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The problem of a low-power assignment of the partial states of a parallel automaton
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Рассматривается задача кодирования частичных состояний параллельного авто-
мата. Предложен метод решения, который обеспечивает минимизацию числа эле-
ментов памяти в схеме, реализующей автомат, и минимизацию интенсивности их
переключений. Задача сводится к нахождению минимального взвешенного покры-
тия графа его полными двудольными подграфами (бикликами).
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1. Introduction
At present time, a great attention is paid to decreasing power consumption in designing

discrete devices based on CMOS technology. It is caused by the tendency to increase the
working time of power supply for portable devices and, on the other hand, by the tendency
to lower acuity of the problem of heat rejection in designing VLSI circuits. Therefore, one of
the main optimization criteria in designing discrete devices is amount of power consumption.

As it is said in [1, 2], the power consumption of a circuit built on the base of CMOS
technology is proportional to switching activity of its logical and memory elements. It
allows solving this problem at the level of logical design. In particular, decreasing power
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consumption can be achieved in the stage of state assignment of an automaton when the
states of a given automaton are assigned with binary or ternary vectors (codes) in order to
obtain a system of Boolean functions necessary for constructing a logical net of a designed
device. This problem was solved in [3 – 8] for classical sequential automata at synchronous
and asynchronous realizations. The states of an automaton must be encoded in such a way
that during the transition between its states as few memory elements as possible change
their state. In this paper, a method for low-power assignment of partial states of a parallel
automaton is suggested. The method uses the approach described in [9] that reduces the
problem to the search for a cover of a graph with its complete bipartite sub-graphs (bi-
cliques).

2. The used model
A parallel automaton is a functional model of a discrete device that gives a convenient

description of the parallelism of controlled interactive processes [10]. This model is close to
the widely known Petri net [11]. It consists of the following objects: a set of partial states
Q = {q1, q2, . . . , qγ}, a set of input Boolean variables X = {x1, x2, . . . , xn}, a set of output
Boolean variables Y = {y1, y2, . . . , ym} and a set of transitions T = {τ1, τ2, . . . , τt} that is a
sequence of lines of the form:

τi = Si : − K ′i → K ′′i → Fi, (1)

where Si, Fi ⊆ Q, K ′i is an elementary conjunction of variables from the set X, and K ′′i is
an elementary conjunction of variables from the set Y .

Unlike the classical finite sequential automaton, the parallel automaton can be in several
states simultaneously. Those states are called above as partial. The set of all partial states
that a parallel automaton can be in at some time is called global state. The sense of the
line (1) is the following. If a partial automaton is in states forming the set Si and Boolean
variables took values that convert K ′i to 1, then K ′′i takes value 1 and the automaton comes
to states in Fi from states composing Si. In other words, let P = {P1, P2, . . . , Pp} be the
set of all reachable global states of a given parallel automaton. Then if Si ⊆ Pg, where Pg
is a current global state of the automaton, and the automaton has received binary signals
that turned the conjunction K ′i into 1, then the global set will be Ph = (Pg \ Si) ∪ Fi at
the next time and the automaton will produce binary signals that turn K ′′i into 1. Any
conjunction, K ′i and K ′′i , can be absent in the line. The absence of K ′i means its identical
equality to 1. The absence of K ′′i means, according to interpretation of the model, that
either all the variables in Y are equal to 0 or the values of them do not change. As well
as for a sequential automaton, the synchronous or asynchronous implementation can be
for a parallel automaton. Further, the synchronous implementation is considered. At that
implementation, the time is divided into fixed units, during which the automaton goes from
one state to another.

The following restrictions are introduced in the model:
1) The initial global state is a one-element set. For the sake of determinacy, it can

be {q1}.
2) For two different lines, i-th and j-th, Si = Sj if Si ∩ Sj 6= ∅.
There are a number of other restrictions given in [10] and connected with correctness of

an automaton description. They will not be considered here, since the correctness problem
is not regarded. Also, the output signals will not be considered here.
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Example 1. The following sequence of lines can be an example of parallel automaton:

τ1 = 1 : − x1x2 → 10;
τ2 = 10 : − x2 → 2.3.4;
τ3 = 2 : → 5.6;
τ4 = 3.5 : − x2 → 8;
τ5 = 4 : − x1 → 7;
τ6 = 4 : − x1 → 9;
τ7 = 7 : − x2 → 9;
τ8 = 6.8.9 : − x1 → 1.

Here, Q = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and X = {x1, x2}. Let us take one-element set {1}
as an initial global state. The first line (transition τ1) means that the automaton goes from
state {1} and comes in state {10} in the next time unit if x1 = 0 and x2 = 1. The state {10}
is global one as well. The automaton stays in state {1} at any other value combination of x1
and x2. The automaton goes from global state {10} to partial states 2, 3 and 4 at x2 = 0
(transition τ2). Those partial states constitute the global state {2, 3, 4}. At the next time
unit, the automaton changes the partial state 2 for partial states 5 and 6 independently on
the values of input variables. As far as we consider the synchronous implementation, where
transitions can happen simultaneously, the transitions τ3 and τ5 happen simultaneously at
x1 = 0, while τ3 and τ6 at x1 = 1. Correspondingly, the automaton will be in global states
{3, 5, 6, 7} and {3, 5, 6, 9}. Having observed the functioning of the automaton in this way
we get global states {6, 7, 8} and {6, 8, 9}.

3. The problem of assignment of partial states
Any two partial states, in which the automaton can be simultaneously, are called parallel.

The state assignment of an automaton consists in assigning its states with binary or
ternary vectors of the space of introduced inner variables z1, z2, . . . , zl (codes of states).
The components of a ternary vector have values 0, 1 and “−”. Parallel partial states of
a parallel automaton are assigned with non-orthogonal ternary vectors and non-parallel
partial states with orthogonal ones [12]. Two ternary vectors are orthogonal if there is a
component that has value 0 in one vector and 1 in the other [13].

One of the way to establish parallelism between partial states of an parallel automaton
is to obtain the set P = {P1, P2, . . . , Pp} of all reachable global states. Two partial states are
parallel if there is a reachable global state Pj ⊆ Q containing these states. The parallelism
relation is considered to be irreflexive, i.e., a partial state is not parallel to itself. Indeed,
the requirement of correctness of the automaton description does not allow intersection of
sets Pg \ Si and Fi in transition τi, where Pg is the current global state of the automaton.

For the Example 1, the global states P1 = {1}, P2 = {10}, P3 = {2, 3, 4}, P4 =
= {3, 5, 6, 7}, P5 = {3, 5, 6, 9}, P6 = {6, 7, 8}, and P7 = {6, 8, 9} are obtained that yield the
following matrix of partial states parallelism:
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1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 0
0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0
0 0 1 0 1 0 1 1 1 0
0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 1 1 0 1 0
0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0



1
2
3
4
5
6
7
8
9

10

4. The method for partial state assignment
The suggested method for the assignment of partial states of parallel automaton

supposes considering the non-parallelism graph G of partial states. Its vertices correspond
to the partial states of a given automaton, and edges to the pairs of non-parallel partial
states. Complete bipartite subgraphs (bi-cliques) are extracted from G. Each bi-clique B
can be given enough by the pair 〈V 1, V 2〉 of its vertices, as every vertex in V 1 is connected
by edges with all the vertices in V 2.

Let a family of bi-cliques B1, B2, . . . , Bm of graph G, where Bi = 〈V 1
i , V

2
i 〉, i =

= 1, 2, . . . ,m, be a cover of G, i.e., for each edge of G there is a bi-clique in this family that
has this edge. Every Bk = 〈V 1

k , V
2
k 〉, k = 1, 2, . . . ,m, is put in correspondence to variable

zk with zk = 0 for the partial states in V 1
k and zk = 1 for partial states in V 2

k (or vice
versa). The value of zk is “−” if the corresponding partial state is neither in V 1

k nor in V 2
k .

It is natural to demand minimum of m. Having this minimum we obtain the assignment of
partial states with codes of minimal length that relates to the minimum number of memory
elements in the designed device. Evidently, it is enough to consider only maximal bi-cliques,
i.e., any of them is not a proper subgraph of any other bi-clique.

Thus, the partial state assignment of a parallel automaton is reduced to the search for
maximal bi-cliques in the non-orthogonality graphG of partial states of the given automaton
and covering G with the found bi-cliques.

When applying this approach to lower the memory element activity, the problem of
minimal weighted cover must be solved and the following reasons can be used.

Each inner variable zi can be put into correspondence to a set of transitions between
partial states. That set consists of the transitions which connect the partial states whose
codes have different values of zi. During these transitions the i-th memory element in a
real circuit implementing the given automaton changes its state. Hence, in order to lower
the activity of memory elements, such a variant of the assignment of partial states must be
chosen that the number of variables changing their values during the transitions between
states would be as small as possible.

If we manage to calculate the probabilities of transitions between partial states, then
the probability of the transitions changing the value of zi is put in correspondence to zi. The
more probability of the transition, the less inner variables have to change their values at
that. We connect the transitions between partial states with the transitions between global
states. Since the transitions between global states of a parallel automaton are incompatible
events, the probability of the transition between partial states qi and qj is equal to the sum of
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the probabilities of the transitions between those global states where there is exchange of qi
and qj. When all the reachable global states of a given parallel automaton are determined, it
is easy to construct the sequential automaton that is equivalent to the given one. Its states
are the global states of the given parallel automaton. The Chapman—Kolmogorov method
is used in [5] to calculate the probabilities of transitions between states of a sequential
automaton, where the probabilities are found as a result of solving a system of linear
equations with those probabilities as unknowns. This method can be applied only when the
automaton is completely specified and its behavior graph is strongly connected directed
graph. Otherwise, the number of transitions related to changing zi, i = 1, 2, . . . ,m, can be
put in correspondence to zi.

Each maximal bi-clique of the non-parallelism graph G of partial states is weighted
with a value proportional to the probability of transitions related to the corresponding
inner variable. The weight of a cover is the sum of weights of bi-cliques constituting the
cover.

Let us consider the parallel automaton from the Example 1. The non-parallelism matrix
of partial states of it (the inverse of the parallelism matrix with retained main diagonal)
that is the adjacency matrix of the non-orthogonality graph G of the partial state codes of
the automaton is as follows:

1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1
1 0 0 0 0 0 0 1 0 1
1 0 0 0 1 1 1 1 1 1
1 1 0 1 0 0 0 1 0 1
1 1 0 1 0 0 0 0 0 1
1 1 0 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1 0



1
2
3
4
5
6
7
8
9

10

A method for constructing all the maximal bi-cliques in a graph is described in [14].
The following maximal bi-cliques are obtained for graph G:

B1 = 〈{1}, {2, 3, 4, 5, 6, 7, 8, 9, 10}〉, B9 = 〈{1, 2, 4, 8, 10}, {5}〉, B17 = 〈{1, 7}, {2, 4, 9, 10}〉,
B2 = 〈{1, 2, 3, 4, 5}, {8, 10}〉, B10 = 〈{1, 2, 4, 9}, {7, 10}〉, B18 = 〈{1, 7, 10}, {2, 4, 9}〉,
B3 = 〈{1, 2, 3, 4, 5, 6, 7, 8, 9}, {10}〉, B11 = 〈{1, 2, 4, 9, 10}, {7}〉, B19 = 〈{1, 8}, {2, 3, 4, 5, 10}〉,
B4 = 〈{1, 2, 3, 4, 5, 10}, {8}〉, B12 = 〈{1, 2, 4, 10}, {5, 6, 7, 8, 9}〉, B20 = 〈{1, 8, 10}, {2, 3, 4, 5}〉,
B5 = 〈{1, 2, 4}, {5, 6, 7, 8, 9, 10}〉, B13 = 〈{1, 5}, {2, 4, 8, 10}〉, B21 = 〈{1, 9}, {2, 4, 7, 10}〉,
B6 = 〈{1, 2, 4, 7}, {9, 10}〉, B14 = 〈{1, 5, 6, 7, 8, 9}, {2, 4, 10}〉, B22 = 〈{1, 9, 10}, {2, 4, 7}〉,
B7 = 〈{1, 2, 4, 7, 10}, {9}〉, B15 = 〈{1, 5, 6, 7, 8, 9, 10}, {2, 4}〉, B23 = 〈{1, 10}, {2, 3, 4, 5, 6, 7, 8, 9}〉.
B8 = 〈{1, 2, 4, 8}, {5, 10}〉, B16 = 〈{1, 5, 10}, {2, 4, 8}〉,

5. Calculating probabilities of transitions between partial states
and weighting bi-cliques

As it was said above, the probability of changing a partial state for another is equal to
the sum of probabilities of transitions between global states, where this changing happens.
Considering the sequential automaton equivalent to a given parallel automaton, whose
global states in P = {P1, P2, . . . , Pγ} are in one-to-one correspondence to the states in
S = {s1, s2, . . . , sγ} of the sequential automaton, is appropriate here.
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The probability of transition of a sequential automaton from a state si to a state sj
caused by an input signal x = (x1, x2, . . . , xn) is equal to the probability of coming x.
If there are several input signals transferring the automaton from si to sj, the conditional
probability p′ij of such transfer is equal to the sum of the probabilities of those signals.
The condition is that the automaton is in the state si. The absolute probability pij of the
transition from si to sj for all the time of the automaton working is equal to the product
p(si)p

′
ij, where p(si) is the probability that the automaton is in the state si — this event

and coming signals that transfer the automaton from si to sj, are independent events.
The following system of equations has to be solved:

γ∑
i=1

p(si)p
′
ij = p(sj), j = 1, . . . , γ,

γ∑
i=1

p(si) = 1.

The probability p′ij must be known. This is the probability of coming an input signal that
transfers the automaton from state si into sj. Further, we assume that the probabilities of
input signals are uniformly distributed. Having solved this system of equations we obtain
the probabilities p(si) = p(Pi), i = 1, 2, . . . , γ.

The transitions between global states of the parallel automaton in the Example 1 are
shown in Table 1, where rows and columns correspond to global states, and its entry is the
condition of the transition from the global state corresponding to the row into the global
state corresponding to the column.

Ta b l e 1

States 1 10 {2, 3, 4} {3, 5, 6, 7} {3, 5, 6, 9} {6, 7, 8} {6, 8, 9}
1 x1 ∨ x2 x1x2
10 x2 x2

{2, 3, 4} x1 x1
{3, 5, 6, 7} x2 x2
{3, 5, 6, 9} x2 x2
{6, 7, 8} x2 x2
{6, 8, 9} x1 x1

For the probabilities of global states of the considered parallel automaton according to
Table 1, the following system of equations is formed:

p(1) = 3/4 p(1) + 1/2 p({6, 8, 9}),
p(10) = 1/2 p(10) + 1/4 p(1),

p({2, 3, 4}) = 1/2 p(10),

p({3, 5, 6, 7}) = 1/2 p({2, 3, 4}),
p({3, 5, 6, 9}) = 1/2 p({3, 5, 6, 9}) + 1/2 p({2, 3, 4}) + 1/2 p({3, 5, 6, 7}),
p({6, 7, 8}) = 1/2 p({6, 7, 8}) + 1/2 p({3, 5, 6, 7}),
p({6, 8, 9}) = 1/2 p({6, 8, 9}) + 1/2 p({3, 5, 6, 9}) + 1/2 p({6, 7, 8}),
p(1) + p(10) + p({2, 3, 4}) + p({3, 5, 6, 7}) + p({3, 5, 6, 9}) + p({6, 7, 8}) + p({6, 8, 9}) = 1.

The solution of this system gives the probabilities p(1) = 8/23, p(10) = 4/23, p({2, 3, 4}) =
= 2/23, p({3, 5, 6, 7}) = 1/23, p({3, 5, 6, 9}) = 3/23, p({6, 7, 8}) = 1/23, p({6, 8, 9}) = 4/23.



Low power assignment of partial states of a parallel automaton 119

Table 2 represents the absolute probabilities of transitions between global states. It is
similar to Table 1, but contains probabilities instead of transition conditions. Table 3
shows the probabilities of transitions between partial states of the parallel automaton under
consideration. As it is said above, the probability of the transition between partial states qi
and qj is equal to the sum of the probabilities of the transitions between those global
states, where there is exchange of qi and qj, because the transitions between global states
of a parallel automaton are incompatible events. For example, the automaton goes from
partial state 2 into partial states 5 and 6 when it goes from global state {2, 3, 4} to global
state {3, 5, 6, 7} or {3, 5, 6, 9}. Then the probabilities of transitions from 2 to 5 and from 2
to 6 equal 1/23 + 1/23 = 2/23.

Ta b l e 2

States 1 10 {2, 3, 4} {3, 5, 6, 7} {3, 5, 6, 9} {6, 7, 8} {6, 8, 9}
1 2/23
10 2/23

{2, 3, 4} 1/23 1/23
{3, 5, 6, 7} 1/46 1/46
{3, 5, 6, 9} 3/46
{6, 7, 8} 1/46
{6, 8, 9} 2/23

Ta b l e 3

States 1 2 3 4 5 6 7 8 9 10
1 2/23
2 2/23 2/23
3 2/23
4 1/23 1/23
5 2/23
6 2/23
7 2/23 1/23
8 2/23
9
10 2/23 2/23 2/23

The edges of the non-orthogonality graph G of the partial state codes of the automaton
correspond to the pairs of non-parallel partial states of the automaton. We weight the edges
of G by the numbers proportional to the probabilities of transitions in the corresponding
pairs of partial states. As these numbers, we take the numerators of the fractional
probabilities with a common denominator.

6. Solving the minimal weighted cover problem
The method for solving the problem of minimal weighted cover is described in [15].

The table of covering graph G under consideration is given by Table 4, where some columns
are removed according to the reduction rule: a column a can be excluded from consideration
if it has ones everywhere a column b has ones [13]. The table cannot be represented
completely because of restricted size of the page.
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Ta b l e 4

Maximal Edges of G Weightbi-cliques (1,3) (1,6) (1,10) (2,6) (3,8) (3,10) (4,8) (4,9) (5,8) (6,10) (7,9) (7,10) (8,10) (9,10)
B1 1 1 1 16
B2 1 1 1 1 1 28
B3 1 1 1 1 1 1 16
B4 1 1 1 1 12
B5 1 1 1 1 1 36
B6 1 1 1 1 20
B7 1 1 1 8
B8 1 1 1 16
B9 1 8
B10 1 1 1 16
B11 1 1 4
B12 1 1 1 1 1 1 1 1 24
B13 1 1 16
B14 1 1 1 1 1 1 1 18
B15 1 1 1 20
B16 1 1 16
B17 1 1 1 12
B18 1 16
B19 1 1 1 12
B20 1 1 1 1 1 20
B21 1 1 1 1 10
B22 1 1 1 12
B23 1 1 1 1 1 1 1 28

The family of bi-cliques {B12, B20, B21} is the solution with the weight 54 for Table 4.
To appreciate the quality of the solution, let we do not take into consideration the weights of
bi-cliques. In that case the solution would be {B6, B12, B20} with the weight 64. The matrices
of coding constructed according to these families, where the rows represent the codes of the
partial states, are as follows:

z1 z2 z3 z1 z2 z3

0 0 0
1 0 1
1 − −
1 0 1
1 1 −
− 1 −
− 1 1
0 1 −
− 1 0
0 0 1



1
2
3
4
5
6
7
8
9

10

,



0 0 0
0 0 1
− − 1
0 0 1
− 1 1
− 1 −
0 1 −
− 1 0
1 1 −
1 0 0



1
2
3
4
5
6
7
8
9

10

.

The quality of the state assignment problem solution for a sequential automaton can be
appreciated by the value D =

∑
pij(dij − 1), where pij is the probability of the transition

between states si and sj in both directions, dij is the Hamming distance between the codes
of si and sj (i 6= j), and summation is made over all the pairs of states. This value was
introduced in [5]. Evidently, the less value of D, the better solution, and D = 0 if any
transition between states corresponds to switching only one memory element in the circuit
implementing the automaton.
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In the case of a parallel automaton, such an appreciation of the quality of state
assignment can be used considering the global states. The code of a global state can be
easily obtained by intersection of ternary vectors coding the partial states that constitute
the global one. The result of intersection of non-orthogonal ternary vectors u and v is the
vector w obtained in the following way: a component wi has value “−” if both ui and vi
have this value, and wi = 0 (or 1) if at least one of ui and vi has this value. The codes of the
global states of the parallel automaton under consideration are represented by the following
matrices, where the left matrix is obtained taking into account the weights of bi-cliques,
and the right one without taking into account the weights:

z1 z2 z3 z1 z2 z3

0 0 0
0 0 1
1 0 1
1 1 1
1 1 0
0 1 1
0 1 0



1
10
{2, 3, 4}
{3, 5, 6, 7}
{3, 5, 6, 9}
{6, 7, 8}
{6, 8, 9}

,



0 0 0
1 0 0
0 0 1
0 1 1
1 1 1
0 1 0
1 1 0



1
10
{2, 3, 4}
{3, 5, 6, 7}
{3, 5, 6, 9}
{6, 7, 8}
{6, 8, 9}

.

In the first case D = 1/23, in the second case D = 5/23. This shows the advantage of
taking into account weights of bi-cliques. If we take the sequential automaton equivalent to
the parallel automaton from Example 1 and apply, for instance, the method for low power
state assignment [14], then D = 3/23. It allows one to say about utility of the suggested
method.

7. Conclusion
The suggested method for low power state assignment of a parallel automaton is

intended for using in a computer aided logical design system. Comparison of the results
of applying the described method with the results of the partial state assignment without
taking into account the switching activity of memory elements shows that the described
method gives the better result. It is confirmed in considering 6 parallel automata with the
numbers of partial states from 8 to 13, input variables from 2 to 3, and transitions 5, 6,
8, 9 and 13. Moreover, the Boolean function systems obtained after applying the described
method for the state assignment turn out to be not worse than ones obtained without taking
into account the switching activity of memory elements. This comparison is made in terms
of the number of elementary conjunctions in disjunctive normal forms of the functions and
the sum of their ranks.
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