
1. Introduction
Barrier islands are highly dynamic landforms shaped by wind, waves, water levels, currents, and vegetation 
(Davis jr, 1994; Leatherman, 1983). As a result of these forces, barrier islands experience nearly constant alter-
ations to the shoreline and subaerial footprint (Dolan et al., 1988; Morton & Sallenger, 2003; Philips, 2017), 
with evolution constrained by sediment availability and human modifications to the landscape (Armstrong & 
Lazarus,  2019; Ciarletta et  al.,  2021; Hapke et  al.,  2010; Lorenzo-Trueba & Ashton,  2014). Highly complex 
relations among natural disturbance regimes, substrates, and biological communities present on a barrier island 
can lead to equilibrium conditions in geomorphology and ecological community composition that can remain 

Abstract Forecasting biogeomorphological conditions for barrier islands is critical for informing sea-level 
rise (SLR) planning, including management of coastal development and ecosystems. We combined five 
probabilistic models to predict SLR-driven changes and their implications on Fire Island, New York, by 2050. 
We predicted barrier island biogeomorphological conditions, dynamic landcover response, piping plover 
(Charadrius melodus) habitat availability, and probability of storm overwash under three scenarios of shoreline 
change (SLC) and compared results to observed 2014/2015 conditions. Scenarios assumed increasing rates of 
mean SLC from 0 to 4.71 m erosion per year. We observed uncertainty in several morphological predictions 
(e.g., beach width, dune height), suggesting decreasing confidence that Fire Island will evolve in response to 
SLR as it has in the past. Where most likely conditions could be determined, models predicted that Fire Island 
would become flatter, narrower, and more overwash-prone with increasing rates of SLC. Beach ecosystems 
were predicted to respond dynamically to SLR and migrate with the shoreline, while marshes lost the most area 
of any landcover type compared to 2014/2015 conditions. Such morphological changes may lead to increased 
flooding or breaching with coastal storms. However—although modest declines in piping plover habitat 
were observed with SLC—the dynamic response of beaches, flatter topography, and increased likelihood 
of overwash suggest storms could promote suitable conditions for nesting piping plovers above what our 
geomorphology models predict. Therefore, Fire Island may offer a conservation opportunity for coastal species 
that rely on early successional beach environments if natural overwash processes are encouraged.

Plain Language Summary Predicting a barrier island's future characteristics is important for 
planning, particularly given that these areas contain habitats used by threatened and endangered species and 
are popular sites for housing and recreation. In this study, we combined five models to predict barrier island 
characteristics like elevation, beach width, and dune height under three rates of shoreline erosion at Fire Island, 
New York. Models were also used to predict how likely parts of the island were to be permanently flooded by 
sea-level rise or to experience overwash with storms, where waves move sand deeper into the island. We found 
that Fire Island would likely become narrower and flatter while experiencing more overwash with storms as 
rates of shoreline erosion increase. These changes may lead to more flooding in housing communities and 
businesses on the island. However, models also predicted that beach habitats used by shorebirds like the piping 
plover would not flood permanently. Instead, they would move as the shoreline changes position as long as 
human structures like buildings or seawalls do not block sand movement. This migration of beaches and sand is 
important, as it also allows a barrier island to evolve and survive with rising sea levels.
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stable over centennial or millennial time scales (Ahnert, 1994; Cooper et al., 2007; Holling, 1973; Stallins, 2006; 
Zinnert et al., 2017). This interplay of factors can result in, for example, a high-elevation barrier island domi-
nated by late-successional plant communities or a low-elevation, overwash-prone barrier island dominated by 
early successional communities (Vinent & Moore, 2015; Zinnert et al., 2017). Novel conditions or disturbances 
can cause a shift in a prevailing geomorphological and ecological (hereafter, ‘biogeomorphological’) state, 
whereby self-reinforcing mechanisms make a return to the previous state unlikely (Scheffer et al., 2012; Vinent 
& Moore, 2015).

Understanding relations among dynamic drivers, biogeomorphological responses, prevailing landscape condi-
tions, and potential state shifts are important for managing barrier islands, with implications for both human use 
and species management. Although biogeomorphological states are expected to shift regularly in these dynamic 
environments, increased rates of sea-level rise (SLR) combined with storms are predicted to cause faster and 
more abrupt changes to barrier island characteristics (Brinson et al., 1995; Scheffer et al., 2012; Schneider, 2004) 
with substantial, well-documented socioeconomic and ecological consequences (Arkema et al., 2013; Chown 
& Duffy,  2017; Hallegate et  al.,  2013; Hauer et  al.,  2016; Hinkel et  al.,  2014; Leatherman,  2001; Neumann 
et al., 2015; Scheffer et al., 2001; Von Holle et al., 2019). Most likely estimates of SLR by 2100 are 1 m higher 
than that observed in the 1991-2009 epoch, with worst case scenarios predicting a 2.5 m increase by that time 
(Sweet et al., 2017). High rates of SLR are of particular concern because they may drive inundation state shifts, 
where previously subaerial ecosystems (e.g., sandy beaches, tidal marshes) become permanently flooded marine 
ecosystems. While some ecosystems and landcover types may respond dynamically to SLR (Lentz et al., 2016), 
an entire barrier island and its component ecosystems are at risk of drowning if a low sediment budget and 
other factors inhibiting landward migration or “rollover” prevent the system from keeping pace with SLR 
(Lorenzo-Trueba & Ashton,  2014; Nicholls & Cazenave,  2010; Passeri et  al.,  2020; Sallenger,  2000; Stock-
don et al., 2007). Anticipating changes in barrier island biogeomorphological characteristics, therefore, requires 
consideration of the natural complexity, variability, and dynamism inherent to these systems, alongside consider-
able uncertainties associated with the forcing factors that will shape them.

Planning for SLR impacts on coastal landscapes—including anticipating where and when important biogeomor-
phological state shifts may occur—has been difficult because of a paucity of approaches capable of integrating 
complex, nonlinear biogeomorphological relations (Stallins, 2006; Zinnert et  al., 2017). For example, widely 
available inundation models that primarily consider elevation (e.g., Marcy et al., 2011; Strauss et al., 2012) have 
offered an initial understanding of where low-elevation landscapes are most at risk of being inundated with SLR. 
However, some ecosystems and geomorphic settings are able to move and persist with SLR in what is termed a 
‘dynamic response’ (Lentz et al., 2016). Models are likely to overestimate flooding and inundation predictions 
when they do not consider the potential for coastal landforms to respond more dynamically to SLR, such as 
beaches (Lentz et al., 2016).

Our objectives in this work were (a) to investigate a barrier island's propensity for dynamic change and to forecast 
possible biogeomorphological conditions in 2050 under multiple SLR-driven shoreline change scenarios; (b) 
to explore how forecasted changes could impact people as well as other species; and (c) to develop a modeling 
framework capable of considering (i) physical drivers and biogeomorphological responses that span spatial and 
temporal scales and (ii) uncertainty in predicted outcomes. We use Fire Island—a barrier island off the coast of 
Long Island, New York, USA (Figure 1)—as a pilot location for this work.

2. Materials and Methods
2.1. Study Area on Fire Island, New York

Fire Island is centrally located in a barrier system that spans the south shore of Long Island, New York (Figure 1). 
The approximately 50-km barrier island is a patchwork of state, county, and federal parks—including the Fire 
Island National Seashore—interspersed with private lands and is, therefore, a mix of anthropogenically modified 
segments (e.g., with residential communities, roads, and infrastructure near the primary dune-line) and protected 
segments with minimal development. The island is oriented east-northeast, and the predominant southerly wave 
direction drives net longshore transport from the east to the west (Taney, 1961). Fire Island is considered micro-
tidal and wave-dominated (Hayes, 1979). Three inlets are present in the study area that carry sediment from the 
ocean to the back-barrier to sustain the marsh system (Leatherman, 1985, 1989), and historic records suggest 
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overwash is an important contributor to sustained landward migration of the island (Lentz et al., 2013). Gener-
ally, relatively narrow beaches and high dunes (some as tall as 11 m) characterize the central-eastern segment of 
the island, whereas wider beaches and lower dunes (averaging 4.5 m) are found to the west (Hapke et al., 2013).

Erosion of a lobe of Pleistocene outwash sediment located offshore of Watch Hill (Figure 1; reviewed in Lentz 
et al. [2013]) has supplied abundant well-sorted medium to fine-grained sand to the inner-continental shelf down-
drift to the west. These sediments have been reworked to form a series of shoreface-attached sand ridges west of 
Watch Hill, and the onshore flux of sediment from these ridges may be supplying the sediment volume required 
for maintaining island stability west of Watch Hill (Schwab et al., 2000). East of Watch Hill, the modern reworked 
sediment deposit is relatively thin or absent on the inner continental shelf and lower shoreface. Here, the only 
sediment available to supply the island is from updrift erosion and the relatively coarse-grained, less mobile 
Pleistocene material offshore. As a result, the barrier island migrates landward at a relatively rapid rate (Schwab 
et al., 2000). Sediment budgets conducted for the south shore of the Long Island barrier system estimate that an 
average of approximately 200,000 m 3/yr of sediment is leaving the system at Fire Island Inlet than is entering 
the system at Moriches Inlet (reviewed in Lentz et al. [2013]). The lack of landward migration along the western 
reach of the island supports the theory that alongshore contributions from the ridges may serve as a sediment 
source supplying the western reach with ample material to maintain position and balance the system losses at Fire 
Island Inlet (reviewed in Lentz et al. [2013]).

Documented average net shoreline change rates for Long Island have been accretional at 0.08 ± 0.2 m/yr (1830-
2007) and 0.8 ± 0.09 m/yr (1983-2000; Hapke et al., 2010). However, true rates of shoreline erosion may be 
masked by current coastal management practices (Armstrong & Lazarus, 2019). According to Rice (2015), the 
majority of ocean-front shoreline along Fire Island has directly or indirectly experienced beach replenishment 
(also known as beach fill or renourishment) in the last 10–15 years, and approximately 24 small areas of the 
coastline were armored with hard shoreline stabilization structures as of 2015. Additionally, evidence indicates 
that the back-barrier (bay-side) shoreline is experiencing widespread erosion that is exacerbated by the presence 
of marinas and bulkheads (Nordstrom & Jackson, 2005). Furthermore, over the last few decades, the northeastern 
United States has experienced relative SLR rates three to four times higher than the global average (Boon, 2012; 
Dupigny-Giroux et al., 2018; Ezer & Corlett, 2012; Goddard et al., 2015; Kopp, 2013; Sallenger et al., 2012; 
Sweet et al., 2017; Sweet & Park, 2014), and continued higher than global average rates are projected in the future 
(Dupigny-Giroux et al., 2018; Sweet et al., 2017).

2.2. Piping Plovers: An Umbrella Species for Beach Ecosystems

We use the piping plover (Charadrius melodus) as an indicator species for understanding the implications of 
biogeomorphological change for non-human species on Fire Island because of this bird's reliance on low-lying 
coastal habitats and rapid population-level response to habitat change (Cohen et al., 2009; Robinson et al., 2019; 
Zeigler, Gutierrez, et al., 2019). This species also has demonstrated value as an umbrella conservation species 
for other sympatric species, such as American oystercatchers (Haematopus palliatus), black skimmers (Rynchops 
niger), and least terns (Sterna antillarum; Maslo et al. [2016]). Furthermore, because nesting pairs tend to select 
low-lying regions prone to overwash (Zeigler, Gutierrez, et al., 2019; Zeigler et al., 2021), identifying where 

Figure 1. Fire Island study area, located off the coast of Long Island, New York, USA.
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habitat is most suitable can also help identify areas where infrastructure, recreation, and human access may be 
more vulnerable to overwash processes.

Piping plovers are migratory shorebirds with discrete breeding populations on the Atlantic coast, the Great Lakes, 
and the Northern Great Plains of Canada and the United States where they are considered either federally threat-
ened or endangered (U.S. Fish and Wildlife Service, 1996). Here, we consider the federally threatened Atlantic 
coast population. These birds typically establish nests in washover features, backshore areas, and low elevation 
dune complexes with sandy substrates and minimal vegetation (U.S. Fish and Wildlife Service, 1996; Cohen 
et al., 2009; Maslo et al., 2011; Zeigler et al., 2021). Breeding pairs lay up to four eggs in small depressions in 
the sand beginning in May, and precocial chicks hatch after approximately 27–30 days of incubation (U.S. Fish 
and Wildlife Service, 1996). Adults and chicks forage along low-energy ocean- or bay-side intertidal zones and 
ephemeral pools, where they consume marine worms, arthropods, mollusks, and crustaceans (U.S. Fish and 
Wildlife Service, 1996). Chicks fledge by August when adults and fledglings begin migrating back to winter-
ing grounds in the Caribbean and the southeastern Atlantic and Gulf of Mexico coasts (U.S. Fish and Wildlife 
Service, 1996).

2.3. Bayesian Networks

In order to holistically understand biogeomorphological change and its implications on Fire Island, we employed 
five probabilistic models that predicted dynamic change likelihood, biogeomorphological characteristics, over-
wash probability, and piping plover habitat availability (Figure 2). Four of the five probabilistic models used are 
Bayesian networks (BN). In general, a BN is a directed acyclic graph composed of nodes and edges that organize 
knowledge about a system. Nodes represent variables describing relevant system components and are further 
broken down into discrete characteristics or, for continuous variables, discretized bins. Edges connect nodes to 
convey dependencies, correlations, or causal influences among nodes (Korb & Nicholson, 2004). Using obser-
vational and modeled data, probability distribution functions (PDF) are calculated for each node according to the 

Figure 2. Conceptual diagram of models used in this study: The Coastal Response Bayesian Network (BN; (a) was used as a discrete model to evaluate the potential 
for sea-level rise (SLR)-driven inundation on Fire Island, given initial elevation and landcover type. Under three scenarios of shoreline change (b), the Coarse-scale 
Geomorphology BN (c) was used to forecast likely realized changes along the cross-section of the island (e.g., barrier island width, beach width). Outputs, in the form 
of probability distributions, were passed to the Fine-scale Geomorphology BN (d) to predict associated changes to the barrier island for higher resolution variables (e.g., 
geomorphic setting, vegetation type). Finally, outputs form these two geomorphology BNs were used as inputs in an overwash probability model (e) and the Piping 
Plover Habitat BN (f) to forecast the implications of biogeomorphological changes on Fire Island for people and the federally threatened piping plover. Connections 
among individual models, through shared variables, are shown with black arrows.
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Bayes Theorem, where a PDF is a statistical expression that defines the likelihood of an outcome for a discrete 
random variable (Korb & Nicholson, 2004). The set of all possible node-value combinations forms a conditional 
probability table that underlies a ‘trained’ BN. Once trained, the BN can be used to predict the probability of 
a specific node value. In such cases, the BN is used to determine the probability of observing specific states 
for nodes in which the true state is unknown, with epistemic uncertainty represented in the uniformity of the 
predicted conditional probabilities (Korb & Nicholson, 2004).

2.3.1. Coastal Response Bayesian Network

First, we used the Coastal Response BN (Lentz et al., 2015a, 2016; Figure S1 in Supporting Information) to 
evaluate Fire Island's probability of exhibiting a dynamic coastal response to SLR, defined as the likelihood 
that landcover will remain in its existing state or transition to a new non-submerged state in response to future 
sea levels. Landcover types considered include marsh, beach, rocky, forest, and developed (based on McGarigal 
et al., 2017). Examples of a dynamic response include (a) a forest transitioning to a beach or (b) a marsh remain-
ing a marsh. Results are viewed as an inverse relationship, wherein an area that has a low probability of exhibiting 
a dynamic response has a high inundation probability (i.e., inundation probability = 1 – dynamic response prob-
ability). In the original publications describing this model and its results (Lentz et al., 2015a, 2016), predictions 
were generated over a 38,000 km 2 region from Maine to Virginia, the USA, for future sea level scenarios in the 
2020s, 2030s, 2050s, and 2080s (Lentz et al., 2015b). Two probabilistic outcomes were generated at 30 × 30 m 
resolution, bounded by the 10-m elevation contour inland to −10 m offshore: (a) adjusted elevation relative to 
the projected sea level and (b) dynamic response probability. These outcomes were influenced by the values of 
the input variables, which included projected SLR, vertical land motion, elevation, and landcover type (Table 1; 
Figure S1). Dynamic response probability was estimated by coupling the predicted adjusted elevation ranges with 
expert knowledge on the response of the landcover types.

The SLR scenario used in this model was developed as part of a prior study (Lentz et al., 2016) and differed from 
scenarios used in the other probabilistic models in this study. The coastal response SLR scenario estimated the 
increase from present day levels given three component processes: ocean dynamics (generated from 24 Coupled 
Model Intercomparison Project Phase 5; CMIP5 models; Taylor et al. [2012]), ice melt (as estimated by Bamber 
& Aspinall, 2013 for the two Antarctic Ice Sheets and by Marzion et al., 2012 and Radic et al., 2013 for glaciers 
and ice caps), and global land water storage (based on Church et al. [2013]). Estimated percentiles of these three 
components were aggregated to provide an SLR scenario and corresponding uncertainty for a given time step 
and resulted in the following decade-based ranges: 2020s (0–0.25 m), 2030s (0.25–0.5 m), 2050s (0.5–0.75 m), 
and 2080s (0.75–2 m). These ranges generally align well with the most likely or highest probability scenarios 
used in the 2018 National Climate Assessment and as reported in Sweet et al. (2017), albeit without vertical land 
movement effects. Instead, local vertical land movement rates driven by glacial subsidence were incorporated 
using long term GPS CORS station data (Sella et al., 2007) as well as long term tide gauge information (Zervas 
et al., 2013) in a separate node (Figure S1). For simplicity, these data were kept as time independent in the BN, 
meaning that, for a given decade, the most likely relative SLR scenario range was selected and applied. Elevation 
values were based on 2010 conditions and obtained from the National Elevation Dataset at 1/9 and 1/3 arc-second 
resolutions and Coastal Relief Model (NOAA, 2014). Elevation was converted from the North American Vertical 
Datum to mean high water using VDatum conversion grids (National Ocean Service, 2012). Adjusted elevation 
was calculated by using a probabilistic implementation of a deterministic equation that subtracted SLR and verti-
cal land motion from 2010 elevation.

Bayesian inference was used to train the model on the geospatial co-occurrence of elevation and landcover datasets 
and their inherent correlation. The dynamic response probability assigned to different landcover types compared 
adjusted elevation with the inundation thresholds specific to the initial landcover type. This landcover-specific 
likelihood was based on a synthesis of published studies extensively documented in Lentz et al. (2015a, 2016). 
Expert knowledge was applied to fill information gaps (e.g., rocky land cover types).

The results evaluated in the present study were previously published as part of the regional analysis, and the full 
methodology and results can be reviewed in Lentz et al. (2016, 2015b). To understand the likelihood of dynamic 
change at our study site, we clipped and evaluated regional results for predicted SLR by the 2050s (+0.5 to 
+0.75 m; Lentz et al. [2015b]) to the subaerial footprint of Fire Island, whereby the boundaries of the study area 
were the ocean, inlet, and back-barrier shorelines observed in 2014/2015 (Figure 1; Sturdivant et al., 2019). All 
spatial processing and analyses were conducted in ArcGIS version 10.6.1 (ESRI). The Coastal Response BN was 
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not connected to any other model used in this study nor did it consider the scenarios used to inform the other 
models (Figure 2). Instead, this BN offered a first order analysis of where SLR-driven change can be expected 
on Fire Island.

2.3.2. Geomorphology Bayesian Networks

Because the Coastal Response BN does not indicate the nature of dynamic change (only its likelihood), we 
adapted two additional BNs from Gutierrez et al.  (2015) to explore more specific SLR-driven changes to the 
island's ocean shoreline, geomorphological, and vegetation characteristics by 2050. Here, each geomorphology 
BN addressed geomorphological responses at different spatial scales (50 m vs. 5 m), which ensured more consist-
ency in predictions and improved computational efficiency.

The first BN—the Coarse-scale Geomorphology BN—considers variables best measured across a barrier island's 
cross-section (Table 1; Fig. S2 in Supporting Information), such as distance to the inlet, dune height, barrier 
island width, beach width, mean elevation, and distance from the shoreline to dune crest. We also included an 
input variable for shoreline change rate after Gutierrez et al. (2014). This variable, measured in meters per year, 

Bayesian network Source Input variables
Output (predictive) 

variables Spatial scale a
Error 
rate b

Coastal Response Lentz et al., 2015, 2016  (1)  Projected sea level 
(m)

 (2)  Vertical land motion 
(m)

 (3)  Elevation (m)
 (4)  Land cover type

 (1)  Adjusted elevation 
with respect to SLR 
(m)

 (2)  Coastal response 
likelihood

30 × 30 m raster cells n/a

Coarse-scale 
Geomorphology

Adapted from Gutierrez 
et al., 2015

 (1)  Shoreline change rate 
(m/yr)

 (2)  Distance to inlet (m)
 (3)  Beach height (m)
 (4)  Distance from 

shoreline to dune (m)
 (5)  Frequency of beach 

nourishment
 (6)  Level of human 

development
 (7)  Type of shoreline 

stabilization

 (1)  Dune height (m)
 (2)  Barrier island width 

(m)
 (3)  Beach width (m)
 (4)  Mean transect 

elevation (m)

Transects oriented perpendicularly 
to the shoreline and spaced 
50-m apart.

23.4%–
54.8%

Fine-scale 
Geomorphology

Adapted from Gutierrez 
et al., 2015; Gutierrez 
et al., in press

 (1)  Dune height (m)
 (2)  Barrier island width 

(m)
 (3)  Beach width (m)
 (4)  Mean transect 

elevation (m)

 (1)  Distance to dune (m)
 (2)  Distance to shoreline 

(or ocean; m)
 (3)  Elevation (m)
 (4)  Geomorphic setting
 (5)  Vegetation type
 (6)  Vegetation density
 (7)  Substrate type

Points spaced every 5 m along each 
transect.

27.2%–
45%

Piping Plover Habitat Zeigler et al., 2021  (1)  Beach width (m)
 (2)  Distance to ocean 

(m)
 (3)  Elevation (m)
 (4)  Geomorphic setting
 (5)  Vegetation type
 (6)  Vegetation density
 (7)  Substrate type

 (1)  Probability of being 
piping plover habitat 
(Habitat availability)

5 × 5 m raster cells 18%

Notes.  aSpatial scale denotes the resolution over which predictions were made.  bError rates for the Coarse-scale and Fine-scale Geomorphology BNs were calculated 
through 5-fold cross-validation, where multiple variables were hindcast simultaneously. Error rates were calculated for each output variable, and we report the range of 
error rates across variables. Details in Gutierrez et al. (in review). Error rate for the Piping Plover Habitat BN was measured as the percentage of actual nests that were 
incorrectly predicted to be a random point and vice versa in 10-fold cross-validation (Zeigler et al., 2021).

Table 1 
Input and Predictive Output Variables Used in Bayesian Networks
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could be positive (accretion) or negative (erosion) and reflects net changes in shoreline position related to both 
SLR and human response (e.g., beach renourishment, hard stabilization, etc.). Finally, we incorporated three 
categorical input variables to capture anthropogenic modification to the barrier island across each cross-section: 
the presence of (a) beach nourishment (‘nourishment’), (b) erosion management structures (‘construction’; e.g., a 
seawall), and (c) development (e.g., residential communities). Network structure was such that forcing variables 
(shoreline change rate, distance to inlet, nourishment, development, construction) were parent nodes to variables 
that describe basic characteristics of a barrier island cross-section (barrier island width, mean elevation, distance 
to dune crest, dune height, beach width, beach height; Figure S2).

The second BN—the Fine-scale Geomorphology BN—considers variables best measured at a higher resolution 
at discrete points along a barrier island's cross-section (Table 1; Figure S3 in Supporting Information). Here, 
child variables present in the Coarse-scale Geomorphology BN (barrier island width, mean elevation, distance 
to dune, dune height, beach width, beach height) are now parent nodes to higher resolution variables (distance 
to shoreline, geomorphic setting, elevation, substrate type, vegetation type, and vegetation density). Additional 
information about these BNs, including validation and skill testing, can be found in Gutierrez et al. in press.

The BNs were developed in Netica version 6.05 (Norsys™), where they were trained using an expectation-max-
imization algorithm (EM) to compute the posterior probability for each variable (Dempster et  al.,  1977; 
Lauritzen, 1995). We derived prior probability distributions by sampling characteristics on Fire Island for each 
variable from geospatial products derived from lidar and orthoimagery captured in 2010, 2012, and 2014/2015 
(Sturdivant et al., 2019; Zeigler, Sturdivant et al., 2019) as well as from datasets associated with the U.S. Geologi-
cal Survey's National Assessment of Coastal Change Hazards (Doran et al., 2017; Himmelstoss et al., 2010). Vari-
ables contained in the Coarse-scale Geomorphology BN were sampled along transects spanning the cross-section 
of Fire Island spaced in 50-m intervals, while variables contained in the Fine-scale Geomorphology BN were 
sampled at points spaced in 5-m intervals along each transect. This range of dates captures pre- and post-storm 
variability in biogeomorphological states found on Fire Island. Data from 2010 to 2014 represent more typical 
Fire Island conditions, which may include remnants of other, less extensive storm impacts. Data from 2012 
capture conditions shortly after Hurricane Sandy made landfall in this region. Shoreline change rates associated 
with each transect were derived from the U.S. Geological Survey's National Assessment of Shoreline Change 
(Hapke et al., 2010; Himmelstoss et al., 2010) and represent the rate of change of shoreline positions over the 
past ∼150 years. We used the linear regression rates of long-term shoreline change calculated from a set of 6–10 
historical shorelines spanning 1845-2000.

As in any BN, the prior probability distributions established relationships and associations among variables using 
historical data. As an illustrative example, refer to Figure S4 in Supporting Information. This figure shows the 
PDFs for variables in the Coarse-scale Geomorphology BN that were associated with high rates of shoreline 
erosion in the historical training data (e.g., around Robert Moses State Park; Figure 1). These areas were unlikely 
to be developed or to be managed with beach nourishment or shoreline stabilization structures (Figure S4). Areas 
experiencing high rates of shoreline erosion also tended to be closer to inlets (<5 km); have a distance between 
the shoreline and primary dune line between 100 and 300 m; have a mean transect elevation between 0 and 2 m, 
and have a beach height between 1 and 3 m (Figure S4). When used for forecasting purposes, the BNs used in this 
study calculate likelihoods for the possible values of variables whose true values are unknown (i.e., the output 
variables) based on the associations among variable values in the training data. In this way, underlying processes 
like sediment supply and anthropogenic modifications to the landscape are inherently considered in the BN 
through the training data and associated historical observations and trends.

Once trained, data analysis in the BNs was conducted using Matlab codes (version 9.5) based on those developed 
in Python by Fienen and Plant  (2015). To forecast future biogeomorphological conditions on Fire Island, we 
started by specifying a scenario-based shoreline change rate and beach nourishment frequency in the Coarse-
scale Geomorphology BN (see Section 2.4 for a description of scenarios; Figures S5-8 in Supporting Informa-
tion). We also specified values for each transect for the remaining anthropogenic modification variables, distance 
to the inlet, beach height, and distance from the shoreline to the dune crest according to initial conditions in the 
2014/2015 training dataset. Associations among those initial conditions in the trained Coarse-scale Geomorphol-
ogy BN produced predicted probability distributions for the output variables dune height, barrier island width, 
beach width, and mean transect elevation (Figures S6-8). Probability distributions for these output variables for 
each transect were then used as inputs in the Fine-scale Geomorphology BN. This BN produced corresponding 
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probability distributions for distance to dune crest, distance to the shoreline (or ocean), elevation, geomorphic 
setting, vegetation type, density, and substrate type for each point on each transect. By linking the models in this 
way, the two geomorphologies BNs allowed us to specify initial geomorphological conditions, as well as shore-
line change and management scenarios to then forecast likely future biogeomorphological conditions on Fire 
Island based on patterns observed in the historical training data.

2.3.3. Piping Plover Habitat Bayesian Network

Finally, we used the Piping Plover Habitat BN to evaluate the implications of biogeomorphological evolution 
at Fire Island on piping plovers. This network was originally developed, described, and evaluated in Zeigler 
et  al.  (2021). This prior work used a dataset of landscape characteristics at piping plover nests and random 
points located in the species' New York-New Jersey recovery unit (Fire Island and the Rockaway Peninsula, 
New York; Long Beach and Pullen islands, New Jersey). This dataset contained 335 points comprised of 178 
nest locations and 157 random points (Sturdivant et al., 2016; Thieler et al., 2016; Zeigler et al., 2017). Char-
acteristics for the variables geomorphic setting, substrate type, vegetation type, and vegetation density were 
observed in-situ (detailed variable definitions in Zeigler, Sturdivant et al., 2019; Zeigler et al., 2017). Nests and 
random points were also characterized ex-situ in terms of beach width, elevation, least-cost path distance to areas 
with moist substrates on low-energy shorelines (henceforth, ‘distance to MOSH’), and Euclidean distance to the 
ocean shoreline (referenced to mean high water; henceforth, ‘distance to ocean’) using remotely sensed lidar and 
orthoimagery. Detailed processing methods and spatial datasets are published separately (Sturdivant et al., 2019; 
Zeigler, Sturdivant, & Gutierrez, 2019). Using ArcGIS Toolbox 10.4.1 (ESRI™), we assigned values from the 
nearest pixel centroid in each raster layer to the presence/absence dataset points. Variables considered in this 
study were identified as known or suspected drivers of piping plover habitat selection based on peer-reviewed 
literature and expert opinion (reviewed in Zeigler et al. [2021]).

Using this New York-New Jersey presence/absence dataset, a recovery unit-specific habitat selection BN was 
developed according to a data-driven approach (Zeigler et al., 2021). The dataset was used to fit a BN in the 
R package bnlearn 4.5 with the score-based hill-climbing learning algorithm and the Bayesian Information 
Criterion (BIC) score (Scutari, 2010), focused on the single binary output variable ‘habitat availability’. This 
‘greedy’ algorithm iteratively adds, removes, and reverses the direction of edges between nodes to find the opti-
mal network structure with the lowest BIC score given the data (Scutari, 2010). Network inference was also 
partially constrained based on previous knowledge of barrier island dynamics and piping plover habitat selection 
to enhance the structural learning process (Chen & Pollino, 2012; Zeigler et al., 2021). The output variable ‘habi-
tat availability’ gives the probability that a given combination of landscape characteristics will support the piping 
plover habitat. The final BN structure and probability distributions are illustrated in Figure S9 in Supporting 
Information.

We used the Piping Plover Habitat BN here for forecasting purposes, wherein we determined the likelihood that 
Fire Island would support piping plover habitat given predicted biogeomorphological conditions under future 
shoreline change scenarios. We linked the two geomorphology networks through shared variables (as described 
in the previous section) to predict probability distributions for distance to the shoreline (or ocean), elevation, 
geomorphic setting, substrate type, and vegetation type and density at each 5-m point along shore-normal tran-
sects spaced at 50-m intervals along Fire Island. These output probability distributions were then passed as inputs 
into the Piping Plover Habitat BN to ultimately forecast future piping plover habitat availability under three 
scenarios of shoreline change (Section 2.4). Thus, scenario and initial transect conditions set in the Coarse-scale 
Geomorphology BN (Figures S6-8) propagated through to the Piping Plover Habitat BN to assess the implica-
tions of biogeomorphological change (Figure 2). The mechanics of linking the geomorphology BNs with the 
Piping Plover Habitat BN, including an evaluation of error rate and uncertainty propagation, are described in 
more detail in Gutierrez et al. (in press).

In the present study, we modified the Piping Plover Habitat BN structure described in Zeigler et al. (2021) for 
forecasting purposes by removing the variable for distance to MOSH. Moist substrate habitats (e.g., bay and inlet 
shorelines, ephemeral pools) offer important foraging habitats for piping plovers and their chicks prior to fledging 
(Cohen & Fraser, 2010; Loegering, 1992; Maslo et al., 2012) and are an important factor in piping plover habitat 
selection patterns in certain regions (Zeigler et al., 2021). However, the geomorphology BNs do not currently 
model forecasted changes to the back-barrier shoreline or smaller ephemeral water bodies, and we, therefore, 
removed the distance to MOSH variable to reduce the error that would be introduced with the incorrect placement 
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of MOSH locations. Gutierrez et al. (in press) examined the impact of not including this variable in the validation 
of the linked geomorphology-piping plover habitat framework. They found that the BN with the variable distance 
to MOSH predicted that 23.8% of Fire Island would support piping plover habitat compared to 27.4% predicted 
by the model without the MOSH variable. Therefore, without a variable for access to foraging habitat, BNs used 
in the present study may over-predict habitat availability.

2.3.4. Probabilistic Overwash Model

After initially evaluating results from the two geomorphology and the Piping Plover Habitat BNs, we added 
an analysis using a fifth probabilistic model to further explore the likelihood of storm-driven morphological 
conditions not captured by the BNs. Although ‘washover’ is a geomorphic feature considered in the Fine-scale 
Geomorphology BN, we found that this BN never predicted washover as the most likely geomorphic setting. This 
is because washover is present over a much smaller area of Fire Island compared to settings like backshore and 
barrier interior (as reflected in the training data) and is therefore probabilistically less likely to occur. We, there-
fore, used the fifth model to evaluate the probability of overwash processes during extreme storms (Category I-IV 
hurricanes), given the new dune and beach width conditions forecasted by the Coarse-scale Geomorphology BN 
under each scenario (Section 2.4). This model, including simulated storm scenarios, is documented in Birchler 
et al. (2014). The probability of overwash (pOW) was modeled according to Equation 1:

𝑝𝑝𝑝𝑝𝑝𝑝 =
1

𝜎𝜎
√

2𝜋𝜋

∞

∫
0

𝑒𝑒𝑒
[

− (𝑡𝑡 − 𝜇𝜇)2∕2𝜎𝜎2

]

𝑑𝑑𝑡𝑡𝑑 (1)

where t-μ is the mean difference between the extreme water level (dependent on the hurricane scenario) and 
dune crest elevation, and the variance of the difference (σ 2) is the sum of the variances of the inputs. pOW then 
becomes the probability that the 98% exceedance level—as defined in Stockdon et al. (2007)—minus the dune 
crest elevation is greater than 0, indicating where overwash processes are likely to occur to produce a washover 
feature. For this analysis, we used an overwash model previously parameterized with conditions, water levels, and 
storm scenarios for the U.S. mid-Atlantic coast (Birchler et al., 2014). Overwash probabilities were calculated 
based on dune height and beach width conditions predicted by the Coarse-scale Geomorphology BN along each 
shore-normal transect spaced in 50-m intervals. The probability of overwash generated by this fifth model does 
not influence the Piping Plover Habitat BN (Figure 2); however, an increased probability of overwash suggests 
the potential for additional piping plover habitat to form in the event of a storm given the new underlying morpho-
logical conditions of the beach in 2050.

2.4. Forecast Scenarios

For the geomorphology and Piping Plover BNs, we explored likely biogeomorphological conditions on Fire 
Island for the year 2050 under three scenarios, where we assumed that SLR accompanied by varying levels of 
human intervention would influence the expression of shoreline change on the landscape. We included five bins 
for shoreline change rates, ranging from erosion at −9 m/yr to accretion at +30 m/yr (Figures S5-8 in Supporting 
Information). Scenarios were specified directly in the Coarse-scale Geomorphology BN (Figure 2) through the 
variables ‘shoreline change rate’ and ‘beach nourishment’ (Figures S6-8), ultimately propagating through to the 
Fine-scale Geomorphology and Piping Plover Habitat BNs when BNs were linked through shared variables. 
Scenario specifications in the Coarse-scale Geomorphology BN included the following:

1.  No Intervention (Figure S6): we assumed no human intervention to maintain the current shoreline position. 
Here, the shoreline change rate bin with the highest rate of erosion (−9 to −3 m/yr) had the highest proba-
bility of occurring (Figure S5). All barrier island characteristics were forecast by setting beach nourishment, 
(future) development, and construction to ‘none’. All remaining input variables were specified based on each 
transect's initial conditions as observed in 2014/2015 remotely sensed imagery. In general, all transects tended 
to behave like the cross-sections around Robert Moses State Park (Figure 1; Figure S4), which has historically 
experienced high rates of shoreline change and minimal stabilization efforts

2.  Moderate shoreline change (Moderate SLC; Figure S7): we assumed that some human intervention to main-
tain the shoreline position would result in moderate rates of shoreline change across Fire Island. Here, the 
shoreline change rate bin with lower rates of shoreline erosion (−3 to −1 m/yr) had the highest probability 
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of occurring (Figure S5). We assumed that all transects would experience ‘occasional’ beach nourishment to 
combat erosion. All remaining input variables (including development and construction) were specified based 
on each transect's initial conditions as observed in 2014/2015 remotely sensed imagery

3.  Intervention (with minimal shoreline change; Figure S8): we assumed that high levels of human intervention 
would maintain the shoreline in its current position. We specified this scenario by modifying the shore-
line change rate such that minimal shoreline change (−1 to +1 m/yr) had a 100% probability of occurring 
(Figure S5) and indicating ‘frequent’ beach nourishment (Figure S8). All other input variables were specified 
according to initial conditions observed in 2014/2015 remotely sensed imagery. We maintained the shoreline 
at its 2014/2015 position for the entire island and assumed morphological conditions would also remain the 
same for transects that had moderate or heavy human development in 2014/2015 remotely sensed imagery. 
Where human development was not present or was classified as “light," we allowed the geomorphology BNs 
to predict future morphology (e.g., dune crest height, beach width, elevation) without changing shoreline 
position

Although we forecasted a change in the position of the ocean shoreline in the No Intervention and Moderate 
SLC scenarios by setting a probability distribution for shoreline change rate, the geomorphology models were 
not designed to accurately simulate changes to the back-barrier shoreline nor the complex processes that allow 
for back-barrier marsh evolution. Therefore, we retained the back-barrier shoreline position observed in the 2014 
lidar as the rear boundary of our analysis of forecasted change under all three scenarios. We describe why this 
assumption was reasonable for Fire Island in the Discussion.

2.5. Analysis of Results and Comparison to Current Conditions

For context, the results of these scenarios were compared to characteristics observed on Fire Island as of 
2014/2015. Observed biogeomorphological characteristics and piping plover habitat availability were derived 
for the study area using remotely sensed lidar captured in 2014 (NOAA, 2015) and orthoimagery captured in 
2015 (available upon request from J. Fraser, Virginia Tech). The baseline position of the ocean shoreline was 
based on 2014 conditions in the lidar dataset. Spatial datasets were processed as described in Zeigler, Sturdivant 
et al. (2019) and are available in Sturdivant et al. (2019). To determine piping plover habitat availability, we inter-
preted lidar and orthoimagery to produce raster layers for each variable present in the Piping Plover Habitat BN 
as described in Zeigler, Sturdivant, et al. (2019). Layers were combined such that each 5 m × 5 m landscape cell 
had a value for each variable, and we associated a probability that a given landscape cell contained nesting habitat 
with the Piping Plover Habitat BN according to the methodology presented in Zeigler et al. (2017).

As all models used in this work are probabilistic, we defined probability thresholds according to the Intergov-
ernmental Panel on Climate Change's likelihood scale (Mastrandrea et al., 2010). Under this scale, an event is 
likely to occur or a condition is likely to be present when the probability (p) of a specific outcome is ≥0.66. For 
example, a given landscape cell is likely to support piping plover habitat or to exhibit a dynamic coastal response 
when p ≥ 0.66 according to the Piping Plover Habitat and the Coastal Response BNs, respectively. An event is 
unlikely to occur or a condition is unlikely to be present when p ≤ 0.33. For instance, a given landscape cell is 
unlikely to support a piping plover habitat or to exhibit a dynamic coastal response when p ≤ 0.33 according to 
the respective networks. When 0.33 < p < 0.66, we considered predictions to be uncertain, wherein an event or 
condition is as likely as not to occur. For many barrier island characteristics, we also report the most likely bin 
and value range for that characteristic. For example, the continuous variable beach width was discretized into four 
possible bins. If the Coarse-scale Geomorphology BN predicted a 90% probability that beach width at a particular 
transect would be in bin 1, we reported that that transect was likely to have a beach width between 0 and 30 m 
(Figure S2) and that that prediction had a relatively high degree of certainty. However, if the model predicted a 
25% probability for each of the four bins used to describe beach width (i.e., a uniform probability distribution), a 
most likely value for beach width on that transect could not be determined, and we concluded that the forecasted 
beach width value was uncertain or unknown.

Due to variability in the spatial resolution of each BN, we present results as either an area coverage or based 
on the number (or percentage) of transects. Predictions made by the Coastal Response BN are presented as a 
spatial coverage with 30 m resolution, according to the original study (Lentz et  al., 2016). The Coarse-scale 
Geomorphology BN's predictions were made for each shore-normal transect, and we report dune height and 



Earth’s Future

ZEIGLER ET AL.

10.1029/2021EF002436

11 of 25

beach width—and changes in these characteristics—as numbers or percentages of transects with no additional 
post-processing. Predictions made by the Fine-scale Geomorphology and Piping Plover Habitat BNs were made 
at 5-m intervals along each transect. To analyze and report these results, we extrapolated values to create a surface 
for each variable using the Euclidean Allocation tool in ArcGIS (5-m cell size; planar distance method) and 
clipped surfaces to the 2014/2015 shoreline boundaries (Figure 1; Sturdivant et al. [2019]). Surfaces were created 
for the most probable geomorphic setting, substrate type, vegetation type, and discretized elevation bin as well as 
for the probability of piping plover habitat availability.

3. Results
3.1. Barrier Island Evolution—Physical Characteristics

We evaluated biogeomorphic change on Fire Island as a function of shoreline change scenarios, where we forced 
an increasing probability of larger rates of ocean shoreline change from the Intervention to the No Interven-
tion scenarios. The mean shoreline change rates associated with these forced assumptions were 0, −2.37, and 
−4.71 m/year for the Intervention, Moderate SLC, and No Intervention scenarios, respectively, with negative 
values indicating erosion. Using these mean shoreline change rates and multiplying by 36 (i.e., the number of 
projection years from initial conditions in 2014/2015 to forecasted predictions for 2050) resulted in an estimated 
landward retreat of the island by 0, 85, and 170 m, respectively. Here, a lack of shoreline change under the Inter-
vention scenario is grounded on the assumption that humans will try to aggressively combat shoreline erosion 
through beach nourishment and structural engineering.

With shoreline changes of those magnitudes, high uncertainty was prevalent in our predictions of barrier island 
evolution in response to SLR. For many transects, the Coarse- and Fine-scale Geomorphology BNs predicted 
a uniform probability distribution for several variables, and distributions tended to become more uniform with 
increasing rates of shoreline change. This was particularly evident for predictions of mean barrier island transect 
elevation and barrier island width (Table 2) as well as beach width, elevation, and dune height (Table 3). The 
number of transects with uncertain predictions increased from 3% to 28% of all transects under the Interven-
tion scenario to 74%–78% under the Moderate SLC scenario to 86%–88% under the No Intervention scenario, 
depending on the variable of interest (Tables  2–3). In addition, although the Coastal Response BN was not 
governed by the same scenarios as the geomorphology BNs, this model predicted that 57% of the island was as 
likely as not to exhibit a dynamic response to SLR. In other words, over half of the island is as likely to inundate 
as it is to dynamically respond and will therefore have an uncertain response to SLR (Table 4; Figure 1).

Where predictions could be made (i.e., the probability distribution for a given variable was not uniform and one 
bin had a higher probability of occurring over the others), the geomorphology BNs predicted an increasingly 
flatter and/or narrower island as scenarios included higher rates of shoreline change. The median barrier island 
width, which was 408 m in 2014/2015, declined to 320 and 236 m under the Moderate SLC and No Intervention 

Regime type Definition

# (%) of transects where prediction made

Intervention Mod SLC No intervention

Keeping Pace/Aggradation Transect maintained or increased in width and elevation 910 (88%) 114 (41%) 57 (38%)

Narrowing Transect decreased in width but maintain/gained elevation 22 (2%) 99 (35%) 56 (37%)

Flattening Transect decreased in elevation but maintain/gained width 100 (10%) 47 (17%) 15 (10%)

Deflation Transect decreased in both width and elevation 1 (<1%) 19 (7%) 24 (16%)

Transects where no elevation or width prediction made (uniform probability distribution) 28 (3% all transects) 782 (74%) 909 (86%)

Notes. Forecasts for the year 2050 were made in scenarios that assumed (i) human intervention to maintain the current shoreline position (e.g., through beach 
nourishment; ‘Intervention’); (ii) moderate shoreline change resulting from some human intervention to stabilize the shoreline (‘Mod SLC’); and (iii) high rates of 
shoreline change resulting from a lack of human intervention to stabilize the shoreline (‘No Intervention’). Because predictions became increasingly uncertain as 
scenario-based shoreline change rates increased, we report the percentage of transects for which predictions could not be made for each regime type.

Table 2 
Response Regimes Following Passeri et al. (2020) Observed for 1,061 Shore-Normal Transects Along Fire Island, New York
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scenarios, respectively. Furthermore, in 2014/2015 and in the Intervention scenario, 9 transects had a barrier 
island width less than 100  m; this number increased to 86 transects in the Moderate SLC scenario and 241 
transects in the No Intervention scenario. Median barrier width remained the same as observed in 2014/2015 
(408 m) in the Intervention scenario due to the forced model assumption of no shoreline retreat.

We also projected declines in several elevation parameters under scenarios of increasing shoreline change rate. 
Although we did not allow shoreline retreat as an assumption of the Intervention scenario, we did allow the 
geomorphology BNs to predict biogeomorphic change (e.g., change in dune crest height) along areas of the 

Intervention Moderate SLC No intervention

Area (km 2) 
or number of 

transects

Percentage of 
total area or 

transects

Area (km 2) 
or number of 

transects

Percentage of 
total area or 

transects

Area (km 2) 
or number of 

transects

Percentage 
of total area 
or transects

Elevation (area, km 2)

 No change 6.6 33% 5.1 25% 4.5 22%

 Decreased elevation 8.6 43% 8.0 40% 8.5 43%

 Increased elevation 4.9 24% 6.9 35% 7.0 35%

Dune Height (number of transects)

 No change 314 30% 69 7% 26 2%

 Decreased elevation 100 9% 161 15% 96 9%

 Increased elevation 263 25% 12 1% 17 2%

 Uncertain change 377 36% 812 77% 915 87%

Beach Width (number of transects)

 No change 418 40% 39 4% 7 1%

 Became narrower 12 1% 0 0% 0 0%

 Became wider 224 21% 190 18% 124 12%

 Uncertain change 400 38% 825 78% 923 88%

Geomorphic Setting (area, km 2)

 No change 13.2 64% 9.0 44% 6.0 29%

 Change from one subaerial setting to another 5.6 27% 7.2 35% 6.1 29%

 Change from subaerial to water 0.2 1% 4.3 21% 8.5 42%

 Change from water to subaerial 0 0% 0 0% 0 0%

 Uncertain change 1.7 8% 0 0% 0 0%

Notes. Forecasts were made in scenarios that assumed (i) human intervention to maintain the current shoreline position (e.g., through beach nourishment; ‘Intervention’); 
(ii) moderate shoreline change resulting from some human intervention to stabilize the shoreline (‘Moderate SLC’); and (iii) high rates of shoreline change resulting 
from a lack of human intervention to stabilize the shoreline (‘No Intervention’). Dune height and beach width were measured along shore-normal transects spaced in 
50-m intervals, and we report the number and percentage of transects that experienced change (or lack thereof). Transects for which there were no most likely values 
for beach width or dune crest elevation (i.e., uniform probability distributions) were tallied as ‘uncertain change’. Elevation and geomorphic setting were measured in 
5-m intervals along each transect, and, because we were able to create a continuous surface for these variables, we report estimated area of change (or lack thereof).

Table 3 
Forecasted Changes for the Year 2050 on Fire Island Compared to Observed 2014/2015 Conditions

Probability of dynamic response Beach Developed Forest Marsh Subaqueous Total

Likely (p > 0.66) 7.55 0.01 0.29 0.32 0.45 8.61 (43%)

As Likely As Not (0.33 < p < 0.66) 0.20 6.36 0.95 3.69 0.09 11.29 (57%)

Unlikely (p < 0.33) 0.00 0.00 0.00 0.00 0.00 0.00

Table 4 
Area (km 2) of Fire Island Likely to Exhibit a Dynamic Response to Sea-Level Rise, by Landcover Type



Earth’s Future

ZEIGLER ET AL.

10.1029/2021EF002436

13 of 25

shoreline where human development was light or not present. Under this scenario, the predicted mean tran-
sect elevation most commonly fell in bin 4 (mean transect elevation = 2–3.5 m). Mean transect elevation most 
commonly fell in bin 3 (1–2 m) in the Moderate SLC scenario and bin 2 (0–1 m) in the No Intervention scenario, 
suggesting progressively lower cross-shore profiles with increasing shoreline change and dwindling human inter-
vention to preserve the 2014/2015 shoreline and dune structure. After using neighborhood statistics to create 
an elevation surface that fills in gaps/unknowns between transects, we observed that 40%–43% of the total area 
of Fire Island would likely decrease in elevation by 2050 compared to 2014/2015 conditions, depending on the 
scenario considered (Table 3; e.g., Figures 3 and 4). Finally, where predictions could be made, the dune crest 
elevation became lower compared to 2014/2015 conditions on 9%–15% of transects by 2050 (Table  4; e.g., 
Figures 3 and 4). Forecasted dune crest elevation most commonly fell in bin 4 (5–7 m) in the Intervention scenario 
and in bin 2 (2–3.5 m) in the Moderate SLC and No Intervention scenarios.

When we considered simultaneous changes to both barrier island width and elevation according to response 
regimes outlined in Passeri et  al.  (2020), we found that the majority (88%) of transects for which the varia-
ble's probability distribution was not uniform either maintained or increased in barrier island width and mean 
elevation under the Intervention scenario. Under this scenario, 2% of transects experienced a narrowing regime 
(where width declined as elevation was maintained or increased); 10% of transects experienced a flattening 

Figure 3. Forecasted geomorphic changes in the Otis Pike Wilderness Area, Fire Island: For context, we show (b) dune heights and (e) elevations observed based on 
2014 lidar. For dune height forecasts, we show the probability that dune height was less than 5 m in 2050 under scenarios that assumed (c) Moderate Shoreline Change 
(Mod. SLC), where occasional beach nourishment would maintain the 2014 shoreline position and (d) No Intervention (No Int.), where no efforts would be made to 
maintain the 2014 shoreline position. For elevation, we show whether forecasted 2050 elevation increased, decreased, or did not change from 2014 conditions under the 
(f) Mod. SLC and (g) No Int. scenarios. This area is minimally developed and largely unmanaged. A third scenario assuming human intervention to maintain shoreline 
position; however, results did not differ greatly from initial conditions (b), (e).



Earth’s Future

ZEIGLER ET AL.

10.1029/2021EF002436

14 of 25

regime (where elevation declined as width was maintained or increased); and 1% of transects experienced a defla-
tion regime (where both width and elevation declined) compared to observed 2014/2015 conditions (Table 2). 
Again, this change (or lack thereof) is predicated on the assumption that humans would intervene to prevent 
change in the shoreline and along developed portions of the primary dune line. However, as shoreline change rate 
increased under the Moderate SLC and No Intervention scenarios, assuming limited to no human intervention to 
slow erosion, a progressively larger number of transects experienced narrowing, flattening, or deflation regimes 
(Table 2).

Given the forecasted most likely values for dune crest elevation and beach width under each shoreline change 
scenario, we evaluated the likelihood that a given transect would experience an overwash event under a Category 
I-IV hurricane. Again, predictions could not be made for a large number of transects (Table S1 in Supporting 
Information), where bins for either beach width or dune crest height had a uniform probability distribution (and 
therefore, a most likely value could not be determined). However, of the transects where a most likely beach width 
and dune crest height could be determined, the percentage of transects with a ≥0.66 probability of experiencing 
overwash during a Category I hurricane increased from 4% under the Intervention scenario to 43% under the 
Moderate SLC scenario to 62% under the No Intervention scenario. These values increased to 12%, 74%, and 78% 
under each respective scenario during a Category II hurricane. Under a Category III hurricane, 79%, 100%, and 

Figure 4. Forecasted geomorphic changes in the community of Ocean Beach, Fire Island: For context, we show (b) dune heights and (e) elevations observed based on 
2014 lidar. For dune height forecasts, we show the probability that dune height was less than 5 m in 2050 under scenarios that assumed (c) moderate shoreline change 
(Mod. SLC), where occasional beach nourishment would maintain the 2014 shoreline position and (d) No Intervention (No Int.), where no efforts would be made to 
maintain the 2014 shoreline position. For elevation, we show whether forecasted 2050 elevation increased, decreased, or did not change from 2014 conditions under 
the (f) Mod. SLC and (g) No Int. scenarios. This area is densely developed and managed. A third scenario assuming human intervention to maintain shoreline position; 
however, results did not differ greatly from initial conditions (b), (e).
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91% of transects had a ≥0.66 probability of experiencing overwash under the Intervention, Moderate SLC, and 
No Intervention scenarios, respectively. All transects had a ≥0.66 probability of experiencing overwash under a 
Category IV hurricane regardless of the shoreline change scenario (Table S1).

3.2. Barrier Island Evolution—Ecosystems

To analyze how ecosystems are likely to change with barrier island evolution, we used landcover type and 
geomorphic setting as proxies for ecosystem type in the Coastal Response and Geomorphology BNs, respec-
tively. First, the Coastal Response BN predicted that 43% of Fire Island is likely to exhibit a dynamic response to 
SLR (Table 4). In this model, beaches were identified as the landcover type where 88% of the dynamic response 
occurred (Table 4), suggesting that this ecosystem would move and maintain its current form or transition to 
another subaerial landcover type with SLR-driven shoreline change. The remaining 57% of Fire Island was as 
likely as not to exhibit a dynamic response. Developed areas and marshes were largely responsible for this uncer-
tainty, covering 56% and 33%, respectively, of the landscape that was as likely as not to exhibit a dynamic 
response (Table 4). No portions of the island were predicted to inundate by 2050 with high certainty (i.e., p of 
dynamic response ≤0.33).

Unlike the Coastal Response BN, the Fine-scale Geomorphology BN predicted that some subaerial geomorphic 
settings would transition to water (or become inundated; 1%–42% of the island), particularly in scenarios with 
higher rates of shoreline erosion (Table 3). We were able to further explore the nature of likely dynamic responses 
in the remaining regions as some geomorphic settings transitioned to other subaerial settings or remained the 
same. Under the Intervention scenario, with an assumption of no shoreline change through human intervention, 
the linked Geomorphology BNs predicted that 64% of Fire Island would maintain its current geomorphic setting. 
The majority of change that did occur (27% of total study area) was as a shift from one subaerial state to another 
(Table 3). Of the 5.6 km 2 that transitioned in this way, 16% and 40% occurred as washover and marsh, respec-
tively, transitioning to barrier interior (Table S2 in Supporting Information).

As we considered higher rates of shoreline change but assumed the back-barrier shoreline would remain in its 
2014/2015 position, the Fine-scale Geomorphology BN predicted that a lower percentage of Fire Island's area 
would remain in the same geomorphic setting. Instead, a higher percentage of the island transitioned from a 
subaerial geomorphic setting to water (Table 3; Figure 5). Under the Moderate SLC scenario, 44% of the island 
remained in the same geomorphic setting, 35% transitioned from one subaerial state to another, and 21% became 
inundated (Table 3). Under the No Intervention scenario, the inundation of subaerial geomorphic settings was 
the most common transition (42% of island), while 29% of the island experienced a transition from one subaerial 
geomorphic setting to another (Table 3). The remaining 29% of Fire Island maintained its 2014/2015 geomorphic 
setting (Table 3). For both the Moderate SLC and No Intervention scenarios, the most common transition from 
one subaerial setting to another occurred as barrier interior transitioned to beach and as marsh transitioned to 
barrier interior (Table S2). In this way, the beach geomorphic setting only declined by as much as 1.5 km 2 (No 
Intervention scenario), despite 41% of the island being inundated (Table 5; Figure 5). The linked Geomorphology 
BNs also predicted that many transects (12%–18%) will actually increase in beach width despite shoreline erosion 
in these scenarios (Table 3), further supporting the idea that beaches will respond dynamically to SLR and shift 
landward with the new shoreline position.

The linked Geomorphology BNs predicted that the barrier interior geomorphic setting will either gain (Inter-
vention and Moderate SLC scenarios) or only lose a small amount of area (No Intervention scenario) by 2050 
compared to 2014/2015 conditions (Table 5; e.g., Figure 5). Where barrier interior was lost, it most often transi-
tioned to beach, dune complex, or, to a lesser extent, marsh (Table S2).

In contrast to beaches, marsh geomorphic settings were predicted to suffer the largest losses according to the 
linked Geomorphology BNs, although this result is at least in part driven by the model assumption that the ocean 
shoreline would retreat while the back-barrier shoreline would remain in its 2014/2015 position. Marshes covered 
3.5 km 2 based on 2015 aerial imagery but were reduced to 0.8 and 0.3 km 2 in the Moderate SLC and No Inter-
vention scenarios, respectively (Table 5; Figure 5). In both scenarios, the majority of marshes were converted to 
barrier interior (Table S2).
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Finally, dune complexes and washovers—which cover only a small extent of Fire Island compared to other 
geomorphic settings according to 2014/2015 imagery—were predicted to decline with increasing rates of shore-
line change (Table 5; Figure 5). When not inundated by SLR, dune complexes tended to transition to beach or 
barrier interior as the shoreline position shifted, while washovers tended to transition to beach, dune complexes, 
or barrier interior (Table S2). However, the loss of these geomorphic settings is likely due to the probabilistic 
nature of the BNs and not due to geomorphological processes; settings that covered a small area in the training 
dataset were rarely predicted to be the most likely setting present in forecasted outputs.

3.3. Changes to Human and Piping Plover Habitat

The changing shoreline position and biogeomorphological conditions also impacted ‘habitats’ used by humans 
and piping plovers. In the Moderate SLC scenario, partial extents (0.2 km 2 total) of housing communities and 
recreational infrastructure (e.g., boardwalks) were predicted to be seaward of the 2050 shoreline position. The 
areal extents that were seaward of the 2050 shoreline increased to 1.4  km 2 in the No Intervention scenario 
(Table S2; Figure 4).

We found that 31 of 53 piping plover nests present in 2014 or 2015 were located in areas that the Coastal 
Response BN predicted would respond dynamically to SLR. The remaining 22 nests were located in areas that 
were as likely as not to respond dynamically. An additional 3 nests were located outside of the model's predictive 

Figure 5. Forecasted changes geomorphic setting and piping plover habitat availability in the Otis Pike Wilderness Area, Fire Island: For context, we show (b) 
geomorphic settings and (e) piping plover habitat observed based on 2014 lidar and 2015 orthoimagery. Forecasted geomorphic settings in 2050 were made under 
scenarios that assumed (c) moderate shoreline change (Moderate SLC), where occasional beach nourishment would maintain the 2014 shoreline position and (d) No 
Intervention, where no efforts would be made to maintain the 2014 shoreline position. This area is minimally developed and largely unmanaged. A third scenario 
assuming human intervention to maintain shoreline position; however, results did not differ greatly from initial conditions (b), (e).
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coverage area. The linked Geomorphology BNs predicted that areas that had a high likelihood of supporting 
piping plover habitat—flat, minimally vegetated, sandy beach, dune, and washover settings—would shift with 
the shoreline under the three scenarios of shoreline change (e.g., Figure 5). However, the BNs also predicted a 
reduction in total piping plover habitat areas from the 5.1 km 2 observed in 2014/2015 to 4.3 km 2, 3.6 km 2, and 
2.8 km 2 by 2050 under the Intervention, Moderate SLC, and No Intervention scenarios, respectively (Table 5; 
Figure 5). This loss may be in part due to loss of certainty in beach morphological conditions, which we explore 
further in Section 4.

4. Discussion and Conclusions
4.1. Uncertainty in Biogeomorphological Forecasts

Making high-confidence predictions about climate change and SLR is difficult, as these processes are often 
characterized by ‘deep uncertainty’ (Bell et al., 2014). The expected magnitude of SLR into the future is unclear 
and dependent on future emission levels and Antarctic and Greenland ice sheet contributions (Bell et al., 2014). 
There is also substantial uncertainty in how geologic landforms, ecosystems, and humans will respond to rising 
sea levels, which will each contribute to the manner in which SLR will ultimately transform coastlines (Bell 
et al., 2014; Moser, 2005). Finally, the inherent structures and assumptions of SLR models add uncertainty to 
predictions (Carson et  al.,  2019). However, the potential economic, social, and ecological consequences may 
be high without active SLR planning (Hallegate et  al.,  2013; Hauer et  al.,  2016; Hinkel et  al.,  2014; Leath-
erman,  2001). Interdisciplinary models—including scenario-based exercises—and decision frameworks that 

Characteristic

Area (km 2; percentage of study area) by scenario

Observed 2014 - 2015 Intervention Moderate SLC No Intervention

Geomorphic Setting

 Seaward of Shoreline/Water 0 (0%) 0.2 (1%) 4.3 (21%) 8.5 (41%)

 Beach/Backshore 3.5 (17%) 2.3 (11%) 2.6 (12%) 2.0 (10%)

 Dune Complex 1.5 (7%) 1.4 (7%) 0.9 (5%) 0.8 (4%)

 Washover 1.2 (6%) 0.0 (0%) 0.0 (0%) 0.0 (0%)

 Barrier Interior 6.4 (31%) 8.9 (43%) 7.6 (37%) 5.7 (28%)

 Marsh 3.5 (17%) 1.6 (8%) 0.8 (4%) 0.3 (2%)

 Development 4.5 (22%) 4.5 (22%) 4.3 (21%) 3.1 (15%)

 Unknown 0.0 (0%) 1.7 (8%) 0.0 (0%) 0.0 (0%)

Piping Plover Habitat

 Likely Habitat 5.1 (25%) 4.3 (21%) 3.6 (17%) 2.8 (14%)

 As Likely As Not Habitat 0.7 (3.6%) 6.4 (31%) 4.9 (24%) 4.0 (19%)

 Unlikely Habitat 10.3 (50%) 5.2 (25%) 3.5 (17%) 2.0 (10%)

 Water or Development 4.5 (22%) 4.7 (23%) 8.6 (42%) 11.6 (57%)

Notes. Forecasts were made in scenarios that assumed (i) human intervention to maintain the current shoreline position 
(e.g., through beach nourishment; ‘Intervention’); (ii) moderate shoreline change resulting from some human intervention to 
stabilize the shoreline (‘Moderate SLC’); and (iii) high rates of shoreline change resulting from a lack of human intervention 
to stabilize the shoreline (‘No Intervention’).  aThe forecasted value of a given 5  ×  5 m landscape cell was determined 
according to the Fine-scale Geomorphology Bayesian Network (BN). For each variable, we selected the value that had the 
highest probability of occurring according to the BN.  bWe identified a given 5 × 5 m landscape cell as ‘likely habitat’ if 
the Piping Plover Habitat BN indicated a probability of containing habitat ≥0.66 given underlying landscape characteristics 
(e.g., geomorphic setting, elevation). ‘As likely as not habitat’ was associated with a probability between 0.33 and 0.66, and 
‘unlikely habitat’ was associated with a probability ≤0.33.

Table 5 
Forecasted Area (km 2) and Percentage Total Area for Geomorphic Setting a and Piping Plover Habitat b on Fire Island in 
2050
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explicitly consider uncertainty are helpful for pre-emptively responding to changing coastal conditions (Haasnoot 
et al., 2013, 2020; Moss et al., 2010).

Uncertainty is intrinsically quantified by our models. Knowing where uncertainty is high—particularly in predic-
tions of mean barrier island transect elevation, barrier island and beach width, elevation, and dune height—
is an important finding in and of itself in this study. BNs employed here were parameterized with previously 
observed, historical barrier island and ecosystem dynamics on Fire Island. Uncertainty occurred here through 
two mechanisms. First, the Fire Island coastline has yet to experience the highest rates of SLR or associated 
biogeomorphological conditions that are expected in the (Hapke et  al.,  2010; Sweet et  al.,  2017) future, and 
combinations of higher shoreline change rates and initial biogeomorphological conditions are not currently pres-
ent in the training data for the Coarse-scale Geomorphology BN. Incorporating additional training data sampled 
from other barrier islands in future iterations of this work may reduce both error and uncertainty in BN predic-
tions by providing a broader range of conditions, including island evolution for locations that have experienced 
higher rates of shoreline change compared to Fire Island. Second, this region has experienced a long history of 
shoreline stabilization, including shoreline armoring and beach nourishment (Rice, 2015), that likely mask ‘true’ 
rates of shoreline change (Armstrong & Lazarus, 2019) in the training data. Therefore, we expect that Fire Island 
shorelines and geomorphology will evolve in ways not previously observed at this location as SLR rates increase 
and if human intervention relaxes. A shift from a more likely range to a more uncertain range in our outcomes 
implies that we are no longer as confident that Fire Island will evolve in response to SLR as it has in the past. As 
SLR drives non-equilibrium behaviors in barrier island biogeomorphic evolution (Hughes et al., 2013), ecologi-
cal surprises and no-analog futures are expected (Williams & Jackson, 2007).

4.2. Predicted Biogeomorphological Change on Fire Island

Despite predicting high uncertainty in some biogeomorphic variables, we were able to observe several likely 
trends for others with increasing shoreline change. At present, Fire Island is a barrier island characterized by high 
positive relief and resistance to disturbance (Vinent & Moore, 2015; Zinnert et al., 2017), owing in part to a long 
history of beach nourishment and other activities to stabilize the island's ocean and back-barrier shoreline posi-
tion. Higher elevation barrier islands with well-developed dune structures, as Fire Island has historically been, 
are more resistant to storm effects, migrate landward more slowly, and support late-successional ecosystems like 
maritime forests (Vinent & Moore, 2015; Zinnert et al., 2017). High-elevation islands with stable dunes also 
help to preserve homes and infrastructure landward of dune features in the short-term but potentially make the 
system vulnerable to longer-term impacts by limiting overwash fluxes as well as the gradual lateral translation 
of these environments necessary for their adaptation and landward migration (Lorenzo-Trueba & Ashton, 2014). 
However, our model simulations show that the island may begin to transition to a relatively low elevation, distur-
bance-reinforcing landscape as rates of SLR increase and efforts to stabilize the shorelines diminish (Vinent & 
Moore, 2015; Zinnert et al., 2017). Along many transects under the Moderate SLC and No Intervention scenar-
ios, Fire Island became increasingly flatter, narrower, and more prone to overwash. Low elevation islands with 
minimal dune structures experience repetitive overwash events that hinder growth of dune-building plants and 
reduce the likelihood that dunes will form. Such islands become perpetually ‘trapped’ in a low-elevation state 
where early successional ecosystems are prevalent (Lorenzo-Trueba & Ashton, 2014; Zinnert et al., 2017). These 
low-profile islands often lack stability required for supporting human development but provide prime foraging 
and nesting habitat for many coastal species, including shorebirds (U.S. Fish and Wildlife Service, 2020).

Similar transitions from high-to low-elevation biogeomorphological states have been demonstrated for barrier 
islands both in other models and in real-world examples. For instance, model simulations have shown that barrier 
islands with closed sediment budgets will experience shoreface flattening and island narrowing as sea levels rise 
(Lorenzo-Trueba & Ashton, 2014; Passeri et al., 2020). Declining sediment availability further accelerates this 
process and may drive equivalent state changes in neighboring barrier islands (Ciarletta et al., 2021). Histori-
cal barrier island state changes have been documented for Cedar, Hog, and Parramore islands off the coast of 
Virginia, which transitioned to low elevation, erosional states during periods of higher relative SLR punctuated 
by storms (Dueser et al., 1976; Raff et al., 2018; Shawler et al., 2019). This led to a drastic change in long-estab-
lished ecological communities and a slow retreat of permanent human residents from Hog Island in the 1930s 
and Cedar Island in the late 1990s (Dueser et  al., 1976; Horton, 1998), and both islands remain uninhabited 
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today. Low elevation islands can transition to high elevation islands and vice versa depending on storm and wave 
regimes; however, feedbacks tend to maintain these landforms in one state or the other (Vinent & Moore, 2015). 
Transitions in barrier island state may be accelerated as storms are expected to amplify SLR effects in non-linear 
ways (Buchanan et al., 2017; Wahl, 2017). Thus, our model of biogeomorphological change as well as historical 
accounts of change on similar barrier islands indicate that SLR could drive major changes to the morphological 
and ecological state of Fire Island, potentially leading to drastic landuse changes.

Island narrowing predicted by the geomorphology BNs was in part due to assumptions we made in the appli-
cation of the model; we assumed that, as the ocean shoreline retreated with SLR, the back-barrier shoreline 
would be held in its 2014 position. Along the majority of Fire Island (66% of the back-barrier shoreline), a fixed 
back-barrier shoreline is consistent with existing vegetation, human development, seawalls, and bulkheads that 
would prevent natural overwash processes that would otherwise extend the back-barrier and allow the island 
to keep pace with SLR. According to interpretations of 2015 aerial imagery (Zeigler, Sturdivant et al., 2019), 
16 km (21%) of the back-barrier shoreline was stabilized in some manner, typically through seawalls, rip-rap, and 
bulkheads. An additional 3 km (4%) and 31 km (41%) of the back-barrier shoreline was separated from the ocean 
by dense housing development or shrub/forest vegetation, respectively. Field studies have shown that upland 
areas with woody vegetation—like those found extensively across Fire Island (Sturdivant et al., 2019)—can act 
much like development in blocking overwash processes (Zinnert et al., 2019). Hardened anthropogenic structures 
and dense woody vegetation could block overwash from reaching back-barrier flats and prevent the island from 
naturally building elevation, extending marsh platforms, and migrating into Great South Bay. Consequently, 
some portions of Fire Island tend to evolve differently than adjacent unmanaged barrier island settings that are 
allowed to erode, migrate landward, and evolve naturally (Lentz et al., 2013). In addition, a comparison of Fire 
Island's back-barrier shoreline in 2010, 2012 (immediately after Hurricane Sandy), and 2014 indicate very little 
movement in that shoreline's position, even after a major storm event (Sturdivant et al., 2019; Zeigler, Gutierrez, 
et al., 2019). A previous study has also shown evidence of erosion along the back-barrier shoreline of Fire Island, 
particularly around bulkheads and marinas (Nordstrom & Jackson, 2005). Therefore, our assumption of a fixed 
back-barrier shoreline on Fire Island and the resulting island narrowing that may occur as the ocean shoreline 
erodes is not unrealistic for the time scale considered in this study.

Island cross-sections under narrowing or flattening regimes highlight areas that may be prone to width or height 
drowning, respectively, where sediment transport is insufficient to maintain an island's geometry during land-
ward migration in response to SLR (Lorenzo-Trueba & Ashton, 2014; Passeri et al., 2020). The 52% and 47% 
of transects in the Moderate SLC and No Intervention scenarios, respectively, that reflect narrowing or flatten-
ing regimes are unlikely to keep pace with SLR over the long-term (Lorenzo-Trueba & Ashton, 2014; Passeri 
et al., 2020). In addition, another 7% and 16% of transects under the Moderate SLC and No Intervention scenarios 
exhibit deflation regime trends. These sections of Fire Island are also unlikely to keep pace with SLR over the 
long-term and may be likely locations for storm breaching (Passeri et al., 2020).

Our results also show potential ecosystem state changes with shoreline change as the geomorphological land-
scape shifts. Beach ecosystems were the most resilient to SLR in both the Coastal Response BN and linked 
geomorphology BNs. In the Coastal Response BN, beaches accounted for almost all of the landscape predicted 
to respond dynamically to SLR. Similarly, according to the geomorphology BNs, beaches lost only 1.5  km 2 
even under the high erosion rates of the No Intervention scenario as other geomorphic settings (e.g., barrier 
interior) were predicted to shift from their original state to beach with shoreline change. Beaches are well-suited 
for dynamic changes with SLR; these ecosystems are comprised of finer substrates that move in response to 
wind and wave action (Carter, 1988; Davis jr, 1994; Leatherman, 1979; Oertel, 1985), and common types of 
beach vegetation (e.g., Ammophila breviligulata) adapted to periodic burial can survive and stabilize beach and 
dune landscapes (Zinnert et al. [2017] and references therein). This dynamic response of beach ecosystems to 
SLR, however, is predicated on the ability of these ecosystems to migrate. Human development and stabilization 
structures (e.g., seawalls, engineered dunes) can block overwash processes and beach migration, causing coastal 
squeeze and the ultimate loss of this ecosystem (Magliocca et al., 2011; Rogers et al., 2015).

In contrast to beaches, coastal marsh may likely be lost (according to the linked geomorphology BNs) or have 
a largely uncertain fate (according to the Coastal Response BN). In the linked geomorphology BNs, marshes 
were predicted to lose as much as 3.2 km 2 (No Intervention scenario) of the 3.5 km 2 present in 2015 aerial 
imagery. This loss was in part due to our assumption of no back-barrier shoreline migration. Others have shown 
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that healthy marshes are able to keep pace with low to moderate rates of SLR (Kirwan & Megonigal, 2013; 
Kirwan & Murray, 2007). These ecosystems increase biomass production in response to increased water depths, 
which allows for increased deposition and stabilization of the marsh platform in step with rising water levels. 
Storm overwash can also move sediments from beach and dune systems to marshes in the back-barrier, provid-
ing additional elevation and facilitating marsh migration with SLR (Kirwan & Megonigal,  2013; Kirwan & 
Murray,  2007). Therefore, our model scenarios may be overestimating the loss of marshes on Fire Island in 
locations where a lack of back-barrier bulkheads, housing communities, and dense woody vegetation would 
allow overwash fluxes into the barrier interior. However, marshes are already rapidly declining throughout the 
U.S. Atlantic coast. Studies have revealed the conversion of high marsh vegetation communities to low-elevation, 
flood-tolerant species (Field et al., 2016; Ganju et al., 2020; Kirwan & Murray, 2007; Morris & Renken, 2019; 
Raposa et al., 2017). Such altered communities are less resilient and are more likely to be converted to open water 
(Kirwan & Megonigal, 2013; Kirwan & Murray, 2007; Raposa et al., 2017), and some studies suggest that marsh 
surface elevation in Great South Bay (where Fire Island is located) will not be able to keep pace with SLR (Ganju 
et al., 2020; Morris & Renken, 2019). The ability of marshes to keep pace with SLR will depend on their ability to 
migrate, and prevalent human development and woody vegetation on Fire Island may prevent this through coastal 
squeeze (Pontee, 2013; Zinnert et al., 2019). Some observational studies have also noted the loss of marshes to 
colonization by upland woody vegetation along the Virginia coast (Zinnert et al., 2019)—a dynamic observed in 
our model predictions given that as much as 65% of marsh converted to the barrier interior geomorphic setting in 
the No Intervention scenario. Ultimately, the response of marsh ecosystems is also highly dependent on sediment 
availability and other localized characteristics (van Belzen et  al.,  2017; Kirwan & Megonigal,  2013; Kirwan 
& Murray, 2007; Philips, 2017). Such context-specific information would need to be included with an explicit 
consideration of marsh evolution and back-barrier shoreline migration to generate high-confidence forecasts of 
marsh persistence. Without this information, the fate of marshes and their ability to respond dynamically to SLR 
leads to high uncertainty, as captured in the Coastal Response BN.

4.3. Implications of Change for People and Piping Plovers

The biogeomorphological changes predicted by our suite of models have important implications for both people 
and endemic species like the piping plover. With predicted narrowing under the Moderate SLC and No Interven-
tion scenarios, the subaerial footprint of Fire Island becomes smaller—leading to less overall area for both people 
and other species. If the rates of shoreline retreat modeled in this study are realized at Fire Island, 0.2–1.4 km 2 of 
the existing footprint of housing communities and recreational infrastructure would be seaward of the mean high 
water shoreline by 2050. As beaches replace more stable dune and barrier interior geomorphic settings and as the 
island becomes lower and more prone to overwash, substantial increases in the frequency and extent of tidal and 
storm surge flooding would also be expected—particularly for properties now adjacent to a shoreline that shifted 
by as much as 175 m in 2050 predictions. Furthermore, several studies have shown that buildings and coastal 
engineering designed to slow shoreline erosion and storm flooding may actually exacerbate problems associated 
with SLR (Magliocca et al., 2011; Nordstrom & McCluskey, 1985; Rogers et al., 2015). The primary mechanism 
by which barrier islands keep pace with SLR is through overwash, inlet formation, and island roll-over (i.e., 
where sand is moved by waves from the ocean shoreline into the island interior and back-barrier). Structures like 
artificial dunes, seawalls, and buildings block overwash deposition except during relatively rare, very high inten-
sity storms (Nordstrom & McCluskey, 1985; Rogers et al., 2015). As a result, areas landward of artificial dunes 
and other structures remain at the same elevation and the back-barrier shoreline remains in a fixed position as the 
ocean shoreline retreats and sea levels rise. Such engineered or developed islands tend to narrow more rapidly 
and experience more catastrophic flooding and overwash than islands allowed to evolve naturally (Magliocca 
et al., 2011). Therefore, further engineering Fire Island with artificial dunes, rip-rap, and other hard stabilization 
structures may protect current residential, commercial, and recreational investments over the short-term but at the 
cost of long-term barrier island resilience (Magliocca et al., 2011).

As Fire Island's morphology shifts to a lower, more overwash-prone state, piping plovers and other endemic 
beach species may benefit from SLR-driven changes, as in Seavey et al. (2011). Although the amount of habitat 
for piping plovers is also expected to decline with the decrease in the subaerial footprint of Fire Island, some 
of this loss may be due to propagated uncertainty in model results as opposed to actual loss of future habitat. 
Gutierrez et al. (in press) found that, with increased model complexity in the linking of BNs, predictions for 



Earth’s Future

ZEIGLER ET AL.

10.1029/2021EF002436

21 of 25

biogeomorphological characteristics became more uncertain (which was also found with increasing shoreline 
change). As the nature of these underlying characteristics became more uncertain, the Piping Plover Habitat 
BN exhibited more uncertainty in predictions of habitat availability, which appears as habitat loss as landcover 
predicted to be habitat with high certainty (i.e., ≥0.66 probability) becomes more uncertain in 2050 predictions. 
Scenario-based numerical models of barrier island evolution (e.g., Passeri et al., 2020) could reduce the amount 
of uncertainty propagated through estimates of piping plover habitat availability; however, such models are data- 
and computationally intensive.

Furthermore, other biogeomorphological features predicted under the Moderate SLC and No Intervention 
scenarios suggest that habitat could actually be improved with coastal storms. Nesting piping plovers prefer 
low-elevation sandy habitats in beach/backshore areas, natural dune complexes, and washover features (Zeigler 
et al., 2021). Because beach ecosystems are able to respond dynamically to SLR and because overwash likeli-
hood increases as the island get flatter, piping plover habitat is not expected to be lost as rapidly as one might 
expect given the rate of shoreline migration. That said, management of the shoreline-adjacent built environment 
(e.g., sea walls, engineered dunes) will determine the extent to which natural overwash processes occur and that 
beach ecosystems and associated piping plover habitats can migrate with rising sea levels. This species and other 
shorebirds quickly colonize storm-created habitats (Zeigler, Gutierrez, et al., 2019), often at higher population 
densities (Cohen et  al.,  2009) and frequently leading to irruptions in population abundance and productivity 
important for the long-term viability of the species (Robinson et al., 2019). If built features block natural coastal 
processes (e.g., Magliocca et al., 2011; Rogers et al., 2015), the coastal squeeze will occur, and we would expect 
the loss of beach ecosystems and habitats as the shoreline migrates landward with SLR (Defeo et al., 2009). In 
addition, a smaller Fire Island subaerial footprint with SLR means that humans and endemic wildlife will co-exist 
in a smaller area, increasing the potential for human wildlife conflicts. Because disturbance-related stress can 
harm individual shorebirds and have population-level consequences (Gibson et al., 2018), efforts to minimize 
human disturbance in high quality beach habitats are important on a shrinking barrier island if this environment 
is expected to contribute to population recovery. Maintaining beach habitats for piping plovers and other shore-
birds on Fire Island into the future is especially important in this region, where few undeveloped barrier islands 
remain for breeding and migration in the federally designated New York–New Jersey recovery unit (U.S. Fish 
and Wildlife Service, 2020).

Finally, although the No Intervention scenario and its predicted biogeomorphological evolution were intended 
to serve as the worst case scenario in terms of the highest levels of shoreline erosion, current trends suggest that 
this scenario may also be the most likely. Trends in global mean SLR and emission rates have prompted scientists 
to increase extreme upper bounds of SLR to 2.5 m above 1991–2009 levels (Sweet et al., 2017), and rates along 
the U.S.’s northeastern Atlantic coast are predicted to be higher than the global mean (Goddard et al., 2015). 
Higher rates of SLR will drive higher rates of shoreline erosion. In the No Intervention scenario, we assumed a 
mean rate of shoreline erosion of −4.71 m/year; higher rates of relative SLR and shoreline change have already 
been observed off the coast of the nearby Delmarva Peninsula as well as the Louisiana coast (Hapke et al., 2010; 
Himmelstoss et al., 2010). Furthermore, sand is becoming one of the most in-demand, expensive, and limited 
resources in the world (Peduzzi, 2014). Mitigation efforts that rely on adding sand to a sediment-starved system—
through, for example, beach nourishment—may become too expensive for communities addressing climate 
change effects (Keeler et al., 2018; McNamara et al., 2015). Paired economic-geomorphological models suggest 
that as the cost of coastal engineering becomes prohibitive and as government subsidies for sand nourishment are 
removed, property values will decline (Keeler et al., 2018; McNamara et al., 2015).

5. Summary
In summary, our model simulations suggest that Fire Island will become increasingly flatter, narrower, and more 
overwash-prone with increasing rates of shoreline change. Common engineering strategies to prevent overwash 
and shoreline erosion—including artificial dunes and beach nourishment—may provide short-term protection for 
residential, commercial, and recreational infrastructure; however, these strategies may become cost-prohibitive 
and hinder the long-term resilience of Fire Island to SLR. Instead, Fire Island may offer a conservation oppor-
tunity for piping plovers and other endemic coastal species that rely on early successional beach environments, 
should natural overwash processes be encouraged.
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Data Availability Statement
All supporting data can be found in previous publications (Lentz et al., 2015b; Sturdivant et al., 2016, 2019).
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