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ABSTRACT

This paper presents two major methods used to speed up the rate
of convergence of a long-range capacity expansion planning model for
slectric utilities which utilizes Generalized Benders's Decomposition.
The first method was to add initial capacity constraints to the master
problem. The second required the disaggregation of the reliability
constraint from one per iteration to one for every infeasible

time period.

Both methods tried yielded significant improvements in the
algorithm's convergence rate. A major factor which needed to be consi-
dered during these runs, however, was the computational error introduced
into the calculation of the Lagrange multipliers. This paper shows
that these numerical inaccuracies result from the piece-wise linear
representation of the equivalent. load duration curves used in the
operating subproblem. These errors create small nonconvexities within
the linear program, causing such inconsistencies as the same data
yielding different solutions when run on different versions of
the algorithm.
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CHAPTER ONE

Long-range planning for electric utilities has changed dramatically

within the past decade. Uncertainties in supply and demand, new technolo-

gies, and environmental, financial, and regulatory considerations all

conspire to make the planning environment more complicated than the one

in which straightforward cost-minimization techniques had been previously

applied quite successfully. One approach recently proposed to help the

utility planner with long-range investment decisions is Generalized

Benders' Decomposition, hereinafter referred to as GBD. This mathemati-

cal programming technique was developed by Benders [3] in 1962 and applied

to the electric utility planning problem by Bloom [4] in 1978. It is

being incorporated as one of five analysis options into a modular software

package currently under development by MIT and Stone &amp; Webster Engineering

Corporation through Electric Power Research Institute (EPRI) funding.

The GBD approach holds great promise for the utility planner as one

of its central propositions includes the satisfaction of a probabalistic

reliability constraint. Since the benefit of every plant is measured by

the amount it contributes (relative to its cost) toward meeting this

constraint, all plants, including time-dependent generation sources (such

as solar and wind) are treated equally within this formulation. Other

advanced features which may be treated include load modification strategies,

preventive maintenance, and storage plants. Financial and environmental

constraints may also be easily incorporated into the GBD model.
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The original algorithm at MIT which implemented GBD made use of two

axisting software packages, SYSGEN [11] and GEM [32]. SYSGEN is a produc-

tion costing model which utilizes Booth-Baleriaux probabilistic simulation

(to be discussed in greater detail in Chapter Two). GEM is a linear

program which can explicitly handle environmental constraints. It was

originally designed to be run iteratively with SYSGEN, with plant capacity

factors being passed back and forth; however, it was found not to converge

to the true optimum. GBD is also an iterative procedure; however, after

a run of SYSGEN, Lagrange multipliers on operating cost and unserved

energy are passed back to its linear program (called the master preblem),

not capacity factors. GBD starts with a few or no constraints in its

master, constructing others as needed throughout the procedure. Conver-

gence at every iteration can be measured, as the algorithm generates both

a lower and an upper bound. These may be used to terminate the procedure

short of optimality, with known error bounds.

It was empirically found that the GBD algorithm originally implemented

at MIT: a) did not converge very quickly to the optimal solution, and

b) converged to different (although close) solutions. This depended on

factors such as initial constraints used, and representation of the

feasibility constraint (to be discussed in Chapter Five), which requires

different numbers of iterations necessary to reach optimality. Work was

obviously needed investigating ways of speeding up convergence, and

understanding why these numerical differences were occurring. This

thesis presents the author's work in these areas
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Chapter Two reviews the basic formulas necessary for an understanding

of GBD. (For greater in-depth discussions, the reader is invited to

consult the references by Bloom [4,5,6,7] on GBD and by Finger [10,11] on

SYSGEN.) Chupter Three talks about the upper and lower bounds used in

this algorithm. Chapter Four discusses numerical discrepancies encountered,

while Chapter Five presents computational results of different approaches

tried to speed up convergence. Chapter Six contains conclusions and

recommendations for further areas of investigation. The technical details

of one of these recommendations, subgradient optimization, are handled in

Appendix A. Appendix B presents results of a simple problem worked by

hand to verify results from the SYSGEN code, while Appendix C does the

same for an example concerning the upper bound calculation. Lastly,

Appendix D contains information on computer times and storage requirements

for the runs presented in Chapter Five.



CHAPTER TWO

The problem faced by electric utilities of planning long-range

capacity expansion may be broken down into two parts. The first part

determines the optimal plant capacities to be installed in every year

of the planning horizon, while the second part calculates the expected

operating costs and reliability levels associated with any given set of

plant capacities. This natural decomposition structure is efficiently

exploited by the GBD algorithm, which proceeds in an analogous manner.

The master problem performs the first task, while the operating sub-

problems handle the second. Mathematically, this planning problem can

be written as a two-stage optimization problem.

min T
X&gt;0 C'X+ 1
X €Q t=1

min EF, (Y
Yp 2 0 te

5. t.

EG,(Y,) 2, oy

Yi &lt;8X
where:

X = vextor of plant installed capacities (MW)

C = vector of present-value capital costs (23/MW)

Y= vector of plant operating capacities in the time period t (MW)
£= desired reliability level in time period t (MWH)

EFC.) = present-value expected operating cost function in time period t (8)

EG, ( .) = expected unserved energy function in time pericd t (MWH)
T = number of years in the planning horizon (which may include an

extension period)
Se = matrix which sorts plants into economic loading order

Q = set of all X for which all subproblems are feasible
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The functions EF, (.) and EG,(.) are highly nonlinear, making this a

difficult problem to solve by ordinary methods. However, once the master

problem selects a trial set of plant capacities, X becomes fixed, and

the inner minimization becomes a function of Y, only. This inner minimi-

zation is the operating subproblem, which calculates operating costs and

reliabilities. Since customer demand is a random variable, as well as

plant outages, probabilistic simulation must be employed within this

subproblem. A load duration curve (LDC) is constructed which gives the

probability that customer demand is greater than or equal to any given X

(the LDC is thus a reverse cumulative probability distribution). When a

plant is loaded onto the system, its failures create additional load which

must be made up by later plants. Convolving plant outages with customer

demand results in an equivalent load duration curve (ELDC), which gives

the probability that the load on the system, from both customers and

plant outages, is greater or equal to Xx. The ELDC is computed recursively

as follows:

and
6547 (x) = PyG;(x) + 436; (e-YD)
G,(x) = G(x) = original system LDC

sal

where

Pp; = availability of unit i

q; = forced outage rate of unit i

= 1 - ps

{. = operating capacity of unit i
[ = number of units in the economic loading order.
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This recursive formula is the heart of Booth-Baleriaux probabilistic

simulation [8,9]. Using the ELDC, one determines the amount of energy

generated by the yh unit as the amount of area which that plant cuts out

from the ELDC times its availability:

"aEY \

-

|? - |

la]

i.
J|

G. (x) dx

loading point for unit i

- | .

z y!
"

To find a unit's operating cost, one merely multiplies the energy

generated by the Lt unit by its operating cost F! (in $/MWH). It is

sbvious that to minimize operating costs, plants should be loaded in order

of increasing operating cost:

I

ry
-

a &amp;

1
-—

This is known as the economic loading order, or sometimes, merit order.

SYSGEN [10,11] is a code which performs the above probabilistic

simulation. To fit into the GBD context, a reliability constraint had

to be imposed. While loss-of-load probability (the value of the ELDC

after all units have been loaded) was traditionally the measure of reli-

ability used by utility planners, it has been argued [38] that expected

inserved energy is a better indicator of the loss suffered, as it

reflects the magnitude of the loss as well as its frequency:

 0



expected
unserved =

energy

energy
initial generated -
customer _ by I plants, _

demand, &gt; EG(Y) = I Gr (x)dx
= '

+

2
—
-

The inner minimization of the two-stage optimization problem may

now be written as:

nin
4 .

SF) =T FR J Gila)
1= i=

s.t. -

610) = Spl) ce
+ (

0&lt;Y! &lt;X

where the index on time has been omitted for clarity. The optimal

solution to this subproblem requires units to be loaded in economic

loading order, and operated to their maximum capacity up to that unit

in the loading order which just meets the unserved energy constraint.

This unit is known as the marginal plant, and its operating capacity,

yn, is calculated such that:

Py)

don Gq (x)dx = £.

Any plants above the marginal plant are not operated at all.

Once the optimal solution for each time period is found, Lagrange

‘'dual) multipliers also have to be computed for every plant. These
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multipliers measure the value associated with a small change in

capacity X'. Define the Lagrangian function for the subproblem to be:

L(Y,A,m) = EF(Y) + m[EG(Y)-e] + ALY-X]

where 7 is the dual multiplier associated with the reliability constraint

and A is the vector of dual multipliers associated with the capacity

constraints. Since all the constraints are inequalities, wm and A must be

nonnegative. The multiplier m represents the marginal cost of decreasing

the unserved energy level e , and is equal to the operating cost of the

marginal plant. The multipliers Al represent the marginal operating cost

reduction from increasing the capacity x, The values for these multi-

pliers are obtained by referring to the Kuhn-Tucker conditions:

a]
3 .

— L(Y, A,m) &gt;Yi ) 2.0 3 4

with equality if Y' &gt; 0

v) m[EG(Y)-€] = 0

ALY-x] = 0

Therefore it follows that:

Ve 2 er(®) - 7 2 Ee)
RY - av -

n

i &gt;n

cnA

Mm =

vher
Y = y
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The above has assumed that the solution to the operating subproblem

is feasible. If, however, it is infeasible (meaning that after all the

plants have been loaded, the unserved energy constraint is still not

net), the inner optimization is replaced by its dual:

Ty Te EF(Y) + nEG(Y)-c] + A [X-XD)

Infeasibility in the primal subproblem is equivalent to unbounded-

ness in this dual subproblem. This means that for an infeasible solution,

the maximum value is driven to infinity. To constrain the set to be

comprised of only feasible solutions is equivalent to the following

~ondition:

L950 ¥50 {v[EG(Y)-e] + u [Y-X]} &lt; ©

where v and u are dual multipliers generated only when the subproblem is

feasible. The multiplier v can be taken equal to 1 with no loss of gener-

ality, while the multipliers yu measure the change in unserved energy

(reliability) due to small changes in capacities:

3
3!

tm
Ris="f:

% ons wd

Once the subproblem has finished computing operating costs, reli-

abilities, and shadow prices, this information is sent to the master

problem to create additional constraints, referred to as Benders' cuts.

The master problem is a linear program of the form:
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nin Z

Z,X

SL
a

22ox 3 CERT) + RylEey() - op) + By(F, - 00)

VT. .Ay &gt; 0
I .

min AS

EC JE OO (E6(Yy)-ey) + up(Ye-6,0))

A
A

Vo. He© 0

Jsing the following complementary slackness conditions:

)

A (Yy = 8X) = 0

1 (Yy = 8,X) = 0

andv = 1, the master problem may be re-written as

nin
LX

/

J oJ GC.

7 &gt; C'X + ; rer. (v5) + aks, (xox)
zeke IO LER UT) + A012 =2

k=1,...,K

k k k
£[EG.(Y))+us.(X-X)]&lt;=€

ey CE THEE ET Ter
k=1,...,K

vhere:
X&gt;0

k = iteration number

Te = set of time periods for which the subproblem was infeasible
during iteration k.
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The above master problem is a relaxed version of the original planning

problem (i.e., it does not contain all of the constraints present in the

original problem). Therefore, any set of capacities X which solves the

master problem must also solve the original problem. If, however, the

trial Z,X generated by the master problem violate some original constraints

not yet included in the master, the most violated of these are generated

and added to the master problem. The cost constraints in the master may be

regarded as linear approximations to the original cost function. As this

function is convex, the approximations are tangent to it from below. Simi-

larly, the reliability constraints in the master may be regarded as linear

approximations to the original feasible region. Since GBD is an outer

linearization - relaxation procedure [13], these constraints form an outer

approximation to the feasible region. Therefore, trial solutions will

always be infeasible in the subproblem until optimality is reached, as

feasibility is approached from the outside.

In summary, the benefits of formulating the long-range capacity plan-

ningproblem into the GBD context are that the GBD algorithm needs to solve

only a smaller mathematical program than this original problem, and the

smaller program is also linear. Also, all of the nonlinearities are con-

fined to the operating subproblems, which may be readily solved without

recourse to any complicated nonlinear optimization technique. The algorithm

iterates between the master problem sending trial capacities to the sub-

problem, and the subproblem sending back costs, reliabilities, and Lagrange

multipliers to the master. Optimality is reached when a given set of X

satisfies all the constraints. However, the procedure may be terminated

when the user deems that the upper and lower bounds on the cost of the

optimal solution are sufficiently close.
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CHAPTER THREE

This chapter is devoted to the discussion of bounds used in the GBD

algorithm. Section 3.1 deals with the derivation of the lower bound, while

Section 3.2 discusses issues involved with the upper bound computation.

Section 3.1

The lower bound is readily extracted from the problem formulation.

Since the master problem is a relaxed version of the original capacity

planning problem, it is less constrained than the original problem; there-

fore, the value of the objective function (hereafter referred to as Z) in

the master should be less than the corresponding Z in the original problem.

This value of Z is also lower than the total cost (TC) of the trial solu-

tion for that iteration, as convexity implies that the linearized costs are

always less than the actual ones:

Z &lt;TC = CX +IEF

Therefore, Z is the lower bound (LB) generated by this algorithm. As more

Benders' cuts are constructed, this value of the objective function must

increase (or stay the same) as the problem becomes increasingly constrained.

When Z equals the total cost of the trial solution (implying that the newly-

generated constraint satisfies all of the remaining constraints in the

original problem) and the reliability constraint is satisfied, then the

trial solution for that iteration is optimal, and Z equals minimum total

cost for that problem. In the results presented in Chapter Five, optimality

is considered reached when both Z and TC remain unchanged for two successive

iterations. This is done as these two figures do not always equal each

other exactly, for numerical reasons which are explained in Chapter Four.
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Section 3.2

Now upper bounds must be considered. It is clear that the cost of any

feasible solution is an upper bound on the optimal cost. The problem becomes

one of generating a feasible solution from an infeasible one, as the master

problem generally selects infeasible trial capacity plans. The original

upper bound calculation implemented at MIT added "fictitious" capacity,

after all real plants had been loaded, until the reliability constraint was

met. This fictitious plant was to have characteristics which rendered it

less desirable than any other alternative. Determining precisely what these

characteristics should be, however, was a difficult task. At first, the

fictitious plant had the same capital cost as the GTB alternative, a slightly

higher operating cost, and a much higher forced outage rate. Upper bounds

generated by this method were observed to be smaller than the lower bound

of later iterations.

After much re-thinking, it was decided that the proper way of achieving

a feasible solution for upper bcund calculations was not to add this new,

fictitious capacity at the end, but rather to augment the capacity of an

existing alternative. To see the difference each type of capacity would

have on reliability, a simple numerical example was worked out (see Appendix

C). It shows that 1 MW of fictitious capacity can generate as much energy

as, perhaps, 5 MW of augmented capacity at the margin. This ratio starts at

1 and increases as the amount of existing capacity increases and approaches

the reserve margin. As so much less new capacity is needed to generate the

same amount of energy as an extra increment of capacity added to an existing

unit, this explains why the lower bounds generated using fictitious capacity

vere too low. In order to utilize the current code before this correction



was implemented, the capital cost of the fictitious plans was multiplied by

a number (3) which seemed like a good ratio of augmented to fictitious capa-

city, considering the ratios derived in the Appendix example. While this

yielded valid results for most of the runs performed, some upper bounds

were still too low, which required computing the percent range of optimality

after the optimal solution had been achieved, instead of at each iteration.

A second correction to the algorithm is that trial capacity plans from

the master problem should be represented in terms of discrete unit sizes.

The code currently models, say, 2.3 units of nuclear as one 2300-MW nuclear

unit, instead of as two 1000-MW units and one 300-MW unit. Without discrete-

unit representation, the limit on an achievable reliability level is the

unserved energy under the equivalent LDC after all the committed and exist-

ing units are loaded, times the product of the forced outage rates of the

available alternatives. The £ of 0.1% used in original test runs was found

to be unachievable according to this limit; it was therefore increased to

0.9% for all the runs presented in Chapter Five.

Once the multiple plant representation has been implemented the correct

algorithm for determining a feasible solution will search backwards in the

merit order until it finds the last alternative loaded. It will then decon-

volve out the fractional part of this plant, and add more capacity of this

type, in discrete plant units, until the reliability level has been satis-

fied, truncating the last increment if necessary to meet the reliability

constraint exactly.

While the lower bound is monotonically nondecreasing, the upper bound,

although exhibiting a downward trend, oscillates in an irregular fashion

From iteration to iteration. Therefore, the smallest of all (correct)

12



upper bounds generated up to any point should be used as the upper bound

for that iteration. A major advantage of the GBD algorithm is that it

need not proceed until optimality is reached, but may be terminated when

the lower and upper bounds at any iteration are sufficiently "close." If

3 user is satisfied with a trial solution that is within x% of optimality,

s/he should allow the algorithm to continue until:

100
JB-LB
TR &lt; X.

[f, at any point, the lower bound ever exceeds the total cost of a feas-

ible solution, then also stop. (Lower bound-trial solution cost cross-

overs are explained in Chapter Four.)
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CHAPTER FOUR

This chapter will discuss accuracy issues, the first section explain-

ing how Tower bounds may occasionally exceed the trial solution costs, and

why different versions of the same problem converge to different optimal

solutions. The second section goes into a new way of computing the multi-

nliers on unserved energy, which reduces the amount of error included.

Section 4.1

After a simple test problem solved by hand (see Appendix B) verified

the absence of obvious coding errors with SYSGEN, it became necessary to

resolve why A of the marginal plant for that simple problem (hereafter

referred to as AMRG) equalled 3.48637 x 107%, instead of 0.0, implied by

the formula for this Lagrange multiplier (see Appendix B for a proof of

this result). It was decided to investigate the effects of the spacing of

points representing the Toad duration curve and linear interpolation

between points. Errors would be especially prominent in those regions

where the LDC displayed a small bump, or "knee." Therefore, three points

from the final equivalent LDC were selected (1500275), and equations of

the line segments between these points were computed. Table 4.7.1 dis-

plays the selected values of curve, and also their corresponding equations.

The 75-MW spacings were then divided up into 15-MW spacings, and hand

calculations computed these intermediate values using the convolution

formula: 3
G,(x) = p3G5(x) + q3G5(x-Y ).

The values of the final equivalent LDC calculated in this fashion were

then compared to values obtained by substitution into the derived equa-

tions (i.e., by linear interpolation). Table 4.1.2 presents these results.

20



It was seen that the largest discrepancies were of the order of approximately

4 x 1074, a very significant error. The test problem was then run on the

computer halving the number of points of the ELDC, and then doubling the

number of points. As hoped, AMMRG increased in the first case, and decreased

in the second. The 20-point LDC originally used in this test problem was now

abandoned in favor of the 40-point case, which yielded A MRG = 1.74291 x 107%

It was decided to run a case in which the peak load and the plant capacities

would be exact multiples of the LDC spacing, in order to eliminate this

source of error and compute the percentage differences between the Lagrancge

multipliers calcualted both ways. Table 4.1.3 presents these results. MMRG

now equalled -2.4993 x 1072, which is approximately zero, given that the

computer is good to eight significant digits in single-precision mode. To

discover how this error would affect the value of the objective function and

the trial solutions generated, one iteration of SYSGEN and the master prob-

lem was run for the unexact (40-pt.) and exact (30-pt.) test cases. These

results are shown in Table 4.1.4. This procedure could not be carried past

the first iteration, as the LP generates trial solutions which are made up

of plant capacities that are not exact multiples of the LDC spacing, thus

destroying the validity of that case for comparison. The differences in the

values of the objective function were of the order of the lower bound "cross-

overs" observed in the results of the next chapter (a lower bound "crossover

is said to occur whenever the lower bound exceeds the total cost of the trial

solution during that iteration.) The % errors shown in Table 4.1.4 are

actually valid for comparison only with one time period studies. With multi-

ple time periods, one would expect somewhat larger % errors, although prob-

ably still of the same order of magnitude.
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Table 4.1.3

Comparison of Lagrange multipliers from exact and non-exact cases

\2
Wd
R
2

3

Exact

.0401507

0420373

12.4993% 107220
.0597333

2400000

13904000

Non-exact

.0403250

10422117
1.74291 x 10”

10603555

2406220

13210220

% error

a3

42

1.04

26

1)

Table 4.1.4

Comparison of Z and capacity plans from exact and non-exact cases

{
2

(

Exact

1078.870

]1386.995

J. 0

Non-exact

1084.44

1393.98

0.0

% error

52

54

The reason for the lower bound crossovers is thus explained, and this

revealing of numerical errors in the computation of the Lagrange multi-

pliers, due to discrete-point LDC calculations, can be used to explain

other discrepancies, such as convergence to different (although close)

solutions when starting with different initial constraints, and when using

an aggregated reliability constraint as opposed to disaggregated reliability

constraints. The errors in the Lagrange multipliers are responsible for

introducing small nonconvenxities into the problems, thus causing results

which appear inconsistent with theory.
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Section 4.2

The formulas used for computing the Lagrange multipliers in all the

~esults presented in this thesis (except the special set presented in

this section) are:

 SB EF(Y) -m=EG(Y)
vl oT avd

j £1

T

Lv

ad
— EG(Y25 EB) if infeasible

if feasible

. . I . . ;

3 = J Jy + i Ty _ jy i-1

ST ESL) = Flp6y(UT) + 2 FlpyTHy5(UT) - Hyy(UT)]

3 _ I

"i EG(Y) - Hit 5 )

4(U)=|

u
3 ov) I-1

1

5. (uh)
for1&lt;J
fori=J

vhere H is defined by:

pH;(0)+aH (UY)
AU) =|

p;G.(U)

for i=j+1,...,]

4 11
4 . | for +]

“95 k+1k ( Zia, (u-2evd) + ( —) P;
0=0 Pj

for Y9 &gt; 0

4 \ U) gw {

3
-

a U) for yd = 0
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where k is defined such that:

7 &lt; U&lt; (k+1)  is

3

I = merit order index of the marginal plant.

A proposed change in the u calculations is to compute them before

the marginal plant is convolved into the equivalent load duration curve,

not after, which is the current procedure, thus avoiding errors intro-

duced by the convolution of the marginal unit. While this procedure will

not make much of a difference in a study with many units, it becomes

significant in a system with only a few units, as in this example. The

new algorithm is described below.

For all plants i in the merit order from 1 to I, compute the

following:

boo
Gb =

I I-1)
p-Hy (U7) + apy4(U

2 _ I I-1
u® = pH H(UT) + gp S(UT 7)

3-1at! = Pir, 11 (U7) 4 gH; (U7)

WL os 0.6. (uD)

where:

oI-1 = ub - vl

This procedure was tried by hand on the 40-pt. test case.

Table 4.2.1 shows the extremely good agreement between values obtained

by this method and values from the exact case. (In fact, when run on

the computer, the new results corresponded precisely with the exact ones).
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CHAPTER FIVE

Various approaches were tried to speed up the rate of convergence of

the GBD algorithm. Two basic approaches are discussed below, and their

results are presented. The data used will be described in Section 5.1.

Section 5.2 deals with the base case, while Sections 5.3-5.4 handle

the variants.

Section 5.1

Development work on the GBD algorithm was originally done using the

following 9 time period dataset. When investigation into convergence

started, it was decided to use mostly 1 and 2 time period cases, in order

to save money and facilitate hand-verification of the results. Table 5.1.1

shows the peak load and customer energy demand for the full 9 time periods

(when i&lt;9 time periods are used, only the first i rows are relevant).

Table 5.1.2 gives the values of the initial load duration curve, while

Table 5.1.3 presents plant data, including unit sizes, availabilities, and

capital and operating costs. There are 5 committed and existing units:

one 1000-MW base-loaded nuclear (NUC) unit, two 800-MW intermediate

combined-cycle oil (CCO) units, and two 150-MW peaking gas turbines (GTB),

for a combined available capacity of 2900 MW.
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Table 5.1.3

Name

LWR BASE

CO INTR

GTB PEAK

NUC BASE

FOS INTR

GTB PEAK

Capacity
 (MW)

1000

800

150

1000

800

150

Availability

0.70

0.75

0.80

0.70

0.75

0.80

Install.
Cost

($/MW)

500000.0

300000.0

130000.0

500000.0

300000.0

130000.0

Operating
Cost

($/MWH)

6.28

12.02

32.07

6.18

11.93

31.93

Alternatives fall into these three basic plant types, and, as a GTB

installed in year 1 is different from a GTB installed in year 4, the

number of alternatives in any of the following cases equals three times

the number of time periods in that particular case. Load growth is set

at 8%/yr. Escalation factors for fuel, operation and maintenance (0 &amp; M),

and capital costs are held constant at 6%, while the discount rate equals

10.6% (no adjustment for the rate of inflation is made here). All capacities

and loads in the last year of the study are assumed to remain constant

(via replacement in kind) throughout the extension period. The desired

reliability level e equals 0.009% (customer energy demand), and most

cases, except those which explicitly state otherwise, start with an initial

trial solution of 0.0 MW for all alternatives, and no initial constraints.

Section 5.2

The results (including lower bound, total cost of trial solution,

and upper bound) of the 1 time period base case are displayed in Table 5.2.1.

It is seen that for this test case, only 15 iterations are needed to reach
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optimality (where optimality is defined as that point when values of the

lower bound and the trial solution stabilize, i.e., when LB,_;= LB, and

C1 = TC). Table 5.2.2 shows the amount of "fictitious" capacity

added in every iteration, and the % unserved energy after the last real

plant has been loaded. An interesting observation is that, although the

% unserved energy does not decrease monotonically, it does decrease rapidly

until the 10th iteration, after which it levels off, and slowly approaches

feasibility. Table 5.2.3 shows the trial solutions generated at every

iteration, in terms of MW's of capacity. Again, by the 10th iteration,

the total trial solution was just 1.8% away from the optimal solution.

[ter. #

&gt;

1

10

11

12

13

14

"3

Lower
Bound

1126.09

1198.86

1294.75

1310.93

1350.12

1353.98

1363.50

1381.00

1384.26

1385.26

1389.34

1389.86

1390.17

1390.44

1390.65

1390.68

Table 5.2.1

Solution

1050.35

1301.23

1281.41

1363.71

1358.49

1371.38

1372.90

1375.02

1386.55

1391.28

1389.22

1389.89

1390.23

1390.58

1390.59

1390.68

Upper
Bound

2730.68

1790.52

1567.50

1635.89

1439.53

1458.65

1481.38

1408.09

1414.06

1404.70

1392.30

1393.63

1391.68

1391.71

1390.91

1390.68

% Range of
Optimality

59.0

30.749

21.107

9.810

6.622

6.318

3.270

1.962

1.477

0.508

0.213

0.131

0.109

0.0003

0.000
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Section 5.3

The first major approach used was to add some initial capacity in

the master problem. Various options were tried: using the trial solution

of an intermediate solution as the alternatives' initial values, constraining

the sum of alternative capacities to fall within a certain range,

constraining individual alternatives to be less than certain values, and

constraining individual alternatives to be greater than certain values.

Not surprisingly, the last option yielded the best results, requiring 10

iterations for complete convergence. Tables 5.3.1 - 5.3.3 present the

results for this 1 time period case, in which the Tower values chosen

were 100 MW for NUC, 150 MW for CCO, and 500 MW for GTB. It was believed

that this method would help convergence as it does not allow the master

problem to install all of its capacity in one or two alternatives. In

the absence of such constraints, the master problem does just this in the

beginning iterations, as LP solutions exist at the corners of the feasible

set, but the capacity constraints force it to generate a mix of all the

alternatives from the start. Inspecting the results, one sees that by the

5th iteration the algorithm has essentially converged, its total proposed

solution coming within 1% of the total optimal solution.
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Table 5.3.3

Proposed Trial Solutions (MW)

Iter. # J 4 2 6

100.0 100.0 226.0 133.5 170.0 130.0
150.0 150.0 150.0 210.4 150.0 191.2

| 500.0 651.2 500.0 547.2 590.9 588.0

——

NUC

CCO

GTB

Total 750.0 901.2 876.0 891.1 910.9 909.2

[ter. # _8

NUC 167.0 151.0 191.0 166.0

CCO 180.0 170.8 152.0 164.0

GTB 553.4 590.1 562.5 580.2

Total 600.4 911.9 905.5 910.2

9 10

Section 5.4

In this second approach, a break from the theory presented in

Chapter Two was taken. Using data for two time periods, the code was

modified to write one feasibility constraint for each infeasible time period,

instead of one which sums multiplier data for all time periods. The

justification for this approach is that several individual constraints are

nore restrictive than one aggregated constraint. Tables 5.4.1 - 5.4.3

display results for the 2 time period, aggregated reliability constraint

case, while Tables 5.4.4 - 5.4.6 do so for the 2 time period, disaggregated

reliability constraints case.
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The disaggregated case is seen to be faster, converging in 10 fewer

iterations than the aggregated case (18 vs. 28 iterations). Another point

of interest is that the aggregated case converges to a higher total solution

case than the disaggregated one. This result is due to the errors revealed

in the Lagrange multipliers in the previous chapter. Since fewer iterations

are required for complete convergence in the disaggregated case, errors

have less time over which to compound; therefore the error in the dis-

aggregated case is smaller, which results in a Tower value of the objective

function. The lower bound crossovers are also explained by the numerical

inaccuracies in the multipliers. Since the temporarily fixed-up upper

bounds in the aggregated case fall below lower bounds of later iterations,

the % range of optimality is measured in terms of the optimal solution.

Notice in this case, however, that termination should occur after the

21st iteration, as LB, &gt; TCqg, which is a feasible solution. Had this

termination been allowed to occur, the disaggregated case would converge

in only three fewer iterations than the aggregated.

It was wondered whether a more dramatic difference could be obtained

with more time periods. To this end, a 4 time period case was constructed

and run. Tables 5.4.7 - 5.4.9 present results for the aggregated case,

while Tables 5.4.10 - 5.4.12 do so for the disaggregated case. The

aggregated case converged in 39 iterations, while the disaggregated case

now took longer, converging in 44 iterations. However, a nearly feasible

solution (less than 1 MW of fictitious capacity added during the planning

period) occurred on the 25th iteration, and again on the 38th. The percent

difference between Log in the disaggregated case and Loptimal in the

aggregated case (0.85%) is of the same order of magnitude as the
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discrepancies caused by the inaccuracies in the Lagrange multiplier

calculation (see Table 4.1.4). Therefore, the final iterations in the

disaggregated case really gain no new information, as the algorithm has

now passed within its accuracy resolution. This problem stresses the

need for a correct upper bound implementation, since once the lower bound

has exceeded a true upper bound, the procedure may be safely terminated.

Any further iterations would be meaningless, as the errors introduced

through the Lagrange multipliers have now accumulated to the point where

they are of the same order of magnitude as the algorithm's resolution,

and thus can introduce noticeable nonconvexities. In addition to saving

on the cost of running these later iterations, such a termination rule

would also produce a lower cost solution, as Z's upward creeping during

these extra iterations would now be eliminated.
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A final interesting development that arose at the beginning of these

runs concerned negative A's which occasionally emerged. This is

understandable for the marginal unit, because of the discrepancies which

arise from the piece-wise representation of the LDC within SYSGEN. After

normalization, these A's were on the order of 10°32 or (usually) less.

More disturbing, however, were relatively large negative A's associated

with earlier units, which sometimes occurred during the beginning iterations,

as a result of the master problem installing all its capacity in a single

alternative, and SYSGEN modelling that capacity as a single huge unit.

When discrete-plant representation has been implemented, this problem

should disappear. Adding constraints which 1imit the amount of capacity

that can be installed in any one alternative should also help. These

negative A's are seen to greatly affect the convexity of the problem. In

one 4 time period, aggregated case in which these large negative A's appear

in the early iterations, the algorithm seemingly "converged," with Z and TC

stabilizing after 29 iterations; however, almost 250 MW of fictitious

capacity were still beirig built in this last iteration. When a condition

was implemented which set any negative A's equal to 0, this strange behavior

disappeared. As this correction only affected a few early iterations, when

the LP is still fluctuating between extremes, the slight change caused in

these few constraints was not believed to significantly disturb the final

solution, and it was consequently used in all themultiperiod test cases

(repeating the 1 time period case showed negligible difference between

the results).
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CHAPTER SIX

This chapter shall present conclusions of the work presented in

previous chapters, and also mention some areas of further research which

might be fruitful.

The most promising approach tried was that of adding minimum capacity

constraints for every alternative. These lower bounds may be the result

of some approximate technique, such as screening curves, to determine that

within some range the alternative is indeed competitive, or they may be

from a prior optimization run, or from the planner's own intuitive judgment.

If concern is felt about over-constraining the problem, these capacity

constraints may be removed after several iterations, thus insuring that

enough constraints have already been generated to avoid the great fluctua-

tions in capacity that generally occur in the beginning iterations.

Disaggregating the reliability constraint into one constraint for every

infeasible time period is also recommended, as it leads to convergence in

fewer iterations, which neans less accumulated error, and therefore an

optimal; solution which costs less. than that of the aggregated case. It was
also seen that (although. the results were not presented here). that creating

a reliability constraint for. all time periods, instead of only infeasible
ones, is not a method to be pursued, as the additional constraints intro-

duce more errors and thus lead to.the slow convergence due to ‘passing the

algorithm's resolution 1imit observed in the previous chapter. |

The strongest recommendation to emerge from this study is the imple-

mentation of the correct way of computing upper bounds as soon as possible.

Once this is accomplished, then convergence may be easily determined: once

the lower bound exceeds the correct upper bound, then terminate the

—"
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procedure. Another stopping rule might be to Took at the trial capacity

plans proposed, and terminate when these stop fluctuating wildly and have

settled around some values.

Some areas which may be investigated further for speeding convergence

shall now be mentioned. First, more theoretical work needs to be done on

incorporating the Lagrange multipliers calculated after the marginal plant

has been augmented to achieve feasibility. While it was speculated that

this might help quicken convergence by calculating the capacity plans on

the edge of the feasible region instead of far outside it, prel iminary work

done here shows that this is not the case. The problem lies in using the

u's and unserved energy after; the unserved energy is always € (to within

computational tolerance), and the u's are extremely small, as well as non-

varying, so that the master problem is not given much information on the

best way to proceed. A second area for investigation might be to try

adding different kinds of initial constraints to the master, and see what

effect they have on convergence. A third area would be to use another

mathematical programming technique, namely, subgradient optimization, in

the beginning iterations. As this is only a local optimization technique,

control would have to be returned to the GBD algorithm, as this insures

global optimality. A technical discussion of subgradient optimization is

presented in Appendix A. A fourth area of investigation might be to run

identical test cases with the GBD option on, using first the piece-wise

load duration curve representation utilized in this work, and then a load

duration curve represented by the method of cumulants [32]. The latter case

should yield consistent values for A's and u's, as its continuous represen-

tation of the LDC's should eliminate errors introduced by SYSGEN's piece-

wise linear representation.
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In summary, although numerical errors were discovered to have crept

into the Lagrange multiplier calculation through the linear interpolation

used for the load duration curves, the GBD algorithm has proved to be

fairly robust and quite effective as a tool to aid in utility planning.

[terating between GBD and some sort of perturbation/sensitivity analysis

might be useful, keeping as initial constraints for each GBD run the

results of previous iterations. To give the utility planner a general

idea of the computer time and storage requirements for the GBD algorithm,

Appendix D was prepared, which includes tables of computational times and

other pertinent information.
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APPENDIX A

Consider the capacity expansion planning problem in the following form

(suppressing the index on time for clarity, assuming that the capacities are

already sorted into merit order, and viewing Y as a function of X):

nin C'X + min EF(Y)

S.t.
-X+Y&lt;0

EG(Y) &lt;«

X&gt;0,Y&gt;0

The Lagrangean function associated with this problem is:

(XAT) = C'X + min {EF(Y) + A(Y-X)+m(EG(Y)-€)]

The Lagrangean dual becomes:

f.

A
Fung

% 5
-

| * max
i A.)

A ’

L(A,T) = nn Ua “XA
In
t »f

x max min [C'X + min{EF(Y)+A(Y-X)+m(EG(Y) - )}]
A,m&gt;0 X&gt;0 ¥&gt;0

lectors (v.85) are called subgradients of L(X,m) at (A,m) if:

L(x,m) &lt; L(X,m) + (A-X)y + (m-m)8 IA ,T

Subgradients point in the direction of steepest ascent of L(x,m) at (A,m).

Subgradient optimization uses these subgradients to generate a sequence of

nonnegative solutions (02, to the Lagrangean dual by the rule:
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ZI = max {0,07 + atv? } ¥.

+1 L 2.2
° = na ’ - + 8 . Y.ms max {0,m; 8 } ]

J

where o* js the step length which satisfies z p% = +o, but o% &gt; 0.

Polyak [30] shows that the oF) given Wl rule converge to an

optimal solution of L*. Since this method converges very slowly, Polyak

[31] proposes the following rule, which converges in a finite number of

steps to any target value L&lt;L*:

2% C-L(0F 1)
=O TTT42(v.67) ]

where 0 &lt; eq &lt; 2° &lt;2 - €, &lt; 2. Choosing 6% in this fashion is very

tricky, as the target value selected T must be less than L* (which is

unknown) for convergence (if a target value greater than L* is chosen,

ascillation occurs).

Although there is no theoretical guarantee that using this last rule

for determining 5 yields increasing lower bounds, experience in the

literature has shown that this will occur "using the correct combination

of artistic expertise and luck." [36, p.124]
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APPENDIX B

Section B.]

The following pages display the results of a complete SYSGEN itera-

tion done manually. Only one time period was considered, and the size of

the original load duration curve was reduced to 20 points. Its peak was

set at 1500 MW, the first half of which remained constant at the value

1.0, the second half of which it decreased linearly to zero. The initial

customer energy demand was 9828000 MWH. Only one committed and existing

plant (NUC-1000 MW) was considered, and the number of alternatives was cut

to two (CCO-500 MW; GTB-200 MW). The peak demand and plant capacities

were deliberately chosen not to be exact multiples of the LDC-spacing

(75 MW in this example) so as not to avoid generating errors due to inter-

polating between two points. The availability of the nuclear unit was 0.7,

the combined cycle oil unit was 0.8, and the gas turbine was 0.9. All

other data remained the same as that described in Chapter Five.

It was seen that very good agreement was obtained with the values of

the equivalent load duration curves, the most serious defect being that

the first point at which the curves go to zero had to occur on a 75-MW

increment, which in actuality was not always where it should land. This

resulted in discrepancies between the unserved energy figures. However,

the shadow prices agreed very closely, providing positive proof that

SYSGEN was correctly computing the dual multipliers as specified by the

equations in Chapter Two.
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Section B.2

The discrepancy in the A of the marginal plant, A MRG? which Bloom [4]

maintains should equal zero, but which computationally turns out to be non-

zero, was extremely worrisome. Having eliminated the possibility of a

coding error through the hand verification of the previous section, the

formulas which lead to the equations for Hy; (U) were re-derived carefully.

With no errors turning up here, it was decided to go back to the original

aquation for A, and verify that it does indeed yield AMMRG = 0.0 theoreti-

cally. The following equations step through the derivation (Inorg = I below):

A
3 for Ty

\
"

- EF(Y) - 1-5 EG(Y)
Vv

\
Ty

J
.

oe
-

. ?

0 for i &gt;Iimplies = 2 EG(Y) = - 2 EF(Y)
3Y 3Y

IT
2 [ey (0d 2 + Flop 2 ~ 6,(Q)dQ]

3vTL I I+ Igy! JI I

2] 6 (Q)d - Pe
oY LUI 9 1+1(Q)dQT

I I-1
 oT) v 4
= - Ppp =p [[6(Qda- [ 6 (Q)dQ

Y 0 0

?

tH, (©) = Hp (UD = - loglHy (U1) = Hp (UTD)
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Sinca:

Hipp 1(®) = 0, by definition

1; July 2‘ ay! J Gr (QsY's ens vis dQ

6. (0) 2%
a!

~
3

J

=0) since the derivative of a constant equals zero

I-1) au!
| I

ny

=0
1-1 I-01; I

since U ~- T Y' is not a function of Y
‘=

I-1
3 1 I-16. (Q:Y ,... .¥F hdoyl 1

}J
»

3 ACe G. is not a function of z

N

I, ? 1 I
Hp (U7) = =F (U7)

"
I I Iq 2 I I

pH, L(U ) + aH; (U -Y)l=-F pf, 1 )

Again, since:

I JI, _ I-1, _

Hy L(U7-Y7) = Hp 1 (U )y = 0

 pote (UY) = Fpoh ul) 1.1 fy 1 (U7).

Ifm= Fl, which is the value currently used, then the above equality holds,

confirming the result that Mmrq = 0.0.

74



APPENDIX C

The foflowing example was constructed by Michael Caramanis of Zhe

Massachusetts Institute of Technology Energy Laboratory.

Assume a triangular LDC with U = system peak. Only two units are

considered in this example, unit 1 being the first loaded, 2 being the

second, with capacities of Xy and Xos and availabilities of Py and Pos

respectively. The energy generated by each unit shall be calculated

below (invoking the rule of similar triangles to determine points on the

DC): 2
1 (U-X;) py py (U-X;)

-. = L —® u ° 1 - —— (U-X;) ° —Uu 1py = 5 -Are———

=z UU T-
(U-X,)

7+ (U-X5) «+ —g—1(1-py)Ps

(U-X1-X,)
u- | - 5 (U-X4-X5) * —1

(U-X, )
«1+ 2 (U-Xy) —g—1pyP,|

2 2 2

= 57 - =u — 20

Therefore the sum of the energies generated is given by:

-

-

U 1 2
i] Pq + 2 (1-p4)p, + 20 [(U-Xq) (pyPy-Py)

2 2U-X,)“(1-py)py = (U=X1-X5)"pypy] = 5 [1-a;0,]
2 2 2

1 L(U=X])2(Py=PyPy) + (U=Xp) ayy + (U=X -X5)7PyP,]
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Now assume that 4; = 4 = and Py = Pp = P:

“hn = L [1-°] = . [(U-X,) pg + (U-X,) “pa + (U-X-%,)%p%]

[1-021 = £5 [(U-X,)%q + (U-Xp)%a + (U-X;-Xp)Pp](¥)

Let p = 0.9, u=

[t is clear tha“

FE + FA

2000 MW X. = 1500 MW

Lele 1+p=2900 Mi-years.

Yow equating both sides of equation (*), using the above values, and.

solving for X,, yields:

300 . ( ) ?

2000 + X&amp; - 1000X,)p]

300
- 990 - 2 [25000 + 400000 + %

= A0N00 10

0X. + 225000 + x&amp;*.9 - 900X,]

_ 9 2
900 = 990 - 75080 [ 650000 - 1300X, + Xs ]

JQ) -

as X-+X

146.25 + .2925K,, - .000225¢% = 03- .000225X;

.b+ B%=dac_ _ -.2925+/(.2925)7-.050625
= ~ nondso

-.2925+.18689904 _
—  TAnds0 234.668.1065 33 =

-~d

+ .2925X, - 56.25 = 0

234.668

7A



Therefore, starting with X, = 1500 MW, it is seen that Xo = 234.668 MW

generates as much energy as an extra 500 MW of the first unit. Carrying

sut the same calculation in reverse, it is seen that, with a starting value

of X = 234.668 MW, Xs = 1500 MW of fictitious capacity would generate as

much energy as adding an extra 1765.33 MW of the first unit to Xy- These

results are summarized in Table C.1, which clearly shows that the ratio

of augmented capacity to fictitious capacity increases as the margin is

approached.

Table C.]1

Comparison of Augmented vs. Fictitious Capacity Required

(all capacities in MW)

alternate
capacity

1500

234.668

amount by which
one needs to augment

some alternative

br
 8 =

1765.33

necessary fictitious
capacity ratio

234.668

1500.00

2.13

1.17688
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APPENDIX D

The runs in this thesis were done on an IBM 370/168. The default

on memory size is 440K. The version of SYSGEN-4 used with GBD required

700K to be loaded into core. Most of the jobs were run in 800K, to leave

a margin for the LP. The ordinary LP was dimensioned to handle up to 4

alternatives, 15 time periods, and 100 constraints. This was good for up

to 50 iterations in the aggregated case. The disaggregated case required

a larger matrix, SO one was created which extended the 100-constraint

capacity to 200 constraints, SEXOP's limit. This required 1024K to load

into core, but no account was taken of the fact that the number of nonzero

entries would be about 60-70% of the (# rows)*(# columns). Setting this

variable down would conserve on storage requirements.

The maximum number of constraints in the aggregated case is 2 - K,

where K = # iterations. The maximum number constraints in the disaggregated

case is (T+1)*K, where T = # time periods. Therefore, with a 20 time

period study, at worst only 9 iterations could be run keeping all the

constraints; then a procedure would have to be arranged to discard old,

dnused constraints.

The following tables give a listing of the actual CPU times (in

seconds) required to run 1, 2, and 4 time period cases, aggregated and

disaggregated. It can be seen that SYSGEN requires about 2.5 seconds for

1 and 2 time periods, and slightly over 3 seconds for 4 time periods.
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Within each run, the times are fairly constant. The master problem,

naturally, increases its time requirements as the number of iterations

increase. It takes roughly 1.5 seconds in the 1 and 2 time period case.

With 4 time periods (aggregated), it increases in the later iterations

to about 2.25 seconds, while the 4 time period (disaggregated) case

increases to just slightly under 3 seconds. A run of SYSGEN with 9

time periods was done, and found that it requires approximately 5

seconds of CPU time.
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