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Abstract: A semiclassical approach based on the WKB–Maslov method is developed for the kinetic
ionization equation in dense plasma with approximations characteristic of metal vapor active media
excited by a contracted discharge. We develop the technique for constructing the leading term of
the semiclassical asymptotics of the Cauchy problem solution for the kinetic equation under the
supposition of weak diffusion. In terms of the approach developed, the local cubic nonlinear term
in the original kinetic equation is considered in a nonlocal form. This allows one to transform the
nonlinear nonlocal kinetic equation to an associated linear partial differential equation with a given
accuracy of the asymptotic parameter using the dynamical system of moments of the desired solution
of the equation. The Cauchy problem solution for the nonlinear nonlocal kinetic equation can be
obtained from the solution of the associated linear partial differential equation and some algebraic
equations for the coefficients of the linear equation. Within the developed approach, the plasma
relaxation in metal vapor active media is studied with asymptotic solutions expressed in terms of
higher transcendental functions. The qualitative analysis of such the solutions is given.

Keywords: kinetic model; dense plasma; active media; semiclassical approximation; WKB–Maslov
method; plasma relaxation

MSC: 45K05; 81Q20; 82B40; 82D10

1. Introduction

Studies of kinetics of metal vapor active media (MVAM) are motivated by their wide
application in the development of laser systems. MVAM are used in technics due to
their high optical gain in a narrow spectral range [1–3]. Nowadays, the most promising
application of MVAM are the active optical systems (the so-called laser monitors) that allow
one to visualize the processes blocked by the intense strong background light [4,5].

The active media on metal vapors are a mixture of a buffer gas (inert gas) and a
gaseous metal, and the concentration of the buffer gas is 2–3 orders of magnitude higher
than the concentration of metal vapors. Under the action of an electric discharge, the
processes of ionization and recombination in such media occur mainly due to the reactions
of electron impact. The inelastic collisions of neutral atoms with electrons are responsible
for ionization, and triple recombination processes (triple collision of an ion with two
electrons) are responsible for deionization. In MVAM, mainly metal atoms are ionized, and
the buffer gas practically does not contribute to the concentration of the electron gas due to
the much higher ionization energy. In a number of works (see, for example, [6–10]), active
media were investigated, where neon acted as a buffer gas, and vapors of copper and its
halides did as an active substance.
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Note that a mixture of a buffer gas and metal vapors in this case is inside the gas
discharge tube (GDT). However, under the condition of a strongly contracted pumping
discharge of the active medium, the ions will be localized around the center of the GDT,
and there will be no boundary conditions on the GDT walls in the mathematical problem
statement. Here, we will consider just such a case when the ion concentration rapidly
decreases with distance from the center of the GDT. The equation for the concentration of
positive singly charged ions ni(~x, t) of a metal for a constant gas temperature according to
the law of mass action can be written as [11]

∂tni(~x, t) = Da(t)∆ni(~x, t) + qi(~x, t)ne(~x, t)nneut(~x, t)−

−qtr(~x, t)ni(~x, t)
(
ne(~x, t)

)2,
(1)

where the space and time variables are denoted by ~x (∈ Rn) and t (∈ R1), respectively, ∂t =
∂/∂t; qi(~x, t) is rate constant of the electron impact ionization process, and qtr(~x, t) is the rate
constant of the triple recombination process. The ambipolar diffusion coefficient is Da(t);
the concentration of neutral metal atoms is nneut(~x, t), and ne(~x, t) is the concentration
of electrons. The dependence of the coefficients qi, qtr and Da on ~x and t is due to their
dependence on the electron temperature which can be substantially inhomogeneous in
time and space. When the discharge energy is insufficient for the complete ionization of
metal vapors, then only singly charged ions are produced in the plasma. Therefore, in view
of the plasma quasineutrality, the concentration distribution of positive singly charged
ions, ni(~x, t), coincides with the concentration distribution of electrons, ne(~x, t), i.e.,

ne(~x, t) = ni(~x, t). (2)

The properties of active media that are useful for applications appear when the upper
resonance energy level of metal atoms is effectively pumped. In such the conditions,
the degree of ionization is small, i.e.,

nneut(~x, t)� ni(~x, t), (3)

and nneut almost does not depend on ni. In practice, nneut is at least one order greater
than ni for MVAM. Under conditions (2), (3), the Equation (1) becomes closed and can be
written as

∂tni(~x, t) = Da(t)∆ni(~x, t) + a(~x, t)ni(~x, t)− qtr(~x, t)n3
i (~x, t), (4)

where a(~x, t) = qi(~x, t)nneut(~x, t), qtr(~x, t), and Da(t) are given functions. For Da = const ,
a = const , qtr = const , the Equation (2) is termed the Newell–Whitehead equation [12,13].

We assume in (1) that diffusion and ionization/recombination processes occur at
different scales in spatial coordinates. This approximation is applied when the electron
temperature has a weak spatial inhomogeneity. The ambipolar diffusion coefficient Da(t) is

assumed to be Da(t) = Di

(
1+

Te(t)
Tg

)
, where Te(t) is the electron temperature, Tg is the gas

temperature, and the ion diffusion coefficient Di is independent of the spatial variables. The
dependence of qi and qtr on the electron temperature is stronger than that of Da. Therefore
even a weak dependence of the electron temperature on the spatial variables can lead to
a significant dependence of qi and qtr on ~x. We do not take into account the dielectronic
recombination process in the Equation (1) since it makes a significant contribution to the
ion concentration only in a rarefied plasma with pressures much lower than those that are
characteristic of the operation of MVAM. Additionally, we do not take into consideration
the Penning ionization that is significant in MVAM where the buffer gas pressure under
normal conditions is higher than one hundred torr, while it is only 20–30 torr in most
present-day works.

The coefficients qi(~x, t) and qtr(~x, t) in Equation (1) mean the total rates of the corre-
sponding processes including stepwise ionization and also recombination to the lower
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energy states of neutral atoms. This approximation allows one not to solve a system of a
large number of equations where each equation describes a population of an individual
energy level of neutral atoms. This approximation is widely used in describing the ioniza-
tion in plasma, since direct experimental data usually give the values of the total ionization
rates (see, e.g., [14]. The total rate of triple recombination is determined on the basis of the
semiclassical approach described in the work of Gurevich and Pitaevskii [15].

Equation (1) plays an important role in the design of MVAM. The influence of the
prepulse electron concentration on characteristics of active media on copper vapors was
discussed in detail in [16,17]. In particular, solutions to the Equation (1) were required to
construct a high-voltage high-frequency pumping circuit for exciting the active medium
for laser monitors. The plasma itself has an active–inductive resistance character. In this
case, the active component of the resistance prevails. This parameter significantly depends
on time within the pump pulse period and it is a complex function of the temperature and
electron concentration. Therefore, to match the pumping circuit with the load, models of the
resistance of the active medium are used. These models include the electron concentration
or, at least, its prepulse value (see, e.g., [18]). The main way of determining it is related
to solutions of kinetic equations. The kinetic modeling of such active media began to
develop in the 1980s–1990s (see, e.g., [11,19–21]). The approach for constructing a space-
time kinetic model of active media on copper vapor was developed in [22–24] where the
model equations were studied mainly numerically.

The aim of this work is to develop an analytical approach based on the WKB–
Maslov theory of the semiclassical approximation [25–27] to study the kinetic equation of
plasma ionization.

The method of semiclassical asymptotics was applied in [28–30] to a nonlocal gener-
alization of the Fisher–Kolmogorov–Petrovskii–Piskunov equation known in the theory
of biological populations, and also in [31–33] for the nonlocal Gross–Pitaevskii equation,
which is widely used in the theory of Bose–Einstein condensates. The approach proposed
here for the kinetic equation of plasma ionization essentially involves the results of [28–30].

The paper is structured as follows. In Section 2, we introduce basic notations and the
problem setup. The class of semiclassically concentrated functions, where asymptotics are
constructed, is presented. In Section 3, the dynamical system describing the evolution of
moments of the unknown solution is deduced and it is considered within the framework of
our approach. In Section 4, the family of associated linear equations is obtained. The leading
term of an asymptotic solution to the original nonlinear kinetic equation is constructed
from solutions of these equations according to the certain algebraic conditions. Section 5
illustrates a general approach with the specific example of the plasma relaxation problem.
In Section 6, the concluding remarks are given.

2. Nonlocal Kinetic Equation and Semiclassical Approximation

To apply the method of semiclassical asymptotics in accordance with [30,32], we
consider a nonlocal version of the kinetic Equation (1).

In the local Equation (1), triple recombination is described in terms of a contact
interaction model. If we introduce into the model the dependence of the probability of the
act of triple recombination on the mutual arrangement of the particles participating in it,
then we obtain a nonlocal generalization of the Equation (1) of the form

∂tni(~x, t) = Da(t)∆ni(~x, t) + qi(~x, t)nneut(~x, t)ne(~x, t)−

−κ · ni(~x, t)
∫

Rn×Rn

b(~x,~y,~z, t)ne(~y, t)ne(~z, t)d~yd~z. (5)

Here, the kernel b(~x,~y,~z, t) of the integral term has the meaning of the probability
density of the capture by an ion at the point ~x of an electron at the point ~y, and an electron
at the point~z with subsequent triple recombination. For convenience, we have explicitly
identified the normalization nonlinearity parameter κ.
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The probability of triple recombination depends on the electron thermal velocity and
on the mutual distance between the electrons and the ion. Therefore, in specific examples
of the Equation (5), we will assume

b(~x,~y,~z, t) = b̃(~x,~x−~y,~x−~z, t), (6)

where the dependence of b̃(~x,~r1,~r2, t) on~x and t is caused by its dependence on the electron
temperature.

Further, we denote Da(t) = D · D̃a(t) in the Equation (5), where D plays the role of an
small diffusion parameter in the proposed method of semiclassical asymptotics, and the
function D̃a(t) is considered given. In accordance with (2), (3), (4), we set ne = ni in the
Equation (5), denote ni(~x, t) = u(~x, t), and the Equation (5) takes the form

∂tu(~x, t) = DD̃a(t)∆u(~x, t) + a(~x, t)u(~x, t)−

−κu(~x, t)
∫

Rn×Rn

b(~x,~y,~z, t)u(~y, t)u(~z, t)d~yd~z, (7)

where a(~x, t), b(~x,~y,~z, t) are considered to be a given infinitely smooth functions with
respect to spatial variables at each point t that increase, as |~x| → ∞, |~y| → ∞, |~z| → ∞, not
faster than the polynomial.

We will seek solutions u of the Equation (7) in the class P t
D of trajectory-concentrated

functions (TCFs) depending on the parameter D [28–30,34]:

P t
D =

{
Φ : Φ(~x, t, D) = ϕ

( ∆~x√
D

, t, D
)

exp
[1
D

S(t, D)
]}

. (8)

Here, Φ(~x, t, D) is a common element of the class, the real function ϕ(~ξ, t, D) belongs
to the Schwartz space S in variables ~ξ, smoothly depends on t and regularly depends
on
√

D as D → 0, ∆~x = ~x − ~X(t, D). The real smooth functions ~X(t, D) and S(t, D),
characterizing the class P t

D, regularly depend on
√

D as D → 0 and are to be determined
when constructing a solution to the Equation (7).

The functions of the class P t
D are concentrated, as D → 0, in a neighborhood of a point

moving in the coordinate space along a curve given by the equation ~x = ~X(t, 0).
In addition to ∆~x, we introduce the following operators acting on functions of the class

P t
D: ~̂p = D∂~x, T̂ = D∂t + 〈~̇X(t, D), ~̂p〉 − Ṡ(t, D), and ∆̂α,β(t, D), where 〈, 〉means the scalar

product of n–dimensional vectors; ∂~x is the gradient operator in Cartesian coordinates ~x;
the operator ∆̂µ,ν(t, D) is defined by its Weil symbol ∆µ,ν(~p,~x, t, D) = ~pµ∆~xν, ~p ∈ Rn is the
symbol of the operator ~̂p; µ, ν ∈ Zn

+ are multi-indices:

ν = (ν1, ν2, . . . , νn), ν1, ν1, . . . , νn ∈ Z1
+,

|ν| = ν1 + ν2 + . . . + νn, ν! = ν1!ν2! . . . νn!. (9)

For any vector~a = (a1, a2, . . . , an) ∈ Rn we denote~aν = (aν1
1 , aν2

2 , . . . , aνn
n ) ∈ Rn.

One can directly verify the validity of the following asymptotic estimates for the
operators and the functions from the class P t

D [34,35]:

‖ ∆̂µ,ν(t, D)Φ ‖
‖ Φ ‖ = O(D(|µ|+|ν|)/2),

‖ T̂Φ ‖
‖ Φ ‖ = O(D), Φ ∈ P t

D, (10)

where the norm ‖ . . . ‖ is meant in the sense of the space L2.
Formulas (10) can be considered as estimates of the operators acting on functions of

the class P t
D:

∆̂µ,ν(t, D) = Ô(D(|µ|+|ν|)/2), T̂ = Ô(D), (11)
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and, in particular, ∆~x = Ô(
√

D), ~̂p = Ô(
√

D). Here, Ô(Dk), k ≥ 0, means an operator F̂
such that ‖ F̂φ ‖/‖ φ ‖ = O(Dk), φ ∈ P t

D.
In the asymptotic estimates, the leading term gives more insight into the solution

of the problem. Therefore, in this work, we focus on constructing the leading terms of
asymptotic solutions of the kinetic Equation (7).

3. The Einstein–Ehrenfest System of the Second Order

The semiclassical approach developed in [30–32] can be applied to Equation (7) when
the following moments exist for its solution u(~x, t, D) ∈ P t

D:

σu(t, D) =
∫
Rn

u(~x, t, D)d~x, ~xu(t, D) =
1

σu(t, D)

∫
Rn

~xu(~x, t, D)d~x (12)

αν
u(t, D) =

1
σu(t, D)

∫
Rn

∆~x νu(~x, t, D)d~x, ν = (ν1, ν2, . . . , νn) ∈ Zn
+, |ν| ∈ Z1

+. (13)

Here, the zeroth-order moment σu(t, D) has the meaning of the number of ions in the
plasma at time t.

We choose the vector ~X(t, D) characterizing the class P t
D to be equal to the first

normalized moment

~X(t, D) = ~xu(t, D). (14)

Then, αν
u(t, D) = 0 for |ν| = 1.

We also limit our consideration to solutions u(~x, t, D) of (7) with σu(t, D) = O(1).
Otherwise, the nonlinear term would be infinitely large compared to the linear term as
D → 0, i.e., the rate of triple recombination would dominate over the ionization rate at
each t. In (5), the κ is defined so that the ionization processes compete with the triple
recombination that is the most interesting case from a physical point of view.

Then from (10) we have

~xu(t, D) = O(1), αν
u(t, D) = O(D|ν|/2). (15)

For constructing the leading term of the semiclassical asymptotic solution to Equation (7),
we consider a set of moments of the form (13), including σu(t, D), ~xu(t, D), and the second-
order moments αν

u(t, D), |ν| = 2, which can be represented in the form of a n–dimensional
symmetric matrix

α
(2)
u (t, D) =

(
α
(2)
u,ij(t, D)

)
, (16)

where α
(2)
u,ij(t, D) =

1
σu(t, D)

∫
Rn

∆xi∆xju(~x, t, D)d~x, and i, j = 1, 2, . . . , n.

For simplicity of notation, we introduce an aggregate vector of the considered mo-
ments

Θu(t, D) =
(
σu(t, D),~xu(t, D), α

(2)
u (t, D)

)
. (17)

In what follows, we will omit the function arguments, including the asymptotic
parameter D, if this does not lead to a misunderstanding.

Let us obtain the dynamical system describing evolution of the moments (17). To do
this, we represent the functions a(~x, t) and b(~x,~y,~z, t) in Equation (7) as the second-order
Taylor series expansions about the point ~X(t, D). Using matrix notations, we can write

a(~x, t) = a(~X, t) + ax∆~x +
1
2

∆~xTaxx∆~x + . . . (higher order terms), (18)
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b(~x,~y,~z, t) = b(~X, ~X, ~X, t) + bx∆~x + by∆~y + bz∆~z +
1
2

(
∆~xTbxx∆~x+

+ ∆~xTbxy∆~y + ∆~yTbyx∆~x + ∆~xTbxz∆~z + ∆~zTbzx∆~x + ∆~yTbyy∆~y+

∆~yTbyz∆~z + ∆~zTbzy∆~y + ∆~zTbzz∆~z
)
+ . . . (higher order terms). (19)

Here, ∆~x = ~x − ~X(t), ∆~y = ~y − ~X(t), ∆~z = ~z − ~X(t) are column vectors, the

transposition is indicated by T; ax, bx, by, bz are row vectors, ax =
( ∂a

∂xi
|~x=~X(t)

)
, bx =( ∂b

∂xi
|~x=~X(t),~y=~X(t),~z=~X(t)

)
, and the same for by and bz; axx, bxx, byy, bzz, bxy = byx, bxz =

bzx, bzy = byz are n-dimensional matrices of the form axx =
( ∂2a

∂xi∂xj
|~x=~X(t)

)
, bxx =

( ∂2b
∂xi∂xj

|~x=~X(t),~y=~X(t),~z=~X(t)

)
, bxy =

( ∂2b
∂xi∂yj

|~x=~X(t),~y=~X(t),~z=~X(t)

)
, and the same for byy, bzz,

bxz = bzx, bzy = byz.
We also consider a particular expansion

b(~x,~y,~z, t) = b(~x, ~X, ~X, t) + by(~x)∆~y + bz(~x)∆~z +
1
2

(
∆~yTbyy(~x)∆~y+

∆~yTbyz(~x)∆~z + ∆~zTbzy(~x)∆~y + ∆~zTbzz(~x)∆~z
)
+ . . . (higher order terms), (20)

where by(~x) = by(~x, ~X, ~X)=
( ∂b

∂yi
|~y=~X(t),~z=~X(t)

)
and the same for bz(~x); byy(~x) = byy(~x, ~X, ~X)=( ∂2b

∂yi∂yj
|~y=~X(t),~z=~X(t)

)
, and the same for byz(~x) = bzy(~x), and bzz(~x).

To derive a dynamical system for moments (17), we differentiate the moments (17)
with respect to time and substitute the derivative ∂tu from Equation (7). Taking into account
expansions (18) and (19), and keeping the expansion terms no higher than the second order,
we arrive at the equations

σ̇u = σu

(
a(~X, t) +

1
2

Sp
[
axxα

(2)
u
])
−κσ3

u

(
b(~X, ~X, ~X, t)+

+
1
2

Sp
[
(bxx + byy + bzz)α

(2)
u
])

, (21)

~̇xu =
(
ax −κσ2

ubx
)
α
(2)
u , (22)

α̇
(2)
u = 2DD̃a(t)In×n. (23)

Here, dot denotes the time derivative (e.g., σ̇u = dσu/dt), axxα
(2)
u means matrix

product, and In×n is the identity matrix of size n, ~X = ~xu(t, D) according to (14).
We can also rewrite Equations (21)–(23) more succinctly using the aggregate vector (17)

as

Θ̇u(t, D) = Γ(Θu(t, D), t, D), (24)

where

Γ(Θu(t, D), t, D) =
(

f (Θu(t, D), t, D), g(Θu(t, D), t, D), h(Θu(t, D), t, D)
)
, (25)

consists of the functions f , g, h corresponding to σ̇u, ~̇xu, and α̇
(2)
u , the form of which is

obvious from (21), (22), and (23), respectively.
Consider now a system of ordinary differential equations (ODEs)

Θ̇(t) = Γ(Θ(t), t, D) (26)
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for an aggregate vector

Θ(t) =
(
σ(t),~x(t), α(2)(t)

)
. (27)

Here, Γ(Θ(t), t, D) is taken from (25); real variable σ ∈ R1, real vector ~x ∈ Rn, and
real symmetric matrix α(2) = (α

(2)
ij ) are the dependent variables.

Further in consideration of the system (26), we follow the papers [28–30].
According to [28–30], we call Equations (26) the Einstein–Ehrenfest (EE) system of the

second order for the kinetic Equation (7). The second order of the EE system means the
presence of α(2) in (27).

Note that the Cauchy problem for the EE system (26) is known to have a unique
solution under some conditions on the coefficients of the system, which are assumed to be
satisfied.

Let Equation (7) have a solution u(~x, t, D) belonging to the class P t
D given by (8) with

the initial function

u(~x, t, D)|t=0 = ϕ(~x, D), (28)

where the function ϕ(~x, D) belongs to the class P0
D of trajectory-concentrated functions (8)

for t = 0, P0
D = P t

D|t=0. Then, we can set the initial conditions for the the EE system (26) as

Θ(t)|t=0 = gϕ =
(
σϕ,~xϕ, α

(2)
ϕ

)
, (29)

where

σ|t=0 = σϕ =
∫
Rn

ϕ(~x, D)d~x, ~x|t=0 = ~xϕ =
1

σϕ

∫
Rn

~xϕ(~x, D)d~x,

α
(2)
ij |t=0 = α

(2)
ϕ,ij =

1
σϕ

∫
Rn

(xi − xϕ,i)(xj − xϕ,j)ϕ(~x, D)d~x. (30)

We write the solution of the Cauchy problem for the EE system (26) with the initial
conditions (29), (30) in the form

gϕ(t) =
(
σϕ(t),~xϕ(t), α

(2)
ϕ (t)

)
, (31)

and
g(t, C) =

(
σ(t, C),~x(t, C), α(2)(t, C)

)
(32)

is the general solution of the EE system (26), where C is a set of arbitrary integration
constants. We omit the argument D in σϕ(t), ~xϕ(t), and α

(2)
ϕ (t) for brevity.

Denote by Cϕ the solution of the following algebraic equation involving arbitrary
integration constants C as unknowns:

g(0, C) = gϕ, (33)

i.e., g(0, Cϕ) = gϕ.
We consider the solution of Equation (33) in specific examples, leaving aside the

general algebraic problem of solvability of this equation. Note also that Cϕ is a vector
functional of ϕ.

From the uniqueness of the solution of the Cauchy problem (26), (27), in view of (29),
(30) and the condition (33), we have [28,30]

g(t, Cϕ) = gϕ(t). (34)
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On the other hand, we can consider the aggregate vector of moments Θu(t, D) (17)
being determined by the solution u(~x, t, D) of Equation (7) with the initial condition (28).
For uniformity, we denote it by

gu(t) =
(
σu(t),~xu(t), α

(2)
u (t)

)
. (35)

Since we consider the EE system of the second order, then u(~x, t, D) should be a
leading term of the semiclassical asymptotic to Equation (7) accurate to O(D3/2), and the
subsequent analysis is carried out with this accuracy.

It can be seen that gu(t) satisfies the EE system (26) and the initial condition (29)

gu(0) = gϕ. (36)

Then we have

gu(t) = gϕ(t). (37)

In conclusion of this section, we defines values Cu(t) from the algebraic condition
(33), but taken for any instant t:

g(t, Cu(t)) = gϕ(t). (38)

From (38), (37), and (34), we find that Cu(t) = Cϕ, i.e., the functionals Cu(t) can
be considered as approximate integrals for the Equation (7) in the class (8) accurate to
O(D3/2).

4. Auxiliary Linear Problem and the Cauchy Problem

For constructing the leading term of the semiclassical asymptotic solution in the class
(8), we first substitute the expansion (20) into the Equation (7). In view of the estimates (10)
and formulae for the moments (12), (13), (16), we write{

− ∂t + DD̃a(t)∆ + a(~x, t)−κσ2
u(t)

(
b(~x, ~X(t), ~X(t), t)+

+
1
2

Sp
[(

byy(~x, ~X, ~X, t) + bzz(~x, ~X, ~X, t)
)
α
(2)
u (t)

])}
u(~x, t) = O(D3/2).

(39)

Here, the evolution of the moments σu(t), ~X = ~xu(t, D), and α
(2)
u (t) is governed by

the dynamical system of the second order (21)–(23) or (24), (25) with the initial condition
(29) when the initial condition (28) holds.

Next, we replace the moments (35) in the Equation (39) with the general solution of
EE systems of the second order of the form (26), (27) given by (32) and go over the next
linear equation parametrized by the arbitrary integration constants C:

L̂(~x, t, C)v(~x, t) = 0, (40)

where

L̂(~x, t, C) = −∂t + DD̃a(t)∆ + a(~x, t)−κσ2(t, C)

(
b
(
~x,~x(t, C),~x(t, C)

)
+

+
1
2

Sp
[(

byy(~x,~x(t, C),~x(t, C)) + bzz(~x,~x(t, C),~x(t, C))
)
α(2)(t, C)

])
. (41)

Here, byy(~x,~x(t, C),~x(t, C)) =
( ∂2b

∂yi∂yj
|~y=~x(t,C),~z=~x(t,C)

)
, and the same for bzz.
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By analogy, we can construct the following linear equation from (7) with the use of
expansions (18) and (19):

L̂(~x, t, C)v(~x, t) = 0, (42)

where

L̂(~x, t, C) = −∂t + DD̃a(t)∆ + L(t, C) + Lx(t, C)∆~x +
1
2

∆~xT Lxx(t, C)∆~x, (43)

and

L(t, C) = a(~x(t, C), t)−κσ2(t, C)

(
b
(
~x(t, C),~x(t, C),~x(t, C)

)
+

+
1
2

Sp
[(

byy(~x(t, C),~x(t, C),~x(t, C)) + bzz(~x(t, C),~x(t, C),~x(t, C))
)
α(2)(t, C)

])
,

Lx(t, C) = ax(~x(t, C), t)−κσ2(t, C)bx
(
~x(t, C),~x(t, C),~x(t, C)

)
,

Lxx(t, C) = axx(~x(t, C), t)−κσ2(t, C)bxx
(
~x(t, C),~x(t, C),~x(t, C)

)
. (44)

Note that in view of estimates (10) and (11), we can see that

L̂(~x, t, C) = L̂(~x, t, C) + Ô(D3/2). (45)

By analogy with [28–30], we use the term associated linear equation (ALE) for (42) with
the coefficients (43) and (44).

Following the Maslov method [25], we need the operator (41) to satisfy

L̂(~x, t, C) = Ô(1), (46)

so that the Equation (40) determines the leading term of asymptotics in the class (8). In view
of estimates (11), the condition (46) is satisfied if the free function S(t, D) characterizing
the class (8) has the estimate Ṡ(t, D) = O(D). Without loss of generality, we choose it in
the following form

S(t, D, C) = DL(t, C). (47)

It can be shown that function S(t, D, C) defined by (47) satisfies

exp
[ 1

D
S(t, D, C)

]
=

σ(t, C)

σ(0, C)
+ O(D). (48)

Consider the Cauchy problem for Equation (40) or (42) with the initial condition (28)
supposing

v(~x, t)|t=0 = ϕ(~x, D), ϕ(~x, D) ∈ P0
D. (49)

Replace the arbitrary constants C in Equation (40) or (42) by the constants Cϕ de-
termined by the algebraic condition (33). Considering (34), (37), and (45), we can see
that Equation (40) or (42) transforms into Equation (39) accurate to O(D3/2). Then, the
following theorem holds [28–30].

Theorem 1. The solutions of the Cauchy problem for the nonlinear Equation (39) and of the Cauchy
problem for the associated linear Equation (40) or (42) with the same initial condition (28) and (49)
are related as

u(~x, t) = v(~x, t, Cϕ) + O(D3/2), (50)

where the constants Cϕ are determined by the algebraic condition (33).
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The forms of the associated linear equation operator related by (45) are termed equiv-
alent [25]. The form (43) can be more profitable to construct solutions v(~x, t). In particular,
the Green function can be obtained in the explicit form for the Equation (42), which is
quadratic in ~x, using the Fourier transform in a similar way as it was done in [34]. The
expression for the Green function of (42) is cumbersome in a general case, so we confine
ourselves to the construction of the evolution operator just for the special case considered
in the next section.

Let us note one more important fact. In notations (44), the Cauchy problem for the
system (21), (22), (23) reads

σ̇ = σ

(
L(t, C) +

1
2

Sp
[

Lxx(t, C) · α(2)
])

,

~̇X = L~x(t, C) · α(2),

α̇(2) = 2DD̃a(t)In×n,

C =
(

σ(t), ~X(t), α(2)(t)
)∣∣∣

t=0
.

(51)

Therefore, the moments of the function u(~x, t) are determined by the leading term of
its asymptotics, v(~x, t, Cϕ), within the accuracy of O(D3/2).

5. Plasma Relaxation

In this section, we consider the example of application of our method to the
Equation (5) and (7) that describes the relaxation of the plasma with the uniformly heated
atom and electron gases, i.e., the case Tg = const, Te(~x, t) = Te(t). Since the ion con-
centration is localized on the axis of the GDT in the metal vapor active media, the two-
dimensional problem in the GDT cross-section is considered (~x = (x1, x2)). It is assumed
that the neutral atoms concentration is almost independent of spatial coordinates and
of the time (nneut(~x, t) = const). The independence of Te from ~x yields a(~x, t) = ã(t),
b(~x,~y,~z, t) = b̃(~x−~y,~x−~z, t) in view of (6). The relaxation process implies the monotone
decrease in the electron temperature over time. In such the process, the function ã(t)
monotonically decrease and b̃(~x−~y,~x−~z, t) monotonically increase over time.

In view of our assumptions, we have ~̇X = 0 from (22). Let the GDT axis be the origin
of coordinates and the initial distribution of the ions be axially symmetric. Then, (22) and
(23) read

~X(t) = 0, α(2)(t) = I2×2

[
Din + 2D

t∫
0

D̃a(τ)dτ
]
, (52)

where α(2)(0) = DinI2×2 and Din = O(D) is the coefficient that determines the initial
localization area of ions. The nonlocality kernel is approximated by the delta-like function
of the following form:

b̃(~r1,~r2, t) = β(t) exp
[
−~r1

2 +~r2
2

2$2

]
. (53)

The substitution of (52) and (53) into (21) yields

σ̇ = σã(t)−κσ3β(t)
[

1− 4
Din
$2 − 8

D
$2

t∫
0

D̃a(τ)dτ

]
(54)

The Equation (54) is the Bernoulli differential equation. We search its solutions in
the form

σ(t) = U(t) · exp
[ t∫

0

ã(τ)dτ
]
. (55)
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Then, we have

U(t) =

[ t∫
0

(
2κ exp

[
2

θ∫
0

ã(τ)dτ
]

β(θ)

[
1− 4

Din

$2 − 8
D
$2

θ∫
0

D̃a(τ)dτ

])
dθ +

1
σ2(0)

]−1/2

. (56)

Let us state the minimum restrictions for functions ã(t), β(t), D̃a(t) so that they
meet the physical meaning of the problem at an arbitrary time interval. Since D̃a(t) ∼(

1+
Te(t)

Tg

)
, the function D̃a(t) must be a decreasing function. Additionally, the conditions

ã(t) > 0 and β(t) > 0 must be met due to the non-negativity of the probability of ionization
and triple recombination acts. Moreover, the function β(t) must be bounded above as well
as the electron temperature. Additionally, we have already mentioned that ã(t) must be a
decreasing function and β(t) must be an increasing one. Finally, we assume the processes
to be exponential, that is the simple approximation often used in various problems, and
functions ã(t), β(t), D̃a(t) read

ã(t) = A1e−t/τa , D̃a(t) = d1e−t/τd , β(t) = B2 + (B1 − B2)e−t/τb . (57)

Here, τa, τd, τb are time constants for the change over time of the ionization rate,
the ambipolar diffusion and the triple recombination rate, respectively, A1 is the initial
ionization rate, d1 is proportional the initial ambipolar diffusion coefficient, coefficients B1
and B2 are proportional to initial and final triple recombination rates respectively. Then,
we have

σ(t) = exp
[
− A1τae−t/τa + A1τa

]
·
[

2κ
$2 F(t) +

1
σ2(0)

]−1/2

, (58)

where

F(t) = τae2A1τa

{
($2 − 4Din − 8Dd1τd)B2Γ

[
0, 2A1τae−t/τa , 2A1τa

]
+

+($2 − 4Din − 8Dd1τd)(B1 − B2)(2A1τa)
−τa/τb Γ

[τa

τb
, 2A1τae−t/τa , 2A1τa

]
−

−8Dd1τdB2(2A1τa)
−τa/τd Γ

[ τa

τd
, 2A1τae−t/τa , 2A1τa

]
−

−8Dd1τd(B1 − B2)(2A1τa)
− τa(τb+τd)

τbτd Γ
[τa(τb + τd)

τbτd
, 2A1τae−t/τa , 2A1τa

]}
.

(59)

Here, we have used the formula

t∫
0

e−ωze−2A1τae−z/τa dz = τa(2A1τa)
−ωτa · Γ

[
ωτa, 2A1τae−t/τa , 2A1τa

]
, ω ≥ 0, (60)

where Γ
[
α, z0, z1

]
is the incomplete gamma function defined by

Γ
[
α, z0, z1

]
=

z1∫
z0

zα−1e−zdz. (61)
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Associated linear Equation (42)–(44) for this example reads

L̂(~x, t, Cϕ)v(~x, t, Cϕ) = 0,

v(~x, t, Cϕ)
∣∣∣
t=0

= ϕ(~x),

L(t, C) = ã(t)−κσ2(t)β(t)
(

1− 2
Din
$2 − 4

D
$2

t∫
0

D̃a(τ)dτ

)
,

Lx(t, C) = 0,

Lxx(t, C) = 2κσ2(t)
β(t)
$2 .

(62)

Its solution can be obtained via the Green function of a parabolic equation as

v(~x, t, Cϕ) = e
S(t,Cϕ)

D

∫
Rn

G(~x,~y, t, Cϕ)ϕ(~y)d~y,

S(t, C) = D
t∫

0

L(θ, C)dθ,

G(~x,~y, t, C) =
A(t, C)

πD(t, C)
exp

[
− (~x−~y)2

D(t, C)
− ~y2

H(t, C)

]
,

A(t, C) = exp
[

2
t∫

0

Lxx(θ, C)D(θ)dθ

]
, H(t, C) =

[ t∫
0

Lxx(θ, C)dθ

]−1

,

(63)

where the function D(t, C) is the solution of the following Cauchy problem for the Riccati
equation:

Ḋ = Lxx(t, C)D2 + 2DD̃a(t), D
∣∣
t=0 = 0. (64)

The function D(t, C) in (64) is a transcendental function. It can be seen that D(t, C)
monotonously grows over time t and D(t, C) = O(D).

Let us consider the Gaussian initial condition:

ϕ(~x) = C0 · exp
[
− ~x 2

Dγ2

]
. (65)

Initial conditions for the Einstein–Ehrenfest system for (65) are as follows:

σ(0) = C0πDγ2, Din =
Dγ2

2
. (66)

Then, C = Cϕ, the integral (63) yields

v(~x, t) =
C0 A(t)H(t)Dγ2

D(t)
(

H(t) + Dγ2
)
+ H(t)Dγ2

exp
[ 1

D
S(t)

]
×

× exp
[
− ~x 2

D(t) +
(

H(t)Dγ2
)
/
(

H(t) + Dγ2
) ], (67)

where the function S(t) is given by (66), (63), (58), (57) and the argument Cϕ is omitted
for short.

Thus, the distribution of the ion/electron concentration is the diffusing Gaussian
packet with the total quantity of ions/electrons determined by the (58), (59), (66). Con-
sider the qualitative behavior of the solution (58), (59) in details. The Einstein–Ehrenfest
system (21), (22), (23) is similar in the structure to the another one obtained for the Fisher–
Kolmogorov–Petrovskii–Piskunov (FKPP) equation in [30]. The difference is that the
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equation for the zeroth-order moment σ(t) had the quadratic nonlinearity in that work
same as the FKPP equation opposed to the cubic nonlinearity in this work. It results in the
qualitative difference of the solutions. For the FKPP equation, the zeroth-order moment
can take negative values even for the positive initial condition that contradicts the physical
meaning of the problem, so its interpretation is nontrivial. In this work, the zeroth-order
moment σ(t) (58), (59) is positive over its entire domain. However, for some sets of the
parameters, it exists only on a limited period of time. For physical reasons, the following
conditions must be met for the Equation (54):

[
1− 4

Din
$2 − 8

D
$2

t∫
0

D̃a(τ)dτ

]
> 0, (68)

since the triple recombination term would yield a negative contribution to the ion quantity
in the active medium otherwise. Note that the condition (68) is violated at large times

t ∼ 1
D

where σ(t)→ 0. The solutions (58), (59) a priori exist at times where the condition
(68) is met. Thus, the condition (68) is satisfied for any times if it is satisfied for t→ ∞. For
(57), it yields [

1− 4
Din
$2 − 8

D
$2 d1τd

]
> 0, (69)

that can be treated as an upper bound for the value of (d1τd) that meets the weak diffusion
approximation. Otherwise, the asymptotic behavior of the function σ(t) at large times can
be obtained by other method proposed in [30] assuming u(~x, t) = ũ(t). Since metal vapor
active media are usually used in a pulse-periodic mode, the large times asymptotics are of
little interest from the physical point of view and are not considered in this work.

Since the function (58), (59) is given by the quite complex expression involving in-
complete gamma functions, it has a number of behavior types depending on parameters.
We will focus on ones satisfying (69). The solution σ(t) (58), (59) can have two essentially
different behavior types. If the remanent temperature of electrons is sufficient for the excess
ionization, then σ(t) is the function with a single maximum point and the asymptote σ = 0.
In Figure 1a, the plot of such the function is shown for κ = 2, $ = 0.5, τa = τb = τd = 1,
A1 = 1, d1 = 2, B2 = 0.4, B1 = 0.2, D = 0.01, Din = 0.01, σ(0) = 1. If the initial electron
temperature is sufficiently small, then the function σ(t) monotonically decrease tending
to zero. This case is shown in Figure 1b for same parameters except for A1 = 0.3, B2 = 2,
B1 = 1.

0 5 10 15 20
t0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ(t)

(a)
0 5 10 15 20

t0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ(t)

(b)

Figure 1. The plot of the function σ(t) for the high (a) and low (b) initial electron temperature.

The bifurcation of behavior types is determined by the sign of the number I given by

I = A1 −κσ2(0)B1

[
1− 4

Din
$2

]
= A1 −κσ2(0)B1 + O(D). (70)

Thus, the condition I > 0 ensures the presence of the excess ionization.
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The Formulas (58) and (59) also admit one more kind of solution satisfying (69), which
is shown in Figure 2 for the same parameters as in Fig. 1b except for A1 = 1.5, τa = τb = 2,
τd = 1, d1 = 2.5.

The solution in Figure 2 have two extreme points. The prerequisite for such the case is
that the condition

{
σ̇(t) = 0
σ̈(t) ≥ 0

=⇒ d
dt

β(t)
[

1− 4
Din
$2 − 8

D
$2

t∫
0

D̃a(τ)dτ

]
ã(t)

≤ 0 (71)

holds for some t. For D → 0, the condition (71) yields

d
dt

β(t)
ã(t)

≤ 0, (72)

that contradicts assumptions for the functions ã(t), β(t) leading to (57). Therefore, the case
shown in Figure 2 is not of interest in the weak diffusion approximation and the sign of I
unequivocally determines the choice between cases shown in Figure 1a,b.

0 5 10 15 20
t0.0

0.5

1.0

1.5

2.0
σ(t)

Figure 2. The plot of the function σ(t) for the special case.

6. Conclusions

We have developed an approximate analytical approach based on the WKB–Maslov
theory [25–27] for studying kinetic phenomena in an active medium on metal vapors
under the condition of quasi-neutrality in terms of the nonlocal kinetic Equation (5). The
key point of the approach is the use of the class P t

D of trajectory concentrated functions
given by (8) in which the solution to the Cauchy problem of Equation (5) is sought. This
allows us to reduce the Cauchy problem for the kinetic Equation (5) to the solution of the
corresponding Cauchy problem for the associated linear Equation (40) or (42), using the
general solution (32) of the EE system (26) of moments of the desired solution. As a result,
we obtain the leading term of the asymptotic solution of the Cauchy problem for the kinetic
Equation (5) accurate to O(D3/2) in the weak diffusion approximation.

Since the numerous publications dedicated to the kinetic modeling of MVAM are
mainly focused on numerical study, our approach can be used both for the approval of
complex numerical models and as an independent method for calculation of the electron
density in MVAM within given approximations.

The approach proposed here can be considered as an extension of the method of semi-
classical asymptotics in the class of functions P t

D, which we previously used in [28,30] for the
population nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov (Fisher–KPP) equation and
for the nonlocal Gross–Pitaevskii equation in [31,32].

The solutions of the Equation (7) obtained in this work have similarities with solutions
of the Fisher–KPP equation constructed in [28,30] for the one-dimensional case since these
equations have the same set of stationary points for the spatially uniform functions u ≥ 0:
one unstable stationary point u = 0 and one stable stationary point u > 0.
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Nevertheless, the cubic nonlinearities leads to some distinctions. In particular, the
zeroth-order moment σ(t) in (58), (59) for solutions (67) cannot take on a negative value
for the positive initial condition while it could be for the asymptotic solutions of the
Fisher–KPP equation with the quadratic nonlinearity [30]. Since the zeroth-order moment
corresponds to the population density in the Fisher–KPP model, it is not trivial how to
interpret such the solutions from the physical point of view. The absence of this issue for
the semiclassical approach to the model considered in this work means that this approach
is more natural for the equation with the cubic nonlinearity. In this sense, the Equation (7)
is similar to the Gross–Pitaevskii equation [31,32].

The plasma relaxation problem considered in Section 5 within the framework of
the proposed method illustrates the construction of the leading term of the semiclassical
asymptotics for the kinetic Equation (5) in explicit form using the incomplete gamma
function. With the help of the solution constructed, the time dependence of the number of
ions σ(t), which is an important characteristic of plasma kinetics, was obtained explicitly
and analyzed. It is shown that the solution can correspond to the relaxation process with
or without the excess ionization depending on the problem setup.

It can be seen from the results obtained that the WKB–Maslov method of semiclassi-
cal asymptotics can be certainly applied to the nonlocal generalization of the FitzHugh–
Nagumo model [36,37] in the similar way as it was used for the two-component Fisher–KPP
equation in [38] and to the nonlocal generalization of the Zeldovich–Frank–Kamenetskii
equation [39]. However, we expect the essentially different solution behavior for them
since those equations have different set of stationary points.
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