

  

The richness of  recurrent networks 

Recurrence has several features not found in feed-forward systems. Hopfield networks can have 

multiple memories stored (Hopfield, 1982, 1984), which means that there will be hysteresis as 

the network jumps from one memory to another. Hysteresis is found commonly in auditory and 

other sensory psychophysical studies. Shepard tones are a circular sequence of ever “rising” 

exponentially-spaced harmonic sounds. Pairs of Shepard tones have a history-dependent 

difference-in-pitch perception (Chambers & Pressnitzer, 2014). 

 Another property is pattern completion, i.e. content addressable memory (Hopfield & 

Tank, 1985). Psychophysical correlates of this phenomenon have been observed (Cox et al., 

2000). Recurrence with synaptic depression also is used as a model for stimulus specific 

adaptation, which is useful for directing attention to novel stimuli (Yarden & Nelken, 2017). 

A much more difficult problem is the case of detecting a harmonic sound with unknown 

fundamental. This is similar to asking “how much of a pitch does said sound have, on a scale of 

1-10” from a psychophysics perspective. Winner-take-all recurrent networks may help with this 
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where spectral cues shift the network’s guess as to the f0 value as it hears stimuli. Such is the 

behavior of head-direction cells in the rat hippocampus: the network attracts to a single peak of 

activity pointing in some direction, which can be relocated by external stimuli (Knierim & 

Zhang, 2012).  

As mentioned earlier, recurrent networks with symmetric weight matrixes can be 

understood mathematically as a neural network that is minimizing a Lyapunov function, which 

can be calculated analytically from the weights and thresholds (Hopfield & Tank, 1985). Said 

function can be interpreted statistically: is also the negative log-likelihood and the network seeks 

to maximize the log-likelihood. We discuss various gain functions and the corresponding 

Lyapunov functions, as well as the meaning of minimizing said function from an information 

theoretic perspective.  

 

5.2 Analytical two-unit phase-plane analysis 

In Chapter 4 we saw how the balance of excitatory and inhibitory self and cross feedback affects 

the dynamics. We can make a simpler model in which the excitatory neurons are lumped 

together as are the inhibitory neurons. This allows us to perform phase plane analysis. For 

piecewise-linear models most aspects of this analysis are analytic. 

 

ReLU phase-plane analysis 

The open-ended ReLU gain function is commonly used in machine learning and is similar to 

neurons in the cortex. This is the simplest nonlinear model in that it is piecewise linear with only 

two pieces per neuron. There are 10 parameters for the ReLU network are shown in table 5.1. 
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Parameter Symbol Restrictions 

Capacitance C C > 0 

Leakage L L>0 

Threshold of excitation 𝑇𝐸 None 

Threshold of inhibition 𝑇𝐼 None 

Input to excitation E None 

Input to inhibition I None 

Excitatory self-feedback 𝑊𝐸𝐸 𝑊𝐸𝐸 ≥0 

Inhibitory self-feedback 𝑊𝐼𝐼 𝑊𝐼𝐼 ≤0 

Excitatory to inhibitory feedback 𝑊𝐸𝐼 𝑊𝐸𝐼 ≥0 

Inhibitory to excitatory feedback 𝑊𝐼𝐸 𝑊𝐼𝐸 ≤0 
Table 5.1: Parameters for the ReLU phase-plane analysis. 

 

In addition to the parameters, there are three state variables: the voltages 𝑉𝐸 and 𝑉𝐼 and 

time t. This is the differential equation, which assumes equal L: 

𝐶
𝑑𝑉𝐸

𝑑𝑡
= 𝐸 + 𝑊𝐸𝐸𝑓(𝑉𝐸 − 𝑇𝐸) + 𝑊𝐼𝐸𝑓(𝑉𝐼 − 𝑇𝐼) − 𝐿𝑉𝐸 

𝐶
𝑑𝑉𝐼

𝑑𝑡
= 𝐼 + 𝑊𝐼𝐼𝑓(𝑉𝐼 − 𝑇𝐼) + 𝑊𝐸𝐼𝑓(𝑉𝐸 − 𝑇𝐸) − 𝐿𝑉𝐼 

For the ReLU case the gain function is: 

f(x) = max(x, 0) 

 We want to make a dimensionless version of this system of equation. Start with the 

dimensionless voltage: 

𝜈𝑖,𝑒 ≝
𝑉𝑖,𝑒

𝑇𝑖,𝑒
 

Note: 
𝑓(𝑉𝐸−𝑇𝐸)

𝑇𝐸
=

𝑓(𝑇𝐸(
𝑉𝐸
𝑇𝐸

−1))

𝑇𝐸
=

𝑓(𝑇𝐸(𝜈𝐸−1))

𝑇𝐸
=

𝑇𝐸𝑠𝑔𝑛(𝑇𝐸)𝑓((𝜈𝐸−1)𝑠𝑔𝑛(𝑇𝐸))

𝑇𝐸
= 𝑠𝑔𝑛(𝑇𝐸)𝑓((𝜈𝐸 − 1)𝑠𝑔𝑛(𝑇𝐸)) 

𝐶
𝑑𝜈𝑒

𝑑𝑡
=

𝐸

𝑇𝐸

+ 𝑊𝐸𝐸𝑠𝑔𝑛(𝑇𝐸)𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸)) + 𝑊𝐼𝐸𝑠𝑔𝑛(𝑇𝐼)(𝑇𝐼/𝑇𝐸)𝑓((𝜈𝑖 − 1)𝑠𝑔𝑛(𝑇𝐼)) − 𝐿𝜈𝐸 

𝐶
𝑑𝜈𝑖

𝑑𝑡
=

𝐼

𝑇𝐼
+ 𝑊𝐼𝐼𝑠𝑔𝑛(𝑇𝐼)𝑓((𝜈𝑖 − 1)𝑠𝑔𝑛(𝑇𝐼)) + 𝑊𝐸𝐼𝑠𝑔𝑛(𝑇𝐸)𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸)) − 𝐿𝜈𝐼 
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Now we introduce dimensionless time: 

𝜏 ≝
𝑡𝐿

𝐶
 

𝑑𝜈𝑒

𝑑𝜏
= (

𝐸

𝐿𝑇𝐸

) + (
𝑊𝐸𝐸

𝐿
) 𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸))𝑠𝑔𝑛(𝑇𝐸) + (

𝑊𝐼𝐸𝑇𝐼

𝐿𝑇𝐸

) 𝑓((𝜈𝑖 − 1)𝑠𝑔𝑛(𝑇𝐼))𝑠𝑔𝑛(𝑇𝐼) − 𝜈𝐸 

𝑑𝜈𝑖

𝑑𝜏
= (

𝐼

𝐿𝑇𝐼

) + (
𝑊𝐼𝐼

𝐿
) 𝑓((𝜈𝑖 − 1)𝑠𝑔𝑛(𝑇𝐼))𝑠𝑔𝑛(𝑇𝐼) + (

𝑊𝐸𝐼𝑇𝐸

𝐿𝑇𝐼

) 𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸))𝑠𝑔𝑛(𝑇𝐸) − 𝜈𝐼 

 The equations now are dimensionless, and there are six independent parameters besides 

the choice of signs on the thresholds. Define:  

𝜶𝑬 ≝
𝑬

𝑳𝑻𝑬
 ,  𝜶𝑰 ≝

𝑰

𝑳𝑻𝑰
 , 𝜷𝑬 ≝

𝑾𝑬𝑬

𝑳
,  𝜷𝑰 ≝

𝑾𝑰𝑰

𝑳
,  𝜸𝑬 ≝

𝑾𝑬𝑰𝑻𝑬

𝑳𝑻𝑰
, 𝜸𝑰 ≝

𝑾𝑰𝑬𝑻𝑰

𝑳𝑻𝑬
  

The equations are now: 

𝑑𝜈𝑒

𝑑𝜏
= 𝛼𝐸 + 𝛽𝐸𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸))𝑠𝑔𝑛(𝑇𝐸) + 𝛾𝐼𝑓((𝜈𝑖 − 1)𝑠𝑔𝑛(𝑇𝐼))𝑠𝑔𝑛(𝑇𝐼) − 𝜈𝐸 

𝑑𝜈𝑖

𝑑𝜏
= 𝛼𝐼 + 𝛽𝐼𝑓((𝜈𝑖 − 1)𝑠𝑔𝑛(𝑇𝐼))𝑠𝑔𝑛(𝑇𝐼) + 𝛾𝐸𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸))𝑠𝑔𝑛(𝑇𝐸) − 𝜈𝐼 

The pair of 𝛼 parameters represent to what extent the stimulus can, on its own, bring the 

neuron up to threshold. The 𝛽′𝑠 represent how strong the self-feedback is in comparison to the 

leakage.  

The 𝛾′𝑠 are more complex. The interpretation of the 𝛾′𝑠 is how much our threshold can affect 

the other neuron: It takes 𝐿𝑇𝐼 current to cause the inhibitory neuron to respond, ignoring 

feedback. Our threshold will reduce the excitatory output current by 𝑊𝐸𝐼𝑇𝐸 if there is any output 

current at all. This ratio determines how much the threshold of the excitatory neuron affects the 

inhibitory neuron’s ability to turn on. 

For any parameter set the previous formulas can compute these dimensionless numbers. For 

completeness here is a protocol for going the other way, i.e. generating a set of parameters and 
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stimulus that satisfies a given set of dimensionless numbers. Numbers that are infinite (i.e. cases 

with zero threshold) can be handled with limits: 

1. 𝐿 = 1, 𝑇𝐼 = 1, 𝑇𝐸 = 1,  

2. 𝑊𝐸𝐸 = 𝛽𝐸 , 𝐼𝐼 = 𝛽𝐼 , 𝐸 = 𝛼𝐸 , 𝐼 = 𝛼𝐼 

3. 𝑊𝐸𝐼 = 𝛾𝐸 ,  𝐼𝐸 = 𝛾𝐼 

The differential equation is piecewise linear with 4 pieces depending on which neurons are above 

their threshold. Denote {x} to be 1 if x is true and zero if false, and ⨁ is XOR: 

χE ≝ {{𝜈𝑒 > 1}⨁{𝑇𝐸 < 0}},  χI ≝ {{𝜈𝑖 > 1}⨁{𝑇𝐼 < 0}} 

This means, again with ReLU rectifiers: 𝑓((𝜈𝑒 − 1)𝑠𝑔𝑛(𝑇𝐸))𝑠𝑔𝑛(𝑇𝐸) =  𝜒𝐸(𝜈𝑒 − 1) 

Now pack it into a matrix form: 

[
𝜈𝑒̇

𝜈𝑖̇
] = [

𝛼𝐸 − 𝛽𝐸χE − 𝛾𝐼χI

𝛼𝐼 − 𝛽𝐼χI − 𝛾𝐸χE
] + [

𝛽𝐸χE − 1 𝛾𝐼χI

𝛾𝐸χE 𝛽𝐼χI − 1
] [

𝜈𝐸

𝜈𝐼
] 

The equilibrium is given by an equation with implicit conditionals but that is otherwise explicit: 

[
𝜈𝑒𝑞,𝑒̇

𝜈𝑒𝑞,𝑖̇
] =

1

(𝛽𝐸𝜒𝐸 − 1)(𝛽𝐼𝜒𝐼 − 1) − 𝛾𝐸𝜒𝐸𝛾𝐼𝜒𝐼

[
𝛽𝐼χI − 1 −𝛾𝐼χI

−𝛾𝐸χE 𝛽𝐸χE − 1
] [

𝛽𝐸χE + 𝛾𝐼χI − 𝛼𝐸

𝛽𝐼χI + 𝛾𝐸χE − 𝛼𝐼
] 

 There are up to 4 equilibrium points, one for each possible χ truth value. For each truth 

value we can check existence and type. To check for existence we ensure that the predicted 

equilibrium location calculated for a given truth value corresponds to that value, in other words it 

must be self-consistent. If the equilibrium exists the type of equilibrium point will be determined 

by the trace and determinant: 

(𝛽𝐸χE − 1)(𝛽𝐼χI − 1) − 𝛾𝐸χE − 𝛾𝐼χI < 0 → 𝑆𝑎𝑑𝑑𝑙𝑒 

(𝛽𝐸χE − 1)(𝛽𝐼χI − 1) − 𝛾𝐸χE − 𝛾𝐼χI > 0,  𝛽𝐸χE +  𝛽𝐼χI < 2 → 𝑆𝑖𝑛𝑘 

(𝛽𝐸χE − 1)(𝛽𝐼χI − 1) − 𝛾𝐸χE − 𝛾𝐼χI > 0,  𝛽𝐸χE +  𝛽𝐼χI > 2 → 𝑆𝑜𝑢𝑟𝑐𝑒 

This assumes that CL>0. For biologically realistic scenarios, C>0 always and L>0 except 

for unusual cases involving active voltage gated channels. If CL<0, we would reverse the 
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sink/source criterion because time would flow “backwards”. Thus we will use CL>0 for this 

analysis. The equilibrium points must also exist, truthiness of χE and χI must act for the values 

specified. Table 5.2 lists the conditions of equilibrium existence, stability and type. We use strict 

inequalities as there will always be some non-zero noise that would destroy marginal equilibria. 

Case Values Existence Saddle Source 

(if not saddle) 

χE = 0, χI = 0 νe = αE, νi = αI αe < 1, αi < 1 False False 

χE = 1, χI = 0 
νe =

αE − 𝛽𝐼

1 − 𝛽𝐼

, 

 𝜈𝑖 = 𝛾𝐸

αE − 1

1 − 𝛽𝐼

  

αe − 𝛽𝐸

1 − 𝛽𝐸

> 1 

𝛾𝐸

αE − 1

1 − 𝛽𝐸

< 1 

βE > 1 False 

χE = 0, χI = 1 
ν𝑒 = 𝛾𝐼

αI − 1

1 − 𝛽𝐼

, 

 𝜈𝑖 =
αI − 𝛽𝐼

1 − 𝛽𝐼

  

𝛾𝐼

αI − 1

1 − 𝛽𝐼

< 1 

αI − 𝛽𝐼

1 − 𝛽𝐼

> 1 

βI > 1 False 

χE = 1, χI = 1 
[
𝛽𝐼 − 1 −𝛾𝐼

−𝛾𝐸 𝛽𝐸 − 1
] [

𝛽𝐸 + 𝛾𝐼 − 𝛼𝐸

𝛽𝐼 + 𝛾𝐸 − 𝛼𝐼
]

(𝛽𝐸 − 1)(𝛽𝐼 − 1) − 𝛾𝐸𝛾𝐼

 

νe,eq > 1, νi,eq > 1 (𝛽𝐸 − 1)(𝛽𝐼 − 1) < 𝛾𝐸𝛾𝐼  𝛽𝐸 + 𝛽𝐼 > 2 

Table 5.2: Exact values of ReLU equilibrium points. 

 

 We can solve the null clines. We need choose the independent variable in order to make 

the denominator only zero on a set of measure zero: 

[
𝜈𝑒̇

𝜈𝑖̇
] = [

𝛼𝐸 − 𝛽𝐸χE − 𝛾𝐼χI

𝛼𝐼 − 𝛽𝐼χI − 𝛾𝐸χE
] + [

𝛽𝐸χE − 1 𝛾𝐼χI

𝛾𝐸χE 𝛽𝐼χI − 1
] [

𝜈𝐸

𝜈𝐼
] 

𝜈𝑒̇ = 𝛼𝐸 − 𝛽𝐸χE − 𝛾𝐼χI + 𝑣𝑒(𝛽𝐸χE − 1) + 𝑣𝑖(𝛾𝐼χI) = 0 

𝑣𝑒 =
𝛼𝐸 − 𝛽𝐸χE − 𝛾𝐼χI + 𝜈𝑖𝛾𝐼𝜒𝐼

1 − 𝛽𝐸𝜒𝐸
, 𝑓𝑜𝑟 𝑒 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 

We must try each possibility of χE 

Similarly,  
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𝑣𝑖 =
𝛼𝐼 − 𝛽𝐼χI − 𝛾𝐸χE + 𝜈𝑒𝛾𝐸𝜒𝐸

1 − 𝛽𝐼𝜒𝐼
, 𝑓𝑜𝑟 𝑖 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 

We want to know if, for a given set of parameters, the trajectory stays bounded for any 

initial conditions. There are three potential runaway cases, each sufficient to destabilize the 

system globally: 

“E-runaway”: 𝛽𝐸 > 1, 𝛾𝐸 ≤ 0. The “E” activity explodes to infinity without “I” getting involved. 

 “I-runaway”: 𝛽𝐼 > 1, 𝛾𝐼 ≤ 0. Same concept as E-runaway but with the “I” running away. This 

requires ignoring the sign restrictions on the feedback weights. 

 “feedback-runaway”: The largest eigenvalue is real and positive for the χE = χI = 1 matrix and 

corresponds to an eigen vector with each component having the same sign (imaginary 

eigenvalues would cause the trajectory to spiral and leave the “feedback region”, as would real 

eigenvectors pointing the “wrong way”). This also requires ignoring the sign restrictions on the 

feedback weights. 

The matrix in the feedback region, where both neurons are activated, is: 

[
𝛽𝐸 − 1 𝛾𝐼

𝛾𝐸 𝛽𝐼 − 1
] 

We have: 

𝑡𝑟𝑎𝑐𝑒 =  𝛽𝐸 + 𝛽𝐼 − 2 

𝑑𝑒𝑡 = (𝛽𝐸 − 1)(𝛽𝐼 − 1) − 𝛾𝐸𝛾𝐼 

𝑑𝑖𝑠𝑐𝑟 =
𝑡𝑟𝑎𝑐𝑒2

4
− 𝑑𝑒𝑡 

𝜆+ =
𝑡𝑟𝑎𝑐𝑒

2
+ √𝑑𝑖𝑠𝑐𝑟 

Runaway: 𝑑𝑖𝑠𝑐𝑟 > 0     𝑎𝑛𝑑     𝜆+ > 0    𝑎𝑛𝑑     (𝜆+ − 𝛽𝐼 + 1)𝛾𝐸 > 0 
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If any of these three conditions apply, we don’t have global stability. If none do we have 

global stability. Global stability without stable equilibrium points means we have a limit cycle. 

This combination is possible with no sinks or saddles and a single source. 

In fact, (for positive signs on the threshold) there are 13 combinations of sinks sources saddles 

and global stability conditions (less conditions are available if we consider the sign restrictions in 

the weights). Some possible sign-respecting phase-plane behaviors are shown in figure 5.1. 

 
Figure 5.1: Two unit ReLU phase-planes for various parameters. The x-axis is the state of the excitatory 

neuron and the y-axis is the state of the inhibitory neuron. The blue line segments indicate the vector field 

that the dynamics follow. The curves indicate the trajectories of starting points. The red dotted lines 

indicate the threshold above which the neurons activate. A: A network with one stable equilibrium. B: A 

network with a stable equilibrium and a region where the dynamics run off to infinity. There is a saddle 

equilibrium on the boundary between the two basins of attraction. C: A network with two stable equilibria 

and a saddle between them. D: A network with no stable equilibrium but it has a limit cycle and no region 

that runs off to infinity. Limit cycles in these systems always surround an unstable spiral source. The 

instability in the linear dynamics of the “center” of the limit cycle gets stabilized by the nonlinearities in 

the gain function, in this case the deactivation of excitatory neural activity. 
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Zrect phase-plane analysis 

ReLU was the simplest piecewise nonlinear model to analyze analytically and is realistic for 

individual cortical neurons which rarely fire strongly enough to hit refractory periods. But a real 

cortical neural network displays inhibition that prevents the neurons from getting near saturation. 

We assume that this is approximated by a sigmoid gain, which in turn can be approximated by a 

piecewise linear function, in the shape of a backwards Z. We call this the “Zrect” function. This 

has sigmoid-like properties of thresholding and saturation while still being piecewise linear. 

There are 12 parameters for the ReLU network are shown in table 5.3, note that we allow 

different amounts of dynamic range. 

Parameter Symbol Restrictions 

Capacitance C C > 0 

Leakage L L>0 

Threshold of excitation 𝑇𝐸 None 

Threshold of inhibition 𝑇𝐼 None 

Input to excitation E None 

Input to inhibition I None 

Excitatory self-feedback 𝑊𝐸𝐸 𝑊𝐸𝐸 ≥0 

Inhibitory self-feedback 𝑊𝐼𝐼 𝑊𝐼𝐼 ≤0 

Excitatory to inhibitory feedback 𝑊𝐸𝐼 𝑊𝐸𝐼 ≥0 

Inhibitory to excitatory feedback 𝑊𝐼𝐸 𝑊𝐼𝐸 ≤0 

Saturation level of excitation 𝑆𝐸 𝑆𝐸 ≥0 

Saturation level of inhibition 𝑆𝐼 𝑆𝐼 ≥0 
Table 5.3: Parameters for the Zrect phase-plane analysis. 

 

The Z case is the same dynamics as the previously analyzed ReLU case except for the gain 

function: 

f(x, s) = min(max(x, 0), s), where s is 𝑆𝐸 or 𝑆𝐼. 

As in the ReLU case, we want to extract dimensionless parameters from this equation. 

First we make time dimensionless:  

𝜏 ≝
𝑡𝐿

𝐶
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𝑑𝑉𝐸

𝑑𝜏
=

𝐸

𝐿
+

𝑊𝐸𝐸

𝐿
𝑓(𝑉𝐸 − 𝑇𝐸 ,   𝑆𝐸) +

𝑊𝐼𝐸

𝐿
𝑓(𝑉𝐼 − 𝑇𝐼 , 𝑆𝐼) − 𝑉𝐸 

𝑑𝑉𝐼

𝑑𝜏
=

𝐼

𝐿
+

𝑊𝐼𝐼

𝐿
𝑓(𝑉𝐼 − 𝑇𝐼 , 𝑆𝐼) +

𝑊𝐸𝐼

𝐿
𝑓(𝑉𝐸 − 𝑇𝐸 , 𝑆𝐸) − 𝑉𝐼 

Then shift the thresholds to zero: 

𝑉𝑒0 ≝ 𝑉𝐸 − 𝑇𝐸 , 𝑉𝑖0 ≝ 𝑉𝐼 − 𝑇𝐼,  𝐸0/𝐿 ≝ 𝐸/𝐿 − 𝑇𝐸 ,  𝐼0/𝐿 ≝ 𝐼/𝐿 − 𝑇𝐼 

𝑑𝑉𝑒0

𝑑𝜏
=

𝐸

𝐿
+

𝑊𝐸𝐸

𝐿
𝑓((𝑉𝑒0 + 𝑇𝐸) − 𝑇𝐸 ,   𝑆𝐸) +

𝑊𝐼𝐸

𝐿
𝑓((𝑉𝑖0 + 𝑇𝐼) − 𝑇𝐼 ,  𝑆𝐼) − (𝑉𝑒0 + 𝑇𝐸) 

𝑑𝑉𝑒0

𝑑𝜏
=

𝐸0

𝐿
+

𝑊𝐸𝐸

𝐿
𝑓(𝑉𝑒0,   𝑆𝐸) +

𝑊𝐼𝐸

𝐿
𝑓(𝑉𝑖0,  𝑆𝐼) − 𝑉𝑒0 

𝑑𝑉𝑖0

𝑑𝜏
=

𝐼0

𝐿
+

𝑊𝐼𝐼

𝐿
𝑓(𝑉𝑖0,   𝑆𝐼) +

𝑊𝐸𝐼

𝐿
𝑓(𝑉𝑒0,  𝑆𝐸) − 𝑉𝑖0 

Make the rectifiers dimensionless: 

𝑑𝑉𝑒0

𝑑𝜏
=

𝐸0

𝐿
+

𝑊𝐸𝐸𝑆𝐸

𝐿
𝑓(𝑉𝑒0/𝑆𝐸 ,   1) +

𝑊𝐼𝐸  𝑆𝐼

𝐿
𝑓(𝑉𝑖0/ 𝑆𝐼, 1) − 𝑉𝑒0 

𝑑𝑉𝑖0

𝑑𝜏
=

𝐼0

𝐿
+

𝑊𝐼𝐼𝑆𝐼

𝐿
𝑓(𝑉𝑖0/ 𝑆𝑡𝐼,   1) +

𝑊𝐸𝐼𝑆𝐸

𝐿
𝑓(𝑉𝑒0/𝑆𝐸 , 1) − 𝑉𝑖0 

We can now divide by the saturation levels to make the equations dimensionless: 

𝑑𝑉𝑒0

𝑆𝑡𝐸𝑑𝜏
=

𝐸0

𝐿𝑆𝑡𝐸
+

𝐸𝐸

𝐿
𝑓(𝑉𝑒0/𝑆𝑡𝐸 ,   1) +

𝐼𝐸  𝑆𝑡𝐼

𝑆𝑡𝐸𝐿
𝑓(𝑉𝑖0/ 𝑆𝑡𝐼 , 1) −

𝑉𝑒0

𝑆𝑡𝐸
 

𝑑𝑉𝑖0

𝑆𝑡𝐼𝑑𝜏
=

𝐼0

𝑆𝑡𝐼𝐿
+

𝐼𝐼

𝑆𝑡𝐼𝐿
𝑓(𝑉𝑖0/ 𝑆𝑡𝐼 ,   1) +

𝐸𝐼𝑆𝑡𝐸

𝑆𝑡𝐼𝐿
𝑓(𝑉𝑒0/𝑆𝑡𝐸 , 1) −

𝑉𝑖0

𝑆𝑡𝐼
 

Define: 𝜶𝒆 ≝
𝑬𝟎

𝑳𝑺𝒕𝑬
 ,  𝜶𝒊 ≝

𝑰𝟎

𝑳𝑺𝒕𝑰
 , 𝜷𝒆 ≝

𝑬𝑬

𝑳
,  𝜷𝒊 ≝

𝑰𝑰

𝑳
,  𝜸𝒆 ≝

𝑰𝑬 𝑺𝒕𝑰

𝑺𝒕𝑬𝑳
, 𝜸𝒊 ≝

𝑬𝑰 𝑺𝒕𝑬

𝑺𝒕𝑰𝑳
, 𝝂𝒆 ≝

𝑽𝒆𝟎

𝑺𝒕𝑬
, 𝝂𝒊 ≝

𝑽𝒊𝟎

𝑺𝒕𝑰
,    

𝑑𝜈𝑒

𝑑𝜏
= 𝛼𝑒 + 𝛽𝑒𝑔(𝜈𝑒) + 𝛾𝑒𝑔(𝜈𝑖) − 𝜈𝑒 

𝑑𝜈𝑖

𝑑𝜏
= 𝛼𝑖 + 𝛽𝑖𝑓𝑔(𝜈𝑖) + 𝛾𝑖𝑔(𝜈𝑒) − 𝜈𝑖 

𝑔𝑧(𝑥) ≝ min (max(𝑥, 0) , 1) 
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For any parameter set it is straightforward to compute these dimensionless numbers, by first 

computing intermediate parameters. For completeness here is a protocol for going the other way, 

i.e. generating a set of parameters and stimulus that satisfies any given set of dimensionless 

numbers: 

4. 𝐿 = 1, 𝐶 = 1, 𝑇𝐼 = 0, 𝑇𝐸 = 0, 𝑆𝑡𝐸 = 1, 𝑆𝑡𝐼 = 1 

5. 𝐸𝐸 = 𝛽𝐸 , 𝐼𝐼 = 𝛽𝐼 , 𝐸 = 𝛼𝐸 , 𝐼 = 𝛼𝐼 

6. 𝐸𝐼 = 𝛾𝐸 ,  𝐼𝐸 = 𝛾𝐼 

Our Zrect gain g is piecewise linear, so we can write it in terms of a matrix with bracketed 

Heaviside function if-statements. There are 9 pieces depending on which neurons are above their 

threshold. Denote {x} to be 1 if x is true and zero if false: 

χE ≝ {0 ≤ 𝜈𝑒 < 1},  χI ≝ {0 ≤ 𝜈𝑖 < 1}, 𝜅𝐸 ≝ {𝜈𝑒 ≥ 1}, 𝜅𝐼 ≝ {𝜈𝑖 ≥ 1} 

𝑑𝜈𝑒

𝑑𝜏
= 𝛼𝑒 + 𝛽𝑒𝜈𝑒𝜒𝐸 + 𝛽𝑒𝜅𝐸 + 𝛾𝑒𝜈𝑖𝜒𝐼 + 𝛾𝑒𝜅𝐼 − 𝜈𝑒 

𝑑𝜈𝑖

𝑑𝜏
= 𝛼𝑖 + 𝛽𝑖𝜈𝑖𝜒𝐼 + 𝛽𝑖𝜅𝐼 + 𝛾𝑖𝜈𝑒𝜒𝐸 + 𝛾𝑒𝜅𝐼 − 𝜈𝑖 

Now pack it into a matrix form: 

[
𝜈𝑒̇

𝜈𝑖̇
] = [

𝛼𝑒 + 𝛽𝑒𝜅𝑒 + 𝛾𝑒𝜅𝐼

𝛼𝑖 + 𝛽𝑖𝜅𝑖 + 𝛾𝑖𝜅𝐸
] + [

𝛽𝑒χE − 1 𝛾𝑒χI

𝛾𝑖χE 𝛽𝑖χI − 1
] [

𝜈𝑒

𝜈𝑖
] 

The equilibrium is given by an equation with implicit conditionals but that is otherwise explicit: 

[
𝛽𝑒χE − 1 𝛾𝑒χI

𝛾𝑖χE 𝛽𝑖χI − 1
] [

𝜈𝑒𝑞,𝑒

𝜈𝑒𝑞,𝑖
] = − [

𝛼𝑒 + 𝛽𝑒𝜅𝑒 + 𝛾𝑒𝜅𝐼

𝛼𝑖 + 𝛽𝑖𝜅𝑖 + 𝛾𝑖𝜅𝐸
] 

[
𝜈𝑒𝑞,𝑒

𝜈𝑒𝑞,𝑖
] =

1

(𝛽𝑒𝜒𝐸 − 1)(𝛽𝑖𝜒𝐼 − 1) − 𝛾𝑒𝜒𝐸𝛾𝑒𝜒𝐼

[
1 − 𝛽𝑖χI 𝛾𝑒χI

𝛾𝑖χE 1 − 𝛽𝑒χE
] [

𝛼𝑒 + 𝛽𝑒𝜅𝑒 + 𝛾𝑒𝜅𝐼

𝛼𝑖 + 𝛽𝑖𝜅𝑖 + 𝛾𝑖𝜅𝐸
] 

 There are up to 9 equilibrium points, one for each possible χ and κ truth (only one of 

these can be true at a time), however getting all 9 requires violating the sign restrictions on 

excitation or inhibition. For each truth value we can check existence and type. To check for 
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existence we ensure that the predicted equilibrium location calculated for a given truth value 

corresponds to that value, in other words it must be self-consistent. 

If the equilibrium exists the type of equilibrium point will be determined by the trace and 

determinant: 

(𝛽𝐸χE − 1)(𝛽𝐼χI − 1) − 𝛾𝐸χE − 𝛾𝐼χI < 0 → 𝑆𝑎𝑑𝑑𝑙𝑒 

(𝛽𝐸χE − 1)(𝛽𝐼χI − 1) − 𝛾𝐸χE − 𝛾𝐼χI > 0,  𝛽𝐸χE +  𝛽𝐼χI < 2 → 𝑆𝑖𝑛𝑘 

(𝛽𝐸χE − 1)(𝛽𝐼χI − 1) − 𝛾𝐸χE − 𝛾𝐼χI > 0,  𝛽𝐸χE +  𝛽𝐼χI > 2 → 𝑆𝑜𝑢𝑟𝑐𝑒 

This assumes that L/C>0. For biologically realistic scenarios, C>0 always and L>0 except 

for unusual cases involving active voltage gated channels. If L/C <0, we would reverse the 

sink/source criterion because time would flow “backwards”. We use L/C >0 for this analysis. 

 For the equilibrium points to exist, the truthiness of χE and χI at an equilibrium must be 

self-consistent with the truthiness that has been specified to calculate said equilibrium. 

We can make a table of stability and type. We use strict inequalities as there will always be some 

non-zero noise that would destroy marginal equilibria. 
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Case Values Existence Saddle Source 

(if not saddle) 
All zero νe = αe, νi = αI αe < 0, αi < 0 False False 

χE = 1, χI = 𝜅𝐼 = 0 
νe =

αe

𝛽𝑒 − 1
, 

 𝜈𝑖 = 𝛼𝑖 + 𝛾𝑖

αe

𝛽𝑒 − 1
  

0 <
αe

𝛽𝑒 − 1
< 1 

𝛼𝑖 + 𝛾𝑖

αe

𝛽𝑒 − 1
< 1 

βe > 1 False 

χE = 𝜅𝐸 = 0, χI = 1 
ν𝑒 = 𝛼𝑒 + 𝛾𝑒

αi

𝛽𝑖 − 1
, 

 𝜈𝑖 =
αi

𝛽𝑖 − 1
  

𝛼𝑒 + 𝛾𝑒

αi

𝛽𝑖 − 1
< 1 

0 <
αi

𝛽𝑖 − 1
< 1 

βi > 1 False 

χE = 1, χI = 1 
[
𝛼𝑒(1 − 𝛽

𝑖
) + 𝛼𝑖𝛾𝑒

𝛼𝑖(1 − 𝛽
𝑒
) + 𝛼𝑒𝛾

𝑖

]

(𝛽𝑒 − 1)(𝛽𝑖 − 1) − 𝛾𝑒𝛾𝑖

 

0 < νe,eq < 1,  

0 < νi,eq < 1,  

 

(𝛽𝑒 − 1)(𝛽𝑖 − 1) < 𝛾𝑒𝛾𝑖 𝛽𝐸 + 𝛽𝐼 > 2 

κE = 1, χI = 𝜅𝐼 = 0 ν𝑒 = 𝛼𝑒 + 𝛽𝑒 

ν𝑖 = 𝛼𝑖 + 𝛾𝑖 

𝛼𝑒 + 𝛽𝑒 > 1 

𝛼𝑖 + 𝛾𝑖 < 1 

False False 

κE = 1, χI = 1 
ν𝑒 = 𝛼𝑒 + 𝛽𝑒 +

𝛾𝑒𝛼𝑖 + 𝛾𝑒𝛾𝑖

1 − 𝛽𝑖

  

ν𝑖 =
𝛼𝑒 + 𝛾𝑖

1 − 𝛽𝑖

 

 

νe,eq > 1,  

0 <
𝛼𝑒 + 𝛾𝑖

1 − 𝛽𝑖

< 1 

βi > 1 False 

χE = 𝜅𝐸 = 0, 𝜅𝐼 = 1 ν𝑒 = 𝛼𝑒 + 𝛾𝑒 
ν𝑖 = 𝛼𝑖 + 𝛽𝑖 

𝛼𝑒 + 𝛾𝑒 < 1 

𝛼𝑖 + 𝛽𝑖 > 1 

False False 

χE = 1, κI = 1 
ν𝑖 =

𝛼𝑖 + 𝛾𝑒

1 − 𝛽𝑒

 

ν𝑖 = 𝛼𝑖 + 𝛽
𝑖

+
𝛾𝑖𝛼𝑒 + 𝛾𝑒𝛾𝑖

1 − 𝛽𝑖  

 

  

0 <
𝛼𝑖 + 𝛾𝑒

1 − 𝛽𝑒

< 1  

νi,eq > 1 

 

βe > 1 False 

κE = 1, 𝜅𝐼 = 1 ν𝑒 = 𝛼𝐸 + 𝛽𝑒 + 𝛾𝑒 

ν𝑖 = 𝛼𝑖 + 𝛽𝑖 + 𝛾𝑖  

𝛼𝐸 + 𝛽𝑒 + 𝛾𝑒 > 1 

𝛼𝑖 + 𝛽𝑖 + 𝛾𝑖 > 1 
False False 

Table 5.4: Exact values of “Z” equilibrium points. Note that the “Z” gain function is a three-linear-piece 

approximation of the sigmoid gain function. 

 

 We can solve for the null clines in a similar way to the ReLU case. We need choose the 

independent variable in order to make the denominator only zero on a set of measure zero: 

𝜈𝑒̇ = 𝛼𝑒 + 𝛽𝑒𝜈𝑒𝜒𝐸 + 𝛽𝑒𝜅𝐸 + 𝛾𝑒𝜈𝑖𝜒𝐼 + 𝛾𝑒𝜅𝐼 − 𝜈𝑒 = 0 

𝑣𝑒 =
𝛼𝑒 + 𝛽𝑒𝜅𝐸 + 𝛾𝑒𝜈𝑖𝜒𝐼 + 𝛾𝑒𝜅𝐼

1 − 𝛽𝑒𝜒𝐸
, 𝑓𝑜𝑟 𝐸 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 

For each value of 𝜈𝑖, we must try each possibility of χE and 𝜅𝐸 and discard any that don’t work. 

There may be multiple values of 𝑣𝑒for a given 𝜈𝑖 . Similarly,  

𝑣𝑖 =
𝛼𝑖 + 𝛽𝑖𝜅𝐼 + 𝛾𝑖𝜈𝑒𝜒𝐸 + 𝛾𝑖𝜅𝐸

1 − 𝛽𝑖𝜒𝐼
, 𝑓𝑜𝑟 𝐼 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒 
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 We trivially have a global attractor because in the limit of large positive or large negative 

responses the leak term is proportional to the voltages, and brings the system toward the origin. 

Everything else saturates to a finite number. There are still cases with no stable equilibria, they 

all have a limit cycle. Some Zrect phase-plane behaviors are shown in figure 5.2 

 

 

  
Figure 5.2: Two unit Zrect phase-planes for various parameters. These are presented in the same format as 

figure 5.1 except that there are two pairs of red dotted lines indicating the activation and the saturation. A 

network with a single stable equilibrium. B: A network with two stable equilibria, with a saddle between 

them. C: A network with a stable equilibrium, saddle, and limit cycle. D: A network with a limit cycle but 

no stable equilibria. 
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5.3 Converting neural networks into a two-unit networks 

In the previous Section of this chapter we have shown that two-unit neural networks can be 

analytically approximated in terms of phase-plane features. In this section we show how to 

approximate a more complex neural network as a two-unit network. 

We assume that the time constants of both models are 1, thus there is no need to scale 

time. We seek to lump all excitatory and inhibitory neurons Together. 

𝜈𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅ ≝
1

𝑘
∑ 𝑒𝑣𝑒𝑛(𝑖) 𝜈𝑖 , 𝜈𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅ ≝

1

𝑘 + 1
∑ 𝑜𝑑𝑑(𝑖) 𝜈𝑖 

Define the average total excitatory and inhibitory input: 

𝛼𝑒𝑥𝑐̅̅ ̅̅ ̅ ≝
1

𝑘
∑ 𝑒𝑣𝑒𝑛(𝑖) 𝛼𝑖 , 𝛼𝑖𝑛ℎ̅̅ ̅̅ ̅ ≝

1

𝑘 + 1
∑ 𝑜𝑑𝑑(𝑖) 𝛼𝑖 

Define the average gain inputs: 

𝑔𝐸𝐸̅̅ ̅̅ ≝
1

𝑘
∑ 𝑒𝑣𝑒𝑛(𝑖)𝑔(𝑣𝑖), 𝑔𝐼𝐼̅ ≝

1

𝑘 + 1
∑ 𝑜𝑑𝑑(𝑖)𝑔(𝑣𝑖), 

𝑔𝐸𝐼̅̅ ̅ ≝
2𝑘

𝑘 + 1
𝑔𝐸𝐸̅̅ ̅̅ ,    𝑔𝐼𝐸̅̅ ̅ ≝

1

𝑘
(2 (∑ 𝑜𝑑𝑑(𝑖)𝑔(𝑣𝑖)) − 𝑔(𝑣1) − 𝑔(𝑣𝑁)) 

Now we can rewrite the equations in terms of averages: 

𝑑𝜈𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅

𝑑𝜏
= 𝛼𝑒𝑥𝑐̅̅ ̅̅ ̅ + 𝑊𝐸𝐸𝑔𝐸𝐸̅̅ ̅̅ + 𝑊𝐼𝐸𝑔𝐼𝐸̅̅ ̅−𝜈𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅ 

𝑑𝜈𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅

𝑑𝜏
= 𝛼𝑖𝑛ℎ̅̅ ̅̅ ̅ + 𝑊𝐸𝐼𝑔𝐸𝐼̅̅ ̅ + 𝑊𝐼𝐼𝑔𝐼𝐼̅−𝜈𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅ 

The first approximation is to reverse the order of averaging and applying the gain function: 

𝑔𝐸𝐸̅̅ ̅̅ ≈ 𝑔(𝑣𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅), 𝑔𝐼𝐼̅ ≈ 𝑔(𝑣𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅), 𝑔𝐸𝐼̅̅ ̅ ≈
2𝑘

𝑘 + 1
𝑔(𝑣𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅), 𝑔𝐼𝐸̅̅ ̅ ≈

2𝑘 − 2

𝑘
𝑔(𝑣𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅) 

These approximations are exact if all excitatory are at the same voltage and so are all inhibitory 

neurons, and they are accurate to 𝑂(𝜖2) for small 𝜖 deviations away from uniformity. However, 

for large deviations they can be considerably inaccurate. Since this is the main source of error, 
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deviations from the Zrect model that do not rely on fine-tuning are likely do to non-uniform 

activation. 

We approximate the sigmoid gain function with a Z function of the same maximum 

slope, minimum and maximum value, and argument of midpoint. A minimum least-square 

difference approximation would have a slightly higher maximum slope, but the maximum slope 

is very important for setting the bifurcation dynamics, and we are still close to a least squares fit.  

This gives us: 𝑔(𝑥) ≈ 𝑔𝑧(
𝑥

4
+

1

2
) 

Putting this all together we approximate the harmonic equations in terms of the 

nonharmonic equations: 

𝑑𝜈𝑒𝑥𝑐̅̅ ̅̅ ̅

𝑑𝜏
≈ 𝛼𝑒𝑥𝑐̅̅ ̅̅ ̅ + 𝑊𝐸𝐸𝑔𝑧 (

𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅

4
+

1

2
) + 𝑊𝐼𝐸

2𝑘 − 2

𝑘
𝑔𝑧 (

𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅

4
+

1

2
) −𝜈𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅ 

𝑑𝜈𝑖𝑛ℎ̅̅ ̅̅ ̅

𝑑𝜏
≈ 𝛼𝑖𝑛ℎ̅̅ ̅̅ ̅ + 𝑊𝐸𝐼

2𝑘

𝑘 + 1
𝑔𝑧 (

𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅

4
+

1

2
) + 𝑊𝐼𝐼𝑔𝑧 (

𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅

4
+

1

2
) −𝜈𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅ 

Define: 𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅ ≝
𝑣𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅

4
+

1

2
,  𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅ ≝

𝑣𝑖𝑛ℎ0̅̅ ̅̅ ̅̅ ̅

4
+

1

2
 

Helpful: 𝑣𝑒𝑥𝑐0̅̅ ̅̅ ̅̅ ̅ = 4𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅ − 2 

4
𝑑𝜈𝑒𝑥𝑐̅̅ ̅̅ ̅

𝑑𝜏
≈ 𝛼𝑒𝑥𝑐̅̅ ̅̅ ̅ + 𝑊𝐸𝐸𝑔𝑧(𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅) + 𝑊𝐼𝐸

2𝑘 − 2

𝑘
𝑔𝑧(𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅) − 4𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅ + 2 

4
𝑑𝜈𝑖𝑛ℎ̅̅ ̅̅ ̅

𝑑𝜏
≈ 𝛼𝑖𝑛ℎ̅̅ ̅̅ ̅ + 𝑊𝐸𝐼

2𝑘

𝑘 + 1
𝑔𝑧(𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅) + 𝑊𝐼𝐼𝑔𝑧(𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅) − 4𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅ + 2 

Substitute the alphas: 

𝑑𝜈𝑒𝑥𝑐̅̅ ̅̅ ̅

𝑑𝜏
≈ (

2 +
1
𝑘

∑ 𝑒𝑣𝑒𝑛(𝑖) 𝛼𝑖

4
) + (

𝑊𝐸𝐸

4
) 𝑔𝑧(𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅) + (𝑊𝐼𝐸

𝑘 − 1

2𝑘
) 𝑔𝑧(𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅) − 𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅ 

𝑑𝜈𝑖𝑛ℎ̅̅ ̅̅ ̅

𝑑𝜏
≈ (

2 +
1

𝑘 + 1
∑ 𝑜𝑑𝑑(𝑖) 𝛼𝑖

4
) + (𝑊𝐸𝐼

𝑘

2𝑘 + 2
) 𝑔𝑧(𝑣𝑒𝑥𝑐̅̅ ̅̅ ̅) + (

𝑊𝐼𝐼

4
) 𝑔𝑧(𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅) − 𝑣𝑖𝑛ℎ̅̅ ̅̅ ̅ 
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The final conversion formula: 

𝛼𝑒𝑥𝑐 =
1

2
+

∑ 𝑒𝑣𝑒𝑛(𝑖) 𝛼𝑖

4𝑘
, 𝛼𝑖𝑛ℎ =

1

2
+

∑ 𝑜𝑑𝑑(𝑖) 𝛼𝑖

4(𝑘+1)
, 𝛽𝑒𝑥𝑐 =

𝑊𝐸𝐸

4
, 𝛽𝑖𝑛ℎ =

𝐼𝐼

4
, 

𝛾𝑒𝑥𝑐 = 𝑊𝐼𝐸

𝑘 − 1

2𝑘
, 𝛾𝑖𝑛ℎ = 𝑊𝐸𝐼

𝑘

2𝑘 + 2
 

𝜈𝑒𝑥𝑐 =
1

2
+

1

4𝑘
∑ 𝑒𝑣𝑒𝑛(𝑖) 𝜈𝑖,   𝜈𝑖𝑛ℎ =

1

2
+

1

4𝑘+4
∑ 𝑜𝑑𝑑(𝑖) 𝜈𝑖  

Like the larger networks, two-unit networks are able to have hysteresis and/or oscillation, 

depending on the exact parameters.  

 

Phase offsets 

Suppose a 2x2 phase-plane matrix is barely a spiral source, so that it is almost linear and the 

nonlinear boundaries are pushing ever so gently to stabilize it. Thus we can do linear analysis. 

Phase plane constraints: The trace of the matrix must be zero, with determinate > 0. 

E-I constraints (matrix is to-from indexed, x axis is E, y axis is I):  

𝑑𝑉

𝑑𝑡
= [

𝑊𝐸𝐸 − 1 𝑊𝐼𝐸

𝑊𝐸𝐼 𝑊𝐼𝐼 − 1
] (𝑉 − 𝑉𝑒𝑞) 

𝑊𝐸𝐸 + 𝑊𝐼𝐼 = 2 

(𝑊𝐸𝐸 − 1)(𝑊𝐼𝐼 − 1) − (𝑊𝐸𝐼)(𝑊𝐼𝐸) > 0 

𝑊𝐸𝐸 , 𝑊𝐸𝐼 , 𝑊𝐼𝐸 , 𝑊𝐼𝐼 ≥ 0 

This will give us an elliptical orbit. 

Time lag: 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂(((𝑥 − ⟨𝑥⟩) − 𝜂) ∗ (𝑦 − ⟨𝑦⟩)) 

For a circular orbit the phase difference is 90 degrees, but it can be less or more for an elliptical 

orbit, and in the almost linear regime can be analyzed with matrix exponential. 
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5.4 Lyapunov function analysis 

Gains and Lyapunov functions 

Consider a recurrent dynamical system with symmetric weight matrix 𝑊: 

𝜏
𝑑𝑣

𝑑𝑡
= 𝑊𝑇𝑔(𝑣 − 𝑏) − 𝑣 + 𝑗 

Where 𝑗 is the input current 𝑣 is the voltage, and b is the threshold. 

 
The activity of the network is 𝑠 = 𝑔(𝑣 − 𝑏). It is easier to compute the Lyapunov function in 

activity space is (Hopfield & Tank, 1985): 

𝐿(𝑠) = ∑ ∫ (𝑔−1(si))𝑑s
𝑠𝑖

0

+ 𝑏𝑇𝑠 − 𝑗𝑇𝑠 −
1

2
𝑠𝑇𝑊𝑠 

𝑠𝑖 = 𝑔(𝑣𝑖 − 𝑏𝑖) 
 
We derived L for four separate gain functions and summarize the results in table 5.5.   

 

 
Gain  Formula Lyapunov function 

Linear (this is a 

“control” of sorts) 
𝑔(𝑥) = 𝑥 

𝐿(𝑠) = (𝑏 − 𝑗)𝑇𝑠 −
1

2
𝑠𝑇(𝑊 − 𝐼)𝑠 

 

Sigmoid 
𝑔(𝑥) =

1

1 + exp(−𝑘𝑥)
 𝐿(𝑠) =

1

𝑘
(𝑠𝑙𝑛𝑠 + (1 − 𝑠) 𝑙𝑛(1 − 𝑠)) + (𝑏 − 𝑗)𝑇𝑠 −

1

2
𝑠𝑇𝑊𝑠 

Step 𝑔(𝑥) = 𝑢(𝑥) 
𝐿(𝑠) = (𝑏 − 𝑗)𝑇𝑠 −

1

2
𝑠𝑇𝑊𝑠 

 

ReLU 𝑔(𝑥) = ∫ 𝑢(𝑥) 
𝐿(𝑠) = (𝑏 − 𝑗)𝑇𝑠 −

1

2
𝑠𝑇(𝑊 − 𝐼)𝑠 

 

Table 5.5: Four Lyapunov functions for four commonly used neural network gains. 
 

This is quadratic for three of the 4 cases, but there are boundary conditions for the 

nonlinear gains. It is nearly quadratic for the sigmoid case, where it gets very steep very near the 

boundaries where 𝑠 approaches zero or one, preventing the neuron from getting to the actual 

boundary. For the quadratic cases this changes the problem from one of nonlinear optimization 

to one of bounded quadratic optimization. 
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Lyapunov functions as objective functions 

If there is no feedback from the excitatory to inhibitory units there is a Lyapunov function for the 

inhibitory subnetwork, and the excitatory subnetwork using the inhibitory network’s stable state 

as input. This guarantees global stability if the gain is bounded as are our sigmoid gains used in 

Chapter 4. But even given two-way feedback we can still discuss the effects of the functions, it is 

just not guaranteed to have a Lyapunov function which gets minimized. 

For a sigmoid gain in activity space (bounded between s=0 and s=1) and symmetrical 

weights we have: 

𝐿(𝑠) =
1

𝑘
(𝑠 ln(𝑠) + (1 − 𝑠) ln(1 − 𝑠)) + (𝑏 − 𝑗)𝑇𝑠 −

1

2
𝑠𝑇𝑊𝑠 

Where 𝑏 is the threshold, k is the gain (which is one without loss of generality), 𝑗 is the 

current, and 𝑊 is the weight matrix for the recurrent network. 

There is a statistical interpretation to this function. The function is trying to find 

directions that are strongly distinguished from s=0.5 while maintaining entropy. 

The first term is the binary entropy function and thus extreme values with low entropy 

are penalized. Indeed, the infinite slope of the function prevents the limits from ever being 

reached. 

The term 
−1

2
𝑠𝑇𝑊𝑠 is also part of the prior. One can consider 𝑊 as an inverse covariance 

matrix of a normal distribution, and this term is to maximize the contrast (or unlikelihood), 

which is the opposite goal as to what most Bayesian priors do. For a sign-agonistic network with 

a given stimulus, the simplest Hebbian rule is −𝑊 = −𝑥𝑥𝑇 . This is a negative semidefinite term 

with one negative eigenvalue. It is destabilizing, favoring 𝑠 → ±𝑥 and is minimized at infinity. 
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If the destabilization (most negative eigenvalue) exceeds the second derivative of the entropy 

term (which is a diagonal matrix) then there are two stable equilibrium so long as 𝑏 − 𝑗 is small 

enough. Otherwise there is only one stable equilibria. 

(𝑏 − 𝑗)𝑇is the posterior term, that updates the “Bayesian inference” process. It states that the log 

likelihood increases in a given direction, no matter how far along said direction one travels. If 

this term aligns with 𝑥 it will act in synergy with the quadratic term. Thus the overall likelihood 

optimization is to maximize entropy while finding the directions that make the most “sense”. 

 

5.5 Bf-agnostic harmonicity detection 

Suppose we aren’t restricted to a single bf0, but instead want to know if sounds are harmonic or 

not; i.e. a bf0-agnostic detector. Suppose the goal of a network is to detect a harmonic sound 

given by x = K*x0 where x0 is the input vector and the filter K is a fixed-width gaussian 

convolution. We want to solve this problem.  

 

A highly nonlinear problem 

Assume that we have harmonic stimuli with randomized component strength and randomized f0. 

Each of these stimuli corresponds to a subcortical input in ℝ𝑁 for N channels. Our network must 

respond to these subcortical inputs while ignoring background inputs. What is the shape of the 

set of harmonic inputs in this high dimensional space? 

For simplicity, we assume that the harmonic stimuli is well-resolved (sigma(K) << f0). 

The makes the x a collection of equally-spaced equal-shape and height gaussian peaks that don’t 

overlap significantly. 
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 This stimulus space is a high dimensional open generalized cone. Given a cone in 3 

dimensions with its vertex at the origin, points on it can be parameterized by theta and r. theta is 

a non-linear parameter in that it adjusting it causes the point to make a non-straight curve in the 3 

dimensional space. The parameter r is the distance from the origin and acts as a linear multiplier: 

doubling r doubles the point’s location. Furthermore, moving along r is perpendicular to moving 

along theta. 

 A generalized cone in three dimensions can have any arbitrary shaped base. In this case it 

can be parameterized by arclength s instead of theta, while r is unchanged. The arclength is taken 

at unit r. Our case is a higher-dimensional version of the generalized cone. All directions along 

A are orthogonal to the direction along f0 and to each-other. Cones and generalized cones don’t 

have intrinsic curvature but they are curved in the higher dimensional space (i.e they have non-

zero principle curvature). An open generalized cone has an unbounded s rather than a parameter 

that loops back on itself. 

 A cone or generalized cone in 3D space is the union of a 1-parameter locus of lines 

through the origin. Our stimuli space unionizes a 1-parameter collection of a hyperplanes 

through the origin. If we have N components across our harmonic complex, each hyper-plane is 

N dimensional and the overall surface is N+1 dimensional. For a given f0, each single convolved 

component corresponds to a line. These lines are orthogonal to each-other for well-resolved 

harmonics and define a hyperplane of possible stimuli for said 𝑓0. This surface lives in an infinite 

dimensional Euclidian space that becomes finite-dimensional when we discretize. However, our 

locus of hypersurfaces is still a single-parameter locus, parameterized by 𝑓0. 

 The curvature along the cone, the coordinate acceleration, as we change the arclength is 

constant. A harmonic complex is given by: 
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𝑥 = ∑ 𝐴𝑖𝐾 ∗ 𝛿(𝑓0𝑖)

𝑖

 

Arclength can be parameterized by (with discretization the integral would be a sum): 

𝑑𝑠 = √∫ (
𝑑𝑥

𝑑𝑠
)

2

𝑑𝑓0,  𝐴 = [1,1, … 1] 

Due to the translational symmetry, as long as the harmonic complex stays well-resolved, 

we have 𝑠~𝑓0 . Thus 𝑓0 is proportional to arclength parametrization we will use it instead of 

arclength. 

Moving along a given component in 𝐴 takes the stimulus closer and further from the 

origin. The velocity vector is given by: 
𝑑𝑥

𝑑𝐴𝑖
= 𝐾 ∗ 𝛿(𝑓0𝑖). There is no curvature/acceleration 

along any 𝐴 direction. 

Along the 𝑓0direction the velocity is: 

 
𝑑𝑥

𝑑𝑓0
~ ∑ 𝑖𝐴𝑖𝑖 (

𝑑𝐾

𝑑𝑥
∗ 𝛿(𝑓0𝑖)).  

The appearance if i in the sum is because higher components move faster as we change 𝑓0. 

 

The curvature (acceleration vector) is given by: 

𝑎 =
𝑑2𝑥

𝑑𝑓0
2 

This acceleration is: 

𝑎 = ∑ 𝑖𝐴𝑖

𝑖

(
𝑑2𝐾

𝑑𝑥2
∗ 𝛿(𝑓0𝑖)) , |𝑎|~ ∑ 𝑖𝐴𝑖

𝑖

 

Thus our curve (at a constant A) has a constant acceleration amount (but not a constant 

acceleration direction). 
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 When we relax the assumption that of well-resolved harmonics, we still have a 

generalized hyper-cone because x is still linear in A. However, the velocity (relationship between 

s and f0) and acceleration magnitude are no longer is independent of f0. At moderate f0, the tails 

of the components start interacting with the head of the next component and velocity lowers. At 

very low f0’s, the curves overlap so much velocity increases. Also, the single-component lines 

that generate the hyper-plane are no-longer orthogonal. 

 What kinds of discrimination problems require non-linear decision problems? Consider a 

discrimination problem where there are N=8 components. Non-harmonic sounds have the first 4 

components shifted slightly downward, and the last 4 shifted upward. A non-harmonic sound can 

be parameterized by f0, A, as well as epsilon, with epsilon determining the shift: 

𝑥𝑏𝑎𝑐𝑘 = ∑ 𝐴𝑖𝐾 ∗ 𝛿(𝑓0𝑖 −
𝜖

𝑖
[𝑖 ≤ 4] +

𝜖

𝑖
[𝑖 > 4])

𝑖=1 𝑡𝑜 8

 

For small 𝜖, the negative shift of the first 4 components is like decreasing f0 while the positive 

shift is like increasing f0 . These cancel out and we have orthogonality: (
𝑑𝑥

𝑑𝑓0
) . (

𝑑𝑥𝑏𝑎𝑐𝑘

𝑑𝜖
) = 0. 

Thus the direction away from harmonicity is always perpendicular to velocity. A discrimination 

function that is proportional to A would have to follow this changing velocity. 

 

Solving the agnostic detection of harmonics problem 

In Chapter 3 our test with a variable range of f0 values performed poorly on feed-forward 

networks; with the same parameters as that variable-f0 problem where the background stimuli 

are jittered versions of the foreground stimuli, except with the random height at 0.25 and the log-

range of the fundamental of 0.8. 



 

 149 

 A natural way to solve this problem is a max of sieves. For each f0 value we build a linear 

classifier (which was shown to be very similar to the single-f0 solutions in Chapter 3). The 

classifier for a given f0 is: 

(𝑥−𝑥𝑏𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ )𝑇(𝑥𝑓0̅̅ ̅̅ ̅−𝑥𝑏𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ )

|𝑥𝑓0̅̅ ̅̅ ̅−𝑥𝑏𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ |
2 + 𝑏𝑢𝑛𝑏𝑖𝑎𝑠 >

1

2
  

When the subcortical input x is equal to the mean of the background stimuli (for all f0 values), 

𝑥𝑏𝑎𝑐𝑘̅̅ ̅̅ ̅̅ ̅, this classifier returns zero. Without (the scalar) 𝑏𝑢𝑛𝑏𝑖𝑎𝑠, when x is equal to the mean of the 

subset of the foreground stimuli with the fundamental is our given f0, 𝑥𝑓0̅̅ ̅̅ , the classifier returns 

one. The cutoff is half-way in-between these points.  

We consider a sound harmonic iff any of the classifiers for any of the allowed f0 

frequencies returns true, i.e. we compute the maximum activation over our sieve-bank network. 

𝑏𝑢𝑛𝑏𝑖𝑎𝑠 is set so that the average of all background and foreground training stimuli is ½ (the 

background is below ½ by the same amount that the foreground is above ½). The maximum 

operation will tend to return values that are too high and 𝑏𝑢𝑛𝑏𝑖𝑎𝑠 corrects for this effect.. The 

problem is easily converted into a recurrent neural network as shown in figure 5.3. 

 

Figure 5.3: A recurrent network approximation of max-of-sieves. It has similar performance to a max-of-

sieves algorithm.  
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The “Fourier” weight matrix shown in figure 5.4 stores these sieves and resembles a 

Fourier transform in that it approximately measures how strongly sinusoidal the network and has 

it’s thresholds set so that units downstream 50% activation at the thresholds in the max-of-sieves.  

The weights feeding into the recurrent layer from the Fourier layer are diagonal and 

activate the corresponding recurrent units. The recurrent weight matrix with number of channels 

𝑁𝑐ℎ is excitatory with global inhibition: 

𝑅𝑖𝑗 , =
|𝑖−𝑗|

𝑁𝑐ℎ−1
, 𝑅𝑤𝑟𝑎𝑝 = 𝑅[𝑅 < 0.5] + (1 − 𝑅)[𝑅 ≥ 0.5]; 𝑅 varies from -1 to 1 corner to corner 

and is zero down the diagonal, 𝑅𝑤𝑟𝑎𝑝 has a periodic boundary condition that is not natural but 

makes the attractor peak location unbiased. 

𝐸𝑥𝑐𝑢𝑛𝑛𝑜𝑟𝑚 = exp (−
0.5𝑅2

𝜎2 ) ,   𝐸𝑥𝑐 = 𝐸𝑥𝑐𝑢𝑛𝑛𝑜𝑟𝑚𝑑𝑖𝑎𝑔(∑ 𝐸𝑥𝑐𝑢𝑛𝑛𝑜𝑟𝑚,𝑖𝑗𝑗  ),   

𝐼𝑛ℎ =
𝑘𝐼

𝑁𝑐ℎ
,    𝑊 = 𝐸𝑥𝑐 + 𝐼𝑛ℎ 

The parameters are: 𝑘𝐸 = 1, 𝑘𝐸 = 1, 𝜎 = 0.25 

This layer behaves as a “winner take all” in that there is an attractor that inhibits the 

formation of other locations while reinforcing itself. The location of the attractor will be pulled 

toward the strongest region of inputs from the Fourier layer so it will act like an argmax function. 

 The and-gate layer is the only layer with non-sigmoid gain and it has an ReLU gain. It 

gets identity-matrix inputs from the sievebank and recurrent layer. Units only activate if they are 

in the vicinity of the active region in the recurrent network and have above-50% activation of the 

Fourier layer. Finally, the single output neuron is very easily activated. 
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Figure 5.4: The sieve layer in the winner-take all network. A: The bank of sieves, each row is a sieve. B: 

The thresholds at each sieve. 

 
It is possible to solve this particular problem without a recurrent network by making the 

ReLU neurons get direct input form the Fourier layer and have a threshold of ½. However, the 

use of a “winner take all” network offers several computational advantages.  

Firstly, it acts like a noise-filter: a single “false alarm” neuron from the Fourier layer will 

not pull the active region toward its location as much as a collection of nearby neurons with 

moderate activity. A simple the max-of-sieves method, which can be implemented in a 

feedforward network, doesn’t have. The recurrent network also allows a graded determination of 

the maximum value rather than a simple binary “on-off” classifier. Finally, the recurrent network 

allows programmable selective attention to be added: an extra layer of neurons feeding 

diagonally into the recurrent layer could select where the attention is drawn. Thus recurrence has 

several advantages that would be difficult to implement with purely feed-forward networks. The 

results of a run with a recurrent network are shown in figure. 
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Figure 5.5: The recurrent network responses to a fixed harmonic stimulus. The stimulus turns on at time 

18 and turns off at time 50. A: The bank of sieves. B: The winner-take-all network. The activation “pulls” 

the excitation toward it. C: The and-gate that requires activity from both A and B to activate. 
 

Feedforward networks perform miserably without special training methods, as 

summarized in table 5.6. The network is set up in the same way as Chapter 3. However, a max-

of-sieves performs well. 

Network Training % Test % Linearness 

Zero hidden layers 56.89 54.69 0.9663 

One hidden layer 51.29 50.58 0.9608 

Two hidden layers 49.93 49.93 Highly nonlinear 

Maximum of sieves 79.1 78.52 Highly nonlinear 

Win take all recurrent 81.49 81.64 Highly nonlinear 
Table 5.6: The training and test performance data of the various networks. The maximum of sieves well 

outperforms the feed-forward networks and is comparable to the winner-take-all network. 1024 stimuli in 

each category were used with the corresponding binomial error margins of about ± 3%.  
 

 

5.6 Optimal hysteresis parameters for autocorrelated time-series 

Perceptual hysteresis is found throughout multiple sensory modalities. For the auditory system 

tone perception vs absence shows a range of a few dB around threshold (Pickles, 2013). 

Hysteresis is useful when past stimuli are likely to be the same label as the present 

stimulus. We can calculate analytically the advantage of hysteresis in simplified cases. Consider 

a neural network that projects stimuli into ℝ1 which represents the output label. Call this random 

variable 𝑋. The neural network must decide whether a stimulus is background or foreground. 
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Assume that the background stimuli have the same standard deviation as the foreground stimuli, 

and that it is a normal distribution. Also assume we penalize both type 1 and type 2 errors 

equally and over a long time period we get a 50:50 stimuli presentation. Without loss of 

generality, background stimuli average −𝜇, foreground average 𝜇, and the standard deviation is 

1. If 𝜇 ≫ 1 we can cleanly distinguish them, but if 𝜇 < 2 or so there will be a significant error 

rate. 

Since we expect stimuli not to change between background and foreground all that often, 

we store our guess G of the previous state and use it to bias our decision. The guess can be 

“background” or “foreground”. We have some hysteresis: If G is “background”, we will switch 

G to foreground (we still use the background G for this stimulus, but next stimulus will use 

foreground) when 𝑥 > 𝑚. If our guess is foreground, we will switch it when 𝑥 < −𝑚.  

A combination of 𝑥 and G is used to make a decision. Without hysteresis it is best to set the 

threshold to zero (due to the symmetry in the problem), but with threshold we set it to ±𝑔 

depending on the state of G. 

 Stimuli switch between background and foreground stimuli with a switching probability 

𝑝. If 𝑝 ≪ 1, one would expect to be able to use hysteresis to more accurately inform the answer. 

 This can be modelled as a 4 state system, with an accuracy percentage given by 

cumulative normal distributions. Let G- indicate background G, and S- indicate background 

stimuli, while “+” indicates foreground. Let Φ indicate the cumulative unit normal distribution; it 

is also possible to replace Φ with a different distribution. 

State Accuracy Next = G-/S-  Next = G-/S+ Next = G+/S- Next = G+/S+ 

G-/S- 𝛷(𝜇 + 𝑔) 𝛷(𝑚 + 𝜇)(1 − 𝑝) 𝛷(𝑚 + 𝜇)𝑝 𝛷(−𝜇 − 𝑚)(1 − 𝑝) 𝛷(−𝜇 − 𝑚)𝑝 

G-/S+ 𝛷(𝜇 − 𝑔) 𝛷(𝑚 − 𝜇)𝑝 𝛷(𝑚 − 𝜇)(1 − 𝑝) 𝛷(𝜇 − 𝑚)𝑝 𝛷(𝜇 − 𝑚)(1 − 𝑝) 

G+/S- 𝛷(𝜇 − 𝑔) 𝛷(𝜇 − 𝑚)(1 − 𝑝) 𝛷(𝜇 − 𝑚)𝑝 𝛷(𝑚 − 𝜇)(1 − 𝑝) 𝛷(𝑚 − 𝜇)𝑝 

G+/S+ 𝛷(𝜇 + 𝑔) 𝛷(−𝜇 − 𝑚)𝑝 𝛷(−𝜇 − 𝑚)(1 − 𝑝) 𝛷(𝑚 + 𝜇)𝑝 𝛷(−𝜇 − 𝑚)(1 − 𝑝) 

Table 5.7: Hysteresis switching rules. 
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We can calculate the equilibrium probabilities by equating how much goes into vs out of each. 

By grouping them into “bad” (accuracy 𝛷(𝜇 − 𝑔) ) and “good” (accuracy 𝛷(𝜇 + 𝑔) ) cases we 

get: 

Pr(𝑏𝑎𝑑) (𝛷(𝑚 − 𝜇)𝑝 + 𝛷(𝜇 − 𝑚)(1 − 𝑝)) = Pr (𝑔𝑜𝑜𝑑)(𝛷(𝑚 + 𝜇)𝑝 + 𝛷(−𝜇 − 𝑚)(1 − 𝑝))  

Since the probabilities add up to unity we have: 

Pr(𝑏𝑎𝑑) =
𝛷(𝑚+𝜇)𝑝+𝛷(−𝜇−𝑚)(1−𝑝)

𝛷(𝑚−𝜇)𝑝+𝛷(𝜇−𝑚)(1−𝑝)+𝛷(𝑚+𝜇)𝑝+𝛷(−𝜇−𝑚)(1−𝑝)
   

If 𝑝 is small and 𝑚 and 𝜇 are large and comparable, we are much less likely to be stuck in a 

“bad” situations. 

The average accuracy is: 

𝐴 =
(𝛷(𝑚 + 𝜇)𝑝 + 𝛷(−𝜇 − 𝑚)(1 − 𝑝))𝛷(𝜇 − 𝑔) + (𝛷(𝑚 − 𝜇)𝑝 + 𝛷(𝜇 − 𝑚)(1 − 𝑝))𝛷(𝜇 + 𝑔)

𝛷(𝑚 − 𝜇)𝑝 + 𝛷(𝜇 − 𝑚)(1 − 𝑝) + 𝛷(𝑚 + 𝜇)𝑝 + 𝛷(−𝜇 − 𝑚)(1 − 𝑝)
 

For a given 𝜇 we can find 𝑚 and 𝑔 to get the best accuracy.  

Consider the case of vanishing p: 

𝐴𝑃→0 =
(𝛷(−𝜇 − 𝑚))𝛷(𝜇 − 𝑔) + (𝛷(𝜇 − 𝑚))𝛷(𝜇 + 𝑔)

𝛷(𝜇 − 𝑚) + 𝛷(−𝜇 − 𝑚)
 

Simplify: 

𝐴𝑃→0 =
𝛷(−𝜇 − 𝑚)𝛷(𝜇 − 𝑔)

𝛷(𝜇 − 𝑚) + 𝛷(−𝜇 − 𝑚)
+

𝛷(𝜇 − 𝑚)𝛷(𝜇 + 𝑔)

𝛷(𝜇 − 𝑚) + 𝛷(−𝜇 − 𝑚)
 

When there is autocorrelation, a moderate amount of hysteresis helps with the classification 

accuracy as shown in figure 5.6. 
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Figure 5.6: Accuracy as a function of g; g is how strong the threshold shift of hysteresis is. This is the 

“height” of the hysteresis loop. Other parameters p=0.1, m=𝜇=1. We assume normally distributed 𝛷. 

 

Accuracy also depends on where we set the hysteresis threshold and degrades with higher 

switching probability if we have hysteresis, as shown in figure 5.7. 

 
Figure 5.7: Accuracy as a function of m and p. A: Accuracy as a function of m; m is how strong the 

stimuli have to deviate from the mean to change the hysteresis. This is the “width” of the hysteresis loop. 

Other parameters: p=0.1, 𝜇=1, g=1. B: Accuracy as a function of how often the stimuli switch p, other 

parameters m=𝜇=g=1. We assume normally distributed 𝛷. 
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What parameters in the problem maximizes the benefit of hysteresis? Small but non 

vanishing p does (p>0.5 actually would favor negative m). For optimal g and m, 𝜇~0.7 is a 

sweet-spot that maximizes the benefit from hysteresis, for a maximum accuracy benefit of about 

0.0584, as summarized in figure 5.8. 

 
Figure 5.8: Accuracy of the optimal hysteresis parameters when p is small. The two parameters, m and g, 

are numerically optimized for each 𝜇 for each p vanishingly close to zero. This is compared to a model 

without hysteresis. We see that strong autocorrelation in the time series produces a slightly higher 

accuracy in the hysteresis. We assume normally distributed 𝛷. 

 
The effect can be improved further with more complex systems. The <6% accuracy 

benefit is small. Having more variables (and more hysteresis bits) will “amplify” the benefit. 

Also, having an ultra-thin tail distribution (i.e. a truncated normal distribution) also was found to 

increase the benefit. Finally, averaging several network stimuli would increase the benefit of 

hysteresis as long as p stays very low. 

Noise is inherent in any real neural process. A recurrent network that attempts to store its 

own firing rate, such as though a series of 1-neuron RELU autofeedbacks; neural integrators 

have been found in the oculomotor system (Cannon & Robinson, 1985); will be prone to drift. In 

order to store information robustly a network must either store it in the weights itself (which 
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occurs during training) or be recurrent with multiple attracting patterns of activity. Said memory 

may need to be stored for a period of time while the animal processes the meaning of the sound 

stimuli.  

The latter case is observed in a Hopfield network, and can be used to store multiple 

vectors of information; each training vector, if they aren’t too numerous or degenerate, creates a 

basin of attraction in the Lyapunov function (Hopfield, 1982, 1984). Hysteresis is observed when 

a varying external forcing function is applied to a system in such a way that it pushes the state 

from one basin of attraction to another and back. Thus for robust memory that is stored in the 

firing patterns (most likely this is a form of short-term memory) hysteresis is inevitable. 

 

5.7 Other potential recurrent network advantages 

Recurrent networks may have other benefits beyond what was aforementioned. These could 

potentially be addressed experimentally. 

 

Locality constraints as biological budgeting 

Axoplasm takes space and energy, so the brain tries to minimize distances between connected 

neurons by wiring neurons locally when possible. If a recurrent network can send information 

through nearby channels it could avoid long-distance connections. 

 

Robustness to damage 

A recurrent network with n units will have O(n ^2) network connections. This is in contrast to a 

feedforward network with a single neuron as output which has a layer with O(n) connections. 

Damage in terms of a small fraction of connections 𝜖 set to zero will have O (𝑛 𝑒𝑥𝑝(𝜖−1)) inputs 
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that are completely ignored while the feedforward case has O(𝑛𝜖). Indeed Hopfield networks 

have found to be robust to damage (Schonfeld, 1993). 
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CHAPTER 6:  

Optimizing stimulus design for neural response and 

model identification 

 

6.1 Introduction 

Optimal stimulus design is the problem of selecting stimuli that maximizes relevant information 

about the neurons in question. It is an adaptive method, using the neural response to inform the 

best stimuli. 

 

The space of perception 

The naïve space of sound stimuli is the space of waveforms as a vector space. However, 

sampling fairly from that space gives white noise, which does not carry meaningful differences 

waveform to waveform. 

Perceptual “just noticeable differences” (JNDs) provide a biologically relevant definition 

of a stimulus space. Mathematically, a JND is the “ds” term in differential geometry. The 

distance between any two stimuli is a geodesic: a sequence of intermediate stimuli that travels 

the least number of JNDs. From this, given infinite experimental resources, we could 

hypothetically find the metric at each point and build up a global picture of the stimulus space. 

In practice, the space is too far high dimensional to work with, so it must be simplified. One 

example is “random spectral shapes” stimuli developed in (Slee & Young, 2013) in which sounds 

are composed of pure tones spaced logarithmically and of randomized dB levels. However, this 

does not take into account any temporal structure. The sound textures in (McDermott & 
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Simoncelli, 2011) allow a perceptually rich range of sounds that coverers multiple linear and 

nonlinear statistics. 

 

Model-free approach vs model-informed approach 

A model-free approach of optimal design is applied when there is no underlying model or family 

of models concerning the neural network. One such approach is maximizing the response, which 

must be done through a gradient free method such as genetic optimization. The stimuli that gives 

the maximum response may be the most relevant information. 

A model-informed approach of optimal design is used when there is a model with 

unknown parameters. The parameters of the model (as well as which of several models is best) 

are usually the relevant pieces of information. The stimuli designed do not maximize the 

response of the neuron, but instead maximize of the model, but instead maximize how much the 

entropy in the parameter distribution function is reduced. This approach is made mathematically 

rigorous in (DiMattina & Zhang, 2011) for feed-forward networks. 

 

6.2 Online, model-free determination of optimal stimulus 

Optimal stimulus design is a challenge to apply to cortical experiments due to a combination of 

the recurrent nature of the cortex (which makes it harder to try to combine the neurons “one 

level” upstream into a model neuron) and the sparsity. For a simple one-layer network, the 

optimal driving stimuli is very close to the weights (nonlinearities in the gain function make the 

shape slightly different, but this effect is small). However, harmonically selective units are likely 

more complex than just feed-forward sieves because of the ubiquity of recurrent connections in 

the cortex and the success of recurrent networks as shown in Chapter 4. The sound textures in 
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(McDermott & Simoncelli, 2011) capture a much richer repertoire of sound stimuli. They 

compute the envelopes across 32 frequency channels and various statistics in each band as well 

as modulation power spectra and cross-correlations. This is summarized in figures 6.1, 6.2, and 

table 6.1. These textures allow a perceptually rich range of sounds that are more likely to drive 

selective units but the inverse problem of computing a sound from a texture is computationally 

expensive. 

 

 
Figure 6.1: Schematic of how the sound textures are generated. Top: summary of sound texture 

calculation in McDermott, 2011. Bottom: Plots of textures for various sounds. Figure from (McDermott 

& Simoncelli, 2011). 
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Figure 6.2: An example of summary statistics for a sound texture. Figure from (Gamble & others, 2020). 
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Table 6.1: All the statistics and their dimensionality. Table from (Gamble & others, 2020). 

 

Accelerating the inverse problem 

We increased the performance ~8 fold of solving the inverse problem of generating a sound from 

a texture by solving for the envelopes. This problem is also nonlinear and is solved iteratively by 

minimizing the difference between the desired texture and the actual texture generated by the 

soundwaves or envelopes using the conjugate gradient method, starting from a random signal.  

This optimization addresses the main computational expense. There are 32 spectral filters 

used in (McDermott & Simoncelli, 2011) which means computing the envelopes form the wave 

requires computing 32 Hilbert transforms at the sound’s sample rate. However, each envelope 

can be safely down sampled by about 10 fold and these Hilbert transforms can be skipped.  

 The conjugate gradient method needs to constrain the signs of the envelopes. This is done 

by adding a penalty term: 𝐸𝑠𝑖𝑔𝑛~ ∑ 𝑥𝑖
2[𝑥𝑖 < 0]. All the other terms penalize the square-norms of 

how different one block of the summary statistics in the texture is form the desired texture. The 
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various terms in the objective function are weighted with the weights manually adjusted so that 

each term is usually optimized at the same speed and the sign error is around 1% during 

optimization. Despite the complexity of the constraint, the speed up is still significant: From 

about 25 minutes to about 3 minutes for each sound, allowing a bank of sounds to be computed 

in this shorter time frame simultaneously on different cores. 

 

Filling the wave in under the envelopes 

The filling in of the waveform is computed once, after the iterative process is complete. For each 

spectral filter we fill in the fine-structure such that the resulting waveform has the same range of 

frequencies as the filter, at least approximately.  

Suppose 𝐹 is the filter in the spectral domain; we will only consider real-valued 𝐹. We 

can sample from 𝐹 by representing 𝐹 as a discrete vector, sampling uniformly on the rectangle 

enclosing the filter, and accepting points only if they are under the curve. This process is 

illustrated in figure 6.3. We call 𝑋 the random variable of this sampling process. 
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Figure 6.3: Sampling from arbitrary distributions. Any distribution that is represented by a probability 

density vector can be achieved by sampling uniformly from the rectangle enclosing the distribution. The 

x-axis location of the blue points are our samples. 

 

Once we have our samples of 𝐹 we generate a frequency function 𝑓(𝑡) which is defined 

at the sample times as: 𝑓(𝑡𝑖) = 𝑋𝑖. Intermediate values of 𝑡 use a linear interpolation. The 

sample times are linearly spaced, with the spacing given by: 

 Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1 =
1

2𝜋𝜎
,   𝜎 = 𝐸(𝑋2) − 𝐸(𝑋)2 

Here 𝜎 represents the bandwidth of the filter, which we convert to radians per second in 

order to get the “time uncertainty” of the filter Δ𝑡. Broader filters will have broader 𝜎 values and 

will have the instantaneous frequency in the fine structure changing more frequently. The final 

fine-structure function is  𝑠(𝑡) = cos (2𝜋 ∫ 𝑓(𝜂)𝑑𝜂
𝑡

0
). This integral is discretized to the sound’s 

sample rate and solved numerically, as illustrated in figure 6.4.  

The soundwave for the k’th channel is: 𝑦𝑘(𝑡) = 𝑠𝑘(𝑡)𝐸𝑛𝑣𝑘(𝑡) where 𝐸𝑛𝑣(𝑡) is the up-

sampled envelope, as illustrated in figure 6.5. The total waveform is the sum of all 

channels: 𝑦(𝑡) = ∑ 𝑠𝑘(𝑡)𝐸𝑛𝑣𝑘(𝑡)𝑘  
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The sum of the square-amplitudes in the filterbank in (McDermott & Simoncelli, 2011) is equal 

for all relevant frequencies. This means there is no frequency under or over representation that 

must be corrected for, so the simple sum works.  

 

 
Figure 6.4: The process of calculating the fine structure. A,C: The frequencies are sampled from the 

envelope filter, and are more likely to be near the middle of the filter. B,D: To get the fine structure, the 

sampled frequencies are linearly interpolated (red curve) and the frequency is integrated over time and the 

cosine is taken. At higher points on the red curve, the blue curve will tend to change faster. The Q-factor 

is much higher in C than in A, making the fine-structure in D much more regular than in B. 
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Figure 6.5: Generating the soundwave the fine structure and envelope. The process is simply to 

component-wise multiply them. The red curve is the envelope and the blue curve is the result. Figure 

from (Shannon, 2016). 

 

 

Results 

The process of generating envelopes from a complex sound and reconstructing the fine structure 

as mentioned previously resulted in a hardly noticeable perceptual difference in the sound or 

sound-from-texture process. 

The speedup allowed a collaborator, Darik Gamble, to run a genetic algorithm using the 

response of an awake marmoset A1 unit as it’s fitness function. The collaborator plans to publish 

these results, which have been successful in climbing the fitness landscape for most neurons. He 

expects these neurons to be background detectors that inhibit a foreground detector. 

 

6.3 Computational model-based optimal stimulus design for recurrent networks 

 Stimuli can also be designed to maximize the information about a model neuron or neural 

network. I implemented the optimization method in (DiMattina & Zhang, 2011), which can be 

applied to any feed-forward network. The model uses a Gaussian mixture to encode the 

uncertainty of the parameter weights. It finds the stimulus that generates the expected maximum 

increase of the Fisher information, which amounts to the log of the determinant of the covariance 
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matrixes of the parameters. It uses random-starts and resets to deal with non-linearities and local 

minimums.  

 This should accelerate experiments provided the model is accurate, one could compare 

the number of trails needed to estimate parameters to a given level of prediction accuracy to 

verify that in fact it does make a significant improvement in the stimulus design. The generated 

sounds may oscillate between several sounds each specialized to detect a single parameter, such 

bf0 vs maximum response. 

 

Reproduction of DiMattina and Zhang, 2011 

We were able to reproduce the model in (DiMattina & Zhang, 2011). Briefly, we maximize 

the determinate of the fisher information matrix which is, under our assumptions of normal, the 

inverse covariance matrix of the parameter estimation, which is summarized in figure 6.6. 

 

 
Figure 6.6: The maximum information stimulus design figure reproduction. Here, we reproduce 

(DiMattina & Zhang, 2011) in which we find the stimulus x that maximizes the above equation (where f 

is the network’s output), and then updates its estimate of the parameter 𝜽 by maximizing the bottom 

function.  
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Maximum information-based optimal stimulus design: 

  
 

 

 

 

 
 

 

 

 

 

 

 
Figure 29:  The maximum information stimulus design in DiMattina and Zhang, 2011 (which we were able to reproduce the figure from) finds the 

stimulus x that maximizes the above equation (where f is the network’s output), and then updates its estimate of the parameter Æ by maximizing the 
bottom function. 
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Optimal stimulus design for recurrent networks 

Two-unit recurrent networks can be evaluated at the equilibrium state for optimal 

stimulus design purposes (Doruk & Zhang, 2019). We adapt this method for many-unit networks 

with Hebbian weights trained with a harmonic stimulus. We outline a way to adapt the optimal 

stimulus model to a recurrent network with a sigmoid gain and symmetric weights. From 

Chapter 5, the Lyapunov function in activity-space 𝑠 a unit sigmoid gain and symmetric W is: 

𝐿(𝑠) = ∑(𝑠𝑙𝑛𝑠 + (1 − 𝑠) ln(1 − 𝑠)) + (𝑏 − 𝑗)𝑇𝑠 −
1

2
𝑠𝑇𝑊𝑠 

The network minimized this function locally to find 𝑠𝑒𝑞. For simplicity, we assume that 

there is additive Gaussian noise in the activity with variance 𝜈, which may be proportional to the 

mean if there is a Poisson noise model. We also assume that our estimate covariance matrix is 

fairly tight so that we don’t have to integrate over the space of possible parameters but can 

instead evaluate the equation at the mean parameters. 

We have a stimulus 𝑥 and we want to evaluate how useful it is in improving our Fisher 

information matrix 𝐹, by maximizing the determinate of the updated Fisher matrix. For any 

stimuli 𝑥, we compute the subcortical input 𝑗 by convolving it with a gaussian kernel of fixed 

width, with the same parameters as in Chapter 3: 𝑗 = 𝐾 ∗ 𝑥. We do not parameterize the stimulus 

with a smaller subset of parameters, but it would be simple to do so in order to restrict ourselves 

to harmonic stimuli. 

For any stimulus and 𝑠 value we can compute the first and second derivatives of 𝐿: 

𝑑𝐿

𝑑𝑠
= ln𝑠 − ln(1 − 𝑠) + 𝑏 − 𝑗 − 𝑊𝑠,    

𝑑2𝐿

𝑑𝑠2 = 𝑑𝑖𝑎𝑔 (
1

𝑠
+

1

1−𝑠
) − 𝑊 
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𝑊 and 𝑏 aren’t known, but we can use the men of our parameter estimate to calculate them. We 

solve for 𝑠𝑒𝑞 by using the conjugate gradient method (128 iterations) which minimizes a 

modified function with a penalty for the edges and better numerical stability: 

𝑠𝑐𝑙𝑎𝑚𝑝 = max(𝜖𝑒𝑑𝑔𝑒 , min(𝑠, 1 − 𝜖𝑒𝑑𝑔𝑒)) , 𝜖𝑒𝑑𝑔𝑒 = 1𝑒 − 5 

𝐿𝑜𝑝𝑡 = 𝐿 (𝑠𝑐𝑙𝑎𝑚𝑝(𝑠)) + ∑
1

2
𝑘𝑒𝑑𝑔𝑒((𝑠 − 1)[𝑠 > 1] − 𝑠[𝑠 < 0])

2
 

𝑑𝐿𝑜𝑝𝑡

𝑑𝑠
=

𝑑𝐿

𝑑𝑠
.∗ (𝑠𝑐𝑙𝑎𝑚𝑝(𝑠) = 𝑠) + ∑𝑘𝑒𝑑𝑔𝑒((𝑠 − 1)[𝑠 > 1] − 𝑠[𝑠 < 0]) 

The penalty weight is extremely high at 𝑘𝑒𝑑𝑔𝑒 = 2000. It must be this high for the optimization 

to be driven back to the allowed region of s. 

We then compute how sensitive 𝑠𝑒𝑞 is to 𝑊 and b. We define a locally quadratic 

expansion of 𝐿: 

𝐿(𝑠) = L(s∗) +
𝑑𝐿

𝑑𝑠𝑠=s∗

𝑇

 (𝑠 − s∗) +
1

2
(𝑠 − s∗)𝑇

𝑑2𝐿

𝑑𝑠2
𝑠=s∗

(𝑠 − s∗) + 𝑂|𝑠 − s∗|3 

If s∗is near the equilibrium we can calculate the equilibrium accuracy by setting the slope of this 

to zero: 

𝑑𝐿

𝑑𝑠𝑠=𝑠∗
+ 2

𝑑2𝐿

𝑑𝑠2
𝑠=s∗

(𝑠𝑒𝑞 − s∗) + 𝑂|𝑠𝑒𝑞 − 𝑠∗|
2

= 0   

𝑠𝑒𝑞 − 𝑠∗ = −
1

2
(

𝑑2𝐿

𝑑𝑠2
𝑠=s∗

)
−1

𝑑𝐿

𝑑𝑠𝑠=𝑠∗
+ 𝑂|𝑠𝑒𝑞 − 𝑠∗|

2
 

We are solving for 
𝑑(𝑠𝑒𝑞−𝑠∗)

𝑑𝑊,𝑏
 at the equilibrium point, namely at 𝑠∗ = 𝑠𝑒𝑞. This makes 

these approximate equations exact. Also, since 
𝑑𝐿

𝑑𝑠𝑠=𝑠𝑒𝑞

is zero the chain rule term that 

differentiates (
𝑑2𝐿

𝑑𝑠2
𝑠=s∗

)
−1

 is zero, simplifying the equation significantly: 
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(
𝑑(𝑠𝑒𝑞)

𝑑𝑊
)

𝑖𝑗𝑘

= (
𝑑2𝐿

𝑑𝑠2
𝑠=seq

)

𝑘𝑖

−1

𝑠𝑒𝑞,𝑗 

In this case, the i index represents the index on 𝑠𝑒𝑞 and the j,k indexes are the index on 𝑊. 

Also,  
𝑑(𝑠𝑒𝑞)

𝑑𝑏
= − (

𝑑2𝐿

𝑑𝑠2
𝑠=s∗

)
−1

 is a symmetric matrix.  

We use chain rule to compute how the equilibrium point would move under a small change in 

the parameters: 

(
𝑑𝑠𝑒𝑞

𝑑𝜃
)

𝑖𝑙
= (

𝑑𝑠𝑒𝑞

𝑑𝑊
)

𝑖𝑗𝑘
(

𝑑𝑊

𝑑𝜃
)

𝑗𝑘𝑙
+ (

𝑑𝑠𝑒𝑞

𝑑𝑏
)

𝑖𝑗
(

𝑑𝑏

𝑑𝜃
)

𝑗𝑙
 

In this case, for 
𝑑𝑊

𝑑𝜃
 the 𝑗, 𝑘 indexes represent the element of the (symmetric) weights 𝑊, and the 

𝑙 index is the index on the parameters 𝜃. For 
𝑑𝑏

𝑑𝜃
 the j index represents elements of b and the 𝑙 

index represents elements of 𝜃. For 
𝑑𝑠𝑒𝑞

𝑑𝜃
 the 𝑖 index represents elements of the equilibrium 

activity 𝑠𝑒𝑞 and the j index represents the elements of 𝜃. 

 Suppose we are recording the 𝑘‘th neuron in the network. We can adapt equation 2.5 in 

(DiMattina & Zhang, 2011): 

𝐹𝑛+1 = 𝐹𝑛 +
1

𝜈𝑘
 
𝑑𝑠𝑒𝑞,𝑘

𝑑𝜃
(

𝑑𝑠𝑒𝑞,𝑘

𝑑𝜃
)

𝑇

 

If we are recording from all the neurons, given independent noise for each neuron, we have: 

𝐹𝑛+1 = 𝐹𝑛 + ∑
1

𝜈𝑘
 
𝑑𝑠𝑒𝑞,𝑘

𝑑𝜃
(

𝑑𝑠𝑒𝑞,𝑘

𝑑𝜃
)

𝑇

𝑘

 

The utility function, for our D-optimal design, is 𝑢(𝑗) =ln(|𝐹𝑛+1|) 

This allows us to estimate the utility function for any stimulus 𝑗. 

 It is possible, in principle, to optimize the utility function through conjugate gradient by 

computing 
𝑑𝑢

𝑑𝑗
. However, it risks error accumulation in 𝑠𝑒𝑞 drifting away from the true 
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equilibrium due to nonlinearities in the problem. Note that this would not be a problem in feed-

forward methods that have explicit response. Also, gradient methods are local methods and we 

want to test a wider range of 𝑗 values. Thus we optimize 𝑗 through CMA-ES, which is a genetic 

algorithm that is relatively robust to. 

 

Egg-crate weight parameterizations 

We need to design a parameterization, namely we need to specify 𝑊(𝜃) and 𝑏(𝜃), and then 

compute 
𝑑𝑊(𝜃)

𝑑𝜃
 and 

𝑑𝑏(𝜃)

𝑑𝜃
. For our network 𝜃 has four parameters and guarantees a symmetric 

weight matrix (which forbids using Dale’s principle but guarantees stable equilibrium for our 

sigmoid gain). The third parameter is the number of components represented, which is 4.5. This 

is used to generate an “eggcrate” which is equivalent up to a shift and scale to the three 

(anti)Hebbian quadrants in the weight matrix shown in figure 4.9. The first two parameters are 

the mean and standard deviation of the elements of the weight matrix, respectively, and are 

multiplied by the number of channels (to keep the parameters scale-invariant). These are set to 

0.5 and 0.75 respectively. Finally, the fourth and last parameter is the threshold of each neuron 

(which does not vary from neuron to neuron). 

 The derivatives 
𝑑𝑊(𝜃)

𝑑𝜃
, and 

𝑑𝑏(𝜃)

𝑑𝜃
 are third-rank tensors and matrixes, respectively, as 

defined previously. They are calculated with difference quotients, which is efficient in this case 

because we are differentiating with respect to a scalar for each parameter. 

 

Optimal stimulus design for recurrent networks, results 

For our parameter sets, the equilibrium state to various stimuli is sieve-like, with the sensitivity 

not depending strongly on the choice of stimuli, see figure 6.7 and figure 6.8. 
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Figure 6.7: The equilibrium state and sensitivity given a tone stimulus. A: The equilibrium state. B: the 

sensitivity of this equilibrium to each parameter of 𝜃. 

 

 
Figure 6.8: The equilibrium state and sensitivity given harmonic/mistuned stimuli. All stimuli have 

f0=Bf0 with the Bf0 determined by the number of components which is the third element of 𝜃. A,B,C: 

The equilibrium states. D,E,F: The sensitivities. A,D: 0% mistuning. B,E: 25% mistuning. C,F: 50% 

mistuning.  
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On the other hand, the optimal stimulus depends strongly on the relative amount of 

information we are trying to find for each 𝜃. For an identity covariance matrix, the stimulus is 

approximately harmonic with f0 = ½ Bf0 and is mistuned 50%, see figure 6.9. For deducing each 

element of 𝜃 the stimulus tends to be either harmonic or mistuned with f0=Bf0, see figure 6.10.  

 
Figure 6.9: The optimal stimulus when given an identity covariance matrix of 𝜃. The subcortical input is 

shown as well, it is a blurred version of the stimulus. 
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Figure 6.10: The optimal stimuli to deduce the individual elements of 𝜃. A: For deducing the mean value 

of W. B: For deducing the standard deviation of W. C: For deducing the number of components. D: for 

deducing the threshold b. 

 

6.4 Discussion 

We were able to improve and extend two optimal stimulus design approaches. The model-free 

approach was computationally expensive, but we accelerated it by solving for the envelopes 

rather than the waveforms in the conjugate gradient process. The model-informed approach was 

extended to handle symmetric recurrent networks with analytically calculated Lyapunov 

functions. 
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 Both models could be extended further. The model-free approach could try to measure 

the range of responses rather than simply finding the maximum. The model-informed approach 

could be extended to asymmetric networks, in particular ones that respect Dale’s principle. Both 

of these are potential for future work.  
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CHAPTER 7:  

Conclusion 

This thesis presents a theoretical study of possible computational mechanisms for 

harmonic selectivity in the auditory cortex. From a functional point of view, our analysis of 

natural sounds from auditory nerve responses suggests that harmonic selectivity in the auditory 

cortex may emerge as an efficient representation of natural sounds that contain harmonic 

components in their statistics. Neural network models developed in this thesis show how 

harmonic selectivity similar to the harmonic template units found in the marmoset auditory 

cortex might be generated by combining subcortical inputs that are tuned to single frequency 

bands. In feedforward networks, the most robust mechanism as revealed by supervised learning 

for harmonics detection is a spectral sieve with alternating excitatory and inhibitory weights 

along the frequency axis. In recurrent networks, harmonic selectivity can be achieved by 

recurrent connection weights established by unsupervised Hebbian learning. Other issues 

addressed in the thesis include how time-domain selectivity, but not frequency-based selectivity, 

could be related to synaptic time constants, and how stimuli can be designed to most efficiently 

drive cortical neurons or to reduce uncertainty about models. Detailed summary and conclusion 

of the key results are as follows. 

 

7.1 Temporal harmonic selectivity mechanisms 

 Harmonic sounds are associated with a temporal regularity, which means that at very low 

fundamental frequencies the cortex should be able to detect this periodicity. Integrate-and-fire 

models have a benefit here in that they directly track membrane and synaptic time constants. By 

adding synaptic depletion into both the excitatory and inhibitory inputs of an integrate-and-fire 
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model neuron, it expands the range of behaviors to include most of the modulation-sensitive 

click-train responses observed in the awake marmoset cortex: model neurons could also respond 

in either a phasic or tonic manner and sometimes responded less to click trains that were too high 

of a frequency. However, the exquisite periodicity selectivity in pitch-sensitive neurons has yet 

to be modelled. Crucially, this model has no recurrent connections. Adding short-loop recurrent 

microcircuits, perhaps with the help of future experiments tailored to find them, may generate 

more periodicity selectivity. 

 

7.2 Subcortical models 

Most cortical models need a supporting subcortical model. We found that we could 

produce specialized models that capture the most famous aspects of the time-response of the 

basic types of cochlear nuclear (CN) neurons, including the chopper neurons by using a 

smoothed integrate-and-fire model. However, at the inferior colliculus (IC) there was too little 

data and too much of a combinatorial explosion in the possible network topologies to generate a 

comprehensive model.  

Fortunately, we only needed spectral-domain models to feed into our cortical models. In 

this case the most important properties of the IC neurons are the spectral receptive fields, of 

which a fair amount of data has been collected. We model type I neurons, the most frequency-

selective neurons which have pure-tone receptive fields that are usually close to a gaussian 

response centered on the best frequency (Schreiner & Winer, 2005). Although two-tone 

sharpening and saturation effects were not captured by this simple Gaussian-convolution model, 

the model still served us well and we deemed it reasonable as these effects weren’t particularly 

strong in harmonic/mistuned stimuli given to the Marmoset IC (Kostlan, 2015). 
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7.3 Natural sound statistics generate some harmonically selective units 

 At higher frequencies, when f0 is above about 100 Hz, the cortex cannot follow the 

temporal periodicity of the sound waveform and thus operates primarily in the spectral domain 

(Besser, 1967). Also, Q-factors in the cochlea are higher at moderate and high frequencies which 

makes spectral sieving easier (Zilany et al., 2013). Our analysis is focused in this spectral sieving 

regime. 

 A natural bank of sounds contains many harmonic sounds as well as many non-harmonic 

sounds or sounds with a fleeting harmonic-like structure. Applying either PCA or ICA to an 

auditory nerve (AN) model generates a series of spectral filters that can be thought of a neural 

population that extracts the most salient features of a sound. Both can produce a reasonable 

proportion of harmonically selective neurons but are undoubtedly extracting other properties of 

the sound as well. ICA is more biologically relevant as it generates sparser filters with center-

surround and Gabor-like patterns which better resemble experimental receptive fields. Also, ICA 

has a strong theoretical footing in terms of information maximization (in contrast to minimizing 

mean-square error as does PCA). This allows it to better capture higher order statistics which are 

relevant in most natural sounds. 

 The harmonically selective units generated by PCA and ICA were not stereotypical 

sieves. However, 2-3 well-positioned excitatory and inhibitory components is enough to meet the 

harmonic template unit criteria in terms of facilitation index (FI) and periodicity index (PI) in 

(Feng & Wang, 2017) if we consider these weights to feed into a zero-threshold ReLU unit. If 

the threshold is above zero, “iceberg” effects can make the FI and PI arbitrarly close to unity. 
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7.4 Training harmonic template units produces sieves 

 Sound statistics can generate harmonic selectivity, but they do not address what receptive 

fields make the most harmonic selective neurons. A spectral sieve, which is excited by integer 

multiples of a fundamental frequency and inhibited by half-integer multiples, is the most 

straightforward way to generate harmonic selectivity. This is indeed the only supervised learning 

solution that was found. Sieves persisted across a wide variety of different sets of background 

and foreground stimuli, noise models, and other training conditions, including when several 

biological considerations are taken into account. The sieve that was trained is very similar to an 

ideal linear classifier in most cases. 

Dale’s principle states that no neurons are both excitatory and inhibitory, which means it 

is realistic to include two sets of neurons that get subcortical input, one excitatory and one 

inhibitory in terms of its effect on the output neuron. Doing this splits the positive and negative 

part of the sieve between the excitatory and inhibitory group, producing very similar responses to 

the sign-agnostic case. Another biological consideration is sparsity. Adding in a sparsity 

constraint to the weights made the sieve spikier, but it was still a sieve. Adding one or more 

hidden layers didn’t make the neural network behave much differently than a simple sieve unless 

it failed to produce selectivity at all. Thus sieves are both the most straightforward way and the 

most robust and only way to produce harmonic selectivity. 
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7.5 Recurrent network harmonic selectivity 

Cortical neurons are highly dependent on recurrent connections. This throws into 

question whether a feedforward paradigm is the way harmonic selectivity is achieved. Recurrent 

networks are most commonly trained with a Hebbian rule. The sign-agnostic Hebbian recurrent 

network that is generated from harmonic training stimuli is an eggcrate pattern.  

It is more realistic to invoke Dale’s principle and separate the network into excitatory and 

inhibitory banks of neurons that both get subcortical input from each neuron’s best frequency. 

This gives us four blocks in the weight matrix depending on whether the origin and destination is 

excitatory or inhibitory. Each block can have a different rule. We found the best results when the 

within-excitatory block is Hebbian and the inhibitory block is anti-Hebbian, but the inhibitory-

to-excitatory connections are a simple surround-inhibition “trough”, and a mild Hebbian 

excitatory to inhibitory connection acts to reduce the overall activity. This network features co-

tuning of excitation and inhibition, unlike the sieve case. Indeed, anti-Hebbian learning among 

inhibitory neurons has been experimentally measured and represents inhibitory synapse getting 

stronger under coincidental activation much like the excitatory Hebbian rule. However, there is 

still a large variety of realistic learning models and parameters to choose from so one may have 

even better selectivity. 

 

7.6 Recurrent network fingerprints 

 We found that our recurrent networks, depending on the training parameters used, have a 

variety of behaviors that feedforward networks do not have that mirror certain experimental 

results. Psychophysical experiments have found that hysteresis is nearly universal among all the 

senses. Indeed, hysteresis is the most easily found property of our networks. It occurs when 
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mutual connections between excitatory weights are strong enough to allow for a positive 

feedback loop.  

Results from psychophysics also indicate that the auditory system has a “filling in” 

effect: it perceives pitch at the fundamental frequency of a harmonic complex even when said 

fundamental component is missing. This was seen in our network, where a single missing 

component did not stop the neurons there from activating upon hearing a harmonic stimulus 

because it was supported by excitatory connections form neurons where there was still energy. 

Finally, recurrent networks can oscillate when the excitation and inhibition both strongly 

feedback onto each-other. EEG’s of the brain show several frequency bands of oscillation during 

physiological functioning as well during seizures. Our network displayed oscillation when the 

excitatory-to-inhibitory and inhibitory-to-excitatory connections are both strong. 

Dale’s principle is thus crucial in the recurrent network. This stays in contrast to the feed-

forward case in which separation of excitation and inhibition did not change the networks 

behavior. This suggests that machine learning algorithms that make use of recurrent networks 

may benefit from having separate excitatory and inhibitory regions. 

 

7.7 Variable f0 harmonicity detection 

The harmonic selectivity gets much more nonlinear when the goal is to select for all 

harmonic sounds rather than just a single one. This corresponds to the perceptual question of 

“how much of a pitch does this sound have?”. A max-of-sieves was found to be the best solution 

to this problem (with about 80% accuracy), which can be approximately implemented with a 

winner-take-all attractor recurrent network.  
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7.8 Model-free stimulus design with sound textures 

 In many cases there are too many possible models of the cortical neurons under study to 

be able to find the best model and parameters. In these cases a simple criteria could be individual 

or population response of neurons.  

The space of sound stimuli is the space of possible waveforms. This gets mapped down 

into the space of perception, which can be defined by neural activity or by constructing a 

manifold by using just-noticeable-differences as a distance metric. The mapping is highly non-

linear: the vast majority of the space of possible sounds gets mapped to “white noise” and thus 

fails to sample the perceptual space. 

Random sound textures provide one of the best currently known ways to generate a wide 

variety of perceptual constructs, however the algorithm to generate sounds form the texture 

involves nonlinear optimization and is slow enough to make online experimental design difficult. 

Fortunately, sounds can be generated from envelops by filling-in a randomized band-appropriate 

fine-structure; converting from natural sound to envelope bank and back to natural sound was 

found to alter perception very little. This enabled solving for the envelopes instead of the 

waveforms. As the envelopes can be down-sampled about 10 times we can improve our 

algorithm’s speed by about 8 fold (the waveform would otherwise need a full-length Hilbert 

transform for each envelope for each iteration). This sped up the algorithm to ~3 minutes per 

core and allowed a successful demonstration of firing-rate optimization. 
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7.9 Model-based stimulus design 

 Some experiments have a fairly narrow set of possible models for the neuron they are 

testing. This means that stimuli can be designed to maximally constrain the parameter set, which 

in turn depends on how constrained the parameter set is in the first place. Future work is needed 

to assess the effectiveness of this approach for probing harmonically selectivity networks. 
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