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Abstract 

Every untracked, inactive, or unfamiliar object in Earth’s orbit poses a risk to satellites and 

rockets that wish to safely navigate through space. Objects of this nature, known as “space debris,” will 

remain in orbit without deliberate intervention. The purpose of this project is to perform a highly accurate 

retrospective analysis of a certain outstanding close-approach event (also known as a conjunction event) 

that occurred in the geostationary belt. It is expected that the successful completion of this work will 

result in a trustworthy prognostics tool that can help minimize, or even eliminate, such risk in the future. 

Events related to candidate resident space objects were considered, and the 2016 Briz-M rocket body 

explosion was chosen as the particular event of interest. By appropriately modeling the motion of such 

candidates through astrodynamics analysis and adjusting the initial conditions to reflect sensor precision, 

a recently developed adaptive Monte Carlo method, a MATLAB-based forecasting platform, can be 

employed to propagate a particle cloud representing the object’s orbit over time. The completion of this 

project will validate the methods used, while simultaneously reducing the risks of collision and damage in 

similar events in the future.  
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I. Introduction 

Section 1: Orbital Debris 

 With each passing year, the skies above Earth are increasingly filled with incredible feats of 

technology, blinking as they provide valuable data back to the humans who put them there. Ansys: 

Government Initiatives (AGI) predicts that by 2027, there will be over 30,000 man-made objects in 

Earth’s orbit [1]. For the first 50 years of the space age, dozens of new satellites were launched every 

year, but since the turn of the century, that number has grown by hundreds, culminating in the launch of 

over 1,400 satellites in 2021 alone [2].  However, as the number of satellites in orbit continues to grow, so 

does the quantity of defunct satellites. Regardless of whether an orbiter lost connection, broke, or its 

mission simply came to an end, objects that can no longer be monitored will remain in orbit without 

purposeful intervention and are colloquially known as “space debris.” The presence of these inactive 

satellites poses a significant risk of conjunction, or collision, to operating bodies in Earth’s orbit, such as 

active autonomous satellites and rockets passing through to outer space. A commonly referenced example 

of this risk is the 2009 collision between two communications satellites; the then-operational American 

Iridium 33 and the already decommissioned Russian Cosmos 2251. This was the first occurrence of a 

conjunction event between two intact spacecraft moving at a high velocity in low Earth orbit (LEO) [3]. 

Just after the collision, the U.S. Space Surveillance Network (SSN) found over 700 new pieces of debris 

spread across LEO and even predicted that this number could have been larger if the two bodies made 

contact head-on. Since then, the number of objects being tracked from this event has grown to over 2,300, 

and are expected to remain in orbit for decades, posing a large hazard to other satellites in LEO. The 

operating altitude of Iridium contains approximately 3,300 other objects and close approaches are 

common between them. Near the end of 2021, the International Space Station had to make two maneuvers 

in the same orbit regime to move out of the way of debris expected to make a close approach of merely a 

few kilometers [4].  
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More than 27,000 objects are currently being tracked by the SSN, but the quantity of orbital 

debris continues to grow as smaller objects are accounted for. Objects the size of a softball might not 

initially seem like a risk to a spacecraft, but these pieces of junk are moving at 17,500 miles per hour [5]. 

Such a large quantity of debris begets the need for accurate forecasting to predict conjunction events so 

that they can be prevented, like the aforementioned case with the ISS, which has had to make dozens of 

such maneuvers in its lifetime. It is infeasible to continuously monitor all tens of thousands of these 

resident space objects (RSOs) to ensure a particular orbiting body has a safe path forward for its 

operational lifetime. This is why predictive analysis becomes so important; being able to ascertain the 

path of a piece of debris at the same altitude as your active orbiting body can determine the likelihood of 

the two RSOs making a close approach, and thus provide an estimate of probability of collision. If 

conjunction risk is determined to be high enough, appropriate adjustments to the active orbiter can be 

made and the chances of collision drastically reduced.   

Section 2: Space Situational Awareness 

 Space Situational Awareness (SSA) is the intersection between analysis within the space domain 

and surveillance of satellites and their surrounding environment [6]. SSA includes methods used to guide 

autonomous systems through potentially hazardous environments by determining the likelihood of risk, 

particularly of collision with other objects. SSA can be used in any environment but is of particular use in 

geosynchronous Earth orbit (GEO) because of the high density of objects. GEO has seen a recent increase 

in the number of RSOs, particularly at the geostationary level, because a satellite at this altitude will 

rotate with Earth, making one complete orbit each day with minimal chance of perturbations from this 

state. Commercial satellites operating at the geostationary level are further required to maintain longitude 

within a very tight range, i.e., ±0.05° to ±0.1°. In order to monitor such satellites to ensure they adhere to 

this requirement, a need for more robust forecasting and propagation models arose, eventually leading to 

the development of the adaptive version of the Monte Carlo platform discussed in this paper.  
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The Monte Carlo method has been used for a variety of purposes to model dynamical systems 

because of its provable asymptotic convergence and parallelizability. The Monte Carlo platform is a 

collection of MATLAB algorithms that use ensemble-based simulations to create a cloud of particles to 

probabilistically represent the state of an object of interest and the uncertainty in its predicted path over 

time. Monte Carlo produces an evolved state-uncertainty for the object by taking a randomized 

distribution of particles from the underlying probability space and propagating each particle forward 

using the system dynamics, resulting in a new ensemble representing the object’s state after a defined 

amount of time. A problem arises with Monte Carlo in that it cannot hold its level of accuracy when 

evolving the new state-space if it keeps the number of particles constant. Thus, an “adaptive” version of 

this platform was developed to create a closed-loop architecture so that particles can be added or removed 

to maintain robustness in accuracy and computing time. The performance of the adaptive Monte Carlo 

(AMC) platform is measured using a “quantity of interest” (QoI), which changes depending on the 

application. The user will prescribe an upper bound for estimation error, and if the QoI exceeds this, the 

AMC algorithm will determine the next ideal particle to add to the ensemble, to be propagated from 𝑡0 all 

the way to the current state 𝑡. Likewise, the QoI is restricted by the user-prescribed lower bound. If the 

QoI is lower than this, AMC activates a particle removal scheme proportional to the particle’s current 

state-probability density function (pdf) to “halt” the propagation of that particle in order to reduce 

computational load. The inclusion of these particle addition and removal algorithms enables AMC to 

represent the state uncertainty with a minimized ensemble size, which dramatically saves computation 

time without losing the guaranteed prescribed bounds of accuracy [7]. Due to the fact that the platform 

produces simulation results at a level of precision defined by the user, AMC is defined as being able to 

create trustworthy SSA by successfully capturing the motion of objects in orbit with this controlled level 

of accuracy [8].   
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Section 3: The Briz-M Explosion and Quantity of Interest 

 The focus of this paper is an analysis of a particular event of interest in GEO, namely the Briz-M 

rocket body breakup (also stylized as Breeze-M). In January 2016, Briz-M (2015-075B), the upper rocket 

stage designed for injecting payloads into GEO, suddenly exploded, only a month after launching the 

Cosmos 2513 Russian military satellite [9]. The rocket stage fragmented into several pieces, generally 

falling within a 0.23-0.56 meter range in size [10], and the North American Aerospace Defense Command 

(NORAD) was able to determine position and velocity data just after conjunction for the a portion of 

those fragments [11]. The purpose of this research is to get an assessment of the probability of collision of 

these fragments with each other. The strategy is to utilize the AMC platform, coupled with an appropriate 

quantity of interest, to propagate the orbits of the Briz-M fragments to determine their closest approach in 

space.  

As stated earlier, choosing a QoI is essential to getting a precise evaluation of the AMC 

performance. The error associated with estimating the QoI is what drives the particle addition and 

removal platforms. If 𝐱t represents the current state with a pdf 𝒲𝑡(𝐱t) ≡ 𝒲𝑡, and ℎ(𝐱t) is a function of 

the state, then the QoI is the expected value of a function of the state, ℎ̅(𝐱t) [8]. Generally, QoIs are 

defined as shown in Equation 1:  

ℎ̅(𝐱t) ≜ 𝐸𝒲𝑡
[ℎ(𝐱t)] = ∫ ℎ(𝐱t)𝒲𝑡𝑑𝐱tΩ𝑡

    (1) 

where 𝐸𝒲𝑡
 is the expected value operator and Ω𝑡 is the state-space at time 𝑡. Selection and definition of 

the application-specific QoI for this research will be detailed in the methodology section of this paper.   

The significance of this project is the completion of a robust and precise orbital forecasting of the 

Briz-M rocket body and its largest pieces of debris. By being able to predict the path of these objects, 

future conjunction events can be avoided, and the risk of creating more debris minimized. Additionally, 

each iteration of the AMC platform further validates the Monte Carlo method and ensemble enhancement 

algorithm.  
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The rest of this thesis is outlined as follows. The following section will detail the methodology of the 

research, including developing the uncertainty propagation platform and defining quantity of interest. 

Next is the results section, starting with development of the dynamical model of the system, then iterating 

the AMC platform and an analysis of the risk of conjunction. Finally, conclusions concerning this event 

will be made and well as a discussion of future work.  

II. Methodology 

Section 1: Uncertainty Propagation with Monte Carlo 

 Broadly, the goal of Monte Carlo is to determine a solution to a nonlinear continuous dynamic 

system with some initial condition uncertainty. The platform is modeled by the stochastic differential 

equation, shown in Equation 2 [12]:  

𝑑𝐱 = 𝐟(𝑡, 𝐱)𝑑𝑡 ,   𝐱0 ~ 𝒲0(𝑡0, 𝐱)    (2) 

where 𝐱 describes the system state and 𝐱0 is the initial condition with probability density function 𝒲0. A 

pdf shows the relative likelihood that the value of a random variable would be close to a sample within a 

sample space. The time evolution of the state-pdf 𝒲0(𝑡0, 𝐱) is given by the stochastic Liouville equation:  

𝜕

𝜕𝑡
𝒲(𝑡, 𝐱) = ℒ[𝒲(𝑡, 𝐱)] = −∑ ( 𝑓𝑖

𝜕𝒲

𝜕𝑥𝑖
+ 𝒲

𝜕𝑓𝑖

𝜕𝑥𝑖
)𝑁

𝑖=1            (3) 

where ℒ[∙] is the stochastic Liouville operator and estimates the uncertainty of the propagated state. The 

relative motion of the RSOs in GEO are described by 𝐟(𝑡, 𝐱) and their Keplerian motion with small orbital 

perturbations are represented by the classical two-body problem:  

𝐫 = −
𝜇⨁

‖𝐫‖3 𝐫 + 𝐅(𝐫)     (4) 

It is pertinent that the orbital elements are represented in the equinoctial coordinate frame, and the 

purpose of this is to avoid nonlinearities that would otherwise be present with traditional Cartesian 
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coordinates [8]. The traditional Cartesian elements, instantaneous Keplerian orbital elements, and 

equinoctial elements are shown below, respectively.  

𝐱𝐶𝐸 =

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑣𝑥
𝑣𝑦

𝑣𝑧]
 
 
 
 
 

 , 𝐱𝑂𝐸 =

[
 
 
 
 
 

𝑎: semi − major axis
𝑒: eccentricity
𝑖: inclination

Ω: ascending node
𝜔: argument of perigee

𝑀:mean anomaly ]
 
 
 
 
 

, 𝐱𝐸𝐸 =

[
 
 
 
 
 
 

𝑎
𝑃1 = 𝑒 sin𝜛
𝑃2 = 𝑒 cos𝜛

𝑄1 = tan
1

2
𝑖 sinΩ

𝑄2 = tan
1

2
𝑖 cosΩ

𝑙 = 𝜛 + 𝑀 ]
 
 
 
 
 
 

  (5) 

The variables (𝑃1, 𝑃2) and (𝑄1, 𝑄2) correspond to the eccentricity and inclination vectors, respectively, 

where 𝜛 = 𝛺 + 𝜔 and 𝑙 is the mean equinoctial anomaly. The governing equations of motion of an RSO 

in GEO with perturbations take the following form in the equinoctial coordinate system:  

𝑑𝑎

𝑑𝑡
=

2𝑎2

ℎ
[(𝑃2 sin 𝐿 − 𝑃1 cos 𝐿)𝑎𝑑𝑟 +

𝑝

𝑟
𝑎𝑑𝜃]    (6a) 

𝑑𝑃1

𝑑𝑡
=

𝑟

ℎ
{−

𝑝

𝑟
cos 𝐿𝑎𝑑𝑟 +[𝑃1 + (1 +

𝑝

𝑟
) sin𝐿] 𝑎𝑑𝜃 − 𝑃2(𝑄1 cos 𝐿 − 𝑄2 sin 𝐿)𝑎𝑑ℎ}  (6b) 

𝑑𝑃2

𝑑𝑡
=

𝑟

ℎ
{
𝑝

𝑟
sin 𝐿𝑎𝑑𝑟 +[𝑃2 + (1 +

𝑝

𝑟
) cos𝐿] 𝑎𝑑𝜃 + 𝑃1(𝑄1 cos𝐿 − 𝑄2 sin 𝐿)𝑎𝑑ℎ}  (6c) 

𝑑𝑄1

𝑑𝑡
=

𝑟

2ℎ
(1 + 𝑄1

2 + 𝑄2
2) sin 𝐿𝑎𝑑ℎ      (6d) 

𝑑𝑄2

𝑑𝑡
=

𝑟

2ℎ
(1 + 𝑄1

2 + 𝑄2
2) cos 𝐿𝑎𝑑ℎ       (6e) 

𝑑𝑙

𝑑𝑡
= 𝑛 −

𝑟

ℎ
 {

[
𝑎

𝑎+𝑏
(
𝑝

𝑟
) (𝑃1 sin 𝐿 +𝑃2 cos 𝐿) +

2𝑏

𝑎
] 𝑎𝑑𝑟

+
𝑎

𝑎+𝑏
(1 +

𝑝

𝑟
) (𝑃1 cos𝐿 − 𝑃2 sin 𝐿)𝑎𝑑𝜃 + (𝑄1 cos 𝐿 − 𝑄2 sin 𝐿)𝑎𝑑ℎ

}  (6f) 

where 

𝑏 = 𝑎√1 − 𝑃1
2 − 𝑃2

2                            ℎ = 𝑛𝑎𝑏 

𝑝

𝑟
= 1 + 𝑃1 sin 𝐿 + 𝑃2 cos 𝐿                  

𝑝

𝑟
=

ℎ

𝜇⨁(1 + 𝑃1 sin 𝐿 + 𝑃2 cos 𝐿)
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and 𝐿 = 𝜛 + 𝑓 is the true equinoctial anomaly (where f is the true anomaly), and can be obtained by first 

solving the Keplerian equation 

𝑙 = 𝐾 + 𝑃1 cos𝐾 − 𝑃2 sin𝐾     (7) 

for the eccentric equinoctial anomaly 𝐾 (eccentric longitude). The distance between the RSO and Earth r 

can be determined via 

𝑟 = 𝑎(1 − 𝑃1 sin𝐾 − 𝑃2 cos𝐾).        (8) 

Following this, 𝐿 can be calculated from these relationships:  

sin 𝐿 =
𝑎

𝑟
[(1 −

𝑎

𝑎+𝑏
𝑃2

2) sin𝐾 +
𝑎

𝑎+𝑏
𝑃1𝑃2 cos𝐾 − 𝑃1]    (9a) 

cos 𝐿 =
𝑎

𝑟
[(1 −

𝑎

𝑎+𝑏
𝑃1

2) cos𝐾 +
𝑎

𝑎+𝑏
𝑃1𝑃2 sin𝐾 − 𝑃2]   (9b) 

where 

𝑎

𝑎+𝑏
=

1

1+√1−𝑃1
2−𝑃2

2
  .          (10) 

Since the shape of the Earth is not an exact sphere, the disturbance acceleration terms  

𝐚𝑑 = [𝑎𝑑𝑟, 𝑎𝑑𝜃, 𝑎𝑑ℎ] are given as:  

𝐚𝑑 =
𝜇⨁

𝑟2
∑  𝐽𝑘,𝐸

4
𝑘=2 (

𝑟𝐸

𝑟
)
𝑘
[𝑃𝑘+1

′ 𝐢𝑆𝑂 − 𝑃𝑘
′ 𝐢𝑧]            (11) 

where 

𝑃2
′ = 3cos𝜙                                    𝑃4

′ =
1

3
(7 cos𝜙𝑃3

′ − 4𝑃2
′) 

𝑃3
′ =

1

2
(5 cos𝜙𝑃2

′ − 3)                𝑃5
′ =

1

4
(9 cos𝜙𝑃4

′ − 5𝑃3
′) 
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are the derivatives of the Legendre polynomials [13] and cos𝜙 = 𝐢𝑆𝑂 ∙ 𝐢𝑧 the cosine of the angle 𝜙 

between the unit vector 𝐢𝑆𝑂 pointing towards the RSO from the center of the Earth and the unit vector 𝐢𝑧 

point towards the north pole. The variable 𝑟𝐸 = 6378.137 km is the equatorial radius of the Earth and 𝐽2,𝐸 

= 0.00108263, 𝐽3,𝐸 = −0.00000254, and 𝐽4,𝐸 = −0.00000161 are the coefficients of the second, third, and 

fourth harmonics of Earth’s potential function, respectively [14]. Considering that solar radiation pressure 

is several orders of magnitude less than 𝐽2 and atmospheric drag is essentially zero in GEO [5], the only 

disturbing forces accounted for in this problem setup are the 𝐽2 effect (10−5) and the additional forces 

resulting from Earth’s non-spherical nature (10−7).  

Section 2: Adaptive Monte Carlo 

 The Monte Carlo suite of algorithms functions by creating a cloud of particles based on the initial 

state of the system, and then each particle is propagated forward in time using the system dynamics. Refer 

again to Equation 2: 

𝑑𝐱 = 𝐟(𝑡, 𝐱)𝑑𝑡 ,   𝐱0 ~ 𝒲0(𝑡0, 𝐱)    (2) 

Monte Carlo discretizes the initial state pdf by creating an ensemble cloud of particles, {𝑥0
𝑖 }𝑖=1

𝑛 ~𝒲0, and 

each particle is propagated forward in time using the system dynamics. This creates an evolved state pdf 

after some amount of time, {Φ𝑡  (𝑥0
𝑖 )}𝑖=1

𝑛 ≈ 𝒲𝑡, where Φ𝑡 maps the system dynamics via: 𝐱𝑡
𝑖 =  Φ𝑡(𝐱0

𝑖 ). 

The particle cloud represents the system’s uncertainty. The challenge with this setup is deciding the value 

of 𝑛, the number of particles in the ensemble. The cloud must have enough particles to ensure the 

propagation is trustworthy, but not so many particles that it becomes too computationally intensive. This 

is where Monte Carlo becomes “adaptive”, so that 𝑛 can be optimized. Thus, it is essential to determine 

precise performance metrics and define accuracy bounds, as well as measure those metrics iteratively, in 

order to adjust the Monte Carlo ensemble with each iteration to meet those defined accuracy bounds.  

Choosing an appropriate quantity of interest is essential to getting a precise evaluation of the 

AMC performance. The error associated with estimating the QoI is what drives the particle addition and 
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removal platforms. If QoI is defined as ℎ̅, referring to Equation 1, then ℎ̃𝑛 is the Monte Carlo estimate of 

the QoI. The Monte Carlo estimation error is the difference between these two values, denoted by epsilon: 

|𝜀𝑛| = |ℎ̅ − ℎ̃𝑛|      (12) 

The estimation error is upper bounded by the product of the discrepancy of the ensemble and the variation 

of the system dynamics:  

|𝜀𝑛| = |ℎ̅ − ℎ̃𝑛| ≤ 𝒟({𝑥0
𝑖 }𝑖=1

𝑛 )𝑉(𝑆𝑡)    (13) 

The change is system dynamics, 𝑉(𝑆𝑡), is not controllable, so the discrepancy of the ensemble, 

𝒟({𝑥0
𝑖 }𝑖=1

𝑛 ), is controlled with a user-defined limit. When the ensemble’s accuracy is above this user-

defined upper bound, the ensemble enhancement routine is activated, minimizing the discrepancy cost 

function to find the next optimal particle. The new AMC ensemble will be identical to the old one at 𝑡0, 

with the addition of the newly added particle, which is propagated from 𝑡0 to the current time. It is noted 

here that a particle removal scheme was not used for this problem. Thus, the final step in the problem 

setup is to define ℎ̅, the QoI.  

Section 3: Defining Quantity of Interest 

 While the most obvious choice for QoI is probability of collision, modeling this becomes way too 

computationally intensive for the AMC platform [15]. For the geostationary Briz-M event, the trace of the 

position covariance matrix was selected as the QoI.  

To understand this value, start with the expectation, or mean value of a discrete random variable X with 

pmf 𝑓X(∙), defined as:  

E[𝑔(X)] = ∑ 𝑔(𝑥)𝑓X(𝑥)𝑥     (14) 

Now, define the 𝑘𝑡ℎ central moment of a discrete random variable as follows:  

E[(X − μ)𝑘] = ∑ (𝑥 − μ)𝑘𝑓X(𝑥)𝑥     (15) 
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where μ, the mean vector, is given as the expectation of the individual elements of the vector: 

μ = E[X] = E [

X1

X2

⋮
X𝑁

] = (

E[X1]

E[X2]
⋮

E[X𝑁]

)     (16) 

Finally, the covariance matrix 𝐏 is given as the expectation of the product of two mean vectors, as 

follows [16]: 

𝐏 = E[(X − μ)(X − μ)T] = 

= E

[
 
 
 
 

(X1 − μ1)
2 (X1 − μ1)(X2 − μ2)        …              …                 (X1 − μ1)(X𝑁 − μ𝑁)

(X2 − μ2)(X1 − μ1) (X2 − μ2)
2         ⋮                ⋮                 (X2 − μ2)(X𝑁 − μ𝑁)

⋮
⋮

(X𝑁 − μ𝑁)(X1 − μ1)

⋮
⋮

(X𝑁 − μ𝑁)(X2 − μ2)

(X3 − μ3)
2    

⋮
…        

 ⋮                                 
⋱                               
…                               

⋮
⋮

(X𝑁 − μ𝑁)2]
 
 
 
 

    (17) 

If there are N elements within the state-space, Equation 17 shows that the elements of the covariance 

matrix are product of every combination of elements, 1 through N. The expectation operator can be 

distributed to each element of the matrix, like is shown with the vector in Equation 16. Essentially, the 

covariance matrix provides the weighted average between all the elements of the vectors in a state-space. 

Thus, if the state-space is composed of position vectors, particularly of the particles in an ensemble cloud, 

the covariance matrix is measures the variability between the coordinates of every pair of elements within 

that ensemble cloud.  

The trace of a square matrix is the sum of its diagonal elements. With an input of position vectors, 

the trace of the covariance matrix will compute the variance between each particle in the ensemble cloud. 

By defining this as the quantity of interest, the upper bound on the AMC simulations will define the 

distance a particle is “allowed” to vary from the cloud representation of the debris element.  

With the aforementioned problem setup, system dynamics, and the now-defined QoI, the conjunction 

scenario of interest is ready to be analyzed with the AMC platform. The following data is presented at the 
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user-defined accuracy bound of 1e-3, bootstrap sampling size of 10,000 particles, and 3000-particle 

starting size for the ensemble.  

III. Results 

The aim of this thesis is to identify a conjunction event in GEO and make a conclusion about 

probability of collision. The first step of this research process was a formal literature review concerning 

conjunction events and choosing a scenario for analysis. The AMC platform requires a complete picture 

of initial condition dynamics in order to propagate an ensemble cloud for an object. After obtaining this 

data, the simulations can be iterated and adjusted to determine collision risk.  

Based on the required dynamics of the AMC platform, it was decided to keep the research focused on 

events in GEO to minimize perturbations. Candidates such as AMC-9 [17], Echostar, and Briz-M were 

considered, and the latter chosen due to the existence of robust initial condition data for position and 

velocity of the rocket body and a sample of its debris particles [11]. This data is shown below, in the form 

of two-line element sets (TLEs): 

 

Figure 1: TLE Data for Briz-M (2015-075B) 
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The first TLE is for the Cosmos 2513 satellite, the second for the Briz-M rocket body, and third to 

seventh TLEs for select pieces of debris resulting from the explosion. Interpreting this data gives the 

following Keplerian orbital elements:  

Table 1: Keplerian Orbital Elements for Briz-M (2015-075B) 

 

Semimajor 

Axis [km] 
Eccentricity 

Inclination 

[deg] 

Longitude of 

the Ascending 

Node [deg] 

Argument of 

Periapsis 

[deg] 

True 

Anomaly 

[deg] 

Cosmos 2513 42165.1 0.000344 0.0493 1.942454 112.4326 186.6793 

Briz-M R/B 40982.6 0.031529 4.5582 1.344848 109.9295 253.6303 

Debris 1 40809.0 0.025254 4.5183 1.353616 123.0286 239.5613 

Debris 2 40713.7 0.029686 4.4833 1.381976 122.4636 240.5887 

Debris 3 40983.4 0.023936 4.5113 1.417246 108.4608 254.4321 

Debris 4 41365.5 0.025800 4.5886 1.428981 83.4475 279.6369 

Debris 5 41634.7 0.036930 4.8152 1.227874 85.8775 278.4338 

 

This data can then be translated to Cartesian or equinoctial coordinates; the former is useful for initial 

orbit visualization, and the latter a necessity for use in the AMC platform.  

Translation into Cartesian coordinates provides classical position and velocity values (see 

Equation 5) at initial time 𝑡0. These values can be used to propagate the expected orbits for each object, 

shown in the following figure.  
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Figure 2: Orbit Visualizations for Briz-M (2015-075B) 

The horizontal orbit is the Cosmos 2513 satellite, effectively injected into GEO, and the rest of the orbits 

are the Briz-M rocket stage and the five debris objects. The red and blue dots mark the starting and ending 

positions of the RSOs. Since these objects are in GEO, perturbations are minimal, thus these objects are 

expected to remain in the orbits visualized above for many years.  

The next step was to perform a preliminary conjunction analysis to determine which objects, if 

any, experience a close approach between each other. Initially, the difference of the position vectors was 

taken at each point between two orbits at the same timestep (modeled over 10,000 points). This did not 

produce any interesting results, i.e., a worthwhile close approach. Thus, the initial conditions were 

adjusted so that a given point in the orbit of object A was compared to every point in the orbit of object B 

to find the closest approach. Using this technique, the closest approach for every pairing is provided in the 

following table:  
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Table 2: Close Approaches for Briz-M (2015-075B) 

Object Pairing Close Approach (km) Object Pairing Close Approach (km) 

1 and 2 122.264 2 and 6 158.236 

1 and 3 432.529 3 and 6 72.974 

2 and 3 89.883 4 and 6 109.646 

1 and 4 233.487 5 and 6 240.543 

2 and 4 172.485 1 and 7 244.043 

3 and 4 7.460 2 and 7 552.164 

1 and 5 1141.055 3 and 7 610.550 

2 and 5 1424.739 4 and 7 719.050 

3 and 5 1310.165 5 and 7 1146.335 

4 and 5 211.797 6 and 7 1704.257 

1 and 6 630.635 
Note: Object 1 represents the Echostar satellite, and Object 2 

represents the Briz-M body 

 

As noted in the table, object 1 represents the Echostar satellite, object 2 is the Briz-M rocket body, and 

objects 3-7 signify the five pieces of debris. While most close approaches are on the order of a few 

hundred kilometers, object 3 and object 4, aka “Debris 1” and “Debris 2”, are the only pairing with an 

approach of less than ten kilometers. Thus, this orbital debris pairing was chosen as the conjunction of 

interest, to be further analyzed via the AMC platform.  

A preliminary analysis was performed on the object pairing to determine the starting point for the 

AMC simulations. Using the timestamp that resulted in the close approach determined earlier as the 

starting point, orbits were propagated for the two pieces of debris. This is visualized in the plot on the left 

in Figure 3, with those starting points marked on the graph. At this initial timestamp, object 3 appears to 

be at the hypothetical point of conjunction, i.e., where the two orbits cross paths, but object 4 is slightly 

ahead in its orbital path. Thus, the time vector for object 4 was manually adjusted, shown in the middle 

plot, until it appeared to overlap the conjunction zone.  
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Figure 3: Preliminary Conjunction Analysis for Object 3 (blue) and Object 4 (red) 

With the conjunction timestamps now defined, both orbits were “backed up” 7.2 hours, or one-third of the 

time for one complete orbit, so that the close-approach itself would happen in the middle of the 

simulations at a predictable time. This is visualized in the plot on the right of Figure 3.  

The simulations were performed for three days of orbital motion, with the AMC platform 

producing ensemble clouds at 11 points throughout the propagation. Figure 4 shows the growth of the 

ensemble clouds at timestamps 2, 5, 8, and 11.  
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Figure 4: Growth of Ensemble Clouds for Object 3 (blue) and Object 4 (red) 

After obtaining the ensemble results, probability of collision can be computed by discretizing the domain 

of conjunction into a grid and determining there are particles for both objects’ ensembles present within 

that convex hull volume. A numerical value is gained using this ratio:  

𝑃𝑐 =
∑ min (𝑚𝑖,𝑛𝑖)

𝑁
𝑖=1

∑ max (𝑚𝑗,𝑛𝑗)
𝑁
𝑗=1

     (18) 

where 𝑚𝑖, 𝑛𝑖, 𝑚𝑗, and 𝑛𝑗 correspond to the number of particles within the grid partition for each ensemble 

at a certain timestamp. Using this definition, the probability of collision between objects 3 and 4 remained 
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zero until the final timestamp, T11. To understand why this is the case, Figure 5 shows the growth of the 

ensemble clouds at particular timestamps along the orbits.  

 

Figure 5: Ensemble Cloud Visualizations: T1, T2, T3 (left) and T7, T8 (right) 

 As can be seen in these plots, as the two ensemble clouds grow, they get closer to overlapping with each 

other and the point of close approach. However, it isn’t until T11 (Figure 6) that particles representing 

objects 3 and 4 significantly intersect.  

 

Figure 6: Ensemble Cloud Visualization: T11 
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When it comes to a numerical value for probability of collision, it depends largely on the grid size (N) for 

the convex hull volume. For the same two ensemble clouds at the same timestamp, the bounds of the 

volume remain the same; what changes is the number of smaller portions the volume is divided into. A 

lower grid size will result in a higher probability of collision because the likelihood that particles from 

both ensembles will be present in the same portion of the grid increases as the size of the subdivisions 

grows. Probability of collision for various grid sizes was calculated, tabulated below.  

Table 3: Probability of Collision for Various Grid Sizes 

Grid Size (N) Probability of Collision 

15 0.04639 

25 0.02951 

50 0.01317 

100 0.00976 

200 0.00418 

 

According to literature, a value on the scale of 10-4 is deemed significant enough to warrant a maneuver to 

avoid a collision. Thus, this result is in the threshold for a conjunction risk.  

IV. Conclusion 

The adaptive Monte Carlo platform is a robust and highly reliable tool for uncertainty forecasting 

within defined accuracy bounds. With a complete set of initial condition data, predictive analysis can be 

performed on an object in geostationary orbit with a guaranteed level of accuracy. The dynamics of the 

RSOs resulting from the 2016 Briz-M explosion showed that probability of collision between the rocket 

body and its largest pieces of debris is significant. Specifically, the analysis was performed on the two 

objects that were determined to have the highest collision risk through preliminary investigation of their 

dynamics via orbital propagation. For those pieces of debris, at a convex hull volume grid size of 100, 

probability of collision was found to be close to 0.01. If a satellite or rocket was approaching an object at 
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a risk this high, a relocation maneuver would be warranted. Further work can be done to analyze this 

object pairing by making adjustments to the propagation time and ensemble timestamps in the AMC 

platform. The Briz event can be further explored by performing the same level of conjunction analysis on 

all object pairings to get a more complete picture of the scenario. Additionally, all user-defined 

conditions, including required level of accuracy and starting ensemble size, can be refined to increase the 

reliability of the results. Another way to deepen this investigation is to compare the AMC results to a non-

adaptive version of the Monte Carlo platform, or another uncertainty forecasting platform altogether, to 

get a better sense of AMC’s reliability. Lastly, an additional problem worth exploring could be to perform 

a reverse-propagation on the two objects to see if AMC would predict they collide, as a way of verifying 

the platform with a known end result. In general, it is important to take this work in a broader context; 

while predictive analysis is important and useful for preventing conjunction events, it is the responsibility 

of aerospace companies, research scientists, and engineers to implement these strategies and be cognizant 

of what they send up into orbit.  
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Appendix A 

Probability of Collision Code 
 
function Pc = Prob_Collision_grid(obj1, obj2) 

  
h = figure(3); 
plot3(obj1(:, 1), obj1(:, 2), obj1(:, 3), 'ro'); 
hold on; 
plot3(obj2(:, 1), obj2(:, 2), obj2(:, 3), 'bs'); 
hold on; 
axis equal; 
xlabel('X'); 
ylabel('Y'); 
% savefig(h, ['figs/conjunction_', num2str(floor(time)), '.fig'], 'compact') 
% close(h); 
%minimums and maximums for of each object to determine where the grid needs to be 
min_obj1 = min(obj1); 
min_obj2 = min(obj2); 
max_obj1 = max(obj1); 
max_obj2 = max(obj2); 

  
min_both = min([min_obj1; min_obj2]); 
max_both = max([max_obj1; max_obj2]); 

  
%break up the domain into 500 boxes in each dimension 

  
%the conjunction generally happens in the vertical plane 
x_vect = linspace(min_both(1), max_both(1), 100); 
y_vect = linspace(min_both(2), max_both(2), 100); 
z_vect = linspace(min_both(3), max_both(3), 100); 
edge_x = abs(x_vect(2) - x_vect(1)); 
edge_y = abs(y_vect(2) - y_vect(1)); 
edge_z = abs(z_vect(2) - z_vect(1)); 

  
%generate the convex hull for the 
%check if a point is in the generated cube. If it is, remove it from the 
%list to avoid checking it again in an adjacent cube 
data_obj1 = obj1; 
data_obj2 = obj2; 
pts_in_obj1 = zeros(length(x_vect), length(y_vect), length(z_vect)); 
pts_in_obj2 = zeros(length(x_vect), length(y_vect), length(z_vect)); 
num = 0; 
den = 0; 
for i = 1:length(x_vect) 
    Dom(1,1) = x_vect(i); 
    Dom(1,2) = Dom(1,1) + edge_x; 
    for j = 1:length(y_vect) 
        Dom(2,1) = y_vect(j); 
        Dom(2,2) = Dom(2,1) + edge_y; 
        for k = 1:length(z_vect) 
%             origin = [x_vect(i) y_vect(j) z_vect(k)]; 
%             cube = cell2mat(arrayfun(@(x,y,z) x*y+z, XYZ, ... 
%                 repmat(edges,size(XYZ,1),1), repmat(origin,size(XYZ,1),1), 

'UniformOutput', false)); 
%             c_ref = convhulln(cube); 
            Dom(3,1) = z_vect(k); 
            Dom(3,2) = Dom(3,1) + edge_z;             
            %for this specific grid cube, what points of ensemble 1 are within it 
            check_obj1 = zeros(1,size(data_obj1,1)); 
            check_obj2 = zeros(1,size(data_obj2,1)); 
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            lsize      = max([length(check_obj1), length(check_obj2)]); 
            %for m = 1:size(data_obj1,1) 
            in = zeros(size(data_obj1,1),3); 
            in2 = zeros(size(data_obj2,1),3); 
            in(:,1) = data_obj1(:,1) >= Dom(1,1) & data_obj1(:,1)<=Dom(1,2); 
            in(:,2) = data_obj1(:,2) >= Dom(2,1) & data_obj1(:,2)<=Dom(2,2); 
            in(:,3) = data_obj1(:,3) >= Dom(3,1) & data_obj1(:,3)<=Dom(3,2); 
            check_obj1 = all(in,2); 
            in2(:,1) = data_obj2(:,1) >= Dom(1,1) & data_obj2(:,1)<=Dom(1,2); 
            in2(:,2) = data_obj2(:,2) >= Dom(2,1) & data_obj2(:,2)<=Dom(2,2); 
            in2(:,3) = data_obj2(:,3) >= Dom(3,1) & data_obj2(:,3)<=Dom(3,2); 
            check_obj2 = all(in2,2); 
%             for m = 1:lsize 
%                 if m <= length(check_obj1) 
% %                     cube_obj1     = [cube;data_obj1(m,:)]; 
% %                     c_obj1        = convhulln(cube_obj1); 
% %                     check_obj1(m) = all(ismember(c_ref, c_obj1, 'rows')); 
%                       check_obj1(m) = inDomain(Dom,data_obj1(m,:)); 
%                 end 
%                 if m <= length(check_obj2) 
% %                     cube_obj2     = [cube;data_obj2(m,:)]; 
% %                     c_obj2        = convhulln(cube_obj2); 
% %                     check_obj2(m) = all(ismember(c_ref, c_obj2, 'rows')); 
%                     check_obj2(m) = inDomain(Dom,data_obj2(m,:)); 
%                 end 
%             end 
            %number of pts within the specific grid for object 1 
            pts_in_obj1(i,j,k) = sum(check_obj1); 
            %remove the data as its already known and been checked 
            if any(check_obj1) 
                data_obj1(find(check_obj1), :, :) = []; 
            end 

             
%             %for this specific grid cube, what points of ensemble 1 are within it 
%             check_obj2 = zeros(1,size(data_obj2,1)); 
%             for m = 1:size(data_obj2,1) 
%                 cube_obj2     = [cube;data_obj2(m,:)]; 
%                 c_obj2        = convhulln(cube_obj2); 
%                 check_obj2(m) = all(ismember(c_ref, c_obj2, 'rows')); 
%             end 

  
            %number of pts within the specific grid for object 1 
            pts_in_obj2(i,j,k) = sum(check_obj2); 
            %remove the data as its already known and been checked 
            if any(check_obj2) 
                data_obj2(find(check_obj2), :, :) = []; 
            end 

             
            num = num + min(pts_in_obj1(i,j,k), pts_in_obj2(i,j,k)); 
            den = den + max(pts_in_obj1(i,j,k), pts_in_obj2(i,j,k)); 

     
            if isempty(data_obj2) && isempty(data_obj1) 
                break; 
            end 
        end 
    end 
end 
Pc = num / den; 

  
end  
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Appendix B 

Monte Carlo Equations 

ℎ̅(𝐱t) ≜ 𝐸𝒲𝑡
[ℎ(𝐱t)] = ∫ ℎ(𝐱t)𝒲𝑡𝑑𝐱tΩ𝑡

    (1) 

𝑑𝐱 = 𝐟(𝑡, 𝐱)𝑑𝑡 ,   𝐱0 ~ 𝒲0(𝑡0, 𝐱)    (2) 

𝜕

𝜕𝑡
𝒲(𝑡, 𝐱) = ℒ[𝒲(𝑡, 𝐱)] = −∑ ( 𝑓𝑖

𝜕𝒲

𝜕𝑥𝑖
+ 𝒲

𝜕𝑓𝑖

𝜕𝑥𝑖
)𝑁

𝑖=1            (3) 

𝐫 = −
𝜇⨁

‖𝐫‖3 𝐫 + 𝐅(𝐫)     (4) 

𝐱𝐶𝐸 =

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑣𝑥
𝑣𝑦

𝑣𝑧]
 
 
 
 
 

 , 𝐱𝑂𝐸 =

[
 
 
 
 
 

𝑎: semi − major axis
𝑒: eccentricity
𝑖: inclination

Ω: ascending node
𝜔: argument of perigee

𝑀:mean anomaly ]
 
 
 
 
 

, 𝐱𝐸𝐸 =

[
 
 
 
 
 
 

𝑎
𝑃1 = 𝑒 sin𝜛
𝑃2 = 𝑒 cos𝜛

𝑄1 = tan
1

2
𝑖 sinΩ

𝑄2 = tan
1

2
𝑖 cosΩ

𝑙 = 𝜛 + 𝑀 ]
 
 
 
 
 
 

  (5) 

𝑑𝑎

𝑑𝑡
=

2𝑎2

ℎ
[(𝑃2 sin 𝐿 − 𝑃1 cos 𝐿)𝑎𝑑𝑟 +

𝑝

𝑟
𝑎𝑑𝜃]    (6a) 

𝑑𝑃1

𝑑𝑡
=

𝑟

ℎ
{−

𝑝

𝑟
cos 𝐿𝑎𝑑𝑟 +[𝑃1 + (1 +

𝑝

𝑟
) sin𝐿] 𝑎𝑑𝜃 − 𝑃2(𝑄1 cos 𝐿 − 𝑄2 sin 𝐿)𝑎𝑑ℎ}  (6b) 

𝑑𝑃2

𝑑𝑡
=

𝑟

ℎ
{
𝑝

𝑟
sin 𝐿𝑎𝑑𝑟 +[𝑃2 + (1 +

𝑝

𝑟
) cos𝐿] 𝑎𝑑𝜃 + 𝑃1(𝑄1 cos𝐿 − 𝑄2 sin 𝐿)𝑎𝑑ℎ}  (6c) 

𝑑𝑄1

𝑑𝑡
=

𝑟

2ℎ
(1 + 𝑄1

2 + 𝑄2
2) sin 𝐿𝑎𝑑ℎ      (6d) 

𝑑𝑄2

𝑑𝑡
=

𝑟

2ℎ
(1 + 𝑄1

2 + 𝑄2
2) cos 𝐿𝑎𝑑ℎ       (6e) 

𝑑𝑙

𝑑𝑡
= 𝑛 −

𝑟

ℎ
 {

[
𝑎

𝑎+𝑏
(
𝑝

𝑟
) (𝑃1 sin 𝐿 +𝑃2 cos 𝐿) +

2𝑏

𝑎
] 𝑎𝑑𝑟

+
𝑎

𝑎+𝑏
(1 +

𝑝

𝑟
) (𝑃1 cos𝐿 − 𝑃2 sin 𝐿)𝑎𝑑𝜃 + (𝑄1 cos 𝐿 − 𝑄2 sin 𝐿)𝑎𝑑ℎ

}  (6f) 

𝑙 = 𝐾 + 𝑃1 cos𝐾 − 𝑃2 sin𝐾     (7) 

𝑟 = 𝑎(1 − 𝑃1 sin𝐾 − 𝑃2 cos𝐾).        (8) 

sin 𝐿 =
𝑎

𝑟
[(1 −

𝑎

𝑎+𝑏
𝑃2

2) sin𝐾 +
𝑎

𝑎+𝑏
𝑃1𝑃2 cos𝐾 − 𝑃1]    (9a) 

cos 𝐿 =
𝑎

𝑟
[(1 −

𝑎

𝑎+𝑏
𝑃1

2) cos𝐾 +
𝑎

𝑎+𝑏
𝑃1𝑃2 sin𝐾 − 𝑃2]   (9b) 

𝑎

𝑎+𝑏
=

1

1+√1−𝑃1
2−𝑃2

2
  .          (10) 

𝐚𝑑 =
𝜇⨁

𝑟2
∑  𝐽𝑘,𝐸

4
𝑘=2 (

𝑟𝐸

𝑟
)
𝑘
[𝑃𝑘+1

′ 𝐢𝑆𝑂 − 𝑃𝑘
′ 𝐢𝑧]            (11) 

|𝜀𝑛| = |ℎ̅ − ℎ̃𝑛|      (12) 
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|𝜀𝑛| = |ℎ̅ − ℎ̃𝑛| ≤ 𝒟({𝑥0
𝑖 }𝑖=1

𝑛 )𝑉(𝑆𝑡)    (13) 

E[𝑔(X)] = ∑ 𝑔(𝑥)𝑓X(𝑥)𝑥     (14) 

E[(X − μ)𝑘] = ∑ (𝑥 − μ)𝑘𝑓X(𝑥)𝑥     (15) 

μ = E[X] = E [

X1

X2

⋮
X𝑁

] = (

E[X1]
E[X2]

⋮
E[X𝑁]

)     (16) 

𝐏 = E[(X − μ)(X − μ)T] = 

= E

[
 
 
 
 

(X1 − μ1)
2 (X1 − μ1)(X2 − μ2)        …              …                 (X1 − μ1)(X𝑁 − μ𝑁)

(X2 − μ2)(X1 − μ1) (X2 − μ2)
2         ⋮                ⋮                 (X2 − μ2)(X𝑁 − μ𝑁)

⋮
⋮

(X𝑁 − μ𝑁)(X1 − μ1)

⋮
⋮

(X𝑁 − μ𝑁)(X2 − μ2)

(X3 − μ3)
2    

⋮
…        

 ⋮                                 
⋱                               
…                               

⋮
⋮

(X𝑁 − μ𝑁)2]
 
 
 
 

    (17) 

𝑃𝑐 =
∑ min (𝑚𝑖,𝑛𝑖)

𝑁
𝑖=1

∑ max (𝑚𝑗,𝑛𝑗)
𝑁
𝑗=1

     (18) 
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