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Abstract

In public health, surveillance constitutes systematic data collection to analyze,

interpret and implement public policies. Notable examples of surveillance

include periodic large health surveys (e.g. National Health and Nutrition

Examination Survey) and environmental surveillance through measuring

pollutants and meteorological data at multiple monitoring sites. With techno-

logical advancements, we can record multiple varieties of data at each time

point or spatial location. Unfortunately, the existing statistical literature is

limited to modeling such complex multivariate data due to either lack of

generalizability, scalability, or computational efficiencies. This dissertation

focuses on building global, scalable, and efficient methods to bridge those

gaps in the literature. This work focuses explicitly on three contexts: (1) using

semi-parametric Gaussian copulas to build joint models of multivariate mixed

type of data (binary/ordinal/truncated/continuous) that can define mutually

consistent regression models for any type of outcome, (2) develop a consistent

and robust estimator of the ubiquitous measure of classification accuracy:

Area Under the Curve (AUC) under complex survey designs and connect it

to a latent R-square analogous to linear models, and (3) propose a class of

“Graphical Gaussian Processes" that can efficiently model highly multivariate
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spatial data where tens or hundreds of variables are observed at each spatial

location.
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Chapter 1

Introduction

In public health, surveillance is a continuous collection of health-related data

to analyze, interpret and implement public health policy and management.

One domain of such surveillance is periodic large national health surveys

to monitor the health status of a population. A specific example would be

National Health and Nutritional Examination Survey, an annual survey col-

lecting data through interviews and physical examinations from a sample of

participants that is representative of the noninstitutionalized civil US pop-

ulation. A different type of surveillance is environmental surveillance that

typically collects pollutant and meteorological data from spatial monitoring

sites. With the advent of modern technologies, these surveillances can contain

multiple varieties of data at each time-point and/or spatial location, thus re-

sulting in complex multivariate datasets. This data revolution prompts a dire

need to build global, scalable, and efficient statistical frameworks to analyse

the collected data and extract important scientici insights. This thesis will

focus on methodological development for modelling multivariate mixed type

data and high-dimensional special data collected by health and meterological
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surveys, respectively.

Large-scale health surveys such as National Health and Nutrition Exam-

ination Survey (NHANES) is a rich source of information that may help to

understand complex inter-relationship between human health behaviours

such as physical activity, sleep, dietary preferences, smoking, drinking, and

others and various cardiometabolic biomarkers of health, multiple comor-

bidities, and health deficits. Most of the participant-specific information is

recorded via many binary, ordinal, truncated, continuous, and categorical

variables. Therefore, to gain truly novel insights in understanding complex

interactions between all those variables, there is a critical need for flexible

analytical frameworks to perform joint and conditional modelling of mixed

data types.

Chapter 2 proposes Semiparametric Gaussian Copula Regression Mod-

elling (SGCRM) that allows to model a joint dependence structure between

observed continuous, truncated, ordinal, and binary variables and to construct

conditional models with these four data types as outcomes with a guarantee

that the models are mutually consistent among each other. SGCRM assumes a

semiparametric Gaussian copula Liu, Lafferty, and Wasserman, 2009; Liu et al.,

2012 mechanism that generates observed variables by monotonically trans-

forming marginals of latent multivarite normal random variable and, then,

dichotimizing/truncating those transformed variables. SGCRM estimates

the correlation matrix of the latent normal variables through an inversion of

“bridges” between Kendall’s Tau rank correlations of observed mixed data

type variables and latent Gaussian correlations. We propose computationally
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efficient methods to predict latent variables and to do imputation of miss-

ing data. We establish the asymptotic normality of estimators and provide

a computationally efficient way to calculate their asymptotic variance. Us-

ing NHANES 2003-06 data, we illustrate SGCRM and compare it with the

traditional conditional regression models including simple linear regression,

truncated Gaussian regression, ordinal probit, and probit regressions.

In Chapter 3, we bridge another gap in large sample survey literature.

Area Under the Curve (AUC) is arguably the most popular measure of classi-

fication accuracy. But, in complex surveys, we need pairwise survey weights

for participants to calculate consistent estimators of AUC. Unfortunately, the

pairwise participant weights are often unavailable in the survey data. More-

over, AUC lacks a general interpretation unlike metrics like R2 which denotes

the variance explained in traditional linear models. To solve these issues, we

use a semiparametric framework to introduce a latent scale-invariant R2, a

novel measure of variation explained for an observed binary outcome and an

observed continuous predictor, and then directly link the latent R2 to AUC.

This enables a mutually consistent simultaneous use of AUC as a measure

of classification accuracy and the latent R2 as a scale-invariant measure of

explained variation. Specifically, we employ Semiparametric Gaussian Cop-

ula (SGC) to model a joint dependence between observed binary outcome

and observed continuous predictor via the correlation of latent standard nor-

mal random variables. Under SGC, we show how, both population-level

AUC and latent scale-invariant R2, defined as a squared latent correlation,

3



can be estimated using any of the four rank statistics calculated on binary-

continuous pairs: Wilcoxon rank-sum, Kendall’s Tau, Spearman’s Rho, and

Quadrant rank correlations. We then focus on three implications and applica-

tions: i) we explicitly show that under SGC, the population-level AUC and the

population-level latent R2 are related via a monotone function that depends

on the population-level prevalence rate, ii) we propose Quadrant rank corre-

lation as a robust semiparametric version of AUC; iii) we demonstrate how,

under complex-survey designs, Wilcoxon rank sum statistics and Spearman

and Quadrant rank correlations provide asymptotically consistent estimators

of the population-level AUC using only single-participant survey weights.

We illustrate these applications using binary outcome of five-year mortality

and continuous predictors including Albumin, Systolic Blood Pressure, and

accelerometry-derived measures of total volume of physical activity collected

in 2003-2006 NHANES cohorts.

In the next chapter, we deal with data collected in environmental surveil-

lance where sensors measure multiple variables across multiple sites. Gaus-

sian Processes (GP) is a widely popular tool for researchers in analyzing such

geospatial data, owing to their convenient formulation using Gaussian likeli-

hood, high prediction accuracy, and publicly available software. Modeling

multiple variables separately as a univariate GP can only inform us about

spatial dependence. However, these marginal analyses will not be able to learn

about the interdependencies among these variables. Suppose two variables

are strongly correlated, and we only observe one of them at a location. In

that case, we can make a more informed prediction of the missing variable
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borrowing the strengths of both intervariable and spatial dependence. Hence,

the focus of spatial analysis is increasingly shifting to a multivariate paradigm.

While building a multivariate GP, we want to retain the interpretability of

the marginal properties of each spatial surface. Except for the multivariate

Matérn GP (Apanasovich, Genton, and Sun, 2012; Gneiting, Kleiber, and

Schlather, 2010), most other multivariate GPs fail to retain this property. We

also want our models to be scalable in terms number of variables (q). Unfor-

tunately, most multivariate covariance functions proposed in the literature

involve a parameter set whose dimensionality is quadratic in the number of

variables (q). Thus, even for a modest number of locations (n), these methods

need optimization in high-dimensional space and suffer from the curse of

dimensionality. These difficulties have restricted most illustrations of mul-

tivariate GPs to bi- or tri-variate applications. In Chapter 4, we introduce

models for highly multivariate geospatial data where tens or hundreds of

variables are often measured at each spatial location.

We focus on multivariate Matérn for its appealing interpretability and

resort to graphical modeling techniques to reduce computational complex-

ity. First, using the notion of process-level conditional independence, we

introduce a graph between variable processes. Then, we propose a class of

multivariate “Graphical Gaussian Processes” using a general construction

called “stitching” that retains marginal distributions, ensures process-level

conditional independence among variables, and approximately retains the

cross-covariances for the variables corresponding to the graph edges. For
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decomposable graphs, our approach offers huge computational gain and re-

duces the parameter space to cliques and separators of the variable graph.

We tailor our approach so that we can learn about the variable graph simul-

taneously with the process parameters. We prove key theoretical results and

demonstrate the utility in an application to air-pollution modelling.

Overall, this dissertation focuses on building global, scalable, and efficient

statistical methods to solve the modeling issues for mixed-type and multivari-

ate spatial data abundant in modern-day epidemiological and environmental

studies. While there will be essential impacts resulting from the proposed

methodology in public health, the methods developed in this dissertation

will also enrich the state-of-the-art statistical literature effectuating further

research in the analysis of even more complex data coming from health and

spatial surveillance.
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Chapter 2

Semiparametric Gaussian Copula
Regression Modelling for Mixed
Data Types (SGCRM)

2.1 Introduction

Clinical and epidemiological studies as well as health surveys collect a large

number of health outcomes as well as physiological and clinical measures.

This information is typically encoded via a collection of continuous, trun-

cated, ordinal, and binary variables. As a main motivating example, we

consider National Health and Nutrition Examination Survey (NHANES), a

cross-sectional, nationally representative survey that assesses demographic,

dietary and health-related questions that can be used to better understand

trends in health and nutrition. For example, self-reported current health status

(HSD010, on scale 1-5, 1 = excellent, 2 = very good, 3 = good, 4 = fair, 5 = poor)

is an example of the ordinal variable. Self-reported mobility problem (NAME,

0/1 = no/yes for mobility difficulty) and follow-up mortality status (mortstat,

0/1 = alive/deceased at the follow-up) are examples of binary variables. In
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2003-2006 waves, NHANES measured physical activity on more than 10000

participants using accelerometers worn by the participants for seven days

(REF). At participant level, accelerometry-measured activity is often summa-

rized using two variables: Total Activity Count (TAC), a continuous measure

of the total volume of physical activity, and a time spent doing Vigorous Phys-

ical Activity (VPA), which is typically seen as a truncated variable, as many

participants do zero minutes of high-intensity physical activity. Figure S2

show scatterplot matrix of these five variables. Many NHANES studies used

these five variables as outcomes in linear regression models (TAC), truncated

regression (VPA), ordinal regression (health status), and logistic regression

models (mobility difficulty and mortality status). Although, the results of

those models have been summarized in many reviews (REF), those models

and potentially their results are not necessarily mutually consistent. To better

understand complex interrelationship between human health behaviors and

various health outcomes using studies like NHANES, we need to, first, learn

how to better understand complex interdependencies between mixed data

types variables by developing flexible frameworks for their joint modelling.

Due to a lack of standard joint models for multivariate mixed data types,

conditional modelling is frequently used instead. Conditional models focus

on fixing one of the variables as an outcome and modeling the mean of this

outcome as a function of other variables. When outcome is binary, the tradi-

tional way is to model the conditional mean of the outcome as a function of a

linear combination of other variables, logistic and probit regressions are two

most popular models. If the outcome is ordinal, it is essential to capture the
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directionality or the increase in order of that outcome. The most popularly

used ordinal regression model is the cumulative ordinal regression model Mc-

Cullagh, 1980. It assumes that the truncation of underlying latent continuous

variable rise to the observed categories. The coefficients in a cumulative model

are easily interpretable in terms of transformed odds. However, when we con-

sider different coefficients for different levels of the outcome, the estimation

becomes difficult due to the imposed ordering constraint between estimating

coefficients. When it comes to truncated outcome, the econometrics literature

first introduced the most popular Tobit models (Tobin, 1958; Heckman, 1976;

Hausman and Wise, 1977), which assumes the outcome to originate from

the truncated observation of a latent normal variable. Then the conditional

mean of the latent variable is modeled as a linear function of the predictors.

The Tobit model was generalized as the Hurdle model (Cragg, 1971) where

we fit conditional models for both the truncated and non-truncated outcome

separately at the cost of introducing more parameters. Both these models

require likelihood based numerical estimation approaches and can suffer from

convergence issues.

The conditional models discussed above can only model the conditional

mean functions of the outcome distribution given other variables. Hence, they

can only draw inferences from a subset of available information. On the other

hand, modeling the joint distribution of the data can give us a more compre-

hensive view of data. To address this issue, researchers have developed a

class of factorization models that assume the marginal distributions of a set

of variables and the conditional distribution of the rest of the variables given
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the rest. A popular example is General Location models (GLOMs) (Olkin and

Tate, 1961), which enforce conditional normality for continuous variables and

arbitrary distribution for discrete components. Another example is condi-

tional grouped conditional models (CGCMs) (Anderson and Pemberton, 1985;

Leon and Carriégre, 2007; De Leon, 2005) that assumes that the discrete vari-

ables are derived by truncating a latent multivariate continuous distribution.

These models employs polychoric and polyserial correlations to estimate joint

covariance structure. Even though, factorization models provide a convenient

way for specifying mixed distributions, they induce a hierarchy in the data

that depend on the direction of conditioning. Different factorizations for the

same set of variables can lead to different interpretations for the estimated

parameters and different inferences for associations.

Another popular direction employs copulas (Song, Li, and Yuan, 2009)

that define Vector Generalized Linear Models (VGLMs) for modeling mixed

data type outcomes. This approach requires embedding the marginal dis-

tributions (univariate Generalized Linear Models) into the joint distribution

function via a Gaussian copula. Gaussian copulas is a popular choice to

couple marginal distributions because of their analytical tractability and flex-

ibility. Jiryaie et al., 2016 introduced Gaussian copula distributions (GCD)

that take a latent variable approach to embed discrete variables using the

Gaussian copula. However, CGCMs, GLOMs, VGLMs, and GCDs require

likelihood-based inference and are computationally intensive for high dimen-

sions. Pairwise likelihood-based approaches (De Leon, 2005; Jiryaie et al.,

2016) reduce the computational burden but can make worse classification than
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the full likelihood-based approach (Jiryaie et al., 2016). It is more desirable to

have a joint modeling framework that treats the mixed data types variables

symmetrically and is scalable to high dimensions.

Recently, semiparametric models have seen a wide adaptation for joint

modelling of multivariate mixed type data. Wang and Hua, 2014 used

likelihood-based inference and Cai and Zhang, 2015 developed a rank-based

approach to estimate a joint semiparametric Gaussian copula for continuous

variables. Fan, Xue, and Zou, 2016 extended the rank-based approaches to

perform quantile regression on continuous variables. Rank-based estimation

of the covariance of the semi-parametric Gaussian copula family (Liu, Lafferty,

and Wasserman, 2009; Liu et al., 2012) has been particularly attractive because

of the fast and robust estimation procedure. Therefore, we have seen multiple

extensions of the use of latent semi-parametric Gaussian copula to model

mixed types data. Fan et al., 2017 developed the estimation in the case of of bi-

nary and continuous variables. Yoon, Carroll, and Gaynanova, 2018 extended

the approach to include truncated variables, and Quan, Booth, and Wells, 2018

has additionally extended it to include ternary variables (ordinal variables

with three categories) and general ordinal-continuous pairs of variables. Feng

and Ning, 2019 represented an ordinal variable via multiple dummy binary

variables and took a weighted correlation approach to recover the latent cor-

relation for ordinal pairs with more than three categories. Whereas, Zhang

et al., 2018 arrived at an incorrect bridging function trying to tackle the general

ordinal case. Huang, Müller, and Gaynanova, 2021 provided an R package

for speeding the computation of latent correlations between pairs of binary,
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ternary, truncated and continuous variables using a numerical interpolation

approach. But, this fast algorithm also requires the knowledge of the original

analytic function. Unfortunately, there’s no existing approach that can handle

general ordinal variable within this framework. Our first contribution closes

this gap by providing bridging formulas for the general case of an ordinal

variable.

Our next contribution is a semi-parametric Gaussian copula joint modeling

framework that treats mixed variables symmetrically and is scalable to high-

dimensions. The main advantages of the proposed framework is as follows:

i) joint modeling for mixed data type, ii) mutually consistent conditional

modeling that is alternative to a wide range of conditional models including

linear regression, logistic regression, logistic-ordinal, truncated outcome, iii)

latent representations provide natural normalization/scaling of mixed data

types, iv) the approach is semi-parametric and likelihood free, so it only

requires estimating pair-wise Kendall’s Tau correlations, v) interpretation of

regression coefficients is familiar and based on R2 interpretation of predicted

variability on latent space, vi) the approach allows to define R2 for all four

types of outcomes and in addition, allows to quantify added-value (using

latent-R2 scale) as in R2
l py|x, zq “ R2

l py|xq ` R2
l py|pz|xqq, vii) the approach is

robust and computationally fast, viii) allows to do missing data imputation.

The rest of the paper is organized as follows. Chapter 2 reviews semipara-

metric Gaussian Copula models and states a novel result on incorporating

ordinal case. Chapter 3 introduces Semiparametric Gaussian Copula Regres-

sion Model and states main asymptotical results for regression parameters.
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Chapter 4 describes key advantages of SGCRM and covers two methodologi-

cal applications of SGCRM - prediction of latent variables and imputation of

missing observations. Chapter 5 studies the performance of SGCRM via a few

simulation scenarios. Chapter 6 illustrates SGCRM in NHANES data. Finally,

Chapter 7 concludes with a summary and a discussion.

2.2 Gaussian copula Model

Classical Gaussian model assumptions have been popular due to their com-

putational simplicity. However, these assumptions can be too restrictive. As

an alternative, Liu, Lafferty, and Wasserman, 2009 proposed non-Paranormal

distribution (NPN) which can be seen as a semiparametric Gaussian Copula

model.

Definition 2.2.1. (Non-paranormal distribution) A random vector Z “

pZ1, . . . , Zpq1 „ NPNpp0, Σ, f q if there exist monotone transformation

functions f “ p f1, ..., fpq such that L “ pL1, . . . , Lpq “ f pZq “

p f1pZ1q, . . . , fppZpqq „ Np0, Σq where Σjj “ 1 for 1 ď j ď p.

The last assumption on Σ is made to ensure the identifiability of the distri-

bution as shown in Liu, Lafferty, and Wasserman, 2009.

Fan et al., 2017 introduced latent non-paranormal distribution which ex-

tended non-paranormal distribution to jointly model binary and continuous

data. Yoon, Carroll, and Gaynanova, 2018 introduced truncated variables

using latent non-paranormal variables and Quan, Booth, and Wells, 2018

extended the distribution to ternary-continuous pairs and ternary-ternary
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pairs. We generalize these and demonstrate how general ordinal case can be

treated. We define Generalized Latent Non-paranormal (GLNPN) distribution

which covers four mixed data types including continuous, truncated, (general)

ordinal (k ordered categories), binary variables.

Definition 2.2.2. (Generalized latent non-paranormal distribution) Suppose

we observe a random vector X “ pXc, Xt, Xo, Xbq1, where Xc is pc-dimensional

continuous variable, Xt is pt-dimensional truncated, Xo is po-dimensional ordi-

nal (j-th ordinal variable has levels t0, 1, ¨ ¨ ¨ , lj ´ 1u), and Xb is pb-dimensional

binary variable, and p “ pc ` pt ` po ` pb. We assume that there exist latent

variables Z “ pZc, Zt, Zo, Zbq1 such that

Xcj “ Zcj, 1 ď j ď pc

Xtj “ Ztj IpZtj ą δtjq, 1 ď j ď pt

Xoj “

lj´1
ÿ

k“0

kIpδojk ď Zoj ă δojpk`1qq, 1 ď j ď po; δoj0 “ ´8, δojlj “ 8

Xbj “ IpZbj ą δbjq, 1 ď j ď pb

(2.1)

If Z “ pZc, Zt, Zo, Zbq1 „ NPNp0, Σ, f q, we denote that X “ pXc, Xt, Xo, Xbq1 „

GLNPNpp0, Σ, f , δq, where δ “ tδtj; j “ 1, ¨ ¨ ¨ , ptu Y pY
po
j“1tδojpk`1q; k “

0, ¨ ¨ ¨ , ljuq Y tδbj; j “ 1, ¨ ¨ ¨ , pbu, i.e., is the set containing cutoffs for truncated,

ordinal and binary variables.

Figure 2.1: The data generation flow of GLNPN distribution
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To shorten notations, we will refer to observed continuous, truncated,

ordinal, binary variables generated according to GLNPN distribution as

CTOB-GLNPN variables. Figure 2.1 shows the flowchart of the data gen-

eration mechanism for the observed GLNPN variables. Figure 2.2 shows an

example of four observed CTOB-GLNPN variables generated via monotone-

transformation-then-truncation of latent bivariate normal variables.

Figure 2.2: From left to right: (i) a scatterplot of bivariate standard normal variables
with correlation of 0.5, (ii) a continuous-continuous pair, (iii) a truncated-continuous
pair, iv) an ordinal-continuous pair, (v) a binary-continuous pair

Cut-off parameters of the GLNPN distribution suffers from identifiability

issues (see details at Fan et al., 2017). The joint probability mass function

of the discrete component or the density of the truncated component only

depends on the set of transformed cutoffs: ∆ “ f pδq “ t f jpδtjq; j “ 1, ¨ ¨ ¨ , ptu Y

pY
po
j“1t f jpδojpk`1qq; k “ 0, ¨ ¨ ¨ , ljuq

Y t f jpδbjq; j “ 1, ¨ ¨ ¨ , pbu “ t∆tj; j “ 1, ¨ ¨ ¨ , ptu Y pY
po
j“1t∆ojpk`1q; k “ 0, ¨ ¨ ¨ , ljuq

Y t∆bj; j “ 1, ¨ ¨ ¨ , pbu. To emphasize that, we will generally refer to the GLNPN

distribution as GLNPNpp0, Σ, f , ∆q.

As a result of the identifiablity constraints for the cutoffs, the binary and

ordinal components of GLNPN distribution are marginally equivalent to the

latent Gaussian distribution for binary and ordinal variables. This comes as

no surprise as the discrete components does not have enough information
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to identify the marginal transformations. However, when we model the

discrete component jointly with continuous and truncated variables, the class

of GLNPN distributions becomes much larger than the class of latent Gaussian

distributions. The marginal transformations from continuous and truncated

variables make the joint distribution of mixed variables more flexible and

potentially can give a substantial advantage to better explain the association

between mixed type of variables.

2.2.1 Estimation of Correlation Matrix

2.2.1.1 Bridging functions

A few authors (including Fan et al., 2017; Yoon, Carroll, and Gaynanova, 2018;

Quan, Booth, and Wells, 2018) have considered Kendall’s τ rank correlation to

estimate latent correlation matrix Σ across several settings. We can calculate a

sample Kendall’s tau between j-th and k-th variable as follows:

τ̂ jk “
2

npn ´ 1q

ÿ

1ďiăi1ăn

sgntpXij ´ Xi1 jqpXik ´ Xi1kqu (2.2)

The construction of a sample Kendall’s τ reveals that it is invariant under

a monotone transformation. Now, for two independent copies Xi, X1
i of the

random vector X, the population-level Kendall’s τ is defined as

τjk “ ErsgntpXij ´ Xi1 jqpXik ´ Xi1kqus (2.3)

The population Kendall’s Tau (τjk “ Epτ̂ jkqq is typically related to the

latent correlation Σjk through a one-to-one bridging function F which for non-

continuous components will depend on cutoffs - τjk “ FpΣjkq. The estimated
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Type Continuous Truncated Ordinal˚ Binary
Continuous Liu, Lafferty, and Wasserman, 2009 Yoon, Carroll, and Gaynanova, 2018 Quan, Booth, and Wells, 2018 Fan et al., 2017
Truncated Yoon, Carroll, and Gaynanova, 2018 Yoon, Carroll, and Gaynanova, 2018 Theorem 2.2.1 Yoon, Carroll, and Gaynanova, 2018
Ordinal Quan, Booth, and Wells, 2018 Theorem 2.2.1 Theorem 2.2.1 Theorem 2.2.1
Binary Fan et al., 2017 Yoon, Carroll, and Gaynanova, 2018 Theorem 2.2.1 Fan et al., 2017

Table 2.1: The reference of bridging functions for all possible pairs of variables.
˚Ordinal cases for only three categories were derived in Quan, Booth, and Wells, 2018

latent correlation is then obtained as Σ̂jk “ F´1pτ̂ jkq.

Fan et al., 2017 calculated the bridging function for a pair of binary and

continuous variables, Yoon, Carroll, and Gaynanova, 2018 showed how to

deal with truncated variables in addition to continuous and binary. Quan,

Booth, and Wells, 2018 provided formulas for bridging functions for ternary

variables and for general ordinal-continuous pairs of variables. Feng and

Ning, 2019 broke an ordinal variable into multiple dummy binary variables

and took a weighted correlation approach to recover the latent correlation

for ordinal pairs with more than three categories, whereas, Zhang et al., 2018

arrived at an incorrect bridging function trying to tackle the general ordinal

case. We summarize the references to the correct bridging functions for all

possible pairs of variables in Table 2.1. Our contribution here is to derive

bridging functions for the general ordinal variable with arbitrary number of

ordinal levels. The results is summarized in in Theorem 2.2.1.

The following theorem provides the bridging function for any arbitrary

pair of variables -

Theorem 2.2.1. Let Xj, Xk be two GLNPN variables, then the population Kendall’s

Tau is related to the latent correlation as follows: τjk “ FpΣjkq, where F can depend

on the cutoff ∆j, ∆k, which denotes the cutoff scalar or vector and corresponds to non-

continuous components of vectors Xj and Xk. The bridging functions corresponding
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to all pairs of variables are as follows-

Fccpρq “
2
π

sin´1
pρq

Fbbpρ; ∆j, ∆kq “ 2
␣

Φ2p∆j, ∆k; ρq ´ Φp∆jqΦp∆kq
(

Fcbpρ; ∆jq “ 4Φ2p∆j, 0; ρ{
?

2q ´ 2Φp∆jq

Ftbpρ; ∆j, ∆kq “ 2t1 ´ Φp∆jquΦp∆kq ´ 2Φ3
`

´∆j, ∆k, 0; S3apρq
˘

´ 2Φ3
`

´∆j, ∆k, 0; S3bpρq
˘

Fctpρ; ∆jq “ ´2Φ2p´∆j, 0; 1{
?

2q ` 4Φ3
`

´∆j, 0, 0; S3prq
˘

Fttpρ; ∆j, ∆kq “ ´2Φ4p´∆j, ´∆k, 0, 0; S4apρqq ` 2Φ4p´∆j, ´∆k, 0, 0; S4bpρqq

Fcopρ; ∆jq “

lj´1
ÿ

r“1

p4Φ3p∆jr, ∆jpr`1q, 0q ´ 2Φp∆jrqΦp∆jpr`1qqq

Foopρ; ∆j, ∆kq “ 2p

lj´1
ÿ

r“1

lk´1
ÿ

s“1

rΦ̃2pp∆jr, ∆ksq, p∆jpr`1q, ∆kps`1q; ρqΦ̃2pp´8, ´8q, p∆jr, ∆ksq; ρq´

Φ̃2pp∆jr, ∆kps´1qq, p∆jpr`1q, ∆ks; ρqΦ̃2pp´8, ´8q, p∆jr, ´∆ksq; ´ρqsq

Fobpρ; ∆j, ∆kq “ 2p

lj´1
ÿ

r“1

rΦ̃2pp∆jr, ´8q, p∆jpr`1q, ´∆kq; ´ρqΦ̃2pp´8, ´8q, p∆jr, ∆kq; ρq´

Φ̃2pp∆jr, ´8q, p∆jpr`1q, ∆kq; ρqΦ̃2pp´8, ´8q, p∆jr, ´∆kq; ´ρqsq

Ftopρ; ∆j, ∆kq “ 2p

lk´1
ÿ

r“1

rΦ̃2pp∆kr, ´8q, p∆kpr`1q, ´∆jq; ´ρqΦ̃2pp´8, ´8q, p∆kr, ∆jq; ρq`

Φ̃4pp∆kr, ´8, ´8, ´8q, p∆kpr`1q, ∆kr, ´∆j, 0q; S5apρqq´

Φ̃2pp∆kpr´1q, ´8q, p∆kr, ´∆jq; ´ρqΦ̃2pp´8, ´8q, p´∆kr, ∆jq; ´ρq´

Φ̃4pp∆kpr´1q, ´8, ´8, ´8q, p∆kr, ´∆kr, ´∆j, 0q; S5bpρqqsq

(2.4)
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with

S3apρq “

¨

˝

1 ´ρ 1{
?

2
´ρ 1 ´ρ{

?
2

1{
?

2 ´ρ{
?

2 1

˛

‚, S3bpρq “

¨

˝

1 0 ´1{
?

2
0 1 ´ρ{

?
2

´1{
?

2 ´ρ{
?

2 1

˛

‚,

S3pρq “

¨

˝

1 1{
?

2 ρ{
?

2
1{

?
2 1 ρ

ρ{
?

2 ρ 1

˛

‚, S4apρq “

¨

˚

˚

˝

1 0 1{
?

2 ´ρ{
?

2
0 1 ´ρ{

?
2 1{

?
2

1{
?

2 ´ρ{
?

2 1 ´ρ

´ρ{
?

2 1{
?

2 ´ρ 1

˛

‹

‹

‚

S4bpρq “

¨

˚

˚

˝

1 ρ 1{
?

2 ρ{
?

2
ρ 1 ρ{

?
2 1{

?
2

1{
?

2 ρ{
?

2 1 ρ

ρ{
?

2 1{
?

2 ρ 1

˛

‹

‹

‚

, S5apρq “

¨

˚

˚

˚

˚

˝

1 0 0 ´
ρ

?
2

0 1 ´ρ
ρ

?
2

0 ´ρ 1 ´ 1?
2

´
ρ

?
2

ρ
?

2
´ 1?

2
1

˛

‹

‹

‹

‹

‚

S5bpρq “

¨

˚

˚

˚

˚

˝

1 0 0 ´
ρ

?
2

0 1 ρ ´
ρ

?
2

0 ρ 1 ´ 1?
2

´
ρ

?
2

´
ρ

?
2

´ 1?
2

1

˛

‹

‹

‹

‹

‚

where, Φ denotes the cdf of univariate standard normal, Φdp. . . , Sq denotes the cdf

of d-variate standard normal with correlation matrix S, Φ̃2ppa, bq, pc, dq, ρq denotes

the probability of the rectangle tpu, vq : a ă u ă b, c ă v ă du for a standard

bivariate normal with correlation ρ and Φ̃4pa, b, c, d, Sq “ PpZ1 ă a, Z2 ă b, Z3 ă

c, Z4 ă dq denotes the distribution function of a standard quadrivariate normal

Z “ pZ1, Z2, Z3, Z4q with correlation matrix S.

Proof. The derivation of Fcc, Fbb, Fcb, Ftb, Fct, Ftt, Fco has been previously done

in literature as reported Table 2.1. We provide novel derivations of Foo, Fob, Fto

in Supplement S1. To the best of our knowledge, this theorem is the first result

deriving analytical forms of pairwise bridging functions for ordinal-ordinal,
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ordinal-binary and ordinal-continuous pair for ordinal variables with arbitrary

levels.

Theorem 2.2.1 shows that the bridging function depends on the cutoffs

for binary, ordinal and truncated variables. Hence, we need to estimate these

cutoffs. From the observed data, we estimate the cutoffs through the method

of moments as follows:

Binary: ∆p j “ Φ´1

˜

řn
i“1 IpXij “ 0q

n

¸

Ordinal: ∆p jr “ Φ´1

˜

řn
i“1 IpXij ă“ pr ´ 1qq

n

¸

, r “ 1, . . . , lj ´ 1

Truncated: ∆p j “ Φ´1

˜

řn
i“1 IpXij “ 0q

n

¸

(2.5)

Now, we can plug-in estimated cutoffs in the bridging functions from

(2.4), so the bridging functions now only depend on latent correlations. After

bridging, the correlation matrix formed by the bridged estimates Σ̂ “ pΣ̂jkq is

not guaranteed to be positive semi-definite. So, we need to perform an extra

step and for the estimated matrix find the nearest positive-definite correlation

matrix (Higham, 2002). In Algorithm 1, we lay out all steps our our estimation

procedure for all four mixed data types.
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Algorithm 1 GLNPN estimation algorithm

1: Input: Observed data, Xi “ pXic, Xit, Xio, Xibq, i “ 1, . . . , n

Phase 1 – Estimating cutoffs

2: for j in tt, o, bu do
3: Estimate the set of cutoffs ∆p j from (2.5) and store them
4: end for

Phase 2 – Inverting bridging functions

5: for j in tc, t, o, bu do
6: for k ‰ j do
7: Calculate sample Kendall’s Tau: τpjk
8: Get the appropriate bridging function Fjk and plug-in the estimated

cutoffs
9: Obtain Σp jk “ F´1

jk pτpjkq “ argminρPp´1,1q
pFjkpρq ´ τpjkq2

10: end for
11: end for

Phase 3 – Getting nearest PD correlation matrix

12: Get the initial estimate of the latent correlation matrix Σ as follows:

Σp “

¨

˚

˚

˝

Σ̂cc Σ̂ct Σ̂co Σ̂cb
Σ̂tc Σ̂tt Σ̂to Σ̂tb
Σ̂oc Σ̂ot Σ̂oo Σ̂ob
Σ̂bc Σ̂bt Σ̂bo Σ̂bb

˛

‹

‹

‚

13: Use nearPD (Higham, 2002) function in R to find the nearest positive
definite correlation matrix of Σp as our final estimate.

2.3 Semiparametric Gaussian Copula Regression
Model

In this section, we introduce Semiparametric Gaussian Copula Regression

Model (SGCRM) and compare it with the traditional regression framework.
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A classical regression model for a continuous outcome Yi is typically writ-

ten as

Yi “

p
ÿ

j“1

Xjiβ j ` ϵi, i “ 1, ¨ ¨ ¨ , n (2.6)

The simplest for understanding case is when both the outcome and all

covariates are standard normal random variables. In that case, the simple

linear regression conceptually assumes that both outcomes and predictors are

on the same additive scale and tries to explain the variability of an outcome

via variability of predictors. Various transformations of outcome/predictors

can be used to deal with possible deviations from normality and symmetry.

When outcome is not continuous alternative models such as probit, truncated

regression, and other probit-like models have been proposed. However, they

often loose the interpretability appeal of a simple linear regression model.

Semiparametric Gaussian Copula Regression for Mixed Data (SGCRM) can be

seen as an alternative to the simple linear regression that deals with mixed

types of outcomes and predictors by operating and connecting underlying

continuous normal latent variables that generate observed mixed types vari-

ables. In this section, we introduce SGCRM and establish key asymptotical

results for the estimates of the regression parameters. We then discuss the

main advantages of SGCRM.

First, we define Semiparametric Gaussian Copula Regression for Mixed

Data as follows.
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Observed variables: pY1, X1q, . . . , pYn, Xnq
i.i.d
„ GLNPNp`1p0, Σ, p fY, fXq, ∆q

Latent variables: pZY
1 , ZX

1 q, . . . , pZY
n , ZX

n q
i.i.d
„ NPNp`1p0, Σ, p fX, fYqq

SGCRM for latent variables: fYpZY
i q “

ř

kPtc,t,o,bu

řpk
j“1 fXpZX

kjiqβkj ` ϵi, i “ 1, . . . , n.
(2.7)

Essentially, SGCRM is a simple linear regression for the outcome fYpZY
i q

and predictors fXpZX
i q, which, according to GLNPN, are jointly normal:

p fYpZY
i q, fXpZX

i qq
i.i.d
„ Np`1p0, Σq with the correlation matrix Σ assuming the

following partition:

„

ΣYY ΣYX
ΣYX ΣXX

ȷ

.

In SGCRM, we also assume that ϵi are i.i.d. from Np0, 1 ´ ΣYXΣ´1
XXΣXYq.

It immediately follows that the regression coefficient β “ Σ´1
XXΣXY. To

estimate β, we propose to use the estimate of Σ obtained via bridging as

described in Section 2.2.1. Let Σ̂n be the estimated latent correlation matrix for

the model (2.7). Then, the estimates of the regression coefficient is given by

β̂n “ Σ̂´1
nXX

Σ̂nXY .

In the next theorem, we derive asymptotic properties of both the estimator

of latent correlation matrix and the regression parameter of SGCRM model.

To formulate the theorem, we will need the following notations: let vecpAq

and veclpAq denote the vectorized matrix A and vector of lower-triangular

elements of matrix A, respectively. Thus, veclpΣ̂nq and vecpΣ̂nq are vectors of

length ppp´1q

2 and p2, respectively.

Theorem 2.3.1. Suppose the following assumptions (Eicker, 1963) hold true: (i)
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the rank of Pn “ Σ̂nXX is p and (ii) nλminpPnq

pλmaxpPnqq2 Ñ 0 as n Ñ 8 where λminp¨q

and λmaxp¨q denote the smallest and largest eigenvalues of a matrix respectively.

Then,
?

npveclpΣ̂nq ´ veclpΣqq is asymptotically normal with mean-vector 0 and a

variance-covariance matrix VΣ.
?

npβ̂n ´ βq is asymptotically normal with mean 0

and a variance-covariance matrix Vβ.

Proof. Here, we layout the key ideas of the proof. First, using asymptotics

of U-statistics in Hoeffding, 1992 and El Maache and Lepage, 2003, we es-

tablish the asymptotic normality of the Kendall’s Tau estimates. Since the

latent correlations are deterministic function (inverse bridging function) of

the Kendall’s Tau correlations, we use Delta method to obtain the asymptotic

normality of the latent correlations. Next, we project the latent correlations

onto a space of independent parameters (Archakova and Hansen, 2018), so

that we can apply Delta method to obtain the asymptotic normality of the

SGCRM regression coefficient. The regularity assumptions ensure the stability

of the transformation β̂n “ Σ̂´1
nXX

Σ̂nXY of the latent correlation matrix, so that

we can apply Delta method. The detailed proof and analytical expressions of

Vβ and VΣ are provided in Supplement S1.

As part of the derivations, we solve a non-trivial computational problem

by developing an efficient way of computing of the asymptotic covaraince

of Kendall’s Tau matrix. Our approach requires Opn2q FLOPs compared

to the Opn4q FLOPs using naive brute-force approach. This reduction in

computational burden enables us to calculate the asymptotic variance for

moderate-to-large n.
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2.3.1 Advantages of SGCRM

In this section, we present main differences between SGCRM model over

traditional regression models developed for mixed type outcomes. These two

approaches are contrasted in Table 2.2.

Aspect Traditional models (Observed
space)

SGCRM (Latent space)

Conditional as-
sociations

Use simple linear regression
and probit-like regressions
(probit, truncated, and ordinal
probit).

Global model defines mutually
consistent conditional models
for all outcomes. (See Section
2.3)

Goodness of fit measure: AUC
or deviance (depending on de-
fined model)

Goodness of fit measure Latent R-
square

Can be used to test for condi-
tional independence for only
Gaussian variables

Can be used to define a test for
conditional independence for
mixed type of variables.

Estimation Requires likelihood computa-
tion, can be computationally in-
feasible for certain models.

Method of moments approach
makes the estimation computa-
tionally efficient.

Non-robust but efficient. Kendall’s Tau rank correlation
maintains the perfect balance
between robust and efficiency.

Scaling Need to manually normal-
ize the variables to take into
account heterogeneous scales.
Maybe impossible for mixed
types.

Inherent model assumptions
take care of the scaling natu-
rally.

Distributional
assumptions

Parametric; convenient but lim-
ited.

Semi-parametric; allowing us
to explain more general associ-
ations.
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Aspect Traditional models (Observed
space)

SGCRM (Latent space)

Missing data
imputation

Imputation by mean or re-
stricted to complete cases.

Using latent correlation to
impute missing data under
missing-at-random assump-
tion.

Interpretation Can be interpreted on absolute
scale and simplified. The signs
of coefficients will denote the
direction of association.

Can be interpreted on quantile
scale. The signs of coefficients
will denote the direction of as-
sociation.

Prediction Using model construction. Using latent correlation and
conditional expectation to con-
struct the best linear unbiased
predictors.

Table 2.2: Comparison between traditional approaches to model mixed data and
Semi-parametric Gaussian Copula Regression Modeling

2.4 Methodological Applications of SGCRM

2.4.1 Latent variable predictions

Although, latent variables are not needed to estimate the regression parameter

of SGCRM, other applications of SGCRM may require latent variables. To

address this, we follow the ideas from Best Linear Unbiased Predictor (BLUPs)

in mixed effect modelling and use a similar conditional expectation approach

to find best predictors of latent variables conditionally on observed variables.

Note that at this point we do not make a distinction between an outcome

and predictors. We also drop sub-index i, as we only use participant-specific

observed variables when we predict their latent representations. We introduce

additional notations:
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• L “ pLc, Lt, Lo, Lbq “ f pZc, Zt, Zo, Zbq, where f is a vector of coordinate

wise monotone transformations as described in the definition of GLNPN;

• L´c “ pLt, Lo, Lbq and similarly for all other combinations of sub-indexes;

• ct denotes the union of continuous and truncated indices. L´ct “

pLo, Lbq;

• Σa,a indicates the sub-matrix of Σ with indices running over the set a;

• Σa,´a denotes the rows of Σ; indexed by the set a but without the columns

indexed by a and Σ´a,a “ Σ1
a,´a;

• Σ´a,´a indicates the sub-matrix of Σ with indices not in the set a.

To calculate EpL|Xq “ EpLc, Lt, Lo, Lb|Xc, Xo, Xt, Xbq, we will consider two

cases: Case 1 when Xt “ 0 and Case 2 when Xt ą 0.

Case Xt “ 0:. We can observe that for continuous variables Lc “ fcpXcq

and the values of Xt, Xo, Xb will restrict each coordinate of L´c “ pLt, Lo, Lbq

to be in a certain interval based on the cutoffs.

That is, under our model assumptions tXt “ xt, Xb “ xb, Xo “ xou ðñ

tL´c P Bu, where B “ t
Ś

λRc Bλu and
Ś

indicates Cartesian product and Bλ

denotes an interval in R for the corresponding co-ordinate.

By using the fact that

L´c|c “ L´c|Lc „ NpΣ´c,cΣ´1
c,c Lc, Σ´c,´c ´ Σ´c,cΣ´1

c,c Σc,´cq
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we can derive the following

EpLc|Xc, Xt, Xo, Xbq “ fcpXcq

EppLt, Lo, Lbq|Xc, Xt, Xo, Xbq “ EpL´c|Xc, Xt, Xo, Xbq

“ EpL´c|Lc, L´c P B´cqq

“ EpL´c|c|L´c|c P B´cq

(2.8)

The last quantity in equation(2.8) is exactly the expectation of a multivariate

normal random variable truncated in the set B. Thus, we get

EpL|Xc, Xt, Xo, Xbq “ p fcpXcq, EpL´c|c|L´c|c P B´cqq (2.9)

Case Xt ą 0: Observe that Lc “ fcpXcq, Lt “ ftpXtq and the values of Xo, Xb

will restrict each co-ordinate of L´ct “ pLo, Lbq to be in a certain interval based

on the cutoffs. Under our model assumptions

tXb “ xb, Xc “ xcu ðñ tL´ct P B´ctu

, where B´ct “ t
Ś

λRct Bλu and
Ś

indicates Cartesian product and Bλ denotes

an interval in R for the corresponding co-ordinate. We also use the fact that

L´ct|ct “ L´ct|Lct „ NpΣ´ct,ctΣ´1
ct,ctLct, Σ´ct,´ct ´ Σ´ct,ctΣ´1

ct,ctΣct,´ctq
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Using information above, we can derive the following results -

EpLct|Xc, Xt, Xo, Xbq “ fctpXctq

EppLo, Lbq|Xc, Xt, Xo, Xbq “ EpL´ct|Xc, Xt, Xo, Xbq

“ EpL´ct|Lct, L´ct P B´ctqq

“ EpL´ct|ct|L´ct|ct P B´ctq

(2.10)

The last quantity in equation (2.10) is exactly the expectation of a multivariate

normal random variable truncated in the set B. Thus, we get

EpL|Xc, Xt, Xo, Xbq “ p fcpXcq, ftpXtq, EpL´ct|ct|L´ct|ct P B´ctqq (2.11)

To get exact values from equations (2.9) and (2.11), we need to know three

things: (a) the functions fc (over entire domain), ft (only for non-zero values),

(b) the sets B´c, B´ct, and (c) a way to calculate the expectation of truncated

multivariate normal random variable. Below, we show how to derive these

three.

(a) We illustrate this step by considering a single continuous and a single

truncated variable. First, we get an empirical CDF estimates as follows

Fcnpxq “
1

n ` 1

n
ÿ

i“1

IpXci ď xq, x P R

Ftnpxq “
1

n ` 1

n
ÿ

i“1

IpXti ď xq, x ą 0

(2.12)

Then, we use equation (2.12) to construct the estimator of monotone
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transformations as follows

f̂ cpxq “ Φ´1
pFcnpxqq

f̂ tpxq “ Φ´1
pFtnpxqq,

(2.13)

where Φ is the standard normal CDF. This follows the approach for con-

tinuous variables discussed in Section 4 of Liu, Lafferty, and Wasserman,

2009.

(b) We plugin the method of moments estimates for cutoffs from Section

2.2.1 to get B̂´c and B̂´ct.

(c) To calculate the first moment of a truncated multivariate normal distribu-

tion, we use ideas from Wilhelm and Manjunath, 2010. They proposed a

recursive formula to calculate the moment generating function of a trun-

cated multivariate normal distribution and then get the first derivative at

0 to calculate the desired expectation. We use their method implemented

in R software package tmvtnorm (Wilhelm and G, 2015).

It is important to note the prediction of latent variables described above

can be done subject-by-subject in an embarrassingly parallel way to

reduce computational burden.

2.4.2 Missing data imputation

GLNPN framework provides a readily available way to perform imputation of

missing mixed data observations using the same techniques as for prediction

of latent variables.

Suppose we have missing observations for a particular subject. We split
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the full vector X into observed and missing parts as X “ pXO, XMq, where

O denotes observed and M denotes missing parts and subject-specific index

i has been omitted for notational simplicity. First we predict ErLM|XOs and

then obtain the prediction of XM using an appropriate transformation-then-

truncation step applied to ErLM|XOs. Remember that

LM|O “ LM|LO „ NpΣM,OΣ´1
O,OLO, ΣM,M ´ ΣM,OΣ´1

O,OΣO,Mq (2.14)

As XO is σpLOq-measurable random variable, where σpLOq denotes the σ-

algebra generated by LO, we can use the tower property of conditional expec-

tations to get the following identity

ErLM|XOs “ ErErLM|LOs|XOs “ ErΣM,OΣ´1
O,OLO|XOs “ ΣM,OΣ´1

O,OErLO|XOs

(2.15)

Finally, we can calculate ErLO|XOs from the equation above using the same

steps as in previous section.

2.5 Simulation

We conduct a series of simulation experiments to evaluate the performance of

our approach. The data generation algorithm for the simulation experiments

is presented below.

1. Generate a random correlation matrix Σ using the random partial cor-

relation method in Joe, 2006. We calculate the condition number of Σ

and if the number is below 10, we proceed to Step 2. The additional

step of checking the condition number is to ensure the stability of matrix
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inversion and our regression estimates.

2. We generate n “ 1000 replicates of 8-variate latent normal variable from

the following model

pLi1, Li2, Li3, Li4, Li5, Li6, Li7, Li8q „ Np0, Σq, i “ 1, 2, ¨ ¨ ¨ , n

3. We then apply the cutoffs from Table 2.3 to generated latent variables

from previous step to obtain observed binary (X1, X3), continuous (X2),

ordinal (X4, X5, X6, X7) and truncated (X8) variables. We consider or-

dinal variables with 3 categories (X4, X5) and 4 categories (X6, X7). We

vary the entropy of our binary and ordinal variables. The entropy of a

discrete random variable is defined as
ř

i pilogppiq, where pi is the prob-

ability of the i-th distinct value. The entropy indicates the average level

of information contained in the variable’s possible outcomes. Varying

entropy enables us to consider the performance of our approach across

different levels of information.

4. We perform Steps 1 ´ 3 for 200 different seeds to replicate our experiment

200 times.

For regression modeling, we treat X1 (the binary variable with high en-

tropy) as our outcome. We use methods described in Section 2.2.1 to estimate

the latent correlation matrix and regression coefficients for each instance of

the simulated data. We also calculate the asymptotic confidence intervals of

our estimates from Theorem 2.3.1. Finally, for every instance of a simulated

correlation matrix, we perform 500 replicates of our experiment to get an
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Figure 2.3: The estimates of latent regression coefficients over different simulation
scenarios. The black line denotes y “ x line

empirical distribution of our estimated parameters. We calculate coverage of

these 500 estimates against the asymptotic confidence intervals to gauge the

accuracy of the asymptotic intervals.

Figure 2.3 shows the estimates of latent regression coefficients against the

true values. We observe that across different combinations, the estimated and

true parameters are very well aligned along the diagonal line. We also report

the coverage of our proposed asymptotic confidence interval for regression

coefficients (Fig. S1). The median coverage (across 100 seeds) of SGCRM

regression coefficients is slightly below the expected 95% line. We expect this
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Figure 2.4: The coverage of 95% asymptotic confidence interval for SGCRM regression
coefficients. The red dotted line corresponds to the 0.95 coverage.

undercoverage as we do not consider the estimated cutoffs’ uncertainty in cal-

culating the asymptotic variances. Accounting for additional uncertainty from

the use of plug-in cutoff estimators would make the calculations analytically

complex with a small practical gain.

2.6 NHANES 2003-2006

Our method is illustrated in National Health and Nutrition Examination

Survey (NHANES) 2003 ´ 2006. We focus on five variables discussed in
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Table 2.3: Mixed GLNPN variables

Variable number Variable type Cutpoint(s)
X1 Binary (high entropy) 0.3
X2 Continuous Not applicable
X3 Binary (low entropy) 1
X4 Ordinal (3 categories and high entropy) p´0.1, 0.6q

X5 Ordinal (3 categories and low entropy) p´1, 1q

X6 Ordinal (4 categories and high entropy) p´0.7, 0.1, 0.6q

X7 Ordinal (4 categories and low entropy) p´0.3, 0.1, 0.2q

X8 Truncated 0

(a) Pearson correlation matrix (b) GLNPN latent correlation matrix

Figure 2.5: The estimated 5 ˆ 5 correlation matrices of our variables from NHANES
2003 ´ 04 and 2005 ´ 06

Introduction: TAC, VPA, mortality, Health Status, and Mobility Problem.

For the analysis, we excluded participants who (1) have missing mortality

information or alive with follow-up less than 5 years, (2) are younger than 50

years old or aged 85 and older, (3) have missing any of the above-mentioned

variables of interest, (4) have died due to accident, and (5) had fewer than 3

valid accelerometry days (a valid day is defined as a day with at least 10 hours

of wear time) (Leroux et al., 2019). The final analytical sample consisted of

3069 subjects with 313 deaths within 5 years.
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Figure 2.5 compares estimated Pearson and latent correlation matrices (nu-

merical values are in Tables S1 and S2). We observe that the latent correlation

matrix detects stronger correlation between variables compared to naively

interpreting Pearson correlations for mixed types variables. For example, the

correlation between Mortality and Mobility Problem increases from 0.2 to 0.39,

the correlation between Mortality and VPA increases from ´0.08 to ´0.30.

Table 2.4: Comparison of simple linear model and SGCRM results for continuous
outcome

TAC „ MobilityProblem ` HealthStatus
Simple linear regression SGCRM

Covariate Coefficients Covariate Coefficients
1 Mobility Problem (1) -0.342 (-0.378, -0.306) Mobility Problem -0.543 (-0.594, -0.492)
2 Health Status (2) -0.073 (-0.134, -0.013) Health Status 0.011 (-0.036, 0.059)
3 Health Status (3) -0.152 (-0.211, -0.094) NA
4 Health Status (4) -0.153 (-0.217, -0.09) NA
5 Health Status (5) -0.181 (-0.271, -0.09) NA

Table 2.5: Comparison of truncated Gaussian regression and SGCRM results for
truncated outcome

VPA „ MobilityProblem ` HealthStatus
Truncated Gaussian regression SGCRM

Covariate Coefficients Covariate Coefficients
1 Mobility Problem (1) -629.875 (-753.338, -506.412) Mobility Problem -0.32 (-0.376, -0.265)
2 Health Status (2) -63.201 (-88.362, -38.041) Health Status -0.055 (-0.108, -0.004)
3 Health Status (3) -194.491 (-239.269, -149.714) NA
4 Health Status (4) -195.522 (-248.435, -142.608) NA
5 Health Status (5) -285.281 (-403.648, -166.914) NA

Table 2.6: Comparison of probit ordinal regression and SGCRM results for ordinal
outcome

HealthStatus „ MobilityProblem ` VPA
Probit ordinal regression SGCRM

Covariate Coefficients Covariate Coefficients
1 Mobility Problem (1) 0.874 (0.79, 0.959) Mobility Problem 0.494 (0.45, 0.537)
2 I(VPA == 0) 0.12 (0.04, 0.199) NA
3 VPA -0.017 (-0.024, -0.011) VPA -0.047 (-0.091, -0.003)
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Table 2.7: Comparison of probit regression and SGCRM results for binary outcome

Mortality „ MobilityProblem ` HealthStatus ` TAC
Probit regression SGCRM

Covariate Coefficients Covariate Coefficients
1 Mobility Problem (1) 0.335 (0.192, 0.478) Mobility Problem 0.195 (0.097, 0.297)
2 Health Status (2) 0.086 (-0.212, 0.402) Health Status 0.033 (-0.042, 0.103)
3 Health Status (3) 0.244 (-0.038, 0.547) NA
4 Health Status (4) 0.195 (-0.102, 0.511) NA
5 Health Status (5) 0.455 (0.094, 0.826) NA
6 TAC ´3.952 ˆ 10´6p´4.752 ˆ 10´6, ´3.174 ˚ 10´6q TAC -0.352 (-0.427, -0.272)

After estimation of the GLNPN latent correlation matrix, we next fit four

mutually consistent conditional SGCRM models by treating one of the mixed

types variables as outcome and some of the others as predictors. Specifically,

we will consider one outcome for each type: TAC (continuous), VPA (trun-

cated), Health Status (ordinal), and Mortality (binary) will be outcomes. We

compare SGCRM models with the traditional counterparts such as simple

linear regression, truncated regression, ordinal probit and probit regressions in

Tables 2.4, 2.5, 2.6, 2.7, respectively. Both SGCRM and traditional estimates are

reported with 95% confidence intervals. We want to compare the direction and

significance of conditional associations captured by SGCRM and traditional

models.

We start with a continuous outcome, TAC. Table 2.4 contrasts the results of

the two models. We observe that Mobility Problem has a significant negative

effect on TAC in both SGCRM (´0.543p´0.594, ´0.492q) and the linear model

(´0.342p´0.378, ´0.306q). Furthermore, different levels of reported health

status have a significant negative effect on TAC in the simple linear model, but

when the ordinal categories of Health Status are represented via corresponding

GLNPN latent variable we do not observe significant association with TAC in

SGCRM model. This is one obvious disadvantage of our approach for ordinal
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variables. If the effect is not present across all levels, when collapsing all levels

may potentially loose partial significance, as we observe here. We will discuss

this more in Discussion.

Next, we treat truncated variable VPA as the outcome in SGCRM and

compare SGCRM model vs Gaussian truncated regression model. The results

are shown in Table 2.5. The direction and the significance of associations

estimated by SGCRM are in agreement with those estimated by truncated

regression. However, regression coefficients from truncated Gaussian re-

gression model are not scaled and, hence, their magnitude cannot be com-

pared. In contrast, SGCRM coefficients are normalized and can be compared

across covariates. For example, we observe that estimated effect of mobility

problem is much higher that that of health status: ´0.32p´0.376, ´0.265q vs

´0.055p´0.108, ´0.004).

Next, we model Health Status as an ordinal outcome with Mobility Prob-

lem and VPA as two covariates. Because of VPA is a trunctated variable, we

represent VPA via two components in the traditional model: (1) an indicator

variable of VPA being equal to 0, and (2) the VPA value itself. Note that repre-

sentation is not needed in SGCRM. The results are shown in Table 2.6. VPA is

negatively associated with a higher value (worse) Health Status both in probit

ordinal model with the regression coefficient of ´0.017p´0.024, ´0.011q and

in SGCRM model with the regression coefficient of ´0.047p´0.091, ´0.003q.

Mobility problem is significant and is positively associated with a higher value

(worse) Health Status in both models. Again, SGCRM allows to compare the

magnitude of estimated effects of Mobility Problem and VPA with a much
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higher effect of the former.

Finally, we look at the 5-year mortality as a binary outcome with mobility

problem, Health Status, and TAC as covariates. The results are shown in Table

2.7. We see that the highest (worst) Health Status level is signifact in probit

regression, but when the ordinal categories of Health Status are represented

via corresponding GLNPN latent variable we do not observe significant asso-

ciation with mortality in SGCRM model. Again, as we discussed above this is

a limitation of SGCRM. We again get interpretable regression coefficients and

we see that the effect of TAC is almost twice higher than of mobility problem.

It is also important to note that all four SGCRM models are mutually

consistent in contrast to the set of four traditional regressions: simple linear,

truncated, probit ordinal, and probit.

In the final step, we calculate predictions of latent variables using methods

described in Section 2.4.1. Figure 2.6 shows the distribution of the predicted

latent variables for the five variables. The figure also shows the interrelation

between those variables on the off-diagonal blocks of the scatterplot matrix.

We see that the distribution of predicted latent variables approximates the

assumed latent normal distribution, but with multiple modes originated from

the discontinuities of the distributions of observed variables. It is interesting

to note that scatterplots of predicted latent variables for mortality vs. mobil-

ity problem, mortality vs TAC, and TAC vs mobility problem reveal linear

patterns (with some discontinuities around the cutoffs). This particular obser-

vation would be harder, if possible, to make by visually exploring scatterplots

of observed counterparts.
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Figure 2.6: Predictions of latent variables in NHANES

2.7 Discussion

The main contribution of this paper is a joint modeling approach for mixed

data types that builds on semiparametric Gaussian copula. The approach is

scale-free, robust, and fast. Adapted to perform linear regression on the latent

space, SGCRM provides mutually consistent conditional regression models as

a unifying alternative to a range of popular conditional regression models such

as simple linear regression and probit-like regressions including truncated

regression, ordinal probit regression, probit and others. Our likelihood-free

41



approach is more computationally efficient than likelihood-based joint copula

models. Finally, embedding the variables using a semiparametric Gaussian

copula automatically normalizes the scale of all latent variables that results

in standardized and more interpretable regression coefficients. The approach

allows to define R2 for all four types of outcomes. Finally, the approach allows

to perform missing data imputation.

In NHANES application, we kept our models simple to carefully illustrate

the approach and the interpretability of the results. In terms of computational

complexity, our method needs to estimate Opp2q correlation parameters and

the calculation of Kendall’s Tau takes only Opnlognq FLOPs for each estimation.

Hence, with the quadratic complexity in p our approach scales very well with

respect of increasing p. Moreover, we propose a computationally efficient way

of calculating the asymptotic variance-covariance matrix of the parameters in

Opn2q FLOPs compared to the brute force approach of Opn4q.

In terms of limitations, SGCRM is less flexible in dealing with multiple

ordinal levels. For example, we can estimate two different effects for an

ordinal variable with three categories. In comparison, our model works on

the latent scale for the ordinal variable and assumes a uniform magnitude and

direction of the effect. Compared to the traditional models, SGCRM also loses

interpretability of original scales of covariates, because SGCRM coefficients

are only interpretable at a latent scale.

As future work, it would be important to develop quantile scale interpre-

tation of SGCRM regression results. SGCRM can also be adapted to handle

survival outcomes. Moreover, it would be interesting to adapt GNPLN to
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deal with functional and multi-level/longitudinal mixed data. As one of the

methodological applications, we provided an algorithm for imputing miss-

ing observations and it would be very interesting to compare that approach

with existing ones. Finally, predicted latent variables can be used within

distance-based clustering approaches under mixed data settings as well as for

dimension reduction of multivariate mixed data.

S1 Proofs

Proof of Theorem 2.2.1: Let Xj, Xk be ordinal with levels t0, 1, ¨ ¨ ¨ , lj ´ 1u and

t0, 1, ¨ ¨ ¨ , lk ´ 1u respectively and pLj, Lkq is the corresponding latent standard

bivariate normal with correlation σjk. Then for two independent observations

i, i1 -

PpXij ą Xi1 j, Xik ą Xi1kq “

lj´1
ÿ

r“1

ls´1
ÿ

s“1

rPpXij “ r, Xik “ sqPpXi1 j ă r, Xi1k ă sqs

“

lj´1
ÿ

r“1

ls´1
ÿ

s“1

rPp∆jr ď Lij ă ∆pj`1qr, ∆ks ď Lik ă ∆pk`1qsqPpLi1 j ă ∆jr, Li1k ă ∆ksqs

“

lj´1
ÿ

r“1

lk´1
ÿ

s“1

rΦ̃2pp∆jr, ∆ksq, p∆jpr`1q, ∆kps`1q; ΣjkqΦ̃2pp´8, ´8q, p∆jr, ∆ksq; Σjkqs

(S1)
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Similarly,

PpXij ą Xi1 j, Xik ă Xi1kq “

lj´1
ÿ

r“1

ls´1
ÿ

s“1

rPpXij “ r, Xik “ s ´ 1qPpXi1 j ă r, Xi1k ą ps ´ 1qqs

“

lj´1
ÿ

r“1

ls´1
ÿ

s“1

rPp∆jr ď Lij ă ∆pj`1qr, ∆pk´1qs ď Lik ă ∆ksqPpLi1 j ă ∆jr, Li1k ą ∆ksqs

“

lj´1
ÿ

r“1

ls´1
ÿ

s“1

rPp∆jr ď Lij ă ∆pj`1qr, ∆pk´1qs ď Lik ă ∆ksqPpLi1 j ă ∆jr, ´Li1k ă ´∆ksqs

“

lj´1
ÿ

r“1

lk´1
ÿ

s“1

rΦ̃2pp∆jr, ∆kps´1qq, p∆jpr`1q, ∆ks; ΣjkqΦ̃2pp´8, ´8q, p∆jr, ´∆ksq; ´Σjkqs

(S2)

By symmetry, the population Kendall’s Tau, τjk for Xj, Xk can be written as

follows -

τjk “ 2pPpXij ą Xi1 j, Xik ą Xi1kq ´ PpXij ą Xi1 j, Xik ă Xi1kqq

“ 2p

lj´1
ÿ

r“1

lk´1
ÿ

s“1

rΦ̃2pp∆jr, ∆ksq, p∆jpr`1q, ∆kps`1q; ΣjkqΦ̃2pp´8, ´8q, p∆jr, ∆ksq; Σjkq

´ Φ̃2pp∆jr, ∆kps´1qq, p∆jpr`1q, ∆ks; ΣjkqΦ̃2pp´8, ´8q, p∆jr, ´∆ksq; ´Σjkqsq

(S3)

Now, reducing the above calculations for lk “ 2, will yield the bridging

function between a general ordinal and binary pairs.

Now, suppose we have a truncated variable Xm with cutoff ∆m and corre-

sponding latent normal variable Lm, then redoing the above calculations will
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look like -

PpXij ą Xi1 j, Xim ą Xi1mq “

lj´1
ÿ

r“1

rPpXij “ r, Xim ą 0qPpXi1 j ă r, Xi1m “ 0q

` PpXij “ r, Xi1 j ă r, Xi1m ą 0, Xim ´ Xi1m ą 0qs

“

lj´1
ÿ

r“1

rPp∆jr ď Lij ă ∆pj`1qr, Lim ą ∆mqPpLi1 j ă ∆jr, Li1m ď ∆mq

` Pp∆jr ď Lij ă ∆pj`1qr, Li1 j ă ∆jr, Li1m ą ∆m, ,
Lim ´ Li1m

2
ą 0qs

“

lj´1
ÿ

r“1

rPp∆jr ď Lij ă ∆pj`1qr, ´Lim ă ´∆mqPpLi1 j ă ∆jr, Li1m ď ∆mq

` Pp∆jr ď Lij ă ∆pj`1qr, Li1 j ă ∆jr, ´Li1m ă ´∆m, ,
Li1m ´ Lim

?
2

ă 0qs

“

lj´1
ÿ

r“1

rΦ̃2pp∆jr, ´8q, p∆jpr`1q, ´∆mq; ´ρqΦ̃2pp´8, ´8q, p∆jr, ∆mq; ρq

` Φ̃4pp∆jr, ´8, ´8, ´8q, p∆jpr`1q, ∆jr, ´∆m, 0q; S5apρqqs

PpXij ă Xi1 j, Xim ą Xi1mq “

lj´1
ÿ

r“1

rPpXij “ pr ´ 1q, Xim ą 0qPpXi1 j ą pr ´ 1q, Xi1m “ 0q

` PpXij “ r, Xi1 j ă r, Xi1m ą 0, Xim ´ Xi1m ą 0qs

“

lj´1
ÿ

r“1

rPp∆jpr´1q ď Lij ă ∆jr, Lim ą ∆mqPpLi1 j ą ∆jr, Li1m ď ∆mq

` Pp∆pj´1qr ď Lij ă ∆jr, Li1 j ą ∆jr, Li1m ą ∆m, ,
Lim ´ Li1m

2
ą 0qs

“

lj´1
ÿ

r“1

rPp∆jpr´1q ď Lij ă ∆jr, ´Lim ă ´∆mqPp´Li1 j ă ´∆jr, Li1m ď ∆mq

` Pp∆pj´1qr ď Lij ă ∆jr, ´Li1 j ă ´∆jr, ´Li1m ă ´∆m, ,
Li1m ´ Lim

2
ă 0qs

“

lj´1
ÿ

r“1

rΦ̃2pp∆jpr´1q, ´8q, p∆jr, ´∆mq; ´ρqΦ̃2pp´8, ´8q, p´∆jr, ∆mq; ´ρq`

Φ̃4pp∆jpr´1q, ´8, ´8, ´8q, p∆jr, ´∆jr, ´∆m, 0q; S5bpρqs

(S4)
45



where, S5apρq “ covpLij, Li1 j, ´Li1m, Li1m´Lim?
2

q “

¨

˚

˚

˚

˚

˝

1 0 0 ´
ρ

?
2

0 1 ´ρ
ρ

?
2

0 ´ρ 1 ´ 1?
2

´
ρ

?
2

ρ
?

2
´ 1?

2
1

˛

‹

‹

‹

‹

‚

and

S5bpρq “ covpLij, ´Li1 j, ´Li1m, Li1m´Lim?
2

q “

¨

˚

˚

˚

˚

˝

1 0 0 ´
ρ

?
2

0 1 ρ ´
ρ

?
2

0 ρ 1 ´ 1?
2

´
ρ

?
2

´
ρ

?
2

´ 1?
2

1

˛

‹

‹

‹

‹

‚

.

Hence, we get -

Ftopρ; ∆j, ∆mq “ 2p
řlj´1

r“1 rΦ̃2pp∆jr, ´8q, p∆jpr`1q, ´∆mq; ´ρqΦ̃2pp´8, ´8q, p∆jr, ∆mq; ρq

` Φ̃4pp∆jr, ´8, ´8, ´8q, p∆jpr`1q, ∆jr, ´∆m, 0q; S5apρqq ´

Φ̃2pp∆jpr´1q, ´8q, p∆jr, ´∆mq; ´ρqΦ̃2pp´8, ´8q, p´∆jr, ∆mq; ´ρq ´

Φ̃4pp∆jpr´1q, ´8, ´8, ´8q, p∆jr, ´∆jr, ´∆m, 0q; S5bpρqs.

Proof of Theorem 2:

First, let’s familiarize ourselves with some notations. For a p ˆ p correlation

matrix A, we can get singular-value decomposition of A as A “ QΛQT, where

Q is an orthonormal matrix and Λ “ diagpλ1, ¨ ¨ ¨ , λpq are the eigenvalues of

A. Let’s define logA “ QlogΛQT, where logΛ “ diagplogλ1, ¨ ¨ ¨ , logλpq.

First we need to state the results for the asymptotic variance of Kendall’s

Tau as calculated in Hoeffding, 1992 and El Maache and Lepage, 2003. Using

the results of U-statistics asymptotics, we state the results in the Lemma S1.1

below.

Lemma S1.1. Let Kn be the Kendall’s Tau matrix estimated from the data, then
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?
npveclpKnq ´ veclpKqq is asymptotically normal with mean 0 and variance-

covariance matrix VK, where, Kij “ EpsgnppXi1 ´ Xi2qpXj1 ´ Xj2qq and

VKpijq,pklq “ 4 ˚ pEpsgnppXi1 ´ Xi2qpXj1 ´ Xj2qpXk2 ´ Xk3qpXl2 ´ Xl3qqq ´ pveclpKqveclpKq
T

qpijq,pklqq

tpijq, pklqu denotes the entries corresponding to the covariance of Kendall’s tau be-

tween pijq and pklq-th pair of variables.

Now, we can rewrite the expression EpsgnppXi1´Xi2qpXj1 ´ Xj2qpXk2 ´

Xk3qpXl2 ´ Xl3qqq as follows -

EpsgnppXi1´Xi2qpXj1 ´ Xj2qpXk2 ´ Xk3qpXl2 ´ Xl3qqq

“ EpEpsgnppXi1 ´ Xi2qpXj1 ´ Xj2qpXk2 ´ Xk3qpXl2 ´ Xl3qq|pXi2, Xj2, Xk2, Xl2qqq

“ EpEpsgnppXi1 ´ Xi2qpXj1 ´ Xj2qq|pXi2, Xj2, Xk2, Xl2qq ˚ EpsgnppXk2 ´ Xk3qpXl2 ´ Xl3qq|pXi2, Xj2, Xk2, Xl2qqq

“ EpEpsgnppXi1 ´ Xi2qpXj1 ´ Xj2qq|pXi2, Xj2qq ˚ EpsgnppXk2 ´ Xk3qpXl2 ´ Xl3qq|pXk2, Xl2qqq

“ EpHijpXi2, Xj2qHklpXk2, Xl2qq

(S5)

,where, Hijpx, yq “ EpsgnppXi ´ xqpXj ´ yqq. We can estimate Hijpx, yq from

sample as - Ĥijpx, yq “ 1
n
řn

m“1psgnppXim ´ xqpXjm ´ yqq

Hence, the quantity in (S5) can be estimated as -

1
n

n
ÿ

m“1

ĤijpXim, XjmqĤklpXkm, Xlmq

.

Evaluating each Ĥij requires Opnq FLOPs and taking products and sum-

ming them over takes Opnq FLOPs resulting in Opn2q computational complex-

ity. This way of computation is a significant improvement over calculating the

quantity in (S5) blatantly which would have required Opn4q FLOPs. Hence, we
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provide a novel efficient way of calculating asymptotic variance of Kendall’s

Tau which would have been infeasible for even moderate n.

Now we want to derive the asymptotic normality of veclpΣnq and vecpβq

using Delta method and the following result.

As shown in Archakova and Hansen, 2018, a correlation matrix A can be

parametrized by veclplogAq. There exists a bijective map γ : Cp ÝÑ Rppp´1q{2

which is defined by γpAq “ veclplogAq, where Cp denotes the set of p ˆ p

correlation matrices. As described in Tracy and Jinadasa, 1988, a general

technique of defining derivatives with respect to a structured matrix (such as a

correlation matrix) is to first define a map from the matrix to the independent

elements of the matrix and then extend the function under investigation to the

set of general matrices. For example, let’s take a function hpAq of a correlation

matrix A, then we will define the derivative as -

dvecphpAqq

dveclpγpAqq
“

dvecphpAqq

dvecpAq

dvecpAq

dveclpAq

dveclpAq

dveclpγpAqq

.

where, the first derivative dvecphpAqq

dvecpAq
is defined assuming h is a general map

defined on unstructured matrices. We can use this result and chain rule to

derive the following -

dveclpΣq

dveclpγpKqq
“

dveclpΣq

dveclpKq

dveclpKq

dveclpγpKqq
“ DgΓ

dvecpβq

dveclpγpKqq
“

dvecpβq

dvecpΣq

dvecpΣq

dveclpΣq

dveclpΣq

dveclpγpKqq
“ DβHpDgΓ

(S6)

Here, Hp denotes duplication matrix of order p which transforms veclpAq
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to vecpAq for any matrix A, Dg “ diagpg1pKqq, where g1 is the first order

derivative of the indidividual bridging functions and then we apply it to

K, Dβ “ ppΣ´1
22 , ´pΣ21 b IpqpΣ´1

22 b Σ´1
22 qqẼ, where Ẽ transforms vecpΣq to

pvecpΣ21q, vecpΣ22qq. Γ is calculated in Archakova and Hansen, 2018.

Now, to use the results in (S6), we first derive the asymptotic normality

of
?

npveclpγpKnq ´ γpKqq using results in Archakova and Hansen, 2018 and

calculate the asymptotic covariance matrix as Vγ. Then, under the regularity

assumptions, we apply delta method to get asymptotic covariance matrix

of
?

npveclpΣ̂n ´ veclpΣqq as VΣ “ pDgΓqTVγDgΓ and asymptotic covariance

matrix of
?

npβn̂ ´ βq as Vβ “ pDβHpDgΓqTVγDβHpDgΓ.

S2 Additional Plots and Tables

Table S1: Latent correlation matrix of 5 variables of interest

Mortality Mobility Problem Health Status VPA TAC
Mortality 1.00 0.39 0.23 -0.30 -0.45

Mobility Problem 0.39 1.00 0.50 -0.35 -0.53
Health Status 0.23 0.50 1.00 -0.24 -0.27

VPA -0.30 -0.35 -0.24 1.00 0.63
TAC -0.45 -0.53 -0.27 0.63 1.00

Table S2: Pearson’s correlation matrix of 5 variables of interest

Mortality Mobility Problem Health Status VPA TAC
Mortality 1.00 0.2 0.13 -0.08 -0.23

Mobility Problem 0.2 1.00 0.38 -0.15 -0.37
Health Status 0.13 0.38 1.00 -0.15 -0.37

VPA -0.08 -0.15 -0.15 1.00 0.5
TAC -0.23 -0.37 -0.22 0.5 1.00
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Figure S1: The coverage of the 95% asymptotic confidence interval for latent correla-
tions. The red dotted line denotes 0.95 line

50



Corr:

−0.163

Corr:

−0.27

Corr:

0.583

Mortality
Mobility
Problem

Health
Status

VPA TAC

M
o

rta
lity

M
o

b
ility

P
ro

b
le

m
H

e
a

lth
S

ta
tu

s
V

P
A

T
A

C

0.00 0.25 0.50 0.75 1.00 0 100 200 0 100 200 0 501001500 501001500 501001500 501001500 50100150 0 25 50 75 0 250000 500000 750000

0

2

4

6

0

500

1000

1500

2000

0

500

1000

1500

2000

02505007501000

02505007501000

02505007501000

02505007501000

02505007501000

0

25

50

75

0

250000

500000

750000

Figure S2: Exploratory analysis for our variables of interest from NHANES
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Chapter 3

Connecting population-level AUC
and latent scale-invariant R2 via
Semiparametric Gaussian Copula
and rank correlations

3.1 Introduction

Classification offers a wide range of techniques from classical methods mod-

elling underlying probabilities such as logistic regression and linear discrim-

inant analysis to more recent methods including support vector machines,

random forests, and neural networks (Kuhn and Johnson, 2013; Bishop, 2006).

Various measures of classification accuracy have been proposed (Steyerberg

et al., 2009; Steyerberg et al., 2010; Harrell Jr, 2015). Receiver Operating Char-

acteristic curve (ROC) represents the accuracy of a classification model via

a curve of trade-offs between false positive and true positive rates (Kuhn

and Johnson, 2013; Saito and Rehmsmeier, 2015). The Area Under the ROC

Curve (AUC) is often used to summarize the entire ROC curve and to compare
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classification models in terms of their discrimination strength. AUC can be

equivalently represented as the probability that a randomly chosen case has

a larger value of the continuous predictor than a randomly chosen control.

From this conditional distribution perspective, AUC can be viewed as a fully

nonparametric measure of concordance between an observed binary outcome

and an observed continuous predictor. This definition has been linked to non-

parametric Kendall’s Tau rank correlation and Wilcoxon rank-sum statistics

(Kendall et al., 1987). The limitations of AUC as a single summary of classifica-

tion accuracy has been widely discussed in literature (Lobo, Jiménez-Valverde,

and Real, 2008; Harrell Jr, 2015; Steyerberg et al., 2009; Saito and Rehmsmeier,

2015).

In regression models with binary outcomes such as logistic and probit

regressions, an alternative fully parametric perspective is taken by using

goodness-of-fit measures. A big class of these measures are likelihood-based

(Tutz, 2011; DeMaris, 2002; Schemper, 2003). Another class of these mea-

sures focuses on extending R2, as a recognisable and intuitive goodness-of-fit

measure for linear models with continuous outcomes. Specifically, two main

alternative interpretations of R2 as the proportion of variance explained and

as a squared correlation have been adapted and extended to models with

binary outcome by DeMaris, 2002; Schemper, 2003; Yazici, Alpu, and Yang,

2007.

In this paper, we will use Semiparametric Gaussian Copula (Fan et al.,

2017) (SGC) to bridge the classification accuracy and goodness-of-fit perspec-

tives. Specifically, we connect AUC as a measure of classification accuracy
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and a novel latent scale-invariant R2 as a measure of explained variation.

Semiparametric Gaussian Copula (SGC) was used by Fan et al., 2017 to model

a joint dependence between an observed binary outcome and an observed

continuous predictor via the correlation of latent standard normal random

variables. A major computational advantage of the approach in Fan et al., 2017

is the estimation procedure that does not require any likelihood maximization

and estimates the latent correlation via a bridging procedure. The procedure

links Kendall’s Tau for binary-continuous pairs and the latent correlation via

a known monotone "bridging" function that depends on the population-level

prevalence rate of cases. The plug-in estimation is done using sample versions

of Kendall’s Tau and the prevalence rate. This bridging trick, also called

inversion, is frequently used to estimate parameters of specific copula families

via linking these parameters to Kendall’s Tau or other rank correlations and

inverting these links (Nelsen, 2007; Joe, 2014). Conceptually, the bridging

argument in Fan et al., 2017 is similar to the to classical results bridging bis-

erial correlation on binary-continuous pairs and tetrachonic correlation on

binary-binary pairs to Pearson correlation of underlying continuous variables

that generated binary variables via dichotomization (MacCallum et al., 2002).

Because SGC uses Kendall’s Tau to estimate the latent correlation, it becomes

possible to connect AUC to the latent correlation that captures dependence

between an observed binary outcome, generated via dichotomization of the

underlying latent continuous variable, and an observed continuous predictor.

In addition to classical expression of AUC via Kendall’s Tau and Wilcoxon

rank sum statistics, we will show that AUC is a linear (up to an absolute value,

here and throughout the paper) function of Spearman rank correlation (Sidak,
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Sen, and Hajek, 1999) for binary-continuous pairs. Under SGC, we will also

explicitly link these three rank statistics as well as Quadrant rank correlation

(Sidak, Sen, and Hajek, 1999) to the latent R2, defined as a square of the latent

correlation, via corresponding monotone "bridging" functions that we derive

in this paper. Importantly, being semiparametric our approach results in the

latent R2 that is scale-invariant.

After building these connections, we will focus on two main applications.

In our main application, we demonstrate how our framework addresses a

problem of calculating AUC under complex survey designs. Specifically,

we will show how Wilcoxon’s rank-sum statistics as well as Spearman and

Quadrant rank correlations can be used with single participant survey weights

to construct asymptotically unbiased estimators of the population-level AUC.

In the second application, we argue that Quadrant rank-correlation can be

used as a robust semiparametric version of AUC. In extensive simulation

studies, we show that AUC defined via Quadrant correlation is robust in

scenarios with outliers in binary-continuous case. As shown in Croux and

Dehon, 2010 for the continuous-continuous case, Quadrant rank correlation

is more robust compared to Kendall’s Tau and Spearman rank correlations,

so our contribution can be seen as an extension of this for binary-continuous

case under SGC assumption.

The rest of the paper is organized as follows. In Section 2, we discuss the

four rank-statistics and their relationship with AUC. In Section 3, we introduce

Semiparametric Gaussian Copula and derive bridging functions that connect

the four rank statistics to the latent R2. In Section 4, we discuss the main
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applications of the framework. In Section 5, we provide extensive simulation

results. In Section 6, we demonstrate the proposed framework on NHANES

2003-2006 cohorts. Discussion concludes with a summary, limitations, and

future work.

3.2 AUC and Rank Statistics

In this section, we establish the links between AUC and the rank statistics.

Let us first introduce notations. Throughout the paper, we will consider

binary-continuous pairs of random variables pY, Xq, where Y is an observed

binary outcome and X is an observed continuous predictor. We will refer to

MY, MX as the population medians of Y and X, respectively. We denote by

FYpq, FXpq the cumulative distribution functions of random variables Y and X,

respectively. We will refer to Y “ 1 as a case and define the population-level

prevalence rate of cases as p “ PpY “ 1q. Finally, we denote X1 “ pX|Y “

1q and X0 “ pX|Y “ 0q to be random variables following the conditional

distribution of the continuous predictor for cases, Y “ 1, and controls, Y “ 0,

respectively. Using these notations, population-level AUC, denoted by A,

can be defined as A “ maxtPpX1 ą X0q, PpX1 ă X0qu. It is easy to see that

PpX1 ą X0q “ 1 ´ PpX1 ă X0q, so A ě 0.5.

We consider three rank correlations including Kendall’s Tau, Spearman’s

Rho and Quadrant, also known as Blomqvist’s Beta, as well as Wilcoxon’s rank-

sum statistic, used to nonparametrically test the equality of two distributions.

We lay out the population-level definitions of these rank statistics in the case

of binary-continuous pairs: 1) Kendall’s Tau: rK “ EppYi ´ Y1
i qsgnpXi ´ X1

iqq;
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2) Wilcoxon’s rank-sum statistic: W “ PpX ď X1q ´ PpX ď X0q; 3)

Spearman correlation: rS “ 12ErFYpYqFXpXqs ´ 3; 4) Quadrant correlation:

rQ “ ErsgnppY ´ MYqpX ´ MXqqs, where pYi, Xiq and pY
1

i , X
1

iq are two indepen-

dent copies following the same bivariate joint distribution and sgnpxq “ Itx ‰

0up2Itx ą 0u ´ 1q denotes the sign function. We next establish the relationship

between these rank statistics and AUC. All derivations for these results are

presented in Section S1.

3.2.1 Non-parametric relationships

Kendall’s Tau captures concordance within a pair of bivariate observations

and relates to AUC as A “ 0.5 ` |rK{p4pp1 ´ pqq|.

Wilcoxon rank-sum statistic is a linear rank statistics. The use of W for

calculating AUC under complex survey designs has been discussed by Pro-

fessor Thomas Lumley in his blog Bias and Inefficient (https://notstatschat.

rbind.io/2017/12/26/statistics-on-pairs/). Additionally, Lumley and

Scott, 2013 demonstrated how survey-weighted rank test can be constructed

using Wilcoxon rank-sum statistic to compare two distributions in a com-

plex survey design. We followed his approach by fixing a minor error and

obtaining population-level relationship A “ 0.5 ` |W|.

Finally, we show that Spearman’s rank correlation and Wilcoxon rank-

sum are linearly related in binary-continuous case. This is primarily

due to the fact that the cumulative distribution function of a binary ran-

dom variable takes exactly two values. Specifically, we show that Spear-

man’s rank correlation and AUC are linearly related as follows A “ 0.5 `
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ˇ

ˇprS ´ p6p2 ´ 6p ` 3qq{p12p2p1 ´ pqq
ˇ

ˇ.

3.2.2 Robust semiparametric AUC via Quadrant rank correla-
tion

In the case of continuous-continuous pX, Yq pairs, the calculation of Quadrant

rank correlation requires counting the number of pairs in the first, second,

third, and fourth quadrant of the pX, Yq two-dimensional plane. Because it

involves only the sign of the distance of ranks from the median and not the

ranks themselves, Quadrant rank correlation is highly robust with a break-

down point of 50%, but less efficient than Kendall’s Tau and Spearman’s Rho

rank correlations (Croux and Dehon, 2010). Even though we related AUC

linearly to the three rank statistics above, it is not possible to express Quadrant

rank correlation linearly in terms of AUC without introducing additional

assumptions on the joint distribution of pX, Yq pairs. In the next section, we

introduce semiparametric Gaussian copula assumptions on the joint distribu-

tion of pX, Yq and will establish a non-linear relationship between Quadrant

rank correlation and AUC. This relationship will also provide a more robust

semiparametric estimate of AUC in the case of binary-continuous pY, Xq pairs.

3.3 Semiparametric Gaussian Copula

3.3.1 Introduction to the copula

The assumption of multivariate Gaussinity is arguably the most popular in

multivariate statistical analysis. However, in many applications, this assump-

tion is not realistic. To address this, Liu et al., 2012 proposed a Semi-parametric
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Gaussian Copula (SGC) model. Below, we provide definitions from Liu et al.,

2012.

Definition 3.3.1. We say that a pair of continuous random variables pY, Xq

follows a non-paranormal distribution, if there exist monotone functions

fYpq, fXpq such that pU, Vq “ p fYpYq, fXpXqq „ N2p0, 0, 1, 1, rq.

For binary-continuous pairs, Fan et al., 2017 defined latent non-paranormal

distribution as follows.

Definition 3.3.2. Suppose we have binary variable Y and continuous vari-

able X. Then, if there exists a latent variable Z and monotone functions

fZpq, fXpq such that pY, Xq “ pIt fZpZq ą ∆u, Xq and pU, Vq “ p fZpZq, fXpXqq „

N2p0, 0, 1, 1, rq, then we say that the binary-continuous pair pY, Xq follows la-

tent non-paranormal distribution.

The approach in Fan et al., 2017 estimates the latent correlation via map-

ping Kendall’s tau using a one-to-one function GKpq, called "bridging" function,

so that rK “ GKprq “ 4Φ2p∆, 0, r?
2
q ´ 2Φp∆q, where Φ2pa, b, rq denotes the cu-

mulative distribution function of a standard bivariate normal distribution

with correlation r. Bridging function GKprq is odd, so GKp´rq “ ´GKprq. Fig-

ure S1 in Section S3. shows GKprq, G
1

Kprq, and G
2

Kprq for different values of

p “ 1 ´ Φp∆q. Based on the sign of G
2

Kprq, we can see that Gkprq is convex for

higher values of p and concave for lower values of p, and neither in between.

Thus, it becomes possible to connect AUC, via Kendall’s Tau and SGC

assumption, to the latent correlation that captures the dependence at data

generating level between an observed binary outcome, conceptualized as a

dichotomized continuous variable, and an observed continuous predictor.
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3.3.2 Bridging the latent correlation and rank statistics

Next, we will show how Spearman and Quadrant rank correlations can also

be used to estimate the latent correlation of SGC.

Lemma 3.3.1. Under SGC, Spearman rank correlation, rS, and Quadrant rank

correlation, rQ, can be mapped to the latent correlation r as follows:

rS “ GSprq “ 12rΦ2p0, ´∆,
r

?
2

q ` pΦ2p0, ∆, ´
r

?
2

qs ´ 3

rQ “ GQprq “ rΦ2p´∆, 0, rq ´ Φ2p´∆, 0, ´rqsIpMY “ 0q`

rΦ2p∆, 0, rq ´ Φ2p∆, 0, ´rqsIpMY “ 1q.

(3.1)

The detailed proof is provided in Section S1 (Equations (S7), (S8), (S9) and

(S10)).

We will refer to GKpq, GSpq, GQpq as bridging functions and the subscripts

K, S, Q will specify a specific rank correlation. Fan et al., 2017 showed that

GKprq is a strictly increasing function of r in p´1, 1q. We establish similar

results for GSprq and GQprq in below.

Lemma 3.3.2. The bridging functions GSprq and GKprq are strictly increasing func-

tions of r in p´1, 1q and hence, the inverse functions exist.

The proof is provided in the Section S1.

Thus, we can ensure that latent correlation estimators obtained by in-

verting bridging functions are well defined. It is important to remember a
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few properties of the bridging functions. First, the bridging function is con-

structed assuming independence at the population level. Second, we only use

bridging functions to bridge between population-level statistics. Third, the

bridging functions do not depend on the sampling scheme which might bring

dependence between subjects through sampling mechanism.

3.4 Applications

In this section, we consider main applications of the proposed framework.

Using the results from previous section, we now can connect the

population-level AUC and rank statistics as follows.

AK “
1
2

`

ˇ

ˇ

ˇ

ˇ

rK

4pp1 ´ pq

ˇ

ˇ

ˇ

ˇ

,

AW “
1
2

` |W|

AS “
1
2

`

ˇ

ˇ

ˇ

ˇ

ˇ

GKpG´1
S prSqq

4pp1 ´ pq

ˇ

ˇ

ˇ

ˇ

ˇ

“
1
2

`

ˇ

ˇ

ˇ

ˇ

rS ´ p6p2 ´ 6p ` 3q

12p2p1 ´ pq

ˇ

ˇ

ˇ

ˇ

,

AQ “
1
2

`

ˇ

ˇ

ˇ

ˇ

ˇ

GKpG´1
Q prQqq

4pp1 ´ pq

ˇ

ˇ

ˇ

ˇ

ˇ

.

(3.2)

At the population-level, all four ways are equivalent, i.e. A “ AK “ AW “

AS “ AQ. Of course, in sample we likely end up with different estimates of

AUC. It is also important to note that the dependence of AUC and the latent

correlation r involves the prevalence rate p.
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3.4.1 Latent R2 for univariate continuous predictor

Our approach provides a framework to introduce a novel goodness-of-fit

statistics, the latent R2, that we denote as R2
l and define as a square of the latent

correlation. Various goodness-of-fit measures have been previously proposed

for models with binary outcome. Many of them focused on extending R2, as

a popular and intuitive measure in linear models with continuous outcome.

Two main alternative interpretations of R2 i) as the proportion of variance

explained or ii) as squared correlation have been pursued and generalized

to models with binary outcome DeMaris, 2002; Schemper, 2003; Yazici, Alpu,

and Yang, 2007. Among the limitations of those proposals is that the range

of the values can go outside of the usual p0, 1q interval as well as the lack of

invariance to the scale of the continuous predictors DeMaris, 2002; Schemper,

2003; Yazici, Alpu, and Yang, 2007.

Under SGC, we estimate the latent correlation using three different estima-

tors corresponding to three rank correlations:

R2
lK “ pG´1

K prKqq
2,

R2
lS “ pG´1

S prSqq
2,

R2
lQ “ pG´1

Q prQqq
2.

(3.3)

Again, at the population level, R2
l “ R2

lK “ R2
lS “ R2

lQ.

Thus, R2
l quantifies the proportion of variance explained by the continuous

predictor in the latent normalized space and gives us back a familiar intuition

available for linear models with a continuous outcome.
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Figure 3.1: The relationships between AUC and the latent R2
l (left panel) and AUC

and the absolute value of latent correlation (right panel) and its dependence on p.

Figure 3.1 shows the relationship between AUC and the latent R2
l in the

left panel and the relationship between AUC and the absolute value of the

latent correlation, |r|, in the right panel. As a reference, we include a linear line

|r| “ 2A ´ 1. We show these relationships for different values of the prevalence

rate, p. The right panel shows that AUC and |r| are almost identical for p “ 0.5,

but with p getting smaller, the same value of AUC corresponds to increasingly

smaller values of |r|. For example, AUC of 0.8 corresponds to |r| of 0.6, if

p “ 0.5, and |r| of 0.4, if p “ 0.01. The latent correlation tends to lie below the

linear reference line for most of values of p. The same observations are true

for the relationships between AUC and R2
l , but with a much larger curvature

due to the squared nature of R2
l ’s scale compared to the linear scale of |r|.
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3.4.2 Latent R2 for multivariate continuous predictor

The definition of R2
l can be readily extended to a case of a linear combination

X1β for a fixed pre-defined multivariate parameter β. Indeed, if a linear

combination X1β can be treated as a scalar continuous predictor and, if the

SGC assumptions for X1β are valid, the same argument connecting AUC and

R2
l can be applied to a binary outcome Y and a scalar continuous predictor

X1β.

An alternative two-step procedure to define R2
l for a multivariate continu-

ous predictor can be done as follows. First, estimate the joint latent correlation

matrix, Σ, of binary outcome Y and multivariate continuous predictor X. Sec-

ond, define R2
l as R2

l “ ΣYXΣ´1
XXΣXY, where ΣYX denotes the latent correlation

between the outcome and predictor and ΣXX denotes the latent correlation

matrix for the predictor. This approach generalizes R2 for linear models with

continuous outcome and continuous predictors. However, whether there is a

specific relationship between AUC and R2
l defined in this way remains to be

investigated and is beyond the scope of this paper.

3.4.3 Complex survey designs

Many social and public health studies are conducted using data from surveys

following complex designs. To properly estimate the population-level AUC in

complex surveys, one would need to know the pairwise sampling weights, or

pairwise probabilities of selection, for study participants. However, pairwise

survey weights are often not available. To tackle this, researchers have used

various approximations such as the product of individual participant weights
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(Korn and Graubard, 2011) or have applied non-parametric approaches (Yao,

Li, and Graubard, 2015). In this section, we show how rank statistics and

single participant survey weights can be used to construct asymptotically

unbiased estimators of the population-level AUC.

First, we introduce the definition of the survey-weighted AUC.

Definition 3.4.1. Suppose, X11, X12, ..., X1m1 and X01, X02, ..., X0m0 are i.i.d. sam-

ples from the distributions of X1 and X0, respectively. Let us assume that the

total sample size is n “ m0 ` m1. Then, the survey-weighted AUC can be

calculated as

Âwt “
1

řm0
i“1

řm1
j“1

1
wpi,jq

m1
ÿ

i“1

m0
ÿ

j“1

1
wpi, jq

hpX1i, X0jq “ ÊwhpX1, X0q, (3.4)

where hpx, yq “ Ipx ą yq ` 0.5Ipx “ yq, wpiq and wpi, jq are single and pairwise

participant weights, respectively.

3.4.3.1 AUC using single participant weights

The key idea of the proposal outlined below is to use single participant survey

weights to estimate population-level rank statistics and then connect them

to the population-level AUC using bridging functions. We can define the

survey-weighted estimators (Horvitz-Thompson estimators) of Kendall’s Tau,

Wilcoxon rank-sum statistic, Spearman and Quadrant rank correlations as

follows.
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r̂K “
1

ř

iăj
1

ŵpi,jq

ÿ

iăj

1
ŵpi, jq

rpYi ´ YjqsgnpXi ´ Xjqs

Ŵ “
1

ř

i:Yi“1
1

wpiq

ÿ

i:Yi“1

1
wpiq

F̂XpXiq ´
1

ř

i:Yi“0
1

wpiq

ÿ

i:Yi“0

1
wpiq

F̂XpXiq

r̂S “ 12
1

řn
i“1

1
wpiq

n
ÿ

i“1

1
wpiq

rF̂YpYiqF̂XpXiqs ´ 3

r̂Q “
1

řn
i“1

1
wpiq

n
ÿ

i“1

1
wpiq

sgnppYi ´ M̂YqpXi ´ M̂Xqq.

(3.5)

The estimates of population-level medians, MY and MX, and the

population-level distribution functions, FY and FX, are obtained using Horvitz-

Thomposon estimators.

3.4.3.2 Asymptotic properties

Lumley and Scott, 2013 established the asymptotic properties of statistics of

the form

T̂ “
1

ř

i:Yi“1
1

wpiq

ÿ

i:Yi“1

1
wpiq

gpF̂XpXiqq ´
1

ř

i:Yi“0
1

wpiq

ÿ

i:Yi“0

1
wpiq

gpF̂XpXiqq

under complex survey designs. The function gpq can follow any of the

assumptions stated in Section S2. Theorem 1 in Lumley and Scott, 2013 has

been used to show that
?

npŴ ´ Wq are asymptotically normal with mean

zero. We adopt a similar approach to prove the asymptotical normality for rS

and rQ.
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Theorem 3.4.1. Under assumptions A1 to A4 in Section S2,
?

npr̂S ´ rSq and
?

npr̂Q ´ rQq are asymptotically normal with mean zero. Hence, pr̂S ´ rSq and

pr̂Q ´ rQq converge to zero in probability.

The proof is provided in Section S2.

Kendall’s Tau requires pairwise survey weights ŵpi, jq. We consider three

different estimates of Kendall’s Tau: (1) unweighted, r̂Kuw, with ŵpi, jq “ 1; (2)

true weighted, r̂Ktw, with ŵpi, jq “ wpi, jq; and (3) product weighted, r̂Kpw, with

ŵpi, jq “ wpiqwpjq. Note that in most of practical settings, we do not know

or have an access to true pairwise weights and can only calculate r̂Ktw in

simulations.

We can estimate the population-level AUC using Equations (3.2) and define

corresponding estimates as ÂKuw, ÂKtw, ÂKpw, ÂW , ÂS, and ÂQ.

Using Theorem 3.4.1 and applying the delta method to Equations 3.2 leads

to the the following result.

Corollary 3.4.1.1. Under the assumptions of Theorem 3.4.1,
?

npÂS ´ ASq and
?

npÂQ ´ rQq are asymptotically normal with mean zero. Hence, pÂS ´ ASq and

pÂQ ´ AQq converge to zero in probability.

Note that we can apply delta method because of the differentiability of the

bridging functions as shown in the proof of Lemma 3.3.2 in Appendix A.

Thus, using single participant survey weights, we can define asymptoti-

cally unbiased estimators of the population-level AUC. Finally, we can invert

bridging functions to get three different estimates of the latent R2
l as R̂2

lK, R̂2
lS,

and R̂2
lQ, respectively.
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3.5 Simulations

In this section, we perform extensive simulation studies to explore the be-

haviour of the proposed estimators of AUC. Under two-stage stratified cluster

sampling, we consider several different combinations of strata informativeness

and outlyingness in binary-continuous pairs.

Following Yao, Li, and Graubard, 2015, we set up a two-stage stratified

cluster sampling as follows. Suppose, we have a finite population, N subjects,

with H strata and each strata has K Primary Sampling Units (PSUs). The

number of subjects in the gth PSU in the h-th strata are Nhg. Suppose, we pick

nhg subjects from each PSU hg and the total number of subjects selected from

hth strata is nh with the total number of subjects in the sample to be n. We

sample subjects as follows: first, randomly select u out of U PSUs within each

stratum and then randomly select a fixed number of subjects (nh{u) from each

of the PSU in h-th strata, for h “ 1, ¨ ¨ ¨ , H. Based on this sampling scheme,

we can easily calculate both the individual selection probability and pairwise

selection probabilities as described in Section 2.3 of Yao, Li, and Graubard,

2015.

First, we define strata informativeness as follows. If nh depends on the

AUC in h-th strata, we call this informative sampling. If the sampling is infor-

mative, we oversample strata with higher AUCs. We rank strata according to

AUC for that specific strata. Depending on the level of oversampling, we de-

fine three types of informativeness: 0-None (nh “ n{H for all h) , 1-Moderate

(top three: nh “ n ˚ 0.18, middle four: nh “ n ˚ 0.07, bottom three: nh “ n ˚ 0.06),

2-Strong (top three: nh “ n ˚ 0.22, middle four: nh “ n ˚ 0.07, bottom three:
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Figure 3.2: Simulation results: Bias of the AUC estimators under different scenario

nh “ n ˚ 0.02). We define outlyingness as follows. Following Croux and De-

hon, 2010, we introduce “outlying" observations at latent level by substituting

N2p0, 0, 1, 1, rq with N2p4, ´4, 0.01, 0.01, 0q or N2p´4, 4, 0.01, 0.01, 0q randomly

selected with probability 1
2 . We consider three levels of outlyingness: 0-None

(0% of outliers), 1-Moderate (5% of outliers), 2-Strong (15% of outliers).

We create 9 different scenarios corresponding to the 3 ˆ 3 combinations of

strata informativeness and outlyingness. We take H “ 10, U “ 10, u “ 2, n “

600, N “ 60000. For each scenario, we simulate data and calculate estimates

as follows.

(a) Schematics
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1. For a fixed latent correlation, r, we calculate true AUC, A, using bridging.

2. Take strata-specific AUCs, Ah, equally spaced within pA ´ 0.1, A ` 0.1q.

For example, if AUC A is 0.8 and there are 10 stratas, the strata specific

AUCs are 0.7, 0.722, 0.744, 0.766, 0.788, 0.811, 0.833, 0.855, 0.877, 0.9.

3. Depending on informativeness of the sampling scenario, calculate nh

based on Ah.

4. Calculate individual, wpiq, and pairwise, wpi, jq, survey weights for this

particular scheme.

(b) Within Strata

1. For Ah, use bridging to calculate strata-specific latent correlation, rh.

2. Generate pUi, Viq, i “ 1, ¨ ¨ ¨ , Nh „ N2p0, 0, 1, 1, rhq.

(c) Sampling and outliers

1. Get a sample of size n using sampling scheme described in the beginning

of the section.

2. Depending on the level of “outlyingness", randomly select 0%, 5% or

15% of “outliers” across all stratas by changing corresponding pUi, Viq

from N2p0, 0, 1, 1, rhq to a random draw from N2p4, ´4, 0.01, 0.01, 0q or

N2p´4, 4, 0.01, 0.01, 0q with probability 1
2 .

3. Transform Yi “ IpUi ą ∆q and keep Xi “ Vi for the final finite sample.

(d) Estimation
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1. Estimate ∆ as ∆̂ “ Φ´1p1 ´

řn
i“1

Yi
wi

řn
i“1

1
w i

q

2. Estimate r̂K, using three different weighting schemes, r̂S and r̂Q, using

single participant weights, by inverting corresponding bridging func-

tions described in Section 3.3.2.

3. Estimate A using Equations (3.2) to obtain ÂKuw, ÂKtw, ÂKpw, ÂW , ÂS,

and ÂQ.

We vary true latent correlation r between p0.005, 0.995q taking 50 equally

spaced points and generate data from a specific scenario 100 times. The results

are used to report bias and mean squared errors (MSEs).

Figure 3.2 that shows bias across the nine scenarios. Note that each row has

row-specific range for vertical axis, with the lowest range in the top row (0%

of outliers) and the highest range in the bottom row (15% of outliers). The key

findings are as follows. With increasing informativeness in sampling (from

the most left to the most right column), bias of the unweighted estimator is

relatively higher than that of the weighted versions. With increasing outlying-

ness (from the top to the bottom row), bias of AQ is significantly lower than

weighted and unweighted AUC obtained using the other rank correlations.

Even in the most challenging scenario, shown in the bottom most right corner,

AQ exhibits maximum absolute bias of only 0.12 while other estimates have

maximum absolute bias as large as 0.3.

These results provide a clear illustration that AQ can be seen and used

as a robust semiparametric version of AUC. In the case of higher sampling
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informativeness and moderate presence of outliers, we observe that the un-

weighted AUC performs better than the weighted AUC. We argue that the

intuition behind this is that in these kind of scenarios, the outlying observa-

tions might have higher weights and thus, unweighted estimates might be

less biased than the weighted ones.

The similar observations are true for MSEs of the estimators, shown in

Figure S2 in Section S3.

3.6 Classification of 5-year mortality in NHANES
2003-2006

The National Health and Nutrition Examination Survey (NHANES) is a bi-

ennial stratified multi-stage sample survey of non-institutionalized US popu-

lation conducted by Center of Disease Control and Prevention, USA (https:

//www.cdc.gov/nchs/nhanes/index.htm). Using complex survey weighting

techniques, the results obtained from NHANES can be considered as nation-

ally representative. To illustrate our approach, we use accelerometry and

laboratory data as well as linked mortality data for NHANES 2003-2006. We

define a 5-year all cause mortality to be the observed binary outcome and use

continuous predictors including age, albumin, systolic blood pressure and

summaries of accelerometry-estimated physical activity which was a part of

NHANES 2003-2006 protocol (Leroux et al., 2019).

Age (in years) is derived from the NHANES variable RIDAGEYR, defined

as the age of a participant at the time of household screening. Albumin (in

ug/mL) is the variable URXUMA. Systolic blood pressure (in mmHg) has
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been calculated as the average of multiple readings of the systolic blood

pressure (up to four sequential readings per participant) which we denote

here as BPXSY. Following Leroux et al., 2019, we also include total activity

count (TAC), time in minutes spent in moderate-to-vigorous activity (MVPA)

and active-to-sedentary transition probability (ASTP). These accelerometry-

derived measures have been shown to be significantly predictive of a 5-year

follow-up mortality with classification performance comparable to and some-

times exceeding that of Age (Leroux et al., 2019; Smirnova et al., 2019). We

excluded participants who (1) have missing mortality information or alive

with follow-up less than 5 years, (2) are younger than 50 or aged 85 and older,

(3) have missing any of predictor variables of interest, (4) have died due to acci-

dent, and (5) had fewer than 3 days of data with at least 10 hours of estimated

accelerometry wear time (Leroux et al., 2019). Our final analytical sample

consisted of 3069 subjects with 321 deaths within 5 years. This gives an un-

weighted estimate of prevalence rate as p “ 0.1. Note that we use term “preva-

lence rate" while referring to p loosely here, just to stay consistent with the

rest of the paper. We use rnhanesdata package (https://github.com/andrew-

leroux/rnhanesdata) to process and recalculate the survey weights for our

chosen subset of participants. Finally, the binary outcome is defined as a

binarized 5-year follow-up mortality.

We use methods described in Section 3.4.3 and Equation 3.5 to calculate

our proposed estimates and their standard errors and confidence intervals.

Specifically, (i) we follow the approach by Yeo, Mantel, and Liu, 1999 and

use bootstrap to get standard error and confidence intervals, (ii) we use
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svyrepdesign function in R package Survey to create 100 bootstrap replicates of

the sample design using survey weights, (iii) then we calculate AUC and R2
l

estimates from each of these replicates, and report bootstrap standard error

and 95% confidence intervals in Tables 3.1 and 3.2.

The results are consistent with those in Leroux et al., 2019. For unweighted

AUC, AKuw, if we rank AUCs from highest to lowest, the predictors are

ordered as TAC, Age, MVPA, ASTP, Albumin, Systolic BP. For weighted

versions of AUC, AKpw, AW , and AS, MVPA becomes more discriminative

than Age. However, Age has been used for NHANES survey weights, so an

influence on the results is expected. Interestingly, when using AQ, MVPA

becomes the predictor with highest AUC and TAC becomes the second highest.

This is likely due many elderly participants having zero minutes of moderate-

to-vigorous physical activity, where as, TAC provides a better discrimination

between participants with MVPA zeroes (Varma et al., 2018). Hence, because

Quadrant rank correlation only counts the quadrant concordance, MVPA gets

this slight preference by Quadrant.

The results for R2
l show that TAC, the total volume of physical activity,

explains about 33%, 29%, 29%, and 23% variation in the binary outcome of

mortality, when we use the unweighted and weighted Kendall’s Tau, weighted

Spearman’s and Quadrant rank correlations, respectively. The lowest R2
l is for

Systolic BP, which explains less than one percent of the variation.

It is very important to re-iterate that the one-to-one bridging of AUCs and

R2
l depends on the prevalence rate. So, if we had a different p, we would get a

different R2
l .
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Variables AKuw Rank AKpw Rank AW Rank AS Rank AQ Rank
1 TAC 0.75 (0.75, 0.75) 1 0.8 (0.75, 0.83) 1 0.8 (0.75, 0.83) 1 0.8 (0.75, 0.83) 1 0.77 (0.73, 0.8) 2
2 MVPA 0.73 (0.73, 0.73) 3 0.78 (0.74, 0.81) 2 0.78 (0.73, 0.81) 2 0.78 (0.74, 0.81) 2 0.78 (0.75, 0.82) 1
3 Age 0.74 (0.74, 0.74) 2 0.77 (0.72, 0.8) 3 0.76 (0.72, 0.8) 4 0.77 (0.72, 0.8) 3 0.74 (0.7, 0.77) 4
4 ASTP 0.73 (0.73, 0.73) 4 0.76 (0.73, 0.8) 4 0.76 (0.73, 0.81) 3 0.76 (0.73, 0.8) 4 0.74 (0.7, 0.78) 3
5 Albumin 0.65 (0.65, 0.65) 5 0.7 (0.66, 0.73) 5 0.7 (0.66, 0.73) 5 0.7 (0.66, 0.73) 5 0.68 (0.64, 0.71) 5
6 Systolic BP 0.54 (0.54, 0.54) 6 0.53 (0.5, 0.57) 6 0.53 (0.5, 0.57) 6 0.53 (0.5, 0.57) 6 0.5 (0.5, 0.57) 6

Table 3.1: AUC estimates and 95% bootstrap confidence intervals for continuous
predictors in NHANES 2003-2006.

Variables R2
lKuw Rank R2

lKpw Rank R2
lS Rank R2

lQ Rank
1 TAC 0.33 (0.28, 0.39) 1 0.29 (0.2, 0.37) 1 0.29 (0.2, 0.37) 1 0.23 (0.17, 0.29) 2
2 MVPA 0.27 (0.23, 0.35) 3 0.25 (0.18, 0.32) 2 0.25 (0.18, 0.32) 2 0.26 (0.19, 0.35) 1
3 Age 0.29 (0.24, 0.36) 2 0.23 (0.15, 0.3) 3 0.23 (0.15, 0.3) 3 0.19 (0.12, 0.24) 4
4 ASTP 0.26 (0.22, 0.3) 4 0.22 (0.16, 0.31) 4 0.22 (0.16, 0.31) 4 0.19 (0.13, 0.25) 3
5 Albumin 0.11 (0.1, 0.14) 5 0.13 (0.08, 0.17) 5 0.13 (0.08, 0.17) 5 0.1 (0.06, 0.15) 5
6 Systolic BP 0.01 (0.01, 0.01) 6 0 (0, 0.02) 6 0 (0, 0.02) 6 0 (0, 0.01) 6

Table 3.2: R2
l estimates and 95% confidence intervals for continuous predictors in

NHANES 2003-2006.

3.7 Discussion

We used Semiparametric Gaussian Copula to define latent R2
l , a measure of

variation explained for the case of observed binary outcome and observed

continuous predictor. Conceptually, R2
l can be considered as a parameter of

the data generating process that does not depend on the prevalence rate p

and have an intuitive scale-invariant interpretation. The scale-dependence

was considered to be a major limitation of other previously proposed R2-type

measures (DeMaris, 2002; Schemper, 2003; Steyerberg et al., 2009). Under SGC,

AUC and R2
l are directly related and their mutually consistent interpretation

can provide a more complete description of both discrimination and depen-

dence, especially, under highly unbalanced cases (Saito and Rehmsmeier,

2015). This property also allows us to compare AUCs (via converting to corre-

sponding R2
l ) across studies with different prevalence of the binary outcome

of interest. We showed that if p “ 0.5, AUC and the latent correlation are
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almost linearly related. However, once p gets smaller, the two measures ex-

hibit a significant nonlinear divergence. Hence, for a fixed AUC, variation

explained is getting smaller while the prevalence rate getting smaller. This is

similar to examples considered in Chapter 15 of Steyerberg et al., 2009 that

compared AUC vs likelihood-based Nagelkerke’s R2 for different values of

the prevalence rate. Note that our proposal established an exact relationship

between AUC and scale-invariant semiparametric R2
l .

We also demonstrated how four rank statistics and prevalence rate can be

used to estimate both AUC and the latent R2
l . We proved that our weighted

AUC estimators defined through Spearman and Quadrant correlations are

asymptotically normal and hence, consistent under reasonable complex survey

design assumptions. We additionally showed that AUC is sensitive to outliers

and proposed AQ, AUC calculated via Quadrant rank correlation, as a robust

semiparametric version of AUC. Finally, we demonstrated how AUC can be

calculated using only single participant survey weights under complex survey

designs. As of interesting note, we showed that Kendall’s Tau and Spearman

rank correlations are linearly related in a binary-continuous case, which is in

contrast to the continuous-continuous case where they are only asymptotically

equivalent and the latter is a linear projection of the former (Sidak, Sen, and

Hajek, 1999).

There are a few limitations in the proposed framework. First, the main

assumption is that binary-continuous pairs are generated according to a Semi-

parametric Gaussian Copula. Even though SGC is a flexible framework, it is

desirable to develop data-driven methods to test this assumption and be able
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to detect deviations from it. Another limitation, that remains to be addressed

in the future work, is that we do not handle in any way the presence of ties

that may occur in practice even for continuous variables.

This work can be extended in many interesting ways. First, latent con-

tinuous random variables generating observed binary outcomes could be of

interest by themselves and methods development for calculating best predic-

tors for these random variables would be welcome. Second, the SGC approach

has been recently extended to include truncated variables in (Yoon, Carroll,

and Gaynanova, 2018) and some specific cases of ordinal variables in (Quan,

Booth, and Wells, 2018). This opens up an opportunity to extend R2
l to a

wider class of mixed data types. Similarly to Croux and Dehon, 2010 and

Nikitin, 1995, the future work should investigate and compare the asymp-

totic efficiency of the proposed estimators of AUC and R2
l . It also would be

interesting to compare R2
l to other previously proposed R2-type measures.

Finally, extending R2
l to the multivariate mixed data type predictors would be

a natural next step.
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S1 Proofs concerning relation between AUC and
Rank Statistics

S1.1 Derivations of the relationships between rank statistics
and AUC

In the next discussion, we repeatedly use the fact that for continuous random

variable X, sgnpXq “ 2IpX ą 0q ´ 1 with probability one.

rK “ EppYi ´ Y1
i qsgnpXi ´ X1

iqq

“ EpsgnpXi ´ X1
iq|pYi ´ Y1

i q “ 1qPppYi ´ Y1
i q “ 1q

´ EpsgnpXi ´ X1
iq|pYi ´ Y1

i q “ ´1qPppYi ´ Y1
i q “ ´1q

“ pp1 ´ pqpEpsgnpXi ´ X1
iq|pYi ´ Y1

i q “ 1q ´ EpsgnpXi ´ X1
iq|pYi ´ Y1

i q “ ´1qq

“ pp1 ´ pqp2PpXi ą X1
i|pYi ´ Y1

i q “ 1q ´ 2PpXi ą X1
i|pYi ´ Y1

i q “ ´1qq

“ 2pp1 ´ pqpPpX1 ą X0q ´ PpX1 ă X0qq

ùñ |rK| “ 2pp1 ´ pq|PpX1 ą X0q ´ PpX1 ă X0q|

(S1)

From the definition of AUC, we know that, |PpX1 ą X0q ´ PpX1 ă X0q| “
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p2A ´ 1q. Combining this fact with Equation (S1), we get -

A “
1
2

`

ˇ

ˇ

ˇ

ˇ

rK

4pp1 ´ pq

ˇ

ˇ

ˇ

ˇ

(S2)

W “ PpX ď X1q ´ PpX ď X0q

“ PpX ď X1|Y “ 0qPpY “ 0q ` PpX ď X1|Y “ 1qPpY “ 1q´

PpX ď X0|Y “ 0qPpY “ 0q ´ PpX ď X0|Y “ 1qPpY “ 1q

“ PpX1 ą X0qp1 ´ pq ` PpX1
1 ď X1qp´

PpX1
0 ď X0qp1 ´ pq ´ PpX1 ă X0qp

“ PpX1 ą X0q `
1
2

p ´
1
2

p1 ´ pq ´ p

rX1
d
“ X1

1, X0
d
“ X1

0, 6 PpX1 ď X1
1q “ PpX0 ď X1

0q “
1
2

s

“ PpX1 ą X0q ´
1
2

ùñ |W| “ A ´
1
2

ùñ A “
1
2

` |W|

(S3)
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rS “ 12ErFXpXqFYpYqs ´ 3

“ 12ErFXpX1
qtp1 ´ pqIpY1

“ 0q ` IpY1
“ 1qus ´ 3

“ 12ErFXpXqs ´ 12pErFXpX1
qIpY1

“ 0qs ´ 3

“ 3 ´ 12pErPpX ď X1
|X1

qIpY1
“ 0qs

“ 3 ´ 12pErErIpX ď X1
qIpY1

“ 0q|X1, Y1
ss

“ 3 ´ 12pPpX ď X1, Y1
“ 0q

ùñ PpX ď X1, Y1
“ 0q “

3 ´ rS

12p
(S4)

W “ PpX ď X1q ´ PpX ď X0q

“ PpX ď X1
|Y1

“ 1q ´ PpX ď X1
|Y1

“ 0q

“
PpX ď X1, Y1 “ 1q

p
´

PpX ď X1, Y1 “ 0q

1 ´ p

“
PpX ď X1, Y1 “ 1q ` PpX ď X1, Y1 “ 0q

p
´ PpX ď X1, Y1

“ 0qp
1
p

`
1

1 ´ p
q

“
1

2p
´

PpX ď X1, Y1 “ 0q

pp1 ´ pq

(S5)
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Combining equation (S4) and (S5), we get -

W “
1

2p
´

3´rS
12p

pp1 ´ pq

“
rS ´ p6p2 ´ 6p ` 3q

12p2p1 ´ pq

ùñ A “
1
2

`

ˇ

ˇ

ˇ

ˇ

rS ´ p6p2 ´ 6p ` 3q

12p2p1 ´ pq

ˇ

ˇ

ˇ

ˇ

(S6)

S1.2 Derivation of bridging functions and proofs of Lemmas
1 and 2.

We lay out the proof of Lemma 1 below. Remember that FYpyq “ p1 ´ pqIpy ă

1q ` Ipy ą“ 1q, so, FYpYq “ p1 ´ pqIpY ă 1q ` IpY ą“ 1q “ pIpU ă“

∆q ` IpU ą ∆q. Also, FXpXq “ ΦpVq, ΦpVq „ Up0, 1q and EpΦpVqq “ 0.5.

Hence,

rS “ 12ErFYpYqFXpXqs ´ 3

“ 12ErPpX2 ă X1|X1qPpY3 ď Y1|Y1qs ´ 3

“ 12ErPpX2 ă X1|X1qPpY3 ď Y1|Y1qs ´ 3

“ 12ErErIpX2 ă X1, Y3 ď Y1q|X1, Y1ss ´ 3

“ 12PpX2 ă X1, Y3 ď Y1q ´ 3

“ 12γ ´ 3

(S7)

Using the established relationship between Spearman’s rank correlation

and Type 2 concordance, γ, our next step is to derive the relationship between
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Type 2 concordance and the latent correlation, r.

γ “ PpX2 ă X1, Y3 ď Y1q

“ PpV2 ă V1, U3 ă“ ∆, U1 ą ∆s ` PpV2 ă V1, U3 ą ∆, U1 ą ∆q`

PpV2 ă V1, U3 ă“ ∆, U1 ă“ ∆q

“ p1 ´ pqPp
pV2 ´ V1q
a

p2q
ă 0, U1 ą ∆q ` pPp

pV2 ´ V1q
a

p2q
ă 0, U1 ą ∆q`

p1 ´ pqPp
pV2 ´ V1q
a

p2q
ă 0, U1 ă“ ∆q

“ p1 ´ pqΦ2p0, ´∆,
r

?
2

q ` pΦ2p0, ´∆,
r

?
2

q ` pΦ2p0, ∆, ´
r

?
2

q

“ Φ2p0, ´∆,
r

?
2

q ` pΦ2p0, ∆, ´
r

?
2

q

(S8)

Using Equations (S7) and (S8), we can conclude that

rS “ 12rΦ2p0, ´∆,
r

?
2

q ` pΦ2p0, ∆, ´
r

?
2

qs ´ 3 “ GSprq (S9)

We derive the bridging function for Quadrant rank correlation as follows.
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rQ “ ErsgnppY ´ MYqpX ´ MXqqs

“ PpU ą ∆, V ą 0q ´ PpU ą ∆, V ă 0qIpMY “ 0q`

PpU ă ∆, V ă 0q ´ PpU ă ∆, V ą 0qIpMY “ 1q

“ rΦ2p´∆, 0, rq ´ Φ2p´∆, 0, ´rqsIpMY “ 0q`

rΦ2p∆, 0, rq ´ Φ2p∆, 0, ´rqsIpMY “ 1q “ GQprq

(S10)

Fan et al., 2017 proved the following result in the appendix and used it to

prove monotonicity and hence invertibility of GKprq. The result is stated as

follows.

Lemma S1.1. For any fixed ∆1, ∆2, Φ2p∆1, ∆2, rq “
ş∆1

´8
Φp

∆2´rx?
1´r2

qϕpxqdx, where

ϕpxq is the standard normal density, and moreover, Φ2p∆1, ∆2, rq is a strictly increas-

ing function of r in p´1, 1q. Hence, inverse exists for the function.

Following these ideas that have been used to prove the monotonicity of

the bridging function GKprq, we will now prove Lemma 2.

Proof. Without the loss of generality, we assume that MY “ 0, and define

F∆prq “ Φ2p´∆, 0, rq “ Φ2p0, ´∆, rq. Then, using Lemma 1, BF∆prq

Br “ F1
∆prq ą 0

for r P p´1, 1q. Also, we can write

GQprq “ Φ2p´∆, 0, rq ´ Φ2p´∆, 0, ´rq “ F∆prq ´ F∆p´rq

ùñ
BGQprq

Br
“ F1

∆prq ` F1
∆p´rq ą 0

(S11)

Also using the fact that Φ2p∆1, ∆2, ´rq “ Φp∆1q ´ Φp∆1, ´∆2, rq, we can derive
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GSprq “ 12rΦ2p0, ´∆,
r

?
2

q ` pΦ2p0, ∆, ´
r

?
2

qs ´ 3

“ 12rp1 ´ pqΦ2p0, ´∆,
r

?
2

q `
p
2

s ´ 3

“ 12rp1 ´ pqF∆p
r

?
2

qs ` p6p ´ 3q

ùñ
BGSprq

Br
“

12p1 ´ pq
?

2
F1

∆p
r

?
2

q ą 0.

(S12)

This proves the statement.

S2 Proof of Theorem 1. (Asymptotics)

We establish asymptotical results under a sequence of finite-populations PNν

converging to a super-population P, following the framework proposed by

Rubin-Bleuer, Kratina, et al., 2005. We assume that a finite sample of size nν

is drawn from finite population of size Nν according to a sampling design

ppsq and Nν, nν Ñ 8 with limsup nν
Nν

ă 1 as ν Ñ 8. The superpopulation

associated with Nν is embedded with a probability space pΩ,F , ξq. Below, all

the distributions and convergence refer to the joint process of first choosing

a finite population from the super-population and then drawing a sample

from the finite population using a probability sampling. The combination

of the two levels of convergence is inline with Theorem 6.1 of Rubin-Bleuer,

Kratina, et al., 2005, where the authors considered the convergence of sample

estimators defined by estimating equations. For next part of discussion, we

denote the joint probability measure as ξ p , where ξ denotes the probability
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measure with respect to the model defined on finite population, and p denotes

the measure with respect to the design conditioning on the finite population.

We lay out the assumptions 1, 3, 4, 5 from Wang, 2012 below under which we

will prove our results.

Assumption 1. The finite population PN consists of a sequence of i.i.d. variables

pYi, Xiq, i “ 1, ¨ ¨ ¨ , N.

Assumption 2. The following conditions hold for inclusion probabilities wpiq and

design variance of Horvitz–Thompson estimator of the mean - (i) KL ď Nwpiq{n˚ ď

KU for all i , where KL and KU are positive constants, (ii) For any vector zi with

finite population moments, or equivalently, 1
N
řN

i“1 ∥z∥2`δ
ă 8 where ∥z∥ “

?
zTz

denotes the L2-norm of vector z, we assume n˚Varppzwq ď KV for some KV ą 0 and

n˚ “ Eppnq.

Assumption 3. For any z with finite fourth population moment, Varppz̄wq´ 1
2pz̄w ´

z̄Nq|FN converges to Np0, Iq with respect to Lp and rVarppzwqs
´1Vp ppzwq ´

I “ Oppn˚´1{2
q, where I is the identity matrix, the design variance–covariance

matrix of z̄w, denoted by rVarppzwqs, is positive definite, and Vp ppzwq “

1
N2

ř

iPA
ř

jPA ΩijzizT
j , where Ωij means design-dependent weights associated with

each pair pi, jq.

Here, convergence with respect to Lp means “convergence in the law of sampling

design”, conditioning on the realized population, z̄w denotes the Horvitz-Thompson

estimate of z from finite sample and z̄N means the mean in the finite population.

Assumption 4. Let Dt,N denote the set of all distinct pi1, i2, ¨ ¨ ¨ , itq-tuples from PN .

We have
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limsup
NÑ8

N4

n˚2 max
pi1,i2,i3,i4qPD4,N

|EppIi1 ´ wpi1qqpIi2 ´ wpi2qqpIi3 ´ wpi3qqpIi4 ´ wpi4qq| ď M1 ă 8

limsup
NÑ8

N3

n˚2 max
pi1,i2,i3qPD3,N

|EppIi1 ´ wpi1qq
2
pIi2 ´ wpi2qqpIi3 ´ wpi3qq| ď M2 ă 8

limsup
NÑ8

N2

n˚2 max
pi1,i2qPD2,N

|EppIi1 ´ wpi1qq
2
pIi2 ´ wpi2qq

2
| ď M3 ă 8

(S13)

almost surely for all populations. Here Ik denotes the indicator that k-th unit is chosen

in the finite sample.

Now, we introduce the following notations for the Horvitz-Thompson

estimators of population quantities from finite sample -

F̂0nptq “
1

ř

i:Yi“0
1

wpiq

ÿ

i:Yi“0

1
wpiq

IpXi ď tq

F̂1nptq “
1

ř

i:Yi“1
1

wpiq

ÿ

i:Yi“1

1
wpiq

IpXi ď tq

F̂nptq “
1

řn
i“1

1
wpiq

n
ÿ

i“1

1
wpiq

IpXi ď tq

p̂w “

řn
i:“1

1
wpiqIpYi “ 1q

řn
i“1

1
wpiq

.

(S14)

We will also use the fact that M̂Y “ Ipp̂w ą 1
2q. We denote the true distri-

bution functions of the random variables X, X0 “ pX|Y “ 0q, X1 “ pX|Y “ 1q

as FX, F0X and F1X respectively. Now, as the random variable IpYi “ 1q
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has finite fourth moment, using Assumption A3, similar to proof of The-

orem 1 in Wang, 2012, it can be shown that,
?

nppp̂w, F̂0nptq, F̂1nptq, F̂nptqq1 ´

pp, F0Xptq, F1Xptq, FXptqq1q converges weakly to Np0, Σq for some covariance

matrix Σ that depends on second-order design probabilities. The con-

vergence of p̂w, the Horvitz-Thompson estimator of the sample mean, is

discussed thoroughly in Corollary 1.3.6.1 of Fuller, 2011. We can treat

the distribution functions as random elements in Dr0, 1s, the space of all

right continuous functions defined on r0, 1s, and p̂w as a constant process.

Then similar to Lumley and Scott, 2013 and Wang, 2012, we can infer that
?

nppp̂w, F̂0n, F̂1n, F̂nq1 ´ pp, F0X, F1X, FXq1q converges weakly to the Gaussian

process T “ pTw1 , Tw2 , Tw3 , Tw4q with the covariance kernel that depends on

second order sampling probabilities. Following Example 20.12 in Vaart, 2000
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and assuming gpxq “ Ipx ą 1
2q, we can rewrite r̂Q and r̂S as follows

r̂Q “
1

řn
i“1

1
wpiq

n
ÿ

i“1

1
wpiq

sgnppYi ´ M̂YqpXi ´ M̂Xqq

“
1

ř

i:Yi“1
1

wpiq

p̂wIpM̂Y “ 0q
ÿ

i:Yi“1

1
wpiq

2pIpF̂XpXiq ą
1
2

q ´ 1q´

1
ř

i:Yi“0
1

wpiq

p1 ´ p̂wqIpM̂Y “ 1q
ÿ

i:Yi“0

1
wpiq

2pIpF̂XpXiq ą
1
2

q ´ 1q

“
1

ř

i:Yi“1
1

wpiq

p̂wIpp̂w ď
1
2

q
ÿ

i:Yi“1

1
wpiq

2pIpF̂XpXiq ą
1
2

q ´ 1q´

1
ř

i:Yi“0
1

wpiq

p1 ´ p̂wqIpp̂w ą
1
2

q
ÿ

i:Yi“0

1
wpiq

2pIpF̂XpXiq ą
1
2

q ´ 1q

“ p̂wIpp̂w ď
1
2

q

ż

gpF̂nqdF̂1n ´ p1 ´ p̂wqIpp̂w ą
1
2

q

ż

gpF̂nqdF̂0n´

´ pp̂wIpp̂w ď
1
2

qp1 ´ p̂wqIpp̂w ą
1
2

qq

(S15)

r̂S “ 12
1

řn
i“1

1
wpiq

n
ÿ

i“1

1
wpiq

rF̂YpYiqF̂XpXiqs ´ 3

“ 12rp1 ´ p̂wq
2
ż

F̂ndF̂0n ` p̂w

ż

F̂ndF̂1ns ´ 3

(S16)

where gpxq “ Ipx ą 1
2q in Equation S15. In Theorem 1 of Lumley and

Scott, 2013, the convergence of
ş

gpF̂nqdF̂1n ´
ş

gpF̂nqdF̂0n has been proved,

where the function gpq has to be, (i) differentiable with bounded derivative

and continuous on r0, 1s, or, (ii) differentiable on p0, 1q and
ş

0,1 gpyq2`δ is

finite for some δ ą 0, or, (iii) an indicator function of a subinterval pa, bq
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of r0, 1s. Our function g satisfies criteria (iii), so, proceeding similarly as

the proof of Theorem 1 in Lumley and Scott, 2013 and applying functional

delta method (Kosorok, 2008, Theorem 12.1) to Equation S15 S16, we get

that
?

npr̂Q ´ rQq converges to normal distribution. We should keep in mind

that, the functional delta method requires Hadamard differentiability of the

functional at pp, F0X, F1X, FXq and for the quadrant correlation (Equation S15),

the functional is not Hadamard differentiabile at p “ 1
2 , so, we leave that

special case out of the proof.

Proving asymptotic normality of
?

npr̂S ´ rSq is more straight-forward as

we can apply functional delta method to Equation (S16) and it will follow

immediately.
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S3 Additional Figures
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Kendall’s Tau, varying on p.

93



Informative: None Informative: Moderate Informative: Strong

O
u

tlie
r: N

o
n

e
O

u
tlie

r: M
o

d
e

ra
te

O
u

tlie
r: S

tro
n

g

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

0.000

0.001

0.002

0.003

0.000

0.005

0.010

0.015

0.00

0.02

0.04

0.06

0.08

True AUC

M
S

E

AKuw

AKtw

AKpw

AW

AS

AQ

Both continuous and binary are affected by outliers

MSE

Figure S2: Simulation results: MSE of the estimators under different scenario

.

94



References

Kuhn, Max and Kjell Johnson (2013). Applied predictive modeling. Vol. 26.
Springer.

Bishop, Christopher M (2006). Pattern recognition and machine learning. springer.
Steyerberg, Ewout W et al. (2009). Clinical prediction models. Vol. 381. Springer.
Steyerberg, Ewout W, Andrew J Vickers, Nancy R Cook, Thomas Gerds, Mithat

Gonen, Nancy Obuchowski, Michael J Pencina, and Michael W Kattan
(2010). “Assessing the performance of prediction models: a framework for
some traditional and novel measures”. In: Epidemiology (Cambridge, Mass.)
21.1, p. 128.

Harrell Jr, Frank E (2015). Regression modeling strategies: with applications to
linear models, logistic and ordinal regression, and survival analysis. Springer.

Saito, Takaya and Marc Rehmsmeier (2015). “The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on im-
balanced datasets”. In: PloS one 10.3, e0118432.

Kendall, Maurice George, Alan Stuart, John Keith Ord, Steven F Arnold,
Anthony O’Hagan, and Jonathan Forster (1987). Kendall’s advanced theory of
statistics. Vol. 1. Griffin London.

Lobo, Jorge M, Alberto Jiménez-Valverde, and Raimundo Real (2008). “AUC: a
misleading measure of the performance of predictive distribution models”.
In: Global ecology and Biogeography 17.2, pp. 145–151.

Tutz, Gerhard (2011). Regression for categorical data. Vol. 34. Cambridge Univer-
sity Press.

DeMaris, Alfred (2002). “Explained variance in logistic regression: A Monte
Carlo study of proposed measures”. In: Sociological Methods & Research 31.1,
pp. 27–74.

Schemper, Michael (2003). “Predictive accuracy and explained variation”. In:
Statistics in medicine 22.14, pp. 2299–2308.

95



Yazici, Berna, Özlem Alpu, and Yaning Yang (2007). “Comparison of goodness-
of-fit measures in probit regression model”. In: Communications in Statis-
tics—Simulation and Computation® 36.5, pp. 1061–1073.

Fan, Jianqing, Han Liu, Yang Ning, and Hui Zou (2017). “High dimensional
semiparametric latent graphical model for mixed data”. In: Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 79.2, pp. 405–421.

Nelsen, Roger B (2007). An introduction to copulas. Springer Science & Business
Media.

Joe, Harry (2014). Dependence modeling with copulas. Chapman and Hall/CRC.
MacCallum, Robert C, Shaobo Zhang, Kristopher J Preacher, and Derek D

Rucker (2002). “On the practice of dichotomization of quantitative vari-
ables.” In: Psychological methods 7.1, p. 19.

Sidak, Zbynek, Pranab K Sen, and Jaroslav Hajek (1999). Theory of rank tests.
Elsevier.

Croux, Christophe and Catherine Dehon (2010). “Influence functions of the
Spearman and Kendall correlation measures”. In: Statistical methods &
applications 19.4, pp. 497–515.

Lumley, Thomas and Alastair J Scott (2013). “Two-sample rank tests under
complex sampling”. In: Biometrika 100.4, pp. 831–842.

Liu, Han, Fang Han, Ming Yuan, John Lafferty, Larry Wasserman, et al. (2012).
“High-dimensional semiparametric Gaussian copula graphical models”. In:
The Annals of Statistics 40.4, pp. 2293–2326.

Korn, Edward L and Barry I Graubard (2011). Analysis of health surveys. Vol. 323.
John Wiley & Sons.

Yao, Wenliang, Zhaohai Li, and Barry I Graubard (2015). “Estimation of ROC
curve with complex survey data”. In: Statistics in medicine 34.8, pp. 1293–
1303.

Leroux, Andrew, Junrui Di, Ekaterina Smirnova, Elizabeth J Mcguffey, Quy
Cao, Elham Bayatmokhtari, Lucia Tabacu, Vadim Zipunnikov, Jacek K
Urbanek, and Ciprian Crainiceanu (2019). “Organizing and analyzing the
activity data in NHANES”. In: Statistics in Biosciences, pp. 1–26.

Smirnova, Ekaterina, Andrew Leroux, Quy Cao, Lucia Tabacu, Vadim Zipun-
nikov, Ciprian Crainiceanu, and Jacek Urbanek (2019). “The predictive
performance of objective measures of physical activity derived from ac-
celerometry data for 5-year all-cause mortality in older adults: NHANES
2003-2006”. In: The Journals of Gerontology: Series A.

96



Yeo, Douglas, Harold Mantel, and Tzen-Ping Liu (1999). “Bootstrap variance
estimation for the national population health survey”. In: American Statisti-
cal Association, Proceedings of the Survey Research Methods Section. Citeseer.

Varma, Vijay R, Debangan Dey, Andrew Leroux, Junrui Di, Jacek Urbanek,
Luo Xiao, and Vadim Zipunnikov (2018). “Total volume of physical activity:
TAC, TLAC or TAC (λ)”. In: Preventive medicine 106, p. 233.

Yoon, Grace, Raymond J Carroll, and Irina Gaynanova (2018). “Sparse semi-
parametric canonical correlation analysis for data of mixed types”. In: arXiv
preprint arXiv:1807.05274.

Quan, Xiaoyun, James G Booth, and Martin T Wells (2018). “Rank-based
approach for estimating correlations in mixed ordinal data”. In: arXiv
preprint arXiv:1809.06255.

Nikitin, Yakov (1995). Asymptotic Efficiency of Nonparametric Tests. Cambridge
University Press. DOI: 10.1017/CBO9780511530081.

Rubin-Bleuer, Susana, Ioana Schiopu Kratina, et al. (2005). “On the two-phase
framework for joint model and design-based inference”. In: The Annals of
Statistics 33.6, pp. 2789–2810.

Wang, Jianqiang C (2012). “Sample distribution function based goodness-of-fit
test for complex surveys”. In: Computational Statistics & Data Analysis 56.3,
pp. 664–679.

Fuller, Wayne A (2011). Sampling statistics. Vol. 560. John Wiley & Sons.
Vaart, Aad W Van der (2000). Asymptotic statistics. Vol. 3. Cambridge university

press.
Kosorok, Michael R (2008). Introduction to empirical processes and semiparametric

inference. Springer.

97

https://doi.org/10.1017/CBO9780511530081


Chapter 4

Graphical Gaussian Process Models
for Highly Multivariate Spatial Data

4.1 Introduction

Multivariate spatial data abound in the natural and environmental sciences

for studying features of the joint distribution of multiple spatially dependent

variables (see, for example, Wackernagel, 2013; Cressie and Wikle, 2011; Baner-

jee, Carlin, and Gelfand, 2014). The objectives are to estimate associations

over spatial locations for each variable and those among the variables. Let

ypsq be a q ˆ 1 vector of spatially-indexed dependent outcomes within any

location s P D Ă Rd with d “ 2 or 3. A multivariate spatial regression model

on our spatial domain D specifies a univariate spatial regression model for

each outcome as

yipsq “ xipsq
Tβi ` wipsq ` ϵipsq , i “ 1, 2, . . . , q, s P D (4.1)

where yipsq is the i-th element of ypsq, xipsq is a pi ˆ 1 vector of predictors,

βi is the pi ˆ 1 vector of slopes, each wipsq is a spatial process and ϵipsq
ind
„
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Np0, τ2
i q is the random noise in outcome i. We customarily assume that wpsq “

pw1psq, w2psq, . . . , wqpsqqT is a multivariate Gaussian process (GP) specified by

a zero mean and a cross-covariance function that introduces dependence over

space and among the q variables. The cross-covariance is a matrix-valued

function C “ pCijq : D ˆ D ÞÑ Rqˆq with Cijps, s1q “ Covpwipsq, wjps1qq for any

pair of locations ps, s1q. Cross-covariance functions must ensure that for any

finite set of locations S “ ts1, . . . , snu, the nq ˆ nq matrix CpS ,Sq “ pCpsi, sjqq

is positive definite (p.d.).

Valid classes of cross-covariance functions have been comprehensively

reviewed in Genton and Kleiber, 2015. Of particular interest are multivariate

Matérn cross-covariance functions (Gneiting, Kleiber, and Schlather, 2010;

Apanasovich, Genton, and Sun, 2012), where the marginal covariance func-

tions for each wipsq and the cross-covariance functions between wipsq and

wjps1q are Matérn functions. In its most general form, the multivariate Matérn

is appealing as it ensures that each univariate process is a Matérn GP with its

own range, smoothness and spatial variance although the parameters need to

be constrained to ensure positive-definiteness of the cross-covariance function.

Our current focus is the increasingly commonplace highly-multivariate

setting with a large number of dependent outcomes (e.g., q „ 102`) at each

spatial location. While substantial attention has been accorded to spatial data

with massive number of locations (large n) (see, e.g., Heaton et al., 2019, for a

review), the highly multivariate setting fosters separate computational issues.

Likelihoods for popular cross-covariance functions, such as the multivariate

Matérn, involve Opq2q parameters, and Opq3q floating point operations (flops).
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Optimizing over or sampling from high-dimensional parameter spaces is

inefficient even for modest values of n. Illustrations of multivariate Matérn

models have typically been restricted to applications with q ď 5.

In non-spatial settings, Gaussian graphical models are extensively used

as a dimension-reduction tool to parsimoniously model conditional depen-

dencies in highly multivariate data. any exploitable graphical structure for

scalable computation, nor do they adhere to posited conditional independence

relations among the outcomes as are often introduced in high-dimensional

outcomes (Cox and Wermuth, 1996). Our innovation here is to develop multi-

variate GPs that conform to process-level conditional independence posited by an

inter-variable graph over q dependent outcomes while attending to scalability

considerations for large q.

To adapt graphical models to multivariate spatial process-based settings,

we generalize notions of process-level conditional independence for discrete

time-series (Dahlhaus, 2000; Dahlhaus and Eichler, 2003) to continuous spatial

domains. We define multivariate graphical Gaussian Processes (GGPs) that sat-

isfy process-level conditional independence as specified by an inter-variable

graph. We focus on GGPs with properties deemed critical for handling mul-

tivariate spatial data. Specifically, we seek to retain the flexibility to model

and interpret spatial properties of the random field for each variable sepa-

rately. Except for the multivariate Matérn, most other multivariate covariance

functions fail to retain this property.

We address and resolve challenges in constructing spatial processes that

retain marginal properties and are also GGP. For example, while the existing
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multivariate Matérn models preserve the univariate marginals as Matérn GPs,

we show (Section 4.3.1) that no parametrisation of the multivariate Matérn

yields a GGP. On the other hand, the literature on graphical multivariate

discrete time-series models, hitherto, have not attempted to preserve marginal

properties and have benefited from the regular discrete setting of equispaced

time-points, in both non-parametric (Dahlhaus, 2000; Dahlhaus and Eichler,

2003; Eichler, 2008) and parametric (Eichler, 2012) analysis. We resolve both

of these challenges for irregular spatial data.

Our development relies upon the seminal work of Dempster, 1972 on

covariance selection, which ensures the existence of multivariate distributions

that retain univariate marginals while satisfying conditional-independence

relations specified by an inter-variable graph. While covariance selection can

facilitate approximate likelihood-based inference for graphical VAR models

(Eichler, 2012) by exploiting the expansion of the inverse spectral density

matrix of VAR(p) models in terms of the inverse covariance matrices over

finite (p) time-lags, such finite-lag representations do not typically hold for

spatial covariance functions over D Ă Rd.

One of our key contributions here is to identify the construction of a

marginal-retaining GGP as a process-level covariance selection problem. We

use covariance selection on the spectral density matrix to prove existence,

uniqueness and information-theoretic optimality of a marginal retaining GGP.

We subsequently introduce a novel practicable method to approximate this

optimal GGP by stitching GPs together using an inter-variable graph. Stitching

relies on the orthogonal decomposition of a GP into a fixed-rank predictive
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process (Banerjee et al., 2008) on a finite set of locations and a residual process.

We show how to endow the predictive process with the desired conditional-

independence structure via covariance selection, and use componentwise-

independent residual processes to create a well defined multivariate GP that

exactly preserves (i) dependencies modelled by the graph; and (ii) the marginal

distributions on the entire domain. Stitching with Matérn GPs yields a multi-

variate graphical Matérn GP with a tractable likelihood for irregular spatial data

such that (i) each outcome process is endowed with the original Matérn GP;

(ii) we retain process-level conditional independence modelled by the graph;

(iii) cross-covariances for variable pairs included in the graph are exactly or

approximately Matérn.

We also demonstrate computational scalability with respect to q. We

show that for decomposable graphical models, stitching facilitates drastic

dimension-reduction of the parameter space and fast likelihood evaluations

by obviating large matrix operations. Additionally, stitching harmonizes

graphical models with parallel computing to employ a chromatic Gibbs sam-

pler for delivering efficient fully model-based Bayesian inference. We also

show how our framework can adapt to (i) deliver inference for an unknown

inter-variable graph; (ii) model spatial time-series; and (iii) model multivariate

spatial factor models.
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4.2 Method

4.2.1 Process-level conditional independence and Graphical
Gaussian Processes

We define process-level conditional independence for a multivariate GP wp¨q “

pw1p¨q, . . . , wqp¨qqT over D. We adapt the analogous definition for multivariate

discrete time-series in Dahlhaus, 2000 to a continuous-space paradigm. Let

V “ t1, . . . , qu, B Ă V and wBpDq “ twkpsq : k P B, s P Du. Two processes

wip¨q and wjp¨q are conditionally independent given the processes twkp¨q | k P

Vzti, juu if CovpziBpsq, zjBps1qq “ 0 for all s, s1 P D and B “ Vzti, ju, where

zkBpsq “ wkpsq ´ Erwkpsq | σptwjps1q : j P B, s1 P Duqs, where σp¨q is the usual

σ-algebra generated by its argument. Let GV “ pV , EV q be a graph, where

EV is a pre-specified set of edges among pairs of variables. We now define

a Graphical Gaussian Process (GGP) with respect to (or conforming to) GV as

follows.

Definition 4.2.1. [Graphical Gaussian Process] A q ˆ 1 GP wp¨q is a Graphical

Gaussian Process (GGP) with respect to a graph GV “ pV , EV q when the

univariate GPs wip¨q and wjp¨q are conditionally independent for every pi, jq R

EV . We denote such a process as GGPpGV q.

Any collection of q independent GPs will trivially constitute a GGP with

respect to any graph GV . More pertinent is the ability of a GGP to approximate

a full (non-graphical) GP. This is particularly relevant for inference because

the full GP is computationally impracticable for large q. Theorem 4.2.1 shows

that given a graph GV and a multivariate GP with cross-covariance function
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C, there exists a unique and information-theoretically optimal GGP among

the class of all GGPpGV q. Proofs of all subsequent results are provided in the

supplement.

Theorem 4.2.1. Let GV “ pV , EV q be any given graph, C “ pCijq be a q ˆ q

stationary cross-covariance function. Let Fpωq “ p fijpωqq be the spectral density

matrix corresponding to C at frequency ω. Let fiip¨q be square-integrable for all i.

Then

(a) There exists a unique q ˆ 1 GGPpGV q wp¨q with cross-covariance function M “

pMijq such that Mij “ Cij for i “ j and for all pi, jq P EV ;

(b) If F̃pωq denotes the spectral density matrix of wp¨q and F is the set of spectral

density matrices of all possible GGPpGV q, then

F̃p¨q “ arg minKp¨qPF

ż

ω
dKLpFpωq}Kpωqqdω ,

where dKLpF}Kq “ trpK´1Fq ` log detpKq denotes the Kullback-Leibler diver-

gence between two positive definite matrices F and K.

Theorem 4.2.1 shows that the optimal GGP approximating a GP, given a

graph, needs to exactly preserve the marginal distributions of the univariate

processes, which is also critical to retain interpretation of the spatial properties

of each univariate surface. This optimal GGP also preserves cross-covariances

for variable pairs included in GV . Theorem 4.2.1, however, is of limited

practical value because it does not present a convenient way to construct cross-

covariances. We develop a practicable method of stitching q univariate random

fields (Section 4.2.2) to construct marginal-preserving GGPs for modelling
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irregular spatial data.

4.2.2 Stitching of Gaussian Processes

Given any GV and a cross-covariance function C, we seek a multivariate GP

wp¨q that

(i) exactly preserves the marginal distributions specified by C, i.e., wip¨q „

GPp0, Ciiq @i;

(ii) is a GGP(GV ), i.e., satisfies process-level conditional independence ac-

cording to GV ; and

(iii) exactly or approximately retains the cross-covariances specified by C for

pairs of variables included in GV , i.e., for pi, jq P EV , Covpwipsq, wjps1qq «

Cijps, s1q.

We visually illustrate stitching of univariate GPs to build a GGP wp¨q,

satisfying (i)-(iii) above. Figure 4.1 (left) shows realizations of 4 univariate

Matérn GPs wip¨q, i “ 1, . . . , 4, each with a different smoothness and spatial

range. Figure 4.1 (right) shows a multivariate GGP constructed by stitching

together the 4 processes using a path-graph as GV with EV “ tpi, i ` 1q : i “

1, 2, 3u. We begin our construction on L, a finite but otherwise arbitrary set

of locations in D (the 3 locations in Figure 4.1 (right)). We first ensure that

wpLq “ pw1pLq, . . . , wqpLqqTsatisfies conditions (i)-(iii) when the domain is

restricted to L. This is achieved by stitching together the variables at the 3

locations in L such that there is a thread (edge) between two variable-location

pairs if and only if there is an edge between the two corresponding variables

in V . We then stitch each of the remaining surfaces independently so that they
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Figure 4.1: Stitching Gaussian Processes. Left: Realizations of 4 univariate GPs. Right:
Realization of a multivariate (4-dimensional) GGP created by stitching together the 4
univariate GPs from the left figure using the strong product graph over the 4 variables
and 3 locations.

have the same distribution as the univariate surfaces from the left panel and

conforms to the graph at the process-level. This resembles stitching the four

surfaces together at the locations L, while exactly preserving each univariate

surface. The graph edges serve as the threads holding the surfaces together.

Turning to the formal development, we first create wpLq—the realisation

of our target process wp¨q on L that satisfies properties (i)-(iii) on L. Combin-

ing the three requirements, we model wpLq „ Np0, MpL,Lqq, seeking a p.d.

matrix MpL,Lq such that

(a) MiipL,Lq “ CiipL,Lq for all i “ 1, . . . , q, to satisfy (i);
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(b) pMpL,Lq´1qij “ 0 for all pi, jq R EV to satisfy (ii).

(c) MijpL,Lq “ CijpL,Lq for all pi, jq P EV , to satisfy (iii).

Existence of such a matrix MpL,Lq is a covariance selection problem (Demp-

ster, 1972).

Lemma 4.2.2 (Covariance selection (Dempster, 1972)). Given a graph G “ pS , Eq

and any p.d. matrix F “ pFrsq indexed by S ˆ S , there exists a unique p.d. matrix

Fr “ pFrrsq such that Frrs “ Frs for r “ s or for pr, sq P ES , and pFr
´1

qrs “ 0 for

pr, sq R ES .

To ensure that the covariances and cross-covariances are preserved over L

for all i and all pi, jq P EV and the conditional independence among elements

of wpLq are inherited from GV , wpLq needs to conform to a graph with edges

between variable-location pairs as in Figure 4.1. Formally, let GL “ pL, ELq

be the complete graph on the set of locations L. The variable-location graph

from Figure 4.1 (right) is the strong product graph GV b GL. Here, GV b GL “

pV ˆ L, EVˆLq with V ˆ L “ tpi, lq : i P V , l P Lu and EVˆL comprises edges

between vertex-pairs pi, lq and pi1, l1q based upon the following strong-product

adjacency rules: (i) i “ i1 and pl, l1q P EL; or (ii) l “ l1 and pi, i1q P EV ; or (iii)

pi, i1q P EV and pl, l1q P EL.

Applying Lemma 4.2.2 with the vertex set S “ V ˆ L, positive definite ma-

trix F “ CpL,Lq and the graph GV b GL, ensures the existence and uniqueness

of a positive definite matrix Fr “ MpL,Lq satisfying conditions (a), (b) and (c)

above. In practice, MpL,Lq can be obtained using an iterative proportional

scaling (IPS) algorithm (Speed, Kiiveri, et al., 1986; Xu, Guo, and He, 2011).
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Note that Condition (b) only ensures conditional independence of the

process restricted to L. Process-level conditional independence over the entire

domain D follows from the subsequent extension in (4.2) as proved in Theorem

4.2.4. Having built the finite-dimensional distribution of wpLq from GV b GL,

we now suitably extend it to a well-defined multivariate GP wp¨q over the

domain D, which conforms to the conditional dependencies implied by GV .

We leverage the following well-known decomposition of a GP wip¨q as sum

of a finite rank predictive process w˚
i p¨q “ Epwip¨q | wipLqq and an independent

residual process zip¨q (Banerjee et al., 2008; Finley et al., 2009):

wipsq “ w˚
i psq ` zipsq “ Ciips,LqCiipL,Lq

´1wipLq ` zipsq for all s P DzL ,

(4.2)

where each zip¨q is a zero-centred Gaussian Process, independent of

wpLq, with the valid covariance function Cii |Lps, s1q “ Ciips, s1q ´

Ciips,LqC´1
ii pL,LqCiipL, s1q.

The first part of stitching ensures that wpLq conforms to GV when restricted

to L. The next result establishes process-level conditional independence for

the stitched predictive process.

Lemma 4.2.3. The predictive process w˚p¨q “ pw˚
1p¨q, . . . , w˚

qp¨qqT is a GGPpGV q on

D.

We now extend the finite-rank GGP w˚p¨q to a full-rank GGP wp¨q over the

entire domain D through (4.2). We construct zip¨q „ GPp0, Cii|Lq such that

zip¨q K zjp¨q for all i ‰ j, and zip¨q K wpLq for all i. Independence among zipLq

and wpLq and the marginal covariance of zipLq in (4.2) ensures that each wip¨q
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on D is exactly GPp0, Ciiq. However, independence among the zip¨q’s is a neat

choice ensuring that the conditional independence relations in GV is extended

from the finite set L to the spatial process over D. We prove this formally in

Theorem 4.2.4.

Theorem 4.2.4. Given a cross-covariance function C and an inter-variable graph GV ,

stitching creates a valid multivariate GGP wp¨q with a valid (p.d.) cross-covariance

function M such that:

(a) wip¨q „ GPp0, Ciiq , i.e., Miips, s1q “ Ciips, s1q for all s, s1 P D and for each

i “ 1, . . . , q,

(b) wp¨q is a GGPpGV q on D,

(c) if pi, jq P EV , then Mijps, s1q “ Cijps, s1q for all s, s1 P L.

Stitching produces a multivariate GP wp¨q that exactly satisfies the first

two conditions sought in Section 4.2.1. Regarding Condition (iii), we point

out some differences between the GGP ensured by Theorem 4.2.1 and the one

produced by stitching. For pairs of variables pi, jq P EV , the cross-covariance

for the former is exactly the same as the given cross-covariance Cij on the

entire domain D, whereas for the latter Mijps, s1q “ Cijps, s1q for locations in L.

For a pair s, s1 R L and i ‰ j it is straightforward to verify that

Mijps, s1
q “ Ciips,LqCiipL,Lq

´1MpL,LqijCjjpL,Lq
´1CjjpL, s1

q . (4.3)

Stitching, thus, produces a computationally feasible GGP with desired full-

rank marginal covariance and process-level conditional independence at the
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expense of allowing a fixed rank cross-covariance. Choosing L to be reason-

ably dense (well-spaced) in D, we have Mijps, s1q « Cijps, s1q for pi, jq P EV ,

s, s1 P DzL. Hence, condition (iii) is satisfied exactly on L and approximately

on DzL for the stitched GP.

4.3 Highly multivariate Graphical Matérn Gaus-
sian processes

4.3.1 Incompatibility of multivariate Matérn with graphical
models

Theorems 4.2.1 and 4.2.4 establish, respectively, the existence of and the con-

struction of a marginal-preserving GGP given any valid cross-covariance C

and any inter-variable graph GV . We are particularly interested in developing

a novel class of multivariate graphical Matérn GPs that are GGPpGV q such that

each univariate process is a Matérn GP. This is appealing for inference as we

retain the ability to interpret the parameters for each univariate spatial process.

We achieve this using stitching, which is necessary as we argue below that no

non-trivial parametrisation of the existing multivariate Matérn GP yields a

GGP.

The isotropic multivariate Matérn cross-covariance function on a d-

dimensional domain is Cijps, s1q “ σijHijp}s ´ s1}q, where Hijp¨q “ Hp¨ | νij, ϕijq,

H being the Matérn correlation function (Apanasovich, Genton, and Sun,

2012). If θij “ tσij, νij, ϕiju, then for a multivariate Matérn GP the ith individ-

ual variable is a Matérn GP with parameters θii. This is attractive because

it endows each univariate process with its own variance σii, smoothness
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νii, and spatial decay ϕii. Another nice property is that under this model,

Σ “ pσijq “ Covpwpsqq is the covariance matrix for wpsq within each location

s. The cross-correlation parameters νij and ϕij for i ‰ j, are generally hard to

interpret, especially since νij does not correspond to the smoothness of any

surface. Recent work by Kleiber, 2017 on the concept of coherence has facili-

tated some interpretation of these parameters. The parsimonious multivariate

Matérn model of Gneiting, Kleiber, and Schlather, 2010 emerges from this

general specification as a special case with νij “ pνii ` νjjq{2 and ϕij “ ϕ.

To ensure a valid multivariate Matérn cross-covariance function, it is suffi-

cient to constrain the intra-site covariance matrix Σ “ pσijq to be of the form

(Theorem 1, Apanasovich, Genton, and Sun, 2012)

σij “ bij
Γp 1

2 pνii`νjj`dqqΓpνijq

ϕ
2∆A`νii`νjj
ij Γpνij`

d
2 q

where ∆A ě 0, and B “ pbijq ą 0, i.e., is p.d.

(4.4)

This is equivalent to Σ being constrained as Σ “ pB d pγijqq, where γij are con-

stants collecting the terms in (4.4) involving only νij’s and ϕij’s, and d denotes

the Hadamard (element-wise) product. Similarly, the spectral density matrix

takes the form Fpωq “ pB d pgijpωqqq, where gijpωq are functions involving the

parameters ϕij and νij. The matrix B “ pbijq’s are the Opq2q parameters (free

of ϕij’s or νij’s) that are constrained to ensure B is positive-definite. Process-

level conditional independences introduce zeros in the inverse of the spectral

density matrix for stationary processes (see, e.g., Theorem 2.4 in Dahlhaus,

2000). This implies that, for any parametrisation of the multivariate Matérn

GP to be a GGP, we need pFpωq´1qij “ 0 for every pi, jq R EV and almost all

ω. From the Hadamard product Fpωq “ pB d pgijpωqqq, it is clear that zeros
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in B´1 or Σ´1 do not generally imply zeros in F´1pωq for the multivariate

Matérn. An exception occurs when each component is posited to have the

same smoothness ν and the same spatial decay parameter ϕ, whence both

Σ and Fpωq become proportional to B. In this case, zeros in B´1 (specified

according to GV ) will correspond to zeros in Σ´1 and F´1pωq yielding a GGP

with respect to GV . However, assuming νij “ ν and ϕij “ ϕ for all pi, jq implies

that the univariate GPs have the same smoothness and rate of spatial decay,

which is restrictive. Beyond this separable model, there is, to the best of our

knowledge, no known parameter choice for the multivariate Matérn GPs that

will allow it to be a GGPpGV q.

4.3.2 Computational considerations for stitching

Stitching univariate processes corresponding to a valid multivariate Matérn

cross-covariance C and a graph GV yields a multivariate graphical Matérn GP

such that (i) the univariate processes are exactly Matérn; (ii) the multivari-

ate process conforms to process-level conditional independence relations as

specified by GV ; and (iii) the cross-covariances for pairs of variables in GV are

exactly or approximately Matérn (see Eq. 4.3). For each i “ 1, 2, . . . , q let Di

be the set of ni locations where the i-th variable has been observed. The joint

probability density of wipDiq and wpLq is specified by wpLq „ Np0, MpL,Lqq

and

wipDiq | wpLq
ind
„ NpCiipDi,LqCiipL,Lq´1wipLq, Cii |LpDi, Diqq for i “ 1, . . . , q .

(4.5)

The covariance matrix for twipDiq : i “ 1, . . . , qu | wpLq is block-diagonal with
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variable-specific blocks and is cheap to compute if all of the ni’s are small. If

some ni’s are large, we can use one of the several variants of scalable GPs for

very large number of locations (Heaton et al., 2019). For example, a nearest

neighbour GP (NNGP, Datta et al., 2016) yields a sparse approximation of

Cii |LpDi, Diq with linear complexity, but the joint distribution still preserves

the conditional independence implied by GV .

When q is large, note that twipDiq : i “ 1, . . . , qu | wpLq in (4.5) has q

conditionally independent factors and is easy to compute in parallel. However,

the likelihood for wpLq „ Np0, MpL,Lqq presents the bottleneck for this highly

multivariate case. In particular, there are two challenges for large q. As

discussed earlier, the multivariate Matérn C required for stitching needs

to constrain B “ pbijq to be p.d. on an Opq2q-dimensional parameter space.

Searching in such a high-dimensional space is difficult for large q and verifying

positive definiteness of B incurs an additional cost of Opq3q flops. Second,

evaluating wpLq „ Np0, MpL,Lqq involves matrix operations for the nq ˆ nq

matrix MpL,Lq. While the precision matrix, MpL,Lq´1, is sparse because of

GV , its determinant is usually not available in closed form and the calculation

can become prohibitive even for small n.

4.3.3 Decomposable variable graphs

To facilitate scalability in highly multivariate settings, we consider decompos-

able inter-variable graphs. For GV “ pV , Eq, and a triplet pA, B, Oq of disjoint

subsets V , O is said to separate A from B if every path from A to B passes

through O. If V “ A Y B Y O, and O induces a complete subgraph of V , then
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Table 4.1: Properties of any q-dimensional multivariate Matérn GP of Gneiting,
Kleiber, and Schlather, 2010 or Apanasovich, Genton, and Sun, 2012 and a multivari-
ate graphical Matérn GP stitched using a decomposable graph GV with largest clique
size q˚ (typically ! q), length of perfect ordering p, and maximal number of cliques
p˚ sharing a common vertex.

Model attributes Multivariate Matérn Multivariate Graphical Matérn
Number of parameters Opq2q Op|EV | ` qq

Parameter constraints Opq3q Opp˚pq˚3qq (worst case)
Storage Opn2q2q Oppn2q˚2q (worst case)
Time complexity Opn3q3q Oppn3q˚3q (worst case)
Conditionally independent processes No Yes
Univariate components are Matérn GPs Yes Yes

pA, B, Oq is said to decompose GV . The graph GV is said to be decompos-

able if it is complete or if there exists a proper decomposition pA, B, Oq into

decomposable subgraphs GAYO and GBYO. Several naturally occurring de-

pendence structures like low-rank dependence or autoregressive dependence

correspond to decomposable graphs (see Section 4.4). More generally, if a

graph is non-decomposable, it can be embedded in a larger decomposable

graph. Hence, assuming decomposability is conspicuous in graphical mod-

els (see, e.g., Dobra et al., 2003; Wang and West, 2009) since fitting Bayesian

graphical models is cumbersome for non-decomposable graphs (Roverato,

2002; Atay-Kayis and Massam, 2005).

For stitching of Matérn GPs using decomposable graphs we can signifi-

cantly reduce the dimension of the parameter space, storage and computa-

tional burden. Let K1, ¨ ¨ ¨ , Kp be a sequence of subsets of the vertex set V for

an undirected graph GV . Let, Fm “ K1 Y ¨ ¨ ¨ Y Km and Sm “ Fm´1 X Km. The

sequence tKmu is said to be perfect if (i) for every l ą 1, there is an m ă l such

that Sl Ă Km; and (ii) the separator sets Sm are complete for all m. If GV is
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decomposable, then it has a perfect clique sequence (Lauritzen, 1996) and the

joint density of wpLq can be factorized as follows.

Corollary 4.3.0.1. If GV has a perfect clique sequence tK1, K2, ¨ ¨ ¨ , Kpu with separa-

tors tS2, . . . , Smu, then the GGP likelihood on L can be decomposed as

fMpwpLqq “
Πp

m“1 fCpwKmpLqq

Πp
m“2 fCpwSmpLqq

, (4.6)

where fA denotes the density of a GP over L with covariance function A for A P

tM, Cu.

Corollary 4.3.0.1 helps us manage the dimension and constraints of the pa-

rameter space and the computational complexity of stitching. For an arbitrary

GV , the parameter space for the stitching covariance function M is the same

as the parameter space tθij|1 ă i, j ď qu for the original covariance function C.

For a decomposable GV , the likelihood (4.6) and, in turn, the stitched GGP is

only specified by the parameters tθij | pi “ jq or pi, jq P EVu. Therefore, the di-

mension of the parameter space reduces from Opq2q to Op|EV | ` qq , where |EV |

is the number of edges on GV , which is small for sparse graphs. When using a

multivariate Matérn cross-covariance C for stitching, the parameter space for

B in the stitched graphical Matérn is the intersection of the parameter spaces of

the low-dimensional clique-specific multivariate Matérn covariance functions

CK1 , . . . , CKp . Hence, the parameter space becomes tbij|pi “ jq or pi, jq P EVu

and needs to satisfy the constraint that BKl “ pbijqi,jPKl is p.d. for all l “ 1, . . . , p.

This reduces the computational complexity of parameter constraints from

Opq3q to at most Opp˚q˚3q, where q˚ is the largest clique size and p˚ is the

maximum number of cliques sharing a common vertex. The precision matrix
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of wpLq satisfies (Lemma 5.5, Lauritzen, 1996)

MpL,Lq
´1

“

p
ÿ

m“1

rC´1
rKmbGLs

s
VˆL

´

p
ÿ

m“2

rC´1
rSmbGLs

s
VˆL , (4.7)

where, for any symmetric matrix A “ paijq with rows and columns indexed by

U Ă V ˆ L, AVˆL denotes a |V ˆ L| ˆ |V ˆ L| matrix such that pAVˆLqij “ aij

if pi, jq P U , and pAVˆLqij “ 0 elsewhere. From (4.6) and (4.7) we see that the

stitching likelihood evaluation avoids the large matrix MpL,Lq and all matrix

operations are limited to the sub-matrices of MpL,Lq corresponding to the

cliques Km b GL and separators Sm b GL. The entire process requires at most

Oppn3q˚3q flops and Oppn2q˚2q storage, where p is the length of the perfect

ordering. Table 4.1 summarizes these gains from stitching with decomposable

graphs.

The computational efficiency of stitching is clear from the above. In ad-

dition, the following result shows that the GGP likelihood from stitching

yields unbiased estimating equations for all parameters included in the GGP

(all marginal and cross-covariance parameters for any pairs of variables in-

cluded in GV ) under model misspecification when the data is generated from

a multivariate Matérn GP, but is modelled as a graphical Matérn GP with a

decomposable GV .

Proposition 4.3.1. Let wp¨q „ GPp0, Cp¨, ¨qq, where C is a valid q ˆ q multivari-

ate Matérn cross-covariance function with parameters tθij : 1 ď i, j ď qu, and

fMpwpLqq denotes the multivariate graphical Matérn GP likelihood (4.6) from

stitching using a decomposable graph GV . Then EpB log fMpwpLqq{Bθijq “ 0

for any i “ j or pi, jq P EV .
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4.3.4 Chromatic Gibbs sampler

With a valid process specification for wp¨q, we cast (4.1) into a hierarchical

model over the n observed locations in S and sample from the posterior

distribution derived from

ppβ, τ, θq ˆ NpwpSq | 0, CθpS ,Sqq ˆ

n
ź

j“1

Npypsjq | Xpsjqβ ` wpsjq, Dτq , (4.8)

where Xpsjq “ diagpx1psjq
T, x2psjq

T, . . . , xqpsjq
Tq is q ˆ p

řq
i“1 piq, β “

pβT
1, βT

2 . . . , βT
qqT, wpSq “ pwps1qT, wps2qT . . . , wpsnqTqT, Dτ “ diagpτ2

1 , τ2
2 , . . . , τ2

q q,

θ is the set of parameters in the cross-covariance function and ppβ, τ, θq is a

prior distribution on model parameters. Besides the computational benefits

described in Table 4.1, stitched GGP models are also amenable to parallel

computing. In a Bayesian implementation of a stitched GGP model (described

in Section S2.1 of the Supplement), we can exploit the graph GV and deploy

a chromatic Gibbs sampler (Gonzalez et al., 2011) to simultaneously update

batches of random variables in parallel. Let ηi be the vector grouping variable-

specific parameters (regression coefficients, spatial parameters, noise variance

and latent spatial random effects). Under a graph colouring of GV , ηi and ηi1

can be updated simultaneously if i and i1 share the same colour, as illustrated

in Figure 4.2 (left).

This brings down the number of sequential steps in sampling of the ηi’s

from q to the chromatic number χpGVq. We can also employ a chromatic

sampling scheme for the bij’s, but using a different graph. We exploit the fact

that the parameters bij and bi1 j1 belongs to the same factor in (4.6) for a pair

of edges pi, jq and pi1, j1q in EV if and only if the variables i, j, i1, j1 belongs to
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Figure 4.2: Chromatic sampling for GGP with a gem graph between 5 variables:
Left: Gem graph and colouring used for chromatic sampling of the variable-specific
parameters. Right: Colouring of the corresponding edge graph GEpGVq used for
chromatic sampling of the cross-covariance parameters bij’s.

the same clique. Thus, if GEpGVq “ pEV , E˚q denotes this graph on the set

of edges EV , i.e., there is an edge ppi, jq, pi1, j1qq in this new graph GEpGVq if

ti, i1, j, j1u are in some clique K of GV , then we can batch the updates of bij’s

based on the colouring of the graph GEpGVq (Figure 4.2 (right)). The number

of such sequential batch updates will be the chromatic number χpGEpGVqq, a

potentially drastic reduction from |EV | sequential updates for bij.

4.4 Extensions

4.4.1 Factor models

The construction of GGP and its implementation described in Sec-

tions 4.2 and 4.3 assumes a known graphical model. Here, we describe differ-

ent avenues for choosing or estimating the graph and offer extensions of GGP

to model different spatial and spatiotemporal structures.

In many multivariate spatial models, the inter-variable graphical model

arises naturally and is decomposable. A large subset of multivariate spatial

models are process-level factor models (emerge from more general linear

models of coregionalization (LMC)), where each of the q observed univariate

processes are a weighted sum of r ď q latent univariate factor processes with
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the weights being component-specific (Schmidt and Gelfand, 2003; Gelfand

et al., 2004; Wackernagel, 2013). In general, a linear model of coregionalization

can be expressed as

wipsq “

r
ÿ

j“1

aijpsq f jpsq ` ξipsq , (4.9)

where each f jp¨q is a latent factor process such that f p¨q “ p f1p¨q, . . . , frp¨qqT is a

multivariate GP, aijp¨q’s are component-specific weight functions and ξp¨q are

independent processes representing the idiosyncratic spatial variation in wip¨q

not explained by the latent factors. If q is large, choosing r ! q in (4.9) also

facilitates dimension reduction (Lopes, Salazar, and Gamerman, 2008; Ren

and Banerjee, 2013; Taylor-Rodriguez et al., 2019; Zhang and Banerjee, 2021).

We next show that any linear model of coregionalization can be formulated as

a GGP with a decomposable graph on the elements of wp¨q and f p¨q.

Proposition 4.4.1. Consider the linear model of coregionalization (4.9)

where f p¨q is an r ˆ 1 multivariate GP with a complete graph between

component processes, and ξip¨q’s are independent univariate GPs. Then

pw1, w2, . . . , wq, f1, . . . , frq
T is a GGP on vertices t1, . . . , q ` ru and a decom-

posable graph tpi, jq|i P 1, . . . , pq ` rq, j P pq ` 1q, . . . , pq ` rq, j ‰ iu.

Proposition 4.4.1 dictates that the assumption of multivariate dependence

induced through factor processes can be translated into a decomposable graph

between the observed and factor processes. Hence, GGPs can be used as a

richer alternative to the linear model of coregionalization. While the linear

model of coregionalization enforces all processes wip¨q to have the smoothness

of the roughest f jp¨q (Genton and Kleiber, 2015), the GGP enables us to model
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and interpret the spatial smoothness of each component process (e.g., with the

graphical Matérn GP). The complete graph between the r component processes

of f p¨q can be assumed without loss of generality as even for a sparse graph

between latent factors (e.g., when the factors are independent processes),

they will generally be conditionally dependent given the observed processes

wp¨q, thereby yielding the same joint graph. Due to r ! q, this joint graph of

observed and latent processes will still be sparse even after considering all

possible edges between latent processes. Figure 4.3 illustrates two examples

of the decomposable graphs arising from linear model of coregionalization.

(a) 2 observed (red) and 2 la-
tent (blue) processes

(b) 5 observed (red) and 1 latent
(blue) processes

Figure 4.3: Decomposable graphs for (a) a full rank and (b) a low-rank linear model
of coregionalization.

An alternative approach to linear models of coregionalization builds multi-

variate spatial processes by sequentially modelling a set of univariate GPs con-

ditional from some ordering of the q variables (Cressie and Zammit-Mangion,

2016). A sparse partial ordering can facilitate dimension reduction for large q.

This approach does not attempt to preserve marginals or introduce process-

level conditional independence. However, a partial ordering yields a directed

acyclic graph (DAG), which, when moralised, produces a decomposable undi-

rected graph that can be used in our stitched GGPs.
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4.4.2 Non-separable spatial time-series modelling

GGPs are natural candidates for non-separable (in space-time), non-stationary

(in time) modelling of univariate or multivariate spatial time-series. Consider

a univariate spatial time-series modelled as a GP twps, tqu for s P D evolving

over a discrete set of time points t P T “ t1, 2, . . . , Tu. We envision this

as a T ˆ 1 GP wpsq “ pw1psq, . . . , wTpsqqT, where wtpsq “ wps, tq. Temporal

evolution of processes is often encapsulated using a directed acyclic graph

(DAG), which, when moralized, produces an undirected graph GT over T .

We can then recast the spatial time-series model as a T ˆ 1 GGP with respect

to GT . A multivariate Matérn used for stitching will produce a GGP with each

wtp¨q being a Matérn GP with parameters θtt. Time-specific process variances

and spatial parameters enrich the model without imposing stationarity of the

spatial process over time and space-time separability (Gneiting, 2002).

Any autoregressive (AR) structure over time corresponds to a decompos-

able moralized graph GT . For example, the ARp1q model corresponds to a

path graph with edges tpt, t ` 1q | t “ 1, . . . , T ´ 1u, q˚ “ 2 and p˚ “ 2. An

ARp2q is specified by the DAG t ´ 2 Ñ t and t ´ 1 Ñ t for all t P t3, . . . , Tu

(Figure S8a in the Supplement), which, when moralized, yields the sparse de-

composable graph GT (with q˚ “ 3) in Figure S8b of the Supplement. Hence,

Corollary 4.3.0.1 accrues computational gains for GGP models for autore-

gressive spatial time-series. An added benefit of using the GGP is that the

auto-regression parameters need not be universal, but can be time-specific,

thus relaxing another restrictive stationarity condition.

GGP allows the marginal variances and autocorrelations of the processes
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to vary over time and be estimated in an unstructured manner. However,

more structured temporal models for stochastic volatility can be easily ac-

commodated by a GGP if forecasting the process at a future time-point is of

interest. This can be achieved by adding a model for the time-specific vari-

ances like the log-AR(1) model as considered in Jacquier, Polson, and Rossi,

1993. Bayesian estimation of these model parameters has been discussed in

Jacquier, Polson, and Rossi, 2002 and can be seamlessly incorporated into our

Bayesian framework for estimation of GGP parameters.

Multivariate spatial time-series can also be modelled using GGP. We envi-

sion q variables recorded at T time-points resulting in qT variables. We now

specify GVˆT on the variable-time set. Common specifications for multivariate

time-series like graphical vector autoregressive (VAR) structures (Dahlhaus

and Eichler, 2003) will yield decomposable GVˆT . For example, consider

the non-separable graphical-VAR of order 1 with q “ 2 and specified by the

DAG p1, t ´ 1q Ñ p1, tq, p1, t ´ 1q Ñ p2, tq, and p2, t ´ 1q Ñ p2, tq (Figure S8c of

the Supplement). This yields the decomposable GVˆT in Figure S8d of the

Supplement, also with q˚ “ 3.

4.4.3 Graph estimation

Sections 4.4.1 and 4.4.2 present settings where the decomposable graph for a

GGP arises naturally. For gridded spatial data, one can use a spatial graphical

lasso to estimate the graph from the sparse inverse spectral density matrix

(Jung, Hannak, and Goertz, 2015), and plug-in the estimated graph in subse-

quent estimation of GGP likelihood parameters. For irregularly located spatial
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data, we now extend our framework in (4.8) to infer about the graphical

model itself along with the GGP parameters by adapting an MCMC sampler

for decomposable graphs (Green and Thomas, 2013).

The junction graph G of a decomposable GV is a complete graph with the

cliques of GV as its nodes. Every edge in the junction graph is represented as a

link, which is the intersection of the two cliques, and can be empty. A spanning

tree of a graph is a subgraph comprising all the vertices of the original graph

and is a tree (acyclic graph). Suppose a spanning tree J of the junction graph

of G satisfies the following property: for any two cliques C and D of the graph,

every node in the unique path between C and D in the tree contains C X D.

Then J is called the junction tree for the graph GV (see Figure 2 of Thomas and

Green, 2009, for an illustration). A junction tree exists for GV if and only if GV

is decomposable. Also, a decomposable graph can have many junction trees

but each junction tree represents a unique decomposable graph. This allows

us to transform a prior on decomposable graphs to a prior on the junction

trees. If µpGV pJqq is the number of junction trees for the decomposable graph

GV corresponding to J, then a prior π on decomposable graphs gives rise to a

prior π̃ on the junction trees as π̃pJq “ πpGV pJqq{µpGV pJqq. In our application,

we assume π to be uniform over all decomposable graphs with a pre-specified

maximum clique size, i.e., π̃pJq91{µpGV pJqq.

With junction trees as a representative state variable for the graph, the

jumps are governed by constrained addition or deletion of single/multiple

edges so that the resulting tree is also a junction tree for some decomposable
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graph. Each graph corresponds to a different GGP model using a specific sub-

set of the cross-covariance parameters. To embed sampling this graph within

the Gibbs sampler in Section S2.1, jumps between graphs need to be coupled

with introduction or deletion of cross-covariance parameters depending on

addition or deletion of edges. We use the reversible jump MCMC (rjMCMC)

algorithm of Barker and Link, 2013 to carry out the sampling of the graph and

cross-covariance parameters and lay out the details in Section S2.3.

4.4.4 Asymmetric covariance functions

Our examples of stitching have primarily involved the isotropic (symmetric)

multivariate Matérn cross-covariances. Symmetry implies Cijps, s1q “ Cijps1, sq

for all i, j, s, s1 and is not a necessary condition for validity of a cross-covariance

function. An asymmetric cross-covariance function (Apanasovich and Gen-

ton, 2010; Li and Zhang, 2011) Ca can be specified in-terms of a symmetric

cross-covariance C as Ca
ijps, s1q “ Ca

ijps ´ s1q “ Cijps ´ s1 ` pai ´ ajqq, where ai,

i “ 1, . . . , q are distinct variable specific parameters. Stitching works with

any valid cross-covariance function, and if Ca is used for stitching, then the

resulting graphical cross-covariance Ma will also be asymmetric, satisfying

Ma
ijps, s1q “ Ca

ijps, s1q for all pi, jq P EV , and s, s1 P L.

4.4.5 Response model

We outline a Gibbs sampler in Section S2.1 of the Supplement for the mul-

tivariate spatial linear model in (4.1), where the latent q ˆ 1 process wpsq is

modelled as a GGP. If |L| “ n, then the algorithm needs to sample „ Opnqq
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latent spatial random effects wpLq at each iteration.

A popular method for estimating spatial process parameters in (4.1) is to

integrate out the spatial random effects wpLq and directly use the marginalized

(or collapsed) likelihood for the response process yp¨q “ py1p¨q, . . . , yqp¨qqT,

which is also a multivariate GP. However, wp¨q modelled as a GGP does

not ensure that the marginalized yp¨q will be a GGP. We demonstrate this in

Figure 4.4(a) with a path graph GV between 3 latent processes w1p¨q, w2p¨q

and w3p¨q. The response processes yip¨q “ wip¨q ` ϵip¨q have complete graphs.

This is because Covpyq “ Covpwq ` Covpϵq, and the zeros in Covpwq´1 do

not correspond to zeros in Covpyq´1. Hence, modelling the latent spatial

process as a GGP and subsequent marginalization is inconvenient because the

marginalized likelihood for y will not factorize like (4.6).

(a) GGP on the latent process. (b) GGP on the response process.

Figure 4.4: Comparison of induced graphs for 3 processes (obeying a path graph)
from marginalized model and latent model. Blue edges indicate the dependencies
modelled and red edges denote the marginal dependencies induced from the model
construction.

Instead, we can directly create a GGP for the response process by stitch-

ing the marginal cross-covariance function Covpypsq, yps ` hqq “ Cphq ` Dphq

using GV , where Dphq “ diagpτ2
1 , . . . , τ2

q qIph “ 0q is the diagonal white-noise

covariance function. With a Matérn cross-covariance C, the resulting GGP
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model for yp¨q endows each univariate GP yip¨q with mean xip¨qTβi and retain-

ing the marginal covariance function Ciiphq ` τ2
i Iph “ 0q (i.e., Matérn plus

a nugget). The cross-covariance between yip¨q and yjp¨q is also Matérn for

pi, jq P EV and locations in L. For pi, jq R GV , the response processes yip¨q and

yjp¨q will be conditionally independent. We outline the Gibbs sampler for this

response GGP in Section S2.2 of the Supplement.

The response model drastically reduces the dimensionality of the sampler

from Opnq ` |EV |q for the latent model to Opq ` |EV |q. What we gain in terms

of convergence of the chain is traded off in interpretation of the latent process.

As we see in Figure 4.4(b), using a graphical model on the response process

leads to a complete graph among the latent process. If, however, conditional

independence on the latent processes is not absolutely necessary, then the

marginalized GGP model is a pragmatic alternative for modelling highly

multivariate spatial data.

4.5 Simulations

4.5.1 Known graph

We conducted multiple simulation experiments to compare three models: (a)

PM: Parsimonious Multivariate Matérn of Gneiting, Kleiber, and Schlather,

2010; (b) MM: Multivariate Matérn of Apanasovich, Genton, and Sun, 2012

with νij “ νii “ νjj “ 1
2 , and ∆A “ 0 and ϕ2

ij “ pϕ2
ii ` ϕ2

jjq{2; and (c) GM:

Graphical Matérn (GGP on the latent process, stitched using multivariate

Matérn model (b)).

We consider the 6 settings in Table 4.2. In Sets 1A, 2A, and 3A, we generate
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Table 4.2: Different simulation scenarios considered for the comparison between
methods.

Set q Graph GV B Nugget Locations Data model Fitted models
1A 5 Gem (Figure 4.2(a)) Random No Same location for all variables GM GM, MM, PM
1B 5 Gem (Figure 4.2(a)) Random No Same location for all variables MM GM, MM, PM
2A 15 Path bi´1,i “ ρi Yes Partial overlap in locations for variables GM GM, PM
2B 15 Path bi´1,i “ ρi Yes Partial overlap in locations for variables MM GM, PM
3A 100 Path bi´1,i “ ρi Yes Partial overlap in locations for variables GM GM
3B 100 Path bi´1,i “ ρi Yes Partial overlap in locations for variables MM GM

data from GM. Set 1A has q “ 5 and uses a gem graph (Figure 4.2 (a)). For

Set 2A, we considered q “ 15 outcomes and used a path graph, while Set 3A

considers the highly multivariate case with q “ 100 outcomes and a path graph.

Sets 1B–3B are same as Sets 1A–3A, respectively, except that we generate data

from MM. Thus the scenarios 1A–3A correspond to correctly specified settings

for the GGP, while scenarios 1B–3B serve as misspecified examples where

data is generated from MM. For all scenarios, we generated data on n “ 250

locations uniformly chosen over a grid. We simulated 1 covariate xjpsiq for

each variable j, generated independently from a Np0, 4q distribution and the

true regression coefficients β j from Unif(-2,2) for j “ 1, 2, . . . , q. The ϕii and σii

were equispaced numbers in p1, 5q, while the bij’s where chosen as in Table 4.2.

For all of the candidate models, each component of the q-variate process is a

Matérn GP. Following the recommendation outlined in Apanasovich, Genton,

and Sun, 2012, the marginal parameters θii for the univariate Matérn processes

were estimated apriori using only the data for the i-th variable. The BRISC

R-package (Saha and Datta, 2018) was used for estimation.

To compare estimation performance, we primarily focus on the cross-

covariance parameters bij, pi, jq P EV , as they specify the cross-covariances in

stitching. Specifically, we compare the estimates of σijϕij “ Γp1{2qbij, which

are the bij’s rescaled to be at the same scale as the marginal microergodic
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(a) Set 1B (b) Set 2B

(c) Set 3B (d) Set 1B
Figure 4.5: Performance of graphical Matérn under misspecification: (a), (b) and
(c): Estimates of the cross-covariance parameters σijϕij “ Γp1{2qbij, pi, jq P EV for the
sets 1B, 2B and 3B respectively. The pink lines in Figures (a) and (b) indicate true
parameter values. (d): Median RMSPE for GM, MM, PM and Independent GP model
for Set 1B.

parameters σiiϕii. Model evaluations under the correctly specified settings

of 1A–3A are provided in Supplementary Figure S9, which reveals that the

GGP accurately estimates cross-covariance parameters for all the edges in the

graph for all 3 scenarios. Figures 4.5 (a), (b), and (c), evaluate the estimates of

GM for the misspecified settings 1B, 2B and 3B, respectively. For Set 1B we see

that MM, and GM produce reasonable estimates of the true cross-covariance

parameters included, whereas the estimates from PM are biased and more
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variable. For Set 2B the estimates of PM are once again biased, while GM is

more accurate.

For the highly multivariate settings in Sets 3A and 3B, neither PM nor

MM can be implemented because B involves 4, 950 parameters and likelihood

evaluation requires inverting a 25, 000 ˆ 25, 000 matrix in each iteration. Hence,

we only compare the estimates from GGP to the truth. Figure S9c shows that

the GGP performs well in the highly multivariate setting with misspecification

(3B) with GM once again accurately estimating all the bij’s for pi, jq P EV .

These simulations under misspecification confirm the accuracy of GGP in

estimating bij for the MM for pairs pi, jq included in the graph and aligns with

the conclusion from Proposition 4.3.1.

We also evaluate the impact of misspecification on the predictive perfor-

mance. Figure 4.5d plots the root mean square predictive error (RMSPE) based

on hold-out data for Set 1B. In addition to the models listed in Table 4.2 we

also consider a model where each component GP is an independent Matérn

GP serving as a reference for the impact of not modelling dependence. We find

GM performs competitively with MM (the correctly specified model) yielding

nearly identical RMSPEs for all the 5 variables. PM yields higher RMSPE for

variables 1 and 3, while the independent model is, unsurprisingly, the least

accurate. Additional analyses and discussions are in the Supplementary mate-

rials (Section S3). These include comparison of marginal parameter estimates

(Section S3.1), impact of excluding edges on estimation of cross-correlation

functions (Section S3.2), comparison of GGP with dynamic linear models for

spatial time series (Section S3.4), comparison of GGP with linear model of
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coregionalization (Section S3.3), and comparison among different variants of

the GM model (Section S3.5).

4.5.2 Unknown graph

We also evaluated our model when the graph is unknown and is sampled

using the reversible jump MCMC sampler described in Section 4.4.3. We

consider simulation scenarios in Sets 1A and 2A from Table 4.2, where the true

multivariate process is a graphical Matérn. We assess the accuracy of inferring

about the graphical model and the estimates of the cross-covariance parame-

ters. We visualise the estimated edge probabilities for Set 2A in Figure 4.6(a).

The blue edges correspond to the true edges, while red ones correspond to

false edges. The width of the edges are proportional to the posterior proba-

bility of selecting that edge. We see that most of the false edges have narrow

width indicating their low selection probability. We report the top 20 probable

edges estimated by our model in Table S1 of the Supplement and observe that

our approach ranks all the 14 true edges higher than any of the false edges in

terms of marginal probability. Figure 4.6(b) shows that the cross-covariance

parameters corresponding to true edges are also estimated correctly. The

results for Set 1A are similar and presented in Figure S10.

4.6 Spatial modelling of PM2.5 time-series

We demonstrate an application of GGP for non-stationary (in time) and non-

separable (in space-time) modelling of spatial time-series (Section 4.4.2). We

model daily levels of PM2.5 measured at monitoring stations across 11 states

of the north-eastern US and Washington DC for a three month period from
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February, 01, 2020, until April, 30th, 2020. The data is publicly available from

the website of the United States Environmental Protection Agency (EPA).

We selected n “ 99 stations with at least two months of measured data

for both 2020 and 2019. Meteorological variables such as temperature, baro-

metric pressure, wind-speed and relative humidity are known to affect PM2.5

levels. Since all of the pollutant monitoring stations do not measure all these

covariates, we collected the data from NCEP North American Regional Re-

analysis (NARR) database, and merged it with the available weather data

from EPA to impute daily values of these covariates at pollutant monitoring

locations using multilevel B-spline smoothing. Also to adjust for baseline

PM2.5 levels, for each station and day in 2020, we included a 7-day moving

average of the PM2.5 data for that station centered around the same day of

2019 as a baseline covariate We adjust for weekly periodicity of PM2.5 levels by

subtracting day-of-the-week specific means from raw PM2.5 values. Following

Section 4.4.2, we view the spatial time-series at n “ 99 locations and T “ 89

days as a highly multivariate (89-dimensional) spatial data set. Neither the

parsimonious Matérn nor the multivariate Matérn were implementable as

they involve 892{2 « 4000 cross-covariance parameters and 9000 ˆ 9000 matrix

computations (99 ˆ 89 « 9000) in each iteration.

We used a graphical Matérn GP with an ARp1q graph based upon ex-

ploratory analysis that revealed autocorrelation among pollutant processes

on consecutive days after adjusting for covariates. The marginal parameters

for day t were σtt, ϕtt and τ2
t . The autoregressive cross-covariance between
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days t ´ 1 and t is bt´1,t. Hence, GGP offers the flexibility to model non-

separability across space and time, time-varying marginal spatial parameters

and autoregressive coefficients.

We first present a subgroup analysis breaking 89 days worth of data into 6

fortnights. Data for each fortnight is only 14 or 15 dimensional and, hence, we

are able to analyse each chunk separately using the parsimonious Matérn (PM).

Figure 4.7a presents hold-out RMSPE and reveals that GM and PM produce

very similar predictive performance when analysing each fortnight of data

separately. We analyse the full dataset using the GGP model (GM) as other

multivariate Matérn GPs like PM are precluded by the highly multivariate

setting. The GGP model involves only 88 cross-covariance parameters. Since

the largest clique size in an AR(1) graph is 2, the largest matrix we deal with

for the data at 99 stations is only 198 ˆ 198. We also consider spatiotemporal

models that can model non-stationary and non-separable relationships in the

data. Gneiting, 2002 developed general classes of non-separable spatiotem-

poral models. However, these models assume a stationary temporal process.

More importantly, likelihood for this model will involve a dense 9000 ˆ 9000

matrix over the set of all space-time pairs and is generally impracticable for

modelling long spatial time-series.

For the full analysis, we compare GGP with a spatial dynamic linear model

(Stroud, Müller, and Sansó, 2001; Gelfand, Banerjee, and Gamerman, 2005)

that, like GGP, can parsimoniously model the temporal evolution using an

ARp1q structure and allows both non-separability and time-specific parame-

ters. We use the SpDynLm function currently offered in the spBayes package
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(see Section S3.4 of the Supplement for details). Predictive performance is sim-

ilar for both models with respect to both point predictions (Figure 4.7b) and

interval predictions (Figure S11). Figure 4.7c plots variance estimates (in the

log-scale) over time of the latent processes. The implementation in spBayes

uses the customary random-walk prior to model for the AR(1) evolution. This

enforces these marginal variances to be monotonically increasing resulting in

unrealistically large variance estimates for later time-points. The estimates

from GGP show substantial variation across time with generally a decreasing

trend going from February to April. The estimates and credible intervals

for the auto-correlation parameters rt,t´1 (normalized bt,t´1) from GGP are

presented in Figure 4.7d. There is large variation in these estimates across time

with many spikes indicating high positive autocorrelation. Quantitatively,

95% Bayesian credible intervals for 40 out of the 88 (45%) rt,t´1 estimates from

GM exclude 0 providing strong evidence in favour of non-stationary auto-

correlation across time. SpDynLm does not have an analogous auto-correlation

parameter, and, hence, cannot be compared in this regard.

The estimated average residual spatial surface, yPpsq “

p1{|P |q
ř

tPPpytpsq ´ xtpsqTβ̂tq, is depicted in Figure 4.7e for two choices

of the time-period P–the first two weeks of February, 2020 (left), and the last

two weeks of April, 2020 (right). These two periods represent the beginning

and end of the time period for our study and also correspond to before and

during lock-downs imposed in the north-eastern US due to COVID-19. We

observe a slight decrease in the magnitude of the residual process from

February (median across locations: 0.181) to April (median across locations:
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0.164) (Figure S12) suggesting a decrease in the PM2.5 levels during this period

even after accounting for the meteorological covariates and the previous

year’s level as a baseline. The residuals for April also showed much lesser

variability compared to that in February, suggesting a decrease in the latent

process variance over time. This agrees with the estimates of σtt from GGP

(Figure 4.7c) and contradicts the strongly increasing variance estimates from

SpDynLm (see Section S3.4 for a broader discussion).

4.7 Discussion

This high-dimensional problem we address here accounts for large number

of variables and is distinctly different from the burgeoning literature on high-

dimensional problems referring to the massive number of spatial locations.

A future direction will be to simultaneously address the problem of big n

and big q by extending stitching to nearest neighbor location graphs with

sparse variable graphs. Relaxing the assumption of linear covariate effects

xT
i βi in (4.1) can also be pursued as discussed recently by Saha, Basu, and

Datta, 2021. A multivariate analogue of this would benefit from the sparse

precision matrices available from stitching (4.7). Finally, the idea of stitching

can be transported to the discrete spatial (areal) setting to create multivariate

analogs of the interpretable Directed Acyclic Graph Auto-regressive (DAGAR)

models (Datta et al., 2019), where stitching would preserve the univariate

marginals being exactly DAGAR distributions.
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S1 Proofs

of Theorem 4.2.1. Part (a). For the original GP, Fpωq “ t fijpωqu is a valid spec-

tral density matrix (SDM). Therefore, following Cramer’s Theorem (Cramér,

1940; Parra and Tobar, 2017), Fpωq is positive definite (p.d.) or (almost)

every frequency ω. Using Lemma 4.2.2 we derive a unique Frpωq “ p frijpωqq,

which is also positive definite and satisfies Frpωqij “ Fpωqij “ fijpωq for

i “ j or pi, jq P EV , and Frpωq
´1
ij “ 0 for pi, jq R EV . The square-integrability

assumption of fiipωq is sufficient to ensure that
ş

| frijpωq|dω ă 8 using the

Cauchy-Schwarz inequality. Thus, we have a spectral density matrix Frpωq,

which is positive definite for (almost) all ω, friipωq “ fiipωq ą 0 for all i, ω,

and
ş

| frijpωq|dω ă 8 for all i, j. By Cramer’s theorem, there exists a GP wp¨q

with spectral density matrix Frpωq and some cross-covariance function M. As
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by construction frijpωq “ fijpωq for i “ j or pi, jq P EV , we have Mij “ Cij for

i “ j or pi, jq P EV . Since Fr
´1

pωqij “ 0 for pi, jq R EV and almost all ω, using

the result of Dahlhaus, 2000, wpsq has process-level conditional independence

on D as specified by GV , completing the proof.

Part (b). Let Kpωq P F . Then by definition Kpωq corresponds to the SDM of

a GGP with respect to GV . By Theorem 2.4 in Dahlhaus, 2000), pKpωq´1qij “ 0

for all pi, jq R EV and almost all ω. Let SpKq denote the collection of ω for which

this happens. From the construction of F̃ in part (a), for each ω P SpKq we thus

have pKpωq´1qij “ pF̃pωq´1qij “ 0 for all pi, jq R EV and F̃pωqij “ Fpωqij for all

pi, jq P EV . Using property (c) of Dempster, 1972, we have

trpKpwq
´1Fpωqq ` log detpKpωqq ě trpF̃pwq

´1Fpωqq ` log detpF̃pωqq @ ω P SpKq.

As SpKqc has measure zero, integrating this over SpKq produces the inequality

in part (b).

of Lemma 4.2.3. Consider any pi, jq R EV , and s, s1 P D. Let B “ Vzti, ju

and A denote the σ-algebra σptw˚
k psq | s P D, k P Buq. As w˚

k psq “

Ckkps,LqCkkpL,Lq´1wkpLq is a deterministic function of wkpLq for all k, s, we

have A Ď σpwBpLqq. On the other hand, as wkpsq “ w˚
k psq for all s P L (predic-

tive process agrees with the original process at the knot locations) we have

σpwBpLqq Ď σpAq. Hence, σpwBpLqq “ σpAq. Now we have
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Covpw˚
i psq, w˚

j ps1
q |Aq “Covpw˚

i psq, w˚
j ps1

q | σpwBpLqq

“Ciips,LqCiipL,Lq
´1CovpwipLq, wjpLq | σpwBpLqq

CjjpL,Lq
´1CjjpL, s1

q

“0.

The last equality follows directly from the construction of stitching for wpLq.

of Theorem 4.2.4. For two arbitrary locations s1, s2 P D, we can calculate the

covariance function from our construction as follows:

Mijps1, s2q “ Cov
`

Ciips1,LqCiipL,Lq´1wipLq ` zips1q,
Cjjps2,LqCjjpL,Lq´1wjpLq ` zjps2q

˘

“ Ciips1,LqCiipL,Lq´1CovpwipLq, wjpLqqCjjpL,Lq´1CjjpL, s2qq`

Ipi “ jqCii |Lps1, s2q

“ Ipi “ jqrCiips1,LqCiipL,Lq´1CiipL, s2qq ` Cii |Lps1, s2qs`

Ipi ‰ jqCiips1,LqCiipL,Lq´1MijpL,LqCjjpL,Lq´1CjjpL, s2q

“ Ipi “ jqCiips1, s2q`

Ipi ‰ jqCiips1,LqCiipL,Lq´1MijpL,LqCjjpL,Lq´1CjjpL, s2qq

(S1)

The second equality follows from the independence of zi and zj for i ‰ j, the

third equality uses MiipLLq “ CiipL,Lq and the fourth uses the form of the

conditional covariance function Cii |L from (4.2). It is now immediate, that wi

has the covariance function Cii on the entire domain D, proving Part (a).

To prove part (b), without loss of generality we only consider q “ 3

processes w1psq, w2psq, w3psq which is constructed via stitching, with the as-

sumption that p1, 3q R EV . First, we will show that, for any two locations
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s1, s2 P D, w1ps1q is conditionally independent of w3ps2q given w2pLq, which

we denote as w1ps1q KK w3ps2q | w2pLq.

As p1, 3q R EV , the sets t1 ˆ Lu “ tp1, sq | s P Lu and t3 ˆ Lu are separated

by t2 ˆ Lu in the graph GV b GL. Hence, using the global Markov property of

Gaussian graphical models, we have w1pLq KK w3pLq | w2pLq.

For any s1, s2 P D we have, similar to (S1),

Covpw1ps1qw3ps2q | w2pLqq

“ C11ps1,LqC11pL,Lq´1Cov pw1pLq, w3pLq | w2pLqq C33pL,Lq´1C33pL, s2q “ 0.

Hence, w1ps1q KK w3ps2q | w2pLq for any s1, s2 P D. Now

Covpw1ps1q, w3ps2q | σ ptw2psq | s P Duqq

“ Covpw1ps1q, w3ps2q | σ pw2pLq, tz2psq | s P Duqq

“ Covpw1ps1q, w3ps2q | σ pw2pLqqq “ 0.
(S2)

The second inequality follows due to the agreement of the two conditioning

σ-algebras (similar to the argument in the proof of Lemma 4.2.3). The third

inequality follows from the fact that for any three random variables X, Y and

Z such that X and Y are independent of Z, EpX|Y, Zq “ EpX|Yq. Equation (S2)

establishes process level conditional independence for w1p¨q and w3p¨q given

w2p¨q, thereby proving part (b).

Finally, if pi, jq P EV , and ps1, s2q P L, in (S1), we will have Mijps1, s2q “

Cijps1, s2q directly from the construction of MpL,Lq. This proves part (c).

of Corollary 4.3.0.1. Recall from the construction of MpL,Lq that the Gaussian

random vector wpLq satisfies the graphical model G “ GV b GL, where GL

is the complete graph between n locations. The strong product graph G is
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decomposable and Km b GL; m “ 1, ¨ ¨ ¨ , p form a perfect sequence for G with

Sm b GL; m “ 2, ¨ ¨ ¨ , p being the separators. Thus, using results (3.17) and

(5.44) from Lauritzen, 1996, we are able to factorize wpLq as (4.6).

of Proposition 4.3.1. Suppose, we observe a Multivariate Matérn process. Un-

der the assumption of Graphical Gaussian Processes, the resulting maximum

likelihood estimating equations for parameters θij belonging to cliques or

separators (i “ j or pi, jq P EV ) are given by -

B logp fMpwpLqq

Bθij
“ 0

ùñ
B

Bθij

˜

ÿ

K

logp fCpwKpLqq ´
ÿ

S

logp fCpwSpLqq

¸

“ 0

ùñ
B

Bθij

¨

˝

ÿ

KQpi,jq

logp fCpwKpLqq ´
ÿ

SQpi,jq

logp fCpwSpLqq

˛

‚“ 0 ,

(S3)

where for a subset a, logp fCpwapLqq “ ´1
2 wapLqTCapθq´1wapLq ´

log | detpCapθq|.
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Below, we will show that for every subset (clique or separator), the maxi-

mum likelihood estimating equation is unbiased.

Ew

«

B

Bθij
p´

1
2

wapLq
TCapθq

´1wapLq ´ log | detpCapθqq|q

ff

“ Ew

«

´
1
2

tr

˜

Capθq
´1wapLqwapLq

TCapθq
´1 BCapθq

Bθij

¸

`
1
2

tr

˜

Capθq
´1 BCapθq

Bθij

¸ff

“ ´
1
2

tr

˜

Capθq
´1Ew

“

wapLqwapLq
T
‰

Capθq
´1 BCapθq

Bθij

¸

`
1
2

tr

˜

Capθq
´1 BCapθq

Bθij

¸

“ ´
1
2

tr

˜

Capθq
´1 BCapθq

Bθij

¸

`
1
2

tr

˜

Capθq
´1 BCapθq

Bθij

¸

“ 0 .

(S4)

Since the Graphical Gaussian process likelihood is made up of the sums

and differences of individual clique and separator likelihoods, the above result

ensures that under true parameter values θij of the Multivariate Matérn, we

obtain the following which concludes our proof -

Ew

»

–

B

Bθij

¨

˝

ÿ

KQpi,jq

logp fCpwKpLqq ´
ÿ

SQpi,jq

logp fCpwSpLqq

˛

‚

fi

fl “ 0 (S5)

of Proposition 4.4.1. We only need to prove Covpwipsq, wjps1q | σpt f jpsq | j P

1, . . . , r, s P Duq “ 0 for all i ‰ j and s, s1 P D. From Equation (4.9), we
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have wipsq “ aipsqT f psq ` ξipsq where aipsq “ pai1psq, . . . , airpsqqT.

Covpwipsq, wjps1
q | σ

`

t f jpsq | j “ 1, . . . , r, s P Du
˘

q

“ Covpaipsq
T f psq ` ξipsq, ajpsq

T f ps1
q ` ξ jps1

q | σ
`

t f jpsq | j “ 1, . . . , r, s P Du
˘

q

“ Covpaipsq
T f psq, ajpsq

T f ps1
q | σ

`

t f jpsq | j “ 1, . . . , r, s P Du
˘

q ` Covpξipsq, ξ jps1
qq

“ 0 ` 0 “ 0

because aipsqT f psq’s are deterministic functions of the conditioning σ-algebra,

and ξi’s are independent of each other and of the factor processes.

Thus we have proved that any pair of observed processes are conditionally

independent given the latent processes. When translated into a Graphical

Gaussian processes framework, we will observe no edges between the ob-

served nodes and each observed node will be connected to all the factor

(latent) nodes. Additionally, we assume all possible connections (a complete

graph) between the factor nodes in their marginal distribution. This gives us a

complete graph between the vertices tq ` j|j P 1, . . . , ru. Therefore, the graphs

on the joint set of observed and factor processes will be decomposable with the

perfect ordering of cliques K1, . . . , Kq where Ki “ tiu Y tq ` i|i P 1, . . . , ru.

S2 Implementation

S2.1 Gibbs sampler for GGP model for the latent processes

Let yi “ pyipsi1q, yipsi2q, . . . , yipsiniqqT be the ni ˆ 1 vector of measurements

for the i-th response or outcome over the set of ni locations in D. Let Xi “

pxipsi1q, xipsi2q, ¨ ¨ ¨ , xipsiniqqT be the known ni ˆ pi matrix of predictors on the
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set Si “ tsi1, ¨ ¨ ¨ , siniu. We specify the spatial linear model as yi “ Xiβi ` wi `

ϵi, where βi is the pi ˆ 1 vector of regression coefficients, ϵi is the ni ˆ 1 vector

of normally distributed random independent errors with marginal common

variance τ2
i , and wi is defined analogously to yi for the latent spatial process

corresponding to the i-th outcome. The distribution of each wi is derived from

the specification of wpsq as the q ˆ 1 multivariate graphical Matérn GP with

respect to a decomposable GV . Let tϕii, σii, τ2
i |i “ 1. . . . , qu denote the marginal

parameters for each component Matérn process wip¨q.

We elucidate the sampler using a GGP constructed by stitching the simple

multivariate Matérn (Apanasovich, Genton, and Sun, 2012), where νij “

pνii ` νjjq{2, ∆A “ 0 in (4.4) and ϕ2
ij “ pϕ2

ii ` ϕ2
jjq{2. Hence, the only additional

cross-correlation parameters are tbij|pi, jq P EVu. Any of the other multivariate

Matérn specifications in Apanasovich, Genton, and Sun, 2012 that involve

more parameters to specify νij’s and ϕij’s can be implemented in a similar

manner. We consider partial overlap between the variable-specific location

sets and take L “ YiSi as the reference set for stitching. If there is total lack of

overlap between the data locations for each variable, we can simply take L to

be a set of locations sufficiently well distributed in the domain and the Gibbs

sampler can be designed analogously.

Conjugate priors are available for βi
ind
„ Npµi, Viq and τ2

i
ind
„ IGpai, biq,

where IG is the Inverse-Gamma distribution. There are no conjugate priors for

the process parameters. For ease of notation, the collection Ma,b the submatrix

of M indexed by sets a and b, Ma “ Ma,a, and Ma|b “ Ma ´ Ma,bM´1
b Mb,a.

Similarly, we denote wpaq to be the vector stacking wipsq for all pi, sq P a. We
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denote cliques by K and separators by S in the perfect ordering of the graph

GV .

The full-conditional distributions for the Gibbs updates of the parameters

are as follows.

ppβi | ¨q „ NppXT
i Xi ` V´1

i q
´1

pµi ` XT
i pyi ´ wiqq, τ2

i pXT
i Xi ` V´1

i q
´1

q ;

ppτ2
i | ¨q „ IGpa `

ni

2
, b `

pyi ´ XT
i βi ´ wiq

Tpyi ´ XT
i βi ´ wiq

2
q ;

ppσii, ϕii, νii | ¨q9

ś

KQi
1

|MKˆL|
1
2

exp
´

´1
2 wpK ˆ LqT M´1

KˆLwpK ˆ Lq

¯

ś

SQi
1

|MSˆL|
1
2

exp
´

´1
2 wpS ˆ LqT M´1

SˆLwpS ˆ Lq

¯ ˆ ppσiiqppϕiiqppνiiq ;

ppbij | ¨q9

ś

KQpi,jq
IpBKą0q

|MKˆL|
1
2

exp
´

´1
2 wpK ˆ LqT M´1

KˆLwpK ˆ Lq

¯

ś

SQpi,jq
1

|MSˆL|
1
2

exp
´

´1
2 wpS ˆ LqT M´1

SˆLwpS ˆ Lq

¯ ˆ ppbijq

for pi.jq P EV .

To update the latent random effects w, let L “ ts1, . . . , snu and oi “ diagpIps1 P

Siq, . . . , Ipsn P Siqq denote the vector of missing observations for the i-th

outcome. With XipLq “ pxips1q, . . . , xipsnqqT, yipLq and wipLq defined similarly,
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we obtain

ppwipLq | ¨q „ N
´

M´1
i µi,M´1

i

¯

, where

Mi “
1
τ2

i
diagpoiq `

ÿ

KQi

M´1
tiuˆL|pKztiuqˆL ´

ÿ

SQi

M´1
tiuˆL|pSztiuqˆL ,

µi “
pyipLq ´ xipLqTβiq d oi

τ2
i

`

ÿ

KQi

TipKqwppKztiuq ˆ Lq ´
ÿ

SQi

TipSqwppSztiuq ˆ Lq ,

TipAq “ M´1
tiuˆL|pAztiuqˆLMtiuˆL,pAztiuqˆLM´1

pAztiuqˆL, for A P tK, Su.

The Gibbs sampler evinces the multifaceted computational gains. The

constraints on the parameters bij no longer require checking the positive-

definiteness of B, which would require Opq3q flops for each check. Instead,

due to decomposability it is enough to check for positive definiteness of the

(at most q˚ dimensional) sub-matrices BK of B corresponding to the cliques

of GV . The largest matrix inversion across all these updates is of the order

nq˚ ˆ nq˚, corresponding to the largest clique. The largest matrix that needs

storing is also of dimension nq˚ ˆ nq˚. These result in appreciable reduction

of computations from any multivariate Matérn model that involves nq ˆ nq

matrices and positive-definiteness checks for q ˆ q matrices at every iteration.

Finally, for generating predictive distributions, note that, as a part of

the Gibbs sampler, we are simultaneously imputing wi at the locations

LzSi. Subsequently, we only need to sample yipLzSiq | ¨ „ NpXipLzSiq
1βi `

wipLzSiq, τ2
i Iq.
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S2.2 Gibbs sampler for GGP model for the response processes

Let ypLq “ py1pLq, ¨ ¨ ¨ , yqpLqqT, XpLq “ bdiagpX1pLq, . . . , XqpLqq, and β “

pβT
1, ¨ ¨ ¨ , βT

qqT. We will consider the joint likelihood

ypLq | XpLq, β, tϕii, σii, τ2
i uti“1,...,qu, tbijutpi,jqPEVu „ N

`

XpLqβ, M˚
VˆL

˘

(S6)

and impute the missing data yipLzSiq in the sampler. Let Ti “ tiu ˆ pLzSiq,

UipAq “ pA ˆ LqzTi for A P tK, Su and βpAq be the vector stacking up β j

for j P A. Also, for any U Ď V ˆ L, let X̃pUq “ bdiagptXjpU X ptju ˆ Lqq|j Q

U X ptju ˆ Lq ‰ tuu. We have the following updates:

yipTiq | ¨ „ NpXipTiqβi`

H´1
i

˜

ÿ

KQi

M˚´1
Ti|UipKq

M˚´1
Ti, UipKq

M˚´1
UipKq

pypUipKqq ´ X̃pUipKqqβpKqq ´

ÿ

SQi

M˚´1
Ti|UipSq

M˚´1
Ti, UipSq

M˚´1
UipSq

pypUipSqq ´ X̃pUipSqqβpSqq

¸

, H´1
i q

where Hi “
ÿ

KQi

M˚´1
Ti|UipKq

´
ÿ

SQi

M˚´1
Ti|UipSq

Once again the updates require inversion or storage of matrices of size at

most nq˚ ˆ nq˚. The updates for the other parameters are similar to that in

the sampler of Section S2.1 of the Supplement with the cross-covariance M˚

replacing M. The only exception is τ2
i , which no longer has conjugate full

conditionals and are also now updated using Metropolis random walk steps

within the Gibbs sampler akin to the other spatial parameters.
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S2.3 Reversible jump MCMC algorithm

We use the reversible jump MCMC (rjMCMC) algorithm of Barker and Link,

2013 to carry out the multimodel inference by sampling of the graph and

estimating the cross-covariance parameters specific to the graph. We embed

the graph sampling described in Section 4.4.3 within the Gibbs sampler in

Section S2.1. Jumps between graphs need to be coupled with introduction or

deletion of cross-covariance parameters depending on addition or deletion of

edges. In order to facilitate this, we need a bijection between the parameter sets

of the GGP models corresponding to two different graphs. This is achieved

by creating a universal parameter (palette) ψ from which all model-specific

(graph-specific) parameters can be computed. For example, if we assume the

k-th graph GVk “ pV , Ekq has θk as the cross-covariance parameter vector, then

we need to define an invertible mapping gk such that gkpψq “ cpθk, ukq, where

uk’s are irrelevant to graph k. In our case, we define ψ to be the concatenated

vector of length qpq´1q

2 containing all pairwise cross-covariance parameters, i.e.

ψ “ pψ12, ψ13, ¨ ¨ ¨ , ψ23, ¨ ¨ ¨ , ψpq´1q,qq. We define gkpψq “ ψpkq “ rtψ
pkq

ij : pi, jq P

Eku, tψ
pkq

ij : pi, jq R Ekus to be the permuted vector of ψ.

Using the above setup, we now devise our two-step sampling strategy

for the graphs. From the current junction tree J, we propose a move to

a new junction tree J1 by adding or deleting edges. Following Green and

Thomas, 2013 we calculate the proposal probabilities as κpJ, J1q. The acceptance

probability of the new junction tree J1 is αpJ, J1q “ min
´

1, ppy|ψ,J1,.qπ̃pJ1qκpJ,J1q

ppy|ψ,J,¨qπ̃pJqκpJ1,Jq

¯

.

Exploiting the factorisation (4.6) of stitched GGP likelihoods for decom-

posable graphs, we can simplify computations in αpJ, J1q. Let KJ , SJ be the set
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of cliques and separators for J. Let K`pJ, J1q, K´pJ, J1q and S`pJ, J1q, S´pJ, J1q

denote, respectively, the cliques and separators added and deleted by the

proposed move to J1. The ratio for a proposed move from J to J1 is

ppJ ÝÑ J1
| ψ, ¨q “

ś

KPK`pJ,J1q
IpBKą0q

|MKˆL|
1
2

exp
´

´1
2 wKpLqT M´1

KˆLwKpLq

¯

ś

KPK´pJ,J1q
IpBKą0q

|MKˆL|
1
2

exp
´

´1
2 wKpLqT M´1

KˆLwKpLq

¯ˆ

ś

SPS´pJ,J1q
1

|MSˆL|
1
2

exp
´

´1
2 wSpLqT M´1

SˆLwSpLq

¯

κpJ, J1qµpGV pJqq

ś

SPS`pJ,J1q
1

|MSˆL|
1
2

exp
´

´1
2 wSpLqT M´1

SˆLwSpLq

¯

κpJ1, JqµpGV pJ1qq

.

The terms corresponding to the cliques K´pJ, J1q and separators S´pJ, J1q have

already been computed from the existing tree J. We only need to evaluate

the likelihood factors corresponding to new cliques K`pJ, J1q and separators

S`pJ, J1q added in the proposed tree J1. This makes the jumps between junction

trees computationally efficient for the GGP likelihood. Subsequent to moving

to a new tree, we modify the Gibbs’ sampler (Section S2.1) to sample the

cross-correlation parameters as below.

ppψ
pkq

ij ; pi, jq P Ek | J, ¨q9

ś

KJQpi,jq
IpBKą0q

|MKˆL|
1
2

exp
´

´1
2 wKpLqT M´1

KˆLwKpLq

¯

ś

SJQpi,jq
1

|MSˆL|
1
2

exp
´

´1
2 wSpLqT M´1

SˆLwSpLq

¯ ˆ ppψ
pkq

ij q

ppψ
pkq

ij ; pi, jq R Ek | J, ¨q9ppψ
pkq

ij q.

147



S2.4 Co-ordinate descent

To conduct estimation and prediction using GGP in a frequentist setting,

we outline a co-ordinate descent algorithm for maximum likelihood estima-

tion (assuming a known graph). We illustrate the implementation for the

case where each of the q variables are measured at L. The case of spatial

misalignment can be handled by an EM algorithm to impute the missing

responses for each variable. For the frequentist setup, we use the GGP model

for the response. From Corollary 4.3.0.1, the joint likelihood can be factored

into sub-likelihoods corresponding to specific cliques and separators. Let

θptq denote the values of the spatial parameters θ at the t-th iteration, and

M˚
L “ M˚

Lpθq denote the GGP covariance matrix of ypV ˆ Lq from stitching.

Let θii “ tσ2
ii, ϕii, νiiu, θ´i “ θzθii, θ´ij “ θztbiju. Letting X̃pLq :“ X̃pV ˆ Lq we

immediately have the following updates of the parameters:

βpt`1q
“

´

X̃pLq
T M˚´1

L pθptq
qX̃pLq

¯

X̃pLq
T M˚´1

L pθptq
qypLq,

θ
pt`1q

ii “ arg min
θii

”

ÿ

KQi

lKpθiiq ´
ÿ

SQi

lSpθiiq
ı

, where for any A Ă V ,

lApθiiq “ logp|M˚
AˆLpθii, θ

ptq
´i q|q`

pypA ˆ Lq ´ X̃pA ˆ LqβpAqq
T M´˚1

AˆLpθii, θ
ptq
´i qpypA ˆ Lq ´ X̃pA ˆ LqβpAqq,

bpt`1q

ij “ arg min
bij

”

ÿ

KQpi,jq

`

ℓ̃Kpbijq ´ logpIpBK ą 0qq
˘

´
ÿ

SQpi,jq

ℓ̃Spbijq
ı

, for pi, jq P EV ,

where ℓ̃Apbijq “ logp|M˚
AˆLpbij, θ

ptq
´ijq|q`

pypA ˆ Lq ´ X̃pA ˆ LqβpAqq
T M´˚1

AˆLpbij, θ
ptq
´ijqpypA ˆ Lq ´ X̃pA ˆ LqβpAqq.
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The update of β involves the large nq ˆ nq matrix M˚´1
L . However, from (4.7),

M˚´1
L can be expressed as sum of sparse matrices, each requiring at-most

Opn3q˚3q storage and computation arising from inverting matrices of the form

CKbL ` DKbL. For updates of the spatial parameters θii and bij, coordinate

descent moves along the respective parameter and optimizing the negative

log-likelihood which is expressed in terms of the corresponding negative

log-likelihoods of the cliques and separators containing that parameter. This

process is iterated until convergence. Each iteration of the co-ordinate descent

has the same complexity of parameter dimension, same computation and

storage costs and parameter constraint check as each iteration of the Gibbs

sampler, and hence is comparably scalable.

S3 Additional data analyses results

S3.1 Estimation of marginal parameters

Comparison of the estimates of the marginal (variable-specific) parameters

θii “ pσii, ϕiiq
1 is of lesser importance because stitching ensures that each uni-

variate process is Matérn GP, similar to the competing multivariate Matérn

model. The estimates of the marginal microergodic parameters σiiϕii are plot-

ted in Figure S1 of the Supplement and reveal similar trends to Figure 4.5,

with MM and GM accurately estimating the parameters while PM producing

poor estimates due to parameter constraints imposed by its simplifying as-

sumptions. Also, the estimates of the regression coefficients β j were accurate

for all models, and are not presented.
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S3.2 Estimates of cross-correlation function under mis-
specification

We also assess the impact of GGP not excluding parameters bij for all pi, jq R EV

on the estimates of the cross-correlation functions for these variable pairs.

Since these parameters are not in the GGP, we can only compare the true cross-

covariance function between these variables pairs against the one indirectly

estimated by GGP.

For the misspecified case of Set 1B, Figure S2 shows that GM estimates

the cross-correlation function pretty well for the assumed edges (blue back-

ground) and show bias for some of the variable pairs not included in GV (white

background). The accurate estimation for the covariance functions (diagonal

plots) is attributable to the GGP exactly preserving the marginal distributions

of the multivariate Matérn. Similarly, the estimates of the cross-covariance

parameters for pi, jq P EV is expectedly accurate (as is concluded in Proposition

4.3.1).

The bias observed in estimates of the cross-correlation for some pairs of

pi, jq R EV is also unsurprising. The multivariate Matérn used to generate the

data does not follow any graphical model or any other low-rank structure,

and any form of dimension-reduction (like modelling dependencies with a

sparse graph) will lead to some tradeoff in terms of accuracy and scalability.

For analyzing highly multivariate spatial data, even if the variables truly

doesn’t conform to any graphical model, the MM is not a feasible option

due to its high-dimensional parameter space and computing requirements

(Table 4.1) and hence dimension-reduction is necessary. Hence, using GGP
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with a reasonably chosen graphical model that does not exclude important

variable pairs is a necessary dimension-reduction step. While it is challenging

to establish a bound for the bias for excluded edges in GGP, we have proved

that the marginal-preserving GGP is the information-theoretically optimal

approximation of a full GP among the class of all GGP (Theorem 4.2.1) .

We see from Figure that S2 that the bias from GM is worse than that of PM

for some pi, jq R EV (e.g., p1, 4q or p2, 4q). On the other hand, estimates for PM

are worse for some pi, jq R EV (e.g., p1, 3q) and for a majority of the pairs pi, iq

and pi, jq P EV . PM achieves dimension-reduction by imposing simplifying

parameter constraints which degrades its estimation accuracy substantially

for most parameters. Moreover, PM cannot even be implemented in the truly

highly multivariate settings (like sets 3A and 3B) due to requiring Opq3q for

likelihood evaluation (see Table 4.1). The GGP offers drastic improvement in

scalability over these alternatives, and for highly multivariate settings, maybe

the only viable option guaranteeing accurate estimation of a large subset of

the full model parameters. Additionally, we see that exclusion of edges does

not severely impact the prediction quality of GM.

S3.3 Comparison with linear model of coregionalization

To compare relative performance of linear model of coregionalization and

GGP in modelling low-rank processes, we consider the following simulation

scenarios: (i) data is generated from an linear model of coregionalization; (ii)

data is generated from a Graphical Matérn (GM) respecting the graphical

model that would arise from the linear model of coregionalization in scenario
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(i). For each simulation setting we fit GM and linear model of coregionalization

with two factor processes (using spMisalignLM function from the R package

spBayes for our setting of variable-specific locations). Since spMisalignLM can

be implemented only when the number of observed and latent processes are

equal, for generating the data we considered two observed process based

on two independent factor processes. This linear model of coregionalization

leads to the graphical model from Figure 4.3a. Hence, for scenario (ii) we

generate data from a graphical Matérn using this graph to generate correlated

factor processes.

Since the two models correspond to different sets of parameters, we cannot

compare them directly. Instead, in Figure S3 we compare the estimates of the

entire correlation and cross-correlation functions. We observe that the impact

of misspecification is more pronounced for the linear model of coregionaliza-

tion; when the true model is graphical Matérn the estimate of the correlation

function for the second variable by linear model of coregionalization is quite

poor. In comparison, the graphical Matérn estimates the correlation and cross-

correlation functions reasonably well both in the correctly specified and in the

misspecified case.

We also compare the predictive performance of the models. For all the

simulations performed, we leave out 20% of the data to create test sets in

order to evaluate prediction accuracy of the models. Figure S4 presents the

comparison of the prediction and the true values for both models and both

data generation scenarios. GM reports marginally improved root mean square

prediction error than linear model of coregionalization in all of the situations.
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S3.4 Comparison with spatial dynamic linear models

The simulation set 3A corresponds to a highly multivariate setting (q “ 100),

where the multivariate process truly follows a graphical model (path graph

among the 100 variables). None of the competing multivariate approaches

besides the GGP can model such a graphical structure. These alternatives (PM

and MM) also do not scale to our highly multivariate settings. In Section 4.4.2

we have illustrated how common univariate and multivariate spatial time-

series correspond to decomposable graphical models among the variables and

can be modelled using GGP. The path graph in setting 3A corresponds to the

decomposable graph resulting from an AR(1) temporal structure. Hence, for

this set we compare the performance of the GGP with a dynamic linear model

(DLM) (Stroud, Müller, and Sansó, 2001; Gelfand, Banerjee, and Gamerman,

2005; Finley, Banerjee, and Gelfand, 2012) commonly used for modelling

spatial time-series with AR(1) temporal evolution.

In particular, we compare GGP with the spatial dynamic linear model

(SpDynLm) of Finley, Banerjee, and Gelfand, 2012 which is set in the GP-

based mixed-effect modeling setup similar to (4.1), as opposed to spatial basis

function based approach of (Stroud, Müller, and Sansó, 2001). SpDynLM

models the spatial process wtp¨q “ wp¨, tq at time t as

wtpsq “ wt´1psq ` δtpsq; δtp¨q „ GPp0, Cttq, (S7)

i.e., at each time-point the spatial process is a sum of the process at the previous

time point and an independent time-specific GP. The rest of the model is the

same as in our setup (Eq. 4.1) with SpDynLM enforcing an auto-regressive
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evolution model for the regression coefficients βt as well.

Both SpDynLm and any GGP with a path graph between the time-specific

variables model an AR(1) evolution over time. However, any DLM using

an additive model of the type (S7) for the temporal evolution of the latent

processes wtpcq9, unfortunately, enforces the processes wtp¨q to have the same

smoothness at all time-points t. Thus, even if the δtp¨q’s are modelled using

Matérn GPs with time-specific smoothness, range and variance parameters,

none of the processes wtp¨q will be Matérn GPs and each will have the smooth-

ness of the roughest of the independent processes δtpcq9.

Another major restriction of the SpDynLM model is that (S7) is the cus-

tomary random walk prior (Stroud, Müller, and Sansó, 2001) for wtp¨q which

imposes the assumption that Varpwtpsqq ą Varpwt´1psqq for all t, s, i.e., that the

process variance is monotonically increasing over time. For most spatiotem-

poral processes this assumption is unlikely to hold. The GGP, on the other

hand, ensures that the processes wtp¨q for each time t can be modelled using a

Matérn GP with time-specific variance parameters.

The dynamic model in (S7) also implicitly assumes a constant (over time)

auto-regression coefficient of 1. While this can be easily relaxed by replacing

wt´1psq with ρtwt´1psq in (S7), the current implementation of SpDynLm does

not allow modelling such a non-stationary auto-correlation coefficient ρt. In

a GGP with a path graph, the cross-correlation parameter bt,t´1 between the

processes at two consecutive times is time-specific, thereby allowing it to

capture non-stationary auto-regressive structures.

For Set 3A, the estimation accuracy of GM has already been demonstrated
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in Figure S1(e) (for the marginal parameters) and in Figure S9(c) (for the

cross-covariance parameters representing the auto-regression). In particular,

Figure S9(c) demonstrates the capability of GGP to successfully estimate

non-stationary (time-specific) cross-covariance parameters. The competing

model SpDynLm does not possess an autocovariance parameter that can been

compared with these cross-covariances. However, we compare estimates of

the marginal process variances from GGP and the SpDynLm function with

the truth in Figure S5a. We observe that while GGP accurately captures

the marginal variances of the processes wtp¨q for each time t, the estimates

from SpDynLm are monotonically increasing with time and far exceeding

the true values. This demonstrates the detrimental implications of the model

in S7 leading to variances exploding with time and, hence, prohibiting any

meaningful insight regarding the underlying processes from these parameter

estimates.

We also compare the models based on their predictive performance on

hold-out data. We use the implementation of SpDynLm in the SpBayes R-

package (Finley, Banerjee, and Gelfand, 2013). Figure S5b plots the median

RMSPE for each variable (time-point). We see that SpDynLm produces higher

predictive error (RMSPE=0.868) than GM (RSMPE=0.8) for most time-points.

The numbers reported in parentheses are averaged across variables.

Overall, while predictive performance between GGP and DLM is com-

petitive, the GGP is flexible and interpretable allowing estimation of spatial

properties of the latent process wtp¨q for each time. The current implementation

of SpDynLM imposes unnecessary constraints of monotonically increasing
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latent process variance with time leading to meaningless estimates of these

parameters. More importantly, DLM assumes common smoothness over time,

thereby offering no avenue to quantitatively study smoothness of the process

at each time which can reveal important scientific phenomenon, e.g., pollutant

surfaces can be smooth on days where the pollutant is driven by regional

sources, but will be much less smooth with high local variations on days

where there are significant local sources of emission.

S3.5 Comparison between different implementations of GGP

We have implemented 3 different variants of the GGP model. Besides the

main focus on Bayesian model with GGP (GM) on the latent spatial processes

(implementations details in Section S2.1), we have also discussed GGP on

the response process (GMresponse) in Section 4.4.5 (implementation details in

Section S2.2), and have presented a frequentist estimation scheme for the

parameters with maximum likelihood estimation (GMMLE) using co-ordinate

descent (see Section S2.4). In this Section we compare the performances of the

3 variants of GGP.

The MLE-based methods preclude misalignment among data locations

for the different variables and excludes nugget processes ϵip¨q in (4.1). Set 1B

conforms to such assumptions. Hence, we compare GM with GMMLE for this

set. Since there is no nugget, GM and GMresponse are the same for this set.

Figure S6 plots the true covariance and cross-covariance parameters and their

estimates from GM and GMMLE showing that the Bayesian and frequentist

implementations yield similar estimates.
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We then compare the two Bayesian implementations of GGP: GGP on the

latent process (GM); and GGP on the response process (GMresponse). Figure S7

plots the estimates of the covariance and cross-covariance parameters, and

prediction RMSPE based on hold-out data for the two variants for Set 2B. We

see that they produce similar estimates and predictive performance.

S4 Additional figures and tables

Set 1A (True = Gem graph) Set 2A (True = Path graph)
Edges Probability Edges Probability

(3, 4) 0.64 (1, 2) 0.43
(1, 2) 0.57 (11, 12) 0.42
(1, 5) 0.57 (2, 3) 0.42
(2, 3) 0.55 (14, 15) 0.41
(2, 5) 0.50 (4, 5) 0.40
(3, 5) 0.48 (7, 8) 0.38
(4, 5) 0.46 (8, 9) 0.37
(1, 3) 0.45 (13, 14) 0.34
(2, 4) 0.43 (6, 7) 0.33
(1, 4) 0.42 (10, 11) 0.32

(9, 10) 0.31
(5, 6) 0.30

(12, 13) 0.30
(3, 4) 0.27
(1, 3) 0.22

(13, 15) 0.21
(9, 11) 0.20
(7, 9) 0.18
(4, 6) 0.18

(10, 12) 0.18

Table S1: Posterior probabilities of including an edge when estimating the graph in a
GGP. The rows of the table are ordered from highest to lowest. (a) Set 1A (all edges),
(b) Set 2A (edges with the top 20 highest selection probabilities). Bold numbers
indicate true edges.
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(a) Posterior edge selection probabilities for Set
2A.

(b) Cross-covariance parameter estimates for
Set 2A while estimating the unknown graph

Figure 4.6: Performance of GGP with unknown graph for Set 2A: (a): Marginal
edge probabilities estimated from the reversible jump MCMC sampler. Blue edges
denote the true edges and red denotes the non-existent edges. Edges are weighted
proportional to the estimated posterior selection probabilities. (b) GM estimates of
cross-correlation parameters (bij) corresponding to true edges when the graph is
unknown, with horizontal pink lines indicating the true values.
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(a) Prediction performance for fort-
nightly analysis

(b) Prediction performance for full
analysis

(c) Log-variance estimates for the full
analysis

(d) Estimates of time-specific cross-
correlations

First two weeks of February Last two weeks of April
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(e) Average residual surfaces
Figure 4.7: PM2.5 analysis: (a) Daily RMSPE for the 6 fortnightly analyses, (b) Daily
RMSPE for the full analyses, (c) Estimates of the time-specific process variances, (d)
Estimates and credible intervals of the cross-correlation parameters rt,t´1 (correspond-
ing to the cross-covariances bt,t´1), (e) Estimates of the residual spatial processes from
GM (after adjusting for covariates and baseline) for first two weeks of February and
last two weeks of April.
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(a) 1A (b) 1B

(c) 2A (d) 2B

(e) 3A (f) 3B

Figure S1: Estimates of the marginal parameters σiiϕii, i P V , for the 6 simulation
settings. The horizontal pink lines in Figures (a) and (b) indicate the true parameter
values.
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(a) Set 1B

Figure S2: Estimates of cross-correlation functions (GM, PM, MM) compared to the
truth in Set 1B. The grids correspond to specific pair of the cross-correlations. The sky
blue shaded grids correspond to edges in the gem graph assumed for GM.

(a) True process: GM (b) True process: linear model of coregional-
ization

Figure S3: Estimates of cross-correlation functions for the two observed processes.
The grids correspond to specific pair of the cross-correlations.
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(a) True process: GM (b) True process: linear model of coregional-
ization

Figure S4: Truth vs prediction for test sets in different simulation scenarios with
prediction RMSE reported.

(a) Variance estimates (in log-scale). (b) Median RMSPE over seeds for each variable
(time-point).

Figure S5: Comparison between GGP and SpDynLm for modelling AR(1) spatial
time series: (a) Variance estimates (in log-scale) for GM and SpDynLm compared to
the true values for Set 3A. (b) Median RMSPE over seeds for each variable (time) for
GM and SpDynLm for Set 3A.
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(a) Set 1B (Marginal parameters) (b) Set 1B (Cross-covariance parameters)

Figure S6: Comparison of performance of Graphical Matérn (GM) and Graphical
Matérn frequentist (GMMLE) : (a) Estimates of the scale-covariance product parame-
ters σiiϕii “ i P V , (b) Estimates of the cross-covariance parameters σijϕij “ Γp1{2qbij,
pi, jq P EV for Set 1B. The horizontal pink lines in Figures (a) and (b) indicate true
parameter values.
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(a) Set 2B (Marginal parameters) (b) Set 2B (Cross-covariance parameters)

(c) Set 2B (Predictions)

Figure S7: Comparison of performance of Graphical Matérn (GM) and Graphical
Matérn response (GMresponse) : (a) Estimates of the scale-covariance product param-
eters σiiϕii, i P V , (b) Estimates of the cross-covariance parameters σijϕij “ Γp1{2qbij,
pi, jq P EV and (c) median RMSPE for Set 2B. The horizontal pink lines in Figures (a)
and (b) indicate true parameter values.
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(a) DAG for a univariate
AR(2) model

(b) Moralized GT for a uni-
variate AR(2) model

(c) DAG for the graphical VAR model example of Section 4.4.2

(d) Moralized GVˆT for the graphical VAR model of Figure (c)

Figure S8: Graphical models for autoregressive spatial time-series.
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(a) Set 1A (b) Set 2A

(c) Set 3A

Figure S9: Estimation performance of graphical Matérn in the correctly specified
case: (a), (b) and (c): Estimates of the cross-covariance parameters σijϕij “ Γp1{2qbij,
pi, jq P EV for the 3 simulation sets (1A, 2A and 3A) where the graphical Matérn
is correctly specified. The horizontal pink lines in Figures (a) and (b) indicate true
parameter values.
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(a) Posterior edge selection probabilities
for Set 1A.

(b) Cross-covariance parameter estimates
for Set 1A while estimating the unknown
graph

Figure S10: Performance of GGP with unknown graph for Set 1A: (a): Marginal
edge probabilities estimated from the reversible jump MCMC sampler. Blue edges
denote the true edges and red denotes the non-existent edges. Edges are weighted
proportional to the estimated posterior selection probabilities. (b) GM estimates of
cross-correlation parameters (bij) corresponding to true edges when the graph is
unknown.

Figure S11: Truth vs prediction for test set data compared among GM and SpDynLM
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Figure S12: Density of residual spatial process values (across locations) for two
different time periods - first two weeks of February and last two weeks of April
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Chapter 5

Discussion and Conclusion

This dissertation provided three major methodological contributions to mod-

eling mixed data types and spatial data from public health surveillance. In

this discussion, we will focus on the limitations and possible future extensions

of the proposed methods to solve broader public health problems.

Chapter 2 focused on a joint modeling of multivariate mixed data types in

cross-sectional studies. We want to extend the scope of the methods to model

longitudinal outcomes coming from mobile health studies. With modern tech-

nologies such as wearables and smartphones, intensive longitudinal studies

emerged over the last decade. These studies collect repeated measurements

of mixed type (e.g. continuous, truncated, binary, ordinal, and others) within

days and over weeks. For example, we could have joint measurements on

physical activity (continuous) and mood/ pain scores (ordinal) on the same

subjects collected repeatedly throughout the day. Thus, we can extend SGCRM

to deal with mixed type intensive longitudinal data.

Methods developed in Chapter 3 are limited to applying in a univariate

classification problem with a binary outcome and a continuous predictor. We

174



can extend the work in several interesting ways to cover broader scenarios.

Ideas from Chapter 2 can define latent R2
l for any mixed type outcome and

mixed type predictor. Similarly, the approach can be extended to scenarios

with multiple predictors. Moreover, we can compare the asymptotic efficiency

of the various rank-based estimators of AUC and R2
l .

Chapter 4 described Graphical Gaussian Process (GGP) models, which are

scalable with large number of variables at every location. However, these

models still have cubic complexity regarding the number of locations. There-

fore, we want to extend our method to make it computationally tractable for a

large number of locations. Nearest Neighbor Gaussian Processes provide an

accurate and scalable solution for the problem of large number of locations

in a univariate setting. Therefore, we can extend this approach to devise an

algorithm, that embeds the nearest neighbor Gaussian process in our GGP

framework. These Nearest Neighbor Graphical Gaussian Process (NNGGP)

models can analyze big spatial data with many variables and locations. Apart

from the obvious applications in environmental sciences, this new approach

can significantly impact spatial transcriptomics, where we collect millions of

gene expressions from cells distributed over a tissue.

As an overarching broad goal, we can combine methods proposed in

this dissertation to model multivariate stochastic processes of mixed data

type. One specific example can be multivariate mixed spatial data coming

from ecological applications. Vegetation cover or species distribution is often

reported in ordinal scales in ecology. Here, the researchers want to learn the

association between various environmental factors and ecological variables
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to promote conservation efforts. Similarly, the prevalence of a disease can

be coded in high/low (binary) throughout different regions. The goal here

would be to learn the association between disease prevalence and multiple

pollutants. Here, we can propose a solution to build joint models for mixed-

type multivariate spatial data.
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