
1. Introduction
Localized creep deformation of ice within narrow shear margins controls the discharge of terrestrial ice (e.g., Gerbi 
et al., 2021; Gow & Williamson, 1976; Jansen et al., 2016). To understand large-scale ice dynamics, ice deforma-
tion experiments have been used to parameterize the (evolving) strength of polycrystalline ice, for extrapolation to 
polar conditions (e.g., Azuma, 1995; Durham et al., 1983; Glen, 1955; Goldsby & Kohlstedt, 1997). In laboratory 
experiments, the creep strength of initially isotropic, polycrystalline ice evolves systematically during deforma-
tion (Glen, 1955; Jacka & Maccagnan, 1984; Mellor & Cole, 1982). Strain weakening occurs after secondary 

Abstract Strain weakening leads to the formation of high-strain shear zones and strongly influences 
terrestrial ice discharge. In glacial flow models, strain weakening is assumed to arise from the alignment of 
weak basal planes—the development of a crystallographic preferred orientation, CPO—during flow. However, 
in experiments, ice strain weakening also coincides with grain size reduction, which has been invoked as a 
weakening mechanism in other minerals. To interrogate the relative contributions of CPO development and 
grain size reduction toward ice strain weakening, we deformed initially isotropic polycrystalline ice samples 
to progressively higher strains between −4 and −30°C. Microstructural measurements were subsequently 
combined with flow laws to separately model the mechanical response expected to arise from CPO 
development and grain size reduction. Magnitudes of strain weakening predicted by the constitutive flow 
laws were then compared with the experimental measurements. Flow laws that only consider grain size do not 
predict weakening with strain despite grain size reduction. In contrast, flow laws solely considering CPO effects 
can reproduce the measured strain weakening. Thus, it is reasonable to assume that strain weakening in ice 
is dominated by CPO development, at least under high temperature (𝐴𝐴 𝐴𝐴ℎ  ≥ 0.9) and high stress (>1 MPa), like 
those in our experiments. We speculate that at high homologous temperatures (𝐴𝐴 𝐴𝐴ℎ ≥ 0.9), CPO development 
will also govern the strain weakening behavior of other viscously anisotropic minerals, like olivine and quartz. 
Overall, we emphasize that geodynamic and glaciological models should incorporate CPOs to account for strain 
weakening, especially at high homologous temperatures.

Plain Language Summary At high temperatures, ice and other minerals become mechanically 
weaker during deformation. This “strain weakening” behavior is thought to arise from microscopic processes 
that reduce grain sizes and align weak lattice planes. Strain weakening is important because it influences the 
continent-scale flow of rocks and minerals, including terrestrial ice flow. To quantify the relative contributions 
of grain size reduction and crystal alignment to strain weakening, we deformed ice samples by varying 
amounts. The microstructure of each sample was then examined using an electron microscope to measure grain 
size and crystal alignment. These microstructural data were used to predict the strength of each sample using 
previously published equations (“flow laws”) that link microstructure to sample strength. Model predictions 
were compared to the measured strength of each sample. We found that very little weakening is predicted due to 
grain size effects, whereas almost all the observed strain weakening can be accounted for by crystal alignment. 
Our new results demonstrate that at temperatures approaching a mineral's melting point—like in polar ice sheets 
and glaciers—strain weakening is governed by the progressive alignment of weak crystal lattice planes. Models 
of rock and ice flow should therefore account for both grain size and crystal alignment effects.
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creep (i.e., minimum strain rate) in constant load experiments (Budd & Jacka, 1989; Weertman, 1983), and after 
peak stress in constant displacement rate experiments (Durham et al., 1983; Fan et al., 2020; Qi et al., 2017; 
Vaughan et al., 2017). This weakening is often referred to as strain rate “enhancement” in the glaciological and 
ice sheet literature (Alley, 1992; Budd & Jacka, 1989; Treverrow et al., 2012), and is often accounted for in large-
scale ice dynamics models (e.g., Azuma, 1995; Morland & Staroszczyk, 2009; Placidi et al., 2010). Notably, 
recent work has shown that enhancement must be accounted for in order to accurately infer basal friction—and 
therefore solid ice discharge—of a flowing ice mass (Rathmann & Lilien, 2021)

Since dislocation glide on the ice basal plane (0001) is at least 60 times easier than glide on any other crystallo-
graphic plane (Duval et al., 1983), ice is described as exhibiting strong viscous anisotropy. Due to this anisotropy, 
ice grains typically rotate to maximize shearing on their basal planes during deformation (Castelnau et al., 1996; 
Llorens et al., 2016; van der Veen & Whillans, 1994). Furthermore, deformation experiments on ice polycrystals 
containing a strong, pre-existing CPO show that samples with basal planes favorably aligned for basal slip can 
deform up to 100 times more easily than samples with basal planes poorly aligned for slip (e.g., Gao & Jac-
ka, 1987; Lile, 1978; Shoji & Langway, 1984, 1988). Thus, many studies of ice sheet dynamics assume that strain 
rate enhancement (i.e., strain weakening) is caused solely by CPO development (e.g., Azuma, 1994, 1995; Hruby 
et al., 2020; Morland & Staroszczyk, 2009; Placidi et al., 2010). Accordingly, constitutive ice flow laws are often 
modified using ad hoc scalar “enhancement factors,” which account for CPO development under specific ther-
momechanical conditions, loading geometries, and for ice samples with different ages and impurity contents (see 
review by Cuffey & Paterson, 2010). However, this common assumption—that CPO development governs strain 
weakening—is largely based on data from uniaxial compression experiments at temperatures above −10°C (Budd 
& Jacka, 1989; Jacka & Maccagnan, 1984; Li et al., 1996). Under such conditions, ice develops a CPO charac-
terized by a c-axis small circle (open cone) around the compression axis, indicating that grains have rotated into 
weak orientations, favorable for slip on their basal planes. Polar ice sheets and extra-terrestrial cryosphere, on the 
other hand, can experience ambient temperatures much colder than −10°C (Journaux et al., 2020; Kamb, 2001). 
Recent experiments have shown that as temperature decreases from −10°C to −30°C, ice c-axes instead evolve 
toward a single cluster parallel with the compression axis (Fan et al., 2020; Fan, Prior, Cross, et al., 2021; Wilson 
et al., 2019)—a CPO which is unfavorable for easy slip on basal planes. Thus, the role of CPO development in 
strain weakening may not be straightforward, and CPO development may even lead to strain hardening under 
certain conditions.

In the study of metals, and minerals other than ice, researchers also invoke grain size reduction as a source of 
strain weakening (Drury,  2005; McQueen & Jonas,  1975; Rutter,  1999; Sellars,  1978). Grain size reduction 
arises from the combined operation of dynamic recovery and recrystallization, which remove and reorganize 
linear defects (i.e., dislocations) into low-energy configurations (Derby & Ashby, 1987; Duval, 1979; Humphreys 
et al., 2017; Weertman, 1983). By removing defects, and thereby relaxing the internal stress state of grains, re-
covery and recrystallization can counteract work hardening to produce strain weakening (Derby & Ashby, 1987; 
Humphreys et al., 2017; Weertman, 1983). Grain size reduction may also produce strain weakening by enhancing 
grain size sensitive (GSS) creep mechanisms that dominate at fine grain sizes (e.g., grain boundary sliding and 
diffusion creep; Frost & Ashby, 1982; Raj & Ashby, 1971). In the GSS creep regime, materials become weaker 
as grain size decreases (Frost & Ashby, 1982). Furthermore, grain rotations during grain boundary sliding—a 
GSS creep process—are typically thought to weaken pre-existing CPOs (e.g., Bestmann & Prior, 2003; & Ske-
mer,  2017; Warren & Hirth,  2006). Thus, if grain size reduction leads to GSS creep (which promotes strain 
weakening) with a component of grain boundary sliding (which weakens CPOs), strain weakening may instead 
be governed by grain size evolution, not CPO development.

Although there are physical rationales, then, for attributing strain weakening to both grain size reduction and 
CPO development, the relative contributions of these two processes toward enhancement in ice remains unclear. 
This uncertainty largely arises because CPO development and grain size evolution are strongly coupled; thus, it is 
difficult to deconvolve their individual and relative effects. Here, we aim to overcome this difficulty by modeling 
ice strength evolution separately as a function of CPO development and grain size evolution, using microstruc-
ture-sensitive constitutive flow laws. In the sections that follow, we first describe the mechanical responses of 
samples deformed to successively higher strains at temperatures between −30°C and −4°C (𝐴𝐴 𝐴𝐴ℎ = 0.89–0.99). 
Second, we quantify the microstructure of each deformed sample using cryogenic electron backscatter diffrac-
tion (cryo-EBSD; Prior et al., 2015), focusing on measurements of grain size and CPO. Finally, we combine 
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our microstructural measurements with various ice flow laws (Azuma, 1995; Durham et al., 1983; Glen, 1955; 
Goldsby & Kohlstedt, 2001) to try and reproduce the experimental ice strength data as a function of strain, using 
grain size and CPO measurements as model inputs. We compare those modeled stresses and strain rates to the 
measured (actual) mechanical data to estimate how much of the mechanical response is due to the evolution of 
grain size and/or CPO under different experimental conditions.

2. Methods
2.1. Experimental Data

2.1.1. Sample Fabrication

Ice samples with controlled initial grain size, random CPO, and minimal porosity were fabricated using a flood-
freeze method (Cole, 1979). Details are provided in Fan et al. (2020), Fan, Prior, Cross, et al. (2021), Fan, Prior, 
Hager, et al. (2021). In brief, we packed sieved ice powders with particle sizes 180–250 μm into cylindrical molds 
with an internal diameter of 25.4 cm. After that, we flooded the packed molds with degassed ultra-pure deionized 
water (0°C) under vacuum in a water-ice bath. The flooded molds were then immediately placed vertically on a 
copper plate for ∼24 hr at −30°C with polystyrene insulating the cylinders from all the other sides. This step en-
sures that the freezing front migrates slowly upwards, minimizing the entrapment of bubbles within the samples.

Ice samples, which after freezing had a mean grain size of ∼300 μm (Fan et al., 2020), were gently pushed out 
from the molds using an Arbor press. We accidently also produced medium-grained ice samples, with a mean 
grain size of ∼550 μm (Fan, Prior, Cross, et al., 2021), by leaving the frozen, flooded samples in the water-ice 
bath for ∼30 min before extraction. The medium-grained ice samples were fabricated with a cylindrical diameter 
of 27 mm. All samples were cut such that their length was 1.5–2 times their diameter. After cutting, samples were 
polished on both ends to ensure they were flat and perpendicular to the cylinder axis. After polishing, the initial 
sample length, 𝐴𝐴 𝐴𝐴0 , was measured using a caliper.

2.1.2. Deformation Assembly

Medium-grained ice samples were used for constant load experiments, performed using a 1-atm (unconfined), 
dead-weight creep apparatus in the Ice Physics Laboratory, University of Otago (Fan, Prior, Cross, et al., 2021). 
Each ice sample was encapsulated in a rubber jacket together with a walnut wooden platen and a walnut wooden 
piston (Fan, Prior, Cross, et al., 2021). Encapsulation of the deformation assembly was performed in a −30°C 
chest freezer. These experiments were conducted at a temperature of −4 ± 0.2°C, under a constant load of 60 kg, 
yielding an initial stress of ∼1.0 MPa (Fan, Prior, Cross, et al., 2021). Experiments were terminated once the 
true axial strain, 𝐴𝐴 𝐴𝐴 , reached ∼1, 4%, 8%, and 13%. We did not apply a stiffness correction to account for elastic 
deformation of the walnut piston and platen; however, the elastic strain expected in walnut at 1 MPa differential 
stress is negligible (Appendix A).

Fine-grained ice samples were used for constant displacement rate experiments, performed in a cryogenic tri-
axial apparatus (Heard et al., 1990), with a nitrogen gas confining pressure of 20–40 MPa, at −10 ± 0.5°C and 
−30 ± 0.5°C, in the Ice Physics Laboratory, University of Pennsylvania. Each ice sample was encapsulated in 
a thin-walled indium jacket tube (∼0.38 mm wall thickness) with the bottom already welded to a stainless-steel 
end-cap. The top of indium jacket tube was then welded to a steel semi-internal force gauge, with a thermally 
insulating zirconia spacer placed between the force gauge and sample. The sample was kept cold in a −60°C 
ethanol bath during welding. Most of the experiments were conducted under constant uniaxial displacement rates 
yielding initial strain rates, 𝐴𝐴 𝐴𝐴𝐴 , of ∼𝐴𝐴 1 × 10−5𝑠𝑠−1 ; these experiments were terminated at strains of ∼3%, 5%, 8%, 
12%, and 20%. Some experiments were also conducted at −30 ± 0.5°C with 𝐴𝐴 𝐴𝐴𝐴 of ∼ 𝐴𝐴 5 × 10−5𝑠𝑠−1 ; these experiments 
were terminated at strains of ∼3% and ∼20%.

2.1.3. Experimental Procedures and Data Processing

All experiments presented in this study were conducted under uniaxial compression loading conditions (Fig-
ure 1a). Before the start of each experiment, samples were left to thermally equilibrate with the deformation ap-
paratus for at least 60 min at experiment (pressure, temperature) conditions. After each experimental run, samples 
were extracted from the apparatus as quickly as possible, before being photographed and measured. To minimize 
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Figure 1. (a) Schematics of ice samples before and after deformation for uniaxial compression. (b) Distribution of reduced Schmid factor, 𝐴𝐴 𝑺𝑺 , as a function of c-axis 
orientation (Sect. 2.4.2). The left panel shows a pole figure with one million randomly generated c-axis points, colored by their corresponding 𝐴𝐴 𝑺𝑺 value, which is a 
function of the angle between the c-axis and compression axis, 𝐴𝐴 𝜽𝜽 (Equation 11). The compression axis is normal to the page. The right panel shows the value of 𝐴𝐴 𝑺𝑺 
for c-axes oriented at different angles (𝐴𝐴 𝜽𝜽 ) from the compression axis. (c) Illustrating the stereological issue in the measurement of c-axis number frequency using 
the undeformed fine-grained ice sample as an example. Bar plots show the number frequency of measurements at each interval of the angle between c-axes and 
compression (𝐴𝐴 𝜽𝜽 ) (colored green) or at each interval of reduced Schmid factor, S (colored purple). (d) Number frequency density, 𝐴𝐴 𝚽𝚽 (Section 2.4.2; Appendix D), 
statistics using the undeformed fine-grained ice sample as an example. Bar plots show 𝐴𝐴 𝚽𝚽 of measurements at each interval of the angle between c-axes and compression 
(𝐴𝐴 𝜽𝜽 ) (colored green) or at each interval of reduced Schmid factor, S (colored purple). The Black curves represent the distribution of number frequency (c) or number 
frequency density, 𝐴𝐴 𝚽𝚽 (d), for an artificially generated CPO with the same number of points as the undeformed fine-grained ice.
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thermal cracking, samples were progressively cooled to ∼−30, −100, and 
then −196°C over a period of ∼15 min, and were thereafter transferred to 
a liquid nitrogen dewar for long-term storage. We note that during the time 
frame of sample extraction, transportation, and preparation for cryo-EBSD, 
normal grain growth should be negligible (Fan, Prior, Hager, et al., 2021) 
and significant modifications to CPO are also unlikely (Wilson et al., 2014).

The processed mechanical data are summarized in Tables 1 and 2. During 
each experimental run, time, 𝐴𝐴 𝐴𝐴 , and vertical shortening of the ice sample, 

𝐴𝐴 𝐴𝐴(𝑡𝑡) , were recorded every 3–5 s. True axial strain, 𝐴𝐴 𝐴𝐴(𝑡𝑡) , is calculated from the 
initial ice sample length, 𝐴𝐴 𝐴𝐴0 , and piston displacement, 𝐴𝐴 Δ𝐿𝐿(𝑡𝑡) (Equation 1).

�(�) = −ln
(

�0 − Δ�(�)
�0

)

 (1)

The true axial strain rate, 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) , is calculated from the change in true axial 
strain over the time interval, 𝐴𝐴 Δ𝑡𝑡 (Equation 2).

�̇�𝜀(𝑡𝑡) =
𝜀𝜀(𝑡𝑡) − 𝜀𝜀(𝑡𝑡 − Δ𝑡𝑡)

Δ𝑡𝑡
 (2)

Differential stress, 𝐴𝐴 𝐴𝐴 , was calculated from the applied axial load, 𝐴𝐴 𝐴𝐴 (𝑡𝑡) , 
and cross-sectional area of the ice sample. For constant load experiments, 

𝐴𝐴 𝐴𝐴 (𝑡𝑡) = 60 𝑘𝑘𝑘𝑘 × 9.81 𝑁𝑁∕𝑘𝑘𝑘𝑘 = 588.6 𝑁𝑁 . For constant displacement rate 
experiments, 𝐴𝐴 𝐴𝐴 (𝑡𝑡) , was recorded every 3–5 s. Differential stresses have been 
corrected for the change of sample cross-sectional area during deformation, 
assuming constant sample volume:

𝜎𝜎(𝑡𝑡) =
𝐹𝐹 (𝑡𝑡)
𝜋𝜋𝜋𝜋(𝑡𝑡)2

, (3)

where 𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝐴𝐴0
√

𝐿𝐿0∕(𝐿𝐿0 − Δ𝐿𝐿(𝑡𝑡)) is the sample radius at time 𝐴𝐴 𝐴𝐴 .

Unless stated otherwise, the term “strain” herein refers to the bulk true axial 
strain (Equation 1); “strain rate” refers to the true axial strain rate (Equa-
tion 2); and “stress” refers to differential stress (Equation 3).

2.2. Microstructural Data

2.2.1. EBSD Data Collection

To quantify grain size distributions and CPOs, we analyzed each sample 
using cryogenic electron backscatter diffraction (cryo-EBSD). We prepared 
the ice samples and acquired cryo-EBSD data following the procedures 
described by Prior et al.  (2015). A Zeiss Sigma VP FEG-SEM combined 
with either an Oxford Instruments NordlysF or Symmetry EBSD camera 
was used for the data collection (the EBSD camera was upgraded partway 
through this study). Raw EBSD data were montaged using Oxford Instru-
ments' AZtec software. For fine-grained ice samples, we collected recon-
naissance maps with a step size of 30 μm from the whole section and, for 
detailed microstructural analyses, maps with a 5 μm step size from selected 
sub-areas. For medium-grained ice samples, we collected EBSD data with a 
step size of 30 μm from the whole section.

2.2.2. EBSD Data Processing

Ice grains were reconstructed from raw EBSD pixel maps using a Voro-
noi decomposition algorithm in the MTEX toolbox (Bachmann et al., 2011) 
with details provided in Fan et al., 2020, Fan, Prior, Cross, et al., 2021, Fan, Sa
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Prior, Hager, et al., 2021). In brief, grains were defined using a misorientation angle threshold of 10° using the 
raw EBSD data (𝐴𝐴 ≥ 90% index rate). Data denoising was applied by removing (a) grains with area-equivalent di-
ameter smaller than 20 μm (for maps with 5 μm step size) or 120 μm (for maps with 30 μm step size), (b) grains 
truncated by the edges of maps, and (3) poorly constrained grains (i.e., grains with <50% indexed pixel coverage). 
To highlight CPO patterns, contoured pole figures were constructed from the filtered EBSD maps with 30 μm 
step size, using all indexed pixels and a contouring half-width of 7.5°. Grain size was calculated from the filtered 
EBSD maps with 5 and 30 μm step size for the fine-grained and medium-grained samples, respectively.

2.3. Mechanical Models

In this study, we attempt to model (i.e., reproduce) the transient evolution of ice strength—that is, the experimen-
tal stress-strain and strain rate-strain curves—using ice flow laws that account, separately, for changes in grain 
size (Goldsby & Kohlstedt, 1997, 2001) and CPO (Azuma, 1994, 1995). We constrain the models using grain 
sizes and CPOs measured from each experimental sample, representing the microstructural state at increasing 
finite strains. Strictly speaking, the flow laws used in this study describe the rheological behavior of ice only 
under steady-state (i.e., strain-invariant) conditions; that is, under conditions where strain rate and stress do not 
change significantly with increasing strain. Our modeling approach is therefore based on a key assumption that at 
each infinitesimal strain increment, the ice aggregate deforms at a quasi-steady-state (e.g., Holtzman et al., 2018). 
Although recent studies (e.g., Soleymani et al., 2020) have found that microstructures take some time to respond 
to changes in stress and/or strain rate, this lag is generally insignificant under high homologous temperature 
conditions (Soleymani et al., 2020)—as in our experiments (Th = 0.89–0.99)—due to rapid recovery and recrys-
tallization (Cross & Skemer, 2019; Fan et al., 2020; Fan, Prior, Cross, et al., 2021; Holtzman et al., 2018).

2.3.1. Mechanical Response Without Microstructural Evolution

As a reference, we calculate the strength predicted by the microstructure-insensitive constitutive flow laws of 
Glen (1955) and Durham et al. (1983). These flow laws were derived from laboratory experiments on relatively 
coarse-grained samples, in which creep was assumed to proceed solely via grain size insensitive (GSI) dislo-
cation creep, with no grain size sensitive (GSS) component. These flow laws also do not explicitly account for 
enhancement due to CPO development. Glen's flow law describes secondary creep, derived using bulk strain rate 

Sample no.
T 

(°C)

Final 
true 
axial 
strain Peak stress

True axial 
strain rate 

at peak 
stress

True axial 
strain 

at peak 
stress Final stress

True axial 
strain rate 

at final 
stress

Grain 
number

Grain size parameters (μm)

𝐴𝐴 𝐴𝐴𝑓𝑓𝐴𝐴 𝐴𝐴𝑝𝑝 (MPa)𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 (s−1) 𝐴𝐴 𝐴𝐴𝑝𝑝 𝐴𝐴 𝐴𝐴𝑓𝑓 (MPa)𝐴𝐴 𝐴𝐴𝐴𝑓𝑓 (s−1) Peak Mean Median
Lower 
quartile

Higher 
quartile

Interquartile 
range (IQR)

Undeformed N/A N/A N/A N/A N/A N/A N/A 1,242 300 297 291 165 413 248

PIL176 −10 0.03 1.78𝐴𝐴 1.03 × 10−5 0.02 1.70𝐴𝐴 1.04 × 10−5 548 29 163 126 52 256 204

PIL163 0.05 2.92𝐴𝐴 1.03 × 10−5 0.01 2.42𝐴𝐴 1.06 × 10−5 1,282 38 126 98 57 171 114

PIL178 0.08 2.54𝐴𝐴 1.11 × 10−5 0.02 1.97𝐴𝐴 1.19 × 10−5 894 49 140 118 72 186 114

PIL177 0.12 2.85𝐴𝐴 1.11 × 10−5 0.03 1.90𝐴𝐴 1.21 × 10−5 1,300 39 115 92 57 154 97

PIL007 0.19 2.13𝐴𝐴 1.03 × 10−5 0.02 1.33𝐴𝐴 1.22 × 10−5 1,523 37 106 87 51 142 91

PIL165 −30 0.03 8.24𝐴𝐴 1.08 × 10−5 0.03 8.15𝐴𝐴 1.09 × 10−5 4,923 32 145 103 51 225 174

PIL162 0.05 8.71𝐴𝐴 1.07 × 10−5 0.03 7.87𝐴𝐴 1.10 × 10−5 2,098 33 105 78 47 136 89

PIL164 0.07 8.93𝐴𝐴 1.03 × 10−5 0.03 7.31𝐴𝐴 1.07 × 10−5 1,259 31 101 64 41 112 71

PIL166 0.12 7.60𝐴𝐴 1.11 × 10−5 0.03 6.45𝐴𝐴 1.20 × 10−5 5,447 29 68 55 39 80 41

PIL268 0.21 7.82𝐴𝐴 1.10 × 10−5 0.02 5.00𝐴𝐴 1.31 × 10−5 6,809 23 62 38 30 56 26

PIL266 0.03 11.29𝐴𝐴 5.40 × 10−5 0.03 11.26𝐴𝐴 5.40 × 10−5 1,342 36 135 115 53 200 147

PIL243 0.24 10.63𝐴𝐴 5.40 × 10−5 0.03 7.35𝐴𝐴 6.70 × 10−5 9,259 23 51 39 30 55 25

Table 2 
Summary of the Mechanical and Grain Size Data for Uniaxial Compression Experiments With Constant Displacement Rate
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minimum data for ice deformed under constant load (Glen, 1955). In secondary creep, polycrystalline samples re-
tain a nominally random CPO. Durham's flow law, on the other hand, was derived from flow stresses measured at 
high strains (usually >10% sample shortening) for ice samples deformed in uniaxial compression under constant 
displacement rates (Durham et al., 1983). Thus, Durham's flow law may implicitly incorporate the mechanical 
effects of CPO development and grain size, as ice deformed to >10% strain typically undergoes appreciable 
recrystallization and CPO development (e.g., Fan et al., 2020).

Glen's and Durham's flow laws can be expressed in the general form:

�̇ = ��� exp
(

− �
��

)

, (4)

where 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴−𝑛𝑛𝑚𝑚𝑝𝑝𝑠𝑠−1 ) is a material-dependent parameter, 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 ) is differential stress, 𝐴𝐴 𝐴𝐴 is the stress expo-
nent, 𝐴𝐴 𝐴𝐴 (𝐴𝐴 = 8.314 × 10−3 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘−1𝐾𝐾−1 ) is the gas constant, and 𝐴𝐴 𝐴𝐴  (𝐴𝐴 𝐴𝐴 ) is the absolute temperature. 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−1) is 
the activation energy for Glen's flow law, and is the activation enthalpy for Durham's flow law. Flow law param-
eters are summarized in Table 3.

2.3.2. Mechanical Response Due to Evolving Grain Size

From experiments performed on fine-grained water ice, Goldsby and Kohlstedt  (2001) proposed a composite 
flow law in which the total strain rate, 𝐴𝐴 𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 arises from the strain rate contributions of four distinct creep mecha-
nisms: (a) diffusion creep, 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , (b) grain boundary sliding (GBS) rate-limited by basal slip, 𝐴𝐴 𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , (c) basal slip 
rate-limited by GBS, 𝐴𝐴 𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 , and (d) dislocation creep, 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 :

�̇total = �̇diff +
(

1
�̇basal

+ 1
�̇GBS

)−1

+ �̇disl
 (5)

The term 𝐴𝐴 (1∕�̇�𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 1∕�̇�𝜀𝐺𝐺𝐺𝐺𝐺𝐺 )−1 represents the serial operation of basal slip and GBS as accommodation mecha-
nisms—the slower of these two processes limits their combined strain rate. At temperatures warmer than 220 K, 
and stresses greater than 10−4 MPa, 𝐴𝐴 𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 will be negligible for grain sizes greater than 1 mm (Golds-
by, 2006). Thus, we can apply the composite flow law in a simplified form:

�̇�𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �̇�𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 + �̇�𝜀𝐺𝐺𝐺𝐺𝐺𝐺 (6)

Dislocation creep is a grain size insensitive mechanism described by a constitutive equation of the form shown in 
Equation 4. GBS, on the other hand, is a grain size sensitive mechanism:

�̇ = ����−� exp
(

− �
��

)

, (7)

where 𝐴𝐴 𝐴𝐴 is grain size (𝐴𝐴 𝐴𝐴 ), and 𝐴𝐴 𝐴𝐴 is the grain-size exponent. Goldsby and Kohlstedt (1997, 2001) derived 𝐴𝐴 𝐴𝐴 = 4 for 
dislocation creep (at high stresses) and 𝐴𝐴 𝐴𝐴 = 1.8 for GBS (at low stresses) and proposed that Glen's law (n ≈ 3) aris-
es from roughly equal contributions of dislocation creep and GBS at intermediate stresses. Recent glaciological 

Name of flow law Creep regime n p
𝐴𝐴 𝐴𝐴  , 

temperature𝐴𝐴 𝐴𝐴 , material-dependent parameter
𝐴𝐴 𝐴𝐴 (Activation energy, kJ/mol) or 
𝐴𝐴 𝐴𝐴 (activation enthalpy, kJ/mol) Reference

Glen's flow law N/A 3 N/A𝐴𝐴 𝐴𝐴 ≥ 263𝐾𝐾 𝐴𝐴 1.73 × 1021 (MPa−3s−1) 𝐴𝐴 𝐴𝐴  = 139 Kuiper, De 
Bresser, 

et al. (2020)𝐴𝐴 𝐴𝐴 𝐴 263𝐾𝐾 𝐴𝐴 3.61 × 105 (MPa−3s−1) 𝐴𝐴 𝐴𝐴  = 60

Durham's flow law N/A 4 N/A𝐴𝐴 𝐴𝐴 ≥ 243𝐾𝐾 𝐴𝐴 1011.8 (MPa−4s−1) 𝐴𝐴 𝐴𝐴  = 91 Durham 
et al. (1983)

Goldsby-Kohlstedt flow law Dislocation 4 0𝐴𝐴 𝐴𝐴 𝐴 262𝐾𝐾 𝐴𝐴 6.0 × 1028 (MPa−4s−1) 𝐴𝐴 𝐴𝐴  = 181 Kuiper, 
Weikusat, 

et al. (2020), 
Kuiper, De 

Bresser, 
et al. (2020)

𝐴𝐴 𝐴𝐴 𝐴 262𝐾𝐾 𝐴𝐴 5.0 × 105 (MPa−4s−1) 𝐴𝐴 𝐴𝐴  = 60

GBS-limited 1.8 1.4𝐴𝐴 𝐴𝐴 𝐴 262𝐾𝐾𝐴𝐴 3.0 × 1026 (MPa−1.8 m1.4s−1) 𝐴𝐴 𝐴𝐴  = 192

𝐴𝐴 𝐴𝐴 𝐴 262𝐾𝐾𝐴𝐴 3.90 × 10−3 (MPa−1.8 m1.4s−1) 𝐴𝐴 𝐴𝐴  = 49

Table 3 
Parameters of Glen's Flow Law, Durham's Flow Law, and Goldsby-Kohlstedt Composite Flow Law
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modeling by Behn et al. (2020) likewise suggests that combined dislocation creep and GBS produces an apparent 
stress exponent of n = 3 for ice sheets. We use the simplified composite flow law (Equation 6)—hereafter re-
ferred to as the “grain-size-sensitive model”—to estimate ice strength evolution arising from grain size evolution, 
using the revised composite flow law parameters provided in Table 3 (Kuiper, De Bresser, et al., 2020; Kuiper, 
Weikusat, et al., 2020).

2.3.3. Mechanical Response Due to Evolving CPO

To account for evolving viscous anisotropy (and enhancement) due to CPO development, Azuma (1994, 1995) 
developed a power law model that describes the creep strength of polycrystalline ice as a function of the total 
shear stress resolved onto (weak) ice basal planes. Azuma's flow law introduces the parameter 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 —a scalar 
term which represents the average reduced basal Schmid factor, S, for a given grain population. For each crys-
tallographic orientation, the reduced basal Schmid factor, S, reflects the amount of shear stress resolved onto the 
basal plane (i.e., the easy glide plane); note that this does not account for the amount of shear stress resolved along 
a particular Burgers vector (slip direction) lying within the basal plane. In short, 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 can be considered a proxy 
for the total shear stress resolved on ice basal planes in a polycrystal. Azuma's flow law takes a similar form to 
that given in Equation 4:

�̇ = ��� exp
(

− �
��

)

 (8)

However, the pre-exponential term, 𝐴𝐴 𝐴𝐴 (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴−𝑛𝑛𝑠𝑠−1 ) follows a power law relationship with 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (see Figure 9 from 
Azuma, 1995):

𝐵𝐵 ∝ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞, where 𝑞𝑞 ≈ 4 (9)

such that, at a given stress, an ice sample with more shear stress resolved on basal planes (i.e., large 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) will 
deform faster than an ice sample with little shear stress resolved on basal planes (i.e., small 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ).

Azuma's model makes the key assumption that under their experimental conditions—relatively low temperatures 
(−10 to −20°C), low strain rates (∼ 𝐴𝐴 2 × 10−7 to 𝐴𝐴 4 × 10−7𝑠𝑠−1 ), and low strains (∼5.7%)—dynamic recrystallization 
should be negligible. Thus, all strain weakening measured in their experiments is attributed to CPO development. 
However, Azuma (1995) also observed that for a given value of 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , small variations in 𝐴𝐴 𝐴𝐴 could be attributed to 
differences in grain size, impurity content, and grain shape among different experimental studies. In this study, 
we place upper and lower bounds on 𝐴𝐴 𝐴𝐴 —𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , respectively—for each 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 value, following Figure 
9 from Azuma (1995).

log10(𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) = 4.2 ⋅ log10(𝑆𝑆𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚) + 8

log10(𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢) = 4.8 ⋅ log10(𝑆𝑆𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚) + 7.4

 (10)

In this study, we use Azuma's (1994, 1995) model—herein termed the “CPO-only model”—to model ice strength 
evolution arising from CPO development alone, following Equations 8–10.

2.4. Model Input Data

To reiterate, we use grain sizes and c-axis orientations calculated from EBSD maps (Section 2.2) of ice samples 
deformed to successively higher strains (Section 2.1) as an input to the constitutive relationships described above 
(Section 2.3), along with the experimental boundary conditions (temperature, stress, and/or strain rate). These 
models are then used to estimate the contributions of grain size evolution and CPO development to bulk strain 
weakening.

2.4.1. Grain Size

Grain size is defined here as the diameter of a circle with an area equal to the measured area of each grain (i.e., 
area-equivalent diameter). We use both median grain size and the full grain size distribution of each sample as 
an input into the grain-size-sensitive model (Equation 6). Median grain sizes have been shown to most accurately 
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reflect the “average” grain size of right-skewed and lognormal grain size distributions (Lopez-Sanchez, 2020; 
Ranalli, 1984) like those observed in our samples (Fan et al., 2020; Fan, Prior, Cross, et al., 2021).

To model ice strength evolution using full grain size distributions, we first estimate the volume fraction of different 
grain size classes using the Scheil-Schwartz-Saltikov method (Saltikov, 1967; Scheil, 1931; Schwartz, 1934) (de-
tails in Appendix B). For polycrystalline materials, aggregate strength falls between two end-member bounds: (a) 
a homogeneous stress bound (Sachs bound), with local strain rate varying from grain to grain, and (b) a homoge-
neous strain rate bound (Taylor bound), with local stress varying from grain to grain (Freeman & Ferguson, 1986; 
Ter Heege et  al.,  2004). In reality, aggregate strength should fall between these end-member bounds (Tullis 
et al., 1991). To place upper and lower bounds on sample strength evolution, we thus calculate both the Sachs 
and Taylor limits for each experimental sample (details in Appendix C). It is worth noting here that the composite 
flow law (Goldsby & Kohlstedt, 1997, 2001)—which forms the basis of the grain-size-sensitive model here—was 
derived from fine-grained (<100 μm) ice samples deformed at low temperatures (𝐴𝐴 ≤ −25°C), to low strains (mostly 

𝐴𝐴 ≤ 3%). We assume that Goldsby & Kohlstedt's samples did not undergo significant grain size reduction, meaning 
that their composite flow law reflects the strength of ice with a nominally monodisperse grain size distribution. In 
other words, the grain-size-sensitive models should not already incorporate implicit grain size distribution effects.

2.4.2. Crystallographic Preferred Orientation (CPO)

For each sample, c-axis orientations measured via EBSD (one point per pixel) were used to estimate the amount 
of shear stress resolved on crystallographic basal planes, quantified using the reduced Schmid factor, 𝐴𝐴 𝐴𝐴 (e.g., 
Azuma, 1995). Under uniaxial compression, where the compression direction is parallel to the sample shortening 
axis (Figure 1a), 𝐴𝐴 𝐴𝐴 can be calculated from the angle (𝐴𝐴 𝐴𝐴 ) between each c-axis measurement and the compression 
axis (Equation 11):

𝑆𝑆 =
sin(2𝜃𝜃)

2
 (11)

𝐴𝐴 𝐴𝐴 is highest (value of 0.5) for c-axes oriented 45° from the compression direction, and decreases to zero as c-axes 
become parallel or perpendicular to the compression direction.

The number frequency of c-axes observed from a 2-D surface is impacted by a stereological issue that, in turn, 
biases reduced Schmid factor measurements. Namely, for a random orientation distribution, c-axes lying sub-nor-
mal to the compression direction (θ ≈ 90°) are much more abundant than c-axes lying sub-parallel to the compres-
sion direction (θ ≈ 0°; see Figure 1c, green histogram). This effect arises because the area of a stereoplot lying 
between two “co-latitudes” (i.e., small circles) of fixed separation (e.g., 10°) increases with increasing angle (θ) 
from the stereoplot center (Figure 1b). For a random population of c-axes, this effect produces a reduced Schmid 
factor frequency distribution that is strongly biased toward high reduced Schmid factors (purple histogram, Fig-
ure 1c). However, for a random orientation distribution, the densities (number frequency per unit area) of c-axes 
lying between two co-latitudes of fixed separation should be the same (Figure 1d; details for the calculation of 
c-axis densities are in Appendix D). Consequently, there should be a uniform density distribution of reduced 
Schmid factors for a random orientation distribution (Figure 1d). To account for this issue, we can normalize the 
bulk reduced Schmid factor, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , following:

𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
Φ1�̄�𝑆1 + Φ2�̄�𝑆2 + Φ3�̄�𝑆3 +⋯ + Φ𝑚𝑚�̄�𝑆𝑚𝑚

Φ1 + Φ2 + Φ3 +⋯Φ𝑚𝑚
, (12)

where 𝐴𝐴 �̄�𝑆1 , 𝐴𝐴 �̄�𝑆2 , 𝐴𝐴 �̄�𝑆3 , …, 𝐴𝐴 �̄�𝑆𝑚𝑚 are the mean values of reduced Schmid factor in each of 𝐴𝐴 𝐴𝐴 classes of reduced Schmid factors 
(𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴2 , 𝐴𝐴 𝐴𝐴3 , …, 𝐴𝐴 𝐴𝐴𝑚𝑚 ) and number frequency densities (𝐴𝐴 Φ1 , 𝐴𝐴 Φ2 , 𝐴𝐴 Φ3 , …, 𝐴𝐴 Φ𝑚𝑚 ). Here, we use 100 classes (bins) of reduced 
Schmid factors (i.e., 𝐴𝐴 𝐴𝐴 = 100 ; Schmid factor interval of 0.005). However, there is very little difference between ice 
strengths modeled using the normalized and unnormalized reduced Schmid factor values (Section S1 of Support-
ing Information S1). For simplicity, we herein discuss only the models that use normalized Schmid factor values.

2.5. Normalization of Measured and Modeled Bulk Strain Rate/Stress

To assess how well each model reproduces the measured (experimental) mechanical data, we need to examine both 
(a) the absolute magnitude of the stresses and strain rates predicted by each model and (b) the “patterns” of strain 
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weakening predicted by each model—that is, the relative amount (percentage) of 
strain weakening predicted by each model, and the predicted strains required to reach 
steady-state conditions. To make it easier to assess the patterns of strain weakening 
predicted by each model, we normalize the modeled and measured stresses (for con-
stant displacement rate experiments) and strain rates (for constant load experiments) 
by their values at the strain corresponding most closely to the peak stress and min-
imum strain rate, respectively. This method is similar to that applied by Jacka and 
Li (2000) and enables us to make a more direct comparison between the patterns 
of strain weakening predicted by each model, while also removing sample-to-sam-
ple variability. Meanwhile, the unnormalized data are used to assess how well each 
model reproduces the absolute measured stress and strain rate magnitudes. The 
unnormalized and normalized mechanical data are summarized for each sample in 
Tables 4–6.

2.5.1. Constant Load Experiments

For each experimental run with constant load, the measured strain rate-strain 
curves are normalised with respect to the minimum strain rate following:

̄̇𝜀𝜀measure =
�̇�𝜀measure

�̇�𝜀min,measure
, (13)

where 𝐴𝐴 ̄̇𝜀𝜀measure is the normalised measured strain rate, 𝐴𝐴 𝐴𝐴𝐴min,measure is the measured 
minimum strain rate at ∼1–2% strain.

Modeled uniaxial strain rates were normalised following:

̄̇𝜀𝜀model =
�̇�𝜀model

�̇�𝜀1%,model
, (14)

where 𝐴𝐴 ̄̇𝜀𝜀model is the normalised modeled strain rate, 𝐴𝐴 𝐴𝐴𝐴model is the modeled strain 
rate corresponding to the maximum strain of each sample, 𝐴𝐴 𝐴𝐴𝐴1%,model is the modeled 
strain rate at the strain of ∼1%.

2.5.2. Constant Displacement Rate Experiments

For each experimental run with constant displacement rate, the measured stress-
strain curves are normalised with respect to the peak stress following:

�̄�𝜎measure =
𝜎𝜎measure

𝜎𝜎peak,measure
, (15)

where 𝐴𝐴 𝐴𝐴𝐴measure is the normalised measured stress, 𝐴𝐴 𝐴𝐴peak,measure is the measured uniax-
ial stress at ∼2%–3% strain. The decrease of normalised measured stress relative 
to the peak, 𝐴𝐴 Δ�̄�𝜎measure , is:

Δ�̄�𝜎measure = 1 − �̄�𝜎measure (16)

Modeled stresses are normalised for ice samples deformed under the same tem-
perature and similar strain rates following:

�̄�𝜎model =
𝜎𝜎model

𝜎𝜎3%,model
, (17)

where 𝐴𝐴 𝐴𝐴𝐴model is the normalised modeled stress, 𝐴𝐴 𝐴𝐴model is the modeled stress corre-
sponding to the maximum strain of each sample, 𝐴𝐴 𝐴𝐴3%,model is the modeled stress at 
the strain of ∼3%. At each finite strain, the decrease of normalised modeled stress 
relative to 3% strain, 𝐴𝐴 Δ�̄�𝜎model , is:Sa
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Δ�̄�𝜎model = 1 − �̄�𝜎model (18)

3. Results
3.1. Measured Mechanical Data

3.1.1. Constant Load Experiments

The measured strain rate, 𝐴𝐴 𝐴𝐴𝐴measure , and normalised strain rate, 𝐴𝐴 ̄̇𝜀𝜀measure , data are plotted as a function of strain in Fig-
ures 2a–2c and 3a–3c, respectively (black curves). Measured and normalised strain rates initially decrease with 
strain before reaching a minimum at ∼1%–2% shortening. After that, deformation accelerates until a nominally 
steady-state strain rate is reached at around 𝐴𝐴 𝐴𝐴 = ∼6%. However, in many experiments there is a slight strain rate 
decrease beyond 𝐴𝐴 𝐴𝐴 = ∼8%. Meanwhile, stress decreases modestly during each constant load experiment, due to 
an increase in sample cross-sectional area (black line, Figure 2d; Equation 3).

3.1.2. Constant Displacement Rate Experiments

Measured stresses are plotted as a function of strain in Figures 2e–2g, 2i–2k, and 2m–2o (black curves). Stress 
initially increases as a function of strain, reaching a peak at strains of 1%–3%. Thereafter, stress drops 31%–38% 
until a flow stress is reached by ∼20% shortening (black curves, Figures 3e–3g, 3i–3k, and 3m–3o; black dots, 
Figures 3h, 3l, and 3p; Tables 5 and 6). In general, both peak and flow stresses increase with increasing strain rate 
and decreasing temperature. Strain rate increases modestly through each constant rate experiment as a result of 
continuous sample shortening (black lines, Figures 2h, 2l, and 2p; Equation 2).

3.2. Microstructures

The microstructures of these samples have been described in detail in Fan et  al.  (2020), Fan, Prior, Cross, 
et al. (2021). We will summarize the pertinent observations here, but the reader can refer to Fan et al. (2020), Fan, 
Prior, Cross, et al. (2021) for the full details.

Sample no.
T 

(°C)

Initial 
strain 

rate (s−1)

Measured 
peak 
stress 
(MPa)

Measured 
stress at 

maximum 
strain, 

absolute 
(MPa)/

normalised

Estimated stress, 
absolute (MPa)/

normalised

Grain-size-sensitive 
model (simplified 
Goldsby-Kohlstedt 

composite flow law)

Bulk 
reduced 
Schmid 
factor, 

𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Estimated stress, absolute (MPa)/
normalised

Microstructure-
insensitive models

Stress 
estimated 

from 
grain size 

distribution, 
absolute 
(MPa)/

normalised

Stress 
estimated 

from 
median 

grain size, 
absolute 
(MPa)/

normalised

CPO-only model (Azuma's flow law)

Glen's 
flow

Durham's 
flow

With upper bound 
of 𝐴𝐴 𝑩𝑩

With lower bound 
of 𝐴𝐴 𝑩𝑩

Undeformed 
standard 
ice

N/A N/A N/A N/A N/A N/A N/A N/A 0.2438 N/A N/A

PIL176 −10𝐴𝐴 ∼ 1 × 10−5 1.78 1.70/0.96 2.90/1.00 2.10/1.00 3.39/1.00 3.03/1.00 0.2620 2.88/1.00 5.96/1.00

PIL163 2.92 2.42/0.83 2.92/1.01 2.11/1.00 3.35/0.99 2.88/0.95 0.2866 2.55/0.89 5.20/0.87

PIL178 2.54 1.97/0.78 3.03/1.04 2.17/1.03 3.47/1.03 3.13/1.03 0.3516 1.99/0.69 3.90/0.65

PIL177 2.85 1.90/0.67 3.05/1.05 2.18/1.04 3.45/1.02 2.96/0.97 0.3250 2.24/0.78 4.44/0.75

PIL007 2.13 1.33/0.62 3.06/1.06 2.19/1.04 3.42/1.01 3.08/1.02 0.3898 1.74/0.60 3.33/0.56

Table 5 
Summary of Measured and Estimated Stress for Experiments With Constant Displacement Rate at −10°C
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3.2.1. Grain Size

At all temperatures, and at strains higher than ∼3%, large grains (typically >150 μm in diameter) develop irreg-
ular, interlocking grain boundaries. Meanwhile, with increasing strain, networks of fine grains develop along the 
boundaries of the large, original grains, forming a “core-and-mantle” type structure (Figures 4a−6a). Fine grains 
become increasingly abundant at the expense of large, original grains, leading to a modest decrease in median 
grain sizes with increasing strain (Figures 4b−6b and Tables 1 and 2). However, fine grains are volumetrically 
dominant only in the largest strain (𝐴𝐴 ≥ 12%), lowest temperature (−30°C) samples (Figure 6c). In all other samples, 
large grains occupy a much greater volume of each sample (Figures 4c−6c).

3.2.2. Crystallographic Preferred Orientations (CPOs) and Reduced Schmid Factors

For samples deformed at −4 and −10°C, CPOs are close to random at strains of 𝐴𝐴 𝐴𝐴 𝐴 ∼3% (Figures 4d, 4e, 5d, and 5e). 
CPO patterns become clearer at 𝐴𝐴 𝐴𝐴 𝐴 ∼4%, with c-axes preferentially aligned in a cone (small circle) centered around 
the compression axis (Figures 4d and 5d). Accordingly, the number frequency density (𝐴𝐴 Φ , Section 2.4.2) of c-axes at 

𝐴𝐴 𝐴𝐴 of 30–50° increases (relative to the undeformed starting material), while 𝐴𝐴 Φ decreases for c-axes at 𝐴𝐴 𝐴𝐴 = 0–30° and 
50−90°—this change becomes more marked with increasing strain (Figures 4e and 5e, gold histograms). For sam-
ples deformed at −30°C, the CPO is likewise close to random at small strains (𝐴𝐴 ≤∼5%; Figures 6d and 6e). However, 
with increasing strain (𝐴𝐴 𝐴𝐴 ≥ ∼8%), c-axes form a tight cone around the compression axis, increasing the number fre-
quency density of c-axes at 0–45°, relative to those at 45–90° (Figure 6e, gold histograms). The c-axis cone becomes 
tighter with increasing strain, until it becomes a single, broad cluster by ∼20% strain (Figure 6d).

In all samples with 𝐴𝐴 𝐴𝐴 ≥ ∼5%, the number frequency density 𝐴𝐴 Φ of orientations with S > 0.4 increases with strain, 
regardless of whether c-axes evolve toward an open cone (easy slip) or single broad maxima (hard slip) CPO. 
Nevertheless, this trend is more pronounced at higher temperatures (−4 and −10°C) that favor open cone (easy 
slip) CPO development (compare Figures 4f and 5f with Figure 6f). As a result, bulk reduced Schmid factors, 

𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , generally increase with increasing strain, at both high and low temperatures, indicating that sample grain 
populations evolve toward orientations favorable for bulk easy slip.

Sample 
no.

T 
(°C)

Initial 
strain rate 

(s−1)

Measured 
peak 
stress 
(MPa)

Measured 
stress at 

maximum 
strain, 

absolute 
(MPa)/

normalised

Estimated stress, absolute 
(MPa)/normalised

Grain-size-sensitive model 
(simplified Goldsby-

Kohlstedt composite flow 
law)

Bulk 
reduced 
Schmid 
factor, 

𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Estimated stress, absolute 
(MPa)/normalised

Microstructure-insensitive 
models

Stress 
estimated 

from 
grain size 

distribution, 
absolute 
(MPa)/

normalised

Stress 
estimated 

from median 
grain size, 
absolute 
(MPa)/

normalised

CPO-only model (Azuma's 
flow law)

Glen's flow law
Durham's 
flow law

With upper 
bound of 𝐴𝐴 𝑩𝑩

With lower 
bound of 𝐴𝐴 𝑩𝑩

PIL165 −30𝐴𝐴 ∼ 1 × 10−5 8.24 8.15/0.99 6.20/1.00 5.01/1.00 5.93/1.00 5.81/1.00 0.2443 6.84/1.00 14.38/1.00

PIL162 8.71 7.87/0.90 6.22/1.00 5.02/1.00 5.92/1.00 5.76/0.99 0.2600 6.29/0.92 13.06/0.91

PIL164 8.93 7.31/0.84 6.16/0.99 4.99/1.00 5.89/0.99 5.64/0.97 0.2742 5.79/0.85 11.88/0.83

PIL166 7.60 6.45/0.85 6.41/1.03 5.13/1.02 6.01/1.01 5.77/0.99 0.2821 5.78/0.84 11.80/0.82

PIL268 7.82 5.00/0.64 6.60/1.06 5.25/1.05 6.19/1.05 5.70/0.99 0.3040 5.36/0.78 10.78/0.75

PIL266 −30𝐴𝐴 ∼ 5 × 10−5 11.29 11.26/1.00 10.57/1.00 7.47/1.00 8.86/1.00 8.81/1.00 0.2586 10.78/1.00 22.38/1.00

PIL243 10.63 7.35/0.69 11.36/1.07 7.89/1.06 9.32/1.05 9.05/1.03 0.3010 9.37/0.87 18.88/0.84

Table 6 
Summary of Measured and Estimated Bulk Stress for Experiments With Constant Displacement Rate at −30°C
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Figure 2.
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3.3. Ice Strength Evolution Models

As described above (Sections 2.3 and 2.5), we compare the magnitude (absolute value; Figure 2) and pattern (nor-
malised value; Figure 3) of ice strength evolution between experimental measurements (black curves) and modeling 
results (colored symbols). For experiments conducted at similar conditions (temperature, stress/strain rate), we model 
the evolution of strain rate and/or stress as a function of strain and microstructural evolution (grain size, CPO) using:

1.  Ice flow laws that do not consider grain size or CPO effects (Durham et al., 1983; Glen, 1955) (blue symbols, 
first column in Figures 2 and 3). These form the basis of our so-called “microstructure-insensitive models.”

2.  An ice flow law that incorporates grain size sensitivity but not CPO development (Goldsby & Kohlst-
edt, 1997, 2001). This forms the basis of our so-called “grain-size-sensitive models.” We account for grain 
size evolution using both median grain sizes (red squares, second column in Figures 2 and 3) and the full 
measured grain size distributions. For models that use the full grain size distribution, we calculate both the 
isostress (Sachs) limit (red circles) and isostrain (Taylor) limit (red stars).

3.  An ice flow law that accounts for CPO development but not grain size evolution (Azuma, 1994, 1995) (purple 
symbols, third column in Figures 2 and 3). This forms the basis of our so-called “CPO-only model.”

3.3.1. The Magnitude (Absolute Value) of Strain Rate or Stress

At all conditions, the mechanical models (colored symbols, Figures 2 and 3) all predict ice strengths within an 
order of magnitude of those measured experimentally (black curves, Figures 2 and 3). The grain-size-sensitive 
models show similar results regardless of whether median grain sizes and or the full grain size distributions are 
used (red symbols, second column in Figure 2). These models are also very similar to the microstructure-insensi-
tive (Glen, Durham) models (compare first and second columns in Figure 2). Both types of model predict strain 
rates that lie between the measured secondary minimum and tertiary maximum strain rates for constant load ex-
periments (Figures 2a and 2b), and stresses that lie between the measured peak and flow stresses for constant dis-
placement rate experiments (Figures 2e–2f, 2i–2j, and 2m–2n). For the CPO-only model (Azuma, 1994, 1995), 
the strain rates (for constant load experiments) and stresses (for constant displacement rate experiments) predict-
ed using the upper bound of the pre-exponential term, 𝐴𝐴 𝐴𝐴 (Equation 9, Section 2.3.3) lie very close to the experi-
mental measurements (Figures 2c, 2g, 2k, and 2o).

3.3.2. The Pattern (Normalised Value) of Strain Rate or Stress

The microstructure-insensitive models (colored blue) and grain-size-sensitive models (colored red) estimate that 
sample strength does not evolve significantly as a function of strain (Figures 3a–3b, 3e–3f, 3i–3j, and 3m–3n). 
Such a prediction does not match the experimental measurements—normalised strain rate increases with strain 
after secondary minimum (under constant load); normalised stress decreases with strain after peak stress (black 
curve, Figure 3).

Meanwhile, the CPO-only model closely matches the measured magnitudes of strain weakening in most cases 
(Figures 3c, 3g, 3k, and 3o). However, the CPO-only model overestimates the strain rate increase under constant 
load conditions (at −4°C) by a factor of ∼3 (Figures 3c and 3d), and underestimates the stress drop magnitude 
by a factor of ∼2 under constant displacement rate conditions at −30°C and ∼𝐴𝐴 5 × 10−5 s−1 strain rate (Figures 3o 
and 3p). The model also predicts that, at lower temperatures, strain weakening is less pronounced (compare Fig-
ures 3g and 3h with Figures 3k–3l and 3o–3p)

Figure 2. Comparing the absolute values of measured and modeled mechanical data for experiments under conditions of: (a)–(d) constant load (𝐴𝐴 𝝈𝝈 = ∼1 MPa), 𝐴𝐴 𝑻𝑻 = 
−4°C; (e)–(h) constant displacement rate (𝐴𝐴 �̇�𝜺 = ∼ 1 × 10−5𝒔𝒔−1 ), 𝐴𝐴 𝑻𝑻 = −10°C; (i)–(l) constant displacement rate (𝐴𝐴 �̇�𝜺 = ∼ 1 × 10−5𝒔𝒔−1 ), 𝐴𝐴 𝑻𝑻 = −30°C; (m)–(p) constant 
displacement rate (𝐴𝐴 �̇�𝜺 = ∼ 5 × 10−5𝒔𝒔−1 ), 𝐴𝐴 𝑻𝑻 = -30°C. Mechanical data from experimental measurements are colored black; Modeled mechanical data are colored non-
black. Sample strengths predicted by the microstructure-insensitive mechanical models (Section 2.3.1) are illustrated in (a), (e), (i) and (m). Sample strengths predicted 
by the grain-size-sensitive model (Section 2.3.2) are shown in (b), (f), (j) and (n). Sample strengths predicted by the CPO-only model (Section 2.3.3) are shown in (c), 
(g), (k) and (o). For models that incorporate the full grain size distribution, we calculate both the homogeneous stress (Sachs bound) boundary condition (a–c, h, l, p), 
and the homogeneous strain rate (Taylor bound) boundary condition (d, e–g, i–k, m–o).



Journal of Geophysical Research: Solid Earth

FAN ET AL.

10.1029/2021JB023173

15 of 34

Figure 3.
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Figure 3. Comparing the normalised values (Section 2.5) of measured mechanical data (colored black) and modeled mechanical data (colored non-black). The 
deformation conditions for each row are the same as in Figure 2. For the first three columns, the mechanical models are the same as those used in Figure 2. (d) 
Comparing the measured normalised strain rate (Equation 13; colored black) with the modeled normalised strain rate (Equation 14) using the grain-size-sensitive model 
(colored red) or the CPO-only model (colored purple). (h), (l), (p) Comparing the measured normalised stress drop (Equation 16) (colored black) with the modeled 
normalised stress drop (Equation 18) using the grain-size-sensitive model (colored red) or the CPO-only model (colored purple).

Figure 4. Microstructural analyses of deformed ice samples at −4°C under uniaxial compression with constant load (𝐴𝐴 𝝈𝝈 = ∼1 MPa). The EBSD data are presented as (a) 
orientation maps. Orientation maps are colored by IPF-Y, where colors indicate which crystallographic axes are parallel to the vertical shortening direction, as shown 
by the black arrows. Ice grain boundaries with a misorientation larger than 10° are shown black. Non-indexed pixels are shown white. Subgrain boundaries, where 
misorientation angles between neighboring pixels are between 2° and 10°, are shown in gray. Maps show data without pixel interpolation. (b) Grain size distribution 
with a bin width of 10 μm for each grain size class. Mean and peak grain sizes are indicated by black arrows. Median grain size is indicated by a red arrow. (c) Bar 
plots (gray) show estimated volume frequency for each grain size class (Section 2.4.1; Appendix B). Red curves show the cumulative volume frequency as a function of 
grain size. (d) The distributions of c-axis orientations in stereoplot with one point per pixel, displayed as point plots (with 5,000 randomly selected points). Contoured 
stereoplots are also shown, colored by multiples of a uniform distribution (MUD) with a half-width of 7.5°. (e) Green bars represent the number frequency density (𝐴𝐴 𝚽𝚽 ; 
Section 2.4.2; Appendix D) of c-axes at different angles to the compression axis (𝐴𝐴 𝜽𝜽 ) with an interval of 0.1°. Gold bars represent the differences of 𝐴𝐴 𝚽𝚽 for c-axes between 
each deformed sample and the undeformed sample at each 𝐴𝐴 𝜽𝜽 interval. The gray area marks the range of 𝐴𝐴 𝜽𝜽 that corresponds to high reduced Schmid factors (𝐴𝐴 𝑺𝑺 > 0.4; 
Figure 1b). (f) Purple bars represent the number frequency density (𝐴𝐴 𝚽𝚽 ) of c-axes at different reduced Schmid factors (S) with an interval of 0.005. Blue bars represent 
the differences of 𝐴𝐴 𝚽𝚽 for c-axes between each deformed sample and the corresponding undeformed sample at each S interval.
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4. Discussion
4.1. Measured Mechanical Data and Deformation Mechanisms

4.1.1. Measured Mechanical Data

Under constant load, the strain rate-strain curves (colored black, Figures 2a–2c, Section 3.1.1) and the enhance-
ment factor values of ∼2 (ratio between the strain rate at strains of 𝐴𝐴 𝐴𝐴 ≥ 8% and the minimum strain rate) (Table 4, 
Figure 3d) generally match published constant load experiments (Budd & Jacka, 1989; Jacka & Li, 2000; Wilson 
& Peternell, 2012).

Under constant displacement rate, the stress-strain curves (black curves, Figure 2, Section 3.1.2) show the per-
centage of stress-drop from peak at 20% strain (∼31–38%) has no apparent correlations with temperature or 
strain rate (Tables 5 and 6, Figures 3h, 3l, and 3p). This observation matches published experiments that cover 
a much wider temperature and/or strain rate ranges (Section S2 of the Supporting  Information  S1; Durham 
et al., 1983, 1992; Piazolo et al., 2013; Qi et al., 2017; Vaughan et al., 2017; Wilson et al., 2019).

Figure 5. Microstructural analyses of deformed ice samples at −10°C under uniaxial compression with constant displacement rate (𝐴𝐴 �̇�𝜺 = ∼𝐴𝐴 1 × 10−5𝒔𝒔−1 ). The descriptions 
of columns (a–f) are the same as Figure 4.
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Figure 6. Microstructural analyses of deformed ice samples at −30°C under uniaxial compression with constant displacement rate (𝐴𝐴 �̇�𝜺 = ∼𝐴𝐴 1 × 10−5 or ∼𝐴𝐴 5 × 10−5𝒔𝒔−1 ). 
The descriptions of columns (a–f) are the same as Figure 4.
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4.1.2. Deformation and Recrystallization Mechanisms

The microstructures and deformation mechanisms of these samples have been discussed in detail previously (Fan 
et al., 2020, ; Fan, Prior, Cross, et al., 2021). To summarize those papers:

1.  At high temperatures (≥−10°C), samples exhibit microstructures characteristic of rapid grain boundary mi-
gration, which favors the competitive growth of grains in easy slip orientations (c-axes at ∼45° from com-
pression), leading to the formation of cone-shaped c-axis CPOs, centered around the compression direction 
(Figures 4d and 5d).

2.  Dynamic recovery leads to the progressive development of intragranular (subgrain) boundaries (colored gray, 
Figures 4a–6a).

3.  With increasing strain, small recrystallized grains nucleate at the expense of large, original grains, forming 
a core-and-mantle structure with fine-grained networks of recrystallized grains. Recrystallized grains have 
much weaker CPOs than their neighboring parent grains, suggesting that grain nucleation occurs via either 
(1) subgrain rotation recrystallization followed by grain boundary sliding that randomizes the CPO, or (2) 
spontaneous nucleation of fine grains with random orientations (Fan et al., 2020).

4.  As temperature decreases, lattice rotation (due to dislocation glide on the basal plane) becomes increasingly 
important. Basal planes progressively rotate into the compression-normal plane, producing a c-axis cluster or 
narrow-cone around the compression axis particularly at low temperatures, ≤ −20°C (Figure 6d).

5.  All the deformed samples have a major volume frequency peak corresponding to the large, original grains 
(Figures 4c–6c). A secondary volume frequency peak at finer sizes (corresponding to recrystallized grains) 
only becomes obvious at −30°C with high strains (Figure 6c). Recrystallized grains are therefore volumetri-
cally insignificant for most of the ice samples analyzed in this study.

4.2. Contributions of Microstructural Evolution to Strain Weakening

The stresses and strain rates predicted by the mechanical models generally match the experimental measurements 
in magnitude (Figure 2; Section 3.3.1), indicating that they provide a certain level of reliability in the estimation 
of ice strength, at least under laboratory conditions. These data, as well as the normalised mechanical data, fur-
ther show that strain weakening cannot be predicted by mechanical models that do not consider microstructural 
evolution (see first column in Figures 2 and 3). Thus, to accurately estimate ice strength and enhancement in 
glaciers and ice sheets, it is necessary to account for the evolving microstructural state of ice.

4.2.1. Grain Size Reduction

Under all conditions, the median grain size and grain size distribution of each sample shifts toward finer grain 
sizes with increasing strain, due to the nucleation of fine grains at the expense of large, original grains (Fig-
ures 4b−6b). Intuitively, we might expect samples to weaken as grain size decreases, due to the activation of GBS 
at fine grain sizes. However, the grain-size-sensitive models do not predict any strain weakening (red symbols, 
Figures 2 and 3). On the contrary, the grain-size-sensitive models actually predict a small degree of strain hard-
ening (e.g., Figures 2, 3b, 3f, 3j, and 3n) due to the modest increase in strain rate that arises from sample short-
ening. Thus, these models imply that grain size has little impact on the strength of ice under the high temperature 
(𝐴𝐴 𝐴𝐴ℎ = 0.89–0.99), relatively high stress (>1 MPa) conditions explored in this study. We suggest that grain size 
plays a negligible role in strain weakening here because, even though fine grains become more abundant with in-
creasing strain, they occupy only an insignificant fraction of each sample volume (Figures 4c−6c; Section 3.2.1). 
Consequently, bulk ice strength is governed by the volumetrically dominant, large, original grains, both at low 
and high strains.

The grain-size-sensitive model also predicts similar ice strengths when incorporated with either median grain 
sizes or full grain size distribution data (red symbols, Figure 2). Thus, it may generally be sufficient to model ice 
strength using a (simple) single value of median grain size, rather than the (more sophisticated) full grain size 
distribution.

It is worth noting that even though grain size reduction yields little influence over strain weakening at the ex-
perimental conditions explored here, the composite flow law (Goldsby & Kohlstedt, 1997, 2001) suggests that 
GBS still plays a significant role in accommodating strain. To illustrate this, we plot deformation mechanism 
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maps (grain size vs. stress) for each temperature explored here, with strain rate contours calculated according to 
Goldsby and Kohlstedt (1997, 2001) (Figure 7). On each map, symbols re plotted to represent stress-grain size 
data from this study, and from previous studies by other groups. All of these data summarized in Table 7. Details 
of the processing of published data are summarized in Appendix E. Figure 7 shows that across a broad range of 
temperatures, stresses, and strain rates, the experimental stresses and grain sizes all lie close to the deformation 
mechanism boundary (thick solid black line, Figure 7), where the contribution of dislocation creep equals to 
GBS-limited creep. More importantly, the grain size-stress relationship (i.e., grain size piezometer) (transparent 
heavy brown line) summarized by Jacka and Li (1994) using ice samples deformed to >15% strain at −10 to 
−0.1°C generally coincides with or lies close to the deformation mechanism boundary. These observations indi-
cate that, the contributions of dislocation creep and GBS-limited creep to the total strain rate are roughly equal 
at both low and high strains. Moreover, for most of the data points, the ratio between the strain rates provided 
by dislocation creep and GBS-limited creep is <10; thus, in most of the samples examined here, GBS-limited 
creep accommodates at least 10% of the total deformation. Note, however, that basal dislocation glide contributes 
significantly to strain accommodation in the GBS-limited creep regime; thus, the proportion of deformation ac-
commodated by GBS itself may be <10%.

Figure 7 also demonstrates that for experiments performed under relatively high stresses (𝐴𝐴 ≥ 1 MPa), the stress-
grain size data migrate from the dislocation creep regime toward the GBS-limited creep regime with increasing 
strain (Figures 7b–7f)). At low stresses (∼0.4 MPa; Jacka & Maccagnan, 1984), on the other hand, the data points 
shift from the GBS-limited creep regime toward the dislocation creep regime with increasing strain (Figure 7a). 
These trends probably indicate that grain size reduction dominates at high stresses, whereas grain growth domi-
nates at low stresses.

4.2.2. CPO Development

The CPO-only model predicts strain weakening across all conditions, manifested as a strain rate enhancement 
under constant load conditions, and a stress drop under constant rate conditions (compare purple symbols and 
black curves in Figures 2 and 3), as observed in the experimental mechanical data. Moreover, at −10 and −30°C 
with ∼ 𝐴𝐴 1 × 10−5 s−1 strain rate, the percentage of stress drop from peak stress predicted from the CPO-only model 
generally matches experimental measurements at each strain (Figures 3h and 3l). Thus, all of the strain weakening 
observed in this study can be explained by CPO development.

At high temperatures (≥−10°C), c-axes evolve toward a small circle (open cone) distribution around the compres-
sion axis (Figures 4d and 5d), whereas at low temperatures (−30°C), c-axes evolve toward a single cluster parallel 
with the compression axis (Figure 6d). The cone-shaped c-axis alignment results from grains evolving toward 
easy slip orientations—that is, c-axes inclined 30–60° from the compression axis (Figure 4e)—corresponding to 
high reduced Schmid factors of S = 0.4–0.5 (Figures 4f and 1b). Thus, cone CPO development should produce 
an increase in the bulk reduced Schmid factor, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , resulting in sample softening and strain weakening at high 
temperatures, per CPO-only model (Equation 8 and 9; Figure 3g). At low temperatures on the other hand, we intu-
itively expect CPO development to produce strain hardening, since c-axes progressively rotate toward hard orien-
tations—i.e., c-axes inclined <20° from the compression axis (Figure 5e)—corresponding to S ≤ 0.3 (Figure 1b). 
However, our data show that even at −30°C, where c-axes are rotating into hard slip orientations, the number of 
c-axes in high-S (easy slip) orientations remains significant (Figures 5e and 5f). Consequently, the bulk reduced 
Schmid factor, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , still increases with strain (Table 6), and thus leads to strain weakening in CPO-only model 
(Equation 8 and 9; Figures 3k and 3o). The observation of many grains with c-axes in high-S orientations at 
both high and low temperatures can be explained by the rate of strain-induced GBM (which favors the growth of 
grains in easy slip, high-S orientations) being similar across the range of temperatures explored here (as examined 
by Fan, Prior, Cross, et al., 2021). GBM rates are similar among low and high temperature conditions because 
GBM is controlled by both grain boundary mobility and the driving force for boundary migration (Humphreys 
et al., 2017)—grain boundary mobility decreases with decreasing temperature (Azuma et al., 2012), whereas the 
GBM driving force depends on the stress magnitude (which increases with decreasing temperature, if strain rate 
remains unchanged—see Figure 2; Fan, Prior, Cross, et al., 2021).

4.2.3. Strain Weakening Mechanisms Across a Broader Range of Conditions

In the models presented here, grain size evolution (reduction) does not produce strain weakening, while CPO 
evolution is able to account for all of the observed weakening. Thus, we suggest that CPO development is entirely  
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responsible for strain weakening across the range of conditions explored here (T = −4 to −30°C; strain rate ≈ 10−5 
s−1; stress ≈ 1–10 MPa). To quantify the relative contributions of CPO and grain size to strain weakening across 
a wider range of strain rate/stress, we compare this study with published ice uniaxial compression experiments 
that provide mechanical data as well as CPO and/or grain size data (Jacka & Maccagnan, 1984; Qi et al., 2017; 
Vaughan et al., 2017). The EBSD data from Vaughan et al. (2017) and Qi et al. (2017) were re-processed fol-
lowing the same procedure used in this study (Sections 2.2, 2.4) to acquire median grain size and bulk reduced 
Schmid factor, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 measurements. Jacka and Maccagnan (1984) provide mean grain size and c-axis point ori-
entation data—the c-axis point data were digitized using an automated algorithm in MATLAB, from which 

𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 measurements were calculated. For Jacka and Maccagnan (1984) and Vaughan et al. (2017), which include 
experiments performed to various shortening strains, the modeled strain rates or stresses were normalised rel-
ative to their values at the minimum strain rate or peak stress, respectively (as described above in Section 2.5). 
Qi et  al.  (2017), who deformed ice samples under different strain rates, only provide microstructural data at 
∼20% strain. Based on our experiments, the grain size at peak stress is hard to predict due to grain size reduc-
tion even at low strains (Figures 4b−6b). However, the CPO is generally still close to random at the peak stress 
(Figures 4d−6d). Therefore, for the data from Qi et al. (2017), we applied only Azuma's flow law to model the 

Figure 7. Deformation mechanism maps that display the relationship between the three macroscopic variables: stress (y-axis), grain size (x-axis) and strain rate 
(contours with thin black lines) at different temperatures. Strain rate contours are calculated using corresponding flow law parameters (Table 3, from Kuiper, Weikusat, 
et al., 2020, Kuiper, De Bresser, et al., 2020) for dislocation creep (Equation 4) and GBS-limited creep regime (Equation 7). Thick black solid line represents the 
deformation mechanism boundary, at where dislocation creep strain rate equals to GBS strain rate. Dashed colored lines represent the ratio between the dislocation 
creep strain rate and the GBS strain rate. Points representing stress-grain size relationships using experimental data from this study and published literature (Fan 
et al., 2020; Jacka & Li, 1994; Jacka & Maccagnan, 1984; Vaughan et al., 2017) are superposed over deformation mechanism maps at different temperatures. 
Transparent brown line represents the grain size-stress relationship summarized by Jacka and Li (1994) at relatively high strains (> ∼15%).
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Study
Sample 

no.
T 

(°C)

True 
axial 

straina

Initial 
grain 
size 

(μm)b
Measured strain 

rate (s−1)c

Converted 
strain rate 

(s−1)d

Strain rate 
estimated from 

deformation 
mechanism maps

Measured 
grain size, 

d-µm; 
A-mm2e

Converted 
grain size 

(μm)

Measured 
stress at 

the end of 
experiment 

(MPa)f

Converted 
stress 

(MPa)g

This study OIL009 −4 0.01 297𝐴𝐴 𝐴𝐴𝐴  = 1.11E−06 1.11E−06 1.10E−06 d = 501 501 𝐴𝐴 𝐴𝐴  = 1.02 1.02

OIL008 0.04 Not recorded 1.20E−06 d = 453 453 𝐴𝐴 𝐴𝐴  = 0.99 0.99

OIL007 0.08 𝐴𝐴 𝐴𝐴𝐴  = 1.78E−06 1.78E−06 1.30E−06 d = 411 411 𝐴𝐴 𝐴𝐴  = 0.95 0.95

OIL006 0.13 𝐴𝐴 𝐴𝐴𝐴  = 1.22E−06 1.22E−06 1.60E−06 d = 337 337 𝐴𝐴 𝐴𝐴  = 0.9 0.90

PIL176 −10 0.03 𝐴𝐴 𝐴𝐴𝐴  = 1.04E−05 1.04E−05 2.21E−06 d = 126 126 𝐴𝐴 𝐴𝐴  = 1.7 1.70

PIL163 0.05 𝐴𝐴 𝐴𝐴𝐴  = 1.06E−05 1.06E−05 6.73E−06 d = 98 98 𝐴𝐴 𝐴𝐴  = 2.42 2.42

PIL178 0.08 𝐴𝐴 𝐴𝐴𝐴  = 1.19E−05 1.19E−05 3.37E−06 d = 118 118 𝐴𝐴 𝐴𝐴  = 1.97 1.97

PIL177 0.12 𝐴𝐴 𝐴𝐴𝐴  = 1.21E−05 1.21E−05 4.00E−06 d = 92 92 𝐴𝐴 𝐴𝐴  = 1.9 1.90

PIL007 0.19 𝐴𝐴 𝐴𝐴𝐴  = 1.22E−05 1.22E−05 1.99E−06 d = 87 87 𝐴𝐴 𝐴𝐴  = 1.33 1.33

PIL165 −30 0.03 𝐴𝐴 𝐴𝐴𝐴  = 1.09E−05 1.09E−05 4.04E−05 d = 103 103 𝐴𝐴 𝐴𝐴  = 8.15 8.15

PIL162 0.05 𝐴𝐴 𝐴𝐴𝐴  = 1.10E−05 1.10E−05 3.61E−05 d = 78 78 𝐴𝐴 𝐴𝐴  = 7.87 7.87

PIL164 0.07 𝐴𝐴 𝐴𝐴𝐴  = 1.07E−05 1.07E−05 2.80E−05 d = 64 64 𝐴𝐴 𝐴𝐴  = 7.31 7.31

PIL166 0.12 𝐴𝐴 𝐴𝐴𝐴  = 1.20E−05 1.20E−05 1.81E−05 d = 55 55 𝐴𝐴 𝐴𝐴  = 6.45 6.45

PIL268 0.21 𝐴𝐴 𝐴𝐴𝐴  = 1.31E−05 1.31E−05 8.65E−06 d = 38 38 𝐴𝐴 𝐴𝐴  = 5 5.00

PIL266 0.03 𝐴𝐴 𝐴𝐴𝐴  = 5.40E−05 5.40E−05 1.43E−04 d = 115 115 𝐴𝐴 𝐴𝐴  = 11.26 11.26

PIL243 0.24 𝐴𝐴 𝐴𝐴𝐴  = 6.70E−05 6.70E−05 3.16E−05 d = 39 39 𝐴𝐴 𝐴𝐴  = 7.35 7.35

Jacka and 
Maccagnan (1984)

A1 −3 0.01 2,260𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.00E−08 2.84E−08 6.33E−08 d = 2,200 2,200𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

A2 0.03 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.60E−08 5.17E−08 5.15E−08 d = 2,800 2,800𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

A3 0.04 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 4.00E−08 5.77E−08 4.77E−08 d = 3,100 3,100𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

A4 0.10 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.10E−08 9.04E−08 4.07E−08 d = 3,900 3,900𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

A5 0.11 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.30E−08 9.37E−08 3.69E−08 d = 4,600 4,600𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

A6 0.22 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.10E−08 9.53E−08 3.69E−08 d = 4,600 4,600𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

A7 0.51 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.00E−08 1.02E−07 3.69E−08 d = 4,600 4,600𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

Jacka and Li (1994) N/A −3 >0.15 1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.10E−07 N/A 8.65E−08 A = 2 1,596𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.20E−07 2.56E−07 A = 1.8 1,514𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.40E−07 6.30E−07 A = 1.5 1,382𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.4 0.85

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.10E−06 1.65E−06 A = 0.6 874 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.5 1.06

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.60E−06 2.88E−06 A = 0.6 874 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.6 1.27

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 8.80E−06 9.61E−06 A = 0.2 505 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.8 1.70

2,300𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.00E−08 3.46E−08 A = 21.2 5,195𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

2,500𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.32E−07 2.84E−07 A = 1.4 1,335𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

2,900𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.12E−07 3.29E−07 A = 1 1,128𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

2,900𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 9.50E−08 3.66E−07 A = 0.8 1,009𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

1,700𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.25E−08 1.05E−07 A = 1.4 1,335𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

798𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.43E−07 2.46E−07 A = 2 1,596𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

798𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.54E−07 2.84E−07 A = 1.4 1,335𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

798𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.63E−07 6.49E−08 A = 3.6 2,141𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

−5 1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.00E−08 3.60E−08 A = 2.7 1,854𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.30E−07 3.61E−07 A = 1.1 1,184𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.4 0.85

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.40E−06 1.50E−06 A = 0.7 944 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.6 1.27

Table 7 
Summary of Strain Rate, Stress, and Grain Size of Data From This Study and the Literature



Journal of Geophysical Research: Solid Earth

FAN ET AL.

10.1029/2021JB023173

23 of 34

Table 7 
Continued

Study
Sample 

no.
T 

(°C)

True 
axial 

straina

Initial 
grain 
size 

(μm)b
Measured strain 

rate (s−1)c

Converted 
strain rate 

(s−1)d

Strain rate 
estimated from 

deformation 
mechanism maps

Measured 
grain size, 

d-µm; 
A-mm2e

Converted 
grain size 

(μm)

Measured 
stress at 

the end of 
experiment 

(MPa)f

Converted 
stress 

(MPa)g

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 5.60E−06 4.20E−06 A = 0.6 874 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.8 1.70

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.30E−05 1.09E−05 A = 0.2 505 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 1 2.12

1,600𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.67E−08 7.94E−08 A = 1.7 1,471𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.25 0.53

1,600𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.42E−08 7.04E−08 A = 2.3 1,711𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.25 0.53

1,600𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 6.79E−08 7.43E−08 A = 2 1,560𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.25 0.53

−10 1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 7.00E−09 6.52E−09 A = 1.7 1,471𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.2 0.42

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 4.80E−08 1.88E−08 A = 2.1 1,635𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 9.80E−08 5.54E−08 A = 1.1 1,184𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.4 0.85

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.00E−07 1.18E−07 A = 1 1,128𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.5 1.06

1,240𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.80E−07 2.26E−07 A = 0.9 1,071𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.6 1.27

2,718𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 2.90E−08 2.04E−08 A = 1.6 1,427𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.3 0.64

2,718𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 7.20E−08 5.85E−08 A = 0.9 1,071𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.4 0.85

2,718𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.50E−08 2.35E−07 A = 0.7 944 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.6 1.27

2,718𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 1.10E−08 6.83E−07 A = 0.5 798 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 0.8 1.70

2,718𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜  = 3.60E−08 1.63E−06 A = 0.3 618 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜  = 1 2.12

Vaughan et al. (2017) def014 −5 0.01 343𝐴𝐴 𝐴𝐴𝐴  = 1.00E−06 1.01E−06 2.50E−06 d = 355 355 𝐴𝐴 𝐴𝐴  = 1.12 1.12

def013 0.03 1.03E−06 1.52E−06 d = 425 425 𝐴𝐴 𝐴𝐴  = 1.13 1.13

def012 0.05 1.05E−06 9.11E−07 d = 364 364 𝐴𝐴 𝐴𝐴  = 1.22 1.22

def011 0.08 1.08E−06 4.43E−07 d = 349 349 𝐴𝐴 𝐴𝐴  = 1.17 1.17

def010 0.11 1.11E−06 2.10E−07 d = 377 377 𝐴𝐴 𝐴𝐴  = 1.2 1.2

Fan et al. (2020) PIL254 −20 0.03 297𝐴𝐴 𝐴𝐴𝐴  = 1.06E−05 1.06E−05 1.31E−05 d = 62 62 𝐴𝐴 𝐴𝐴  = 4.25 4.25

PIL182 0.04 𝐴𝐴 𝐴𝐴𝐴  = 8.94E−06 8.94E−06 1.32E−05 d = 122 122 𝐴𝐴 𝐴𝐴  = 4.44 4.44

PIL184 0.08 𝐴𝐴 𝐴𝐴𝐴  = 1.17E−05 1.17E−05 4.53E−06 d = 89 89 𝐴𝐴 𝐴𝐴  = 3.24 3.24

PIL185 0.12 𝐴𝐴 𝐴𝐴𝐴  = 1.19E−05 1.19E−05 8.61E−06 d = 53 53 𝐴𝐴 𝐴𝐴  = 3.68 3.68

PIL255 0.20 𝐴𝐴 𝐴𝐴𝐴  = 1.28E−05 1.28E−05 4.25E−06 d = 53 53 𝐴𝐴 𝐴𝐴  = 2.93 2.93
aStrain at the end of uniaxial compression experiment is converted to true axial strain following methods described by Fan et al. (2020). bInitial grain size is median 
grain size for data from this study, Vaughan et al. (2017) and Fan et al. (2020). Initial grain size is taken directly from Jacka and Maccagnan (1984), and it is calculated 
using mean linear intercept method (Appendix E). Initial grain size is converted from averaged grain area by Eq. (E.2) for data from Jacka and Li (1994). c𝐴𝐴 𝐴𝐴𝐴 is true axial 
strain rate. 𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜 is octahedral shear strain rate. 𝐴𝐴 𝐴𝐴𝐴 is engineering strain rate. d𝐴𝐴 𝐴𝐴𝐴𝑜𝑜𝑜𝑜 and 𝐴𝐴 𝐴𝐴𝐴 are converted to 𝐴𝐴 𝐴𝐴𝐴 using methods described by Fan et al. (2020). eMeasured grain 
size is median grain size for data from this study, Vaughan et al. (2017) and Fan et al. (2020). Measured grain size is taken directly from Jacka and Maccagnan (1984), 
and it is calculated using mean linear intercept method (Appendix E). Measured grain size is converted from averaged grain area by Eq. (E.2) for data from Jacka and 
Li (1994). f𝐴𝐴 𝐴𝐴 is differential axial stress. 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 is octahedral shear stress. g𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 is converted to 𝐴𝐴 𝐴𝐴 using methods described by Fan et al. (2020).

mechanical effects of CPO development. The modeled stress at each finite strain was normalised relative to the 
peak stress estimated for a random CPO (𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.25).

For constant load/stress experiments (−4°C series in this study; data from Jacka & Maccagnan, 1984), we cal-
culate the ratio between the normalised measured strain rate, 𝐴𝐴 ̄̇𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (Equation 13) and the normalised modeled 
strain rate, 𝐴𝐴 ̄̇𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (Equation 14) at each finite strain (Figure 8a). For experiments with constant displacement 
rate (−10, −30°C series in this study; data from Qi et  al.,  2017 and Vaughan et  al.,  2017), we calculate the 
ratio between the normalised measured stress drop, 𝐴𝐴 Δ�̄�𝜎measure (Equation 16) and the normalised modeled stress 
drop, 𝐴𝐴 Δ�̄�𝜎model (Equation 18) (Figure 8b). Full details of these data are provided in Section S3 in supporting In-
formation S1. Figure 8 shows that the measured strain rate enhancement (for constant load/stress experiments) 
and stress drops (for constant displacement rate experiments) are generally close to the modeled results using 
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CPO-only model, that is, 𝐴𝐴 ̄̇𝜀𝜀measure∕( ̄̇𝜀𝜀model(CPO − only)) ≈ 1 ; 𝐴𝐴 Δ�̄�𝜎measure∕(Δ�̄�𝜎model(CPO − only)) ≈ 1 (purple sym-
bols, Figure 8). On the other hand, the grain-size-sensitive model generally underestimates the measured strain 
weakening, that is, 𝐴𝐴 ̄̇𝜀𝜀measure∕( ̄̇𝜀𝜀model(GSS)) > 2 ; 𝐴𝐴 Δ�̄�𝜎measure∕(Δ�̄�𝜎model(GSS)) ≫ 5 (red symbols, Figure 8). In some 
cases, the grain-size-sensitive model even predicts strain hardening, that is, 𝐴𝐴 Δ�̄�𝜎measure∕(Δ�̄�𝜎model(GSS)) < 0 (red 
symbols, Figure 8b), which is at odds with the experimental observations of strain weakening. Thus, even across 
a broader range of strain rates than those explored in our experiments, CPO development remains the dominant 
contributor to strain weakening. Weakening due to grain size reduction remains negligible.

4.3. Implications for Natural Ice Flow

Even though all the mechanical models predict ice strengths that generally match the magnitudes of measured ice 
strength, only Azuma's CPO-only flow law matches the observed patterns of strain weakening (Figures 2 and 3). 
This observation suggests that strain weakening in ice can be estimated on the basis of c-axis orientations alone, 
without regard for grain size evolution, at least under the relatively high stress, high temperature conditions ex-
plored here. Therefore, acquiring ice sheet scale measurements of c-axis orientation would be valuable for better 
constraining terrestrial ice flow mechanics and rates of ice mass discharge. Terrestrial ice c-axis data are usually 
provided by microstructural analyses of ice cores (e.g., Azuma et al., 1999; Weikusat et al., 2017). However, 
recent developments in cryo-seismology may provide a cost-effective way of estimating ice c-axis orientations 
across a wide region (on the order of several square kilometres or more) via inversion of seismic anisotropy data 
(Lutz et al., 2020; Smith et al., 2017).

It is known that under natural conditions, two important facts including impurities and water content, which are 
not explored in this study, might also influence the physical properties of natural ice masses and lead to strain 
weakening:

1.  Impurities including insoluble particles (e.g., dust), solutes (e.g., salts), and air bubbles (Eichler et al., 2017; 
Hammonds & Baker, 2018; Obbard & Baker, 2007; Steinbach et al., 2016). The accumulation of microparti-
cles or air bubbles along grain boundaries can reduce grain boundary mobility, inhibiting normal grain growth, 
enhancing strain localization, and thereby promoting further grain size reduction (Herwegh et al., 2011; Stein-
bach et al., 2016). Meanwhile, soluble impurities, such as HF and HCl, can enhance mechanical softening in 
ice, because F− or Cl− ions are easy to substitute at locations of O atoms in ice-1h lattices, creating additional 
point defects that enhance dislocation creep (Fujita et al., 2014; Jones, 1967; Jones & Glen, 1969).

2.  Meltwater is an important component of natural ice, and it can be produced via surface melting and/or shear 
heating within ice shear margins (Cuffey & Paterson, 2010). Laboratory experiments show the presence of 
water could attenuate the internal stress, facilitate grain boundary migration and/or nucleation, and reduce 
ice viscosity (De La Chapelle et al., 1999; Duval, 1977; Haseloff et al., 2019). Consequently, meltwater con-
tent might also promote strain weakening and causing strain localization within terrestrial ice shear margins 
(Hunter et al., 2021).

4.4. Implications for Rock-Forming Minerals and Lithospheric Deformation

Strain weakening also enables deformation to localize into lithospheric shear zones and plate boundaries (e.g., 
Little et al., 2015; Skemer et al., 2009; White et al., 1980), and therefore plays a central role in plate tectonics. 
In order to accurately model plate-scale lithospheric deformation, we therefore need a comprehensive under-
standing of the microphysical processes that produce strain weakening across a broad range of conditions in 
rock-forming minerals. Many studies have linked strain weakening at relatively low homologous temperatures (𝐴𝐴 𝐴𝐴ℎ 
<0.7) to mechanisms such as grain size evolution (Karato et al., 1986; Rutter, 1995), CPO development (Schmid 
et al., 1987; Urai et al., 1986), partial melting (Burlini & Bruhn, 2005; Hirth & Kohlstedt, 1995), metamorphic 
reactions and transformations (Gordon, 1971; Poirier, 1982), water weakening (Griggs & Blacic, 1965; Karato 
et al., 1986; Kronenberg & Tullis, 1984) and mineral phase mixing and/or layering (Bons & Cox, 1994; Cross 
et al., 2020). However, we lack a comprehensive understanding of the processes that produce strain weakening in 
rocks and minerals at very high temperatures (𝐴𝐴 𝐴𝐴ℎ >0.7). This is because most rock deformation rigs are limited 
to temperatures <1500 K, whereas many rock-forming minerals have much higher melting temperatures (e.g., 
∼1950 K for quartz, ∼2200 K for olivine). Thus, studies of ice deformation—such as this one—provide useful 
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Figure 8. Modeling the relative contribution of CPO development and grain size change to the strain weakening using data 
from this study and published literature (Jacka & Maccagnan, 1984; Qi et al., 2017; Vaughan et al., 2017). Results using the 
grain-size-sensitive model (Section 2.3.2), which considers the grain size effects, are colored red; results using the CPO-only 
model (Section 2.3.3), which considers the CPO development, are colored purple. (a) For constant load experiments, at each 
finite strain, the ratio between measured normalised strain rate, 𝐴𝐴 ̄̇𝜺𝜺𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (Equation 13), and modeled normalised strain rate, 

𝐴𝐴 ̄̇𝜺𝜺𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (Equation 14), was calculated (Section 4.2.3). (b) For constant displacement rate experiments, at each finite strain, 
the ratio between measured normalised stress drop, 𝐴𝐴 Δ�̄�𝜎measure (Equation 16), and modeled normalised stress drop, 𝐴𝐴 Δ�̄�𝜎model 
(Equation 14), was calculated (Section 4.2.3).
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insights into the high homologous temperature deformation of rock-forming minerals; particularly those with 
strong viscous anisotropy, like quartz and olivine.

Our experimental data suggest that at 𝐴𝐴 𝐴𝐴ℎ ≥ 0.9, strain weakening is dominated by CPO development, whereas 
grain size reduction plays a negligible role. In contrast, at 𝐴𝐴 𝐴𝐴ℎ ≈ 0.7, it has been found that strain weakening in 
olivine is dominated by grain size reduction, with only ∼30% of strain weakening arising from CPO development 
(Hansen et al., 2012). Together, these data indicate that strain weakening can result from both grain size reduc-
tion and CPO development; however, the relative contributions of these two processes may vary systematically 
across different thermomechanical conditions. Grain size reduction may dominate strain weakening at low tem-
peratures (Hansen et al., 2012), whereas CPO development may govern strain weakening at high temperatures 
(this study), at least for viscously anisotropic minerals—like ice, olivine, and quartz—which are very sensitive 
to CPO development.

5. Conclusions

1.  At temperatures of −4 to −30°C (𝐴𝐴 𝐴𝐴ℎ = 0.89–0.99), initially isotropic, polycrystalline ice undergoes strain weak-
ening beyond strains of 1%–3%. Grain size reduction and CPO development coincide with strain weakening.

2.  Grain sizes decrease modestly with increasing strain, particularly at lower temperatures where fine recrys-
tallized grains progressively nucleate. To explore the role of grain size evolution in strain weakening, stress 
and grain size measurements were inserted into a composite ice flow law (Goldsby & Kohlstedt, 1997, 2001) 
that includes grain size sensitivity but does not account CPO development. The composite law suggests that 
both grain boundary sliding and dislocation creep contribute to sample straining under our experimental 
conditions. Moreover, the contribution of grain boundary sliding (to overall straining) is estimated to increase 
with increasing strain, due to modest bulk grain size reduction. Despite this, the composite flow law predicts 
a near-constant sample strength with increasing strain, in contradiction to the observed strain weakening. This 
result suggests that grain size reduction has comparatively little effect on strain weakening under our high 
homologous temperature experimental conditions.

3.  In addition to grain size evolution, crystallographic preferred orientation (CPO) development is also observed 
with increasing strain. At lower temperatures, c-axes form a single cluster, centered around the compression 
axis, which should produce more hard slip with increasing strain. At higher temperatures, c-axes instead 
evolve toward easy slip orientations, forming an open cone (small circle) around the compression axis. To 
examine ice strength evolution due to CPO development, c-axis orientation statistics were incorporated into 
a flow law that solely considers the effect of CPO on bulk ice strength (Azuma, 1994, 1995). The CPO-only 
model is able to closely replicate the observed strain weakening, suggesting that CPO development is respon-
sible for strain weakening in our experimental samples.

4.  Previous studies have found that grain size reduction plays a dominant role in strain weakening at lower 
homologous temperatures (Hansen et al., 2012). Our data suggest that CPO development is the more effec-
tive strain weakening mechanism at higher homologous temperatures, particularly for materials with strong 
viscous anisotropy like ice and, we suggest, possibly olivine and quartz. Grain size reduction and associated 
weakening, on the other hand, may be more pronounced under high stress, low temperature conditions, where 
recrystallized grains are finer. Together, we suggest that strain weakening may result from both grain size 
reduction and CPO development, the relative contributions of which may vary as a function of temperature, 
grain size, stress, and strain rate.

Appendix A: Estimate the Impact of Elastic Deformation on Plastic Strain 
Measurement for Constant Load Experiments
For a deformed material, the measured strain using the initial and final sample dimension (e.g., Equation 1) 
comprises both elastic strain and plastic strain (Hill et al., 1947). The elastic strain, 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , is the strain that is 
fully recoverable after the removal of load, and it is the ratio between the applied differential stress, 𝐴𝐴 𝐴𝐴 , and the 
Young's modulus, 𝐴𝐴 𝐴𝐴 :

𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝜎𝜎
𝐸𝐸 (A1)
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During the deformation of metal and rocks, where the applied stress is usually very high, the elastic strain should 
be considered in order to deduce the correct plastic strain (Hansen et al., 2012; Hill et al., 1947).

Under the setting of constant load experiments reported in this study, the assembly of walnut wood piston 
(Young's modulus, 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , of ∼11 GPa at ∼10% moisture content, Bachtiar et al., 2017) and ice (Young's modulus, 

𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 , ∼9.3 GPa, Gammon et al., 1983) was subject to an initial uniaxial stress of ∼1 MPa (Sect. 2.1.2). Therefore, 
based on Equation A1, the elastic strain of walnut wood and ice is 𝐴𝐴 9.1 × 10−5 and 𝐴𝐴 1.0 × 10−4 , respectively, both 
of which are at least two orders of magnitudes lower than the lowest strain of 0.01 achieved in the experiments. 
Therefore, we suggest the elastic strain of walnut wood piston and ice sample is generally insignificant, and they 
are negligible compared with the plastic strain of ice sample.

Appendix B: Estimate the Volume Fraction of Different Grain Size Classes
We estimate volume fraction for different grain size classes using the Scheil-Schwartz-Saltikov method (short-
ened as Saltikov method, sometimes spelled as “Saltykov method”: Saltikov, 1967; Scheil, 1931; Schwartz, 1934) 
by assuming the grains are spherical. Numerical modeling work from Sahagian & Proussevitch (1998) shows that 
statistically, grain shape in 3-D has little effect on the grain size distributions captured by 2-D cross-sections. The 
Python-based GrainSizeTools toolbox (Lopez-Sanchez & Llana-Fúnez, 2016) was applied to estimate 3-D grain 
volume fraction from the data of grain number frequency as a function of grain size. The Saltikov method has 
been proven accurate in estimating the volume percentage with ±5% uncertainty for given grain size classes that 
correspond to the grain size class bin width of 8–16 μm (Lopez-Sanchez & Llana-Fúnez, 2016). In this study, we 
choose grain size class width of 10 μm as a compromise of minimizing the error of individual bins in the distri-
bution (i.e., having enough data in each class width) and grain size sensitivity in the model (i.e., having enough 
number of grain size classes).

Appendix C: Deformation Boundary Condition Models
Grain size distribution has been used in grain size sensitive flow laws to quantify the control of grain size on the 
mechanical behavior of deformed rock and ice (Freeman & Ferguson, 1986; Kuiper, De Bresser, et al., 2020; 
Kuiper, Weikusat, et al., 2020; Rutter & Brodie, 1988; Ter Heege et al., 2004). The incorporation of grain size dis-
tributions into the flow laws is based on the recognition that large and small grains may behave differently during 
the deformation, since the strain rates related to grain size sensitive (GSS) mechanisms, such as GBS and diffu-
sion creep, will be faster in small grains (Ghosh & Raj, 1981; Goldsby & Kohlstedt, 1997; Raj & Ghosh, 1981). 
Freeman and Ferguson  (1986) and Ter Heege et  al.  (2004) applied the following two bounding end-member 
deformation boundary condition models.

1.  Homogeneous stress model, with local strain rate varying from grain to grain.
2.  Homogeneous strain rate model, with local stress varying from grain to grain.

We consider an ice sample comprising 𝐴𝐴 𝐴𝐴 classes of grain sizes of 𝐴𝐴 𝐴𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐵𝐵 , 𝐴𝐴 𝐴𝐴𝐶𝐶 , …, 𝐴𝐴 𝐴𝐴𝑖𝑖 occupying volume fractions 
of 𝐴𝐴 𝐴𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐵𝐵 , 𝐴𝐴 𝐴𝐴𝐶𝐶 , …, 𝐴𝐴 𝐴𝐴𝑖𝑖 , respectively. For the homogeneous stress model (Figure C1a), we assume the stress for each 
grain size class equal to the bulk stress:

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝐴𝐴 = 𝜎𝜎𝐵𝐵 = 𝜎𝜎𝐶𝐶 = … = 𝜎𝜎𝑖𝑖. (C1)

Grain size classes have corresponding strain rates of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐴𝐵𝐵 , 𝐴𝐴 𝐴𝐴𝐴𝐶𝐶 , …, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 (Figure C1a). The strain rate, 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 , in grain 
size class 𝐴𝐴 𝐴𝐴 is calculated using the grain-size-sensitive model (Equation 6). The modeled bulk strain rate, that is, 
sum of volume weighted strain rates in all grain size classes, can be expressed as (Figure C1a):

�̇�𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝐴𝐴�̇�𝜀𝐴𝐴 + 𝑣𝑣𝐵𝐵�̇�𝜀𝐵𝐵 + 𝑣𝑣𝐶𝐶 �̇�𝜀𝐶𝐶 +…+ 𝑣𝑣𝑖𝑖�̇�𝜀𝑖𝑖. (C2)

For homogeneous strain rate model (Figure C1b), we assume the strain rate for each grain size class equals to the 
bulk strain rate:

�̇�𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �̇�𝜀𝐴𝐴 = �̇�𝜀𝐵𝐵 = �̇�𝜀𝐶𝐶 = … = �̇�𝜀𝑖𝑖. (C3)
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The stress 𝐴𝐴 𝐴𝐴𝑖𝑖 for grain size class 𝐴𝐴 𝐴𝐴 corresponding to the grain-size-sensitive model can be calculated by solving 
Equation 6 via iteration. The modeled bulk stress, that is, sum of volume weighted stresses in all grain size classes 
can be expressed as (Figure C1b):

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝐴𝐴𝜎𝜎𝐴𝐴 + 𝑣𝑣𝐵𝐵𝜎𝜎𝐵𝐵 + 𝑣𝑣𝐶𝐶𝜎𝜎𝐶𝐶 +…+ 𝑣𝑣𝑖𝑖𝜎𝜎𝑖𝑖. (C4)

Appendix D: Calculate the Density of c-Axes Between Given Co-Latitude intervals
Figure D1 is a 3-D illustration of an interval between two co-latitudes of 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 that contain a certain number 
frequency, 𝐴𝐴 𝐴𝐴 , of c-axes measurements. Therefore, number frequency density (𝐴𝐴 Φ ), that is, number frequency per 
unit area, can be calculated from the ratio between number frequency, 𝐴𝐴 𝐴𝐴 , and the area of the co-latitude interval 
in 3-D, 𝐴𝐴 𝐴𝐴 :

Φ =
𝑓𝑓
𝐴𝐴

 (D1)

The area of the co-latitude interval in 3-D, 𝐴𝐴 𝐴𝐴 , is the difference between the area of two spherical caps with the 
height of 𝐴𝐴 𝐴1 and 𝐴𝐴 𝐴2 (Figure D1):

Figure C1. Schematic drawing that illustrates principles of the two end-member deformation boundary condition models (Section 2.4.1; Appendix C) of (a) 
homogeneous stress with local strain rate varying from grain to grain, and (b) homogeneous strain rate with local stress varying from grain to grain. Note that, for the 
sake of simplicity and clarity of demonstration, each grain is presented with a quadrangle, and grains with the same sizes are grouped. Undeformed sample is composed 
by three layers of grains; each layer contains grains with the same sizes; grain size decreases from layer C to layer A. After deformation, each grain is colored by the 
relative magnitude of strain rate or stress based on homogeneous stress model (a) and homogeneous strain rate model (b). For each layer, the corresponding strain rate, 
volume frequency and stress are marked next to it.
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𝐴𝐴 = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐1 − 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐2 = 2𝜋𝜋𝜋𝜋(ℎ1 − ℎ2) (D2)

Figure D1 shows 𝐴𝐴 𝐴1 and 𝐴𝐴 𝐴2 are function of co-latitudes of 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 , respectively:

ℎ1 = 𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1)

ℎ2 = 𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2)

 (D3)

By combining Equations D2 and D3, the Equation D2 can be converted to:

𝐴𝐴 = 2𝜋𝜋𝜋𝜋2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1) (D4)

Equation D4 shows the area of the co-latitude interval in 3-D, 𝐴𝐴 𝐴𝐴 , has a positive correlation with 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 , 
that is, 𝐴𝐴 𝐴𝐴 ∝ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1) . Moreover, the number frequency density, 𝐴𝐴 Φ , is a function of 𝐴𝐴 𝐴𝐴 (Equation D1). There-
fore, in this study, we calculate the number frequency density, 𝐴𝐴 Φ , at a given co-latitude interval using:

Φ =
𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1
 (D5)

Appendix E: Deformation Mechanism Maps
Goldsby (2006) and Durham et al. (2010) used a deformation mechanism map to illustrate the relevance of 
dislocation creep and GBS-limited creep in experimentally and naturally deformed ice. Deformation mech-
anism maps were introduced to summarize information about the range of dominance of distinct deforma-
tion mechanisms in a polycrystalline solid (Ashby,  1972; Frost & Ashby,  1982). Deformation mechanism 
maps display the relationship between the three macroscopic variables: stress (y-axis), grain size (x-axis) and 
strain rate (contours with dashed lines) at different temperatures (Figure 7). The dislocation creep regime and 
GBS-limited creep regime are separated by a boundary displayed as a heavy black solid line, along which 
both mechanisms have an equal contribution to the total strain rate (Figure 7). At each temperature, strain rate 
contours were calculated using corresponding flow law parameters (Table 3) for dislocation creep (Equation 4) 
and GBS-limited creep regime (Equation 7). The reader is reminded that the deformation mechanism boundary 
(displayed as a heavy black solid line) is not a separation of deformation mechanisms, the deformation mech-
anism regime indicates the dominant deformation mechanism. Dashed colored lines represent the dislocation 
creep strain rate as ratio to the GBS-limited creep strain rate or the GBS-creep strain rate as ratio to the dis-
location creep strain rate. For example, the dark-pink dashed line suggests dislocation creep strain rate is 100 

Figure D1. A 3-D illustration of an interval between two co-latitudes of 𝐴𝐴 𝜽𝜽1 and 𝐴𝐴 𝜽𝜽2 that contain a certain number frequency of 
c-axes measurements.
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times of the GBS strain rate; the red dashed line suggests GBS strain rate is 100 times of the dislocation creep 
strain rate (Figure 7).

We superposed stress-grain size points from experimental data from this study and published literatures (Fan 
et al., 2020; Jacka & Li, 1994; Jacka & Maccagnan, 1984; Vaughan et al., 2017; Table 7, Figure 7). The stress 
from this study, Vaughan et al. (2017) and Fan et al. (2020) is differential axial stress. The stress from Jacka and 
Maccagnan (1984) and Jacka and Li (1994), were converted from reported octahedral shear stress, 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 , using:

𝜎𝜎 = 3
√

2
𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 (E1)

For data from this study, Vaughan et al. (2017) and Fan et al. (2020), 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 is the median grain size. For data from 
Jacka and Maccagnan (1984), the averaged grain size, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , is taken directly from the paper. The 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 from Jacka 
and Maccagnan (1984) is calculated using mean linear intercept method and 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 = 1.75𝐿𝐿∕𝑁𝑁 , where 𝐴𝐴 𝐴𝐴 is the 
length of linear transverse, 𝐴𝐴 𝐴𝐴 is the number of grains intercepted by the linear transverse. For data from Jacka and 
Li (1994), the average grain size, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 , is calculated from averaged grain area 𝐴𝐴 𝐴𝐴 , using:

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 = 2 ×
√

𝐴𝐴
𝜋𝜋

 (E2)

Points projected using stress-grain size relationships correspond to estimated strain rates as constrained by the 
strain rate contours (thin solid black lines) in deformation mechanism maps (Figure 7). Jacka and Li (1994) only 
reports a general strain range of their samples (>0.15).
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