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Ice viscosity is more sensitive to stress than
commonly assumed
Joanna D. Millstein 1✉, Brent M. Minchew2 & Samuel S. Pegler3

Accurate representation of the viscous flow of ice is fundamental to understanding glacier

dynamics and projecting sea-level rise. Ice viscosity is often described by a simple but largely

untested and uncalibrated constitutive relation, Glen’s Flow Law, wherein the rate of defor-

mation is proportional to stress raised to the power n. The value n= 3 is commonly pre-

scribed in ice-flow models, though observations and experiments support a range of values

across stresses and temperatures found on Earth. Here, we leverage recent remotely-sensed

observations of Antarctic ice shelves to show that Glen’s Flow Law approximates the viscous

flow of ice with n= 4.1 ± 0.4 in fast-flowing areas. The viscosity and flow rate of ice are

therefore more sensitive to changes in stress than most ice-flow models allow. By calibrating

the governing equation of ice deformation, our result is a pathway towards improving pro-

jections of future glacier change.
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Mass loss from ice sheets presents both the greatest
potential contribution to future sea-level rise and the
largest source of uncertainty in such estimates1,2. In

Antarctica, mass loss occurs principally through fast-flowing
glaciers that flow into floating ice shelves, which provide resistive
buttressing stresses that impede the seaward flow of ice and
stabilize marine grounding zones3–5. The rate at which glaciers
flow is controlled by the shear-thinning viscous deformation of
ice6. The most commonly adopted constitutive relation, known as
Glen’s Flow Law, is often employed to quantify the viscous
deformation of glacier ice by relating the rate of deformation,
hereafter called strain rate, to the deviatoric stress7. Glen’s Flow
Law is most simply expressed as

_ϵe ¼ Aτne ð1Þ
where _ϵe is the effective strain rate, τe the effective deviatoric
stress, n the stress exponent, and A the rate factor or flow-law
coefficient. Variation in parameter A can be used to represent the
effects of temperature, grain size, grain orientation (fabric),
impurities, and interstitial water content8.

Glen’s Flow Law is routinely implemented in large-scale ice-
flow models with the prescribed value n= 3 assumed to be
constant in space and time9,10. Glen’s laboratory experiments
pinpointed the power-law rheology and extrapolated his findings
to flows of natural ice7,8,11. Shortly thereafter, Glen’s findings and
supporting evidence were widely adopted in the glaciological
literature, with the field converging on the canonical value of
n= 312–14. However, multiple mechanisms influence the viscous
deformation of ice, each with a suggested value of n: dislocation
creeps (n= 4), grain-boundary sliding (n ≈ 2, with slight variance
dictated by the direction of motion of dislocations), and diffusion
creep (n= 1) all accommodate creep at the individual grain level
and, in aggregate, describe the flow of glacier ice15. These
mechanisms are not treated independently in Glen’s Flow Law
(Eq. (1)). Rather, it serves as a lumped parameterization repre-
senting the combined effect of all mechanisms. Generalized forms
of the flow law have been proposed to account for multiple creep
mechanisms, fabric, and grain size, but these have not been
widely tested, calibrated, nor implemented10,15,16.

The simplicity of Glen’s Flow Law has proven useful and,
subject to suitable calibration under different conditions, has the
potential to provide a reasonably accurate general description of
the flow of glacier ice7,8,14,17. Glen’s Flow Law (Eq. (1)) with
n= 3 shows consistency with sparse observations of natural ice
flows such as borehole deformation measurements and ice-flow
velocities, as well as laboratory experiments on polycrystalline ice
aggregates under conditions relevant for ice sheets7,15,18–25.
However, the broad range of conditions over which the rheolo-
gical behavior of ice has been examined reveals the way in which
variations in stress can influence the stress exponent and, in turn,
the mechanisms of creep10,26–28. Nearly 70 years after its intro-
duction, the need remains to test and rigorously calibrate the
parameters n and A in the natural environment.

We infer the stress exponent of Glen’s Flow Law across wide
areas of Antarctic ice shelves, the floating extensions of the
ice sheet. Using satellite observations, we are able to address
the long-standing problem of benchmarking a flow law that can
be used in ice-flow models. The abundance and extent of the data
allow us to investigate the creep of glacial ice on a continental
scale, assembling inferences to reveal spatial coherence and pat-
terns with statistical constraints. To do so, we require indepen-
dent estimates of strain rates and (deviatoric) stresses (Eq. 1). The
schematic in Fig. 1 graphically illustrates the methodology,
showing how we begin with independent observations of surface
velocities and ice thicknesses, apply these to evaluate strain-rates
_ϵe and stresses τe, and then conduct a regression analysis to infer

the parameters in Glen’s Flow Law. This method is comparable to
previously published work21,22,26,29, but applied to Antarctic ice
shelves using continental-scale remote sensing observations. Our
results reveal that a value of n= 4.1 ± 0.4 is the most repre-
sentative flow-law exponent in fast-flowing, extensional regions,
where the magnitude of deviatoric stresses are comparable to
those expected in other dynamic regions of the ice sheet. Making
use of continent-scale remote sensing observations on Antarctic
ice shelves, we demonstrate how the viability of power-law
rheology can be constrained directly using observations.

We focus on ice shelves because the underlying ocean provides
negligible shear resistance to ice flow, allowing for two important
simplifications in our analysis. First, we can neglect drag at the
base of the ice and thus consider a stress regime that is simpler for
our purposes than would be expected for grounded ice, where
basal drag presents a further unknown that must be constrained.
Second, the lack of drag at the base means that strain rates are
approximately constant with depth. For this reason, the hor-
izontal strain rates we calculate from observations of the surface
velocity fields approximate the strain rates at all depths.

Ice shelves cover areas that are large compared with the sub-
kilometer resolution of observations, providing ample opportu-
nities to comprehensively observe broad regions of flow under-
going relatively simple one-dimensional deformation. As a result,
we can focus on regions that are close to being in pure extension,
where the ice spreads under its own weight in one direction and
the governing equations of flow reduce to a simple two-term
balance, detailed further in this report. This basic premise has
been employed for decades to study the rheology of glacier
ice22,24,30 but has not been systematically applied on continental
scales before now.

We use measurements of ice thickness provided through the
BedMachine project31, and surface velocity data from the NASA
Inter-mission Time Series of Land Ice Velocity and Elevation
(ITS_LIVE) project32. The surface velocity data, which encom-
pass most of the Antarctic Ice Sheet at a grid spacing of
120 m × 120 m, are derived from Landsat 4, 5, 7, and 8 imagery

Fig. 1 The premise of this study applied to validate and calibrate the flow
law of glacier ice. Visual summary of our methodology. The schematic
shows how we begin with publicly available satellite observations of surface
velocity vector ui and ice thickness H. Using the strain-rate tensor, _ϵij, we
calculate the effective strain-rate _ϵe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϵij _ϵij=2

q
and along-flow strain-rate

_ϵxx. In our areas of interest, where _ϵxx � _ϵe, we estimate the effective
deviatoric stress τe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ ijτ ij=2

q
� τxx using the force balance detailed in

the Methods, which gives τxx∝ H (Eq. (2)). The values of _ϵe and τe are then
correlated through a flow law, indicated by the horizontal dashed arrow
labeled with Glen’s Flow Law (Eq. (1)).
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using the auto-RIFT feature tracking processing chain, providing
reliable constraints on the two horizontal components of ice
velocity32. We use these to calculate the horizontal strain-rates _ϵij
(for i, j= x, y the two horizontal coordinates) across all Antarctic
ice shelves, as defined by 2 _ϵij ¼

�
∂ui=∂xj þ ∂uj=∂xi

�
, where ui

represents the horizontal components of the ice velocity vector
and xi the horizontal coordinates. To calculate the components of
the velocity gradient, we apply a two-dimensional Savitzky-Golay
filter with a polynomial order of one and a square window of
3720 m (31 pixels)33. More detail on the strain-rate calculations is
found in the Supplementary Methods.

After deriving strain rates from the surface velocity fields, we
determine regions flowing in approximately pure extension, with
a view to simplifying the force balance governing the local ice
flow. The two-dimensional strain-rate tensor _ϵij has three unique
components (the off-diagonal terms are equal by definition) and a
scalar invariant representing the effective horizontal strain-rate

_ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϵij _ϵij=2

q
, where the summation is implied for repeated

indices. Note that the effective strain-rate _ϵe in Eq. 1 follows the
same definition as for _ϵ but is applied to the three-dimensional
strain-rate tensor. We focus on areas of the ice shelves that are
solely confined by seaward pressure in the along-flow, or x,
direction, and analyze areas in which the along-flow component
of the strain-rate tensor _ϵxx is much larger than both lateral
normal and shear strain rates ( _ϵxx � _ϵyy; _ϵxy). We combine these
into a single criterion _ϵxx �

ffiffiffi
2

p
_ϵ, corresponding to areas of the

ice shelves where longitudinal extension is dominant. The more
specific criterion _ϵxx > _ϵ is used to define large, spatially coherent
regions where the extensional component of deformation dom-
inates the flow (Fig. 2 and Supplementary Figs. S1 and S2).
Approximately 20% of the total surface area of all Antarctic ice
shelves satisfies this criterion. In these areas it follows from the
incompressibility of ice and the absence of drag at the base of
ice shelves that _ϵxx � _ϵe, the three-dimensional effective strain
rate in Eq. (1).

To estimate the effective deviatoric stress from remote sensing
observations, we utilize a well-established reduced form of the
Stokes equations that govern the viscous flow of glacier ice. Over
the ice shelves, where negligible shear stress applies at both the
upper (atmosphere) and lower (ocean) surfaces of the ice, we can
adopt the depth-integrated form of the Stokes equations com-
monly referred to as the Shallow-Shelf Approximation (SSA),
which contains only body forces and the horizontal gradients of
the stress tensor elements. Based on the conditions described
above, we can further reduce the SSA equations to a simple
expression relating the (depth-averaged) along-flow deviatoric
stress τxx to local ice thickness H as:

τxx ¼ ρg 0H=4 ð2Þ
where g 0 ¼ gð1� ρ=ρwÞ is the reduced gravity, representing the
balance between the resistive longitudinal stress and the driving
buoyancy force (the full derivation is provided in the Methods).
Here, we take ρ= 910 kg/m3 as the mass density of glacier ice and
ρw= 1026 kg/m3 as the mass density of seawater. Where the cri-
teria for predominantly extensional flow is met (_ϵxx � _ϵe), we
expect τxx ≈ τe. Thus, the criteria we apply to the strain-rate fields
to identify areas in primarily extensional flow allows us to calculate
effective stress τe (Eq. (1)) from observations of ice thickness and
independently of the surface velocity fields used to calculate _ϵe.
Before fitting a model to the data, we ensure that the gradients of
horizontal shear stress transverse to flow are small compared to the
gradients of longitudinal stress from the position of the ice parcel
all the way to the ice shelf calving front. This supports the suit-
ability of the derivation for effective stress over the fast-flowing,
extensional regions of Antarctic ice shelves of interest.

Critically, this study neither takes into account firn or marine
ice, which are characteristic of all ice shelves, nor do we need to
explicitly account for viscous anisotropy (fabric). Complexities
caused by firn and marine ice are partially subsumed by the uni-
form density profile but remain a source of uncertainty in our
analysis. Given that the mass densities of firn and ice are within a
factor of two and firn typically comprises a thin upper layer of ice
shelves, we expect the uncertainties due to firn and marine ice are
small enough to not meaningfully impact our results. Our focus on
a single flow regime and parcels of ice defined along and parallel to
flow lines allow us to avoid the complexities that arise from viscous
anisotropy in ice, which would require a non-scalar form of A to
represent deformation in multiple directions, and spatial variations
in characteristics like ice temperature and liquid water content.

Results
Linear regressions fitted to the values for logð_ϵeÞ and logðτeÞ
constrain n through the slope and A in the y− intercept, divul-
ging values of the flow-law parameters across viable regions of
Antarctic ice shelves. To determine 95% confidence intervals on
the regression of strain rate on stress, we implement a non-
parametric bootstrap, which allows us to estimate constraints on
the determined value of n without making assumptions on the
underlying structure of the distribution34. Our analysis encom-
passes regions of both large ice shelves, such as those shown in
Fig. 2, and smaller ice shelves that line the continent. We focus
first on highlighted areas on the Ross and Filchner-Ronne Ice
Shelves in Fig. 2, which we extracted from areas along flow lines,
with probable consistency between values of temperature, grain
size, and fabric, and therefore A and n.

The log–log plots between strain rate and deviatoric stress
shown in Fig. 2 exhibit linear trends that are consistent with a
power-law relation. These results provide strong evidence that,
for a suitable choice of n, Glen’s Flow Law is a viable approx-
imation of the viscous flow of Antarctic ice shelves and, as dis-
cussed later, likely other dynamic regions of Antarctica. Critically,
we find n ≈ 4 in the fast-flowing, extensional regions of Antarctic
ice shelves. This result is consistent with other evidence for a
higher value of the flow-law exponent7,24,26,30,35,36, and demon-
strates that this higher value is applicable to natural ice flow at the
continental scale. Additional comparison with the value n= 3
and other typical values of the existing flow law can be found in
Supplementary Fig. S3; it is worth noting that n= 3 provides a
poor fit to the data used in this study as shown in Fig. 2. Addi-
tionally, the residuals from the linear regressions in subplots a-h
of Fig. 2 are shown in Supplementary Fig. S4 and demonstrate the
suitability of the linear fit in these areas.

The results of our full analysis covering all viable regions of
Antarctic ice shelves are shown in Fig. 3, which includes regions
of both large and small ice shelves (mapped in Supplementary
Figs. S1 and S2). The normalized kernel density estimates of the
bootstrapped values of the flow-law exponent (Fig. 3) indicate
that n= 4.1 ± 0.4 in extensional regions of Antarctic ice shelves.
Figure 3 shows the confidence with which our estimate stands
across geographic areas of different sizes and represents a range of
stresses. Large areas extracted for analysis, > 1000 km2, have less
spread in the error estimation and are centered closer to n= 4.1,
whereas smaller areas exhibit a greater spread in the distribution.
This is likely because the broader ranges of stresses and the
greater number of observations in the larger ice shelves provide
more accurate inferred trends across the data. Notably, geo-
graphic regions from West Antarctica have slightly higher values
of n than regions sampled from East Antarctica. This observation
could be attributed to higher sub-ice-shelf melt rates in West
Antarctic ice shelves, where the bulk of ice is created on the ice
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shelf by compaction of snow as opposed to being inherited from
the grounded glacier37. Additionally, there is a possible grain size
dependence wherein warmer conditions would contribute to
larger grains38,39. In such regions, larger grains, strain rate, and
values of the stress exponent validate a hypothesis that ice
deformation is facilitated primarily by dislocation creep15,29. Our
results highlight further spatial variability in the precise values of
the flow-law exponent and rate factor across different ice shelves,
and even different regions within single ice shelves (see Fig. 3).
We reserve for future work detailed analysis and modeling of
these variations.

We find values of the flow-law rate factor, A, spanning
10−35–10−27 Pa−n s−1 for the range of inferred n values (see

Supplement Fig. S5). Inferred values of A depend on the inferred
values of n. Here, we do not attempt to provide newly calibrated
values for A because proper constraints on the physical properties
of the ice, like temperature and grain size, are not currently
available in these areas and require work that is beyond the scope
of this study. Rather, we note that the smaller values of A found
here to validate our method for deriving Glen’s Flow Law and we
recommend that future efforts using a value n ≈ 4 utilize standard
tabulated sources for A40 and scale these values accordingly for
the new value of n. A comparison of our results to the more
commonly used n= 3 can be seen in Supplement Fig. S3, high-
lighting the incompatible values of A in these results, and the
generally poor fit of n= 3 to the data.

Fig. 2 Regression analysis produces line of best fit corresponding to the value of the stress exponent, n. Estimates of effective deviatoric stress τe
plotted against effective strain-rate _ϵe shown as log–log plots in panels a–h, corresponding to geographic regions on Filchner-Ronne Ice Shelf (FRIS) and
Ross Ice Shelf (RIS). The results of each regression substantiate a power-law rheology in the form of Glen’s Flow Law, where the value of n is the slope of
the plotted solid line and log10ðAÞ is given by the value of the y− intercept. The color map corresponds to the value of the ratio _ϵxx= _ϵ where a maximum
value of

ffiffiffi
2

p
signifies a purely extensional flow regime. The range of stresses used in this plot span 65–165 kPa, and the range of strain-rates spans

0.001–0.004 yr−1. The dashed line corresponds to a slope n= 3 with an unrealistic value of A in order to visually match the starting point of the line
segment for n= 4. For a comparison with existing flow laws (n= 3) see Supplementary Fig. S3.
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Conclusion
The result that n ≈ 4 challenges the long-held practice of
assuming the flow-law exponent is n= 3 everywhere, and at all
times, in large-scale ice-sheet flow models. While our observa-
tions focus on specific regions in extensional flow regimes on ice
shelves that experience stresses of order 100 kPa (Supplement
Fig. S6), complementary laboratory work showing that n= 4 is
suitable at higher stresses15 supports extending our conclusion
that n ≈ 4 to other dynamic regions in Antarctica. Additionally,
our conclusion complements a growing body of work advocating
for the use of n > 3 in other areas of the cryosphere19,26. Taken
together, this work calls for a broader community effort to
quantify the uncertainties in the flow-law parameters and the
consequences of these uncertainties on models of glacier
dynamics. A higher value of n increases the sensitivity of viscosity
to changes in stress but the impact of n= 4 on large-scale ice-flow
models used for projections of sea-level rise and ice-sheet evo-
lution remains unclear as few sensitivity analyses have been
conducted10 and n is not a parameter explored in current
ensemble-model analyses1,2. The value n= 4 has the potential to
increase the sensitivity of ice-sheet mass loss to ongoing climate
change considerably relative to n= 3 due to the stronger
dependence of flow rates to changes in resistive stresses.

By applying continental-scale satellite observations to standard
models in glacier dynamics, we have validated Glen’s Flow Law, a
constitutive relationship that helps form the foundation of
modern glaciology, and calibrated the stress exponent in Ant-
arctic ice shelves. This work serves as a pathway towards a
standard calibration framework for the community using publicly
available remote sensing data. Our conclusion that n ≈ 4 across
much of Antarctica’s ice shelves is a step towards reassessing the
governing equations of ice flow in the satellite age, and reveals an
increased sensitivity of flow rates to applied stresses relative to the
commonly used n= 3. As a consequence, future sea-level rise is
likely more sensitive to climate forcings than predicted by present
models using common assumptions of the flow law.

Methods
Solving for effective stress. Conservation of momentum (Stokes equations)
describes all forces acting on the volume of glacier ice such that

∂τij
∂xj

� ∂p
∂xi

� ρgi ¼ 0 ð3Þ

where p is the pressure, ρgi is the driving gravitational force (with g ¼ g ẑ), and
summation is implied for repeated indices. For a layer of ice floating on top of an
ocean, we can derive depth-integrated equations to describe the balance of forces in
such a system, given that the ice shelf is much larger in horizontal extent than in
thickness41. At scales of order the ice thickness, bending (and bridging) stresses are
negligible, allowing us to simplify the equilibrium equations42. As a result, we take
the vertical normal stress to be equivalent to the overburden stress (weight of the
ice per unit area). This can be expressed as

p ¼ �ρgz þ ρg 0H þ τzz ¼ �ρgz þ ρg 0H � τxx � τyy ð4Þ
where H is the ice thickness, g 0 ¼ gðρw � ρÞ=ρw is the reduced gravity, and the
second equality arises from the fact that the deviatoric stress tensor is traceless.
Eq. (4) is derived by integrating the vertical component of Eq. (3) and applying the
condition of continuous normal stress at the top and bottom of the layer.

Then, neglecting basal drag (due to our focus on ice shelves) and depth
integrating the x-component of Eq. (3), we can obtain

∂

∂x
Hð2τxx þ τyyÞ
h i

þ ∂

∂y
ðHτxyÞ ¼ ρg 0H

∂H
∂x

: ð5Þ

where all deviatoric stresses are now depth-averaged. A complete derivation can be
found in ref. 43, which uses different notation but reveals the same outcome. A
comparable derivation is found in ref. 30 with the notable distinction here being our
omission of α= τyy/τxx because we only consider areas where α≪ 1. In this way, we
are able to look at large areas without potential complications arising from multiple
stress components (e.g., viscous anisotropy).

We can simplify Eq. (5) in two steps. First, we assume that the lateral normal
stresses (τyy) are negligibly small compared with the longitudinal normal stresses
(τxx) due to our emphasis on areas with _ϵxx � _ϵyy

44. Then, we apply the
constitutive relation in Supplementary Eq. 6 and recall that in our areas of interest,
we require that _ϵxx � _ϵe . Thus, Eq. (5) becomes

2
∂

∂x
ðϕÞ þ ∂

∂y
βϕ
� � ¼ ρg 0H

∂H
∂x

ð6Þ

where ϕ ¼ h _ϵ1=nxx A�1=n and β ¼ _ϵxy= _ϵxx . The derived strain-rate data indicate that
in our areas of interest, the lateral (∂/∂y) and longitudinal (∂/∂x) gradients in h _ϵxx
have the same order of magnitude. Assuming A and n vary slowly in space in our
areas of interest, then ∂ϕ/∂y is of order ∂ϕ/∂x, placing the emphasis on the term β.
Our criteria that _ϵxx � _ϵe requires that β≪ 1 everywhere in our areas of interest,
which are wide enough that ∂β/∂y is negligibly small. This means that within the
error in currently available data, we can assume that the lateral shear term (second
on the left-hand side of Eqs. (5) and (6)) is negligible.

Vastly reduced, what began as four components—extension, lateral shear, basal
drag, and buoyancy—now only requires terms for extension and buoyancy to
illustrate the force balance of an unconfined ice shelf44. Equation (5) is now

∂

∂x
ð2HτxxÞ ¼ ρg 0H

∂H
∂x

: ð7Þ

We can now rearrange the right-hand side of Eq. (7) to an equivalent form

∂

∂x
ð2HτxxÞ ¼

1
2
ρg 0

∂

∂x
ðH2Þ: ð8Þ

Integrating this equation subject to the free stress condition at the front of the ice

Fig. 3 Inferred values of the stress exponent, n, across Antarctic ice shelves. Normalized kernel density estimation of the value of the stress exponent n
obtained over viable regions of Antarctic ice shelves from bootstrap error estimation. The probability density shows that the value of n is concentrated at
4.1 ± 0.4. The estimates here represent stress estimates of 50–180 kPa and effective strain-rate estimates of 0.001–0.006 yr−1 (Supplement Fig. S6).
Larger areas sampled from Ross Ice Shelf and Filchner-Ronne Ice Shelves show a greater range of stresses (and strain rates) and smaller spread of inferred
n values in comparison to smaller geographic areas which have a narrower range of stresses and produce a greater spread in the possible values of n.
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shelf and simplifying the resulting equation results in

τxx ¼
1
4
ρg 0H; ð9Þ

which we use as the basis for our analysis of extensional deviatoric stress in floating
ice shelves. This derivation shows how we can use the extensional deviatoric stress
as the total effective stress in our regions of interest, allowing us to use a dataset of
ice thickness to determine the stress in the system parameter.

Data availability
No new data were generated in this analysis; the strain-rate fields were generated using
velocity data from NASA ITS_LIVE (https://its-live.jpl.nasa.gov/). The MEaSUREs ice
thickness data are available at the NSIDC.

Code availability
The Python codes used to analyze the remote sensing datasets and prepare figures are
available on Github (https://github.com/jdmillstein/n_equals_4).

Received: 12 August 2021; Accepted: 10 February 2022;

References
1. DeConto, R. M. et al. The paris climate agreement and future sea-level rise

from antarctica. Nature 593, 83–89 (2021).
2. Edwards, T. L. et al. Projected land ice contributions to twenty-first-century

sea level rise. Nature 593, 74–82 (2021).
3. Gudmundsson, G., Krug, J., Durand, G., Favier, L. & Gagliardini, O. The stability

of grounding lines on retrograde slopes. Cryosphere 6, 1497–1505 (2012).
4. Haseloff, M. & Sergienko, O. V. The effect of buttressing on grounding line

dynamics. J. Glaciol. 64, 417–431 (2018).
5. Pegler, S. S. Marine ice sheet dynamics: the impacts of ice-shelf buttressing. J.

Fluid Mech. 857, 605–647 (2018).
6. Nye, J. F. The flow law of ice from measurements in glacier tunnels, laboratory

experiments and the jungfraufirn borehole experiment. Proc. R. Soc. Lond. Ser.
A. Math. Phys. Sci. 219, 477–489 (1953).

7. Glen, J. W. The creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A. Math.
Phys. Sci. 228, 519–538 (1955).

8. Glen, J. W. The flow law of ice: a discussion of the assumptions made in
glacier theory, their experimental foundations and consequences. IASH Publ.
47, e183 (1958).

9. Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high
order, high spatial resolution, ice sheet modeling using the ice sheet system
model (issm). J. Geophys. Re. Earth Surface 117, https://doi.org/10.1029/
2011JF002140 (2012).

10. Zeitz, M., Levermann, A. & Winkelmann, R. Sensitivity of ice loss to
uncertainty in flow law parameters in an idealized one-dimensional geometry.
Cryosphere 14, 3537–3550 (2020).

11. Glen, J. Experiments on the deformation of ice. J. Glaciol. 2, 111–114 (1952).
12. Nye, J. F. The distribution of stress and velocity in glaciers and ice-sheets.

Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 239, 113–133 (1957).
13. Haefeli, R. Contribution to the movement and the form of ice sheets in the

arctic and antarctic. J. Glaciol. 3, 1133–1151 (1961).
14. Lliboutry, L. General theory of subglacial cavitation and sliding of temperate

glaciers. J. Glaciol. 7, 21–58 (1968).
15. Goldsby, D. & Kohlstedt, D. L. Superplastic deformation of ice: Experimental

observations. J. Geophys. Res. Solid Earth 106, 11017–11030 (2001).
16. Ma, Y. et al. Enhancement factors for grounded ice and ice shelves inferred

from an anisotropic ice-flow model. J. Glaciol. 56, 805–812 (2010).
17. Steinemann, S. Results of preliminary experiments on the plasticity of ice

crystals. J. Glaciol. 2, 404–416 (1954).
18. Alley, R. B. Flow-law hypotheses for ice-sheet modeling. J. Glaciol. 38,

245–256 (1992).
19. Cuffey, K. & Kavanaugh, J. How nonlinear is the creep deformation of polar

ice? a new field assessment. Geology 39, 1027–1030 (2011).
20. Hooke, R. Flow law for polycrystalline ice in glaciers: comparison of

theoretical predictions, laboratory data, and field measurements. Rev. Geophys.
19, 664–672 (1981).

21. Jezek, K. C., Alley, R. B. & Thomas, R. H. Rheology of glacier ice. Science 227,
1335–1337 (1985).

22. Thomas, R. H. The creep of ice shelves: interpretation of observed behaviour.
J. Glaciol. 12, 55–70 (1973).

23. Treverrow, A., Budd, W. F., Jacka, T. H. & Warner, R. C. The tertiary creep of
polycrystalline ice: experimental evidence for stress-dependent levels of strain-
rate enhancement. J. Glaciol. 58, 301–314 (2012).

24. Weertman, J. Deformation of floating ice shelves. J. Glaciol. 3, 38–42 (1957).
25. Weertman, J. Creep deformation of ice. Ann. Rev. Earth Planet. Sci. 11,

215–240 (1983).
26. Bons, P. D. et al. Greenland ice sheet: higher nonlinearity of ice flow

significantly reduces estimated basal motion. Geophys. Res. Lett. 45,
6542–6548 (2018).

27. Durham, W., Heard, H. & Kirby, S. H. Experimental deformation of
polycrystalline h2o ice at high pressure and low temperature: preliminary
results. J. Geophys. Res. Solid Earth 88, B377–B392 (1983).

28. Qi, C. & Goldsby, D. L. An experimental investigation of the effect of grain
size on “dislocation creep” of ice. J. Geophys. Res. Solid Earth 126,
e2021JB021824 (2021).

29. Budd, W. & Jacka, T. A review of ice rheology for ice sheet modelling. Cold
Reg. Sci. Technol. 16, 107–144 (1989).

30. Thomas, R. H. The creep of ice shelves theory. J. Glaciol. 12, 45–53 (1973).
31. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges

unveiled beneath the margins of the antarctic ice sheet. Nat. Geosci. 13,
132–137 (2020).

32. Gardner, A. S. et al. Increased west antarctic and unchanged east antarctic ice
discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

33. Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified
least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

34. Diaconis, P. & Efron, B. Computer-intensive methods in statistics. Sci. Am.
248, 116–131 (1983).

35. Goldsby, D. L. Superplastic flow of ice relevant to glacier and ice-sheet
mechanics. Glacier science and environmental change. 308–314 (Harvard, 2006).

36. Gillet-Chaulet, F., Hindmarsh, R. C. A., Corr, H. F. J., King, E. C. & Jenkins, A.
In-situ quantification of ice rheology and direct measurement of the Raymond
Effect at Summit, Greenland using a phase-sensitive radar. Geophys. Res. Lett.
38, https://doi.org/10.1029/2011GL049843 (2011).

37. Pritchard, H. et al. Antarctic ice-sheet loss driven by basal melting of ice
shelves. Nature 484, 502–505 (2012).

38. Baker, R. W. The influence of ice-crystal size on creep. J. Glaciol. 21, 485–500
(1978).

39. Ranganathan, M., Minchew, B. M., Meyer, C. R. & Pec, M. Recrystallization of
ice enhances creep and the vulnerability to fracture of ice shelves. Earth
Planet. Sci. Lett. 576, 117219 (2021).

40. Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers (Academic Press,
2010).

41. Pegler, S. S. & Worster, M. G. Dynamics of a viscous layer flowing radially
over an inviscid ocean. J. Fluid Mech. 696, 152–174 (2012).

42. Budd, W. Ice flow over bedrock perturbations. J. Glaciol. 9, 29–48 (1970).
43. MacAyeal, D. R. in Dynamics of the West Antarctic ice sheet, 141–160

(Springer, 1987).
44. Pegler, S. S. The dynamics of confined extensional flows. J. Fluid Mech. 804,

24–57 (2016).

Acknowledgements
We benefited from discussions with Jerome Neufeld, Colin Meyer, and Andrew Ashton.
We appreciate insightful reviews from Jeremy Bassis and Paul Bons. J.D.M. was partially
funded through an NSF Graduate Research Fellowship. J.D.M. and B.M.M. where par-
tially funded through NSF-NERC award 1853918. B.M.M. received additional funding
through NSF-NERC award 1739031.

Author contributions
The authors worked together to conceive and design the project. J.D.M. undertook the
analysis, generated the figures, and wrote the initial version of the manuscript. B.M.M.
and S.S.P. helped revise the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-022-00385-x.

Correspondence and requests for materials should be addressed to Joanna D. Millstein.

Peer review information Communications Earth & Environment thanks Jeremy Bassis
and Paul Bons for their contribution to the peer review of this work. Primary Handling
Editors: Jan Lenaerts and Clare Davis. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00385-x

6 COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:57 | https://doi.org/10.1038/s43247-022-00385-x | www.nature.com/commsenv

https://its-live.jpl.nasa.gov/
https://nsidc.org/data/nsidc-0756/versions/2
https://github.com/jdmillstein/n_equals_4
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1029/2011GL049843
https://doi.org/10.1038/s43247-022-00385-x
http://www.nature.com/reprints
www.nature.com/commsenv


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00385-x ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:57 | https://doi.org/10.1038/s43247-022-00385-x |www.nature.com/commsenv 7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv
www.nature.com/commsenv

	Ice viscosity is more sensitive to stress than commonly assumed
	Results
	Conclusion
	Methods
	Solving for effective stress

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




