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Abstract: Trust and confidence in autonomous behavior is required to send autonomous vehicles into
operational missions. The authors introduce the Performance Evaluation and Review Framework
Of Robotic Missions (PERFORM), a framework to enable a rigorous and replicable autonomy test
environment, thereby filling the void between that of merely simulating autonomy and that of
completing true field missions. A generic architecture for defining the missions under test is proposed
and a unique Interval Type-2 Fuzzy Logic approach is used as the foundation for the mathematically
rigorous autonomy evaluation framework. The test environment is designed to aid in (1) new
technology development (i.e., providing direct comparisons and quantitative evaluations between
autonomy algorithms), (2) the validation of the performance of specific autonomous platforms, and
(3) the selection of the appropriate robotic platform(s) for a given mission type (e.g., for surveying,
surveillance, search and rescue). Three case studies are presented to apply the metric to various test
scenarios. Results demonstrate the flexibility of the technique with the ability to tailor tests to the
user’s design requirements accounting for different priorities related to acceptable risks and goals of
a given mission.

Keywords: autonomous systems; marine vehicles; evaluation tools; performance metrics; fuzzy logic;
Interval Type-2 Fuzzy Logic

1. Introduction

The potential impact of autonomous (self-driving) vehicles in the ocean domain is
undisputed. From exploring the more than 90% of the ocean environment that remains
a mystery, to increasing data collection efficiency and cost effectiveness, to shipping and
minimizing human risk in hazardous environments, autonomous marine vehicles serve
scientific, commercial, and military interests. To transition these autonomous systems
into operational missions, however, a quantifiable level of trust and confidence in robot
actions requires validation [1,2]. Current research still primarily consists of simulations
and proof-of-concept vehicles tested only in controlled laboratory or field environments
due to the lack of reliable testing of autonomous decision-making [1,3–5]. The existing gap
between technological advancement and the effective test and evaluation of these systems
must be bridged to make autonomous vehicles increasingly practical for field use and not
simply for an academic exercise [6,7].

Standard test and evaluation techniques, such as design of experiments and Monte
Carlo analysis are unusable due to the excessive number of variables inherent to an au-
tonomous system [8]. One technique developed by the Johns Hopkins Applied Physics
Laboratory (APL) uses modeling and simulation to perform many iterations of particular
scenarios and then form scores to provide some means for evaluating a statistically large
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number of runs. This tool, referred to as the Range Adversarial Planning Tool (RAPT),
searches for boundaries in capabilities to identify the most critical tests for test range opera-
tions [6]. Other work has been done with developing methods using model-checking, finite
state machines, and process algebras, but these techniques require a model that completely
describes the autonomy [6]. Due to proprietary intellectual property with software and the
complex nature of autonomous systems, these modeling strategies have limited applicable
use [6,7]. Additionally, these strategies test the robustness of the software but do not give
information about how the system will perform while executing the mission (e.g., whether
the vehicle will navigate to the left or right of an obstacle) [9]. Oftentimes, new issues arise
when moving from a simulation environment to an experimental platform, necessitating
experimental testing as a critical component of the autonomy validation process.

Current experimental test procedures for autonomous vehicles are usually conducted
on a case-by-case basis with limited mathematical rigor [7,10] and a lack of agreed upon
standards and definitions for autonomous systems and related performance metrics [11,12].
Autonomous ground vehicle companies resort to driving millions of miles to perform
validation tests, which is generally economically impractical [13–15]. Some strategies focus
on autonomy level opposed to mission performance such as in the Autonomy Levels for
Unmanned Systems (ALFUS) framework [10,16] and the US Army Mission Performance
Potential (MPP) framework [17]. These techniques predict expected performance for a
mission set and level of autonomy but it does not directly compare the performances of
varying types of autonomy algorithms, nor does it provide a direct measure of vehicle
performance for individual iterations of a given mission scenario.

Other test range methods have been developed in response to ground vehicle compe-
titions such as the DARPA Grand Challenge [18,19]. These methods have applied a Type-1
Fuzzy Inference System (T1-FL) using an analytic hierarchy process (AHP) for weight
distribution. T1-FL systems, however, do not take into account additional uncertainty in
its given membership functions and, therefore, have limited capabilities in minimizing
the effects of such uncertainties [20]. These uncertainties originate from such sources as
(but not limited to) noisy measurements, the chosen linguistic terms, and the user-defined
rule-base, among other variables.

The authors introduce the Performance Evaluation and Review Framework Of Robotic
Missions (PERFORM), a framework with which to enable a rigorous and replicable auton-
omy test environment while limiting test redundancy and reducing the number of live test
missions to that of a representative subset of scenarios (as determined by the user), thereby
filling the void between that of merely simulating autonomy and that of completing true
field missions. This environment enables (1) new technology development (i.e., providing
direct comparisons and quantitative evaluations of varying autonomy algorithms), (2) the
validation of the performance of specific autonomous platforms, and (3) the selection of the
appropriate robotic platform(s) for a given mission type (e.g., for surveying, surveillance,
search and rescue). PERFORM uses Artificial Intelligence (AI) to provide a quantified
assessment of autonomous system capabilities in this testbed environment. With the use of
a Type-2 Fuzzy Logic (T2-FL) system approach, this technique takes into account internal
and external uncertainties (e.g., obstacles, sensor noise, and vehicle mobility). The authors
use Interval Type-2 Fuzzy Logic (IT2-FL) specifically, as it is the most widely used and com-
putationally efficient of the T2 subsets [21–23]. IT2-FL systems are capable of identifying
and representing model uncertainty in the dynamic platform and platform environment, as
well as in modeling on-board sensor measurements [21,24,25]. Designed as a Multi-Input
Single-Output (MISO) system interface, the final output of the proposed AI-based (via
IT2-FL) autonomy evaluation framework is a numerical performance score, which provides
a high-level external view of the autonomous system with which to measure and validate
system proficiency (with respect to user-specified mission tasks) and to predict overall
autonomous vehicle behavior.
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2. Materials and Methods
2.1. Mission Architecture

For the purpose of generalizing the autonomy evaluation procedure, a generic architec-
ture for defining the test missions is proposed. The authors maintain that any autonomous
mission may be subdivided into a set of generic tasks that autonomous missions often incor-
porate (e.g., transit, conduct survey, station keeping, etc.). Each task may be divided into
generic subtasks (for the remaining document, task will refer to both tasks and subtasks).
These tasks are separated by time and order via the mission-scripted programming but also
by events that represent time-based changes in the environment (e.g., a newly discovered
obstacle, a sudden change in sea state, etc.) or within the autonomous platform itself
(e.g., low battery, faulty on-board sensor, etc.). Depending upon how/when these events
occur during the tasks being performed, specific mission behaviors should (or must) take
place in order to complete a specific task (or mission) or to prevent catastrophic system
failure. In other words, behaviors consist of actions and/or reactions conducted by the
autonomous vehicle during the execution of a task to aid in completion of the task. An
important aspect of decomposing a mission into tasks and events is that at the lowest
level of the decomposition, there could be significant overlap of tasks and reactions to
events for a wide variety of missions. This enables one to make inferences about future
autonomous capability from the evaluation performed in this environment for a set of
canonical missions. Flexibility in mission definitions to capture a range of operational
scenarios (as opposed to testing individual scenarios) during evaluation is highly desir-
able [26]. Describing a mission with tasks and associated events form the foundations for
creating the corresponding scenarios and metrics.

In the proposed architecture, a mission (M) is defined as a set of tasks that must be
completed to realize a specific goal or goals. Tasks (T) are a set of data structures that define
quantifiable starting and ending states (as a function of time and space) and that can be
combined with other tasks to realize a mission goal. Tasks should be described through
simple language (e.g., travel to a desired waypoint), and they are conditionally dependent
within a specific mission such that relations between the order of tasks can be represented
as a directed graph. Events (E) are defined as a set of possible time-based changes (both
internal and external to the given autonomous vehicle) that occur during and/or as a
result of a specific task. Behaviors (B) are defined as the actions necessary to perform a
given task (e.g., avoid known obstacle, no event occurring, etc.) or occur in response to
an event (e.g., avoid a new obstacle, perform station keeping, etc.). Example parameters
used for performance evaluation may include elements such as the vehicle’s total time and
distance traveled to complete a task, the closest point of approach (CPA), and the total
energy consumed.

Scenarios become instances of a given mission and are defined such that S denotes a
space of all possible scenarios that can be“realized” with respect to the mission and the
platform being used to accomplish the mission. Each element Si ∈ S is selected by choosing
values for a set of scenario parameters that are derived from key aspects of the mission
description. Scenario parameters may encompass items such as survey areas (box size
and location), launch/recovery points, time of day, and starting battery charge. A metric
function, µ, maps elements of the scenario space Si to < values:

∀Sik ∈ Si ∃ µ : µ(Sik) ∈ < (1)

thereby combining many aspects for evaluating performance of the autonomous vehicle as
it reacts to events and accomplishes tasks as it executes the scenario. Essentially, this metric
produces a score for every scenario (a realized instance of the mission). In set notation, the
mission space with the associated T, E, B, and S may be represented as follows:
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M(Si) =


M1i =

{
T11(t, x, y, z, B, E), T12(t, x, y, z, B, E), ..., T1n(t, x, y, z, B, E)

}
M2i =

{
T21(t, x, y, z, B, E), T22(t, x, y, z, B, E), ..., T2n(t, x, y, z, B, E)

}
...
Mmi =

{
Tm1(t, x, y, z, B, E), Tm2(t, x, y, z, B, E), ..., Tmn(t, x, y, z, B, E)

} (2)

where m, n, and i are mission number, task number, and scenario number, respectively.
Figure 1 gives an overview of an example Autonomous Surface Vehicle (ASV) seafloor
mapping mission with the proposed architecture.

By representing a mission with this framework, set operations may then be used to
compare various generic missions and tasks with the intention of limiting test redundancy
and reducing the number of test missions to that of the most critical scenarios. The main
goal here is to alleviate the need to determine the exhaustive list of all possible scenarios
and combinations of mission tasks, events, and behaviors for which the performance of
the vehicle autonomy must be tested against. Instead, this mission framework provides
an analysis platform with which to test/observe platform autonomy and which is fully
modular, versatile, and scalable.

Figure 1. Example seafloor mapping mission with associated tasks and behaviors.

Another useful representation is expressing the mission as a directed graph such
that M is defined as the graph, T is the subgraph partitioned by tasks containing a set of
vertices, VG, and a set of ordered edges, EG (Equation (3)). The subscript G differentiates
the graph representation from that of the set notation of Equation (2). Mission M may then
be represented as:

M(T1(VG, EG), T2(VG, EG), ..., Tn(VG, EG)) (3)

Figure 2 shows an example of this graph structure with the same mission as defined
in Figure 1. In Figure 2, insight on relationships between tasks and possible events causing
transitions between tasks is observed. Here, the vertices correspond to the possible events
and the edges are the possible transitions between events. Behaviors, B, represent the
underlying status of the vehicle in response to events and are not shown explicitly in
Figure 2 and Equation (3). Figure 3 shows a task and event path for an instance of mission
failure versus mission success.
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Figure 2. Graphical overview of the example mission for a given scenario.

Figure 3. Example of a task and event flow for mission failure (top) vs. mission success (bottom).

2.2. Fuzzy Logic Overview

Fuzzy Logic (FL) systems and theory, a subset of AI, is employed as the basis for quan-
tifying parameters that describe the performance of a task. An accurate characterization
of a system’s performance requires complete knowledge of the mission and the mission
requirements, which is often not known a priori [27]. Due to the infinite number of possible
scenarios in a given mission and the impracticality of constraining the system and the
prevalence of proprietary software, the approach for this research remains independent
of internal autonomy architectures [6,8] and defines boundaries on the scope of this work
without loss of generality. Additionally, this FL strategy allows flexibility for various
definitions of “success” between users (e.g., a defense employee as opposed to a scientist)
by weighting performance qualities the user deems important.

Unlike traditional binary logic (i.e., 0, 1), FL utilizes the concept of partial truth (i.e., any
value ranging from 0 and 1). This logic more closely resembles how the human brain
processes information [24]. In summary, the general FL procedure takes fuzzified input data
(via linguistic variables and user-determined membership functions) and processes them
through an “if-then” framed rule base, producing a set of fuzzy outputs. These outputs
are then combined/weighted into a single output, which is then defuzzified (via another
set of membership functions) to produce the final crisp result. First presented by [28], this
strategy is often employed in other sectors such as medicine, manufacturing, and business
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with applications to control systems, decision-making, evaluation, and management. Here,
the authors review basic terminology to justify IT2-FL over other forms of FL. FL is the
chosen approach for this work due to its ability to provide a strict mathematical framework
in which vague and uncertain phenomena can be precisely and rigorously studied [24,27].

2.2.1. Type-1 Fuzzy Logic

In traditional FL theory, a characteristic function allows for various degrees of mem-
bership for the elements of a given set. A T1 fuzzy set, A, with a collection of objects X
(also referred to as the “universe of discourse”) and elements x, is defined as:

A = {(x, µA(x))|x ∈ X} (4)

where µA is the degree of membership of an element x in the set A [27]. These membership
functions (MFs) are user selected, often (but not exclusively) incorporating triangular,
trapezoidal, and gaussian functions, among others. The MF itself is an arbitrary curve that
is chosen for simplicity, convenience, speed, and efficiency. For this application, the fuzzy
sets for mission parameters will have defined minimum and maximum thresholds based
on the testbed space.

2.2.2. Type-2 Fuzzy Logic

T2-FL was first defined in Zadeh [24], but has gained significant research interest in
recent years [22,29]. T2-FL is also referred to as “General T2-FL (GT2-FL)”. A special case of
GT2-FL systems is Interval T2-FL (IT2-FL). Both categories of T2-FL are parametric models
with additional design degrees-of-freedom to that of a T1-FL system [30,31] and are useful
in situations where determining a definitive MF is difficult [22,32].

A T2-FL set is denoted as Ã. As opposed to T1 systems, additional lower (LMF) and
upper (UMF) membership functions must also be defined for T2-FL. The corresponding
MFs denoted as µL

Ã
(x) and µU

Ã
(x) for lower and upper bounds, respectively. X now

refers to the primary domain, and Jx is now defined as the secondary domain. Rewriting
Equation (4) as a General T2 system, Ã can be defined as (as shown in [29,33]):

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (5)

What differentiates IT2-FL from GT2-FL is that the IT2-FL uses a uniform secondary
MF (i.e., µÃ(x, u) = 1), whereas the MF of GT2-FL varies with its secondary membership.
As such, the resulting IT2-FL reduces the GT2-FL of Equations (5) to (6) as exemplified in
Figure 4, and Ã reduces to:

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (6)

Here, since the third dimensional value of the IT2-FL membership is constant, it can be
more conveniently represented as a reduced two-dimensional Field of Uncertainty (FOU).
For added accuracy and versatility in dealing with MF uncertainties (e.g., vehicle platform
uncertainties and sensor noise), the authors choose to implement T2-FL (over T1-FL), and
they choose IT2-FL (over GT2-FL) in anticipation of possible data overload burden to
maintain computational feasibility, as the GT2-FL approach has been previously shown to
introduce design issues and results in high computational costs [31].
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Figure 4. Example of a GT2-FL (left) vs. IT2-FL (right) Fuzzy Set.

As variance quantifies the uncertainty about a variable’s mean in probability theory,
the use of IT2-FL enables the quantification of existing uncertainties within a membership
function. The FOU is defined as the area bounded by the Lower Membership Function
(LMF) and the Upper Membership Function (UMF) and is depicted in the example MF in
Figure 5, where the IT2-FL MF is also differentiated from that of a T1-FL. The IT2-FL FOU
may be expressed as the union of all primary memberships such that

FOU(Ã) =
⋃
∀x∈X

(µL
Ã
(x), µU

Ã
(x)) (7)

Figure 5. Example membership functions for T1 (left) and T2 (right) Fuzzy Systems.

The mapping of the input space to that of the output space is the result of processing
the input through a set of “if-then” linguistic rules (e.g., “If x is A, then u is B”). The Fuzzy
Inference System (FIS) begins with fuzzifying the crisp input values by using the LMFs
and UMFs of the rule antecedent to determine the corresponding degree of membership in
terms of linguistic metrics. This step produces two fuzzy values for each IT2-FL MF. Next,
the process requires the defuzzification of the fuzzy output set to a crisp output value. The
T2 output fuzzy set is reduced (via a “type reducer”) to an Interval T1 fuzzy set resulting
in a range, cL (lower limit) and cR (upper limit), which is considered the centroid of the T2
fuzzy set. This refers to the average of the centroids of all the type-1 fuzzy sets embedded
in the type-2 fuzzy set. The centroid values are calculated iteratively due to the inability to
compute exact values for cL and cR. Methods developed by Karnik and Mendel [34,35] are
commonly used with the approximations given as

cL ≈
∑L

i=1 xiµ
U
Ã
(xi) + ∑N

i=L+1 xiµ
L
Ã
(xi)

∑L
i=1 µU

Ã
(xi) + ∑N

i=L+1 µL
Ã
(xi)
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cR ≈
∑R

i=1 xiµ
U
Ã
(xi) + ∑N

i=R+1 xiµ
L
Ã
(xi)

∑R
i=1 µU

Ã
(xi) + ∑N

i=R+1 µL
Ã
(xi)

(8)

N denotes the number of samples, xi is the ith output value sample, and L and R are
the left and right estimated switch points, respectively. The defuzzified crisp output value,
y, is determined by averaging the two centroid values such that

y =
cL + cR

2
(9)

The reader is referred to [35] for further detail on FIS. An overview of the architecture
for a T2 Fuzzy systems is provided in Figure 6. Here, the implementation of the Type
Reducer differentiates a T2-FL system from that of a T1-FL system.

Figure 6. T2-FL System.

3. Results

For demonstration purposes (and without loss of generality), PERFORM incorporates
two different autonomous path planning techniques for evaluation and direct compari-
son: (1) a multilayered Potential Field Method/A-Star (PFM/A*) approach [36] and (2) a
Probabilistic Roadmap (PRM) method [37]. Details on both algorithms may be found in
Appendix A. Both the PFM/A* and PRM techniques are evaluated and compared in the
case of three separate mission scenarios:

• Case I: waypoint navigation with single obstacle;
• Case II: waypoint navigation with multiple obstacles;
• Case III: area survey (i.e., lawnmower path survey)

For the given test scenario, an analytical binary occupancy grid is provided to the path
planners to differentiate between free and occupied space. It should be noted that the path
planners are deliberately left untuned to generate non-optimal paths to better simulate
experimental test data and provide higher-integrity data for observing the efficacy of the
proof-of-concept IT2-FL autonomy testing and evaluation framework. Routes given are
not intended to represent planner capabilities, but to give a reasonable representation of
the actual path a vehicle might take given commands generated from the path planners.

For the proposed FL-based evaluation framework and given mission performance
criteria, the IT2-FL based autonomy evaluation procedure is summarized as follows:

1. Determine user-specified testbed parameters (e.g., the size of the test area and its
location, choosing between a two or three-dimensional environment);

2. Select the input performance parameters (total distance, time, etc.) of interest;
3. Determine appropriate performance measurement tools/criteria (i.e., sensors) and

corresponding uncertainty levels (e.g., GPS accuracy limits for measuring naviga-
tional coordinates);

4. (Optional) use simulations (performed a priori) to provide further context to choosing
suitable MF intervals and insight into expected parameter values;

5. Generate appropriate MFs using insight gathered from (3) and (4);
6. Perform autonomy test missions;
7. Gather and post process data from (6) to use as inputs to the IT2-FL Fuzzy Inference

System (FIS);
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8. Obtain overall performance score(s) from IT2-FL evaluation method for final evalua-
tion/comparison of autonomous platform(s)/engine(s).

It is of note that each parameter (performance criteria) may be individually analyzed,
in addition to the overall autonomy performance score represented by the final FIS crisp
output. The autonomy performance testing method proposed in this paper is intentionally
modular and scaleable in design, allowing for testing as simple or complex as the test
objectives warrant.

3.1. Test Setup

Laboratory autonomy testing is performed at the Jere A. Chase Ocean Engineering
Laboratory (Figure 7a) at the University of New Hampshire (UNH). With dimensions
of 18 m × 12 m × 6 m, the UNH Engineering Tank allows for rapid, multi-seasonal
testing with both surface and underwater vehicles. The experimental platforms used
for this research are small-scale, differential thrust Autonomous Surface Vehicles (ASV),
referred to as Testing Unmanned Performance PlatformS (TUPPS). The testbed vehicle
has a base width of 0.6 m and a length of 0.9 m and is outfitted with a Velodyne VLP-16
lidar for obstacle detection (Figure 7b). This laboratory test environment is used as the
basis for the simulations in this paper to first demonstrate proof-of-concept of PERFORM.
It is emphasized that all test data generated for this study are via analytical simulations
mimicking test data obtained from the UNH Engineering Tank.

(a) (b)

Figure 7. (a) The Chase Engineering Tank located at the University of New Hampshire (b) Small-Scale
ASV Experimental Platform. Simulations are based upon the laboratory equipment shown here.

For the first two test cases (Case Study I and Case Study II), the goal of this validation
test for PERFORM (from a test engineer’s point-of-view and without loss of generality) is to
evaluate a vehicle’s ability to detect an unknown stationary obstacle (if any), replan a path
to safely avoid any such obstacles, and to reach the goal waypoint(s) with an acceptable path
length. To accomplish this, two performance criteria are selected to evaluate performance:
the vehicle’s total distance traveled and the closest point of approach (CPA) to any existing
obstacle. These criteria serve as the two inputs to the IT2-FL system. For the third case
study (Case III), the goal of the validation test is to evaluate how efficiently the autonomy
engine is able to complete an area survey mission, so path percent error and average speed
are the chosen inputs. The overall performance score of the path-planning autonomy is the
output for all three cases.

3.1.1. PERFORM Case Study I: Single Obstacle

As the first case study, an obstacle configuration given in Figure 8 is simulated to
generate experimental test data and analyze the evaluation framework.

Two different FIS are analyzed (a 3-MF system and 5-MF system) to observe what
effects may result (if any) from varying the number of MF’s.
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Figure 8. Testbed for Case I (obstacle represented by the black box).

The rule bases for this mission evaluation (arbitrarily chosen and without loss of
generality) is summarized in Tables 1 and 2 for a 3-MF system and 5-MF system, respec-
tively. Here, the linguistic input terms are italicized with CPA on the horizontal axis
and path length given on the vertical axis. The linguistic pattern of Table 1 reads in the
following manner:

1. If the total distance is short and the CPA is Close, then the performance score is Satisfactory.
2. If the total distance is short and the CPA is Adequate, then the performance score is Very

Satisfactory.
3. ...

Table 1. Summary of rules used for a 3-MF system.

Linguistic Term Close Adequate Far

Short Satisfactory Very Satisfactory Satisfactory

Medium Satisfactory Very Satisfactory Satisfactory

Long Poor Satisfactory Poor

Table 2. Summary of rules used in the example for a 5-MF system.

Linguistic Term Very Close Close Adequate Far Very Far

Very Short Fair Good Very Good Good Fair

Short Fair Good Very Good Good Fair

Medium Poor Fair Good Fair Poor

Long Very Poor Poor Fair Poor Very Poor

Very Long Very Poor Poor Fair Poor Very Poor
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To encourage the vehicle to remain a safe distance away from an obstacle, the linguistic
term “adequate” is mapped to a better performance score. The ideal scenario is to have the
vehicle remain a safe distance away from any obstacles while also maintaining the shortest
possible path to a given destination within the given test environment.

3.1.2. PERFORM Case Study II: Multiple Obstacles

Similar to Case Study I, the second case study observes a waypoint-to-waypoint task
(as shown in Figure 9). In this scenario, two obstacles are present and positioned to analyze
the decision-making autonomy of the vehicle with regards to weighting the total distance
traveled against vehicle safety (as determined by CPA). To reach the goal, the autonomy
engine must decide between maneuvering between the two obstacles and increasing its
safety risk or increasing the total distance traveled by taking a more conservative path to
avoid the obstacles. Dependent on the intended use of the vehicle, the scoring in the IT2-FL
techniques may be modeled to reflect these test goals with appropriate modifications to the
rule base. CPA is chosen to be the minimum of the shortest distance between the vehicle
and each obstacle. The reader should note that this approach is flexible in its application
to an environment with varying numbers of obstacles and types of configurations. For
example, an average value calculated from the CPA to each hazard, for instance, may be
used instead.

Figure 9. Testbed for Case Study II (obstacles represented by black boxes).

For Case Study II, the rule base (as shown in Table 3) is adjusted to incentivize a
heavier weighting of the safety of the vehicle. Here, a higher CPA score corresponds to the
linguistic term “far”.
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Table 3. Summary of rules used for Case Study II.

Linguistic Term Very Close Close Adequate Far Very Far

Very Short Poor Fair Good Very Good Good

Short Poor Fair Good Very Good Good

Medium Poor Poor Fair Good Fair

Long Very Poor Very Poor Poor Fair Poor

Very Long Very Poor Very Poor Poor Fair Poor

3.1.3. PERFORM Case Study III: Survey Area

Case Study III analyzes a survey task using a lawnmower pattern (as shown in
Figure 10), common for seafloor mapping operations. Different parameters are used to
reflect the desired evaluation attributes. Due to mapping operations relying on swath
widths based on depth to minimize gaps in coverage, path percent error, the percent error
between the actual route the vehicle takes compared to the desired lawnmower pattern,
is one of the parameters measured. The second parameter is average vehicle speed. A
consistent vehicle speed within the optimal range of the sonar is also important for high
quality data.

The rule base for Case III is constructed to reflect a narrower region for acceptable
performance and shown in Table 4. To receive a higher performance score, the vehicle’s
average speed should remain in the “good” range window while maintaining low error
over the path taken.

Figure 10. Testbed setup for Case Study III: A lawnmower pattern to perform seafloor mapping
operations.
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Table 4. Summary of rules used for Case Study III.

Linguistic Term Very Slow Slow Good Fast Very Fast

Very Low Poor Fair Very Good Fair Poor

Low Poor Fair Very Good Fair Poor

Medium Poor Poor Fair Poor Poor

High Very Poor Very Poor Very Poor Very Poor Very Poor

Very High Very Poor Very Poor Very Poor Very Poor Very Poor

3.2. Membership Function Construction
3.2.1. PERFORM Input Parameters

There are various ways to generate MFs to best suit the intentions of the autonomy
test engineer. For this application, each testbed sensor used for PERFORM includes fuzzy
MFs to account for specific sensor characteristics and uncertainties. For example, total
distance traveled is determined using GPS. The uncertainty in the GPS measurement, found
experimentally or those provided by product specifications/documentation, is integrated
into the MF FOU. Sensor measurement quality can also be affected by sources such as high
noise levels and changing environmental conditions (e.g., humidity, rain, etc.) [35,38]. If
desired, these methods may also benefit from added knowledge from a priori simulations
giving further context to suitable measurement ranges/bandwidths and corresponding
MF intervals for a given testbed.

It is assumed that the sensors and vehicle are identical to enable the direct com-
parison of the path planning algorithms. The positioning system used for this testbed
is a Marvelmind HW v4.9-NIA indoor positioning system. By taking into account the
measurement noise produced from this signal, improvements are expected for the IT2-FL
techniques [20]. Marvelmind company documentation gives a measurement uncertainty
value of ±0.02 m [39]. From the obstacle configuration given in Figure 8, the shortest path
to the goal location (including the obstacle) based on Euclidean distance is used as the
minimum of the input range for total distance. The maximum distance used in the MF
is arbitrarily defined to be twice the minimum distance and can be adjusted depending
on the user’s acceptable tolerance. Any test run value greater than the maximum will
automatically be input at this saturated maximum value.

The “total distance” in this work is calculated by determining the overall sum of the
changes in position such that

n

∑
k=1

dk =
√
(xk − xk−1)2 + (yk − yk−1)2 (10)

where k, n, and d represent the measurement number, total number of measurements, and
corresponding distance, respectively. To determine an appropriate uncertainty value, the
authors choose to calculate the combined uncertainty, uc, using a l2−norm such that

uc =
√

u2(x1) + u2(x2) + u2(x3) + ... + u2(xn) (11)

where µ(xi) represents the uncertainty at position measurement xi.
The number of measurements for a given test run is dependent on two factors: the

sampling rate and total test time. It is assumed here that the sampling rate for the vehicle’s
position is the same for each specific mission or task. A value of ±0.75 m is determined as a
reasonable value for this case study based on previously observed test platform speeds and
time ranges (results not shown here). Since determining the vehicle’s CPA to the obstacle
relies on a singular measurement, the uncertainty value of ±0.02 m from the company’s
documentation is used as the FOU width for CPA related MFs.

A summary of the evaluation parameter ranges and uncertainties for both total dis-
tance and CPA are provided in Table 5. From these values, the input MF’s for total distance
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and CPA are given in Figure 11. The same input MF’s are used for Case Study I and II
(with II using only the 5-MF system).

For Case Study III, the MFs are modified to represent the new parameters (path percent
error and average speed) under this test environment and is shown in Figure 12. Both
parameters use data from the testbed GPS unit, so the uncertainty bounds are designed
to take this into account. Path percent error and average speed are 0.50% and 0.25 m/s,
respectively, and are deemed appropriate for the level of accuracy warranted in this case
study. Variable ranges for Case III are summarized in Table 6.

Table 5. Range of values for construction of Case Study I and II MFs.

Evaluation Parameter Total Distance (m) CPA (m)

Range 16.00–32.00 0–4.00

Uncertainty ±0.75 ±0.02

Table 6. Range of values for construction of Case Study III MFs.

Evaluation Parameter Path Percent Error Average Speed (m/s)

Range 0–10 0–4.0

Uncertainty +/− 0.50 +/− 0.25

Figure 11. Membership functions for total distance and CPA.
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Figure 12. Membership functions for Case Study III to observe path percent error and average vehicle speed.

3.2.2. PERFORM Output

For the construction of the performance score MFs, a different approach is used to
show the variety of factors that may be incorporated. The same performance MFs are used
for Case Studies I, II, and III. The uncertainty in these MF’s originate from the uncertainty
in the linguistic terms. Linguistic terms tend to be subjective, or rather that these terms
have different meanings to different individuals and thereby create yet another level of
vagueness [35]. To address this, a separate study was performed where several individuals
(members of the University of New Hampshire marine robotics teams) were polled to
provide their opinions regarding the relations of linguistic terms to numerical values in
order to construct the MFs. The resulting MFs are shown in Figure 13. Poll data and
corresponding histograms are given in the Appendix B (Figures A1 and A2).

Figure 13. Membership functions for the performance score output.

3.3. PERFORM Test Results
3.3.1. Case Study I: PERFORM Results

The MF relationships between the input and output variables can be visualized as a
3D plot (Figure 14). This view shows the ideal parameters value, designated in yellow on
the color scale and displayed as the maximum value on the z-axis. The objective for the
vehicle in this case study, reflected in the rule base and defined numerically in the MFs,
is to maintain a safe distance, determined as 2 m, while minimizing the total distance to
the goal (i.e., desired waypoint). As shown, the yellow portion of the plot corresponds to
these goals spanning the area defined by a 2 m CPA and the region extending from 0 m to
roughly 24 m of total distance traveled.
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Figure 14. 3D plot MFs relating input variables (total distance and CPA) with corresponding output variables (performance scores).

Figure 15 provides a side-by-side comparison between the PFM/A* path planning
method (left) and that of the PRM method (right). Table 7 summarizes the simulated
performance parameter values. An additional route is given in Figure 16 for additional
context to demonstrate a path that would generate a poor score. This route (referred to as a
“Generic Planner”) is significantly more circuitous than either of the PFM/A* and PRM
methods and also traverses much closer to the obstacle than is desired.

Figure 15. PFM/A* generated path (left), PRM generated path (right).

Table 7. Summary of simulated performance values for Case Study I.

Evaluation Parameter Total Distance (m) CPA (m)

PFM/A* 19.28 1.50

PRM 21.52 2.48

Generic Path 31.92 1.00

Performance score results from applying the FIS to the input values in Table 7 are
shown in Table 8. The resulting output fuzzy set overlaid by the defuzzified outputs given
in Table 8 are shown in Figures 17 and 18 for both 3-MF and 5-MF based systems for the
PRM and PFM/A* planners, respectively. Visual observation shows that the PFM/A* route
has the best performance given the mission goals. As expected, the generic planner scores



Appl. Sci. 2021, 11, 11940 17 of 27

the lowest. The difference in scores between the PRM and PFM/A* autonomy methods are
negligible in the 3-MF case (0.03) and more obvious in the 5-MF case (0.81).

Figure 16. Generic Planner: An example of a poorly traveled path.

Table 8. Performance Score Output for Case Study I.

Path Planning Algorithm 3 Membership Functions 5 Membership Functions

PFM/A* 7.79 8.24

PRM 7.82 7.43

Generic Planner 3.67 3.30

Figure 17. Output set for the PFM/A* algorithm.
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Figure 18. Output set for the PRM algorithm.

3.3.2. Case Study II: PERFORM Results

The 5-MF colormap for Case Study II is provided in Figure 19. In accordance with
the test goals for this case study, the MFs incentivize the more conservative CPA scores
(roughly 3 m distance) while again minimizing the total distance covered by the vehicle.
The highest performance score values are designated in yellow. The resulting simulated
paths are shown in Figure 20. The corresponding table, Table 9, presents the parameters
values from the test run.

Table 9. Summary of simulated performance values for Case Study II.

Evaluation Parameter Total Distance (m) CPA (m)

PFM/A* 21.16 1.47

PRM 16.90 0.81

Figure 19. Case Study II 5-MF 3D plot relating the input variables (total distance and CPA) with
corresponding output variables (performance scores).
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Figure 20. Case Study II: PFM/A* generated path (left), PRM generated path (right).

After applying the rule base and MF’s using the test run values given in Table 9, the
evaluation results are given in Table 10. The output fuzzy set with the defuzzified value is
shown in Figure 21. While both planners succeed at avoiding the obstacle and arriving at
the desired waypoint, the more conservative route taken by the PFM/A* vehicle (although
corresponding to a longer distance traveled than that of the PRM vehicle) is given the better
score, which is consistent with the modeled rule base MFs and mission objectives.

Table 10. Performance Score Output for Case Study II.

Path Planning Algorithm Performance Score

PFM/A* 5.90

PRM 4.96

Figure 21. Output set for Case Study II.

3.3.3. Case Study III: PERFORM Results

The resulting MF 3D plot for Case Study III depicts the correlations between the
evaluation parameters and the performance score (Figure 22). Noted in the colormap is
the smaller, more distinct area corresponding with the best performance scores (in yellow)
meant to model stricter standards for performance. With the simulated path outputs given
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in Figure 23 and the resulting parameters values (Table 11), the final scores are presented
in Table 12 and the full output fuzzy set is given in Figure 24. Both routes successfully
complete the given seafloor mapping mission. However, it is clear (as seen in Figure 24
and numerically indicated in Table 11) that the PFM/A* vehicle takes a smoother and more
direct path, resulting in a lower path percent error.

Figure 22. Case Study III 5-MF 3D plot relating the input variables (path percent error and average
vehicle speed) with the corresponding performance scores.

Figure 23. Case Study III simulated path output.

Table 11. Summary of simulated performance values for Case Study III.

Evaluation Parameter Path Percent Error Average Speed (m/s)

PFM/A* 1.43 1.50

PRM 6.71 2.50
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Table 12. Performance Score Output for Case Study III.

Path Planning Algorithm Performance Score

PFM/A* 6.94

PRM 2.78

Figure 24. Output set for Case Study III.

4. Discussion

This study presented the Performance Evaluation and Review Framework of Robotic
Missions (PERFORM), a flexible but rigorous method to validate autonomous vehicles in
testbed environments using a unique IT2-FL performance evaluation framework. The use
of FL allows for test parameters that are tailored to the user’s design requirements and can
account for different priorities related to acceptable risks and goals of a given mission. The
3D renderings presented show parameter values for a specific mission across the space of
reasonable test results in relation to a performance score output. This, in addition to the
decomposition of a mission, M, into tasks, T (Equation (2)), reduces the number of test
runs necessary with the ability to analyze different scenarios taking on a range of values.
Translating into both a time and cost savings, this may limit the need to perform a large
number of sets of simulations, which can have difficulty modeling the ocean environment
accurately, testing sensor perception capabilities, and predicting other hardware issues.
Results indicate that these methods aid in direct comparison of path planning algorithms
as presented in the case studies with broader applications to other high-level validation
test objectives such as autonomous behavior analysis.

In viewing the results for Case Study I, the 3-MF system resulted in a negligible
difference in scores. The 5-MF system, however, allowed for an easier differentiation
of scores due to increased value sensitivity, producing a more substantial difference in
value. One should weigh the number of included MFs based on a balance of available test
design time and desired score resolution. A quick and simple study could utilize a 3-MF
system, while a higher MF system (in this case, a 5-MF system) can be designed if increased
complexity is needed.

In Case Study II, analyzing behavior regarding balancing risk with efficiency, the
PFM/A* path taken to avoid the obstacles received a better score than that of the PRM
path. This was predicted as the FIS was intentionally modeled to incentivize conservative
decisions by the vehicle in the final performance score. During general implementation,
there may be test cases where evaluation parameters will appear to have conflicting goals
such as in this scenario—safety vs. efficiency. The user, then, must determine the acceptable
risk and hierarchy of performance priorities and reflect this in the modeling of the system.
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The final scenario, Case Study III, took a stricter approach to a vehicle, receiving a
desirable score. As shown in Figure 22, there is a steeper decline to poorer performance
values. In some applications, there is a strict cutoff of acceptable performance. The National
Oceanic and Atmospheric Administration (NOAA), for instance, has set hydrographic sur-
veying standards that are required to be met for data to be utilized by the organization [40].
With this in mind, the evaluation model has the ability to incorporate these standards in
the design of both the MF’s and the rule base.

PERFORM becomes streamlined once a testbed environment is established and com-
mon measurement sensors are incorporated and calibrated. Many testing scenarios can
be evaluated with the incorporation of minor changes, which would depend on given
specific testing goals. The authors envision a library (expanded upon over time) of testing
parameters with the x-axis MF range being the only necessary change based on the specific
task under test. Once the MFs are created and the test foundation is constructed by a
test engineer, the linguistic aspect of FL may be more approachable for various parties
to understand and to set vehicle autonomy expectations in order to show “success.” The
linguistic base encourages a common language between engineers, operators, researchers,
and program managers that all disciplines understand.

In perspective of other studies in the area of autonomous system test and evaluation,
PERFORM may be useful as an extension of the JHU simulations [6] (referred to in Section 1) to
find boundary cases. These boundary cases are a subset of all possible scenarios, and could
provide a feasible number of cases to undergo experimental testing.

Future work will apply PERFORM to the TUPPs experimental platform for acquiring
experimental field test data while also testing different mission types and scenarios. Further
analysis of different MF shapes, FOU sizes, and additional input variables on the output
will undergo investigation as well as constructing methods for accommodating the design
of MFs for time-series based data input.

5. Conclusions

With a goal of establishing a preliminary foundation for designing and evaluating
autonomy tests for autonomous vehicles, this paper introduces the Performance Evaluation
and Review Framework of Robotic Missions (PERFORM). PERFORM demonstrates the
feasibility of applying fuzzy logic, namely an IT2-FL strategy, as an effective and efficient
evaluation framework for assessing autonomous vehicles in a scalable testbed environment
with the ability to further generalize the methods for different mission types and scenarios.
The proposed method decomposes a mission with respect to event and behavior-based
tasks. Through three case studies, results support these claims and contribute a unique
approach towards testing autonomy that is independent of internal autonomy architectures.
By designing MF’s and FOU bounds, uncertainties due to sensor noise, environmental con-
ditions, and the inherent vagueness of linguistic terms may be added. Overall, PERFORM
is mathematically rigorous, yet flexible for the user’s intended test goals. The proposed
framework and methodologies presented in this work represent the first crucial step in
developing a standard for comparing and evaluating autonomy performance.
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Appendix A. Path Planning Algorithms

Appendix A.1. Potential Field Method/A*

This algorithm utilizes the benefits of vector fields to provide a hybrid global and
local planning approach. The Potential Field Method (PFM), like the concept of electrical
charges, relies on artificial attractive and repulsive forces. The goal location acts as an
attractive force (~Fatt(q)) while obstacles provide repelling forces (~Frep(q)). The total force
(~F(q)) at any position is then found by summing the attractive and repulsive forces.

In this application, the chosen potential function is a parabolic well resulting in
Equations (A1)–(A3). α and β are gain terms. The attractive equation is dependent upon
the distance, dg(q), and angle to the goal location while the repulsive equation is dependent
upon the distance, d0(q), and angle between the robot and the obstacle. s refers to the range
of influence the repulsive field has around the obstacle. Outside of this value, the repulsive
value is equal to zero. In practical implementation, the range of influence is equal to the
maximum reliable range of the obstacle detection sensors in use. Here, ~F(q) is a vector
representing a direction and magnitude of force felt by the robot. d̂g and d̂o are unit vectors
pointing in the direction of the goal and obstacle, respectively.

~F(q) = ~Fatt(q) + ~Frep(q) (A1)
~Fatt(q) = −αdgd̂g (A2)

~Frep(q) =

{
β( 1

do(q)
− 1

s )(
1

d2
o(q)

)d̂o if do ≤ s

0 if do > s
(A3)

A* algorithm is based on a cost function minimizing path distance and is typically
used for global planning. The cost function is given in (A4) where F(n) represents the
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total cost, G(n) represents the cost from the start node to the current node, and H(n) is the
estimated cost from the current node to the goal node. When an admissible heuristic is used
(i.e., the function never overestimates the cost of reaching goal), A* finds the optimal path.

F(n) = G(n) + H(n) (A4)

In this implementation, the A* generated path is converted into a vector field. This
vector field is created by first producing waypoints to the goal location based on A*
planning. A vector field is then calculated that is attracted towards the generated path:

FA∗ = −kAdwptd̂wpt (A5)

Each grid location is attracted to the next closest waypoint. FA∗ is the force produced
from the A* layer, kA is a gain term, dwpt is the distance between the current grid location
and the next closest waypoint, and d̂wpt is a unit vector pointing in the direction of the next
closest waypoint. The PFM and A* layers are then added together and the PFM layer is
updated as needed for new obstacles. Expanded details are found in [36]. The specific gain
values used in for the simulation in this paper are given in Table A1.

Table A1. Summary of gain values used for simulations.

Case Study I II III

α 100 200 100

β 10,000 9,000 10,000

kA 300 100 300

Appendix A.2. Probabilistic Roadmap

For the path given on the right in Figure 15, a Probabilistic Roadmap (PRM) style
algorithm was used. Resolution was set to 5 cells per meter with a maximum of 500 nodes,
a maximum number of neighbors of 3, and a maximum neighbor distance of 1 m. These
values may be tuned for improved results. The map uses an occupancy grid to differentiate
between free and occupied space.

For this algorithm, random nodes are first generated in the simulation space. Nodes
are then connected to neighbors within the specified range and the shortest path is found
from the start goal to the goal node using the connected edges. Further background on this
algorithm can be found in [37]. Specific tuning values used for the simulations are given in
Table A2.

Table A2. Summary of tuning values used for simulations

Case Study I II III

Number of Nodes 100 200 100

Maximum Neighbor Distance (m) 1 1 1

Maximum Number of Neighbors 3 3 3

Appendix B. Poll Data

For the performance score MF’s, a poll was taken where members of the Autonomous
Surface Vehicle and Remotely Operated Vehicle teams at UNH were asked to give the
numerical ranges they associate with the given terms between 0 (worst possible score)
and 10 (best possible) score. A total of 23 responses were noted and results are given in
Figure A1 for the 3 MF scenario. For the 5 MF system, 15 responses were tallied with
results given in Figure A2.
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Figure A1. Histogram of polled data associating linguistic terms referring to an overall performance
score with numerical values (3MF system).

Figure A2. Histogram of polled data associating linguistic terms referring to an overall performance
score with numerical values (5MF system)
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