
1. Introduction
Slab windows form when a spreading ridge subducts and the plates continue to diverge, opening a gap in the 
subducting plate interface (Groome & Thorkelson, 2009; Thorkelson, 1996). Volcanic products associated with 
several Cenozoic slab windows can be found at subduction margins around the Pacific Ocean, indicating that this 
phenomenon is widespread (McCrory et al., 2009). The Patagonian slab window began forming ∼18 Ma, when 
the Chile Ridge started subducting beneath South America near 54°S (Breitsprecher & Thorkelson, 2009). The 
Chile Triple Junction (CTJ) has since migrated north to its present-day location offshore the Península de Taitao 
near 46.5°S. Expressions of the slab window include gaps in arc volcanism and subduction zone seismicity (Agur-
to-Detzel et al., 2014; DeLong et al., 1979); adakitic volcanism near slab edges (Bourgois et al., 2016; Gorring 
et al., 1997; Stern & Kilian, 1996; Thorkelson & Breitsprecher, 2005); near-trench volcanic activity (Forsythe 
et al., 1986; Guivel et al., 2003; Marshak & Karig, 1977); anomalously high heat flow (Ávila & Dávila, 2018; 
Cande et al., 1987) and low upper mantle seismic velocity (Gallego et al., 2010; Russo, VanDecar, et al., 2010); 
positive dynamic topography (Georgieva et al., 2016; Guillaume et al., 2009) associated with low-viscosity asthe-
nospheric mantle upwelling (Boutonnet et al., 2010; Gorring et al., 1997); and mantle flow patterns influenced by 
the slab window geometry (Murdie & Russo, 1999; Russo, Gallego, et al., 2010; Russo, VanDecar, et al., 2010). 
Volcanic products associated with several Cenozoic slab windows can be found at subduction margins around the 
Pacific Ocean, indicating that this phenomenon is widespread (McCrory et al., 2009).

The extent of the Patagonian slab window has previously been estimated based on plate kinematic reconstruc-
tions (Breitsprecher & Thorkelson, 2009) and has been mapped using body wave tomography in the immediate 

Abstract The Patagonian slab window has been proposed to enhance the solid Earth response to ice mass 
load changes in the overlying Northern and Southern Patagonian Icefields (NPI and SPI, respectively). Here, we 
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Plain Language Summary A gap in the subducting plate beneath Patagonia has enabled hotter, 
less viscous mantle material to flow underneath South America. Icefields in the Austral Andes above the gap 
in the plate have recently been shrinking, removing weight that had caused the continent to flex downward. We 
use seismic data to image the subsurface structure and find very low seismic velocity within and around the 
gap, as well as thinning of the rigid South American lithosphere overlying the gap. The low mantle velocity 
implies that mantle viscosity is also low beneath the shrinking icefields, and low viscosity enables the region to 
rebound upwards.
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vicinity of the CTJ (Russo, VanDecar, et al., 2010). These two methods are 
in good agreement near the CTJ (Figure 1), but the full extent of the slab 
window remains poorly defined. Reconciling tectonic reconstructions with 
observations, such as the locations of slab-edge adakitic volcanism, requires 
invoking ridge jumps and changes in spreading rates, which are poorly con-
strained due to the subduction of seafloor magnetic anomaly records (Bour-
gois et al., 2016).

The co-location of the Patagonian slab window with the NPI and SPI in the 
Austral Andes makes Patagonia an excellent place to study the effects of 
lateral variations in Earth structure on glacial isostatic adjustment (GIA). 
Low-viscosity mantle in the slab window beneath the icefields is expected to 
speed the GIA response to ice mass changes on decadal to centennial times-
cales, and ongoing glacial unloading is thought to drive extremely high uplift 
rates (up to 40 mm/yr) measured in the NPI and SPI (Dietrich et al., 2010; 
Ivins & James,  2004; Klemann et  al.,  2007; Lange et  al.,  2014; Richter 
et al., 2016). Improved constraints on the extent of the slab window and on 
lateral variations in the viscosity structure of the mantle beneath the icefields 
are necessary for improving GIA models and interpreting geodetic observa-
tions in terms of changing ice mass. More robust GIA models provide strong-
er constraints on past icefield mass and climate change (Oerlemans, 2005).

While surface volcanism provides some information on slab window forma-
tion and geometry, reliably reconstructing slab window mantle dynamics is a 
long-standing challenge in geodynamics (Dickinson, 1981; Lin, 2014). Seis-
mic tomography is an essential tool for connecting surface features to sub-
surface structure. In this study, we use seismic data recently collected by the 
GUANACO broadband seismic deployment to derive a new seismic velocity 
model for Patagonia, map the full extent of the slab window, and investigate 
how associated mantle dynamics have affected the overriding lithosphere. 

We show that the dynamics of the slab window are responsible for inferred low viscosities in the upper mantle 
and the unusually rapid glacial isostatic response to ice mass loss in the region.

2. Data and Methods
We obtained a shear velocity (Vsv) model for Patagonia by jointly inverting Rayleigh wave dispersion curves 
from ambient noise and earthquake tomography with P receiver functions (RF) in a Bayesian framework that 
enables us to quantify velocity uncertainties statistically. Data were from the GUANACO (Magnani et al., 2020), 
SEPA (Wiens et al., 1998), and CRSP (Russo, VanDecar, et al., 2010) temporary seismic networks; and from the 
Chilean National Seismic Network, the GEOSCOPE Network, the Antarctic Seismographic Argentinian Italian 
Network, and ENAP (Empresa Nacional del Petróleo) monitoring stations.

2.1. Rayleigh Wave Tomography From Ambient Noise and Earthquake Records

We used ambient noise tomography to obtain isotropic Rayleigh wave phase velocities at 8–40 s period, and 
group velocities from 10 to 30 s (Bensen et al., 2007; Figure S1 in Supporting Information S1). Temporal nor-
malization was done with the running average method, and we incorporated time-frequency phase weighted 
stacking of the daily cross-correlation records (Schimmel & Gallart, 2007; Schimmel et al., 2011). We then ob-
tained dispersion curves from the stacked cross-correlations using Automated Frequency Time Analysis (Bensen 
et al., 2007) and performed tomography using the method of Barmin et al. (2001). Uncertainties were estimated 
using a scaling relationship with ray path coverage, with group velocity uncertainties taken to be double the phase 
velocity uncertainties (Barmin et al., 2001; Shen et al., 2016).

Surface wave tomography was performed using shallow events (<50 km depth) within 20°–150° of the study 
region (Figure S2 in Supporting Information S1). A balanced azimuthal distribution was constructed by start-
ing with all events with Mw > 6 and adding non-overlapping events down to Mw 5.4 at undersampled azimuths. 

Figure 1. Map of the study region in Patagonia. Seismic stations and 
volcanoes are marked. Data sources are described in Section 2. Previously 
estimated slab window extents are shown for Russo, VanDecar, et al. (2010) 
and for Breitsprecher and Thorkelson (2009). The present-day Northern and 
Southern Patagonian Icefields (NPI and SPI) are shaded in gray (Davies 
et al., 2020). Background map colors show bathymetry and elevation data 
(Ryan et al., 2009). Red lines show present-day plate boundaries. Tierra del 
Fuego (TdF) and the Península de Taitao are labeled.
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We performed visual quality control on all waveforms. Helmholtz-corrected phase velocity maps were calcu-
lated from 20 to 100 s period using the Automated Surface-Wave Measurement System (ASWMS; Jin & Ga-
herty, 2015; Lin et al., 2009; Lin & Ritzwoller, 2011; Figure S3 in Supporting Information S1). The minimum 
inter-station distance for calculating cross-correlations was set to 50 km, and the maximum distance was varied 
with period such that it did not exceed ∼4 wavelengths. The bandwidth range for the Gaussian filters applied to 
the waveform cross-correlations was 0.04–0.07 Hz. Automated quality controls based on the fraction of good 
measurements per event were intentionally relaxed for stations in the CRSP temporary network to obtain adequate 
data coverage near the CTJ, and the larger velocity uncertainties near the triple junction at short periods reflect 
this choice.

Phase velocity dispersion curves from 8 to 100 s were constructed by combining the results from ambient noise 
and earthquake tomography (Figure S4 in Supporting Information  S1). We used linear weighting across the 
overlapping periods, with ambient noise velocities weighted more at shorter periods and earthquake results at 
longer periods.

2.2. P Receiver Functions

We selected events 30°–90° away from our study area with Mw > 5.1 and a signal-to-noise ratio >3 on the vertical 
component for the RF calculation. The seismograms were filtered from 0.33 to 1 Hz, and P first arrival picks were 
refined using STA/LTA (Withers et al., 1998) in a time window around the predicted onset time from the global 
model IASP91 (Kennett & Engdahl, 1991). P-to-s RFs were then calculated using the multitaper deconvolution 
method (Helffrich, 2006; Park et al., 1987; Park & Levin, 2000; Shibutani et al., 2008) and corrected for moveo-
ut using IASP91. For each station, a composite RF with uncertainties was obtained by taking the zeroth order 
component from harmonic decomposition (Bianchi et al., 2010). If azimuthal coverage was not sufficient to fit 
harmonics, the station average RF was used instead.

2.3. Bayesian Inversion for Velocity-Depth Models

We inverted for 1D velocity-depth models using a Markov chain Monte Carlo (MCMC) method (Shen et al., 2013). 
Each velocity-depth model was described by 14 parameters: layer thicknesses for sediments and crust; top and 
bottom velocities for the sediment layer; four cubic basis spline coefficients for crustal velocities; and six cubic 
basis spline coefficients for mantle velocities (Table S1 in Supporting Information S1). The total model depth 
was fixed at 300 km, with the lowermost 100 km of the model gradually converging to the global model AK135 
(Kennett et al., 1995) since the data provide no constraints at these depths.

Initial prior distributions for the sediment and crustal layer thicknesses were set based on RFs. We used bootstrap 
stacking of H-k stacks to estimate an initial Moho depth for each station (Sandvol et al., 1998; Zhu & Kanamo-
ri, 2000). For sediment thickness, we performed a K-means clustering analysis (Pedregosa et al., 2011) on the 
first 6 s of the RF stacks for the stations, and used the clusters to divide the stations into those overlying “thick” 
sediments and “thin” sediments. The “thick” sediment cluster agreed well with the mapped extent of the Aus-
tral-Magallanes Basin (Cuitiño et al., 2019). For stations overlying “thick” sediment, the prior distribution for 
sediment thickness was set to 4 ± 4 km, and for stations with “thin” sediment the thickness prior distribution was 
set to 1 ± 1 km.

Prior distributions for velocities in all layers were set to typical values with large search ranges to allow for vari-
ation (Table S1 in Supporting Information S1). The sixth mantle spline coefficient at the base of our model was 
fixed at 4.7 km/s based on AK135, since the data have almost no sensitivity at 300 km depth.

We imposed some velocity constraints to ensure that accepted models were physically reasonable: all velocity 
parameters were <4.9 km/s, crustal velocities were <4.2 km/s, the velocity jump across the Moho was <0.7 km/s, 
and velocities were not allowed to decrease with depth through the sediments and crust. Dispersion curves and 
RFs were weighted equally in the joint misfit function after normalizing their respective uncertainties. We used 
15 chains of 5,000 steps each for the MCMC calculation. The posterior distributions for the 14 model parameters 
were calculated from the set of accepted models based on the misfit function (Shen et al., 2013; Figure S5 in 
Supporting Information S1).
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Inversions were first done for station locations. Prior distributions for the sediment and crustal layer thicknesses 
were then adjusted in places where the inversion failed to find a well-fitted model. This was particularly important 
for stations within the Austral-Magallanes Basin, where the thick sediments violated the H–k stacking assumption 
of a constant-velocity crustal layer. We then inverted dispersion curves alone for velocity-depth model at grid 
points set at 0.3° intervals throughout the study area, using smoothed maps of crustal and sediment thicknesses 
from the station inversions to set layer thickness prior distributions.

The grid point and station results were combined by averaging together the 14 model parameters for each grid 
point with those for any stations within a 50 km radius. Weights for the station parameters were calculated based 
on proximity to the grid point. The model was smoothed laterally at each depth using a Gaussian filter with a 
standard deviation equal to the grid spacing.

2.4. Mantle Viscosity Calculation

Although there is no direct relationship between seismic velocity and mantle viscosity, velocity is commonly 
used to indirectly estimate viscosity since both are largely controlled by temperature. Mantle viscosities were es-
timated based on differences between our velocity model and Vsv from the global 1D model STW105 (Kustowski 
et al., 2008). The seismic anomalies were used to estimate temperature anomalies relative to a global average 
temperature model, which were then used along with experimentally-derived flow laws to estimate deviations 
from a global 1D viscosity model (Ivins et al., 2021; Wu et al., 2013). We used rheologic parameters for dry 
diffusion creep of olivine (Hirth & Kohlstedt, 2003; Karato, 2008), a reference mantle viscosity from IJ05-R2 
(Ivins et al., 2013), and temperature derivatives that included both anharmonic and anelastic contributions (Kara-
to, 2008). The calculated viscosities would not be significantly different for wet diffusion creep given parameter 
uncertainties (Hirth & Kohlstedt, 2003). The reference global average temperatures were calculated by propor-
tionally weighting continental average geotherms (Stacey & Davis, 2008) and adiabatic temperature gradients 
beneath oceanic regions, giving 1,486 K at 100 km, and 1,582 K at 150 km. We set the fraction of the velocity 
anomaly attributed to temperature to 0.65, as found in a geodetic study of North America and Fennoscandia (Wu 
et al., 2013). While this temperature fraction may be different in Patagonia compared to stable cratonic regions, 
such variation would not change the pattern of relative viscosity differences across Patagonia. The remaining 
velocity anomaly is attributed to compositional variations in the mantle.

3. Results
3.1. Extent of the Patagonian Slab Window

Mantle velocities are low throughout the inferred slab window region, with a minimum velocity less than 4.1 km/s 
at 50 km depth, ∼8% slower than the global average given by STW105 (Kustowski et al., 2008). The most intense 
portion of the shallow slow anomaly is north of 49°S, in the youngest part of the slab window (Figure 2). North 
of 51°S, the western edge of the anomaly at 100 km depth aligns with estimates of the extent of the subducting 
Antarctic slab from plate kinematic reconstructions (Breitsprecher & Thorkelson, 2009) and the trend of adakitic 
volcanism along the Austral Andes Volcanic Arc (Figure 2). Increased velocities north of Tierra del Fuego de-
lineate the southeastern extent of the slab window effects and are consistent with xenolith studies suggesting the 
presence of a continental lithospheric block with thicker lithosphere (Schilling et al., 2017).

3.2. Thermal Erosion of the South American Lithosphere

Velocities directly beneath the crust near the CTJ are much lower than expected for continental lithosphere 
(4.1 km/s at 50 km, compared to 4.5 km/s for STW105; Kustowski et al., 2008), indicating that the lithospher-
ic mantle is missing in the youngest part of the slab window (Figure 2a). Vertical cross sections through the 
slab window show that anomalously slow mantle velocities are present immediately below the Moho, with thin 
(<10 km thick) patches of faster mantle material at the Moho in places (Figure 3a, 45°– 47°S).

The absence of lithospheric mantle near the CTJ suggests that mantle dynamics associated with the slab window 
have eroded the base of the plate. Thermal erosion of the overriding plate is predicted by thermo-mechanical 
models of ridge subduction (Groome & Thorkelson, 2009), and shallow slow velocity anomalies beneath the 
Antarctic Peninsula have been similarly interpreted (Lloyd et al., 2020). Previous studies have inferred that the 
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Patagonian lithosphere has thinned above the slab window based on regional heat flow data (Ávila & Dávi-
la, 2018), crustal thickness measurements (Robertson Maurice et al., 2003), and GIA models fit to observed uplift 
rates (Lange et al., 2014; Richter et al., 2016).

The process of thermal erosion likely requires the presence of melt or fluids, as purely conductive heating is too 
slow relative to the age of the slab window. In the absence of a present-day slab and slab-derived volatiles, melt 
may be supplied by decompression of upwelling asthenospheric mantle. There are no known active Holocene 
volcanos over the slowest part of the velocity anomaly, but the presence of the icefields complicates the mapping 
of volcanic activity. Shear wave splitting analyses show a strong E–W fast direction near the CTJ, indicating vig-
orous mantle flow around the edge of the Nazca slab (Russo, Gallego, et al., 2010; Russo, VanDecar, et al., 2010; 
Wiens et al., 2021), and fast mantle flow in the shallow asthenosphere may assist in the removal of lithospheric 
material.

Lithospheric erosion near the CTJ contrasts with the structure farther south, where fast velocities indicate that 
the lithospheric mantle is largely intact beneath the Austral-Magallanes Basin. Patagonia has a complex history 
of terrane accretion (Ramos & Ghiglione, 2008), and it is possible that the lithosphere in the south was thicker 
prior to the opening of the slab window. Alternatively, thermal erosion may have been less efficient during the 
earliest stages of ridge subduction, becoming more efficient over time as the slab window thermally perturbed 
the surrounding mantle. As ridge subduction initiated only 18 Ma and subsequent ridge segments entered the 
trench at ∼12, 6, and 3 Ma, we expect that timescales of conductive cooling are too short relative to the age of 
the slab window to allow for significant re-formation of mantle lithosphere even in the oldest parts of the window 
(Boutonnet et al., 2010).

The crust thins by >10 km from north to south over the slab window (Figures 3, S7, and S8 in Supporting Infor-
mation S1). This trend is opposite the lithospheric erosion seen at the Moho, and is unlikely to be entirely due to 
surface erosion since the thinning is not primarily in the upper crust. Along the west coast of North America, the 
passage of the migrating Mendocino Triple Junction is thought to have caused rapid, temporary crustal thickening 
followed by crustal thinning (Furlong & Govers, 1999). The same mechanism may be at work in Patagonia, but 
the trend of mean relief along the Austral Andes does not match predictions for flexural downwarping associated 
with this model for crustal modification (Georgieva et al., 2016). Preexisting structure, overthrusting of terranes, 
thermal erosion, and tectonic extension have also been proposed to explain crustal structure near the CTJ (Rod-
riguez & Russo, 2020), and further measurements extending north of our study region would help clarify the 
source of the variations in crustal thickness.

Figure 2. Velocity-depth slices. Maps show Vsv in km/s: (a) 50 km depth, contour at 4.15 km/s (solid black line); (b) 100 km 
depth; (c) 150 km depth. Other lines and symbols are as in Figure 1. Velocity uncertainties are ∼0.1 km/s across most of the 
maps; velocity uncertainty maps are shown in Figure S6 in Supporting Information S1.
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4. Implications for Glacial Isostatic Adjustment
Mantle viscosity structure strongly controls GIA, which in turn responds to spatial and temporal ice-mass vari-
ations. High geodetic uplift rates around the NPI and SPI (≥4 cm/yr) have been attributed to anomalous mantle 
viscosities lower than 2 × 1018 Pa s (Ivins & James, 2004; Lange et al., 2014; Richter et al., 2016), and recent 
GIA models suggest that reproducing observed uplift rates requires either mantle viscosities that are significantly 
lower beneath the NPI compared to the SPI or more ice mass loss in the NPI than previously estimated (Lange 
et  al.,  2014; Russo et  al.,  2022). The observed location of the slowest part of the seismic velocity anomaly 

Figure 3. Velocity cross sections. Cross sections show Vsv along (a) 73.5°W, (b) 47.5°S, and (c) 50°S, with transect locations 
shown on a map (d). Other lines and symbols on the map are as in Figure 1. Topography over each transect is plotted above 
the velocities (Ryan et al., 2009). Dashed black lines mark the base of the sediments and the Moho on each cross section, 
and labeled lines show isovelocity contours. The Vsv color scale is saturated at 3.6 km/s on the low end to emphasize slow 
anomalies in the mantle.
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north of 49°S is consistent with the former explanation, and viscosities estimated from our velocity model also 
point to both low overall viscosity in the slab window and a difference in structure beneath the two icefields 
(Figure 4). Our estimated viscosities are mostly higher than the values obtained by previous geodetic studies 
(Lange et al., 2014; Richter et al., 2016), but we emphasize that the absolute viscosity values we obtain are highly 
sensitive to uncertain parameters such as the fraction of velocity variation due to temperature. The extent of the 
slow anomaly also suggests that gradients in uplift rates along the SPI may reflect latitudinal variation in mantle 
viscosity. In broader terms, the strong lateral heterogeneity in mantle viscosity indicated by the velocity model 
implies that the geodetic response to glacial unloading in Patagonia will be highly three-dimensional, and cannot 
be fully described by symmetric deformation predicted for a radially layered mantle, particularly with respect to 
the prediction of horizontal crustal motions (Klemann et al., 2007).

The patterns of lithospheric erosion and thinning observed in our velocity model are also expected to affect GIA. 
While the seismic lithosphere is not exactly equivalent to the elastic lithosphere relevant to geodetic models, both 
terms refer to a layer of colder, more rigid material that acts as a lowpass filter on the response of the mantle to 
changes in surface loading. The thin lithosphere observed near the CTJ enables shorter wavelength signals from 
GIA loading and mantle viscosity variations to be observed in surface deformation and topography. In the south, 
the fast velocities to the east indicate that thicker continental lithospheric mantle beneath the Austral-Magallanes 
Basin may constrain mantle flow patterns in the older parts of the slab window by blocking shallow latitudinal 
flow (Klemann et al., 2007). In this scenario, horizontal surface motions on the eastern side of the SPI are pre-
dicted to be dominantly to the east, and GNSS observations of horizontal surface displacements support this 
prediction where data are available along the eastern side of the northern SPI (Richter et al., 2016).

Quantifying ice mass changes on the Patagonian Icefields is crucial for projecting future water resources and 
informing models of global sea level rise. Temperate mountain glaciers including the NPI and SPI currently 
contribute substantially to global mean sea level rise (Jacob et al., 2012; Radić & Hock, 2011). Ice and hydrolog-
ical mass changes are efficiently monitored by satellite gravimetry, provided the GIA gravity effect is accurately 
removed (Ivins et al., 2011). However, there are large trade-offs in GIA modeling between ice mass history and 
mantle viscosity structure (Lange et al., 2014), so uncertainties in mantle viscosity propagate forward into highly 
uncertain ice mass change rates (Richter et al., 2019). Constraining the regional 3D viscosity structure provides 
the space gravimetry community with key information on the solid Earth contribution to the secular mass change 
signal in Patagonia.

Figure 4. Estimated mantle viscosity based on the seismic velocity model. Maps of log10(η) at (a) 100 km and (b) 150 km 
depth. Other lines and symbols on the map are as described in the captions for Figures 1 and 2.
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The geologically rapid response of Patagonian topography to ice mass changes makes the area above the slab 
window ideal for studying the connections between the solid Earth rheology and dynamics, surface process-
es, and climate. The heterogeneous mantle structure indicated by seismic velocities implies that the isostatic 
response to ice mass changes will also be heterogeneous, and the absence of mantle lithosphere over the slab 
window promotes the observation of shorter wavelength variations in surface deformation. Lateral heterogeneity 
in mantle viscosity and lithospheric thickness, guided by seismic models and other geophysical observations, 
must be incorporated into GIA modeling in this region. The resulting higher quality models will help advance our 
understanding of the history and the future of the cryosphere and hydrosphere in Patagonia.

Data Availability Statement
Data used in this study is from the GUANACO, SEPA, and CRSP temporary seismic networks (network codes: 
1P, 10/2018-03/2021; XB, 02/1997-10/1998; YJ, 12/2004-12/2006), permanent stations from the Chile Net-
work, GEOSCOPE, and the Antarctic Seismographic Argentinian Italian Network (network codes: C, C1, G, 
and AI), and stations operated and maintained by ENAP. Data for all except the ENAP stations can be obtained 
from the IRIS DMC (https://ds.iris.edu/ds/nodes/dmc). The earthquake records and ambient noise cross-corre-
lations for ENAP stations used in this study are publicly available (Mark et al., 2021a, https://doi.org/10.5281/
zenodo.5508198). The final velocity and viscosity models presented in this paper are also available (Mark 
et al., 2021b, https://doi.org/10.5281/zenodo.5794167). Publicly released versions of the codes used for analysis 
can be found at: https://github.com/NoiseCIEI/Seed2Cor, https://github.com/NoiseCIEI/AFTAN, https://github.
com/NoiseCIEI/RayTomo, https://github.com/trichter/rf, https://github.com/jinwar/matgsdf, and http://diapiro.
ictja.csic.es/gt/mschi/SCIENCE/tseries.html#software. These codes are currently only available on github and 
researchers’ personal websites. Color palettes for all figures are from Fabio Crameri’s ScientificColourMaps7 
(https://doi.org/10.5281/zenodo.1243862).
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