
1 
 

 

 

Improved Automated Analysis of Coronary Doppler Echocardiograms to Predict Early 

Coronary Microvascular Disease 

 

 

Thesis 
 

Presented in Partial Fulfillment of the Requirements for Honors Research Distinction in 

Computer Science and Engineering at The Ohio State University 

 

By 

Jamie Bossenbroek 

Undergraduate Program in Computer Science and Engineering 
 

The Ohio State University 

2022 
 

Thesis Committee 

Dr. William Ray, Advisor 

Dr. Xia Ning, Co-Advisor 

  

 



2 
 

 

 

 

 

 

 

 

 

Copyrighted by 

Jamie Bossenbroek 

2022 
 

 

 



ii 
 

Abstract 

Coronary microvascular disease (CMD) is a heart condition that frequently 

precedes the development of more serious heart diseases. Although it can be assessed 

through Transthoracic Doppler echocardiography (TTDE) by observing changes in 

coronary blood flow patterns, manual analysis of TTDE is time consuming and subject to 

bias. In a previous study, a program was created to automatically analyze coronary blood 

flow patterns by parsing TTDE videos into a single continuous image, binarizing and 

separating the image into distinct cardiac cycles, and extracting characteristic data values 

from each cycle. The program significantly reduced variability and time to complete 

analysis, but obstacles such as interfering noise and varying video sizes left room to 

increase the program’s accuracy. The goal of this study was to improving the program’s 

ability to handle challenging video variations and to remove unnecessary manual 

intervention to further reduce analysis time. To confirm this improved analysis, several 

videos were analyzed using both the original MATLAB program and updated Python 

program. Comparison of specific examples showed the new program was better able to 

identify and remove difficult noise objects, and more consistently and fully captured the 

Doppler region. This improved analysis has the potential to provide more insight into the 

early diagnosis of unhealthy coronary flow by offering a quick, easy, and accurate 

method of analysis. 
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Chapter 1. Introduction 

Coronary microvascular disease (CMD) is a heart condition affecting the smaller 

blood vessels that branch off from the main coronary arteries. Impairments in the coronary 

microcirculation disrupt the healthy regulation of myocardial blood flow and nutrient 

exchange1,2. CMD is a nonobstructive coronary artery disease, meaning that although there 

is no physical blockage in the arteries, oxygenated blood is unable to move through smaller 

blood vessels at an adequate rate to maintain physiological demand3. Instead, functional 

and structural changes to the microvasculature, such as those shown in Figure 1 below, 

prevent healthy levels of blood flow to the heart4. This condition has been shown to be 

strongly associated with diabetes, and when paired with myocardial ischemia – or reduced 

blood flow – it is referred to as nonobstructive coronary artery disease (INOCA).  

 
A. Vasoconstriction, or narrowing of the blood vessels, limits blood flow. B. Impaired 
dilation of blood vessels lowers blood pressure. C. Increased thickness of vessel walls 

results from smooth muscle cells and restricts blood flow. 

Figure adapted by author from [4] 

Figure 1: Examples of Abnormal Structure and Function or Coronary Microcirculation 
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CMD shares many of the same risk factors as atherosclerosis, or blockage in the 

arteries, and it often overlaps or precedes the development of obstructive coronary artery 

disease2. For example, previous studies by our lab observed inward hypertrophic 

remodeling and reduced vessel stiffness contributing to myocardial ischemia before the 

occurrence of occlusive atherosclerosis7. Most importantly, CMD is one of the earliest 

signs of heart disease which can lead to myocardial infarction, heart failure, and/or 

stroke1,2. The functional and structural deficits associated with CMD are indicators that can 

be observed before the appearance of symptoms such as circulating biomarkers or 

atherosclerosis2. With early and accurate identification of CMD, more serious and life-

threatening cardiac conditions can be treated and prevented before they become 

deleterious. 

While indirect methods to diagnose CMD are available, they are fraught with 

subjectivity. Positron emission tomography (PET) and magnetic resonance imaging (MRI) 

offer value in identifying impairments in cardiac perfusions, but currently include no direct 

measures to diagnose CMD4. Transthoracic Doppler echocardiography (TTDE) is an 

affordable and non-invasive method used to assess cardiovascular function through direct 

measurements of coronary blood flow (CBF), with potential to assess CMD. CBF is 

measured from one of the main coronary arteries under both baseline and stress 

(hyperemic) conditions, and this yields uniquely characteristic flow patterns in which 

diastole predominates and which can be analyzed to indicate impaired CBF5. For example, 

coronary flow velocity reserve (CFVR) is indicative of the amount of additional blood flow 

that the microvasculature can carry under stress; CFVR is lower in cases of coronary artery 
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disease, even in otherwise asymptomatic subjects or in patients with INOCA6. However, 

manual analysis of TTDE can be time consuming, difficult to learn, and subject to both 

intra-rater and inter-rater bias8. To resolve these issues, our groups began developing a 

MATLAB program to automatically extract data values from coronary flow patterns of 

TTDE video files9. 

         For each cardiac cycle in the TTDE flow pattern, the original MATLAB program 

automatically extracted several key parameters including the peak velocity and velocity 

time integral, which are metrics commonly used to quantify coronary health. CFVR was 

then calculated as the average peak hyperemic velocity divided by the average peak 

baseline velocity. When analyzing 98 baseline files and 117 hyperemic files both manually 

and with the automatic program, linear regression analysis showed significantly reduced 

variability when using automatic analysis, and the time to analyze videos was reduced from 

1500 minutes to 50 minutes. However, agreement between manual and automatic 

parameter output ranged from less than 1% difference to over 55% difference for certain 

variables9. This parameter variability suggested that with continued testing and program 

adjustments, automatic analysis of TTDEs could become more accurate and capable of 

processing challenging videos. 

 Extensive testing identified several potential areas in which improved analysis was 

possible, including the removal of interfering noise, the identification of fainter cardiac 

cycles, and the verification of peak selection in the ECG region. The original program was 

also limited to a single video height and width in pixels, which excluded the analysis of 

many Doppler videos.  In this study, we present the results of an effort to improve the 
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accuracy of the first-generation program through development of several key areas of 

analysis. The original program was developed in MATLAB but was recapitulated in 

Python in order to leverage libraries such as OpenCV for computer vision and Google’s 

TensorFlow for downstream machine learning.  As Python is also an industry standard for 

machine learning development, changing to that environment allows us to leverage 

innovations in machine learning from both academia and industry much faster going 

forward.                     

We hypothesized that modified heuristics could better address the original 

program’s limitations, and that these refinements would produce a comprehensive and 

accurate method for examiners to classify coronary flow issues through interpretation of 

CFVR values and other patterns in parameter output. These improvements would allow 

examiners to take advantage of the speed and consistency offered by automated analysis 

without sacrificing diagnostic accuracy in assessing coronary diseases.   
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Chapter 2.  Materials and Methods 

TTDE video files with approximately 20 distinct heart beats each were acquired 

from 12-week, 16-week, and 36-week old normal Db/db and type 2 diabetic (T2DM) db/db 

mice (Jackson Laboratories) at both baseline and hyperemic (high flow) conditions10. 

Doppler readings were measured at 1% isoflurane (baseline) and 3% isoflurane 

(hyperemia), and all measurements were taken from the left main coronary artery of the 

mice as previously described10. These videos were exported as .avi files from the VevoLab 

3.1.1 software and analyzed offline using the original MATLAB program and improved 

Python program. Mice were housed under a 12-hr light/dark cycle at 22°C and 60% 

humidity. They were allowed ad libitum access to water and were fed standard laboratory 

mice chow. This study was conducted in accordance with National Institutes of Health 

Guidelines and was approved by the Institutional Animal Care and Use Committee at the 

Abigail Wexner Research Institute at Nationwide Children’s Hospital. 

 

2.1 Algorithm Description 

The improved program was written in Python, and utilized the following libraries: 

sys, cv2 (OpenCV), PIL, scipy, skimage, matplotlib, tkinter, pandas, and numpy. Initial 

data processing began with prompts to select the folder containing the video files to be 

analyzed, input a name for the output excel file, select the type of analysis as ‘Doppler’ or 

‘Combined’ (the latter including analysis of color mode videos to measure vessel 

diameters), and finally to select each video file to be analyzed. The tkinter library was used 
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to generate all GUIs. The new interface expanded on the functionality of the original 

program by allowing more than one baseline and/or hyperemic video file to be selected for 

analysis in each run as well as by accepting videos with any pixel height and width. The 

peak velocity on each video’s Doppler scale was extracted using optical character 

recognition, and then if color mode analysis was selected the user was prompted to enter 

the probe angle and minimum/maximum penetration in mm from the B Mode window.   

Once all parameters had been entered, the program parsed each video by inspecting 

the difference between subsequent video frames to identify frames where the scroll bar 

reset from the right to the left side of the doppler window. This section of the program was 

expanded from the original version by adding additional checks to confirm that no reset 

frames were missed or duplicated when parsing. These frames were then concatenated into 

a single continuous image which was cropped to the region of interest containing the 

coronary flow pattern and electrocardiogram (ECG) recording. A gaussian filter was 

applied, the image was dilated with a linear structuring element, and then a global threshold 

value was calculated using OpenCV and Otsu’s method for image binarization. A 

representative binarized image is depicted in Figure 2 below. 

 
Figure 2: Binarized image of Doppler region 

         Users had the opportunity to adjust the manually selected threshold value in a 

‘Scroll Test’ window, where the threshold could be incremented or decremented to visually 

inspect how the level of filtering would affect the amount of data captured in the binarized 
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doppler image. Increasing the threshold value removed additional noise, while decreasing 

the threshold expanded the included envelope. Once the threshold value was verified, the 

program removed any remaining noise objects and filled small holes in the image using 

OpenCV. The updated program applied more complete noise removal by identifying all 

contours in the image and removing any objects that were not within ten pixels of the 

horizontal baseline. This corrected for any remaining noise objects and was especially 

useful in removing any interfering noise located at the top of the Doppler window. Next, 

the program split the Doppler region into cardiac cycles by identifying peaks in the 

corresponding ECG pattern. Peaks were initially identified using scipy, and then an added 

check compared the distance between each peak to remove extra peaks that were too close 

together and to fill larger empty gaps with estimated peak locations. Finally, the program 

extracted the following parameters from each cardiac cycle: peak velocity, diastolic 

velocity, decay velocity, systolic rise time, diastolic rise time, diastolic decay time, systolic 

slope, diastolic slope, decay slope, heart rate, and velocity time integral. These were the 

same parameters extracted in the original MATLAB program, and in the update program 

the numpy library was used to complete calculations9. All parameters were saved to a 

pandas data-frame and then output to a Microsoft Excel file in .xlsx format. 

The program generated an image of the coronary flow pattern with diastolic 

velocity (indicating the beginning of the diastolic phase), peak velocity (maximum velocity 

for each cycle), decay velocity (the point at which acceleration switched signs closest to 

peak diastolic deceleration), peak diastolic deceleration (minimum acceleration), and end 

of cycle (correlating with the peaks found in the ECG region) indicated with green, yellow, 
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pink, red, and blue points respectively. An example of this image is depicted in Figure 3 

below. The plots and corresponding output parameters generated by both the MATLAB 

and Python programs were inspected to find discrepancies where algorithmic or heuristic 

improvements could increase analysis accuracy. 

 
Figure 3: Image generated by Automatic Program 

The program also included an option for analysis of coronary diameters from B-

mode color videos, which is required to calculate coronary blood flow (CBF)10. The 

algorithm began by masking the first frames of both the color mode and corresponding 

Doppler videos and identifying the borders of the B mode window and the center lines 

indicating where vessel measurements were taken from. For each video frame of the color 

mode file, these values were used to crop to a region around the center location before 

rotating the image based on the angle of the probe. The corresponding length of each pixel 

in mm was calibrated from the minimum and maximum probe depths entered by the user 

at the beginning of video analysis. The program then masked each image and identified 

any contours; if the contour was large enough and in the correct location to exclude noise 

or ventricle filling, the diameter of the identified vessel was then calculated by finding the 

average distance between the left and right vessel walls of the object. The program output 

the minimum, maximum, mean, median, mode, and standard deviation of all diameters for 

each analyzed video. An example of a measured vessel is shown in Figure 4. 
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Figure 4: Example of a Vessel Diameter measured during Colormode Analysis 

 

2.2 Methodology 

  A collection of 18 Doppler video sets evenly distributed between 12, 16, and 36 

week old healthy and diabetic mice were processed with both the original MATLAB 

program and the improved Python program. All tests were performed on the same 

computer by a single tester who entered in any prompted values and adjusted the threshold 

value for binarization as needed to fully capture the Doppler envelope without including 

noise. Each video set included one baseline and one hyperemic video, and the Python 

program also analyzed the corresponding color mode videos acquired at baseline and 

hyperemic conditions. Videos were intentionally selected by the tester through visual 

inspection of video files in order to demonstrate a wide range of processing difficulty, from 

videos containing distinct Doppler regions with little noise to videos that the MATLAB 

program struggled to handle. Some challenging patterns included interfering ‘top noise’ 

descending from the top of the Doppler image, poor contrast between background noise 

and the Doppler signal, and inconsistent ECG readings that led to the incorrect separation 

of cardiac cycles. Testing with the improved program could then demonstrate through 

specific examples that modified heuristics were better able to handle challenging videos, 
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while videos with clearer signals that had already been fully captured by the original 

program would continue to generate similar data values.  

  

2.3 Statistics 

The table of parameters for each cardiac cycle generated by the two programs were 

saved to a Microsoft Excel file, and for each parameter the mean and standard deviation 

(SD) across all cycles were calculated. With color mode analysis included, CBF could be 

calculated using the equation as previously described by our lab10: 

CBF (mL/min) = ((π/4) x D2 x VTI x HR)/1000 

The percent difference between the MATLAB and Python average values and 

standard deviations were then calculated for each parameter. The percent difference was a 

useful statistic to uniformly evaluate the change in values between MATLAB and Python 

program analysis as opposed to the numerical change which varied based on the maximum 

velocity of each individual video’s scale. An f-test was performed to compare the peak 

velocity values of the two data sets and to determine if the variances of the sets were equal. 

Finally, a t-test (assuming equal or unequal variance based on the results of the f-test) with 

a significance level of p<0.05 was performed to compare the average peak velocity values 

and CBF. The calculated data was then categorized into groups based on the obstacles 

present in the video for comparison and evaluation of the improved program’s 

effectiveness.   
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3. Results 

Overall, standard deviation decreased from the MATLAB program to the Python 

program (Table 1). Standard deviation for peak velocity values decreased by an average of 

50.0% for baseline flow videos and 32.1% for hyperemic flow videos, and VTI standard 

deviation decreased by 51.2% and 35.2% for baseline and hyperemic videos respectively. 

In individual cases where standard deviation noticeably increased for these parameters, 

factors such as interfering noise (videos labeled as ‘Top noise’) or incorrect identification 

of fainter peaks (videos labeled as ‘Missing fainter peaks’) had influenced the calculated 

standard deviation for the MATLAB program’s output. 

When examining the two tailed t-tests performed between the peak velocity values 

of the MATLAB and Python programs, p-values indicated statistical significance when the 

Python program made significant improvements to the video’s analysis, such as through 

removal of top noise, extraction of cycles that were missed in the original analysis, or 

removal of unrepresentative peaks from the final data set. For cases where the original 

analysis was accurate, the p-values suggested that the two data sets were equal. In Table 2, 

baseline videos which were accurately captured and analyzed by the MATLAB program 

had an average p-value of 0.20, which did not indicate significance between the peak 

velocity values of the two programs. On the other hand, baseline videos that had several 

cardiac cycles that were not fully captured by the MATLAB program but which were 

correctly analyzed by the Python program had an average p-value of 0.004, which did 

indicate significant differences. Videos with top noise saw similarly lower p-values. 
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Average peak velocity and VTI values tended to increase when using the new 

algorithm, with the exception of videos where noise at the top of the Doppler region had 

been captured by the MATLAB program. The change in each individual baseline video’s 

peak velocity from the MATLAB to the Python program is displayed in Figure 10 in 

Appendix A, with videos affected by top noise indicated with red dots, accurate analysis 

indicated with green points, videos with fainter peaks indicated with yellow, and inaccurate 

ECG peak identification shown with blue points. The overall average peak velocity values, 

excluding top noise videos, are shown by the green line. In this figure, the peak velocity 

for accurately analyzed videos remained similar from the MATLAB to the Python 

program, while videos with top noise had a significant decrease in peak velocity values and 

videos with fainter peaks that were not fully captured by the original program tended to 

have an increase in peak velocity values when analyzed by the updated program. Overall, 

when not considering top noise videos, peak velocity values increased by an average of 

19.3% ± 13.6% and 10.9% ± 8.3% for baseline and hyperemic videos respectively and VTI 

values increased by 26.4% ± 25.7% and 8.1% ± 29.3% (Table 1).  

Several examples of the specific changes that contributed to overall performance 

improvement are investigated in the rest of this section. Removal of interfering top noise 

from the Doppler envelope made it possible for the improved program to capture the 

correct cardiac velocities. The program also added checks to verify ECG peak values so 

that cardiac cycles weren’t skipped or broken into multiple sections. Finally, the program 

fully captured fainter cardiac cycles that had been previously overlooked and removed 

unrepresentative cycles from consideration, both of which were changes that decreased 
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standard deviation and increased average peak velocity and VTI values. When making 

comparisons, peak velocity and VTI values were selected as the parameters for analysis 

because they are most representative of the analyzed doppler region and are the values most 

commonly utilized in clinical practice.  

 

3.1 Removal of Top Noise 

 Many of the videos analyzed in this dataset demonstrated the Python program’s 

ability to identify and remove difficult noise objects from the binarized image. To 

accomplish this, the new algorithm added steps to eliminate any large areas of noise which 

weren’t close to the baseline of the image. This was accomplished using openCV’s 

findCountours function to identify larger artifacts. For example, the representative baseline 

and hyperemic videos displayed in Figure 5A contained significant top noise which was 

captured by the MATLAB program. However, when analyzed by the Python program, this 

noise was removed from consideration in the binarized image and the program could 

extract accurate values, as shown by the critical points in Figure 5B. 
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Figure 5: Removal of Top Noise 

Removing top noise to more accurately capture the correct velocity values often 

produced a decrease in average values for the Python program’s values as velocities were 

no longer forced to the top of the Doppler window. On average, baseline videos with top 

noise had a 95.6% ± 27.5% decrease in average peak velocity values, and hyperemic videos 

had a 8.5% ± 10.2% decrease (Table 2). This change also contributed to an overall decrease 

in standard deviation values; standard deviation of peak velocity values decreased by 

101.3% and 5.3% for baseline and hyperemic videos respectively. For some individual 

examples of videos with top noise, standard deviation for peak velocity values increased 

by up to 88.7% because when processed by the original program, most or all peak velocities 

were driven up to an identical maximum value.  However, contrary to indications of 

increased variability, removal of top noise is a step that allows the new program to more 



15 
 

appropriately extract data values from videos which could not be optimally analyzed by 

the MATLAB program.  

 

3.2 Division of ECG Region 

 Before extracting data values, the Doppler region is broken into distinct cardiac 

cycles by identifying peaks in the ECG region. In cases of unusual ECG readings however, 

the MATLAB program was unable to identify the correct number of peaks in this region. 

For example, the ECG pattern dropping below the baseline frequently led to a skipped 

peak. This resulted in the program missing several QRS complex peaks and thus leaving 

some cardiac cycles unanalyzed - as depicted in Figure 6 - or in the program selecting 

multiple peaks within one cardiac cycle, as shown in Figure 7. In Figure 6, 9 of the total 

15 ECG peaks were identified by the original program, while in Figure 7 an additional 7 

peaks were identified along with the 15 correct ones. With added verification and 

corrections in the Python program, all 15 ECG peaks are identified in Figure 6, and only 

the correct 15 peaks are identified in Figure 7 with no additional peaks. Adding more of 

the correct ECG peaks to the analysis of this first example decreased standard deviation for 

peak velocity values by 11.9% and increased the average value by 6.4%, and removing 

incorrectly added peaks from the second representative example decreased standard 

deviation of peak velocity values by 31.2% and increased the average value by 34%.  
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Figure 6: Corrected ECG peak identification to identify missed peaks 

 
Figure 7: Corrected ECG peak identification to remove incorrect peaks 

 
3.3 Identification of Fainter Peaks 

 The new program was able to overcome some of the difficulty of identifying fainter 

peaks in the Doppler region, especially in cases where other cardiac cycles were 

significantly brighter or there was surrounding noise. By employing a more aggressive 

method of noise removal in the region above the doppler flow, the Python program was 

able to accept a lower threshold for binarization in order to capture these fainter peaks 

without also including surrounding noise in the final binarized image. The original 

algorithm does not fully capture cycles 2 and 4 when analyzing a representative baseline 

video, as shown in Figure 8A, but these peaks are fully captured and analyzed by the Python 

program in Figure 8B. This adjustment was incorporated into the program without 

compromising its ability to exclude unrepresentative flow cycles that result from the 

coronary artery moving in and out of view of the flow probe. 
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Figure 8: Correction to fully capture fainter cycles in the Doppler region 

 Correct identification and analysis of these previously overlooked cycles resulted 

in increased average peak velocity, VTI, and decreased standard deviation. On average, 

baseline videos in this category increased peak velocity and VTI values by 29.6% ± 7.6% 

and 40.8% ± 22.6% respectively when incorporating the Python program’s corrections, 

while standard deviation fell by 41.2% and 16.1% respectively (Table 2).  

 

3.4 Removal of Unrepresentative Cycles 

 The final main improvement made by the Python program to increase accuracy was 

to remove any unrepresentative cycles from the program’s final output. Unrepresentative 

cycles were identified by comparing a cycle’s peak velocity and VTI values to the data 

set’s averages, and if these values were comparatively too low (due to the coronary 

transiently falling out of the view of the ultrasound during the cardiac cycle) they were 

removed from the final data set. Removing this information helped to produce more 

uniform results by not taking into consideration either incorrectly analyzed cardiac cycles 

or cycles that may have been correctly captured but were not representative of the doppler 

region’s overall trends. For example, in Figure 9, the Python program had correctly 



18 
 

identified the Doppler region and analyzed each cardiac cycle, but cycles 5, 6, 11, and 12 

were not representative of the rest of the data set, so they were removed from the final data 

table and subsequent calculation of average values and standard deviation. 

 
Figure 9: Image showing unrepresentative cycles in the Doppler region 

 Removing the unrepresentative cardiac cycles from this representative video 

resulted in a 16.8% increase in average peak velocity and a 17.05% increase in VTI. 

Standard deviation then decreased by 102.21% and 57.53% for peak velocity and VTI 

respectively. For the subsequent analysis, videos in which unrepresentative cycles were 

removed were grouped together with videos which improved identification of fainter peaks 

because both modifications accomplished the shared purpose of removing inaccurate lower 

values from analysis. Because of this, both adaptations saw a similar increase in peak 

velocity and VTI values and decrease in standard deviation values.  
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4. Discussion 

The early identification of CMD has the potential to treat and prevent the 

development of more serious heart conditions such as atherosclerosis, stroke, and heart 

failure. TTDE is an effective and non-invasive method which can be used to assess 

coronary flow by observing coronary flow patterns, and automatic analysis of coronary 

blood flow was demonstrated in a previous study by this laboratory to reduce the time 

required for analysis and the bias typical of manually-analyzed TTDE files9. Here, we 

presented improvements to the original program. The updated program took advantage of 

several Python libraries, and with improved heuristics was able to handle a larger scope of 

data inputs and accurately analyze more challenging Doppler echocardiogram videos. 

This study aimed to refactor the original program, transition to a Python 

environment for use of OpenCV, Tensorflow, and other libraries, and to add additional 

checks and improvements identified through testing of the original program in order to 

increase analysis accuracy and more effectively handle difficult video cases. The new code 

improves handling of interference from top noise, validates identification of ECG peaks, 

correctly estimates parameters from fainter peaks, and removes unrepresentative data from 

the final data set. In addition, the program functionality was expanded by accepting videos 

of any pixel height and width, allowing multiple baseline and hyperemic videos to be 

analyzed in one run, and reducing manual intervention by implementing optical character 

recognition to determine the maximum velocity on the Doppler window’s scale. 

One major advantage of moving the program to Python was the use of OpenCV for 

video processing and image analysis. The MATLAB program interpreted each video frame 



20 
 

as a cell array of pixel values and analyzed the images to identify the horizontal baseline 

position, regions of interest to crop to, and threshold values for binarization. The Python 

program utilized functions of the OpenCV library to accomplish these steps, as well as for 

grayscale conversion and for applying a gaussian filter and dilation to the Doppler region 

before calculating the binarization threshold. The findContours function was also useful in 

adding modified heuristics to identify top noise and other noise objects that needed to be 

removed. 

The Python program took advantage of several other Python libraries for specific 

analysis steps; numpy was used for array manipulation and mathematical calculations as 

parsed images were treated as arrays of pixel values, tkinter was used to create GUIs for 

user interaction, and matplotlib was used to plot critical values on the images of the 

coronary flow pattern that were saved from each processed video. As future developments 

are added, the Python environment can be extended to utilize TensorFlow, scikit-learn, and 

other libraries for further data analysis and machine learning algorithms.  

The data and examples provided specifically demonstrate the program’s ability to 

remove top noise, to improve identification of peak ECG values, to better capture fainter 

cardiac cycles, and to remove unrepresentative cardiac cycles from analysis. Overall, this 

resulted in decreased standard deviations from the original to the improved program. This 

decrease in standard deviation indicates a more consistent analysis of each cardiac cycle 

and the proper removal of inaccurate cycles. Increased average peak velocities and VTI 

values in cases except those dealing with top noise interference also demonstrate the 
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program’s improved analysis as the Doppler region was more fully captured during the 

binarization and noise removal steps.   

 

4.1 Related Studies 

 A handful of similar programs have been developed to implement automated 

analysis to reduce processing time and parameter variability when assessing coronary 

blood flow. Many of these programs rely on partial-automation combined with expert 

analysis to enhance accuracy without removing manual intervention. For example, one 

program developed in MATLAB was used to crop video frames to the region of interest 

containing the Doppler envelope and apply a binarization threshold adjusted by the user, 

similar to the verification included in this current study’s algorithm12. The program 

analyzed the Doppler region in frames containing three heartbeats at a time, with each 

frame taking between 10 and 40 seconds to analyze, and calculated a subset of the 

parameters found in in this study; peak diastolic velocity, peak diastolic acceleration, 

beginning diastolic phase, peak systolic velocity, and peak diastolic deceleration. When 

analyzing 200 videos from 100 patients, linear regression indicated strong correlation to 

manual analysis in PSV (r = 0.986, P < 0.0001, SE = 2.51 cm/s) and PDV (r = 0.998, P < 

0.0001, SE = 1.58 cm/s)12. 

A similar study focused on removing all manual intervention from Doppler aortic 

flow analysis in order to minimize bias and analysis time13. The program tested Doppler 

strips of several heartbeats at a time and followed a similar procedure of cropping to the 

region of interest, binarizing the image to capture the Doppler envelope, and extracting 
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critical values from each cardiac cycle. The program was advantageous in that it didn’t rely 

on QRS complex peaks in the ECG region to divide the Doppler region into cardiac cycles, 

but instead relied only on the Doppler area to separate cycles. This program displayed and 

overall strong correspondence in identified VTI and PV values to expert analysis, and saw 

a 10-fold reduction in time for analysis.  

 

4.2 Limitations 

 Removing user interaction in favor of more computer automation would help to 

increase consistency, especially in identification of the correct threshold level for image 

binarization. However balancing user interactivity with complete automation is necessary 

for evaluators to adjust for errors and special cases, so allowing for a manual adjustment 

of the threshold value for image binarization is most effective. The option to adjust the 

binarization threshold is a critical element that needs to remain in order for a trained expert 

in coronary flow to assess the suitability of the pattern moving in and out of view of the 

Doppler during the cardiac cycle. This is a phenomenon that’s difficult to automate, but 

easily and quickly corrected for by manual verification of the binarization threshold. 
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5. Conclusions 

Comparison of the data values and plots generated from the original MATLAB and 

improved Python programs serve to demonstrate the increased accuracy of the updated 

algorithm to automatically measure CBF. Specifically, the updated program increased the 

ability to process a wider range of video sizes, special cases, and inaccurate readings that 

the original program didn’t have checks to handle. The improved program is able to remove 

top noise and other large noise artifacts, to verify the correct identification of ECG peaks, 

to better capture fainter peaks in the doppler region, and to remove unrepresentative values 

from the final set of parameters. The program accepts any video pixel height and width and 

allows for the analysis of more than one baseline and hyperemic video at a time. Videos 

that had already been accurately analyzed by the MATLAB program continued to output 

similar data values, while videos that were corrected to more fully and consistently capture 

the Doppler region showed decreased standard deviation and increased peak velocity and 

VTI values. The program has achieved its goal of improving algorithm heuristics in order 

to better handle special cases, and can be used by examiners as an efficient, fast, and exact 

way to automatically analyze coronary Doppler echocardiograms. 
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Appendix A.  Data Summary 
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Figure 10: Change in Peak Velocity Values
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Appendix B. Tables 
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Table 1: Coronary blood flow pattern variables assessed by the original MATLAB and the new Python programs at baseline and 
hyperemia 

  BASELINE   HYPEREMIA 

  

Average 
MATLAB 

Values 

Average 
Python 
Values 

Average % 
Difference  +/- SD 

Average % 
SD 

Difference    

Average 
MATLAB 

Values 

Average 
Python 
Values 

Average % 
Difference  +/- SD 

Average % 
SD 

Difference  
Systolic Rise Time (ms) 75.58 71.57 0.79 44.55 -54.61   73.94 62.90 -10.64 39.60 -59.22 
Diastolic Rise Time (ms) 23.03 26.73 16.28 36.27 -11.65   29.05 29.05 1.25 27.80 -31.23 
Diastolic Decay Time 1 (ms) 34.16 41.94 23.63 26.42 -11.43   27.91 31.80 9.36 31.88 -22.92 
Diastolic Decay Time 2 (ms) 61.73 35.30 -50.94 35.94 -51.84   64.90 42.16 -40.48 43.29 -50.21 
Systolic Slope (mm/s2) 1042.46 443.38 25.82 173.15 -22.96   2883.07 3686.91 27.85 38.42 7.54 
Diastolic Slope (mm/s2) 24777.52 10698.94 -24.04 68.88 -29.16   29405.50 22284.09 -11.37 45.06 -40.01 
Decay Slope 1 (mm/s2) -11183.36 -3159.46 -50.62 76.42 -72.15   -12850.25 -9942.69 -13.88 49.86 -68.12 
Decay Slope 2 (mm/s2) -5509.69 -6718.63 23.72 44.74 16.78   -11247.26 -15374.79 26.34 29.13 9.31 
Diastolic Velocity (mm/s) 70.99 71.63 179.36 659.25 2.81   211.53 290.45 31.14 34.73 -15.34 
Peak Velocity (mm/s) 374.33 287.91 -6.23 51.86 -50.00   798.03 847.01 5.50 12.37 -32.10 
Decay Velocity (mm/s) 283.97 187.37 -13.85 56.69 -40.78   573.62 561.72 0.09 25.38 -6.26 
Heart Rate (BPM) 323.48 359.14 9.31 17.90 -30.09   320.89 375.22 15.10 16.25 -33.69 
VTI (mm) 24.14 22.11 4.15 49.55 -51.19   59.04 62.24 2.99 26.41 -35.20 

  BASELINE – NO TOP NOISE   HYPEREMIA – NO TOP NOISE 

  

Average 
MATLAB 

Values 

Average 
Python 
Values 

Average % 
Difference  +/- SD     

Average 
MATLAB 

Values 

Average 
Python 
Values 

Average % 
Difference  +/- SD   

Systolic Rise Time (ms) 86.71 76.69 -13.14 20.25     83.04 65.92 -22.48 20.55   
Diastolic Rise Time (ms) 25.25 26.74 4.46 22.87     30.63 29.11 -5.94 21.97   
Diastolic Decay Time 1 (ms) 33.90 41.48 23.75 27.84     28.85 31.47 7.11 28.77   
Diastolic Decay Time 2 (ms) 49.65 35.46 -38.11 28.23     58.08 41.66 -32.67 27.80   
Systolic Slope (mm/s2) 201.98 431.48 92.87 129.35     2540.62 3700.73 38.94 23.50   
Diastolic Slope (mm/s2) 10238.15 11007.39 7.71 26.87     21868.16 23225.37 7.45 16.99   
Decay Slope 1 (mm/s2) -4179.26 -3291.31 -16.58 44.49     -11940.33 -10032.00 -14.98 37.36   
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Decay Slope 2 (mm/s2) -4166.63 -6776.93 42.91 26.96     -11762.49 -15699.49 26.95 18.06   
Diastolic Velocity (mm/s) 40.87 73.31 53.85 42.10     222.39 295.15 26.84 17.52   
Peak Velocity (mm/s) 234.84 287.84 19.30 13.60     773.08 863.84 10.91 8.29   
Decay Velocity (mm/s) 163.14 189.29 13.46 16.22     525.57 576.42 9.90 16.98   
Heart Rate (BPM) 324.32 351.83 6.81 19.70     315.76 370.09 15.14 17.26   
VTI (mm) 16.75 22.16 26.42 25.67     57.16 64.13 8.15 29.29   

   
 

Table 2: Coronary blood flow peak velocity and VTI as assessed by the original MATLAB and the new Python programs at baseline 
and hyperemia and under varying circumstances that occur in Doppler videos. 

    Baseline   Hyperemia 
    Peak Velocity (mm/s) VTI (mm)   Peak Velocity (mm/s) VTI (mm) 

Accurate Analysis 

Average MATLAB Values 282.45 20.75   959.43 62.41 

Average Python Values 293.71 23.42   1000.72 61.89 

p-Value 0.20  0.11   0.26 0.45 

Average % Difference 4.65 11.74   3.26 -2.53 

+/- SD 7.46 32.23   5.05 7.86 

Average % SD Difference -13.05 -11.64   -5.66 -21.12 

              

ECG Inaccuracies 

Average MATLAB Values 187.64 16.22   653.11 211.50 

Average Python Values 228.54 19.95   717.62 50.44 

p-Value 0.001  0.10   0.15 0.20 

Average % Difference 20.07 20.80   8.91 -12.55 

+/- SD 9.52 22.72   4.90 10.30 

Average % SD Difference -25.83 -43.60   -37.55 -58.36 
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Fainter Peaks/Unrepre-
sentative Cycles 

Average MATLAB Values 251.33 16.01   718.19 49.50 

Average Python Values 342.65 24.68   886.41 79.59 

p-Value 0.004 0.08    0.01 0.01 

Average % Difference 29.63 40.78   20.55 42.79 

+/- SD 7.60 22.58   4.25 29.71 

Average % SD Difference -41.24 -16.06   -71.06 -27.76 

              

Top Noise 

Average MATLAB Values 862.55 49.99   829.05 63.03 

Average Python Values 288.15 21.94   757.18 55.79 

p-Value 0.01  0.02   0.44 0.28  

Average % Difference  -95.55 -73.80   -8.54 -10.41 

+/- SD 27.53 25.33   10.16 9.00 

Average % SD Difference -101.29 -141.09   -5.30 -23.74 

       

 


