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Abstract: The fluid flow over a yawed cylinder is useful in understanding practical significance for
undersea applications, for example, managing transference and/or separation of the boundary layer
above submerged blocks and in suppressing recirculating bubbles. The present analysis examines
nonlinear mixed convection flow past a moving yawed cylinder with diffusion of liquid hydrogen.
The coupled nonlinear control relations and the border restrictions pertinent to the present flow
problem are nondimensionalized by using nonsimilar reduction. Further, implicit finite difference
schemes and Quasilinearization methods are employed to solve the nondimensional governing
equations. Impact of several nondimensional parameters of the analysis on the dimensionless
velocity, temperature and species concentration patterns and also on Nusselt number, Sherwood
number and friction parameter defined at the cylinder shell is analyzed through numerical results
presented in various graphs. Velocity profiles can be enhanced, and the coefficients of friction at
the surface can be reduced, for increasing values of velocity ratio parameters along chordwise as
well as spanwise directions. Species concentration profile is reduced, while the Sherwood number
is enhanced, for growth of the Schmidt number and yaw angles. Furthermore, for an increasing
value of yaw angle, skin-friction coefficient in chordwise direction diminishes in opposing buoyancy
flow case, whereas the results exhibit the opposite trend in assisting buoyancy flow case. Moreover,
very importantly, for increasing magnitude of nonlinear convection characteristic, the liquid velocity
and surface friction enhance in spanwise direction. Further, for increasing magnitude of combined
convection characteristics, velocity profiles and coefficient of friction at the surface enhance in both
spanwise and chordwise directions. Moreover, we have observed that there is no deviation for zero
yaw angle in Nusselt number and Sherwood number.

Keywords: mixed convection; yawed cylinder; double diffusion; nonlinear convection; quasilin-
earization technique

1. Introduction

Many researchers over the last few decades have given considerable attention to
the investigation of heat and mass transfer characteristics of combined convection in
various flow geometries. Combined convection flows appear when the temperature and
species concentration variations between the wall and the external liquid are larger and,
hence, become important when buoyancy forces significantly disturb the circulation, heat
and species concentration patterns. When the fluid is subjected to two various density
drops having various rates of diffusion, it is meant to be the double diffusion convection.
The density differences may be caused by gradients in the liquid concentration, or by
the changes in the temperature. The double diffusive mixed convection plays a vital
role in boundary layer flow problems because of its significance in several technical and

Mathematics 2021, 9, 1275. https://doi.org/10.3390/math9111275 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9111275
https://doi.org/10.3390/math9111275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111275
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9111275?type=check_update&version=2


Mathematics 2021, 9, 1275 2 of 17

geophysical challenges including solar collectors, solar ponds, lakes, reservoirs and crystal
growth [1]. Due to its vast applications, many researchers have worked on the double
diffusion combined convection flow past various geometries such as sphere, exponential
stretching sheet, vertical cone, slender cylinder, moving plate, etc. [2–7].

However, for viscous liquid flows with heat transfer, the impact of linear dependence
of density on dimensionless temperature, that is, natural convection, seems to be highly
significant in applications pertaining to industrial manufacturing processes and, therefore,
cannot be ignored. The “temperature and density relation” is nonlinear for a large dis-
tinction between the border and liquid temperatures, the nonlinear density temperature
differences in the buoyancy force term have a substantial effect on the circulation and
energy transference features. Vajravelu and Sastri [8] have analyzed the heat transfer char-
acteristics between the vertical borders with and without the nonlinear density temperature
differences. Bhargav and Agarwal [9] have examined the fully developed free convection
with temperature-dependent density within a duct. Mosta et al. [10] have examined the
influence of nonlinear temperature combined with density differences in nanosuspension
convection over a vertical border. In the present analysis, the “nonlinear temperature and
density relation” is regarded owing to the important variation between the liquid and wall
temperatures. At the same time, the liquid hydrogen diffusion [3,5] is regarded because of
its cooling ability.

The boundary layer concept is the most useful and important aspect in understanding
the transport processes occurring in external flows. The phenomenal results of the mixed
convection flow along various geometries have been contributed by various researchers
around the globe. Recently, Muthukumaran and Bathinathanan [11] have worked on
mixed convection boundary layer flow over a stretching sheet, and their results have
revealed that the heat transfer rate increases with a raise of the Prandtl number for both
assisting and opposing flows. Halim and Noor [12] have analyzed mixed convection over
a vertical stretching sheet, and their outcomes have revealed that the assisting flow has
higher rates of heat and mass transfer compared to the opposing flow. Alsabery et al. [13]
have investigated the mixed convection through a rotating cylinder. Khashiie et al. [14]
have worked on mixed convection flow over a Riga plate. Complex flow patterns over
yawed cylindrical cables, suppression of fluctuations in lift forces and the control of the
drag forces are the main problems encountered in the engineering design. At the same
time, the investigation of combined convection circulation about a tilted cylinder has
not been analyzed so far. The examination of motion along tilted cylinder is very useful
for heat exchangers design [15]. The fluid flow past yawed and unyawed cylindrical
geometries extensively occurs in various engineering-related applications, like tow cables,
chimney stacks, different towers, sub-sea pipelines, risers, heat exchangers and overhead
cables [16,17]. King [16] has studied the vortex exited oscillations of yawed circular
cylinders. This study reveals that the sustained oscillations can be observed at the yaw
angles ranging between ±65◦. Najafi et al. [18] have studied the undisturbed flows over
the yawed cylinder, wherein it is observed that eddies near the wake of the cylinder detach
due to the increase in the angle of yaw. Further, Snarski [19] has investigated the variation
of wall pressure on circular cylinder due to yaw angle and has revealed that the spectra
exhibit powerful narrow band energy stages related with the Strouhal vortex shedding
region, for the degrees of yaw angle ranging from π/3 to π/2. In the work of Sears [20],
the boundary layer motion along a yawed cylinder is analyzed, and it is noticed that
the location of the boundary layer separation point is independent from the yaw angle.
Moreover, Thapa et al. [21] have investigated numerically the circulation over a yawed
circular cylinder near the plane border. In the work of Gupta and Sarma [22], the time-
dependent circulation along a yawed infinite cylinder under the influence of cross flow
has been analyzed, and this analysis reveals that the coefficient of friction along chordwise
direction diminishes with larger values of nonsimilar variable (ξ). Further, Bucker and
Lueptow [23] have examined the boundary layer flow on weakly yawed cylinders, and
they have found that the thickness of boundary layer rises nonlinearly for small degree
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yaw angle. In this direction, many of the researchers have worked on the boundary layer
flow past a yawed cylinder with the influence of non-uniform suction/injection [17,24–27].
Marshall [28] has studied the disturbed flow along a moving yawed cylinder and found
that, as cross stream Reynolds number increases, the surface vorticity enhances. Vakil and
Green [29] have performed numerical calculations pertaining to the flow over a yawed
cylinder for moderate values of Reynolds number, i.e., 1 ≤ Re ≤ 40, and have validated
the independence principle and also proposed an empirical relation for the lift and drag
forces on the cylinder. Recently, Patil et al. [30] have scrutinized the combined convection
circulation along a yawed cylinder, and the obtained data reveal that the liquid velocity
and surface drag coefficient at the cylinder’s boundary in all directions rises with the heat
transfer rate because of combined convection.

From the above literature review, it is found that the investigation of double diffusive
combined convection past a moving yawed cylinder has not been attempted so far. Since,
many authors such as Roy [25], Chiu and Lienhard [31], Roy and Saikrishnan [26] and
Revathi et al. [17] have analyzed a boundary layer flow over a yawed cylinder. The works
of these researchers have stimulated us to work on the present article, and, therefore, we
have scrutinized the considered challenge. However, the present problem is formulated as
an endeavor to investigate the steady combined convection boundary layer flow around a
moving yawed cylinder. The novelty in the present analysis is as follows:

− Convective flow over a moving yawed cylinder driven by buoyancy.
− Influence of liquid hydrogen diffusion.
− Effects of yawed angle.
− Flow characteristics in chordwise and spanwise directions.

The considered governing equations and boundary conditions have been reduced
using nonsimilar technique. Further, these equations are solved by employing the quasilin-
earization method and the implicit finite difference schemes [32–34].

2. Mathematical Simulation

Herein, we analyze the viscous, laminar, incompressible, combined convective flow
over a moving yawed cylinder. The flow system is demonstrated in Figure 1, where the
liquid (water) is supposed to move over a vertically yawed cylinder with radius R so that
the yaw angle θ is used between 0 and π/6. Here, θ = 0 represents the vertical cylinder,
while θ = π/2 represents the horizontal cylinder. To have the influence of buoyancy, the
cylinder must be regarded in vertical or tilted location because the investigation is of
combined convection. Therefore, the yaw angle is regarded in the range 0 ≤ θ ≤ π/2.
The magnitude of angle of yaw above π/6 is not regarded because it would be nearer to
stagnation point circulation and it is not the aim of the current examination of combined
convection flow. For analysis, x and z are the coordinate axes in chordwise and spanwise
directions, respectively, with u and w denoting the corresponding velocity components.
Moreover, y is the coordinate axis drawn normal to x and z axes with v denoting the
corresponding velocity component. The temperature and species concentration of the liquid
at the border are denoted by Ts and Cs, while that away from the surface are represented
by T∞ and C∞. The density changes are modeled using the Boussinesq approach [5,35].
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Figure 1. Sketch of the motion with coordinates.

The governing equations representing the fluid flow variations are as follows
[17,24–27,30,36]

Continuity equation
∂u
∂x

+
∂v
∂y

= 0 (1)

Momentum equation along chordwise direction

u ∂u
∂x + v ∂u

∂y = ue
due
dx + g

{
β1(T − T∞) + β2(T − T∞)2

}
sin(θ)

+ν ∂2u
∂y2 + g

{
β3(C− C∞) + β4(C− C∞)2

}
sin(θ)

(2)

Momentum equation along spanwise direction

u ∂w
∂x + v ∂w

∂y = ν ∂2w
∂y2 + g

{
β1(T − T∞) + β2(T − T∞)2

}
cos(θ)

+g
{
β3(C− C∞) + β4(C− C∞)2

}
cos(θ)

(3)

Energy equation

u
∂T
∂x

+ v
∂T
∂y

=
k
ρcp

∂2T
∂y2 (4)

Concentration equation

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 (5)

The prescribed boundary conditions are

y = 0 : u = us(x), v = 0, w = ws(x), C = Cs, T = Ts,
y→ ∞ : u→ ue(x) = 2u∞ sin

( x
R
)
, w→ we = w∞ cos(θ), C → C∞ , T → T∞

}
(6)

The nonsimilar transformations and the resulting variables are

ξ =
x∫

0

ue
u∞

d
( x

R
)

,η =
(

Re
2ξ

) 1
2
(

ue
u∞

)
y
R , u∞ = w∞ sin(θ),

w = we · S = w∞ cos(θ) · S, G = T−T∞
Ts−T∞

, H = C−C∞
Cs−C∞

,

ψ(x, y) = u∞R
(

2ξ
Re

) 1
2 f (ξ,η), u = ∂ψ

∂y , v = − ∂ψ
∂x , Re = ρu∞R

µ

 (7)
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In view of (7), we have

u = 2u∞ sin
( x

R
)

F

v = u∞

{
− y

R

(
2 cos

( x
R
)
− sin2( x

R )
1−cos( x

R )

)
F−

(
2

Re·ξ

) 1
2 f · sin

( x
R
)
− 2
(

2ξ
Re

) 1
2 · sin

( x
R
)

fξ

}
Now, utilizing the transformations (7), Equations (2)–(5) can be written as

Fηη + f Fη + β(ξ)
(
1− F2)+ 2ξ(Fη fξ − FFξ)+

+Ri s(ξ){(1 + βTG)G + (1 + βc H)NcH} sin(θ) = 0
(8)

Sηη + f · Sη + 2ξ(Sη fξ − FSξ) + Rip(ξ){(1 + βTG)G + (1 + βcH)NcH} sin(θ) = 0 (9)

Gηη + Pr · f · Gη + 2ξ(Gη fξ − FGξ)Pr = 0 (10)

Hηη + Sc · f · Hη + 2ξ(Hη fξ − FHξ)Sc = 0 (11)

The employed boundary conditions are given below

at η = 0 : F = ε1, S = ε2, G = 1, H = 1,
as η→ ∞, F = 1, S = 1, G = 0, H = 0

}
(12)

The nondimensional characteristics arising in this investigation are

β(ξ) =
ξ cos(x)
sin2(x)

, Ri = gβ1(Ts−T∞)R
u2

∞
, s(ξ) = ξ

4 sin3(x)
, Nc = β3(Cs−C∞)

β1(Ts−T∞)
,

p(ξ) = ξ
2 sin2(x)

, βT = β2(Ts−T∞)
β1

, βC = β4(Cs−C∞)
β3

, where x = x
R

(13)

Furthermore, f (ξ,η) =
η∫
0

Fdη+ fs; where fs = 0 represents an impermeable yawed

cylinder.
The velocity distribution is

ue(x) = 2u∞ sin(x), we(x) = w∞ cos(θ) = constant, where x =
x
R

(14)

Therefore, ξ, β(ξ), s(ξ) and p(ξ) can be defined in terms of x

ξ = 2[1− cos(x)], β(x) = 2 cos(x)
1+cos(x) ,

s(x) = 1
2 sin(x)[1+cos(x)] , p(x) = 1

1+cos(x)
(15)

Using the following relation, equations are expressed in x instead of ξ

ξ
∂

∂ξ
= B(x)

∂

∂x
(16)

where B(x) = tan
(

x
2

)
(17)

In view of Equations (16) and (17), Equations (8)–(11) become as follows

Fηη + f Fη + β(x)
(
1− F2)+ 2B(x)(Fη fx − FFx)+

+Ri · s(x){(1 + βTG)G + (1 + βcH)NcH} sin(θ) = 0
(18)

Sηη + f · Sη + 2B(x)(Sη fx − FSx) + Ri · p(x){(1 + βTG)G + (1 + βcH)NcH} sin(θ) = 0 (19)

Gηη + Pr · f · Gη + 2B(x)(Gη fx − FGx)Pr = 0 (20)

Hηη + Sc · f · Hη + 2B(x)(Hη fx − FHx)Sc = 0 (21)
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The relevant boundary conditions are

at η = 0 F = ε1, S = ε2, G = 1, H = 1,
as η→ ∞ F = 1, S = 1, G = 0, H = 0

}
(22)

Skin friction coefficient along chordwise direction can be defined as follows C f =

2
(
µ ∂u

∂y

)
w

ρw2
∞

. Taking into account Equation (7) one can define this skin friction parameter as

C f =
2µ
(

4 u∞
R sin2(x)( Re

2ξ )
0.5

Fη(x,0)
)

sin2(θ)

ρu2
∞

, (u∞ = w∞ sin(θ)) and as a result

C f =
4(1+cos(x))(1−cos(x))0.5 sin2(θ)Fη(x,0)

Re0.5 ,
i.e., Re0.5C f = 4(1 + cos(x))(1− cos(x))0.5 sin2(θ)Fη(x, 0)

(23)

Skin friction coefficient along spanwise direction can be defined as follows C f =

2
(
µ ∂w

∂y

)
w

ρw2
∞

. Taking into account Equation (7) one can define this skin friction parameter as

C f =
2µ
(

2we
sin(x)

R ( Re
2ξ )

1/2
Sη(x,0)

)
sin2(θ)

ρu2
∞

, (we = w∞ cos(θ)) and as a result

C f =
21.5 cos

( x
2
)

cos(θ) sin(θ)Sη(x, 0)
Re0.5 , i.e., Re0.5C f = 21.5 cos

(
x
2

)
cos(θ) sin(θ)Sη(x, 0)

(24)

Nusselt number reflecting the heat transfer rate can be defined as Nu = −
R
(

∂T
∂y

)
w

(Tw−T∞)
.

Taking into account Equation (7), one can find Nu = −
R
(
(Tw−T∞)

2 sin(x)
R ( Re

2ξ )
0.5

Gη(x,0)
)

(Tw−T∞)
and

Nu = −2 sin(x)
(

Re
2ξ

)0.5
Gη(x, 0). Using Equation (15) for ξ one can find Re−0.5Nu =

− sin(x)
(1−cos(x))1/2 Gη(x, 0) and Re−0.5Nu = −

(
2 sin( x

2 ) cos( x
2 )√

2·sin( x
2 )

Gη(x, 0)
)

, where (1− cos(x)) =

2 · sin2( x
2
)
. As a result

Nu =
−
√

2 cos
( x

2
)
Gη(x, 0)

Re−0.5 , i.e., Re−0.5Nu = −
√

2 cos
(

x
2

)
Gη(x, 0) (25)

Sherwood number reflecting the mass transfer rate can be defined as Sh = −
R
(

∂C
∂y

)
w

(Cw−C∞)
.

Taking into account Equation (7) one can find Sh = −
R
(
(Cw−C∞)

2 sin(x)
R ( Re

2ξ )
0.5

Hη(x,0)
)

(Cw−C∞)
and

Sh = −2 sin(x)
(

Re
2ξ

)0.5
Hη(x, 0). Using Equation (15) for ξ one can find Re−0.5Sh =

− sin(x)
(1−cos(x))0.5 Hη(x, 0) and Re−0.5Sh = −

(
2 sin( x

2 ) cos( x
2 )√

2·sin( x
2 )

Hη(x, 0)
)

, where (1− cos(x)) =

2 · sin2( x
2
)
. As a result

Sh =
−
√

2 cos
( x

2
)

Hη(x, 0)
Re−0.5 , i.e., Re−0.5Sh = −

√
2 cos

(
x
2

)
Hη(x, 0) (26)

3. Solution Technique

Equations (18)–(21) are linearized using quasilinearization technique as below

Fi+1
ηη + Ai

1Fi+1
η + Ai

2Fi+1
x + Ai

3Fi+1 + Ai
4Gi+1 + Ai

5Hi+1 = Ai
6 (27)

Si+1
ηη + Bi

1Si+1
η + Bi

2Si+1
x + Bi

3Fi+1 + Bi
4Gi+1 + Bi

5Hi+1 = Bi
6 (28)
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Gi+1
ηη + Ci

1Gi+1
η + Ci

2Gi+1
x + Ci

3Fi+1 = Ci
4 (29)

Hi+1
ηη + Di

1Hi+1
η + Di

2Hi+1
x + Di

3Fi+1 = Di
4 (30)

where the coefficients at the (i + 1)th iteration are defined employing the known ith iterative
parameters. The dimensionless boundary conditions are

Fi+1 = ε1, Si+1 = ε2, Gi+1 = 1, Hi+1 = 1 at η = 0,
Fi+1 = 1, Si+1 = 1, Gi+1 = 0, Hi+1 = 0 at η = η∞

}
(31)

where the boundary layer edge is denoted by η∞.
The coefficients in Equations (27)–(30) are given below

Ai
1 = f + 2B(x) fx, Ai

3 = −2B(x)F, Ai
3 = −2β(x)F− 2B(x)Fx,

Ai
4 = Ri · s(x)(1 + 2βTG) sin(θ), Ai

5 = Ri · s(x)(1 + 2βC H)Nc sin(θ),
Ai

6 = −2B(x)FFx − β(x)
(
1 + F2)+ Ri · s(x)

(
βTG2 + NcβC H2) sin(θ),

Bi
1 = f + 2B(x) fx, Bi

2 = −2B(x)F, Bi
3 = −2B(x)Sx,

Bi
4 = Ri · p(x)(1 + 2βTG) sin(θ), Bi

5 = Ri · p(x)(1 + 2βC H)Nc sin(θ),
Bi

6 = −2B(x)FSx + Ri · p(x)
(
βTG2 + NcβC H2) sin(θ),

Ci
1 = Pr( f + 2B(x) fx), Ci

2 = −2PrB(x)F, Ci
3 = −2PrB(x)Gx, Ci

4 = −2PrB(x)FGx,
Di

1 = Sc( f + 2B(x) fx), Di
2 = −2ScB(x)F, Di

3 = −2ScB(x)Hx, Di
4 = −2ScB(x)FHx

The nonlinear coupled partial differential Equations (18)–(21) under the boundary
conditions (22) have been solved numerically using an implicit finite difference scheme
in combination with the quasilinearization technique. The quasilinearization technique
can be viewed as a generalization of the Newton–Raphson approximation method in
functional space. An iterative sequence of linear equations is carefully constructed to ap-
proximate the nonlinear Equations (18)–(21) under the boundary conditions (22) achieving
quadratic convergence and monotonicity. Applying the quasilinearization technique, the
nonlinear coupled partial differential Equations (18)–(21) with boundary conditions (22)
are replaced by the sequence of linear ordinary differential equations. Because the method
is presented for ordinary differential equations by Inouye and Tate [37] and for partial
differential equations in a recent study by Singh and Roy [38], its detailed description
is not provided here. At each iteration step, the sequence of linear partial differential
Equations (27)–(30) is expressed in difference form using the central difference scheme
in the x-direction and the backward difference scheme in η direction. Thus, in each step,
the resulting equations have been then reduced to a system of linear algebraic equations
with a block tri-diagonal matrix, which is solved by Varga’s algorithm [39]. To ensure the
convergence of the numerical solution to the exact solution, step sizes ∆x and ∆η are taken
as 0.01 and 0.01. A convergence criterion based on the relative difference between the
current and previous iteration values is employed. When the difference reaches 0.0001,
the solution is assumed to have converged and the iteration process is terminated, i.e.,
max

{∣∣∣(Fη

)i+1
s −

(
Fη

)i
s

∣∣∣, ∣∣∣(Gη

)i+1
s −

(
Gη

)i
s

∣∣∣, ∣∣∣(Hη

)i+1
s −

(
Hη

)i
s

∣∣∣, ∣∣∣(Sη

)i+1
s −

(
Sη

)i
s

∣∣∣} ≤ 10−4.

4. Results and Discussion

In order to examine the qualitative behavior of fluid flow characteristics over a moving
yawed cylinder, comprehensive numerical computation has been carried out for numerous
values of nondimensional parameters that characterize the flow, heat and mass transfer.
The simulated outcomes are presented graphically. Considering water as the working
liquid, the value of Prandtl number Pr = 7 is selected. The realistic Schmidt numbers are
Sc = 160, 240 and 340 which correspond to liquid hydrogen, liquid nitrogen and liquid
oxygen, respectively. The values of yaw angle (θ), combined convection parameter (Ri) and
the ratio of buoyancy force parameter (Nc) are varied in the ranges 0 ≤ θ ≤ π/3, –3 ≤ Ri ≤
10 and 0 ≤ Nc ≤ 1, respectively. It should be noted that considered values of governing
parameters allow one to show the features of liquid behavior and heat and mass transfer.
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Further, θ = 0 corresponds to the perfect geometry of a vertical cylinder. Moreover,
x = 0 and x 6= 0 represent the similarity and nonsimilarity cases, respectively. Additionally,
ε1 = us/ue and ε2 = ws/we are two velocity ratio parameters along chordwise and
spanwise directions, respectively.

4.1. Impacts of Combined Convection Parameter and Velocity Ratio Parameter

Figures 2–4 display the influence of combined convection parameter (Ri) and velocity
ratio parameters (ε1 and ε2) on velocity patterns (F(x, η) and S(x, η)) and the coefficients
of friction at the surface

(
Re1/2C f and Re1/2C f

)
along chordwise and spanwise directions.

Increasing magnitude of combined convection characteristics enhances the velocity pattern
and the surface drag coefficient in chordwise and spanwise directions. The positive
magnitudes of Ri designate the essential impacts of buoyancy force over inertia force.
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Figure 2. Influence of Ri and velocity ratio parameter (ε1 and ε2) on velocity patterns
(F(x, η), S(x, η)) in both chordwise and spanwise direction when x = 0.5, βT = 0.1, θ = π/6, Nc =
0.1, ε2 = 0.5, βC = 0.1 and Sc = 160.
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Figure 3. Influence of Ri and ε1 on surface drag coefficient
(

Re0.5C f

)
in chordwise direction when

βT = 0.1, θ = π/6, Nc = 0.1, ε2 = 0.5, βC = 0.1 and Sc = 160.
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Figure 4. Influence of Ri and ε2 on skin-friction parameter
(

Re0.5C f

)
in spanwise direction when

βT = 0.1, θ = π/6, Nc = 0.1, ε1 = 0.8, βC = 0.1 and Sc = 160.

Thus, the buoyancy for liquid enhances the liquid motion and simultaneously en-
hances the liquid’s velocity and respective frictions at the surface. Further, for enhancing
values of velocity ratio characteristics (ε1), the velocity profile enhances, while the surface
drag coefficient in the chordwise direction diminishes. Moreover, the same behavior is
observed for larger values of velocity ratio parameters (ε2) in the spanwise direction. The
physical reason is that, for ε1 < 1 and ε2 < 1, the free stream velocity dominates over surface
velocity and causes such variations. Moreover, the combined impacts of assisting buoyancy
force because of temperature and concentration gradients along with a rise of velocity
ratio parameter acts like a favorable pressure gradient which enhances the liquid flow.
For x = 0.5, Pr = 7.0, βT = 0.1, θ = π/6, Nc = 0.1, ε1 = ε2 = 1.5, βC = 0.1 and Sc = 160, the
coefficients of friction along chordwise and spanwise directions at the wall are increased by
about 22% and 62%, respectively, as Ri varies from opposing buoyancy flow case (Ri = −1)
to assisting buoyancy flow case (Ri = 3).

4.2. Impacts of Nonlinear Convection Parameter and Yaw Angle

Figures 5–8 display the influence of velocity ratio characteristics (ε1) and angle of
yaw (θ) on velocity profile F(x, η) and the coefficients of friction at the surface

(
Re0.5C f

)
along the chordwise direction. Moreover, the influence of nonlinear convection parameter
(βT) and angle of yaw (θ) on velocity profile S(x, η) and the coefficient of friction at the
surface

(
Re0.5C f

)
along the spanwise direction has been observed. For enhancing values

of velocity ratio parameter (ε1), the velocity pattern increases, while surface drag coefficient
in chordwise direction diminishes. The physical reason is that, for ε1 < 1, the free stream
velocity dominates over surface velocity and causes such variations. Further, for the
increasing magnitudes of βT, the velocity patterns and coefficient of friction at the surface
increase along the spanwise direction. The larger magnitudes of βT characterize the greater
variation between the plate and the environmental temperature. Therefore, for larger
magnitudes of βT, the larger temperature variation reasons stronger convection and as a
result enhances the liquid velocity and the friction between the cylinder and the liquid.

Further, velocity profiles in chordwise and spanwise directions and the skin friction
coefficient in chordwise and spanwise directions both increase with the increasing values
of yaw angle. Higher values of yaw angle (i.e., the cylinder inclines more) cause pressure
increase in the fluid flow and increase fluid velocity, and the inclination of the cylinder
causes the enhancement in the surface friction along chordwise and spanwise directions.
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Moreover, in Figure 7, at θ = 0, the lines obtained for different values of βT merge together.
For x = 0.5, Pr = 7.0, Ri = 10.0, βT = 0.5, Nc = 0.1, ε1 = 0.8, ε2 = 0.5, βC = 0.1 and Sc = 160,
the coefficient of friction along spanwise directions at the wall increases by about 50%, as θ
varies from π/6 to π/3.
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Figure 6. Influence of βT and θ on velocity patterns S(x, η) in spanwise direction when x = 0.5,
Ri = 10.0, Nc = 0.1, ε1 = 0.8, ε2 = 0.5, βC = 0.1 and Sc = 160.
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in chordwise direction when

Ri = 10.0, βT = 0.1, Nc = 0.1, ε2 = 0.5, βC = 0.1 and Sc = 160.
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(

Re0.5C f
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in spanwise direction when
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4.3. Impacts of Yaw Angle and Schmidt Number

Figures 9 and 10 display the impact of Schmidt number (Sc) as well as angle of yaw
(θ) on concentration profile H(x, η) and the mass transfer rate

(
Re−0.5Sh

)
, respectively. It

is observed that the concentration profile reduces while the Sherwood number enhances,
for the larger Schmidt numbers and angles of yaw. Mass diffusivity reduces for the higher
values of Sc. As Sc enhances, the thickness of the concentration boundary layer reduces,
and as a result the species concentration profile diminishes. Accordingly, the Sherwood
number increases. Further, we observe that there is no deviation for θ = 0 which represents
the vertical cylinder, as compared to other yaw angles. For x = 0.5, Ri = 10.0, βT = 0.1, Nc
= 0.1, ε1 = 0.8, ε2 = 0.5, βC = 0.1 and θ = π/6, the Sherwood number enhances by about
27%, when Sc value is reduced from 340 to 160.
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4.4. Impact of Yaw Angle and Combined Convection Characteristics

Figures 11 and 12 depict the influence of combined convection parameter (Ri) and
angle of yaw (θ) on dimensionless temperature pattern G(x, η) and heat transfer rate(

Re−0.5Nu
)

. Temperature pattern and heat transfer rate are reduced for an enhancing
magnitudes of combined convection parameter. The magnitudes Ri > 0 illustrate the
essential influence of buoyancy force compared to the inertia force. Thus, a rise of the
buoyancy impacts illustrates more essential fluid flow that characterizes a reduction of the
liquid temperature and an appearance of the cool liquid close to the cylinder’s border. This
in turn enhances the energy transport strength from the cylinder’s border to the liquid.
Further, as yaw angle enhances temperature profile and heat transfer rate, for enhancing
magnitudes of combined convection parameter, we observe the curves obtained by varying
the yaw angle; the curves overlap into a single curve with irrespective values of combined
convection parameter.
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Figure 12. Influence of Ri and θ on heat transfer rate
(

Re−0.5Nu
)

when βT = 0.1, Nc = 0.1, ε1 = 0.8,
ε2 = 0.5, βC = 0.1 and Sc = 160.

Further, we observe that there is no deviation for θ = 0 which represents the vertical
cylinder, as compared to other yaw angles. Moreover, at x = 0.5 and Ri = 10.0, as yaw angle
enhances from θ = π/6 to θ = π/3, Nusselt number increases approximately about 7%.

Velocity profile F(x, η) is compared with the already existing results of Eswara and
Nath [40] for a particular case by assuming A = 0, Ec = 0, θ = 0. The results are found in an
excellent agreement and the comparisons are shown in Figure 13.
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Figure 13. Comparison of velocity profile F(x, η) with the particular case of flow over cylinder for
θ = 0, Ec = 0 and A = 0.

Table 1 demonstrates the variations of friction parameter at the yawed cylinder along
chordwise direction, Nusselt and Sherwood numbers, for various magnitudes of yaw
angle. From the Table 1, it is found that the surface drag coefficient, Nusselt and Sherwood
numbers are raised for increasing yaw angles. The friction parameter, rates of heat transfer
and mass transfer are enhanced by about 31%, 2% and 1%, respectively, at x = 0.5, as yaw
angle varies from π/12 to π/6.

Table 1. Surface drag coefficient along chordwise direction
(

Re0.5C f

)
, heat transfer rate

(
Re−0.5Nu

)
and mass transfer rate

(
Re−0.5Sh

)
values, for different values of yaw angle (θ = 0 to θ = π/3) when

Ri = 10.0, βT = 0.1, Nc = 0.1, ε1 = 0.8, ε2 = 0.5, βC = 0.1 and Sc = 160.

Yaw Angle (θ) |Re0.5Cf| |Re−0.5Nu| |Re−0.5Sh|

0 0 0.94430 4.41621
π/12 0.12140 0.94281 4.42190
π/6 0.68785 0.95536 4.43383
π/3 3.10383 0.96857 4.45684

5. Conclusions

This research considers the double-diffusive combined convection around a moved
yawed cylinder. In that, the influence of varying strength of yaw angle, mixed convection
and nonlinear convection characteristics on the velocity patterns and skin friction coeffi-
cients in chordwise and spanwise directions, nondimensional temperature, concentration
profile, mass and heat transfer rates are analyzed employing different graphs. Taking into
account this detailed analysis, the obtained outcomes are detailed as follows:

− Velocity profiles can be enhanced, while the coefficients of friction at the surface
diminish, for increasing values of velocity ratio parameters in spanwise and chordwise
directions.

− For enhancing magnitudes of nonlinear convection coefficient, the velocity profile and
the skin friction parameter in spanwise direction are increased.

− Concentration profile diminishes, while the Sherwood number enhances, for increas-
ing values of Schmidt number and yaw angle.

− Velocity profiles in spanwise and chordwise directions and skin friction coefficient at
the border in chordwise and spanwise directions are enhanced with growing values
of yaw angle.
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− Increasing magnitude of combined convection characteristics, enhancing the velocity
profiles and surface drag coefficient in spanwise and chordwise directions.
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Nomenclature

C Species Concentration:
Cs species concentration at the surface
C∞ ambient species concentration
DB Brownian diffusion coefficient (m2 s−1)
F dimensionless stream function
G nondimensional temperature
Gr Grashof number
G acceleration due to gravity (m s−2)
H nondimensional concentration
Nc buoyancy ratio
Nu Nusselt number
Pr Prandtl number
R radius of the cylinder (m)
Ri mixed convection parameter
Sc Schmidt number
Sh Sherwood number
T temperature (K)
Ts temperature at the surface (K);
T∞ ambient temperature (K)
U x-velocity (m s−1)
u∞ free stream velocity (m s−1)
V y-velocity (m s−1)
w z-velocity (m s−1)
x, y and z curvilinear coordinates (m)
Greek symbols
β1, β2 linear and nonlinear thermal expansion parameters (K−1)
β3, β4 linear and nonlinear thermal expansion parameters of liquid hydrogen
βC nonlinear concentration convection coefficient for liquid hydrogen
βT nonlinear temperature convection coefficient
∆x, ∆η step size for x and η coordinates
ε1 velocity ratio parameter along chordwise direction
ε2 velocity ratio parameter along spanwise direction
x,η transformed variables
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θ yaw angle
ν kinematic viscosity (m2 s−1)
ψ dimensionless stream function
Subscripts
x,η denote the partial derivatives with respect to these variables
e indicates the condition at the boundary layer edge
w indicates the condition at the wall
∞ indicates the condition at the mainstream.
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