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The objective of this paper is to suggest a method of the construction of circulant ma-
trices, which are appropriate for being MDS (Maximum Distance Separable) matrices
utilising in cryptography. Thus, we focus on designing so-called bi-regular circulant
matrices, and furthermore, impose additional restraints on matrices in order that they
have the maximal number of some element occurrences and the minimal number of
distinct elements. The reason to construct bi-regular matrices is that any MDS ma-
trix is necessarily the bi-regular one, and two additional restraints on matrix elements
grant that matrix-vector multiplication for the samples constructed may be performed
efficiently. The results obtained include an upper bound on the number of some ele-
ment occurrences for which the circulant matrix is bi-regular. Furthermore, necessary
and sufficient conditions for the circulant matrix bi-regularity are derived. On the ba-
sis of these conditions, we developed an efficient bi-regularity verification procedure.
Additionally, several bi-regular circulant matrix layouts of order up to 31 with the
maximal number of some element occurrences are listed. In particular, it appeared
that there are no layouts of order 32 with more than 5 occurrences of any element
which yield a bi-regular matrix (and hence an MDS matrix).
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О ПОСТРОЕНИИ ЦИРКУЛЯНТНЫХ МАТРИЦ,
СВЯЗАННЫХ С MDS-МАТРИЦАМИ

С.С. Малахов, М.И. Рожков

Национальный исследовательский университет «Высшая школа экономики»,
г. Москва, Россия

Цель данной работы — предложить метод построения таких циркулянтных мат-
риц, которые могут быть MDS-матрицами, используемыми в криптографии.
Мы рассматриваем так называемые би-регулярные циркулянтные матрицы и,
кроме того, налагаем на них дополнительные ограничения с тем, чтобы они име-
ли максимальное число вхождений некоторого элемента и минимальное количе-
ство различных элементов. Интерес к би-регулярным матрицам обусловлен тем,
что любая MDS-матрица обязательно является би-регулярной, а дополнитель-
ные ограничения на элементы матриц позволяют эффективнее реализовывать
матрично-векторные операции с использованием таких матриц. Полученные ре-
зультаты включают верхнюю границу числа вхождений некоторого элемента, при
котором циркулянтная матрица остаётся би-регулярной, а также необходимые и
достаточные условия би-регулярности циркулянтной матрицы. Кроме того, опи-
сан эффективный алгоритм проверки би-регулярности циркулянтной матрицы.
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С его помощью построены шаблоны би-регулярных циркулянтных матриц поряд-
ка до 31 с максимальным числом вхождений некоторого элемента и установлено
отсутствие би-регулярных циркулянтных матриц (и следовательно, MDS-матриц)
порядка 32 с более чем пятью вхождениями одного элемента.

Ключевые слова: циркулянтная матрица, МДР-код, MDS-код, MDS-матрица.

1. Introduction
Suppose that M is a k ×m matrix over a finite field Fq. Then a set{

(x,x ·M) : x ∈ (Fq)k
}

is a linear [n, k, d] code of the length n = k + m and the dimension k with the minimum
Hamming distance d between any two code words. For a linear [n, k, d] code the Singleton
bound holds [1]:

d 6 n− k + 1 = m+ 1.

A code with d = m + 1 is called the MDS code (Maximum Distance Separable code), and
the corresponding matrix M is referred to as the MDS matrix.

The problem of MDS code existence relates to Segre’s MDS conjecture proposed in [2].
It suggests that a set S of vectors of the vector space (Fq)k such that every subset of S
of size k 6 q is a basis, comprises at most q + 1 elements, unless q is even and k = 3 or
k = q − 1, in which case it comprises at most q + 2 elements. S. Ball has shown in [3] that
S generates an MDS code and proved that a linear MDS code with the dimension k 6 q
has the length at most q + k + 1−min{k, char Fq}.

Furthermore, it is shown in [1, p. 321] that a linear code is MDS if and only if every
square submatrix ofM is non-singular. Therefore, we will define the MDS matrix as follows.

Definition 1. A matrix M is the MDS matrix if every square submatrix of M is
non-singular.

MDS matrices are demanded for block cryptographic algorithms, where they are
responsible for the input diffusion. An MDS matrix performs a linear transformation of
an input block x of the following property: if i, 1 6 i 6 k, elements of x are altered, then
at least m− i+ 1 elements of the output block x ·M alter, where both the input and the
output blocks can be interpreted as vectors of a k -dimensional vector space over a finite
field Fq. In this sense, MDS matrices provide perfect diffusion [4]. Several algorithms utilize
MDS matrices including block ciphers Rijndael, GOST R 34.12-2015, IDEA NXT and hash
functions GOST R 34.11-2012 and Whirlpool.

Although construction of MDS matrices is a computationally hard problem in general
case, there are plenty of different particular techniques. One approach presumes that
a specific matrix layout comprising variables is set. Then, variables are initialized with
concrete values, and the resulting matrix is tested for being the MDS matrix. The approach
described was proposed in [4] and performed in [5]. Not every matrix layout may produce
MDS matrices, and therefore, it is of an interest to filter those layouts which never produce
any. A method to filter matrix layouts is to verify their bi-regularity. The definition of the
bi-regularity is given below.

Definition 2. Let K be a subset of a multiplicative group. The 2×2 matrix over K is
bi-regular if at least in one row and one column there are two distinct entries. An arbitrary
k ×m matrix over K is bi-regular if every its 2× 2 submatrix is bi-regular.
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Remark 1. One may distinguish two particular cases, when K is exactly a
multiplicative subgroup of a finite field, and when K represents a set of variables that
cannot take nought values.

It is obvious that an MDS matrix is necessarily bi-regular, and so is a matrix layout
that produces MDS matrices.

This paper focuses on the construction of bi-regular circulant matrix layouts which yield
bi-regular matrices and hence may produce MDS matrices.

Definition 3. A circulant matrix denoted by its zeroth row (a0, . . . , am−1) is a matrix
of the form 

a0 a1 · · · am−2 am−1
a1 a2 · · · am−1 a0
· · ·
am−2 am−1 a0 · · · am−3
am−1 a0 · · · am−3 am−2

 .

Remark 2. Speaking more generally, as rows of a matrix may be circularly shifted
to the left or to the right, there exist two types of circulant matrices. Although this paper
takes a left shift case as a basis for description, all the techniques presented are essentially
applicable to both circulant matrix types.

Previously, circulant matrices were studied in several papers, for instance, in [6 – 9].
It was proved in [6] that circulant MDS matrices over a finite field of characteristic 2
are neither involutary nor orthogonal. However, [7] reveals that involutory circulant MDS
matrices over the ring of matrices whose entries lie in characteristic 2 field do exist. The
authors of [9] managed to construct circulant MDS matrices over the general linear group
over the two-element field, and in [8] the authors studied circulant-like MDS matrices.

The objective of this paper is to suggest a method for the construction of bi-regular
circulant matrices with the maximal number of some element occurrences and the minimal
number of distinct elements. These two additional restraints on matrix elements allow
performing matrix-vector multiplication more efficiently. The results obtained include the
upper bound of the number of some element occurrences for which the circulant matrix
bi-regularity preserves. Furthermore, necessary and sufficient conditions for the circulant
matrix bi-regularity are derived. On the basis of these conditions, we developed an efficient
bi-regularity verification procedure. Additionally, several bi-regular circulant matrix layouts
of order up to 31 with the maximal number of some element occurrences are listed. In
particular, it appeared that there are no layouts of order 32 with more than 5 occurrences
of any element which yield a bi-regular matrix (and hence an MDS matrix).

This paper follows the report On the construction of bi-regular circulant matrices,
relating to MDS matrices [10] made at the conference Engineering Technologies and
Informatics: Innovations and Applications (En&T-2021).

The paper consists of two parts, not taking the introduction and the conclusion into
account. The first part carries proofs for the upper bound of the number of arbitrary
element occurrences together with the proof of necessary and sufficient conditions for the
circulant matrix be-regularity. The second part contains instances of bi-regular circulant
matrix layouts of an order up to 31 with maximum number of a given element occurrences.

2. Necessary and sufficient conditions for the circulant matrix bi-regularity
The following Lemma 1 provides one of the necessary conditions for the circulant matrix

bi-regularity.
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Lemma 1. Let M be a bi-regular circulant matrix over a subset K of some
multiplicative group, denoted by its zeroth row (a0, . . . , am−1). Suppose that an element α
is in the positions with indices i0, . . . , it−1, t > 1. Then the set of differences between two
distinct indices

Dα = {(i− i′) mod m : i ∈ {i0, . . . , it−1} 3 i′, i 6= i′}
comprises t (t− 1) elements.

Proof. Suppose that there exist indices ir < is and iu < iv of the positions occupied
by an element α such that is − ir = iv − iu or is − ir = m − iv + iu. The following three
cases are possible.
I. If is − ir = iv − iu, while ir < is 6 iu < iv, then in the zeroth row and in the row

obtained from it by the (iu − ir)-position left circular shift there is an element α in the
columns ir and is. Hence, M is not bi-regular:

ir is iu iv 0 · · · α · · · α · · · α · · · α · · ·
...

iu − ir · · · α · · · α · · ·
.

II. If is − ir = iv − iu, while ir < iu < is < iv, then in the zeroth row and in the row
obtained from it by the (iu − ir)-position left circular shift there is an element α in the
columns ir and is. Hence, M is not bi-regular:

ir iu is iv 0 · · · α · · · α · · · α · · · α · · ·
...

iu − ir · · · α · · · α · · ·
.

III. If is − ir = (iu − iv) mod m, while ir 6 iu < iv 6 is, then in the zeroth row and in the
row obtained from it by the (iv − ir)-positions left circular shift there is an element α
in the columns ir and is. Hence, M is not bi-regular:

ir iu iv is 0 · · · α · · · α · · · α · · · α · · ·
...

iv − ir · · · α · · · α · · ·
.

Thus, all the cases possible contradict to the matrix M bi-regularity.

Now we derive the upper bound of the number of arbitrary element occurrences in
the bi-regular circulant matrix. Note that K. Zarankiewicz in [11] addressed the problem
equivalent to finding the largest positive integer z(k,m, p, q) such that a binary k×mmatrix
containing z(k,m, p, q) ones may not have a p × q submatrix consisting entirely of ones.
If we now take p = q = 2, then Zarankiewicz’s problem is to find the largest number of
arbitrary element occurrences at which the matrix bi-regularity preserves. I. Reiman proved
in [12] that

z(k,m, 2, 2) 6 1/2
(
k +

(
k2 + 4km(m− 1)

)1/2)
,

z(t2 − t+ 1, t2 − t+ 1, 2, 2) = t3 − t2 + t.
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It is an immediate corollary to Lemma 1 that for a circulant matrix of order m = t(t−1)+1
the maximal number of element occurrences, at which the matrix still can be bi-regular,
meets the upper bound proved by Reiman, i.e., z(m,m, 2, 2) = t3− t2 + t. Besides, the next
corollary shows that Reiman’s inequality remains strong enough for circulant matrices.

Corollary 1. Under conditions of the Lemma 1, the following inequality holds:

m 6 mt 6 1/2
(
m+

(
m2 + 4m2(m− 1)

)1/2)
.

Proof. On the one hand, Lemma 1 asserts that the set Dα of differences of two distinct
indices comprises t (t− 1) elements. On the other hand, the aggregate number of differences
between two distinct indices does not exceed m− 1. Therefore,

t (t− 1) 6 m− 1,

and hence,

1 6 t 6 1/2 + (m− 3/4)1/2 ⇔ m 6 mt 6 1/2
(
m+

(
m2 + 4m2(m− 1)

)1/2)
.

The Corollary 1 is proved.

Remark 3. It is noteworthy that Dα is a difference set in case t (t− 1) = m− 1.
The next Lemma introduces an interrelationship between numbers of different element

occurrences in a bi-regular matrix.
Lemma 2. Let M be a bi-regular circulant matrix over a subset K of some

multiplicative group denoted by its zeroth row (a0, . . . , am−1). Suppose that an element α
is in the positions with the indices i0, . . . , itα−1, tα > 1, and an element β is in the positions
with the indices j0, . . . , jtβ−1, tβ > 1. Then the sets of differences between two distinct
indices of α and β

Dα = {(i− i′) mod m : i ∈ {i0, . . . , itα−1} 3 i′, i 6= i′}
Dβ =

{
(j − j′) mod m : j ∈ {j0, . . . , jtβ−1} 3 j′, j 6= j′

}
are disjoint.

Proof. Suppose that there exist indices ir < is and ju < jv of positions occupied by
an element α and an element β respectively. The following three cases are possible.
I. If is − ir = jv − ju, while ir < is < ju < jv, then in the columns ir and is there are the

element α in the zeroth row and the element β in the row obtained from the zeroth one
by the (ju − ir)-position left circular shift. Hence, M is not bi-regular:

ir is ju jv 0 · · · α · · · α · · · β · · · β · · ·
...

ju − ir · · · β · · · β · · ·
.

II. If is − ir = jv − ju, while ir < ju < is < jv, then in the columns ir and is there are the
element α in the zeroth row and the element β in the row obtained from the zeroth one
by the (ju − ir)-positions left circular shift. Hence, M is not bi-regular:

ir ju is jv 0 · · · α · · · β · · · α · · · β · · ·
...

ju − ir · · · β · · · β · · ·
.
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III. If is − ir = m − (jv − ju), while ir < ju < jv < is, then in the columns ir and is there
are the element α in the zeroth row and the element β in the row obtained from the
zeroth one by the (jv − ir)-positions left circular shift. Hence, M is not bi-regular:

ir ju jv is 0 · · · α · · · β · · · β · · · α · · ·
...

jv − ir · · · β · · · β · · ·
.

Thus, all the cases possible contradict to the matrix M bi-regularity.

The following Theorem provides the necessary and sufficient conditions for the circulant
matrix bi-regularity.

Theorem 1. Let M be an m × m circulant matrix over a subset K of some
multiplicative group, denoted by its zeroth row (a0, . . . , am−1). Suppose that an element α
is in the positions with the indices i0, . . . , itα−1, tα > 1, and an element β is in the positions
with the indices j0, . . . , jtβ−1, tβ > 1. Let

Dα = {(i− i′) mod m : i ∈ {i0, . . . , itα−1} 3 i′, i 6= i′}
Dβ =

{
(j − j′) mod m : j ∈ {j0, . . . , jtβ−1} 3 j′, j 6= j′

}
be the sets of differences between two distinct indices of the positions occupied by α and β
respectively. Then the matrix M is bi-regular if and only if for each such α and β:

1) the set Dα comprises tα (tα − 1) elements, while Dβ comprises tβ (tβ − 1) elements;
2) the sets Dα and Dβ are disjoint.
Proof. The necessity immediately follows from Lemmas 1 and 2.
To prove sufficiency, suppose the matrix M is not bi-regular. The following three cases

are possible.
I. Consider a design where ir and is, ir < is, are the indices of the positions occupied by

the element α in the zeroth row and in the row (iu − ir) mod m, while iu 6= ir:

ir is 0 · · · α · · · α · · ·
...

(iu − ir) mod m · · · α · · · α · · ·
.

Then in the zeroth row there is an element α in the positions ir, is, iu and
(iu + is − ir) mod m. Note that

((iu + is − ir) mod m − iu) mod m = is − ir,

and hence the set Dα consists of less than tα (tα − 1) elements.
Similarly, one may verify that if the matrix M is not bi-regular against the element β
then the set Dβ consists of less than tβ (tβ − 1) elements.

II. Consider a design where ir and is, ir < is, are the indices of the positions occupied
by the element α in the zeroth row and by the element β in the row (ju − ir) mod m,
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while ju 6= ir:
ir is 0 · · · α · · · α · · ·
...

(ju − ir) mod m · · · β · · · β · · ·
.

Then in the zeroth row there is the element β in the positions ju and (ju + is − ir) mod m.
Note that

((ju + is − ir) mod m − ju) mod m = is − ir,

and hence the sets Dα and Dβ have a common element is − ir.
III. Consider a design where in the zeroth row and in the row (is − ir) mod m in the columns ir

and ju, ir < ju, there are the element α and the element β respectively, while is 6= ir:

ir ju 0 · · · α · · · β · · ·
...

(is − ir) mod m · · · α · · · β · · ·
.

Then in the zeroth row there is the element α in the positions ir and is and the element β
in the positions ju and ((is − ir) mod m + ju) mod m. Note that(

((is − ir) mod m + ju) mod m − ju
)
mod m

= (is − ir) mod m ,

and hence the sets Dα and Dβ have a common element (is − ir) mod m.
The Theorem 1 is proved.

Corollary 2. Note the following particular case. An m × m circulant matrix with
tα > 1 occurrences of an element α and m − tα unique entries per row is bi-regular if and
only if the set Dα comprises tα (tα − 1) elements.

The next Lemma states that reducing the number of some element occurrences may
result in a non-linear increase in the number of another element occurrences.

Lemma 3. Let M be a bi-regular circulant matrix over a subset K of some
multiplicative group denoted by its zeroth row (a0, . . . , am−1). Suppose that there are tα > 1
and tβ > 1 positions occupied by an element α and an element β respectively. Then the
decrease in the number tα of element α occurrences by k ∈ {1, . . . , tα − 1} allows increase
in the number tβ of element β occurrences by at most ∆tβ ,

∆tβ =

⌊
1

2
+

(
1

4
+ tα (tα − 1)− (tα − k) (tα − k − 1) + tβ (tβ − 1)

)1/2
⌋
− tβ.

Proof. Given tα > 1, there exist
(
tα
2

)
ways to select a pair of distinct indices of the

positions occupied by the element α. A decrease in the number tα by k ∈ {1, . . . , tα − 1}

releases
(
tα
2

)
−
(
tα − k

2

)
differences between two distinct indices that might be distributed

to elements other than α. We now estimate ∆tβ by which the number tβ of element β
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occurrences might be increased while preserving the matrix M bi-regularity property.
To achieve this objective, the following equation should be solved in integers for ∆tβ :(

tβ + ∆tβ

2

)
−
(
tβ
2

)
=

(
tα
2

)
−
(
tα − k

2

)
.

Hence,

∆tβ =

⌊
1

2
+

(
1

4
+ tα (tα − 1)− (tα − k) (tα − k − 1) + tβ (tβ − 1)

)1/2
⌋
− tβ.

The Lemma 3 is proved.

Example 1. For t = 4 and m = t(t− 1) + 1 = 13 consider a vector

(α, α, β, γ, α, δ, α, ε, ζ, η, θ, ι, κ)

over a subset K of some multiplicative group. Note that distinct characters denote different
group elements, and there are 10 distinct entries. One may verify that according to
Theorem 1, this vector represents a bi-regular circulant matrix. If one element α is replaced
by β, then there is a space for one more occurrence of β due to the fact that ∆tβ = 2. As an
instance, we can take a vector

(α, α, β, γ, α, δ, ε, β, ζ, β, η, θ, ι) .

It can be verified that the new vector also represents a bi-regular circulant matrix.

3. Bi-regular circulant matrix layouts
Theorem 1 provides an efficient method of validation whether a circulant matrix is a

bi-regular one. This method may be reduced to Algorithm 1.

Algorithm 1. Matrix bi-regularity validation algorithm

1: Require: circulant matrix M = Mm×m.
2: Ensure: matrix M bi-regularity validation result.
3: D := ∅.
4: Reconstruct the set K of the elements of M .
5: For all e ∈ K :
6: Find the indices i0, . . . , ite−1 of the positions occupied by an element e in one row,

and count the number te.
7: If te > 1, then construct the set De:

De = {(i− i′) mod m : i, i′ ∈ {i0, . . . , ite−1}, i 6= i′} .

8: If |De| < te (te − 1), then return «M is not bi-regular»,
9: else if D ∩De 6= ∅, then return «M is not bi-regular»,
10: else D := D ∪De.
11: Return «M is bi-regular».

The computational complexity of the algorithm 1 depends on the number |K | of
different matrix elements and the number te of every distinct element e occurrences.
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In essence, to positively validate the circulant matrix bi-regularity, algorithm 1 observes
all the ordered pairs (i, i′) for each element e, and the overall number of those pairs equals

2
∑
e∈K

(
te
2

)
=
∑
e∈K

(t2e − te).

Note that, in contrast, negative validation result is obtained immediately after processing
the first inappropriate matrix element. Thus, obtaining the negative validation result does
not require observation of every ordered pair (i, i′) for each element e, in general case.

Example 2. Consider a circulantm×m matrix with tα occurrences of some element α
per row, where tα(tα − 1) = m − 1. Other elements in each row occur only once. Then to
positively validate such a matrix’s bi-regularity, algorithm 1 must observe m − 1 ordered
pairs of the distinct indices of the positions occupied by α.

As far as a general algorithm of the matrix bi-regularity validation is concerned, it takes
to process all (

m

2

)2

=
m4 − 2m3 +m2

4

2× 2 submatrices to ensure that a circulant matrix is bi-regular.
Now, an efficient method of the bi-regularity validation makes feasible the exhaustive

search of arrays of variables that define bi-regular matrix layouts. Further, those layouts
may be initialized by non-zero finite field elements. Following Table 1 gives a list of all
non-equivalent arrays of the length m = ta (ta − 1) + 1 with ta ∈ {2, 3, 4, 5, 6} entries of
some variable a which define bi-regular circulant matrix layouts. Here, two arrays are said
to be non-equivalent if one is not a cyclic shifted representation of the other. These arrays
are denoted by vectors (i0, . . . , ita−1) of indices of the variable a entries with i0 = 0.

Ta b l e 1

ta m Arrays of variables
2 3 (0, 1)

3 7 (0, 1, 3)
(0, 2, 3)

4 13

(0, 1, 3, 9)
(0, 1, 4, 6)
(0, 1, 5, 11)
(0, 1, 8, 10)

5 21 (0, 1, 4, 14, 16)
(0, 1, 6, 8, 18)

6 31

(0, 1, 3, 8, 12, 18)
(0, 1, 3, 10, 14, 26)
(0, 1, 4, 6, 13, 21)
(0, 1, 4, 10, 12, 17)
(0, 1, 6, 18, 22, 29)
(0, 1, 8, 11, 13, 17)
(0, 1, 11, 19, 26, 28)
(0, 1, 14, 20, 24, 29)
(0, 1, 15, 19, 21, 24)
(0, 1, 15, 20, 22, 28)

Remark 4. There are no arrays for ta = 7 andm = 43 that denote bi-regular matrices.
Remark 5. Since for each array from Table 1 there are ta occurrences of variable a

and m = ta (ta − 1) + 1, all the variables different from a must occur only once conforming
to Lemmas 1 and 2.
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For software or hardware implementation arrays of the length m ∈ {8, 16, 32} are
preferable. Table 2 comprises a list of all non-equivalent arrays of the length m ∈ {8, 16}
with the maximal number ta of the entries of some variable a for which the bi-regularity
preserves. As in Table 1, these arrays are denoted by vectors (i0, . . . , ita−1) of indices of the
variable a entries with i0 = 0.

Ta b l e 2

ta m Arrays of variables

3 8 (0, 1, 3)
(0, 1, 6)

4 16

(0, 1, 3, 7)
(0, 1, 3, 12)
(0, 1, 4, 6)
(0, 1, 4, 11)
(0, 1, 5, 7)
(0, 1, 5, 14)
(0, 1, 6, 13)
(0, 1, 10, 14)
(0, 1, 11, 13)
(0, 2, 5, 12)
(0, 2, 6, 13)

Remark 6. There are no arrays for ta = 6 and m = 32 producing bi-regular matrices.

4. Conclusion
The conducted survey of the circulant matrices comprises the following results.

The upper bound of the number of some element occurrences for which the bi-regularity of
a circulant matrix preserves was derived. Furthermore, necessary and sufficient conditions
for the circulant matrix bi-regularity were proved, which made it possible to develop the
efficient procedure of bi-regularity verification. We then managed to construct several bi-
regular circulant matrix layouts of order up to 31 with the maximal number of some element
occurrences. Besides, it was revealed that there are no layouts of order 32 with more than 5
occurrences of any element which yield a bi-regular matrix (and hence an MDS matrix).
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