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Abstract. In this paper, we consider markovian retrial queue with two-

way communication and unreliable server. Input process is Poisson with
constant rate. Incoming calls that find the server busy join the orbit and

reattempt to get the service after an exponentially distributed delay. In its

idle time the server makes outgoing calls. There are multiple types of outgoing
calls in the system. Service durations and rates of making outgoing calls are

different and depend on type of outgoing call. The unreliability of the server

is characterised by breakdown and restoration periods and its durations are
exponentially distributed with parameters depending on the server state.

1. Introduction

Retrial queues are the models of various telecommunication systems without
losses. Instead of leaving the system incoming customer that finds the server
busy repeat the request for service after some random delay. Such models are
represented in monographs [1], [2].

Retrial behaviour is common for call centers and retrial queues are videly used
in this area [3], [4]. Two-way communication in retrial queues is a phenomenon
arised from the constraints of the call centers functioning. Call centers are provide
both incoming and outgoing calls to increase the productivity of the system. Two-
way communication models have become widespread recently [5], [6]. Such models
have various modifications depending on real systems functioning conditions such
as finite capacity of input, server-orbit interaction [7], [8], etc.

In this paper we concider two modifications of two-way communication retrial
queues: multiple types of outgoing calls and unreliable server. To research the mar-
kovian retrial queue with aforementioned modifications we use asymptotic analysis
method under low rates of outgoing calls limit condition.

2. Mathematical Model

We consider single server retrial queue with multiple types of outgoing calls.
Input process is a stationary Poisson process with rate λ. Incoming calls occupy
the server for an exponentially distributed time with rate µ1. Calls that find the
server busy join the orbit and repeat their attempt to take the server after an
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exponentially distributed delay with rate σ. In its idle time the server makes
outgoing calls of type n with rate αn and provides the service for an exponentially
distributed time with parameter µn. For convenience, we number the types of
outgoing calls from 2 to N .

Let k(t) denotes the state of the server at the time t ≥ 0 as follows: 0 if the
server is idle, 1 if an incoming call is in service, n if an outgoing call of type
n = 2, N is in service, N + 1 if the server is in restoration mode. We denote γ0
is the rate of breakdowns in state 0, γ1 is the rate of breakdowns in state 1 and
γ2 is the rate of restorations. We assume that when the outgoing call is in service
there is no breakdowns as the server calls the customer itself. If the server is busy
at the moment of breakdown serving customer joins the orbit.

Let i(t) denotes the number of calls in the orbit at the moment t ≥ 0. It is easy
to see that two-dimensional process {i(t), k(t)} forms a continuous time Markov
chain.

Let P{i(t) = i, k(t) = k} = Pk(i, t) denotes the probability distribution of the
process {i(t), k(t)}, then it is the solution of Kolmogorov’s system of equations.
We present the system in stationary regime

−

(
λ+ iσ +

N∑
n=2

αn + γ0

)
P0(i) +

N∑
k=1

µkPk(i) + γ2PN+1(i) = 0,

−(λ+ µ1 + γ1)P1(i) + λP1(i− 1) + λP0(i) + (i+ 1)σP0(i+ 1) = 0,

−(λ+ µn)Pn(i) + λPn(i− 1) + αnP0(i) = 0, n = 2, N,

−(λ+ γ2)PN+1(i) + λPN+1(i− 1) + γ0P0(i) + γ1P1(i− 1) = 0. (2.1)

Let Hk(u) denotes the partial characteristic functions Hk(u) =
∞∑
i=0

ejuiPk(i),

k = 0, N + 1, where j =
√
−1. Multiplying equations of system by ejui and taking

the sum over i yelds

−

(
λ+ γ0 +

N∑
n=2

αn

)
H0(u) + jσH ′0(u) +

N∑
k=1

µkHk(u) + γ2HN+1(u) = 0,

(λ(eju − 1)− µ1 − γ1)H1(u) + λH0(u)− jσe−juH0(u) = 0,

(λ(eju − 1)− µn)Hn(u) + αnH0(u) = 0, n = 2, N,

(λ(eju − 1)− γ2)HN+1(u) + γ0H0(u) + γ1e
juH1(u) = 0. (2.2)

We also present an additional equation obtained by summing up equations of the
system (2.2)

jσe−juH ′0(u) + (λ+ γ1)H1(u) + λ

N+1∑
n=2

Hn(u) = 0. (2.3)

The system (2.2) and equation (2.3) we will use for the further analysis. The
aim of the research is to obtain the steady state characteristic function of the
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process i(t), which is

H(u) =

N+1∑
k=0

Hk(u).

The main contribution of this research is the solution of the system (2.2) by
using an asymptotic analysis method under low rates of outgoing calls limit con-
dition.

3. Asymptotic Analysis

To match the asymptotic condition we denote µn = µνn in the system (2.2)

−

(
λ+ γ0 +

N∑
n=2

αn

)
H0(u)+jσH ′0(u)+µ1H1(u)+

N∑
k=2

µνkHk(u)+γ2HN+1(u) = 0,

(λ(eju − 1)− µ1 − γ1)H1(u) + λH0(u)− jσe−juH0(u) = 0,

(λ(eju − 1)− µνn)Hn(u) + αnH0(u) = 0, n = 2, N,

(λ(eju − 1)− γ2)HN+1(u) + γ0H0(u) + γ1e
juH1(u) = 0, (3.1)

then the limit condition takes the form µ→ 0.

Theorem 3.1. If i(t) is the number of customers in the orbit described system
then the following equality is true

lim
µ→0

Eejuµi(t) =

=

(
N∑
n=2

αn
µn

)−1 N∏
k=2

(
1− ju λ

µk

)− αkγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)
N∑
n=2

αn
µn

(
1− ju λ

µn

)−1
.

Proof. In the system (3.1) and the equation (2.3) we denote µ = ε and introduce
the following notations

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε),

in order to obtain the system of equations

−

(
λ+ γ0 +

N∑
n=2

αn

)
εF0(w, ε) + jσ

∂F0(w, ε)

∂w
+ µ1F1(w, ε)+

+ε

N∑
n=2

νnFn(w, ε) + γ2FN+1(w, ε) = 0,

(λ(ejwε − 1)− µ1 − γ1)F1(w, ε) + ελF0(w, ε)− jσe−jwε ∂F0(w, ε)

∂w
= 0,

(λ(ejwε − 1)− ενn)Fn(w, ε) + εαnF0(w, ε) = 0, n = 2, N,

(λ(ejwε − 1)− γ2)FN+1(w, ε) + εγ0F0(w, ε) + γ1e
jwεF1(w, ε) = 0,

jσe−jwε
∂F0(w, ε)

∂w
+ (λ+ γ1)F1(w, ε) + λ

N+1∑
n=2

Fn(w, ε) = 0. (3.2)

Then we use Taylor’s decompositions

ejwε = 1 + jwε+ o(ε),

145



4 NAZAROV ANATOLY, PAUL SVETLANA, AND LIZYURA OLGA

e−jwε = 1− jwε+ o(ε),

and take the limit by ε→ 0 in the system (3.2)

jσF ′0(w) + µ1F1(w) + γ2FN+1(w) = 0,

−(µ1 + γ1)F1(w)− jσF ′0(w) = 0,

(jwλ− νn)Fn(w) + αnF0(w) = 0,

−γ2FN+1(w) + γ1F1(w) = 0,

jσF ′0(w) + (λ+ γ1)F1(w) + λ

N+1∑
n=2

Fn(w) = 0. (3.3)

From each of the equations of the system (3.3) we obtain the expressions

jσF ′0(w) = −µ1F1(w)− γ2FN+1(w), (3.4)

jσF ′0(w) = −(µ1 + γ1)F1(w), (3.5)

Fn(w) =
αn

νn − jwλ
F0(w), n = 2, N, (3.6)

FN+1(w) =
γ1
γ2
F1(w), (3.7)

jσF ′0(w) = −(λ+ γ1)F1(w)− λ
N+1∑
n=2

Fn(w). (3.8)

We equal the right parts of the expressions (3.5) and (3.8)

(µ1 + γ1)F1(w) = (λ+ γ1)F1(w) + λ

N+1∑
n=2

Fn(w),

then we obtain the expression for F1(w)

F1(w) =
λ

µ1 − λ

N+1∑
n=2

Fn(w). (3.9)

The obtained expression we rewrite as

F1(w) =
λ

µ1 − λ

N∑
n=2

Fn(w) + FN+1(w).

Using the expressions (3.6) and (3.7) we transform the obtained equation

F1(w) =
λ

µ1 − λ

N∑
n=2

αn
νn − jwλ

F0(w) +
λγ1

γ2(µ1 − λ)
F1(w),

then the expression for F1(w) is given as follows

F1(w) =
λγ2

µ1γ2 − λγ2 − λγ1

N∑
n=2

αn
νn − jwλ

F0(w). (3.10)
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We derive the differential equation for the function F0(w) using the expressions
(3.5) and (3.10)

jσF ′0(w) = − λγ2(µ1 + γ1)

µ1γ2 − λγ2 − λγ1
F0(w)

N∑
n=2

αn
νn − jwλ

. (3.11)

The solution of the equation (3.11) is given by

F0(w) = C

N∏
n=2

(
1− jw λ

νn

)− αnγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)

, (3.12)

where C is the integration constant.
Thus, using (3.10) and (3.12) we can write the explicit expression for F1(w) up

to an integration constant C

F1(w) = C
λγ2

µ1γ2 − λγ2 − λγ1

N∏
k=2

(
1− jw λ

νk

)− αkγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)

×

×
N∑
n=2

αn
νn

(
1− jw λ

νn

)−1
. (3.13)

For the functions Fn(w), n = 2, N we write the expression using (3.6) and
(3.12)

Fn(w) = C
αn
νn

(
1− jw λ

νn

)−1 N∏
k=2

(
1− jw λ

νk

)− αkγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)

. (3.14)

Finally, the expression for the function FN+1(w) we obtain using (3.7) and
(3.13)

FN+1(w) = C
λγ1

µ1γ2 − λγ2 − λγ1

N∏
k=2

(
1− jw λ

νk

)− αnγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)

×

×
N∑
n=2

αn
νn

(
1− jw λ

νn

)−1
. (3.15)

For the sought characteristic function H(u) we can write an approximate equal-
ity

H(u) =

N+1∑
k=0

Hk(u) ≈
N+1∑
k=1

Fk(w).

We denote

Φ(w) =

N+1∑
k=1

Fk(w)

and obtain the expression

Φ(w) = C
µ1γ2

µ1γ2 − λγ2 − λγ1

N∏
k=2

(
1− jw λ

νk

)− αkγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)

×
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×
N∑
n=2

αn
νn

(
1− jw λ

νn

)−1
.

To refine the constant C we use the condition

Φ(0) = 1,

then the value of C is given as follows

C =

[
µ1γ2

µ1γ2 − λγ2 − λγ1

N∑
n=2

αn
νn

]−1
.

Thereby, we obtain the sought function Φ(w)

Φ(w) =

=

(
N∑
n=2

αn
νn

)−1 N∏
k=2

(
1− jw λ

νk

)− αkγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)
N∑
n=2

αn
νn

(
1− jw λ

νn

)−1
. (3.16)

Making the reverse substitutions w = u
ε , ε = µ and taking into account

µk = µνk we obtain

H(u) ≈

(
N∑
n=2

αn
µn

)−1 N∏
k=2

(
1− ju λ

µk

)− αkγ2(µ1+γ1)

σ(µ1γ2−λγ2−λγ1)
N∑
n=2

αn
µn

(
1− ju λ

µn

)−1
(3.17)

Then the limit equality defined in theorem holds. �

Theorem 1 defines asymptotic characteristic function of the number of cus-
tomers in the orbit. The probability distribution of the process i(t) can be obtained
using inverse Fourier transform by the formula

P (i) =
1

2π

π∫
−π

e−juiH(u)du. (3.18)

4. Conclusion

We have considered markovian retrial queue with unreliable server and multiple
types of outgoing calls. Using asymptotic analysis method under low rates of
outgoing calls limit condition we have built an approximation for the probability
distribution (3.18) of the number of calls in the orbit.
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