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ABSTRACT

This paper presents two major methods used to speed up the rate
of convergence of a long-range capacity expansion planning model for
electric utilities which utilizes Generalized Benders's Decomposition.
The first method was to add initial capacity constraints to the master
problem. The second required the disaggregation of the reliability
constraint from one per iteration to one for every infeasible
time period.

Both methods tried yielded significant improvements in the
algorithm's convergence rate. A major factor which needed to be consi-
dered during these runs, however, was the computational error introduced
into the calculation of the Lagrange multipliers. This paper shows
that these numerical inaccuracies result from the piece-wise Tinear
representation of the equivalent Toad duration curves used in the
operating subproblem. These errors create small nonconvexities within
the linear program, causing such inconsistencies as the same data
yielding different solutions when run on different versions of
the algorithm.
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CHAPTER ONE

Long-range planning for electric utilities has changed dramatically
within the past decade. Uncertainties in supply and demand, new technolo-
gies, and environmental, financial, and regulatory considerations all
conspire to make the planning environment more complicated than the one
in which straightforward cost-minimization techniques hed been previously
applied quite successfully. One approach recent]& proposed to help the
utility planner with long-range investment decisions is Generalized
Benders' Decomposition, hereinafter referred to as GBD. This mathemati-
cal pregramming technique was developed by Benders [3] in 1962 and applied
to the electric utility planning problem by Bloom [4] in 1978. It is
being incorporated as one of five analysis options into a modular software
package currently under development by MIT and Stone & Webster Engineering

Corporation through Electric Power Research Institute (EPRI) funding.

The GBD approach holds great promise for the utility planner as one
of its central propositions includes the satisfaction of a probabalistic
reliability constraintﬁ Since the benefit of every plant is measured by
the amount it contributes (rejative to its cost) toward meeting this
constraint, all plants, including time-dependent generation sources (such
as solar and wind) are treated equally within this formulation. Other
advanced features which may be treated include load modification strategies,
preventive maintenance, and storage plants. Financial and environmental

constraints may also be easily incorporated into the GBD model.



The original algorithm at MIT which implemented GBD made use of two
existing software packages, SYSGEN [11] and GEM [32]. SYSGEN is a produc-
tion costing model which utilizes Booth-Baleriaux probabilistic simulation
(to be discussed in greater detail in Chapter Two). GEM is a linear
program which can explicitly Hand1e environmental constraints. It was
originally designed to be run iteratively with SYSGEN, with plant capacity
factors being passed back and forth; however, it was found not to converge
to the true optimum. GBD is also an iterative procedure; however, after
a run of SYSGEN, Lagrange multipliers on operating cost and unserved
energy are passed back to its linear program (called the master preblem),
not capacity factors. GBD starts with a few or no constraints in its
master, constructing others as needed throughout the procedure. Conver-
gence at every iteration can be measured, as the algorithm generates both
a lower and an upper bound. These may be used to terminate tﬁe procedure

short of optimality, with known error bounds.

It was empirically found that the GBD algorithm originally implemented

at MIT: a) did not converge very quickly to the optimal solution, and

b) converged to different (although close) solutions. This depended on
factors such as initial constraints used, and representation of thg
feasibility constraint (to be discussed in Chapter Five), which requires
different numbers of iterations necessary to reach optimality. Work was
obviously needed investigating ways of speeding up convergence, and
understanding why these numerical differences were occurring. This

thesis presents the author's work in these areas.



Chapter Two reviews the basic formulas necessary for an understanding
of GBD. (For greater in-depth discussions, the reader is invited to
consult the references by Bloom [4,5,6,7] on GBD and by Finger [10,11] on
SYSGEN. ) Chaptef Three talks about the upper and lower bounds used in
this algorithm. Chapter Four discusses numerical discrepancies encountered,
while Chapter Five presents computational results of different approaches
tried to speed up convergence. Chapter Six contains conclusions and
recommendations for further areas of investigation. The technical details
of one of these recommendations, subgradient optimization, are handled in
Appendix A. Appendix B presents results of a simple problem worked by
hand to verify results from the SYSGEN code, while Appendix C does the
same for an example concerning the upper bound calculation. Lastly,
Appendix D contains information on computer times and storage requirements

for the runs presented in Chapter Five.



CHAPTER TWO

The problem faced by electric utilities of planning long-range
capacity expansion may be broken down into two parts. The first part
determiﬁés the optimal plant capacities to be installed in every year
of the planning horizon, while the second part calculates the expected
operating costs and reliability levels associated with any given set of
plant capacities. This natural decomposition structure is efficiently
exploited by the GBD algorithm, which proéeeds in an analogous manner.
The master problem performs the first task, while the operating sub-
problems handle the second. Mathematica]ly; this planning problem can

be written as a two-stage optimization problem.

min T
X>0 C'X+ % min EFt(It)
XeQq t=1 ‘it >0
§5.%.
EGt(lt) £,
.Y_t 8 ti
where:
X = vextor of plant installed capacities (MW)
C = vector of present-value capital costs (3/MW)
jt= veéFor of plant operating capacities in the time period t (MW)
€~ desired reliability level in time period t (MWH)
EFt(.) = present-value expected operating cost function in time period t (8)
EGt(') = expected unserved energy function in time peripd t (MWH)
T = number of years in the planning horizon (which may include an
extension period)
8y = matrix which sorts plants into economic loading order
Q = set of all X for which all subproblems are feasible



The functions EFt(.) and EGt(.) are highly nonlinear, making this a
difficult problem to solve by ordinary methods. However, once the master
problem selects a trial set of plant capacities, X becomes fixed, and

the inner minimization becomes a function of Y, only. This inner minimi-

zation is the operating subproblem, which calculates operating costs and

reliabilities. Since customer demand is a random variable, as well as

plant outages, probabilistic simulation must be employed within this

subproblem. A load duration curve (LDC) is constructed which gives the
probability that customer demand is greater than or equal to any given X
(the LDC is thus a reverse cumulative probability distribution). When a
plant is loaded onto the system, its failures create additional load which
must be made up by later plants. Convolving plant outages with customer
demand results in an equivalent load duration curve (ELDC), which gives
the probability that the load on the system, from both customers ahd

plant outages, is greater or equal to x. The ELDC is computed recursively

as follows:

G.H_-[(X) = p'iG'i(X) % Q-iG.i(X‘Y1) i=1,...,1
and
G](x) = G(x) = original system LDC

where
3 @ availability of unit i
i = forced outage rate of unit i
=1-p1-
Yi = operating capacity of unit i
1 = number of units in the economic loading order.



This recursive formula is the heart of Booth-Baleriaux probabilistic
simulation [8,9]. Using the ELDC, one determines the amount of energy
generated by the ith unit as the amount of area which that plant cuts out

from the ELDC times its availability:

- U1
E1=p1. . f G, (x) dx
i-1 !
U
where
ui-1 = loading point for unit i

i-1

1]
n i
-

i=1

To find a unit's operating cost, one merely multiplies the energy
generated by the it unit by its operating cost F' (4n /MWH). It is
obvious that to minimize operating costs, plants should be loaded in order

of increasing operating cost:

Fle g g PP

This is known as the economic loading order, or sometimes, merit order.

SYSGEN [10,11] is a code which performs the above probabilistic
simulation. To fit into the GBD context, a reliability constraint had
to be imposed. While loss-of-load probability (the value of the ELDC
after all units havé been loaded) was traditionally the measure of reli-
ability used by utility planners, it has been argued [38] that expected
unserved energy is a better indicator of the 1§ss suffefed, as it

reflects the magnitude of the loss as well as its frequency:

10



energy

initial generated
expected ©
unserved = customer by I plants, EG(Y) = [ G, (x)dx
demand, - I+1
energy | I
E 5 g U

i=1

The inner minimization of the two-stage optimization problem may

now be written as:

U.
I !
min EF(Y) = L F' B ¥ G;(q)dq
Y i=1 yi-1
gt .
EG(Y) = { GI+](q)dq <€
U
Ogyigxi

where the index on time has been omitted for clarity. The optimal
solution to this subproblem requires units to be loaded in economic
loading order, and operated to their maximum capacity up to that unit
in the loading order which just meets the unserved energy constraint.

This unit is known as the marginal plant, and its operating capacity,

Yn, is calculated such that:

o

i Gn+](x)dx = g,

Un—1+Yn

Any plants above the marginal plant are not operated at all.

Once the optimal solution for each time period is found, Lagrange

(dual) multipliers also have to be computed for every plant. These

11



multipliers measure the value associated with a small change in

capacity x'. Define the Lagrangian function for the subproblem to be:

L(Y,x,m) = EF(Y) + w[EG(Y)-€] + A[Y-X]

where T is the dual multiplier associated with the reliability constraint
and A is the vector of dual multipliers associated with the capacity
constraints. Since all the constraints are inequalities, m and X must be
nonnegative. The multiplier m represents the marginal cost of decreasing
the unserved energy level € , and is equal to the operating cost of the
marginal plant. The multipliers Ai represent the marginal operating cost
reduction from increasing the capacity Xi. The values for these multi-

pliers are obtained by referring to the Kuhn-Tucker conditions:

(a) 2o L(¥.A,m) 2 0 i=1,...,1
3Y

with equality if Y! > 0
(b) n[EG(Y)-e] = O
ALY-X] =0

Therefore it follows that:

Ae - e - 7 25D i<n
g oY Y
0 izn
f=F
when y = E

12



The above has assumed that the solution to the operating subproblem
is feasible. 1If, however, it is infeasible (meaning that after all the
plants have been loaded, the unserved energy constraint is still not

met), the inner optimization is replaced by its dual:

Xy e GEF(Y) + rlEG(Y)-c] + & LKD)

Infeasibility in the primal subproblem is equivalent to unbounded-
ness in this dual subproblem. This means that for an infeasible solution,
the maximum value is driven to infinity. To constrain the set to be
comprised of only feasible solutions is equivalent to the following

condition:

max min !
wrs0 ¥>0 (VIEG(N)-e] +u [Y-X]} <0

where v and u are dual multipliers generated only when the subproblem is
feasible. The multiplier v can be taken equal to 1 with no loss of gener-
ality, while the multipliers u measure the change in unserved energy

(reliability) due to small changes in capacities:

ul = 95-1‘.3- F = Tynnas]
3Y

Once the subproblem has finished computing operating costs, reli-

abilities, and shadow prices, this information is sent to the master

problem to create additional constraints, referred to as Benders' cuts.

The master problem is a linear program of the form:

13



X

Using the

ut(Yt = 6t_x_) =

' tgl{EFt(if) + iy (B (V) - o) LY, - 8.0
Vﬁt,it >0
g:;b O (E6(Yy)-ey) + 1 (¥,-6,X)]
20 LETHER

following complementary slackness conditions:
wt[EGt(lt) - et] =0

;t(jt -8.X) =0

I
o

and Gt =

. s.t.

—
- =
| ]

1, the master problem may be re-written as

min Z
Z,X
7> C'X + g rer, (v5) + aKs, (xkox) ] k=1 K
2 CR+ B OLER L) 24802 -2 TERE
s [E6, () + uks, (01 < = e k=T,....K
teTi teT&
x>0

iteration number

= set of time periods for which the subproblem was infeasible

during iteration k.

14



The above master problem is a relaxed version of the original planning
problem (i.e., it does not contain all of the constraints present in the
original problem). Therefore, any set of capacities X which solves the
mastér problem must also solve thé original problem. If, however, the
trial Z,X generated by the master problem violate some original constraints
not yet included in the master, the most violated of these are generated
and added to the master prob1em.' The cost constraints in the master may be
regarded as linear approximations to the original cost function. As this
function is convex, the approximations are tangent to it from below. Simi-
larly, the reliability constraints in the master may be regarded as linear
approximations to the original feasible region. Since GBL is an'outer
linearization - relaxation procedure [13], these constrainté form an outer
approximation to the feasible region. Therefore, trial solutions will
always bé infeasible in the subproblem until optimality is reached, as
feasibility is approached from the outside.

In summary, the benefits of formulating the long-range capacity plan-
ningproblem into the GBD context are that the GBD algorithm needs to solve
‘only a smaller mathematical program than this original problem, and the
.smaller program is also linear. A]so,-all of the nonlinearities are con-
fined to the operating subproblems, which may be readily solved without
recourse to any complicated nonlinear optimization technique. The algorithm
iterates between the master problem sending trial capacities to the sub-
problem, and the subproblem sending back costs, reliabilities, and Lagrange
multipliers to the master. Optimality is reached when a given set of X
satisfies all the constraints. However, the procedure may be terminated
when the user deems that the upper and lower bounds on the cost of the

optimal solution are sufficiently close.

15



CHAPTER THREE

This chapter is devoted to the discussion of bounds used in the GBD
algorithm. Section 3.1 deals with the derivation of the Tower bound, while

Section 3.2 discusses issues involved with the upper bound computation.

Section 3.1

The lower bound is readily extracted from the problem formulation.
Since the master problem is a relaxed version of the original capacity
planning problem, it is less constrained than the original problem; there-
fore, the value of the objective function (hereafter referred to as Z) in
the master should be less than the corresponding Z in the original problem.
This value of Z is also lower than the total cost (TC) of the trial solu-
tion for that iteration, as convexity implies that the linearized costs are

always less than the actual ones:

Z < TC = CX +ZIEF
Therefore, Z is the lower bound (LB) generated by this algorithm. As more
Benders' cuts are constructed, this value of the objective function must
increase (or stay the same) as the problem becomes increasingly constrained.
When Z equals the total cost of the trial solution (implying that the newly-
generated constraint satisfies all of the remaining constraints in the
original problem) and the reliability constraint is satisfied, then the
trial solution for that jteration is optimal, and Z equals minimum total
cost for that problem. In the results presented in Chapter Five, optimality
is considered reached when both Z and TC remain unchanged for two successive
jterations. This is done as these two figures do not always equal each

other exactly, for numerical reasons which are explained in Chapter Four.

16



Section 3.2

Now upper bounds must be considered. It is clear that the cost of any
feasible solution is an upper bound on the optimal cost. The problem becomes
one of generating a feasible solution from an infeasible one, as the master
problem generally selects infeasible trial capacity plans. The original
upper bound calculation implemented at MIT added "fictitious" capacity,
after all real plants had been loaded, until the reliability constraint was
met. This fictitious plant was to have characteristics which rendered it
less desirable than any other alternative. Determining precisely what these
characteristics should be, however, was a difficult task. At first, the
fictitious plant had the same capital cost as the GTB alternative, a slightly
higher operating cost, and a much higher forced outage rate. Upper bounds
generated by this method were observed to be smaller than the lower bound
of later iterations.

After much re-thinking, it was decided that the proper way of achieving
a feasible solution for upper bcund calculations was not to add this new,
fictitious capacity at the end, but rather to augment the capacity of an
existing alternative. To see the difference each type of capacity would
have on reljability, a simple numerical example was worked out (see Appendix
C). It shows that 1 MW of fictitious capacity can generate as much energyw
as, perhaps, 5 MW of augmented capacity at the margin. This ratio starts at
1 and increases as the amount of existing capacity increases and approaches
the reserve margin. As so much less new capacity is needed to generate the
same amount of energy as an extra increment of capacity added to an existing
unit, this explains why the lower bounds generated using fictitious capacity

were too low. In order to utilize the current code before this correction

17



was implemented, the capital cost of the fictitious plans was multiplied by
a number (3) which seemed 1ike a good ratio of augmented to fictitious capa-
city, considering the ratios derived in the Appendix example. While this
yielded valid results for most of the runs performed, some upper bounds

were still too low, which required computing the percent range of optimality
after the optimal solution had been achieved, instead of at each iteration.

A second correction to the algorithm is that trial capacity plans from
the master problem should be represented in terms of discrete unit sizes.
The code currently models, say, 2.3 units of nuclear as one 2300-MW nuclear
unit, instead of as two 1000-MW units and one 300-MW unit. Without discrete-
unit representation, the Timit on an achievable reliability level is the
unserved energy under the equivalent LDC after all the committed and exist-
ing units are loaded, times the product of the forced outage rates of the
available alternatives. The € of 0.1% used in original test runs was found
to be unachievable according to this 1imit; it was therefore increased to
0.9% for all the runs presented in Chapter Five.

Once the multiple plant representation has been implemented the correct
algorithm for determining a feasible solution will search backwards in the
merit order until it finds the last alternative loaded. It will then decon-
volve out the fractional part of this plant, and add more capacity of this
type, in discrete plant units, until the reliability level has been satis-
fied, truncating the last increment if necessary to meet the reliability
constraint exactly.

While the lower bound is monotonically nondecreasing, the upper bound,
although exhibiting a downward trend, oscillates in an irregular fashion

from iteration to iteration. Therefore, the smallest of all (correct)

18



upper bounds generated up to any point should be used as the upper bound
for that iteration. A major advantage of the GBD algorithm is that it
need not proceed until optimality is reached, but may be terminated when
the lower and upper bounds at any iteration are sufficiently "close." If
a user is satisfied with a trial solution that is within x% of optimality,
s/he should allow the algorithm to continue until:

UB-LB

]00'—LE——S

If, at any point, the lower bound ever exceeds the total cost of a feas-
ible solution, then also stop. (Lower bound-trial solution cost cross-

overs are explained in Chapter Four.)

19



CHAPTER FOUR

This chapter will discuss accuracy issues, the first section explain-
ing how lower bounds may occasionally exceed the trial solution costs, and
why different versions of the same problem converge to different optimal
solutions. The second section goes into a new way of computing the multi-

pliers on unserved energy, which reduces the amount of error included.

Section 4.1

After a simple test problem solved by hand (see Appendix B) verified
the absence of obvious coding errors with SYSGEN, it became necessary to
resolve why A of the marginal plant for that simple problem (hereafter

4, instead of 0.0, implied by

referred to as Apype) equalled 3.48637x 107
the formula for this Lagrange multiplier (see Appendix B for a proof of
this result). It was decided to investigate the effects of the spacing of
points representing the Toad duration curve and linear interpolation
between points. Errors would be especially prominent in those regions
where the LDC displayed a small bump, or "knee." Therefore, three points
from the final equivalent LDC were selected (1500+75), and equations of
the line segments between these points were computed. Table 4.1.1 dis-
plays the selected values of curve, and also their corresponding equations.
The 75-MW spacings were then divided up into 15-MW spacings, and hand

calculations computed these intermediate values using the convolution

formula: 3
64(x) = p363(x) + q3G3(x-Y Ya

The values of the final equivalent LDC calculated in this fashion were

then compared to values obtained by substitution into the derived equa-

tions (i.e., by linear interpolation). Table 4.1.2 presents these results.

20



It was seen that the largest discrepancies were of the order of approximately
4 x 10'4, a very significant error. The test problem was then run on the
computer halving the number of points of the ELDC, and then doubling the
number of points. As hoped, KIMRG increased in the first case, and decreased
in the second. The 20-point LDC originally used in this test problem was now
abandoned in favor of the 40-point case, which yielded AIMRG = 1.74291 % 10'%
It was decided to run a case in which the peak load and the plant capacities
would be exact multiples of the LDC spacing, in order to eliminate this
source of error and compute the percentage differences between the Lagrancge
multipliers calcualted both ways. Table 4.1.3 presents these results. XIMRG

now equalled -2.4993 x 1072

, which is approximately zero, given that the
computer is good to eight significant digits in single-precision mode. To
discover how this error would affect the value of the objective function and
the trial solutions generated, one iteration of SYSGEN and the master prob-
lem was run for the unexact (40-pt.) and exact (30-pt.) test cases. These
results are shown in Table 4.1.4. This procedure could not be carried past
the first iteration, as the LP generates trial solutions which are made up
of plant capacities that are not exact multiples of the LDC spacing, thus
destroying the validity of that case for comparison. The differences in the
values of the objective function were of the order of the lower bound "cross-
overs" observed in the results of the next chapter (a lower bound "crossover'
is said to occur whenever the lower bound exceeds the total cost of the trial
solution during that iteration.) The % errors shown in Table 4.1.4 are
actually valid for comparison only with one time period studies. With multi-

ple time periods, one would expect somewhat larger % errors, although prob-

ably still of the same order of magnitude.

21



Table 4.1.1

Region of G,(x) under investigation

G4(]425) = 0.48137774
64(1500) = 0.41199996
G4(]575) = 0.39239996

Between 1425 - 1500 MW:

6,(x) = -.000925037x + 1.7995559

Between 1500 - 1575 MW:

Load (MW)

1425
1440
1455
1470
1485
1500
1515
1530
1545
1560
1575

G4(x) = -.000261333x + 0.80399996

Table 4.1.2

Comparison of G,(x) results

Ga(x)
(15-MW spacing)

G,(x)

(1inear41nteggp1ation)

.48137774
.46756440
.45375100
.43993770
. 42599990
.41199996
.40807980
.40415990
.40023990
.39631990
39235996

22

.4813781
.4675026
.4536270
.4397515
.4258759
.4120004
.4080804
.4041604
.4002404
.3963204
.3924004



Table 4.1.3

Comparison of Lagrange multipliers from exact and non-exact cases

Exact Non-exact % error

Al .0401507 .0403250 .43
G . 0420373 .0422117 42
A3 -2.4993x 10 9= 0 1.74291x 1074 -

" .0597333 .0603555 1.04
12 . 2400000 2406220 .26
3 . 3204000 .3210220 19

Table 4.1.4

Comparison of Z and capacity plans from exact and non-exact cases

Exact Non-exact % error
z 1078.870 1084.44 .52
" 1386.995 1393.98 .54
% 0.0 0.0 -

The reason for the lower bound crossovers is thus explained, and this
revealing of numerical errors in the computation of the Lagrange multi-

pliers, due to discrete-point LDC calculations, can be used to explain

other discrepancies, such as convergence to different (although close)
solutions when starting with different initial constraints, and when using
an aggregated reliability constraint as opposed to disaggregated reliability
constraints. The errors in the Lagrange multipliers are responsible for
introducing small nonconvenxities into the problems, thus causing results

which appear inconsistent with theory.
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Section 4.2

The formulas used for computing the Lagrange multipliers in all the
results presented in this thesis (except the special set presented in

this section) are:

3 3 )
}\J = { 3Y‘] 3YJ -
g i<l
T = FI
- 2= E6(Y) if infeasible
wo={ sy
¢ if feasible
ayd T 3 j=j41 1 iJ
9 I
—— EG(Y) = -Hy,q (U7)
aYJ I+1,]
3 1 I-1
—= [ 6.(Q;¥", , Y hdq  for i > j
J i
(U) = { oYY 0
13 e for i < j
6;(U") for i = j
where H is defined by: .
i .
n {piHij(U) *+ qyH,5(U-Y7) for i=j+l,...,1
H. (U) =
1"'1 'h] p'G-(U) for 1'._.j+"
J ]
k -q. : -q. :
£ (—i)te, (U-2-Y7) + ( Akl for ¥ >0
2=0 pj 1 pJ J
Hij(u) = {

J -
for Y¥ = 0
iji(U)

24



where k is defined such that:

ko v cu< (k1) - ¥

and
I = merit order index of the marginal plant.

A proposed change in the p calculations is to compute them before
the marginal plant is convolved into the equivalent load duration curve,
not after, which is the current procedure, thus avoiding errors intro-
duced by the convolution of the marginal unit. While this procedure will
not make much of a difference in a study with many units, it becomes
significant in a system with only a few units, as in this example. The
new algorithm is described below.

For all plants i in the merit order from 1 to I, compute the

following:

b= pyp(U) ¢ gy, 01

2 I I-1
W= poy (V) gy (U
“1-1
WP (V) g [ h
!-11 = PIGI(UI)
where: .
TRl

This procedure was tried by hand on the 40-pt. test case.
Table 4.2.1 shows the extremely good agreement between values obtained
by this method and values from the exact case. (In fact, when run on

the computer, the new results corresponded precisely with the exact ones).
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Table 4.2.1

Comparison of U j4s Hoou AN Ho oy

oid New Exact
n .0609777 .0597332 .0597333
u2 .2412444 .2399999 . 2400000
u3 .3216443 .3203999 .3204000
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CHAPTER FIVE

Various approaches were tried to speed up the rate of convergence of
the GBD algorithm. Two basic approaches are discussed below, and their
results are presented. The data used will be described in Section 5.1.
Section 5.2 deals with the base case, while Sections 5.3-5.4 handle

the variants.

Section 5.1

Development work on the GBD algorithm was originally done using the
following 9 time period dataset. When investigation into convergence
started, it was decided to use mostly 1 and 2 time period cases, in order
to save money and facilitate hand-verification of the results. Table 5.1.1
shows the peak load and customer energy demand for the full 9 time periods
(when i<9 time periods are used, only the first i rows are relevant).
Table 5.1.2 gives the values of the initial load duration curve, while
Table 5.1.3 presents plant data, including unit sizes, availabilities, and
capital and operating costs. There are 5 committed and existing units:
one 1000-MW base-loaded nuclear (NUC) unit, two 800-MW intermediate
combined-cycle 0il (CCO) units, and two 150-MW peaking gas turbines (GTB),

for a combined available capacity of 2900 MW.
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Year

O O O O O 0o o — = -

O 00 ~N O 0 B oW N~

.00000
.00000
.00000
.99818
.89211
.69512
.49885
.31990
.07381
.00446

O O O O O O O —~ —~

Load Duration Curve

Table 5.1.1

Peak Demand

(MW)

2100.
2268.
2449,
2645.
2857.
3085.
3332,
3599,
3887.

o O A2 00 O B+ O O

Table 5.1.2

(42 MW spacing)

.00000
.00000
.00000
.99497
.85250
.64347
.47049
.24839
.04906
.00159

o O O O O O O — - —

.00000
.00000
.00000
.96335
.79034
.61328
.41260
.17687
.0311
.00045
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Customer Energy
Demand (MWH)

11275147.
12177154.
13151113,
14203460.
15339569,
16566947 .
17892023.
19323440.
20869744

.00000
.00000
.00000
.95248
.J8151
.54936
41112
«16822
01317
.00001

O O O O O O O = — 4

o O O O O O O o o

.00000
.00000
.00000
.92464
.70502
.54846
.32364
.10930
.01222
.00000



Table 5.1.3

Install. Operating
Capacity Cost Cost
Name (MW) Availability ($/MuW) ($/MWH)
LWR BASE 1000 0.70 500000.0 6.28
CCO INTR 800 0.75 300000.0 12.02
GTB PEAK 150 0.80 130000.0 32.07
NUC BASE 1000 0.70 500000.0 6.18
FOS INTR 800 0.75 300000.0 11.93
GTB PEAK 150 0.80 130000.0 31.93

Alternatives fall into these three basic plant types, and, as a GTB
installed in year 1 is different from a GTB installed in year 4, the
number of alternatives in any of the following cases equals three times
the number of time periods in that particular case. Load growth is set
at 8%/yr. Escalation factors for fuel, operation and maintenance (0 & M),
and capital costs are held constant at 6%, while the discount rate equals
10.6% (no adjustment for the rate of inflation is made here). A1l capacities
and loads in the last year of the study are assumed to remain constant
(via replacement in kind) throughout the extension period. The desired
reliability level & equals 0.009* (customer energy demand), and most
cases, except those which explicitly state otherwise, start with an initial

trial solution of 0.0 MW for all alternatives, and no initial constraints.

Section 5.2

The results (including lower bound, total cost of trial solution,
and upper bound) of the 1 time period base case are displayed in Table 5.2.1.

It is seen that for this test case, only 15 iterations are needed to reach
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optimality (where optimality is defined as that point when values of the
lower bound and the trial solution stabilize, i.e., when LB, _; = LB, and
TCk_] = TCk). Table 5.2.2 shows the amount of "fictitious" capacity

added in every iteration, and the % unserved energy after the last real
plant has been loaded. An interesting observation is that, although the

% unserved energy does not decrease monotonically, it does decrease rapidly
until the 10th iteration, after which it levels off, and slowly approaches
feasibility. Table 5.2.3 shows the trial solutions generated at every
iteration, in terms of MW's of capacity. Again, by the 10th iteration,

the total trial solution was just 1.8% away from the optimal solution.

Table 5.2.1
Lower Upper % Range of
Lter. # Bound Solution Bound Optimality
1050.35 2730.68
1 1126.09 1301.23 1790.52 59.0

2 1198.86 1281.41 1567.50 30.749
3 1294.75 1363. 71 1635.89 21.107
4 1310.93 1358.49 1439.53 9.810
& 1350.12 1371.38 1458.65 6.622
6 1353.98 1372.90 1481.38 6.318
7 1363.50 1375.02 1408.09 3.270
8 1381.00 1386.55 1414.06 1.962
9 1384.26 1391.28 1404.70 1.477
10 1385.26 1389.22 1392.30 0.508
11 1389.34 1389.89 1393.63 0.213
12 1389.86 1390.23 1391.68 0.131
13 1390.17 1390.58 1391.71 0.10¢°

14 1390.44 1390.59 1390.91 0.0003
15 1390.65 1390.68 1390.68 0.000

1390.68
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Table 5.2.2

Iter. # Fict. Cap. Added (MW) % Unserved Energy
0 2541.3 4.683
1 729.9 2.161
2 425.5 1.658
3 404.3 1.630
& 120.6 1.114
5 129.5 1.137
6 163.2 1.157
7 49.6 0.982
8 40.9 0.973
9 20.1 0.933

10 4.6 0.908
11 5.6 0.909
12 2.2 0.903
13 1.7 0.903
14 0.5 0.901
15 0.0 0.900
Table 5.2.3
Proposed Trial Solutions (MW)

Iter. # 1 2 3 4 5 6 7 8
NUC 528.0 72.0  287. 102.0 212.0
CcCco 578.4 391.2 11.2 152.0 243.2
GTB 580.5 522, 377.4 928.8 621.3 377.3

Total 528.0 580.5 650.4 809. 768.6 940.0 875.3 832.5

Iter. # 9 10 11 12 13 14 15
NUC 258.0 167.0 190.0 143.0 192.0 162.0 166.0
Cco 12.0 176.0 107.2 167. 140.8 170.4 156.8
GTB 677.4 554.1 629.0 605.1 579.0 575.3 591.8

Total 947.4  897.1 926.2 915. 911.8 907.7 914.6
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Section 5.3

The first major approach used was to add some initial capacity in
the master problem. Various options were tried: using the trial solution
of an intermediate solution as the alternatives' initial values, constraining
the sum of alternative capacities to fall within a certain range,
constraining individual alternatives to be less than certain values, and
constraining individual alternatives to be greater than certain values.
Not surprisingly, the last option yielded the best results, requiring 10
iterations for complete convergence. Tables 5.3.1 - 5.3.3 present the
results for this 1 time period case, in which the Tower values chosen
were 100 MW for NUC, 150 MW for CCO, and 500 MW for GTB. It was believed
that this method would help convergence as it does not allow the master
problem to install all of its capacity in one or two alternatives. In
the absence of such constraints, the master problem does just this in the
beginning iterations, as LP solutions exist at the corners of the feasible
set, but the capacity constraints force it to generate a mix of all the
alternatives from the start. Inspecting the results, one sees that by the
5th iteration the algorithm has essentially converged, its total proposed

solution coming within 1% of the total optimal solution.
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Table 5.3.1

Lower Upper % Range of
Iter. # Bound Solution _ Bound Optimality
1050.35 2730.68
1 1196.54 1342.87 1440.46 20.385
2 1373.32 1380.97 1404 .06 2,238
3 1382.19 1386.91 1399.23 1.233
4 1386.43 1389.00 1393.71 0.525
5 1388.80 1389.45 1391.84 0.219
6 1390.22 1390.68 1391.66 0.104
¥ 1390.25 1390.53 1391.32 0.077
8 1390.50 1390.67 1390.92 0.030
9 1390.62 1390.82 1391.63 0.0002
10 1390.66 1390.60 1390.60 0.000
1390.66
Table 5.3.2
Iter. # Fict. Cap. Added (MW) % Unserved Energy

0 2541.3 4.683

1 145.2 1.159

2 34.7 0.956

3 18.4 0.932

4 7.0 0.912

5 3.6 0.906

6 1.5 0.902

7 1.2 0.902

8 0.4 0.901

9 1.2 0.902

10 0.0 0.900
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Table 5.3.3

Proposed Trial Solutions (MW)

Iter. # 1 2 3 4 5 6
NUC 100.0 100.0 226.0 133.5 170.0 130.0
cco 150.0 150.0 150.0 210.4 150.0 191.2
GTB 500.0 651.2 500.0 547 .2 590.9 588.0

Total 750.0 901.2 876.0 891.1 910.9 909.2

Iter, # 7 8 9 10
NUC 167.0 151.0 191.0 166.0
CCo 180.0 170.8 152.0 164.0
GTB 553.4 590.1 562.5 580.2

Total 900.4 911.9 905.5 910.2

Section 5.4

In this second approach, a break from the theory presented in
Chapter Two was taken. Using data for two time periods, the code was
modified to write one feasibility constraint for each infeasible time period,
instead of one which sums multiplier data for all time periods. The
justification for this approach is that several individual constraints are
more restrictive than one aggregated constraint. Tables 5.4.1 - 5.4.3
display results for the 2 time period, aggregated reliability constraint
case, while Tables 5.4.4 - 5.4.6 do so for the 2 time period, disaggregated

reliability constraints case.
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Iter.

0 N o0 ;AW NN

P M N RN N N N RN N et oemd ed ed eed d md ed —d =
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Lower
# Bound

1225.49
1379.75
1446.66
1479.36
1556.36
1561.35
1566.10
1576.96
1583.54
1586. 27
1589.31
1593.32
1597.57
1597.93
1599.11
1599.49
1600.41
1600.54
1600.77
1600.80
1600.82
1600.91
1601.07
1601.08
1601.11
1601.23
1601.25
1601.25

*% range of optimality computed by: L.B.,q - L.B.;

Table 5.4.1

1209.
1457.
1434,
.44
1549.
1583,
1584.
1578.
1583.
1602.
1597.
1596.
1598.
1598.
1599.
1599.
1600.
.58
.05
1600.
1600.
1600.
.08
.14
.15
.47
sl
.24
23

1551

1601
1601

1601
1601
1601
1601
1601
1601
1601

Solution

35
65
54

59
58
54
56
25
45
96
oh
04
04
10
02
21

85
86
96

A

Upper
Bound

3551
2101
1872

1966.

1693

1739,
1720.

1686

1637.

1676

1674.

1620
1618
1605
1603

1606.
1602.
1602,

1601

1600.
1600.

1600
1601
1601
1601
1601
1601
1601
1601

19
B2
.
33
i 7
59
76
.84
54
.44
32
87
.00
.44
.46
87
59
42
.44
85
86
.96
.25
.14
- 19
.50
e
.24
23

L.B.og

% Range of
Optimality*

.052
.044
.030
.028
D27
.021
.011
.0106
.0087
.0001

™
—
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Table 5.4.2

Fict. Cap. Added Fict. Cap. Added % Unserved % Unserved

Iter. # (MW) in Year 1 (MW) in Year 2 Energy in Year 1 Energy in Year 2
0 2665 3582 4.683 5.535
1 790 953 2.091 2.620
2 408 575 1.564 1.989
3 451 616 1.636 2.030
4 51.7 220 0.985 1.285
5 68.9 237 1.016 1.321
6 56.5 210 0.984 1.218
7 0.0 168 0.901 1.178
8 69.9 27.2 1.009 0.941
9 115 55.8 il 0.995

10 125 0.0 1.117 0.900
11 38.8 9.6 0.965 0.916
12 i 0.0 0.953 0.900
13 6.7 11.2 0.911 0.917
14 1.2 6.8 0.902 0.910
15 0.0 12.4 0.901 0.919
16 3.9 0.0 0.906 0.900
17 0.62 1.3 0.901 0.902
18 0.64 0.0 0.901 0.900
19 0.0 0.0 0.900 0.900
20 0.0 0.0 0.900 0.900
21 0.0 0.0 0.900 0.900
22 0.28 0.0 0.900 0.900
23 0.0 0.0 0.900 0.900
24 0.0 0.0 0.900 0.900
25 0.17 0.0 0.900 0.900
26 0.0 0.23 0.900 0.900
27 0.0 0.0 0.900 0.900
28 0.0 0.0 0.900 0.900
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Table 5.4.3

Proposed Trial Solutions (MW)

Iter. # 1 2 3 4 5 6 7
NUC 1 556.0 279.5 112.7
NUC 2
CCO 1 696.4 68.3 497.5 132. 254.3
CcCo 2
GTB 1 622.5 515.9 358.4 850. 573.8
GTB 2

Total 556.0 622.5 696.4 763.7 855.9 983. 940.8

Iter. # 8 9 10 11 12 13 14
NUC 1 198.0 355.4 1254 297.1 162.9 275, 217.0
NUC 2 .

CCO 1 35.0 235.1 237.0 110.8 159.7 79. 99.4
cco 2

GTB 1 651.4 207.9 393.1 454.1 546.3 561. 611.4
GTB 2 154.2 172.4 165.9 149.1 157.3 119.0 116.6

Total 1038.6 970.8 995.6 1011.1 1026.2 1034. 1044 .4

Iter. # 15 16 17 18 19 20 21
NUC 1 248.8 178.2 158.5 205.0 174.3 179. 184.9
NUC 2
CCO 1 95.9 136.5 138.2 110.7 137.7 131. 125.9
cco 2
GTB 1 583.3 601.3 632.3 610.0 610.5 612. 614.4
GTB 2 112.6 126.0 119.7 124.7 182.0 122.4 122.8

Total 1040.6 1042.0 1048.7 1050.4 1044.5 1046. 1048.0
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(Table 5.4.3, cont'd.)

Iter. # 22 23 24 25 26 27 28

NUC 1 186.7 168.6 180.8 196.7 165.5 166.8 166.8
NUC 2

CCo 1 122 .2 137.9 125.7 109.4 138.0 137.9 137.3
cco 2

GTB 1 617.7 618.5 621.0 624.8 622.8 620.9 620.9
GTB 2 122.8 121.2 121.9 122.8 120.6 120.9 120.9

Total 1049.4 1046.2 1049.4 1053.7 1046.9 1046.5 1046.5
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Table 5.4.4

Lower Upper % Range of
Iter. # Bound Solution Bound Optimality
1209.35 3551.19
1 1226.17 1469.32 2078.45 69.5
2 1381.38 1497.00 1850.79 34.0
3 1461.18 1575.10 1908.49 26.7
4 1493.44 1560.23 1676.33 12.2
5 1543.54 1576.94 1680.65 8.60
6 1558.50 1576.17 1693.73 7.56
7 1565.89 1582.15 1619.14 3.40
8 1590.37 1599.80 1620.59 1.81
9 1592.56 1601.86 1642.61 1.87
10 1592.84 1598.58 1605.10 0.77
11 1593.62 1597.40 1613.97 0.72
12 1595.06 1598.53 1602.67 0.48
13 1596.55 1597.66 1600.94 0.27
14 1597.70 1598.37 1600.18 0.155
15 1598.36 1598.59 1599.53 0.073
16 1598.53 1598.92 1599.85 0.0626
12 1598.62 1598.76 1599.25 0.0394
18 1598.79 1598.89 1598.89 0.0063
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Table 5.4.5

Fict. Cap. Added Fict. Cap. Added % Unserved % Unserved
Iter. # (MW) in Year 1 (MW) in Year 2 Energy in Year 1 Energy in Year 2
0 2665 3582 4.683 5.535
1 736 900 2.039 2.549
2 475 523 1.682 1.800
3 496 487 1,712 1.676
4 156 172 1.170 1.197
5 153 152 1.166 1.160
6 173 176 1.164 1.160
7 54.9 54.2 0.991 0.988
8 30.2 31.0 0.949 0.949
9 60.8 537 1.006 0.992
10 9.78 8.56 0.916 0.914
11 23.5 24.9 0.936 0.937
12 5.59 6.20 0.909 0.908
13 4.93 4.35 0.908 0.907
14 2.67 2.67 0.904 0.904
15 1.17 1.40 0.902 0.902
16 1.40 1.40 0.902 0.902
17 0.75 0.54 0.901 0.901
18 0.0 0.0 0.900 0.900
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Table 5.4.6
Proposed Trial Solutions (MW)

Iter. # 1 i 3 4 5 6 7
NUC 1 579.5 360.4 67.1 174.
NUC 2 57.8 112.7
CCo 1 648.7 363.6 154.
€O 2
GTB 1 571.0 424.2 387.2 195.8 511.
GTB 2 £6.2 74.4 1283 125.8 17.0 124.

Total 579.5 657.2 780.9 896.9 876.6 992.7 964.

Iter. # 8 9 10 11 12 13 14
NUC 1 357.0 309.7 270.1 203.4 187,1 235.2 189,
NUC 2
CCO 1 273.4 168.3 B5.3 170.7 128.1 186.
cco 2
GTB 1 563.4 250.2 440.8 675.0 575.1 537.8 502.
GTB 2 122.5 132.2 126.2 118.8 121.9 123,86 124.0

Total 1042.9 965.5 1005.4 1051.5 1024.8 1024.7 1022.

Iter. # 15 16 17 18 13
NUC 1 197.3 239.6 222.5 210.6 2119
NUC 2
cco 1 161.8 156.9 153.4 147.1 144.7
cco 2
GTB 1 540.7 497.2 5229 546.5 548.4
GTB 2 123.0 124.2 123.6 123.0 123.0

Total 1022.8 1017.9 1022.4 1027.2 1028.0
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The disaggregated case is seen to be faster, converging in 10 fewer
iterations than the aggregated case (18 vs. 28 iterations). Another point
of interést is that the aggregated case converges to a higher total solution
case than the disaggregated one. This result is due to the errors revealed
in the Lagrange multipliers in the previous chapter. Since fewer iterations
are required for complete.convergence in the disaggregated case, errors
have less time over which to compound; therefore the error in the dis-
aggregated case is smaller, which results in a lower value of the objective
function. The Tower bound crossovers are also explained by the numerical
inaccuracies in the multipliers. Since the temporarily fixed-up upper
bounds in the aggregated case fall below lower bounds of later iterations,
the % range of optimality is measured in terms of the optimal solution.
Notice in this case, however, that termination should occur after the
21st iteration, as LBy, > TC]Q, which is a feasible solution. Had this
termination been allowed to occur, the disaggregated case would converge
in only three fewer iterations than the aggregated.

It was wondered whether a more dramatic difference could be obtained
with more time periods. To this end, a 4 time period case was constructed
and run. Tables 5.4.7 - 5.4.9 present results for the aggregated case,
while Tables 5.4.10 - 5.4.12 do so for the disaggregated case. The
aggregated case converged in 39 iterations, while the disaggregated case
now took longer, converging in 44 1te§ations. However, a nearly feasible
solution (less than 1 MW of fictitious capacity added during the planning
period) occurred on the 25th iteration, and again on the 38th. The percent

difference between 225 in the disaggregated case and Z in the

optimal
aggregated case (0.85%) is of the same order of magnitude as the
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discrepancies caused by the inaccuracies in the Lagrange multiplier
calculation (see Table 4.1.4). Therefore, the final iterations in the
disaggregated case really gain no new information, as the algorithm has
now passed within its accuracy resolution. This problem stresses the
need for a correct upper bound implementation, since once the Tower bound
has exceeded a true upper bound, the procedure may be safely terminated.
Any further iterations would be meaningless, as the errors introduced
through the Lagrange multipliers have now accumulated to the point where
they are of the same order of magnitude as the algorithm's resolution,
and thus can introduce noticeable nonconvexities. In addition to saving
on the cost of running these later iterations, such a termination rule
would also produce a lower cost solution, as Z's upward creeping during

these extra iterations would now be eliminated.
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Lower
Iter. # Bound
0 -
1 0.0
2 1451.56
3 1782.36
4 1859.31
5 1873.86
6 1874.97
7 1940.84
8 1955.32
9 1986.04
10 1988.62
1 2003.65
12 2006.05
13 2011.40
14 2013.28
15 2036.46
16 2041.21
17 2045.86
18 2050.20
19 2053.35
20 2057.15
21 2065.98
22 2072.14
23 2075.97
24 2083.37
25 2084.30
26 2085.87
27 2086.22
28 2087.17
29 2087.23
30 2087.24
3 2087.26

Table 5.4.7

Solution

1546.74
6758.62
1819.77
1883.74
1977.37
2093.02
1980.29
1989.90
1974.71
2032.03
2024.48
2023.29
2027.73
2013.64
2017.69
2039.16
2056.70
2056.05
2076.66
2075.71
2085.22
2081.22
2078.42
2090.00
2090.60
2089.15
2082.63
2082.28
2080.20
2081.43
2080.70
2082.17

a4a

Upper
Bound

6965.
7381.
3572,
2466.
2638.
.48

.952

3706
2455

2405.
.49
.49
.89

2231
2210
2199

2353.
2158.
2242,
2259.
.14
.36
.85
.05
2192.
2122.
.96
.90
2091.
2159.
2134.
2102.
2094.
2083.
2083.
2082.
2083.

2279
2181
2182
2231

2083
2181

1
812
004
69
426

114

25
99
60
51

N
92

15
69
a1
40
00
96
03
40
03

% Range of
Optimality*

10.17

— el e = NN W W W R AR O
o
by

—

.02
0.728
0.544
0.190
0.145
0.0700
0.0532
.0.00767
0.00479
0.00431
0.00335



(Table 5.4.7, cont'd.)

Lower

Iter., # Bound
32 2087.27
33 2087.30
34 2087.31
35 2087.31
36 2087.32
37 2087.32
38 2087.32
39 2087.33

Solution

2081.87
2083.31
2082.50
2082.59
2083.27
2082.24
2082.80
2082.14

Upper
Bound
2082.43
2083.89
2083.04
2083.08
2083.88
2082.64
2082 .95
2082.14

% Range of
Optimality*
0.00287
0.00144
0.000958
0.0000958
0.0000479
0.0000479
0.0000479

0.0

* % range of optimality calculated with respect to the optimal solution.

Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 3-(MW) in.Year 4 (MW)
[% unserved

in Year 1 (My)
[% unserved

Table 5.4.8

in Year 2 (MW)
[% unserved

[% unserved

Iter. # enerqy] energy] energy] energy]

0 2665 3582 6082 8957
[4.683] [5.535] [6.632] [8.098]

1 341.5 491.8 695.9 963.9
[1.405] [1.662] [1.992] [2.432]

2 2371 772.3 2447 2729
[3.514] [2.062] [2.647] [3.401]

3 189.7 358.5 584.5 887.5
[1.228] [1.585] [2.061] [2.684]

4 351.4 480.6 699.2 1007
[1.462] [1.710] [2.139] [2.758]

5 2280 2581 384 678
[3.129] [3.582] [1.47?] [1.848]

6 730 247.6 132 390.6
[2.046] [1.343] [1.127] [1.554]

7 629 0.0 - 186 449
[1.929] [0.900] [1.202] [1.607]
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(Table 5.4.8, cont'd.)

Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 1 (MW) in Year 2 (MW) in Year 3 (MW) in Year 4 (MW)

[% unserved [% unserved [% unserved [% unserved

Iter. # energy] energy] energy] energy]

8 920 0.0 181 402
[1.058] [0.901] [1.220] [1.659]

9 97.8 270.5 22.3 238.7
[1.070] [1.414] [0.936] [1.292]

10 101.3 269.7 0.0 208.2
[1.070] [1.391] 1 [0.900] [1.234]

- 0.0 168.5 288.6 517.3
[0.900] [1.181] [1.413] [1.867]

12 115.3 31.4 0.0 200.8
[1.104] [0.953] [0.900] _ [1.257]

13 0.0 112.5 147.0 - 362.3
[0.900] [1.090] [1.152] [1.571]

14 250.2 0.0 144.5 361.9
[1.344] [0.900] [1.146] [1.576]

18 0.0 0.0 182.9 387.0
[0.900] [0.901] [1.185] [1.579]

16 44 .95 55.67 0.0 199.5
[0.975] [0.991] ‘ [0.900] [1.234]

- 0.0 0.0 0.0 210.6
[0.900] [0.900] [0.900] [1.248]

18 237.2 0.0 0.0 155
[1.267] [0.900] [0.900] [1.128]

19 185.2 0.0 0.0 61.2
[1.218] [0.900] [0.900] [0.997]

20 59.1 11.4 0.0 23.17
[0.997] [0.918] [0.900] [0.937]

- 4.5 ' 0.0 0.0 0.0
[0.907] [0.900] [0.900] [0.900]

22 0.0 0.0 0.0 173.7
[0.901] [0.901] [0.900] [1.161]

23 : 1.9 0.0 0.0 0.0
[0.903] [0.900] [0.900] [0.900]
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(Table 5.4.8, cont'd.)

Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 1 (MW) in Year 2 (MW) in Year 3 (MW) in Year 4 (MW)

[% unserved [% unserved [% unserved [% unserved

Iter. # energy] enerqgy] energy] energy]
24 109.9 6.6 0.0 28.4
[1.089] [0.911] [0.900] [0.945]

25 74.1 0.0 0.0 0.0
[1.025] [0.900] [0.900] [0.900]

26 19.6 32.7 0.0 0.0
[0.933] [0.953] : [0.900] [0.900]

. 19.2 0.0 0.0 0.0
. [0.932] [0.900] [0.900] [0.900]

- 4.7 6.2 0.0 0.0
[0.908] [0.910] [0.900] [0.900]

29 1.5 2.6 0.0 0.0
‘ [0.902] [0.904] [0.900] [0.900]

30 2.8 0.0 0.0 0.0
[0.905] - [0.900] . [0.900] [0.900]

31 1.4 1.1 0.0 0.0
[0.902] . [0.902] [0.900] [0.900]

32 0.923 0.0 0.0 0.0
_ [0.902] [0.300] [0.900] [0.900]

13 0.937 ~0.790 0.0 0.0
[0.902] [0.901] [0.900] [0.900]

34 0.0 0.938 0.0 0.0
[0.900] . [0.902] [0.900] [0.900]

35 0.796 0.0 0.0 0.0
[0.901] [0.900] [0.900] [0.900]

36 0.280 1.01 0.0 ' 0.0
[0.900] [0.902] . [0.900] [0.900]

37 0.0 0.679 0.0 0.0
[0.900] [0.901] [0.900] [0.900]

38 0.0 0.254 0.0 0.0
[0.900] [0.900] . [0.900] [0.900]

29 0.0 0.0 0.0 0.0
[0.900] [0.900] _ [0.900] [0.900]
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Table 5.4.9
Proposed Trial Solutions (MW)

Iter. # 1 2 3 4 5 6 7
NUC 1 7904.0 478.6 438.0
NUC 2 495.4 23.9 239.7
NUC 3 1035.8  266.5
NUC 4 7
CCo 1 173.9 849.8  133.6  201.7
cco 2
cco 3
cco 4
GTB 1 314.8 95.9  242.4  109.2
GTB 2 ' 38.0 112.7 550.3
GTB 3
GTB 4

Total 7904.0  669.3  793.4  873.7 1303.3 1063.0 1097.5

Iter. # 8 9 10 11 12 13 14
NUC 1 299.8  133.6 270.4  461.1 213.6  333.4  229.1
NUC 2 266.3 222.9 105.1
NUC 3 287.6
NUC 4
cco 1 97.7  374.8 40.6  514.4 263.0 151.5 68.1
cco 2 :
cco 3
cco 4
GTB 1 412.3  283.2 508.4 132.8 289.5 549.1 374.9
GTB 2 6.9 39.6  419.0
GTB 3 346.9  129.1 45.4  234.9 111.4 32.2
GTB 4

Total 1076.1 1138.5 1236.1 1153.7 1230.8 1185.0 1228.4
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(Table 5.4.9, cont'd.)

Iter. # 15 16 17 18 19 20 21
NUC 1 278.8 341.4 362.0 269.9 130.3 341.5
NUC 2 152.3 134.6 285.0 258.9 5.0 149.3
NUC 3 122.2 191.4 171.5 94.5
NUC 4 155.5
CCo 1 18.3 26.7 212.4 32.4 11.9 34.9 85.6
cco 2
cco 3
cco 4
GTB 1 894.6 520.4 404.5 759.8 463.6 519.2 484.9
GTB 2 126.9 134.4 197.1 157.6 56.7
GTB 3 375.2 133.7 29.8 102.3 189.2 177.6
GTB 4 168.0

Total 1344.03 1398.3 1361.7 1432.8 1475.2 1286.2 1463.6

Iter, # 22 23 24 25 26 27 28
NUC 1 262.2 348.5 249.8 38.9 186.3 190.3 261.6
NUC 2 159.2 72.1 173.6 109.5 127.6 146.7
NUC 3 195.5 211.7 178.1 87.4
NUC 4
cco 1 21.5 384.3 308.4 206.1 211.0 - 199.6
cco 2
cco 3
cCo 4
GTB 1 737.8 4441 408.6 471.5 472.1 461.7 417.7
GTB 2 41.9 135.2 58.3 19.6 43.3
GTB 3 =~ 243.5 218.5 161.1 31.6 59.9 60.6 152.2
GTB 4 17.7 190.2 129.5 154.6 195.2 185.4 192.4

Total 1462.3 1358.0 1405.4 1432.4 1460.4 1458.0 1457.6
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(Talbe 5.4.9, cont'd.)

Iter. # 29 30 31 32 33 34 35
NUC 1 213.0 238.4 225.8 215.0 181.6 202.7  194.1
NUC 2 146.4  152.5 116.9° 130.8 132.1 127.0 138.8
NUC 3 115.3 89.5 166.9 145.3 161.5 159.4  140.9
NUC 4
cCco 1 230.0 218.1 198.4 216.2  238.5 221.5  236.1
cco 2
cco 3
cco 4
GTB 1 435.4  421.5 459.2  450.0 460.5 457.8  449.8
GTB 2 23.8 13.7 11.3 15.0 6.7
GTB 3 114.1  140.6 68.0 84.9 62.6 69.1 83.8
GTB 4 199.3  193.7 204.5. 202.5 207.1  205.9  204.0

Total 1453.5 1454.3 1463.5 1458.4 1455.2 1458.4 1454.2

Iter. # 36 37 38 39 40
NUC 1 203.2  210.3 206.4 211.3  211.3
NUC 2 111.0  124.4 117.3  126.4 126.4
NUC 3 191.1 160.3 176.8 155.7  155.8
NUC 4
CCo 1 208.3 2147 211.3 215.6 215.6
cCo 2
cco 3
cco 4
GTB 1 473.0 457.8 466.0 455.6  455.7
GTB 2 28.1 17.7 23.7 16.6 16.6
GTB 3 39.2 69.2 52.7 73.2 73.2
GTB 4 209.4 205.5 207.5 204.9  204.9

Total 1463.3 1459.9 1461.7 1459.3 1459.5
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Lower
Bound

0
1467.36
1843.74
1891.69
1937.49
1977.07
2008.23
2031.04
2033.84
2046.62
2048.92
2054.81
2055.38

2057.32

2063.43
2063.57
2066.04
2067.01
2067.26
2068.11
2068.17

- 2068.28

2069.10
2069.70
2069.75
2069.80
2070.17
2070.94
2086.18
2103.53

Table 5.4.10

Solution

1546.74
6758.62
1896.19
1959.97
2069.10
2030.69
2025.80
2068.05
2070.45
2060.68
2065.19

2057.00

2061.82
2059.37
2059.47

' 2069.52
2069.78
2069.14
2068.78
2071.18

2071.42
2069.42
2072.55
2068.45
2071.05
2071.09
2071.89
2073.32
2061.11
2074.05
2106.24
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Upper
Bound

6965.
.81
.82
2347.
2349.
.88
2278.
2154,
2096.
2087.
2091.
2082.
2088,
2083.
.83
.59
25
2073.
.82
2072.
2074.
20790.
2074.
2078.
2073.
.52
2072.
2095.
.35
2199.
2156.

7381
2590

2149

2086
207
2071

2070

2071

2159

1

91
66

35
10
28
62

07
48
97

13

29
67
74
01
57
21

63
02

30
12

% Range of
Optimality*

-

31.60

14.05

11.82
9.68
7.83
6.38
5.32
5.19
4.59
4.49
4.21
4.19
4.09
3.81
3.80
3.69
3.64
3.63
3.59
3.58°
3.58
3.558
3.52
3.52
3.51
3.50
3.46
2.79
1.94



(Table 5.4.10, cont'd.)

Lower Upper % Range of

Iter. # Bound Solution Bound Optimality*

21 2104.81 2096.65 2194.53 1.88

32 2114.30 2102.29 2227.11 1.44

33 2131.53 2125.72 2226.70 0.635

34 2136.12 2137.07 2143.62 0.421

35 2137.26 2138.80 2139.40 0.368

36 2138.49 2136.49 2169.74 0.311

37 2143.18 2144.86 2146.63 0.0923

38 2143.65 2144.60 2144.72 0.0739

39 2143.97 2145.76 2145.96 0.0555

40 2145.14 2139.90 . 2141.14 0.000932

41 2145.16 2140.22 2140.69 0.0

42 2145.16 2139.62 2139.85 0.0

43 2145.16 2140.70 2140.1 0.0

* % range of optimality calculated with respect to the optimal solution.

Table 5.4.11

. Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 1 (MW) in Year 2 (MW) in Year 3 (MW) in Year 4 (MW)

[% unserved [% unserved [% unserved [% unserved
Iter., # enerqgy] energy] eneray] enerqgy]
0 2665 3582 €082 8957
[4.683] [5.535] [6.632] [8.098]
1 341.5 491.8 695.9 963.9
[1.405] [1.662] [1.992] [2.432]
2 773.8 444.2 . 802.1 1027.6
[2.081] [1.638] [2.129] [2.775]
3 260.9 315.8 367.7 588.2
[1.343] [1.446] [1.519] [1.992]
4 397.4 - 362.2 354.6 409.6
[1.545] [1.476] [1.456] [1.542]
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(Table 5.4.11, cont'd.)

Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 1 (MW) in Year 2 (MW) in Year 3 (MW) in Year 4 (MW)

[% unserved [% unserved [% unserved [% unserved

Iter. # energy} energy] energy] enerqy]

5 172.9 147.6 152.5 161.7
[1.209] [1.159] [1.163] [1:1731

6 98.6 0.0 179.4 396.6
[1.067] [0.900] [1.209] [1.626]

7 11.9 111.1 0.0 132.9
[0.919] [1.084] [0.901] [1.113]

8 9.88 18.6 0.0 41.1
[0.916] [0.930] [0.900] [0.963]

9 39.4 32.0 0.0 39.4
[0.967] [0.953] [0.900] [0.963]

10 27.5 39.4 0.0 35.9
[0.943] [0.960] [0.900] [0.954]

1 18.7 17.8 0.0 39.1
[0.932] [0.930] [0.900] [0.963]

12 7.37 8.32 0.0 . ~ 43.6
[0.912] [0.913]. [0.900] [0.966]

13 11.16 11.97 0.0 39.5
[0.918] [0.919] £0.900] [0.962]

14 5.1 11.47 0.0 44 .4
(0.908] [0.919] [0.900] [0.971]

15 1.68 3.44 0.0 0.0
[0.903] [0.906] [0.900] [0.900]
16 1.44 1.80 0.0 2.23
[0.902] [0.903] [0.900] [0.903]

17 5.95 6.51 0.0 0.0
[0.910] : [0.910] f0.900] [0.900]

18 2.84 3.35 0.0 0.0
[0.905] [0.905] [0.900] [0.900]

19 1.82 1.66 0.0 0.0
[0.903] {0.903] [0.900] [0.900]

20 1.42 5.47 : 0.0 0.0
[0.902] [0.909] [0.900] _ [0.900]
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(Table 5.4.11, cont'd.)

Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 1 (MW) in Year 2 (MW) in Year 3 (MW) in Year 4 (MW)

[% unserved [% unserved [% unserved [% unserved
Iter. # energy] energy] energy] energy]
21 2.17 1.15 0.0 0.0
[0.904] [0.902] [0.900] [0.900]
22 1.03 2.45 0.0 0.0
[0.902] [0.904] [0.900] [0.900]
23 0.0 0.0 0.0 16.9
[0.900] [0.900] [0.900] [0.926]
24 1.56 3.6 0.0 0.0
[0.903] [0.906] [0.900] [0.900]
25 0.68 0.28 0.0 0.0
[0.901] [0.500] [0.900] [0.900]
26 0.0 1.26 0.0 0.0
[0.901] [0.902] [0.900] [0.900]
- 3,52 0.0 3.71 10,
[0.906] [0.900] [0.958] [0.916]
28 0.0 0.0 155.9 155.6
[0.900] [0.900] [1.158] [1.152]
29 0.60 4.39 0.0 208.2
[0.901] [0.907] [0.900] [1.235]
20 0.0 0.0 88.4 4,02
[0.900] [0.900] [1.043] [0.906]
9 0.0 0.0 Co -+ 158.4 131.8
[0.900] _[0.900] [1.160] [1.111]
45 0.0 0.31 0.0 209
[0.900] [0.900] [0.900] [1.235]
33 0.0 0.0 168.4 94.4
[0.901] [0.900] [1.178] [1.051]
- 0.0 1.2 0.0 10.9
[0.900] [0.902] [0.900] [0.917]
35 0.0 1.03 0.0 0.0
[0.900] [0.902] [0.900] [0.900]
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(Table 5.4.11, cont'd.)

Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added Fict. Cap. Added
in Year 1 (MW) in Year 2 (MW) in Year 3 (MW) in Year 4 (MW)

[% unserved [% unserved [% unserved [% unserved

Iter. # energy] energy] energy] energy]
36 1.1 0.58 0.0 55.4
[0.902] [0.901] [0.900] [0.987]

37 1.76 2.92 0.0 0.0
[0.903] [0.905] [0.900] [0.900]

5% 0.0 0.2] 0.0 0.0
[0.900] [0.900] [0.900] [0.900]

19 0.32 0.28 0.0 0.0
[0.900] [0.900] [0.900] [0.900]

40 0.295 2.1 0.0 0.0
[0.900] [0.903] [0.900] [0.900]

o 0.0 0.80 0.0 0.0
[0.900] [0.901] [0.900] [0.900]

42' 0.362 0.0 0.0 0.0
[0.901] [0.900] [0.900] [0.900]

43 0.0 0.0 0.0 0.0
[0.900] [0.900] [0.900] [0.900]
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Table 5.4.12

Proposed Trial Solutions (MW)

Iter. # 1 4 B 6 7
NUC 1 7904.0 616.1 155, 7 365.4 324.0
NUC 2 292.0 4.2 442 .4
NUC 3 121.0 420.1
NUC 4
CCo 1 492.5 60.3 57.1
LCQ 2
cco 3
CCo 4
GTB 1 197.2 632.1 245.0 476.4 528.2
GTB 2 79.3 141.4 1189 47.0
GTB 3 139.9 137.7
GTB 4 117.1 148.2

Total 7904.0 784.5 1013.6 1030.5 870.0 1284.2 1376.4

Iter. # 8 10 11 12 13 14
NUC 1 447 .4 152.2 147.0 300.8 252.1 179.3 300.7
NUC 2 29.6 50.9 67.0 100.2 109.4
NUC 3 139.5 7.7 97.2 133.2 71.4 98.2
NUC 4 142.3 134.4 70.7
CCo 1 0.2 269.9 125.8 191.7 70.5 194.0 140.1
CCo 2
CCo 3
CCOo 4
GTB 1 504.8 415.0 630.0 376.3 602.6 506.1 451.6
GTB 2 117.0 104.4 65.5 127.1 61.6 35.5 24.9
GTB 3 176.8 58.7 81.1 101.7 83,1 125.2 126.6
GTB 4 58.7 120.3 122.5 57.9 117.2

Total 1357.9 1311.6 1318.3 1317.3 1374.5 1340.3 1368.7
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(Table 5.4.12, cont'd.)

Iter. # 15 16 17 18 19 20 21
NUC 1 318.6 301.5 229.0 243.8 194.0 272.5 270.6
NUC 2 53.0 97.3 67.7 83.2 85.9 81.7
NUC 3 95.0 98.3 53,9 142.5 271
NUC 4 110.9 64.9
CCO 1 163.2 110.0 224.7 173.8 226.2 145.3 185.8
€Co 2
cco 3
CCo 4
GTB 1 411.3 494.6 420.0 468.6 460.0 477 .4 428.3
GTB 2 76.0 38.5 64.7 50.9 49.0 120.9 53.4
GTB 3 194.0 197.5 105.6 105.4 134.2 45.2 171.5
GTB 4 56.1 92.1 168.3 164.6 167.2 184.9 158.3

Total 1383.1 1396.4 1375.0 1388.6 1370.0 1388.7 1376.7

Iter. # 22 23 24 258 26 27 28
NUC 1 228.8 297.7 343.5 322.7 300.3 225.7 £93.3
NUC 2 23.7 148.5 45.5 39.1 7.0 53.2 73.9
NUC 3 62.6 85.6 83.1 77.9 62.6
NUC 4
CCo 1 203.6 132.4 98.6 106.3 118.6 133.1 140.4
CCo 2
cco 3
cco 4
GTB 1 450.5 469.9 469.3 479.8 485.7 543.8 464.0
GTB 2 102.1 82.2 88.9 99.3 139.5 231.3
GTB 3 116.0 208.9 113.9 109.9° 108.6 51.9 22.1
GTB 4 179.3 139.1 164.2 168.0 173. ¢ 174.0 153.3

Total 1366.6 1396.5 1402.5 1397.8 1390.6 1383.8 1378.3
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(Table 5.4.12, cont'd.)

ITter. # 29 30 31 32 33 34 35
NUC 1 236.3  336.6  289.7  233.3  296.5  255.8  285.7
NUC 2 140.5 71.5  144.1 71.4  117.9 65.1
NUC 3 79.6 22.9 15.5 A7 7
NUC 4
cco 1 138.1 78.6  121.9  137.9  125.8  138.8  116.6
cco 2
cco 3
cco 4
GTB 1 508.1  503.8  492.0 532.7 481.2  505.2  503.3
GTB 2 342.8  390.9 503.4 21.1 65.3
GTB 3 430.5 578.0 563.4  515.5
GTB 4 221.7  172.2 208.1  143.4  162.2

Total 1473.5 1563.1 1561.1 1626.0 1701.9 1745.6 1751.4

Tter. # 36 37 38 39 40 41 42
NUC T 273.8  280.3  263.3  303.8  258.9  253.7  272.0
NUC 2 13.7  142.5 88.4 86.0  145.1 146.7  147.6
NUC 3 86.2
NUC 4
cCo 1 115.0 77.5  140.2 94.6 173.7 170.5  166.3
CCO 2 |
cco 3
cCco 4
GTB 1 517.5  564.5  495.5  515.0  456.0  465.7  452.1
GTB 2 111.4 45.6 47.7
GTB 3 519.9  540.4  548.1  546.5  547.8  545.8  546.3
GTB 4 106.6  191.5 192.7 192.9  187.6  187.9  187.0

Total 1744.1 1796.7 1773.8 1786.5 1769.1 1770.3 1771.3
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(Table 5.4.12, cont'd.)

Iter. # 43 44
NUC 1 256.2 256.1
NUC 2 147.5 147.5
NUC 3 '

NUC 4

CCco 1 169.9 169.9

CCo 2

cco 3

cco 4

GTB 1 463.9 463.9

GTB 2

GTB 3 545.3 545.3

GTB 4 187.7 187.7
Total 1770.5 1770.4
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A final interesting development that arose at the beginning of these
runs concerned negative A's which occasionally emerged. This is
understandable for the marginal unit, because of the discrepancies which
arise from the piece-wise representation of the LDC within SYSGEN. After

3 or (usually) less.

normalization, these A's were on the order of 10~
More disturbing, however, were relatively large negative i's associated

with earlier units, which sometimes occurred during the beginning iterations,
as a result of the master problem installing all its capacity in a single
alternative, and SYSGEN modelling that capacity as a single huge unit.

When discrete-plant representation has been implemented, this problem

should disappear. Adding constraints which 1imit the amount of capacity
that can be installed in any one alternative should also help. These
negative A's are seen to greatly affect the convexity of the problem. In
one 4 time period, aggregated case in which these large negative A's appear
in the early iterations, the algorithm seemingly "converged," with Z and TC
stabilizing after 29 iterations; however, almost 250 MW of fictitious
capacity were still beirig built in this last iteration. When a condition
was implemented which set any negative A's equal to 0, this strange behavior
disappeared. As this correction only affected a few early iterations, when
the LP is still fluctuating between extremes, the slight change caused in
these few constraints was not believed to significantly disturb the final
solution, and it was consequently used in all themultiperiod test cases
(repeating the 1 time period case showed negligible difference between

the results).
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_ CHAPTER SIX

Tﬂis chapter shall present conclusions of the work presented in
previdus chapters, and also mention some areas of further research which
might be fruitful.

The most prom1s1ng approach tried was that of adding minimum capacity
constra1nts for every alternative. These lower bounds may be the resu1t
of some approx1mate techn1que, such as screening curves, to determine that
w1th1n some range the alternative is indeed competitive, or they may be
from a prior opﬁimization run, or from the planner's own intuitive judgment.
If concern is felt'abouf over-constraining the problem, these capacity
constrafnts may be removed after several iterations, thus insuring that
enough'cthtraints have alread& been generated to avoid the great fluctua-
tions in cépacity that gener311y occur in the beginning iterations.

D1saggregat1ng the re]1ab1]1ty constraint into one constraint for every
infeasible time period is also recommended, as it leads to convergence in
fewer 1terat1ons, which means less accumulated error, and therefore an
opt1ma1 so]utxon ﬁh1éﬁ costs less. than that of the aggregated case. It was
also seen that (although the resu]ts were not presented here). that creatxng
a re11ab1]1ty constraint for. al] t1me periods, instead of only infeasible
- ones, is not a method to be pursued, as the add1t1ona1 constra1nts 1ntr0*-
duce more errors and thus lead to.the slow convergence due to ‘passing the
algorithm's resolutlon 11m1t observed in the prev1ous chapter. |

The strongest recommendat1on to emerge from this study is the imple-
mentation of the correct way of comput1ng upper bounds as soon as possible.
Once this is accompiished, then convergence may be easily determined: once

the lower bound'exteedé-the correct ﬁpper bound, then terminate the
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procedure. Another stopping rule might be to Took at the trial capacity
plans proposed, and terminate when these stop fluctuating wildly and have

settled around some values.

Some areas which may be investigated further for speeding convergence
shall now be mentioned. First, more theoretical work needs to be done on
incorporating the Lagrange multipliers calculated after the marginal plant
has been augmented to achieve feasibility. While it was speculated that
this might help quicken convergence by calculating the capacity plans on
the edge of the feasible region instead of far outside it, preliminary work
done here shows that this is not the case. The problem lies in using the
u's and unserved energy after; the unserved energy is always € (fo within
computational tolerance), and the u's are extremely small, as well as non-
varying, so that the master problem is not given much information on the
best way to proceed. A second area for investigation might be to try
adding different kinds of initial constraints to the master, and see what
effect they have on convergence. A third area would be to use another

mathematical programming technique, namely, subgradient optimization, in

the beginning iterations. As this is only a local optimization technique,
control would have to be returned to the GBD algorithm, as this insures
global optimality. A technical discussion of subgradient optimization is
presented in Appendix A. A fourth area of investigation might be to run
identical test casés with the GBD option on, using first the piece-wise

load duration curve representation utilized in this work, and then a load
duration curve represented by the method of cumulants [32]. The Tatter case
should yield consistent values for A's and u's, as its continuous represen-

tation of the LDC's should eliminate errors introduced by SYSGEN's piece-

wise linear representation.
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In summary, although numerical errors were discovered to have crept
into the Lagrange multiplier calculation through the linear interpolation
used for the load duration curves, the GBD algorithm has proved to be
fairly robust and quite effective as a tool to aid in utility planning.
Iterating between GBD and some sort of perturbation/sensitivity analysis
might be useful, keeping as initial constraints for each GBD run the
results of previous iterations. To give the utility planner a general
idea of the computer time and storage requirements for the GBD algorithm,
Appendix D was prepared, which includes tables of computational times and

other pertinent informatijon.
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APPENDIX A

Consider the capacity expansion planning problem in the following form
(suppressing the index on time for clarity, assuming that the capacities are

already sorted into merit order, and viewing Y as a function of X):

min C'X + min EF(Y)

The Lagrangean function associated with this problem is:

L(X,A,m) = C'X + min {EF(Y) + A(Y-X) +w(EG(Y) - €)}

The Lagrangean dual becomes:

L* = max L(A,m)
A,m>0

where

L(x,m) =min L(X,An)

x>0
= L* = max min [C'X + min { EF(Y) + A(Y-X) + m(EG(Y) - )}]
A,m20 X20 Y0

Vectors (v,5) are called subgradients of L(A,m) at (h,m) if:

L(a,m) < L(X,m) + (A-A)y + (r-7)8 ¥,

Subgradients point in the direction of steepest ascent of L(x,m) at (X,m).

Subgradient optimization uses these subgradients to generate a sequence of

nonnegative solutions {(xi,wl)}z=] to the Lagrangean dual by the rule:
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L+

A

% L2
; max {0’;\1 + 07y } ¥

o
J

2 L.2
max {0,m, + 8767 .
x { s 3 1 VJ

where 8% js the step length which satisfies ? 62 = 4+« , but eR 2% 0+.
Polyak [30] shows that the (Al,nl) given bylilis rule converge to an
optimal solution of L*. Since this method converges very slowly, Polyak
[31] proposes the following rule, which converges in é finite number of

steps to any target value L<L*:

& & (LL0MTY)
R RE

“where 0 < €y < pg <2 - €y < 2. Choosing 8% in this fashion is very
tricky, as the target value selected T must be less than L* (which is
unknown) for convergence (if a target value greater than L™ is chosen,

oscillation occurs).

Although there is no theoretical guarantee that using this last rule
for determining o* yields increasing lower bounds, experience in the
1iterature has shown that this will occur "using the correct combination

of artistic expertise and luck." [36, p.124]
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APPENDIX B

Section B.l

The following pages display the results of a complete SYSGEN itera-
tion done manually. Only one time period was considered, and the size of
the original load duration curve was reduced to 20 points. Its peak was
set at 1500 MW, the first half of which remained constant at the value
1.0, the second half of which it decreased linearly to zero. The initial
customer energy demand was 9828000 MWH. Only one committed and existing
plant (NUC-1000 MW) was considered, and the number of alternatives was cut
to two (CCO-500 MW; GTB-200 MW). The peak demand and plant capacities
were deliberately chosen not to be exact multiples of the LDC-spacing
(75 MW in this example) so as not to avoid generating errors due to inter-
polating between two points. The availability of the nuclear unit was 0.7,
the combined cycle oil unit was 0.8, and the gas turbine was 0.9. All
other data remained the same as that described in Chapter Five.

It was seen that very good agreement was obtained with the values of
the equivalent load duration curves, the most serious defect being that
the first point at which the curves go to zero had to occur on a 75-MW
increment, which in actuality was not always where it should Tand. This
resulted in discrepancies between the unserved energy figures. However,
the shadow prices agreed very closely, providing positive proof that
SYSGEN was correctly computing the dual multipliers as specified by the

equations in Chapter Two.
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Load, X

0

75
150
225
300
375
450
525
600
675
750
825
900
975
1050
1125
1200
1275
1350
1425
1500

Table B.1.1

Original Load Duration Curve
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Table B.1.2

Second Equivalent Load Duration Curve

Load, X g_z_(ﬁ__ Load, x Ez—(i)-

0 1.0 1875 0.2499999
75 1.0 1950 0.2199999

150 1.0 2025 0.1899999

225 1.0 2100 0.1599999

300 1.0 2175 0.1299999

375 1.0 2250 0.0999999

450 1.0 2325 0.0699999

525 1.0 2400 0.0399999

600 1.0 2475 0.00999999

675 1.0 2550 0.0

750 1.0

825 0.93

900 0.86 actual terminal pt.: 2500

975 0.79

1050 0.72

1125 0.65

1200 0.58

1275 0.51

1350 0.44

1425 0.37

1500 0.30

1575 0.30

1650 0.30

1725 0.30

1800 0.2799999

68



Table B.1.3

Third Equivalent Load Duration Curve

Load, x G5(x) Load, x Ga(x)
0 1.0 1875 0.2833332
15 1.0 1950 0.2453332

150 1.0 2025 0.2119999
225 1.0 2100 0.1879999
300 1.0 2175 0.1639999
375 1.0 2250 0.1386665
450 1.0 2325 0.1099998
525 1.0 2400 0.0799998
600 1.0 2475 0.0499998
675 1.0 2550 0.0359999
750 1.0 2625 0.0299999
825 0.944 2700 0.0239999
900 0.888 27175 0.0179999
975 0.832 2850 0.0119999
1050 0.776 2925 0.00599998
1125 0.720 3000 0.0

1200 0.664

1275 0.6033333

1350 0.5333333

1425 0.4633333 actual terminal pt.: 3000
1500 0.3933333

1575 0.3793333

1650 0.3653333

1725 0.3513333

1800 (. 3213332
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Load, x

75
150
225
300
375
450
525
600
675
750
825
" 900

975
1050
1125
1200
1275
1350
1425
1500
Ha78
1650
1725
1800

Final Equivalent Load Duration Curve

Table B.1.4

[]
S
2

-« & = » L S e e
o O O 0O O 0O o0 o o o o

OCJOOOOOOOOOOOCD—‘-—‘—‘—'—‘.—‘""—‘“‘-‘—‘

. 9496
.8992
.84693333
.79093333
.73493333
.67893333
.6187333
5801333
.48137774
.41199996
«39239896
.37279996
. 3550666
. 32666654
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Load, x

1875
1950
2025
2100
2175
2250

" 2325

2400
2475
2550
2625
2700
2775
2850
2925
3000
3075
3150
3225

O 0O OO0 0O 0 0o o0 O o o0 o0 o o0 o0 o o o o

8,(x)

.29106654
.25493312
.22166655
. 19626655
.17102211
. 14519979
.11699979
.08755534
.0579109
.04239998
.0339998
.02613332
.0195999
.0135999
.00759997
.00159999
.000999992
.00039998
.0

actual terminal pt.: 3200



1.0000000000
1.0000000000
0.9259¢992845
0.5799929305
0.3000000115
- 0.2200060075
0.070Q2000016

1.0000000000
1.0060000000
0.94399998¢68
0.6639999874
0.3793333414
0.2453333423
0.11C000C004
0.0239999989

1.0000000000
1.0000000000
0.9495999894
0.6789 233256
0.3924000106
0.2545333443
0.1170000026
0.0261 333329
0.0010000002

1.0000000000
1.0000060000

Table B.1.5

Computational Results

] s ——— - - - -

1.0000000000
1.0000000000

0.860000Q107 0.7899995952
0.5100000167 0.4400000012
0.3000000119 0.3000000119
0.190C000111 0.1600000087
0.0400000052 0.0100000028
Third_Equi

1.0000000000
1.000000000Q0
0.8880000069
0.6033333401
0.3653333391
0.2120000100
0.0800000036
0.0179999996

Final

1.0000000000
1.0000000000
0.8992000089

0.6187333440,

0.3728000083
0.2216666785
0.0875555607
0.0156000000
0.0004000001

1.0006039000
1.0000000000
0.7200000215

0.3700000274 .

0.2800000064
0.1300000004
0.0

1.000000C0200
1.0000000000
0.6500000060
0.3000000119
0.2500000099
Q.1000000040

] - ——— S e -

1.0000000000°
1.0000000000
0.8319999937
0.5333333274
0.3513333397
0.1880000077
0.0500000016
0.01199935998

-1.0000000000
1.0000000000
.0.8469333308
0.5501333316
0.3550666738
0.1962668764
0.05791111486
0.0136000002
0.0
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1.0000000000
1.9000000000
0.7760000138
0.4633333508
0.3213333383
0.1640000007
0.23359999%99
0.0083000005

1.0000000000
1.0000000000
0.7909333487
0.4813777972
0.3266666731
0.1710222254
0.0423000016
0.0076000008

1.0000000000
1.C0000C0000
0.7200000006
0.3933333381
0.2833333413
0.1386658696
0.02999399994
0.0

Equivalent Load Duration Curve

- —— S . - —— -

1.0000000000
1.0000000000
0.7349333377
0.4120000090
0.29105866763
0.1452000051
0.0340000007
0.0016000003



Table B.1.6

Comparison of Relevant Results

hand
Energy generated by
first plant (MWH) 5860400
First iteration: A! -2.8839113
Unserved energy after
first plant (MWH) 3965414.2
Energy generated by
Second plant (MWH) 1863679.9
Second iteration: Az -2.884416
A! 1.6029574
Unserved energy after
second plant (MWH) 2324429.8
Energy generated by
third plant (MWH) 589155.74
Third iteration: AS -10.27468
B, 2.6804542
A2 - 2.8844131
Unserved energy after
third plant (MWH) - 1515102.26
Final computatjops AI 4.6359063
(before normailizing) 2 4.8518847
F 0.0399081
*x
(after normalizing ') A 0.0404992%**
% 0.042386
33 0.000348637
ul _0.0609777%**
u? 0.2412444
Wl 0.3216443

* ,
code contained statement which set A of the marginal plant equal to zero

*k ; . 6
normalization factor = 8736/10

computer
5860397

-2.88391

3966137.0

1863676.0

-2.88442
1.60297

2104059.0

589153.50

-10.2747
2.68046
- 2.88442

1515130.0
4.63592
4.8518800
0.0"
0.0404993%**
0.042386
0.0%

0.0609778***
0.2412440
0.3216440

Jedkk
shadow prices for CEX plants are not used in master problem
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Section B.2

The discrepancy in the A of the marginal plant, M MRG? which Bloom [4]
maintains should equal zero, but which computationally turns out to be non-
zero, was extremely worrisome. Having eliminated the possibility of a
coding error through the hand verification of the previous section, the
formulas which lead to the equations for Hij(u) were re-derived carefully.
With no errors turning up here, it was decided to go back to the original
equation for A, and verify that it does indeed yield XIMRG = 0.0 theoreti-

cally. The following equations step through the derivation (Imrg = I below):

A= - ZoEr(n) - Sy E(Y) for i< I
3y 3Y

2 . ?
A1 20 for 1> 1 implies m 3¢ EG(Y) = - 2R (Y)
3Y 3y

] I

o ?
T G,,-(Q)dQ = - F
pa iR IS8

3 U
pI _"—I f GI(Q)dQ ]
U AT

I-1
o UI
9

2 UI UI-]
= - FIp ,..a_[ [ 6.(Q)dq - | G,(Q)dQ
Iyl ! 0 I

WM,y (=) = Hey (DT 2 - FlpglHy () = b (0T

I+l ,1
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HI+],I(“) = 0, by definition
UI-1
I-1 3 I-1
He (U= =22 [ G (QsY', ey YTTT)AQ
I1,I aYI 0 I
30
= - G.(0) —
I BYI
=] =0 since the derivative of a constant equals zero
I-1
" GI(UI-I) U ,
aY
. 1.1 i, . I
=0 since U'"'= £ Y is not a function of Y
i=]
UI-] :
3 I-1
+ G, (Q:Y 5...,Y"  )dQ
o oyl !
= 0 since GI is not a function of YI
=0
I, 2 _1 i
= - Hpyq,p(U7) = -Fefip (U7

I

I g A I
- [pIHI,I(U ) + qIHI,I(U -Y )] ==F pIHI,I(U )

Again, since:
L ooly I-1, _
HI,I(U -Y') = HI,I(U ) 0

- gty (1) 2 Pl (0f
I"1,1 Prig, 1)

Ifms= FI, which is the value currently used, then the above equality holds,

confirming the result that A = 0.0.

Imrg
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APPENDIX C

The §ollowing example was constructed by Michael Canamanis of the
Massachusetts Institute of Technology Energy Laboratonry.

Assume a triangular LDC with U = system peak. Only two units are
considered in this example, unit 1 being the first loaded, 2 being the
second, with capacities of x1 and XZ’ and availabilities of P and Pos
respectively. The energy generated by each unit shall be calculated

below (invoking the rule of similar triangles to determine points on the

LDC): . ] (U-X4) U p](uex])z

E] [ §-- U . 1 - E-. (U“X1) . ‘—H_—_.]p] = 2 - 2

. ; (U-X,)
E2 (- [ E-o U . 1 - E" (U-Xz) * U ](]-p])pz

U-X1-X5)
; 1 (U-X,-X,
+ [ E-' U . ] - ? .. (U‘X]-Xz) " __——Ud__—
1 : (U-Xy)
- E-. U - 1 + ?" (U‘X]) —-Tr_qu]pz

2 2 2
(1-p)p,U  (1-py)p, (U=X,)" Py, (U=Xq=Xp)™  Pypo(U-Xy)
I R s KA SO i Al M S bl

2 2U 2u 2U

Therefore the sum of the energies generated is given by:

_ U U 1 2 5

- (U-Xz)z(]-pi)pz - (U-X1-XZ)2p1p2] = % []—q1q2]

1 2
= TLT [(U'x'|)2(p-|"p'lpz) + (U'Xz)zchpz * (U'X]'Xz) p‘|p2]
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Now assume that 9; =4 =4 and Py = Pp = P:

' U 2
Ey + By =5 [1-97]

U [1-¢20 - &5 [(U-xp)%0 + (U-xp)%q + (U-Xp=Xp) 7]

Let p = 0.9, U = 2000 MW, X, = 1500 MW.

1

It is clear that:

1
E] # E2 7 " Ue«1-+p=2900 Mi-years.

Now equating both sides of equation (*), using the above values, and

solving for X2’ yields:

900

1000 (1-.01) - 0 [ZSOOO'F(U +X2 - 2X U) N

400

+

(250000 + xg - 1ooox2)p]

900 = 990 - 2= [25000 + 400000 + EE
- 40000 10
2
- 400X, + 225000 + X3*.9 - 9oox2]

90 - 146.25 + .2925X, - .ooozzsxg = 0;- .ooozzsxg + .2925%, - 56.25 = 0
E. w -bzvb*-4dac_ _ -.2925+/(.2925) “-. 050625
2 7a . 000450

_ -.2925:.18689904
-.000450

= 234.668,1065.33 = 234.668

as X] + X2 < U.
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Therefore, starting with X1 = 1500 MW, it is seen that X2 = 234.668 MW
generates as much energy as an extra 500 MW of the first unit. Carrying
out the same calculation in reverse, it is seen that, with a starting value
of X] = 234.668 MW, X2 = 1500 MW of fictitious capacity would generate as
much energy as adding an extra 1765.33 MW of the first unit to X]. These
results are summarized in Table C.1, which clearly shows that the ratio

of augmented capacity to fictitious capacity increases as the margin is

approached.
Table C.1
Comparison of Augmented vs. Fictitious Capacity Required
(all capacities in MW)
amount by which

alternate one needs to augment necessary fictitious
capacity some alternative capacity ratio

1500 500 234.668 2.13
234.668 1765.33 1500.00 1.17688
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APPENDIX D

The runs in this thesis were done on an IBM 370/168. The default
on memory size is 440K. The version of SYSGEN-4 used with GBD required
700K to be loaded into core. Most of the jobs were run in 800K, to leave
a margin for the LP. The ordinary LP was dimensioned to handle up to 4
alternatives, 15 time periods, and 100 constraints. This was good for up
to 50 iterations in the aggregated case. The disaggregated case required
a larger matrix, SO one was created which extended the 100-constraint
capacity to 200 constraints, SEXOP's 1imit. This required 1024K to load
into core, but no account was taken of the fact that the number of nonzero
entries would be about 60-70% of the (# rows)*(# columns). Setting this
variable down would conserve on storage requirements.

The maximum number of constraints in the aggregated case is 2 - K,
where K = # iterations. The maximum number constraints in the disaggregated
case is (T+1)*K, where T = # time peribds. Therefore, with a 20 time
period study, at worst only 9 iterations could be run keeping all the
constraints; then a procedure would have to be arranged to discard old,
unused constraints.

The following tables give a listing of the actual CPU times (in
seconds) required to run 1, 2, and 4 time period cases, aggregated and
disaggregated. It can be seen that SYSGEN requires about 2.5 seconds for

1 and 2 time periods, and slightly over 3 seconds for 4 time periods.
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Within each run, the times are fairly constant. The master problem,
naturally, increases its time requirements as the number of iterations
increase. It takes roughly 1.5 seconds in the 1 and 2 time period case.
With 4 time periods (aggregated), it increases in the Tater iterations
to about 2.25 seconds, while the 4 time period (disaggregated) case
increases to just slightly under 3 seconds. A run of SYSGEN with 9
time periods was done, and found that it requires approximately 5

seconds of CPU time.
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0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
1)
12)
13)
14)
15)
16)

Table D.1

CPU times (sec.) - 1 time period

SYSGEN

NNNNNNNNNNNNNNNNN

51
.81
.74
.62
.59
.45
it 1
.42
.62
.49
.48
.42
.43
.36
.58
<33
.41
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11)
12)
13)
14)
15)
16)
17)

MASTER

1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1

.42
.49
.62
55
.58
.49
.57
B2
.56
.54
.56
.60
.59
.63
.68
Bl
.64



0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
1)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)

Table D.2

CPU times (sec.) - 2 time periods (aggregated)

SYSGEN

2.

2
2

37

.38
.47
2.46
2.51
2.43
2.59
2.46
2.65
251
2.46
2,59
2.54
2.62
2.54
2.38
2.
2
2
2
2
2
2
2
2
2
Z
2
2
2

48

.49
.59
«a1
.43
-41
.74
03
.58
B
=76
.55
<81
.61

81

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)

MASTER

1
1
1
1
1
1
1
1

.36
Ty
.42
44
.40
.46
.52
.49
1.54
1.53
1.52
1.52
1.63
1.61
1.63
1.51
1.60
1.64
1.
1
1
1
1
1
1
1
1
1
1
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.55
.63
.58
12
.80
.81
s
.81
.79
1e



0)
1)
2)
3)
4)
5)
6)

8)

9)
10)
1)
12)
13)
14)
15)
16)
17)
18)
19)
20)

Table D.3

CPU times (sec.) - 2 time periods (disaggregated)

SYSGEN

™~

NNNNNI\JNNNNNNNNNNNNNN

=
o

.56
.53
.56
.50
.56
.64
.58
Bl
.54
.89
.66
62
.58
.54
«B7
.82
.68
.61
.54
|

82

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
1)
12)
13)
14)
15)
16)
17)
18)
19)
20)

MASTER

..-l-—l-Ju-J—l_J—l—-l.—l—l-.—l-—l—-l.——l—l..-l-—J—l-.-l.—l

43
.46
.46
.45
.53
.50
+98
.54
.51
.64
.63
.64
.65
.73
.81
3 F D
.80
.85
.87
.82



Table D.4

CPU times (sec.) - 4 time periods (aggregated)

SYSGEN MASTER
0) 2.92 26) 3.28 26) 1.96
1) 3.07 27)  3.21 1) 1.56 27) 2.08
2)  3.13 28) 3.15 2)  1.51 28) 2.13
3)  2.92 29) 3.13 3)  1.56 29) 2.09
4)  3.26 30)  3.19 4) 1.57 30) 2.05
5) 3.18 31)  3.23 5) 1.64 31)  2.20
6) 3.16 32) 3.18 6) 1.73 32) 2.18
7)  3.06 33)  3.14 7)  1.65 33) 2.14
8) 3.12 34)  3.19 8) 1.69 38)  2.17
9)  3.05 35)  3.21 9) 1.6 35)  2.25

10)  3.14 36) 3.21 10)  1.65 36)  2.22

1) 2.97 37)  3.14 1)  1.64 37) 2.24

12)  3.27 38) 3.24 12) 1.75 38) 2.24

13)  3.08 39)  3.11 13)  1.77 39) 2.33

14)  3.36 40)  3.01 14)  1.78 40) 2.24

15)  3.04 15)  1.82

16) 3.25 16) 1.67

17)  3.00 17)  1.79

18)  3.08 18) 1.74

19) 3.16 19) 1.82

20) 3.42 20) 1.87

21) 3.0l 21)  1.82

22)  2.97 22) 1.75

23) 2.94 23) 1.84

24)  3.12 24) 1.96

25) 3.24 25) 2.13
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Table D.5
CPU times (sec.) - 4 time periods (disaggregated)

0) 2.76
1) 2.93 31)  3.22 1) 1.51 31) 2.64
2) 2.87 32) 3.1 2)  1.43 32)  2.42
3) 2.88 33)  3.23 3)  1.49 33) 2.60
4) 2.72 34) 3.10 4) 1.46 34) 2.82
5) 3.07 35)  3.12 5) 1.56 35) 2.84
6) 2.88 36) 3.27 6) 1.57 36) 2.81
7)  2.94 37) 3.03 7)  1.65 37)  2.70
8) 2.93 38) 3.02 8) 1.70 38) 2.93
9) 3.6 39) 3.03 9) 1.77 39) 2.78

10) 3.23 40) 2.95 10)  1.79 40) 2.68

11)  3.01 41)  2.90 1)  1.81 41) 2.92

12)  3.27 42) 2.93 12)  1.9C 42) 2.80

13)  3.24 43) 2.94 13)  2.07 43) 2.78

14)  3.23 44)  3.01 14)  2.01 44)  2.91

15)  3.12 15)  2.07

16) 3.16 16) 2.09

17) 3.1 17)  2.17

18)  3.12 18) 2.17

19) 3.14 19)  2.19

20)  3.05 20) 2.20

21y 3.2 21)  2.36

22)  3.18 22) 2.40

23)  3.00 23)  3.00

24)  3.26 24)  2.39

25) 3.23 25) 2.49

26) 3.28 26) 2.55

27y 3.3 27) 2.49

28)  3.13 28)  2.57

29)  3.01 29) 2.56

30)  3.11 30) 2.47

84



10

11

12

13

REFERENCES

Anderson, D., "Models for Determining Least Cost Investments in
Electricity Supply," Bell Journal of Economics and Management
Science, Spring 1972

Bazaraa, M.S. and C.M. Shetty, Nonlinear Programming: Theory and
Applications, New York, Wiley, 1979

Benders, J.F..Partitioning Procedures for Solving Mixed Variables
Programming Problems," Numerische Mathematik, Vol. 4, 1962

Bloom, J., Decomposition and Probabilisitc Simulation in Electric
Utility Planning Models, PhD thesis, MIT Operations Research
Center, Technical Report #154, Cambridge, Mass., August 1978

Bloom, J., "Long-Range Generation Expansion Planning for Electric
Utilities Using Decomposition and Probabilistic Simulation,"
in preparation

Bloom, J., "Optimal Generation Expansion Planning for Electric
Utilities Using Decomposition and Probabilistic Simulation
Techniques," in preparation

Bloom, J., "Solving an Electricity Generating Capacity Expansion
Planning Problem by Generalized Benders' Decomposition," in
preparation.

Booth, R.R., "Power System Simulation Model Based on Probebility
Analysis," IEEE Transactions on Power Apparatus and Systems,
Vol. PAS-91, Jan./Feb. 1972

Booth, R.R., "The A-B-C of Probabilisitc Simulation," Feb., 1971

Finger, S., Electric Power System Production Costing and Reliability
Analysis Including Hydroelectric, Storage, and Time Dependent
Power Plants, MIT Energy Laboratory Technical Report, aMIT-EL
79-006, Cambridge, July 1979 :

Finger, S., SYSGEN: Production Costing and Reliability Model: User
Documentation, MIT Energy Laboratory lechnical Report, #MIT-EL
79-020, Cambridge, July 1979

Garfinkel, R. and G. Nemhauser, Integer Programming, Wiley
Publishing Co., New York, 1972

Geoffrion, A.M., "Duality in Nonlinear Programming: A Simplified
Applications-Oriented Development," from Perspectives on
Optimization: A Collection of Expository Articles, A.M. Geoffrion
(ed.), Addison-Wesley Publishing Co., Reading, Mass., 1972

85



14

15

16

17

18

19

20

21

22

24

25

26

27

Geoffrion, A.M., "Elements of Large-Scale Mathematical Programming,"
from Perspectives on Optimization: A Collection of Expository
Articles, A.M. Geoffrion (ed.), Addison-Wesley Publishing Co.,
Reading, Mass., 1972

Geoffrion, A.M., "Generalized Benders' Decomposition," Journal of
Optimization Theory and Applications, Vol. 10, No. 4, 1972

Geoffrion, A.M., and G. Graves, "Multi-Commodity Distribution System
Design by Benders' Decomposition," Management Science, Vol. 20,
No. 5, January 1974

Healy, T., Energy, Electric Power, and Man, Boyd and Fraser
Publishing Co., San Francisco, 1974

Hicks, K., and S. Lee, "Automation Removes Uncertainty from Power
Systems Planning," Consulting Engineer, Vol. 46, No. 4, April 1976

Hicks, K., "Financial and Power Production Cost Programs for
Corporate Planning - Part II: Power Production Cost," presented
at the IEEE Summer Power Meeting and EHV Conference, Los Angeles,
July 1970

Joy, D.S. and R. T. Jenkins, "A Probabilistic Model for Estimating
the Operating Cost of an Electric Power Generating System,"
Oak Ridge National Laboratory, ORN-TM-3549, October 1971

Lasdon, L.S., Optimization Theory for Large Systems, Macmillan
‘Publishing Co., Inc., New York, 1970

Lee, S., N. Stoughton and N. Baderscher, Comparative Analysis of
Generation Planning Models for Application to Regional Power
System Planning, systems Control, Inc., Palo Alto, 1978

Magnanti, T.L. and R.T. Wong, "Accelerating Benders' Decomposition:
Algorithmic Enhancements and Model Selection Criteria," Discussion
Paper 8003, Center for Operations Research and Econometrics, MIT,
Cambridge, January 1980

Marsten, R.E., Users Manual for SEXQP, Release 4, Sloan School of
Management, MIT, Cambridge, February 1974

Moriarty,E., A Structural Re-Development of an Economic Environmental
Generation Expansion Model, BS Thesis, MIT, Department of
Mechanical Engineering, Cambridge, 1976

Nicholson, T.A.J., Optimization in Industry, Vol. I: Optimization
Techniques, Chicago: Aldine-Atherton, Inc., 1971

Noonan, F. and R.J. Giglic, "A Mathematical Programming Model for
Long Range Planning of Electric Power Generation," presented at
the ORSA/TIMS Puerto Rico Meeting, Fall 1974

86



28

29

30

31

22

33

34

35

36

a7

38

39

Noonan, F. and R.J. Giglio, "Planning Electric Power Generation:
A Nonlinear Mixed Integer Model Employing Benders' Decomposition,'
Management Science, Vol. 23, No. 9, May 1977

Phillips, D., F.P. Jenkin, J.A.T. Pritchard and K. Rybicki, "A Mathe-
matical Model for Determining Generation Plant Mix," Third PSCC,
Rome, 1969

Polyak, B.T., "A General Method for Solving Extremal Problems,"
Soviet Mathematics Doklady. Vol. 8, 1967

Polyak, B.T., "Minimization of Unsmooth Functionals," USSR Computa-
tional Mathematics and Mathematical Physics, Vol. 9, 1969

Rau, N.S., P. Toy and K.F. Schenk, "Expected Energy Production Costs
by the Method of Moments," presented at the IEEE Summer Meeting,
1979

Ruane, M., S. Finger and E. Morirty, GEM Operator's Manual, MIT
Energy Laboratory, Cambridge, January 1977

Schweppe, F.C., et al., "Economic-Environmental System Planning,"”
presented at the IEEE Power Engineering Society 1974 Summer
Meeting and Energy Resources Conference, 74 CHO 912-6-PWR,
July 1974 -

Shapiro, J.F., "Decomposition Methods for Mathematical Programming/
Economic Equilibrium Energy Planning Models," TIMS Studies in the
Management Sciences, Vol. 10, 1978

Shapiro, J.F., "A Survey of Langrangean Techniques for Discrete
Optimization," Annals of Discrete Mathematics, Vol. 5, 1979

Synthetic Electric Utility Systems for Evaluating Advanced Technolo-
gies, EPRI EM-285, Project TPS 75-615, Final Report, February 1977

Telson, M., The Economics of Reliability for Electric Generation
Systems, MIT Energy Laboratory Report, MIT-EL 73-016, Cambridge,
May 1973

Zangwill, W.I., Nonlinear Programming: A Unified Approach, Englewood
Cliffs: Prentice-Hall, Inc., 1969.

87



BIOGRAPHICAL NOTE

Frances Annette Habib, the author of this paper, was born in
Santurce, Puerto Rico in 1956. Raised in Massachusetts, she was a
National Merit Finélist and Valedictorian of her high school class.
She attended Harvard University (Radcliffe College), where she received
an A.B. in Engineering and Applied Sciences, cum laude, in 1978. While
pursuing graduate study in Operations Research at MIT she worked as a
teaching assistant for an undergréduate probability course, and as a
research assistant at Charles Stark Draper Laboratory and the Massachusetts

Institute of Technology Energy Laboratory.

Ms. Habib belongs to Sigma Xi, and is a member of ORSA and the
IEEE. Upon completion of her master's program she will join the Telephone

Operations Technology Center of GTE Laboratories Inc. in Waltham, Mass.

88





