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Abstract

Based on attention mechanisms, the transformer architecture has been widely adopted in

machine learning applications, including natural language processing and computer vision.

A common strategy for improving transformer models has been to greatly increase the num-

ber of parameters. However, training large transformer models requires prohibitively large

computation for consumer hardware. High-performance computing clusters equipped with

massively-parallel hardware such as graphical processing units (GPU) are the perfect en-

vironments to improve model performance by automatically searching possible transformer

model architectures, thus removing the requirement of manually tuning the architecture.

This project aims to demonstrate the potential of HPC clusters in training huge vision

transformer models through Neural Architecture Search (NAS) methods. We chose image

super-resolution as our low-level vision task and the Swin Transformer as our vision trans-

former backbone. This work demonstrates how transformer networks can be improved after

conducting NAS on HPC clusters, followed by distributed deep learning training. Our re-

sults show that HPC clusters will drastically reduce the searching and training time in NAS

while at the same time producing more fine-tuned and accurate super-resolution transformer

models.
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Introduction

Deep Learning

Given the emergence of extensive data and parallel computer hardware, deep learning has

been driving advances in many machine learning applications, including high-level natural

language processing (e.g. natural language generation and understanding), high-level com-

puter vision (e.g. image classification and visual question-answering), and low-level computer

vision (e.g. image segmentation, image super-resolution) tasks. Deep Learning relies on a

statistical and graphical data structure called a Deep Neural Network (DNN). DNNs serve as

a model to find hidden patterns in data and make predictions with great accuracy. A DNN

takes a single tensor as input data, propagates it through a series of layers, and produces

output predictions. Output predictions can be classification values or real values depending

on the task goal. A DNN performs such predictions on many sets of training samples and

adjusts the internal parameters to reduce the output error.

A DNN is built upon several layers of ”neurons.” Between a given pair of neurons is a

connection with a specific weight value. Each neuron applies a non-linear mapping on the

weighted sum of its incoming values. The output is called an activation value, and the

mapping process is called an activation function. The activation value is passed further

down the network to the next neuron. For vision applications, the input to the first layer is

usually the pixel intensity values of the original image. The second layer fetches input from

the first layer’s activation value and propagates its outputs to the third layer. This phase of

a training iteration is known as a forward pass.

After each forward pass, a loss value will be calculated between the DNN’s output and the

expected value. In order to reduce the loss value, an algorithm called backpropagation will

be applied to compute and propagate backwards the gradient of the loss value with respect

to each neuron connection’s weight in the network. This phase of a training iteration is

known as a backward pass. The gradient has the information on the direction the weight

vectors should proceed to realize the steepest decrease in the loss function. This method
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of repeatedly evaluating the gradient of the loss function and performing updates on the

weight value according to the direction of the gradient is called gradient descent. A brief

mathematical expression of gradient descent is in the following equation:

w⃗′ = w⃗ − α×∇E(w⃗)

w⃗′ is the updated weight vector in the network expected to reduce the loss value. ∇E(w⃗)

is the gradient of the loss function evaluated on the current weight vector. α is called the

learning rate, and indicates how far along a given direction we should step. Choosing the

correct learning rate is essential in training a DNN. As expressed in the gradient descent

equation, we are making an update in the negative direction of the loss gradient. There are

many variations of gradient descent, such as mini-batch gradient descent, where the gradient

will be computed over batched of the training data, not the entire training set. This variant

performs better on large-scale applications with large amounts of training data.

DNNs have become the basis of many other feed-forward networks, which are experts

in handling tasks like computer vision and natural language processing. A convolutional

neural network (CNN) is a common example.

In Figure 1 is a multi-layer deep fully connected neural network that contains a series of

fully connected layers. A fully connected layer establishes connections between every neuron

in one layer to another. A fully connected network is easily adoptable to a wide range of tasks

since it doesn’t stage specific assumptions on the input. However compared to task-specific

networks, it has rather weaker performance. Different from a conventional fully connected

neural networks, the CNNs assume that inputs are images.

In Figure 2 is a typical cnn architecture. There are several main types of layers used to

build CNNs as shown in Figure 2. An input layer will hold the original raw pixel values of

the incoming image. A convolution layer will perform a dot product between the neurons’

weights and a small region of input data in the image. Dependent on the task type, various

functions will be in use. A pooling layer will typically apply a downsampling operation on the

incoming volume and reduce its width and height dimensions. Finally, the fully-connected
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Figure 1: A Multi-layer Deep Fully Connected Network

Figure 2: Typical CNN architecture
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Figure 3: 3D CNN structure

layer at the tail of the network is responsible for translating incoming values to class scores

or other notable forms. As the name implies, each neuron in this layer is connected to all

the neurons in the previous layer. With the help of these layers and a feed-forward pass,

CNN transforms an input image from its raw pixel values in every dimension towards a final

score for further applications.

In Figure 3, we can see that a CNN arranges its neurons in a 3D (width, height, depth)

fashion in each layer. Every layer of this CNN will transform the input image, a three

dimension data type to a 3D matrix of activation values. The red input layer of the CNN

holds the input image. Correspondingly, the width, height and depth of that layer will be

that of the image. The depth of the layer will be 3, indicating the red, green and blue

channels. As shown in the figures above, with the help of convolutional layers, CNNs have

less number of layers than fully connected networks. As a result, they require less number of

weights during training and thus are highly efficient for image tasks. Also, the internal 3D

dimensionality of a convolutional layer caters to input images and excels at extracting out

high-quality features from the images [2].

Super Resolution

Image super-resolution (SR) is a long-lasting, low-level vision task that aims to generate

high-resolution (HR) images from given low-resolution (LR) images. Image super-resolution

has various applications in the real world, including medical imaging [3, 4, 5], media content
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enhancement, security [6, 7] and so on. Also, it can assist other computer vision tasks in

the field [8, 9, 10, 11, 12]. However, given the existence of many possible high-resolution

images corresponding to a single low-resolution input image, super-resolution is a demanding

problem that is difficult to define. There has been extensive research into solving the problem

before deep learning became widespread. Various classical methods have been introduced to

model the degradation process from HR images to LR images. Such methods include basic

cubic interpolation and filtering [13], image registration [14, 15], gradient-based methods

[16], and many more [8, 17], [18, 19, 20, 21].

Figure 4: Traditional bicubic super-resolution vs Deep Leaning based super-resolution using EDSR [22]

With the help of deep learning techniques and a growing scale of datasets, DNN-based

super-resolution methods have gained significant adoption and produce state-of-the-art per-

formance on many benchmarks. From the early CNN-based methods, [23] to recent transformer-

based methods [24, 25], techniques usually differ in the following areas: novel network ar-

chitectures, exploration of different loss functions, and learning strategies. To illustrate the

effect of upscaling an image using deep learning, Figure 4 provides a comparison between the

effect of traditional bicubic interpolation(left) and modern DNN-based method(right). The

image quality is highly improved with deep learning. Popular datasets for SR include DIV2K

[26], Set5 [27] and Set14 [28]. Unlike other vision tasks, image quality assessment(IQA) is

the loss function for image SR. The Peak Signal-to-Noise Ratio (PSNR), together with
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Structural Similarity Index (SSIM) is a popular combination in addressing both subjective

methods based on humans’ perception and objective computational methods.

Transformer Models

The transformer architecture was introduced to handle natural-language processing tasks,

specifically sequence transduction. It is based on the attention mechanism [29], which is

able to model dependencies between different language tokens regardless of their distances.

This mechanism dispenses the need for recurrent models and achieves a higher degree of

parallelization and high translation quality. Orthogonal to recurrent neural networks, a

transformer doesn’t handle data in order but instead provides information for any position

in the input sequence. The original transformer architecture is depicted in Figure 5.

Figure 5: Overview of original transformer architecture [29]
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The original transformer is a sequence-to-sequence model and includes an encoder-decoder

design. Each encoder block is composed of a multi-head self-attention module (MHSA)

and a position-wise feed-forward network (FFN). There are also residual connections [30]

around each module, followed by layer normalization [31]. The decoder module is similar

to the encoder but is different in that an additional multi-head attention is computed over

the output of the encoder module. Also, An additional masking is applied to the first

MHSA module so that previous positions are prevented to attend subsequent positions. This

masking together with a one position offset on the output embedding ensure that information

on current position i is only dependent on positions less than i. When a sentence is passed

into a transformer, the attention layer will calculate the attention weights between every

language token at the same time. The attention module will embed every token with the

context of the token itself as well as a weighted matrix of other tokens in the sentence. Each

token in the matrix is assigned an attention weight. The attention module is inspired by

how the human brain assigns uneven attention across input data. The calculation of the

attention matrix can be expressed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The inputs are queries (Q), keys (K) and values (V ). The dot products of the query with

all the keys are computed before dividing by
√
dk. Then, a softmax function is applied to

obtain each value’s weights.

Inspired by the success of applying Transformers to NLP, many researchers have become

curious about the transformer architecture’s potential in handling computer vision tasks.

Many works have emerged trying to combine convolution architectures with the attention

mechanism. Typical approaches use a method of dividing up images into patches before

feeding them as image tokens into the Transformer [32]. As we can see in Figure 6, the

image patches are handled similarly to the tokens (words) in NLP. After the input image is

splitted into fixed sized patches, the patches then go through a process of linear projection

with position embeddings and are further fed into a regular Transformer Encoder. However,
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while images illustrate information at various scales, a sufficient vision transformer should

not be limited to fixed-scale tokens. The standard vision transformer conducts global self-

attention, which computes the relationships between an image patch and all other patches.

Such computation exhibits quadratic computational complexity with respect to the number

of patches, making it unsuitable for dense image prediction and high-resolution image tasks

(e.g. image segmentation and image super-resolution).

Figure 6: Overview of vision transformer (ViT) [32]

The Swin Transformer [33] recently emerged as a solution to the previous concerns. It

features a hierarchical representation that can extract information from small-sized patches

and leverage them for bigger patches. In Figure 7, we can see that compared to ViT that pro-

duces feature maps of only one low resolution, Swin Transformer gradually merges patches

as it dives into deeper layers. With this strategy, Swin Transformer is able to leverage and

integrate different features from different scales, making it a general-purpose backbone for

various vision tasks. [33]. In addition, Swin Transformer designed a local non-overlapping

window structure that includes a fixed size of image patches and conducted local attention

computation within windows. Different than the global attention scheme in ViT, this ap-

proach reduced the computation complexity from quadratic to linear. In order to ensure
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context exchange between windows, Swin Transformer also implements cross-window con-

nections by shifting windows in successive transformer blocks as illustrated in Figure 8. In

general, as depicted in Figure 9, a Swin Transformer architecture added additional patch

merging stages which conducts self-attention at its own scale. Each stage has several succes-

sive blocks of Swin Transformer encoder-decoder structure that includes multi-head attention

modules with shifted window approach. Such designs make Swin Transformer extremely effi-

cient and powerful in achieving new state-of-the-art models in vision tasks.[33].By addressing

long-range dependency modeling and fewer computational resources, Swin Transformers have

been applied to image super-resolution. The recent SwinIR [25] model consisting of several

Swin Transformer layers has shown better Peak Signal-to-Noise Ratio (PSNR) and fewer

parameters. We choose the Swin Transformer as a general backbone for vision transformers

in this project.

Figure 7: (left)Swin Transformer [33] vs (right)Vision Transformer [32] in feature representation

Neural Architecture Search

Tuning a vision Transformer network to reach its best performance is always challenging.

Many hyperparameters are vital in this process, including the depth, embedding dimension,

and the number of heads. It is difficult to find a good combination of them. Most previous

9



Figure 8: shifted window approach [33]

Figure 9: Swin Transformer architecture [33]

10



works focus on manually crafting the best vision Transformer, while only a few elaborated on

automating transformer design using neural architecture search (NAS). NAS is the process

of automating architecture engineering. Specifically, it is a strategy for automating machine

learning, a subfield in AutoML [34, 35]. NAS is characterized by three dimensions: search

space, search strategy, and performance estimation strategy [36]. Relationships

between those three fields are illustrated in Figure 10

Figure 10: Abstract illustration of NAS methods

In short, a search strategy will select a candidate architecture from a predefined search

space. The candidate will be evaluated under the performance estimation strategy. The final

estimate will be returned to the search strategy for the following search. The search space is

the definition of the candidates than can be selected. The size of the search space depends

on the preset knowledge of the typical properties of possible architectures. The search

strategy draws the details of how to explore in a search space. The performance estimation

strategy fulfills the objective of NAS: to find architectures that entail the best performance on

unknown data [36]. It is the process of evaluating an architecture’s potential performance.

A basic strategy is training the candidate networks and comparing their metrics. In this

project, we integrated ideas from a one-shot vision Transformer search framework called

AutoFormer, and a hierarchical search strategy proposed by GliT [37]. The AutoFormer

adopted a search strategy where different transformer blocks share weights for their parts in

each layer [38]. The so-called weight entanglement enabled many subnets in the supernet to

be well-trained. It further allows more architectures to reach different resource constraints

while also displaying similar accuracy.

The larger a search space, the more architectures that need to be tested, trained and

11



evaluated. Although there have been much effort in reducing search space complexity [36],

NAS methods are generally very computationally expensive. High-performance clusters can

provide such a demanding environment. With the help of thousands of nodes, each with

several advanced Graphical Processing Units (GPU), the search for candidate networks and

the ensuing full training session can be accelerated. The results of this project are validated

and obtained from several large-scale national high-performance clusters.
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Related Work

Image Super-Resolution

Generating a high-resolution image from a low-resolution ground-truth is a long-standing

research challenge in the computer and information sciences. The first attempts at super-

resolution algorithms involved transforming (wavelet- or fourier-based) the LR image to the

frequency domain, then estimating the HR image in the frequency domain, before finally

transforming the HR image back to the spatial domain [39, 40, 15]. While the frequency

domain is attractive due to its theoretical simplicity (the LR and HR images are directly

related in the frequency domain) and computational efficiency (efficient fourier transform

algorithms have received significant attention due to their ubiquity in scientific applications),

such methods are restricted to simple models of motion blur corrections and are highly

sensitive. All subsequent super-resolution techniques, including this work, are focused on

the spatial domain. Early algorithmic attempts include clever interpolation [17], projections

[14, 18], and regularizations [19, 20, 21].

Once deep learning was demonstrated with CNN architectures [41] on the imagenet

dataset [2], early super-resolution CNNs began to emerge [23, 42]. The main intuition for

CNN-based SR is that if CNN architectures are provided enough LR-HR image pairs, they

will learn to reconstruct common image substructures. Therefore, most early CNN SR solu-

tions first upscale the LR image via interpolation, then ”fill in the gaps” using convolutional

layers. Subsequent works introduced architectural improvements such as residual blocks [30]

and residual scaling [22]. We note that CNN-based image super-resolution techniques can

be easily scaled to HPC systems using data parallelism [43].

Vision Transformers for Super-Resolution

Attention-based methods such as transformers have recently been applied to image SR [24,

25]. The first transformer for super resolution was TTSR [24], which uses HR reference

images of similar subjects to transfer high-resolution textures to more efficiently ”fill in the

13



gaps” of upscaled images. SwinIR [25] is a more recent SR transformer that both reduces

the computational complexity (by replacing TTSR’s self-attention with the window-attention

mechanism introduced in [33]) and removes the training restriction of HR reference images.

Neural Architecture Search

Neural Architecture Search (NAS) is a DL architecture-selection paradigm that iteratively

modifies a base architecture within a space of architecture settings (known as the search

space) using a search strategy. While NAS has been successfully applied to CNN archi-

tectures [44], the search space of transformer models is prohibitively large, which requires

restrictive search spaces or aggressive search strategies. Some recent works have addressed

these issues for vision transformers [45, 37, 38]. While such methods are effective at finding

improved architectures, they inefficiently parallelize to HPC systems.
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Method

Early Investigations: TTSR

In our early investigation on applying NAS to transformer architecture. We mainly intro-

duced and tested a NAS architecture combining the differentiable multi-scale search space

[46] and the TTSR network [24].

Figure 11: TTSR Architecture (Courtesy [24])

Constructing differentiable search space

In order to introduce NAS into the TTSR architecture, we need to first define a search space.

We achieved this by replacing the Cross-Scale Feature Integration (CSFI) Module with the

Mix Module. The CSFI Module is inspired by [47, 48], it is designed to exchange texture

information between features of different scales. This module is inserted after the extracted

feature from LR images is up-sampled to the next scale. For each participating scale, the

features will receive information from other scales by either up-sampling or down-sampling.

Such process is always followed by a concatenation operation and a convolution layer. The

module is proved to achieve a more powerful feature representation, which is fused from

synthesized features of different scales. To visualize our changes, please refer to the original

TTSR network structure in Figure 11, and the altered version in Figure 12. In Figure 12,

we redesigned the CSFI stage in the original architecture, making it a mix module. For

15



CSFI module between scale 1× and 2×, we replace it with Mix Module 2×, indicating the

exchange between 2 scales. For CSFI module between scale 1×, 2× and 4×, we replace it

with Mix Module 3×, indicating the exchange between 3 scales.

Figure 12: MixModule Architecture

A search space is the space in which possible architectures may reside and be found.

Inspired by CLEARER [46], we introduced the notion of differentiable search space into

TTSR through Mix Modules. Within each Mix Module, there are N columns. Each column

is a soft attention module or a CSFI module for the current scales. Let xn be the input to

the n-th column of a mix module and let fSA
n , fCSFI

n be the soft attention module and the

CSFI module at the n-th column. We will have:

xn+1 = wSA
n × fSA

n (xn) + wCSFI
n × fCSFI

n (xn)

where wSA
n = 0, wCSFI

n = 1 or wSA
n = 1, wCSFI

n = 0. To efficiently search for a desirable

architecture in this discrete search space, we apply a continuous relaxation of wSA
n , wCSFI

n as

indicated in CLEARER [46]. The above constraint can be re-written as wSA
n , wCSFI

n ∈ (0, 1)

and wSA
n +wCSFI

n = 1. We used the softmax to achieve the relaxation [49]. A detailed process

is illustrated in Figure 13: (a) The modules in a Mix Moduleare initially unset. (b) We fill

the mix module with a combination of TTSR modules. (c) We apply iterative optimization
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using continuous relaxation on the network weights and architecture loss. (d) We found the

final architecture constructed from the learned probabilities.

Figure 13: CLEARER Architecture (Courtesy [46])

Loss Function

In addition to the loss functions introduced in TTSR, we also integrated the architecture

loss in CLEARER as indicated below:

LArch = (
−1

N
)

∑
w∈(wSA,wCSFI)

(w logw + (1− w) log(1− w))

We include the architecture loss [46] to make the SA modules and CSFI modules within a

Mix Module distinguishable. This regularization approach will enforce w to approach either

0 or 1, keeping them away from lingering around 0.5.

Our final loss evaluation equation added in the Reconstruction Loss, the Adversarial Loss,

the Perceptual Loss and the architecture Loss and is expressed as below:

Loverall = λrecLrec + λadvLadv + λperLper + λarchLarch

17



Figure 14: TTSR-NAS Architecture
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SwinIR NAS

First we must introduce a NAS scheme to the SwinIR transformer architecture. We created

a novel NAS process and applied it to SwinIR. Specifically, we define the following NAS

solution:

• Search Space: The set of possible architecture changes we wish to explore within (e.g.

number of attention heads, number and size of MLPs, etc).

• Search Strategy: An algorithm to traverse the search space by iteratively modifying,

training, and evaluating a set of possible architectures.

Figure 15: SwinIR Architecture (Courtesy [25])

Search Space

The search space of transformer models is notoriously broad, and transformer models are

notoriously expensive to train. Therefore, a well-designed search space is vital to avoid

wasting computation and converge on a final architecture quickly. We have adopted the

hierarchical strategy in [37] to first train a supernet over a coarse-grained search space

consisting of possible high-level module distributions. Then, many subnets are trained over

many fine-grained search spaces within the individual modules. Referencing the architecture

of SwinIR depicted in Figure 15, the coarse-grained search space contains the shallow and

deep feature extraction modules (e.g. number of RSTBs and the number of STLs, etc), while
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the fine-grained search space contains each module’s architectures (e.g. attention heads for

each RSTB, MLP dimension of each STL, etc).

Search Strategy

We wish to use a search algorithm that avoids proposing architectures that are exceedingly

costly or overlap heavily with prior architectures. Further, we wish to find a strategy that will

converge to a final architecture rapidly while traversing enough of the search space to avoid

disregarding good architectures. Evolutionary algorithms (EAs) [36] have demonstrated

these qualities on many past NAS studies [50, 51, 52, 53], therefore we employ EAs for both

the coarse-grained and fine-grained search spaces.

DistNAS

We designed and implemented a scalable distributed NAS framework based on DeepSpeed

and applicable to SwinIR and other transformer architectures. We call this NAS framework

DistNAS. There are several key features of DistNAS that are depicted in Figure 16, which

are:

• User Configurations: These configurations contain information on the NAS settings

(block architecture, #subnets, #subnet architectures, etc), model training settings

(#epochs, batch size, learning rate, etc), and distributed training settings (i.e. par-

allelism and sharding settings for DeepSpeed).

• Controller: The controller manages training by launching and monitoring DeepSpeed

training jobs within training nodes

• DeepSpeed Layer: A lightweight interface built atop DeepSpeed to help the Controller

launch and manage training jobs.

Each component is described in detail in the following sections:
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User Configurations

We seek to maximize user control over the NAS process while minimizing their required

knowledge of the underlying framework. Therefore, we adopt the configuration approach

and allow users to tune as many clearly-documented knobs as possible without modifying

several complex training files to meet their specific NAS training job.

Listing 1 contains a snippet of an example configuration file.

1 # DistNAS User Config

2

3 {

4 # Distributed Training Settings

5 "pipe -parallel -size": 1,

6 "model -parallel -size": 1,

7 "data -parallel -size": 2

8 # Choose the number of subnets to parallelize

9 "num -parallel -subnets": 4

10 "node -ids": [0,1] // Which nodes to use for training

11 "gpu -ids": [0,1,2,3]

12 # Map each subnet to a pair of "node:[list of GPU IDs]

13 "subnet -mappings": {0:[0 ,1], 0:[2,3], 1:[0,1], 1:[2 ,3]}

14

15 # NAS Settings

16 "num -subnets": 1000,

17 "strategy": "ea",

18 ...

19

20 # Model Settings

21 "model": "swinir",

22 "scale": 2,

23 "n_channels": 3,

24 ...

25

26 # Training Settings

27 "train_micro_batch_size_per_gpu": 4,

28 "num_epochs": 1000,

29 "log -interval": 100,

30 "checkpointing": True

31 "optimizer": {

32 "type": "Adam",
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33 "params": {

34 "lr": 0.0002 ,

35 ...

36 }

37 },

38 "fp16": true ,

39 "zero_optimization": {

40 "stage": 1,

41 ...

42 },

43 ...

44 }

Listing 1: Example of user configuration in DistNAS

Figure 16: DistNAS Architecture

Controller

Standard NAS implementations train each subnet architecture via data-parallelism (e.g. Fig-

ure 17(d), and therefore inherit the massive communication overhead from data parallelism.

Instead, DistNAS supports training multiple subnet architectures at once by specifying the

desired mapping within the user configuration. Consider the difference between Figures 17(a)

and 17(d). Training a single subnet at a time via data-parallelism (i.e. Figure 17(d)) will

suffer from communication overhead, but if the model fits in memory we can assign a single

subnet to each GPU and completely remove the need for communication operations

among GPUs. The controller launches a distinct training job on each GPU, and monitors
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their completion. Note that distributed overhead is small but not zero because each NAS

training iteration is synchronous (i.e. all subnets must complete training and evaluating this

iteration’s subnets before proceeding). Once all subnets within a NAS iteration have been

trained and evaluated, the new subnet training jobs are assigned across GPUs. Note that

this scheme requires the number of subnets to equal the number of total GPUs. In order to

support any number of subnets, any intermediate parallelism scheme (e.g. data-parallelism

of a single subnet within each node as in Figure 17(c)) is available by specifying the desired

mapping in a user configuration file. Finally, DistNAS inherits DeepSpeed’s ability to split

large models that cannot fit inside a single GPU’s memory via three-dimensional parallelism

(e.g. Figure 16).

(a) No Parallelism (b) Partially Data Parallel

(c) Node-boundary Data Parallelism (d) Fully Data Parallel

Figure 17: Comparison of parallelization strategies in DistNAS. Each box within a node is a GPU, and Mn

refers to training model subnet n on a given GPU
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DeepSpeed Layer

The controller launches training jobs on target GPUs via DeepSpeed. In order for the

controller to log and synchronize training jobs, a lightweight API between the controller and

DeepSpeed was developed. The full API is depicted in Listing 2

1 # Maintains overall training information such as the best subnets , iteration number , etc

2 class DistNAS_Status

3 # Stores the parsed configuration file

4 class DistNAS_Args config

5

6 # Returns subnet training status (e.g. "training", "complete", "failed ")

7 status(int gpu_id)

8 # Launches a DeepSpeed training job

9 launch(List <int > gpu_ids , DistNAS_Args config)

10 # Evaluates trained subnets and updates status

11 evaluate(List <int > gpu_ids , DistNAS_Status status)

12 # Updates subnet architectures and updates status

13 update_parameters(DistNAS_Args config , DistNAS_Status status)

14 # Synchronizes each subnet step

15 synchronize(List <int > gpu_ids)

16 # Displays status to user

17 log(List <int > gpu_ids , DistNAS_Status status)

Listing 2: DeepSpeed Layer API
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Experiments

Early Investigations: TTSR

We began our evaluation with the original TTSR network architecture using 1 GPU for 30

epochs. The results of the training sessions are reflected in loss curves depicted in Figure

18. We noticed that, according to reconstruction loss, perceptual loss, and adversarial loss

of the original model, we are not able to produce the same convergence. In addition, we also

evaluated on the architecture discovered by the TTSR-NAS scheme. The results are also

attached in Figure 19. Unfortunately, we are still not able to produce any convergence with

the architecture found by NAS.

Figure 18: Loss evalutaion with TTSR on 30 Epochs

Given these convergence results coupled with the release of SwinIR [25], we pivoted our

investigations to focus on the more flexible Swin transformer architecture.
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Figure 19: Loss evalutaion with TTSR-NAS on 30 Epochs

DistNAS

We first evaluated our distributed NAS framework (DistNAS) on a variety of system scales

within the Lassen supercomputer (Figure 20). The results of training each of the parallelism

strategies in Figure 17 with DistNAS on 4-32 V100 GPUs on Lassen are depicted below in

Figures 21 and 22. Note that No Parallelism (NP) refers to the parallelism strategy in Figure

17(a), Half-Node Data-Parallel (half-node DP) refers to Figure 17(b), Node Data-Parallel

(Node DP) refers to Figure 17(c), and Fully Data-Parallel (Fully DP) refers to Figure

17(d).

The key takeaway of Figures 21 and 22 is that each parallelism strategy has a progressively

less demanding communication overhead. Consider the case at 8 GPUs. Node DP removes

the inter-node communication present in Fully DP, half-node DP removes the X-Bus

communication present inNode DP 1, andNP removes the comunication overhead entirely.

Note that the NAS parallelization strategy is dependent on the number of concurrent subnets

being trained at a given time. The exact number of concurrent subnets trained for each

1Remember that pairs of GPUs are connected via NVLINK on Lassen. See Figure 20
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Table 1: Number of subnets trained concurrently for each example parallelism scheme in DistNAS

Parallelism Scheme Number of Concurrent Subnets
Fully DP 1

Node DP Number of GPUs
(GPUs/Node)

Half-node DP 2× Number of GPUs
(GPUs/Node)

NP Number of GPUs

DistNAS example parallelism scheme is depicted below in Table 1. While other parallelism

schemes such as mixed (e.g. Node DP on node 1, NP on node 2) are supported in DistNAS,

we didn’t evaluate such schemes in this work.

IB HCAs

P9 P9

3-lane NVLink 
(75 GB/s)

X-Bus
(64 GB/s)

8-lane PCIe Gen4
(16 GB/s)

Infiniband EDR 
(12.5 GB/s)

GPU0 GPU1 GPU2 GPU3

Port 0 Port 1

Figure 20: Node topology of the Lassen supercomputer at LLNL

SwinIR NAS

We trained our NAS SwinIR (which we denote as SwiNASIR) using the same hyperparam-

eters as the original SwinIR paper:

We trained on the DIV2K dataset [26] and evaluated on the Set5 [27], Set14 [28], BSD100

[54], Urban100 [55], and Manga109 [56] test datasets. High-quality and low-quality image

pairs are generated with a bicubic interpolation kernel. We trained for 500K iterations and

set the batch size to 32. The learning rate is initialized to 2e-4 and halved at iterations:

[250K,400K,450K,475K]. We used the Adam [57] optimizer with β1 = 0.9 and β2 = 0.99.
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Figure 21: Time to train subnets in DistNAS on a variety of parallelism strategies and system scales

Figure 22: Percent improvement in parallelism strategies in relation to pure data parallelism

Table 2: Quantitative comparison of evaluations (average PSNR/SSIM) with standard SwinIR for classical
image SR on benchmark datasets. Best and second best performance are colored red and blue, respectively.

Model Scale Training Dataset
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR x2 DIV2K 38.35 0.962 34.14 0.9227 32.44 0.903 33.4 0.9393 39.6 0.9792
SwinIR+ x2 DIV2K 38.38 0.9621 34.24 0.9233 32.47 0.9032 33.51 0.9401 39.7 0.9794
SwiNASIR (Ours) x2 DIV2K 38.42 0.9623 34.27 0.9236 32.48 0.9034 33.56 0.9406 39.7 0.9793
SwiNASIR+ (Ours) x2 DIV2K 38.45 0.9625 34.32 0.9241 32.52 0.9035 33.65 0.9412 39.9 0.9795
SwinIR x3 DIV2K 34.89 0.9318 30.77 0.8503 29.37 0.8124 29.29 0.8744 34.74 0.9518
SwinIR+ x3 DIV2K 34.95 0.9322 30.83 0.8511 29.41 0.813 29.42 0.8761 34.92 0.9526
SwiNASIR (Ours) x3 DIV2K 35.09 0.9324 31.01 0.854 29.51 0.8153 29.65 0.879 35.03 0.9531
SwiNASIR+ (Ours) x3 DIV2K 35.16 0.9328 31.07 0.8545 29.56 0.8159 29.75 0.8803 35.19 0.954
SwinIR x4 DIV2K 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226
SwinIR+ x4 DIV2K 32.81 0.9029 29.02 0.7928 27.87 0.7466 27.21 0.8187 31.88 0.9423
SwiNASIR (Ours) x4 DIV2K 32.9 0.9041 29.07 0.7945 27.9 0.7487 27.39 0.8231 31.99 0.9258
SwiNASIR+ (Ours) x4 DIV2K 32.95 0.9046 29.717 0.796 27.93 0.7492 27.45 0.825 32.17 0.9269
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Conclusion

In this work, we propose SwiNASIR, a NAS scheme built on top of SwinIR transformer

architecture. Inspired by GLiT and AutoFormer, we constructed a hierarchical search space.

Firstly, a supernet was constructed and trained on a coarse-grained level where high-level

module distributions reside. Furthermore, a number of subnets will be built and evalu-

ated on a fine-grained level where detail parameters vary within individual modules. We

adopted an evolutionary algorithm for both levels to search and evaluate candidate network

architectures.

Given the high computational complexity and demanding hardware requirements of NAS

methods, efficient NAS training is a vitally important to advance the field. In this work, we

also designed and implemented DistNAS, a scalable distributed NAS training framework that

supports DeepSpeed. The framework grants users with fine-grained configuration control

over the parameters of NAS processes and manipulates training sessions using DeepSpeed.

The training sessions are parallelized over a number of GPUs, enabling the simultaneous

training process of many subnets.

We applied the DistNAS training strategy on SwinIR NAS and tested on several datasets

(DIV2K, Set5, Set14, BSD100, Urban100, Manga109). With drastically reduced training

time consumption and elevated hardware utilization, we are able to produce results better

than state-of-the art standards. In the future, we will further extend our NAS framework

towards other parallelism schemes and vision transformer tasks.
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