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Allostery in oligomeric receptor models
Gregory Douglas Conradi Smith

Department of Applied Science and Neuroscience Program Faculty Affiliate, William & Mary, Williamsburg, VA 23187, USA

We show how equilibrium binding curves of receptor het-
erodimers and homodimers can be expressed as rational poly-
nomial functions of the equilibrium binding curves of the con-
stituent monomers, without approximation and without as-
suming independence of receptor monomers. Using a distin-
guished spanning tree construction for reduced graph powers,
the method properly accounts for thermodynamic constraints
and allosteric coupling between receptor monomers.

Introduction
Guanine nucleotide-binding protein (G protein) coupled re-
ceptors (GPCRs) are the largest family of signaling proteins
in the mammalian genome and targets for therapeutic drugs
(1, 2). When GPCRs are activated by extracellular ago-
nists, they interact with heterotrimeric G proteins to regulate
downstream second messenger and protein kinase cascades;
notably, cyclic-adenosine monophosphate (cAMP), inositol
1,4,5-triphosphate (IP3), and diacylglycerol (DAG).

Equilibrium receptor-occupancy models are used by
pharmacologists to quantify changes in ligand affinity and
efficacy, and various modes of activation of GPCRs, and to
clarify mechanistic hypotheses regarding drug action (3–8).
Pharmaceuticals that allosterically modulate GPCRs are of
therapeutic interest due to their potential for greater subtype
specificity than orthosteric ligands (9, 10). Indeed, allosteric
modulators hold promise for treating numerous CNS disor-
ders (11–14).

Evidence for dimerization and oligomerization of GPCRs
has been obtained using various experimental methods, in-
cluding radioligand binding, coimmunoprecipitation, and
fluorescence resonance energy transfer microscopy (FRET)
(15–17). It is widely believed that dimerization and higher-
order complexing (oligomerization) of GPCRs is a common
phenomenon that diversifies GPCR signaling and opportuni-
ties for pharmacological intervention (18–25).

GPCR dimerization may involve identical receptors (ho-
modimerization), two different subtypes of the same family,
or receptors from distantly related families (heterodimeriza-
tion). Several family C GPCRs exist and function as cova-
lently linked homodimers (e.g., metabotropic glutamate re-
ceptors (mGluRs) and calcium-sensing receptors) (26). Some
family A GPCRs (e.g., β1-adenosine and dopamine D2 re-
ceptors) function as homodimers (27). Some GPCRs are ob-
ligate heterodimers (e.g., the GABAB receptor and taste re-
ceptors for sweet and umami responses) (28–30). A proto-
typical GPCR heteromer (composed of receptors from differ-
ent families) is formed by A2A adenosine receptors and D2
dopamine receptors (31–33).

In many of the above examples, physical interactions be-

tween monomeric units of GPCR oligomers are known, or
suspected to be, important determinants in the mechanism of
receptor activation (34–39). Mathematical analysis has pro-
vided specific insights into the complexity of allosteric inter-
actions of receptor oligomers (40–45), but a deeper theoreti-
cal understanding of oligomeric signaling is needed.

This paper introduces a novel theoretical framework for
understanding allostery and thermodynamic constraints in
oligomeric receptor models that are composed of any num-
ber of identical monomers. The framework allows equilib-
rium occupancy measures (i.e., binding curves) of recep-
tor homodimers to be expressed in terms of the properties
of constituent monomers, without approximation and with-
out assuming independence of receptor monomers. This is
achieved by constructing the state-transition diagram of the
receptor oligomer, identifying thermodynamic constraints,
and constructing a distinguished spanning tree of this graph,
as explained below. The mathematics in the main text will
be familiar to quantitative pharmacologists. The Supplemen-
tary Notes presents results with mathematical rigor in the lan-
guage of algebraic graph theory (product graphs, cycle bases,
and so on).

Methods
This paper presumes basic understanding of equilibrium
receptor-occupancy models as used by the mainstream phar-
macological community (see (46) for an overview). In this
section we review this methodology and, en passant, distin-
guish two ways that thermodynamic constraints and allosteric
parameters arise in receptor models: (1) when the state-
transition graph of a receptor includes cycles (as in Fig. 1),
and (2) as a property of receptor oligomers that emerges via
conformational coupling of constituent monomers.

Thermodynamic constraints and allostery. It is well-
known that G proteins may modulate ligand affinity at
GPCRs (47–51). This phenomenon illustrates important re-
lationships between cycles in the graph representing receptor
model topology, thermodynamic constraints on equilibrium
model parameters, and allosteric coupling (46, 52).

Consider the ternary complex model of ligand (L), 7-
transmembrane receptor (R), and G protein (G) interactions
(Fig. 1). As will be familiar to many readers, the ternary
complex model hypothesizes distinct binding sites for lig-
and (orthosteric) and G protein (allosteric), 4 receptor con-
formations (states), and 4 reversible reactions. Microscopic
reversibility requires that the product of the transition rates
around the four states of the ternary complex model is the
same clockwise as counter-clockwise when ligand and G pro-
tein concentrations are independent of receptor state (53). If
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Fig. 1. Ternary complex model of a G protein coupled receptor (47–51). For given
ligand and G protein concentration ([L] and [G]), there are three free parameters:
KL, KG and γ.
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Fig. 2. (A) Binding curves for monomer with sequential binding reactions (Eqs. 1–
3) with κb = κ∗

b x and κc = κ∗
c x, and association constants κ∗

b = 1 and κ∗
c =

5µM−1. (B) Binding curves for dimer given by Eq. 5 with ηi = 1.
we consider bimolecular association as the forward reaction,
the chemical equilibrium constants are KL = [LR]/([L][R]),
KG = [RG]/([G][R]), K̂L = [LRG]/([L][RG]), and K̂G =
[LRG]/([G][LR]), where [L], [R], etc., represent equilib-
rium concentrations. The cycle in the ternary complex model
leads to the thermodynamic constraint KLK̂G = KGK̂L
and, consequently, the TCM has 3 (not 4) free equilibrium
parameters. To emphasize the cooperativity of the two bind-
ing processes, one may define an allosteric parameter γ =
K̂G/KG = K̂L/KL. In that case, the receptor model is spec-
ified by two equilibrium association constants (KL, KG) and
γ, the strength of allosteric coupling. The ligand affinity is
KL when G protein is unbound, and γKL when G protein
is bound. Thus, γ > 1 specifies a TCM in which G protein
binding increases agonist affinity, as observed for β2-ARs
(47–49). Fig. S1 in the Supplementary Notes shows binding
curves for the TCM model given by [R]/[R]T , [LR]/[R]T ,
etc., as a function of [L] and [G].

Cooperativity in receptor dimers. Thermodynamic con-
straints and allosteric parameters also arise when model-
ing receptor dimers and the interactions between constituent
monomers. To illustrate, consider a monomer with sequential
binding reactions,

a b

κb︷︸︸︷
κ∗bx

c

κc︷︸︸︷
κ∗cx

where κb and κc are dimensionless equilibrium constants and
x is ligand concentration. In this diagram, solid harpoons in-
dicate the forward reaction direction. For example, the re-
action labelled κb has a as reactant and b as product; conse-
quently, increasing κb decreases the occupancy of state a and
increases the occupancy of state b. The diagram introduces
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Fig. 3. (A) Equilibrium parameters for a heterodimer composed of two 3-state
monomers (same topology, different parameters). There are four 4-cycles and four
allosteric parameters: ηbb, ηbc, ηcb, and ηcc. Right: State-transition diagrams for
dimer composed of identical and indistinguishable subunits (not necessarily inde-
pendent) and three allosteric parameters: ηbb, ηbc, and ηcc.

helpful notation. The states are labelled in such a way that
the reactant comes before the product in dictionary order (a
to b to c). The subscript of the equilibrium constants κb and
κc are chosen to match the label of the reaction products.

For an isolated monomer, the occupancy measures are
given by πi = zi/zT where zT =

∑
i zi. za = 1, zb = κb,

and zc = κcκb, that is,

πa = 1/(1 +κb +κcκb) (1)
πb = κb/(1 +κb +κcκb) (2)
πc = κcκb/(1 +κb +κcκb) . (3)

It is convenient to denote this set of rational functions as

[πa : πb : πc] = [1 : κb : κcκb]

where it is understood that [x1 : x2 : · · · : xn] = [λx1 :λx2 :
· · · : λxn] for any λ 6= 0, and λ = 1/

∑
ixn gives the nor-

malized probability distribution π = (π1,π2, . . . ,πn) where
1 =

∑
iπi. Fig. 2 shows representative binding curves given

by Eqs. 1–3 as a function of the ligand concentration x.

Heterodimer. A receptor heterodimer model composed of
two distinguishable monomers with this 3-state topology
has 9 states, 12 reversible reactions, 4 thermodynamic
constraints, and 12 − 4 = 8 free equilibrium parameters
(Fig. 3A). Each monomer contributes 2 parameters, for a to-
tal of 4 (κb, κc and κb, κc). The remaining parameters (ηbb,
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Fig. 4. (A) The fraction of occupied ligand binding sites (Eqs. and 6) in the ho-
modimer model (Fig. 3B) for different values of the allosteric parameters ηbb, ηbc
and ηcc. (B,C) Hill plots show that interactions between the monomers may lead to
cooperativity.

ηbc, ηcb and ηcc) encode the strength of 4 2-way allosteric
interactions among the monomers (one for each 4-cycle).

To clarify the meaning of allosteric parameters in Fig. 3,
write κb[a] for the equilibrium constant of the a
 b reac-
tion of first monomer occurring in the context of the sec-
ond monomer being in state a, and similarly for κb[b], κb[a],
κb[b].

aa

ab

ba

bb

κb[a] κb[b]

κb[a]

κb[b]

In that case, the allosteric parameter ηbb is, by definition,

ηbb := κb[b]
κb[a] =

κb[b]
κb[a] .

Taking states a and a as reference states, we write κb :=
κb[a], κb := κb[a]. Consequently, κb[b] = ηbbκb, κb[b] =

ηbbκb, and the equilibrium parameters are

aa

ab

ba

bb

κb ηbbκb

κb

ηbbκb

Similar definitions for ηbc, ηcb and ηcc lead to state-transition
diagram of Fig. 3. The proportion of dimers in each state,

π = [zaa :zba :zab : · · · :zcc] ,

can be ‘read off’ the state-transition diagram, remembering
that the equilibrium constants are defined so that a→ b→ c
and a→ b→ c are forward reactions (52). Because aa is not
a product of a forward reaction, we assign zaa = 1. The other
zi are given by the product of equilibrium parameters label-
ing forward reactions on a path from aa to i. For example, to
calculate zcb, we observe the path aa→ ab→ bb→ cb, passes
in the forward direction through three reactions with equilib-
rium constants κb (aa→ ab), ηbbκb (ab→ bb), and ηcbκc
(bb→ cb); the product gives zcb = ηcbκc · ηbbκb · κb. In a
similar manner we obtain zba = κb, zab = κb, zca = κc ·κb,
zbb = ηbbκb ·κb, zac = κc ·κb,

zbc = ηbcκc ·ηbbκb ·κb

zcc = ηccηcbκc ·ηbcηbbκb ·κc ·κb .

Homodimer. A receptor homodimer composed of two indis-
tinguishable monomers with the same 3-state topology has
6 states, 6 reversible reactions, 1 thermodynamic constraint,
and 6−1 = 5 free equilibrium parameters (Fig. 3B). The ho-
modimer state-transition diagram (B) is a contraction of the
heterodimer diagram (A) obtained by lumping and renaming
states (aa→ a2, ba+ab→ ab, . . .) and parameters (κb = κb,
κc = κc, ηbc = ηcb). The monomers, being identical, con-
tribute only 2 parameters (κb, κc). There are only three dis-
tinct allosteric parameters for the stength of 2-way interac-
tions, written as ηbb, ηbc and ηcc. The fraction of dimers in
each state,

π = [za2 : zab : zb2 : zac : zbc : zc2 ] , (4)

is given by za2 = 1, zab = 2κb, zb2 = ηbbκ
2
b, zac = 2κbκc,

zbc = ηbcηbbκc ·κc ·2κb = 2ηbbηbcκ
2
bκc

zc2 = 1
2ηccηbcκc ·ηbcηbbκb ·κc ·2κb = ηbbη

2
bcηccκ

2
bκ

2
c .

Where the combinatorial coefficient 2 (resp. 1/2) appears as
a factor on the transitions out of (resp. into) states a2, b2 and
c2.

Homodimer allostery. Importantly, the above calculation
did not assume independent monomers. Rather, the depen-
dence of the monomers in the homodimer has been param-
eterized by the three allosteric parameters ηbb, ηbc and ηcc.
To see this, transform Eq. 4 to an equivalent expression by
dividing each term by (1 +κb +κcκb)2 to obtain
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π = [π2
a :2πaπb :ηbbπ

2
b :2πaπc :2ηbbηbcπbπc :ηccη

2
bcηbbπ

2
c ] ,
(5)

where πa, πb and πc are given by Eqs. 1–3.
Eq. 5 is significant. Without assuming independence, we

have expressed the occupancy measure for a receptor homod-
imer in terms of...

• the occupancy measures of a isolated monomer (πa, πb
and πc, determined by κb, and κc) and

• the allosteric parameters ηbb, ηbc and ηcc.

In the absence of allosteric interactions, ηi = 1 and Eq. 5
simplifies as expected: πa2 = π2

a, πab = 2πaπb, etc.
To illustrate the effect of conformational coupling be-

tween monomers of the 6-state dimer (Fig. 3), Fig. 4A plots
the fraction of occupied ligand binding sites (4 in the dimer,
2 for each monomer),

y = 1
4πab+ 1

2 (πb2 +πac) + 3
4πbc+πc2

as a function of ligand concentration. In terms of the
monomer occupation measures and allosteric parameters, we
find

y = 1
2πaπb+ 1

2ηbbπ
2
b +πaπc+ 3

2ηbcηbbπbπc+ηccη
2
bcηbbπ

2
c

(6)
where we have used πb2 = ηbbπ

2
b , πbc = 2ηbcηbbπbπc, etc.,

obtained by identifying Eqs. 4 and 5. The Hill plots in Fig. 4,
B and C, show how the allosteric parameters (ηbb, ηbc and
ηcc) that characterize the interactions between the monomers
may lead to cooperativity in the fraction of occupied bind-
ing sites. This example is reminiscent of a sequential (as
opposed to concerted) model of cooperative oxygen bind-
ing in hemoglobin that accounts for the inequivalence of α
and β subunits (54, 55). In this interpretation, the original
three-state model is analogous to a αβ hemoglobin dimer,
and the allosteric parameter ηbb is the increase in affinity
for the second binding event. The 6-state model represents
a hemoglobin tetramer, in which ηbc and ηcc represent affin-
ity changes resulting from interactions between αβ dimers.

The remainder of the paper presents a general theory
of allostery in oligomeric receptors composed of any num-
ber of identical monomers. First, we provide a construc-
tion of the state-transition diagram of receptor homodimers
(and oligomers), for any given monomer topology. Next,
we characterize cycles and thermodynamic constraints in re-
ceptor oligomers in terms of the monomer topology (i.e.,
without having to construct the state-transition graph of the
oligomer). Third, we show how allosteric interactions in re-
ceptor oligomers may be systematically enumerated. Fourth,
we show how the occupancy measure of a receptor oligomer
may always be expressed in terms of the occupancy measures
of an isolated monomer and identified allosteric parameters.
Finally, we discuss relationships between (thermodynamic
constraints on) the allosteric parameters that arise from con-
formational coupling, and comment on the identifiability of
allosteric parameters in receptor oligomers.

Results
Receptor oligomers and reduced graph powers. Let
G = (V,E) denote an undirected graph with v vertices and
e edges. Formally, the the vertex set is V = {a1,a2, . . . ,av},
but for readability we will often use the first v letters of the al-
phabet, V = {a,b,c,d, . . .}. Each element of the set of edges,
E, is an unordered pair of vertices. When we say that G has
the same structure (topology) as a receptor monomer of inter-
est, we mean (ai,aj) is an element of E(G) precisely when
there is a reversible transition between states ai and aj in the
monomer. For a monomer model with v states and e transi-
tions, G will have v = |V | vertices and e= |E| edges (using
the common notation for the number of elements in a finite
set). We assume G has no loops or multiple edges, and is
connected.

What graph corresponds to a receptor homomer com-
posed of k identical subunits with topology given by G?
The answer to this question is the kth reduced power of G
(56), denoted by G(k), which is formally defined as a prod-
uct graph that is contracted using the symmetries of indis-
tinguishable monomers (see Supporting Material, Sec. S3).
For readers with no prior knowledge of product graphs, the
state-transition graph of a receptor homo-oligomer can be
constructed in 3 steps, as follows.

(1) For a receptor model of interest, construct an undi-
rected graph with same topology. For example, an undi-
rected graph H = (V,E) corresponding to the ternary com-
plex model (Fig. 1) has vertex set V = {a,b,c,d} and edge
wet E = {(a,b),(a,c),(b,d),(c,d)} (graph H in Fig. 5).

(2) Interpreting the vertex labels as variables, write their
sum, raise this quantity to the kth power, and expand. Each
term of the resulting polynomial corresponds to a state of the
receptor oligomer. For a dimer composed of k = 2 indis-
tinguishable ternary complex monomers, there are 10 distin-
guishable states

(a+ b+ c+d)2 = a2 + 2ab+ 2ac+ 2ad+
b2 + 2bc+ 2bd+ c2 + 2cd+d2 .

For a ternary complex tetramer, k = 4 and (a+ b+ c+d)4 =
a4 +a3b+a3c+ · · ·+d4 gives 35 states. In general, the num-
ber of states in the receptor oligomer is given by

|V (G(k))|=
(
v+k−1

k

)
= (v+k−1)!

k! (v−1)! . (7)

This is the number of ways k indistinguishable monomers
can each be assigned to one of v states.

(3) For edges of the receptor oligomer state-transition
graph, notice that if (ai,aj) is an edge of G (an allowed tran-
sition in the monomer), there is an edge between two states
of G(k) (a transition in the oligomer) precisely when these
states can be written as aif = ajf where f(a1,a2, . . . ,av)
is a monomial of degree k − 1. The monomial f is will
be referred to as the context of the ai 
 aj transition, i.e.,
the unchanged state of k− 1 monomers when one monomer
changes state from ai to aj or vice-versa. Evidently, the num-
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Fig. 5. Left: Undirected graph with topology of ternary complex model (Fig. 1). Middle: Topology of a homodimer composed of two identical and indistinguishable ternary
complex monomers is given by the reduced graph power H(2) (see Sec. S3). Right: Topology of a receptor oligomer composed of 4 identical ternary complex monomers is
given by the reduced power H(4).

ber of edges of G(k) is

|E(G(k))|= e

(
v+k−2
k−1

)
= e

(v+k−2)!
(k−1)!(v−1)! , (8)

that is, e times the number of contexts, which is the number of
ways k−1 indistinguishable monomers can each be assigned
to one of v states.

Fig. 5 shows the reduced graph powerH(2) that gives the
topology of the state-transition diagram for a ternary complex
homodimer. H(2) has 4

(4+2−2
1
)

= 4
(4
1
)

= 16 edges. The
edge (ab,bd) of H(2) corresponds to one monomer making
an a
 d transition in the context of the other monomer occu-
pying state b. Fig. 5 also shows the graph H(4) for a receptor
oligomer composed of 4 indistinguishable ternary complex
monomers. H(4) has 4

(4+4−2
3
)

= 4
(6
3
)

= 80 edges. The
edge (b2cd,bc2d) of H(4) corresponds to one monomer of
the receptor 4-mer making an b
 c transition in the context
of bcd.

Thermodynamic constraints and the Betti number of
G(k). The number of thermodynamic constraints in a recep-
tor model is given by its Betti number, which is the dimension
of the cycle space of the state-transition graph (for details see
Supporting Materials, Sec. S4). Because G has no loops or
multiple edges, and is connected, its Betti number is given
by β(G) = |E(G)| − |V (G)|+ 1 = e− v+ 1. The number
of free equilibrium parameters in the monomer model is the
number of edges less the constraints, which is e−β = v−1,
which is the number of edges in a spanning tree of G.

Using Eqs. 7 and 8, the Betti number for the receptor k-
mer obtained from G is β(G(k)) = |E(G)(k)|− |V (G)(k)|+
1. That is, there are

β(G(k)) = e

(
v+k−2
k−1

)
−
(
v+k−1

k

)
+ 1 (9)

thermodynamic constraints in the oligomer. The ternary com-
plex homodimer has β(H(2)) = 16− 10 + 1 = 7 thermody-
namic constraints and 9 free equilibrium parameters. The
4-mer has β(H(4)) = 80−35 + 1 = 46 thermodynamic con-
straints and 34 parameters (Fig. 5).

Equilibrium parameters in the monomer model. A gen-
eral theory of allostery in oligomeric receptors interactions
between monomers within the oligomeric receptor begins by
introducing a convention for assignment of equilibrium pa-
rameters to the edges of G, the state-transition graph of the
monomer, whose vertex set is V (G) = {a1,a2, . . . ,av}. To
accomplish this, construct a rooted spanning tree of G with
root a1 and indexing that respects a breadth-first traversal
(denoted T (G) or just T ). Any edge of T is uniquely de-
termined by its endpoint aj that is furthest from the root. For
each 2 ≤ i ≤ v, let ej be the edge of T that has endpoints ai
and aj , with aj further from the root than ai. For each edge
of T , we have ei = (a−i ,ai), where a−i is the predecessor of
ai. For the ternary complex monomer (Fig. 1), an example
spanning tree is shown below (left).

b

a

b

cc

d
d

a

b

c

d

κb κx = κbκd
κc

κc

κd

Here the edges are b = (a,b), c = (a,c), d = (b,d) and the
predecessors are b−= a, c−= a, and d−= b. The root vertex
a has no predecessor. For convenience we have chosen T
so each directed edge ei points backwards from product to
reactant.

For each edge of T , there is a free equilibrium constant
that will be denoted by κei where ei is the edge label (above
right). For the ternary complex model, the free equilibrium
constants are κb, κc and κd; the constrained equilibrium con-
stant is κx = κbκd/κc. In the notation of Fig. 1, κb =KL[L],
κc =KG[G] and κd = γKG[G], and κx = γKL[L].

Allosteric parameters in oligomeric receptor models.
We are now prepared to assign, in a systematic and general
fashion, equilibrium parameters to the edges of the receptor
oligomer state-transition graph G(k). Because T is a span-
ning tree of G, the reduced power of this spanning tree, de-
noted T (k), spans G(k) (see Supporting Material, Sec. S6).
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Θ(H(2)) ⊂ T (H)(2) ⊂ H(2)

cd

d2

bd

b2
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a2

ac

c2

ad

bc

2κb[a]

1
2κb[b]

2κd[b]
1
2κd[d]

1
2κc[c]2κc[a]

κc[b] κd[c]

κd[a]

cd

d2

bd

b2
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c2
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2κb

1
2κbηbb

2κdηbd
1
2κdηbdηdd

1
2κcηcc

2κc

κcηbc κdηcd

κd
RG|LRG

LRG2

LR|LRG

LR2

R|LR

R2
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RG2

R|LRG
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2KL[L]

1
2
KL[L]χ``

2γKG[G]χ`γ
1
2
γKG[G]χ`γχγγ

1
2
KG[G]χgg2KG[G]

KG[G]χ`g γKG[G]χγg

γKG[G]

A B C

Fig. 6. (A) Because T is a spanning tree of H, the reduced graph product T (H)(2) spans H(2) (but it is not a tree). Θ(H(2)) is a spanning tree obtained from T (H)(2)

by eliminating three edges (shown dash-dotted). The parameters are transition-context pairs, e.g., κd[b] denotes the equilibrium constant for reaction d = (b,d) in one
monomer when the other monomer is in state b. (B) The specification of 9 free parameters in the ternary complex homodimer includes 3 equilibrium constants inherited from
the monomer (κi) and 6 allosteric parameters (ηi). (C) Biophysical notation following Fig. 1 uses the replacements a→ R, b→ LR, c→ RG, d→ LRG, ηbb → χ``,
ηbc→ χ`g , ηbd→ χ`γ , ηcc→ χgg , ηcd→ χgγ , ηdd→ χγγ where `, g and γ stand for R 
 LR, R 
 RG and LR 
 LRG, respectively.

As a consequence, a spanning tree ofG(k), denoted Θ(G(k)),
can always be constructed using edges that are transition-
context pairs involving an edge of T (the transition), denoted
ei = (a−i ,ai), and a monomial f(a1,a2, . . . ,av) of degree
k−1 (the context). For now, the equilibrium constants label-
ing the edges of the spanning tree Θ(G(k)) are formally de-
noted as κei [f ] were 2≤ i≤ v. Using this notation, the equi-
librium parameters for the spanning tree Θ(H(2)) are κb[a]
for the edge (a2,ab), κb[b] for (ab,b2), κd[c] for (bc,cd), and
so on (Fig. 6A).

Enumerating allosteric interactions in recep-
tor dimers. The number of free equilibrium pa-
rameters in a receptor oligomer is the number of
edges, less the number of thermodynamic constraints,
|E(G(k))|−β(G(k)) = |V (G(k))|− 1, which is the number
of edges in the spanning tree Θ(G(k)). For example, the
spanning tree of the homodimer H(2), denoted by Θ(H(2))
and shown in Fig. 6A (solid arrows), is specified by as-
signing |E(Θ(H(2)))| = 9 parameters. The 4-mer requires
|E(Θ(H(4)))|= 34 parameters (Fig. S5, solid arrows).

How should the |V (G(k))| − 1 =
(v+k−1

k

)
− 1 free pa-

rameters for a receptor oligomer be specified to illuminate
the possible allosteric interactions among monomers? Be-
cause the spanning tree T (G) has e = v− 1 edges, we may
define (e+1)e/2 = v(v−1)/2 independent 2-way allosteric
parameters (the number of ways 2 edges can be chosen from
the spanning tree with replacement). For a dimer (k = 2),
these 2-way parameters are:

ηeiej := κei [aj ]
κei [a

−
j ]

=
κej [ai]
κej [a−i ]

,

where 2 ≤ i ≤ j ≤ v. For example, the spanning tree T (H)
of the ternary complex monomer has 3 edges (b, c, d). Thus,

there are 4 ·3/2 = 6 allosteric parameters for the dimer,

ηbb = κb[b]/κb[a] (10)
ηbc = κb[c]/κb[a] = κc[b]/κc[a] (11)
ηbd = κb[d]/κb[b] = κd[b]/κd[a] (12)
ηcc = κc[c]/κc[a] (13)
ηcd = κc[d]/κc[b] = κd[c]/κd[a] (14)
ηdd = κd[d]/κd[b] . (15)

Using the 2-way allosteric parameters defined above, and the
equilibrium parameters inherited from the monomer model
(κb[a] = κb, κc[a] = κc, κd[a] = κd, because a is the root
of T (H)), we are able to specify the equilibrium constants
for each edges of Θ(H(2)) in a manner that illuminates the
possibility of conformational coupling. For example, the
parameter on edge (ab,b2) is formally κb[b], because this
edge is a b = (a,b) transition in the context of b. Using
Eq. 10 we have κb[b] = κb[a]ηbb = κbηbb. The edge (bd,d2)
is a d = (b,d) transition in the context of d. Using both
Eqs. 10 and 15, we see that this equilibrium constant is
κd[d] = κd[b]ηdd = κdηbdηdd. Repeating this process for all
10 states yields the specification of allosteric parameters in
the ternary complex homodimer shown in Fig. 6B. The cor-
responding binding curve [ πa2 : πab : · · · : πd2 ] is

[ 1 : 2κb : κ2
bηbb : 2κc : 2κbκcηbc : κ2

cηcc (16)
: 2κbκd : 2κ2

bκdηbdηbb : 2κbκcκdηbcηcd : κ2
bκ

2
dηbbη

2
bdηdd ] .

Dividing by (1 +κb +κc +κbκd)2 gives

[ π2
a : 2πaπb : π2

bηbb : 2πaπc : 2πbπcηbc : π2
cηcc (17)

: 2πaπd : 2πbπdηbdηbb : 2πcπdηbcηcd : π2
dηbbη

2
bdηdd ]

where [ πa : πb : πc : πd ] = [ 1 : κb : κc : κbκd ].
As promised, without assuming independence of recep-

tor monomers, we have expressed the equilibrium occupancy
measure of the ternary complex homodimer in terms of the
properties of an isolated monomer (πa, πb, etc.) and al-
losteric parameters (ηbb, ηbc, etc.). Fig. 6C shows the dis-
tinguished spanning tree of the homodimer in the original
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biophysical notation (Fig. 1) and Sec. S2 in the Supporting
Material presents the biophysical version of Eq. 16.

Multiway allosteric interactions. For receptor oligomers
with k > 2, the 2-way parameters are

ηeiej [f ] := κei [ajf ]
κei [a

−
j f ]

=
κej [aif ]
κej [a−i f ]

,

where 2 ≤ i ≤ j ≤ v and f(a1,a2, . . . ,av) is a monomial of
degree k−2. Furthermore, when when k > 2, the situation is
complicated by the possibility of multiway allosteric interac-
tions. For example, the 3-way allosteric parameters are

ηeiejek
[f ] :=

ηeiej [akf ]
ηeiej [a−k f ]

=
ηeiek

[ajf ]
ηeiek

[a−j f ]
=
ηejek

[aif ]
ηejek

[a−i f ]

where 2≤ i≤ j ≤ k ≤ v and f(a1,a2, . . . ,av) is a monomial
of degree k−3(when k = 3 the f is dropped). The equalities
are shown by expanding the definition,

ηeiej [akf ]
ηeiej [a−k f ]

=
κei [ajakf ]/κei [a

−
j akf ]

κei [aja
−
k f ]/κei [a

−
j a
−
k f ]

=
κei [akajf ]/κei [a

−
k ajf ]

κei [aka
−
j f ]/κei [a

−
k a
−
j f ]

=
ηeiek

[ajf ]
ηeiek

[a−j f ]
.

In general, n-way allosteric parameters are defined as

ηei1ei2 ···ein
[f ] :=

ηei1ei2 ···ei`−1ei`+1 ···ein
[ai`f ]

ηei1ei2 ···ei`−1ei`+1 ···ein
[a−i`f ]

, 1≤ `≤n,

where 2 ≤ i1 ≤ i2 ≤ ·· · ≤ in ≤ v. For a monomer with
spanning tree of e = v− 1 edges, a receptor composed of
k monomers has

(e+n−1
n

)
n-way allosteric parameters for

2 ≤ n ≤ k, which is the number of ways that n of the e
edges can be chosen with replacement. For example, the
spanning tree Theta(H(4)) of the ternary complex 4-mer has(4
2
)

= 6 2-way,
(5
3
)

= 10 3-way, and
(6
4
)

= 15 4-way param-
eters. Some of these are

ηbbb = ηbb[b]/ηbb[a]
ηccd = ηcc[d]/ηcc[b] = ηcd[c]/ηcd[a]
ηbcd = ηbc[d]/ηbc[b] = ηbd[c]/ηbd[a] = ηcd[b]/ηcd[a]
ηccdd = ηccd[d]/ηccd[b] = ηcdd[c]/ηcdd[a]
ηdddd = ηddd[d]/ηddd[b] .

Token method for allosteric parameters. Fortunately, the
allosteric factors involving various 2-way through n-way in-
teractions may be enumerated using a natural ‘token’ repre-
sentation of receptor oligomer states, as follows.

To begin, draw the tree T that spans the state-transition
graph G of the monomer (discussed above). For any given
state of the oligomer, put (indistinguishable) tokens in the
positions associated with the monomer states. For example,
the token graphs associated to states bd and d2 in the ternary
complex dimer are,

LRiG

RiG

γKL

RaG
βKA

LRaG

δγαKL

δβαKA

LRi

Ri

KL

Ra
KA

LRa

αKL

αKA

K
G

γK
G

βK
G

δγ
βK

G

J :

a2

a1

e2

a4e4

a6
e6

a5

a3 a7

a8
e5

e3

e7

e8

T (J):

Fig. 7. Left: Cubical ternary complex model of a G protein coupled receptor (49).
There are 7 equilibrium parameters: two associations constants (KL, KG) for the
binding of ligand and G protein, one equilibrium constant (KA) for receptor activa-
tion, and four allosteric parameters (α, β, γ, δ). Right: The spanning tree T (J)
respecting breadth first traversal is the starting point for constructing a distinguished
spanning tree Θ(J(2)) of the cubical ternary complex dimer (Fig. 8).

a

c

d
b

c

a

b

c

d
b

c

To calculate allosteric factor for state bd, we consider the path
of each token to the root (the vertex a). These paths yield b
for the first token, and b+d for the second token. Because the
product is b(b+d) = b2 +bd, the allosteric factor in the term
πbπd in Eq. 17 is ηbbηbd. For state d2, the path to root for
both tokens is b+d and the product is (b+d)2 = b2 +2bd+
d2; thus, the allosteric factor for π2

d is ηbbη
2
bdηdd. Table S1

shows the complete list of allosteric factors for the ternary
complex dimer.

For a receptor k-mer, we may assume p1 ≤ p2 ≤ ·· · ≤
pk where p` is the place of the `th token. Recall that e` =
(a−` ,a`) and define h(a`) recursively,

h(a`) =
{

0 for a` = a1

e`+h(a−` ) otherwise.
(18)

The n-way interactions are enumerated by the elementary
symmetric polynomials in h1,h2, . . . ,hk, namely,

εn(h1,h2, . . . ,hk) :=
∑

1≤i1<i2<···<in≤k
hi1hi2 · · ·hin .

(19)
For example, the token graphs associated to states bcd2 and
ac2d in the ternary complex 4-mer are,

a

d
b

c

b
d

b

c
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The 2-, 3- and 4-way interactions (Eqs. 18 and 19) are

2-way : h1h2 +h1h3 +h1h4 +h2h3 +h2h4 +h3h4

3-way : h1h2h3 +h1h2h4 +h1h3h4 +h2h3h4

4-way : h1h2h3h4

where

bcd2 : h1 = b h2 = c h3 = b+d h4 = b+d
ac2d : h1 = 0 h2 = c h3 = c h4 = b+d .

For state bcd2,

1-way : 3b+ c+ 2d
2-way : bc+ 2b(b+d) + 2c(b+d) + (b+d)2

= 3b2 + 4bd+ 3bc+d2 + 2cd
3-way : 2bc(b+d) +b(b+d)2 + c(b+d)2

= b3 + 2b2d+ 3b2c+bd2 + 4bcd+ cd2

4-way : bc(b+d)2 = b3c+ 2b2cd+bcd2 .

Thus, the πbπcπ2
d term, which has combinatorial coefficient

(1,1,2)! = 4!/(0!1!1!2!) = 12, has allosteric factors

η3
bbη

4
bdη

3
bcηddη

2
cd︸ ︷︷ ︸

2 way

ηbbbη
2
bbdη

3
bbcηbddη

4
bcdηcdd︸ ︷︷ ︸

3 way

ηbbbcη
2
bbcdηbcdd︸ ︷︷ ︸

4 way

.

For state ac2d, a similar calculation gives

12πaπ2
cπd η

2
bcηccη

2
cd ηbccηccd .

Sec. S7 confirms that the token method for enumerating
allosteric factors in a receptor oligomer always yields the re-
quired |V (G(2))| − 1 =

(v+k−1
k

)
− 1 parameters. Because

the spanning tree T (G) used to define the |V (G)| − 1 un-
constrained equilibrium constants in an isolated monomer
is not unique. Comparing results for different choices of
T reveals identities that relate allosteric parameters. In the
ternary complex dimer (Fig. 6), e.g., ηbbηbd = ηbcηbx, where
ηbx := κb[d]/κb[c] = κx[b]/κx[a] and κx[a] = κbκd/κc (see
Fig. S4).

Discussion
The theoretical framework for understanding allostery in re-
ceptor oligomers presented here represents an intriguing and
novel combination of graph theory and quantitative receptor
pharmacology. We began by establishing that the structure
of state-transition diagram of a receptor k-mer, for any given
monomer topology G, is the reduced graph power G(k). We
used a minimal cycle basis construction for reduced graph
powers to identify thermodynamic constraints in receptor
oligomers without having to construct G(k). We showed how
allosteric interactions in receptor oligomers may be system-
atically enumerated. Finally, we show how the occupancy
measure of a receptor oligomer may be expressed in terms of
the parameters for an isolated monomer and these identified
allosteric parameters (Eq. 17).
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1
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1
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a5a6
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1
2
κe6 [a6]

a1a7

a2a7

a3a7

a4a7

a5a7

a2a8

a3a8

a4a8

a6a7

a27

1
2
κe7 [a7]

a1a8
κe8 [a1]

a5a8

a6a8

a7a8
κe8 [a7]

a28

1
2
κe8 [a8]

Fig. 8. Distinguished spanning tree Θ(J(2)) for the cubical ternary complex ho-
modimer (Fig. 7). Fig. S6 in the Supporting Materials shows state-transition diagram
J(2). Fig. 7 shows |V (J)| = 8 so 7 parameters are inherited from the monomer
(κe4 =KA, κe6 =αKA, κe8 = δβαKA, etc.). The dimer has |V (J(2))|= 36
vertices; thus, there are 35 parameters,

(
7+2−1

2

)
=
(

8
2

)
= 28 of which are 2-

way allosteric parameters (ηe2e2 ,ηe2e3 , . . . ,ηe8e8 ). Relationship between formal
and specified equilibrium parameters include κe4 [a2] = κe4ηe2e2 , κe6 [a6] =
κe6ηe2e6ηe6e6 , κe8 [a8] = κe8ηe2e8ηe5e8ηe8e8 , κe8 [a7] = κe8ηe3e8ηe7e8 ,
among others (see Sec. S8 in Supporting Material).

The concepts and notation introduced here amount to a
theoretical framework for allostery in oligomeric receptors
composed of any number of identical monomers. For clar-
ity we have used the (perhaps over-simple) ternary complex
model dimer and tetramer as running examples, but the ap-
proach is completely general. See Fig. 8 and Sec. S8 for dis-
cussion of cubical ternary complex dimers (49). However,
the approach is completely general. For any given spanning
tree T (G) of a monomer state transition diagram G that is
of interest, the allosteric parameters can be enumerated by
performing the symbolic calculations of Eqs. 18 and 19 in a
computer algebra system (see Sec. S9 in the Supporting Ma-
terial).

We hope this theoretical framework for receptor homo-
mer allostery will be valuable to investigators interested in
pharmacological alteration of GPCR activity by allosteric
modulators, whose action is modeled as a modification of
equilibrium constants of one or more receptor monomers.
Using a similar approach, an understanding of allosteric in-
teractions in hetero-oligomers is within reach, which could
lay a foundation for theoretical analysis of receptor crosstalk,
wherein one protomer binds to an agonist, whilst the other
unit activates the G protein (57, 58).

Using this framework, it may be possible to address, in
a general fashion, the identifiability (or not) of allosteric
parameters (ηi) that emerge in receptor oligomer models.
The outcome of such studies would presumably depend
on whether the equilibrium parameters inherited from the
monomer (κi) have been experimentally validated and, con-
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sequently, are fixed during the process of fitting allosteric
parameters to experimental data sets. The limitations of
this theoretical framework for allostery in receptor oligomers
need not be enumerated, as these are inherited from the limi-
tations of the general and accepted practice of receptor occu-
pancy modeling.
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Supplementary Note S1: Example binding curves for the ternary complex model
For any [L] and [G], the equilibrium fraction of receptors in each of the four states of the ternary complex model (Fig. 1) can
be found by expressing each receptor state concentration in terms of [R],

[LR] = KL[L][R]
[RG] = KG[G][R]

[LRG] = γKG[G][LR] = γKG[G]KL[L][R] .

Solving these equations simultneously with the equation for the conserved total receptor concentration, namely,

[R]T = [R] + [LR] + [RG] + [LRG] ,

gives the fraction of receptors in each state,

[R]/[R]T = 1/zT (S20)
[LR]/[R]T = KL[L]/zT (S21)
[RG]/[R]T = KG[G]/zT (S22)

[LRG]/[R]T = γKG[G]KL[L]/zT (S23)

where zT = 1 +KL[L] +KG[G] +γKG[G]KL[L].
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Fig. S1. Binding curves for ternary complex model (Eqs. S20–??). Parameters: KL = 0.5µM−1, KG = 0.1µM−1, and in (A) [G] = 5µM and γ = 40.
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Fig. S2. Topology of a receptor dimer composed of two distinguishable ternary complex monomers (H, see Fig. 1) is given by the Cartesian graph power H2 =H�H.

Supplementary Note S2: Ternary Complex Dimer
In the original biophysical notation, the fraction of dimeric receptors in each state can be read off Fig. 6C, as follows.

[R2]/[RR]T = 1/zT
[R|LR]/[RR]T = 2KL[L]/zT

[LR2]/[RR]T = 2KL[L] · 12KL[L]χ``/zT
[R|RG]/[RR]T = 2KG[G]/zT

[LR|RG]/[RR]T = KG[G]χ`g ·2KL[L]/zT

[RG2]/[RR]T = 1
2KG[G]χgg ·2KG[G]/zT

[R|LRG]/[RR]T = γKG[G] ·2KL[L]/zT

[LR|LRG]/[RR]T = 2γKG[G]χ`γ ·
1
2KL[L]χ`` ·2KL[L]/zT

[RG|LRG]/[RR]T = γKG[G]χγg ·KG[G]χ`g ·2KL[L]/zT

[LRG2]/[RR]T = 1
2γKG[G]χ`γχγγ ·2γKG[G]χ`γ ·

1
2KL[L]χ`` ·2KL[L]/zT

where

[RR]T = [R2] + [R|LR] + [LR2] + [R|RG] + [LR|RG] + [RG2] + [R|LRG] + [LR|LRG] + [RG|LRG] + [LRG2]

and zT is the sum of the right sides of the above equations. Equivalently,

[R2]/[RR]T = 1/zT
[R|LR]/[RR]T = 2KL[L]/zT
[LR2]/[RR]T = K2

L[L]2χ``/zT
[R|RG]/[RR]T = 2KG[G]/zT

[LR|RG]/[RR]T = 2KG[G]KL[L]χ`g/zT
[RG2]/[RR]T = K2

G[G]2χgg/zT
[R|LRG]/[RR]T = 2γKG[G]KL[L]/zT

[LR|LRG]/[RR]T = 2γKG[G]K2
L[L]2χ`γχ``/zT

[RG|LRG]/[RR]T = 2γK2
G[G]2KL[L]χγgχ`g/zT

[LRG2]/[RR]T = γ2K2
G[G]2K2

L[L]2χ``χ2
`γχγγ/zT .
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Fig. S3. Topology of a homodimer composed of two identical and indistinguishable ternary complex monomers (H, see Fig. 1) is given by the reduced graph power H(2)

(bottom). For each vertex x of H, the vertices {xv | v ∈ V (H)} ⊆ V (H(2)) induce a subgraph Hx∼=H of H(2). The subgraph Ha is shown solid in H(2). Right: 6 of
10 4-cycles in H(2) are Cartesian squares.

Supplementary Note S3: Receptor oligomers and reduced graph powers
Let the undirected graph G = (V (G),E(G)) represent a receptor subunit model with v = |V (G)| states and e = |E(G)|
reversible transitions between these states. We assume G has no loops or multiple edges, and is connected. What graph
corresponds to a receptor homomer composed of k identical subunits with topology given by G? The answer to this question
is the kth reduced power of G, denoted by G(k), which is defined as a contraction of product graphs. We briefly review this
construction, following prior work (56).

Recall (59) that the Cartesian product of graphs G and H is the graph G�H whose vertex set is the Cartesian product
V (G)×V (H), and whose edges are

E(G�H) = {(x,u)(y,v) | xy ∈ E(G) and u= v or x= y and uv ∈ E(H)} ,

where xy is an abbreviation for a vertex (x,y) of G�H and, similarly, uv = (u,v) ∈ V (G�H). The kth Cartesian power
of G is the k-fold product Gk = G�G� · · ·�G. The reduced kth power is the quotient Gk/Sk of Gk by the action of the
symmetric group Sk, which acts on Gk by permuting the factors.

In general, say G has vertex set {a1,a2, . . . ,av}. Denote by Mk(G) the set of monic monomials of degree k, with indeter-
minates V (G), and M0(G) = {1}. Then G(k) is the graph whose

|V (G(k))|=
((v
k

))
=
(
v+k−1

k

)
(S24)

vertices are the monomials an1
1 an2

2 · · ·anv
v ∈Mk(G). For edges, if aiaj is an edge ofG, and f(a1,a2, . . .av)∈Mk−1(G), then

aif(a1,a2, . . . ,av) is adjacent to ajf(a1,a2, . . . ,av). For each edge aiaj of G and each monomial f ∈Mk−1(G), there is an
edge of G(k) from aif to ajf ; thus, the number of edges of G(k) is

|E(G(k))|= e

((
v

k−1

))
= e

(
v+k−2
k−1

)
. (S25)

As an example, consider the graph H shown in Fig. S2, which has the topology of the ternary complex model shown in
Fig. 1. Here V (H) = {a,b,c,d} and E(H) = {{a,b},{a,c},{b,d},{c,d}}. The graph power H2 has v2 = 16 vertices and
2ev = 32 edges. This should be compared to Fig. 5, which shows the reduced graph power H(2) that corresponds to the
state-transition diagram of a ternary complex receptor dimer composed of identical and indistinguishable monomers. H(2)

has
((

4
2

))
= 10 vertices and 4

((
4
1

))
= 16 edges. Fig. 5 shows the reduced graph product H(4) that corresponds a receptor

oligomer composed of 4 ternary complex monomers. H(4) has
((

4
4

))
= 35 vertices and 4

((
4
3

))
= 80 edges. The vertices

enumerated by expanding the multinomial (a+ b+ c+d)4 and dropping coefficients, because V (H(4)) =M4(H).
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Supplementary Note S4: Cycle space and thermodynamic constraints in receptor oligomer
models
The number of thermodynamic constraints in a receptor model is given by dimension of the cycle space of the state-transition
graph. Following (56), we briefly review this concept.

For a graphG, its edge space E(G) is the power set ofE(G) viewed as a vector space over the two-element field F2 = {0,1},
where the zero vector is 0 = ∅ and addition is symmetric difference. Any vector X ∈ E(G) is viewed as the subgraph of
G induced on X , so E(G) is the set of all subgraphs of G without isolated vertices. Thus E(G) is a basis for E(G), and
dim(E(G)) = |E(G)|. For a graph G, its cycle space C(G) is the set of all subgraphs in E(G) whose vertices all have even
degree (that is, the Eulerian subgraphs). Because every such subgraph can be decomposed into edge-disjoint cycles, we see
that C(G)⊆ E(G) is spanned by the cycles in G. The dimension of C(G) is called the Betti number of G, and is denoted β(G).
If G is connected, then β(G) = |E(G)|− |V (G)|+ 1 (e.g., β(H) = 1 in Fig. S2). A basis for C(G) is called a cycle basis for
G. The length of a cycle basis is the sum of the lengths of its cycles. A cycle basis with the least possible length is a minimum
cycle basis (MCB). See Chapter 29 of (59) for further review.

For a receptor oligomer, the number of thermodynamic constraints is the dimension of the cycle space of the reduced graph
product, C(G(k)). Using Eqs. 7 and 8, this is given by the Betti number

β(G(k)) = e

((
v

k−1

))
−
((v
k

))
+ 1 = e

(
v+k−2
k−1

)
−
(
v+k−1

k

)
+ 1 . (S26)

Supplementary Note S5: Minimal cycle basis of reduced graph powers

Enumerating the β(G(k)) thermodynamic constraints of a receptor oligomer model is achieved by decomposing cycle space of
a reduced powerG(k) into the direct sum of two particularly simple subspaces. Following (56), we briefly describe this process.

(1) First, notice that if f is a fixed monomial in Mk−1(G), then x 7→ xf is an embedding G→G(k). Call the image of this
map Gf . Note that Gf is an induced subgraph of G(k) and is isomorphic to G.

(2) Next, we define a special type of cycle in a reduced power. Given distinct edges wx and yz ofG and any f ∈Mk−2(G),
there is a square in G(k) with vertices wyf,xyf,xzf,wzf . Let us call such a square a Cartesian square, and denote it as
(wx�yz)f . Note that a subgraph Gf of G(k) may have squares (4-cycles), but these are not Cartesian squares, because they
do not have the form specified above. In Fig. S3, Ha= a2 +ab+ac+ad⊂H(2) is not a Cartesian square, whereas the square
ab�bd= ab+ b2 + bd+ad is a Cartesian square.

(3) Define the square space S(G(k)) to be the subspace of C(G(k)) that is spanned by the Cartesian squares. Any pair of
distinct edges wx and yz of G corresponds to a Cartesian square (wx�yz)f , where f ∈Mk−2(G), so there are

(e
2
)(( v

k−2

))
such squares; however, this set of squares may not be independent. Prior work (56) gives a construction of a square basis, i.e.,
a maximum independent set B of Cartesian squares in S(G(k)) (see below).

(4) For fixed f ∈Mk−1(G), the cycle space of reduced kth power of G is the direct sum

C(G(k)) = C(Gf)
⊕

S(G(k)) . (S27)

Thus, a basis for C(G(k)) may be constructed from independent cycles in C(Gf) and S(G(k)), as follows. Take a cycle
basis C = {C1,C2, . . . ,Cβ(G)} for G, and let B be a square basis for S(G(k)). Fix a monomial f ∈ Mk−1(G) and put
Cf = {C1f,C2f, . . . ,Cβ(G)f}. Then Cf ∪B is a cycle basis for G(k). If C is a minimal cycle basis (MCB) for G, and G
has no triangles, then this basis is an MCB for G(k).

The square basis B may be constructed as follows. Put V (G) = {a1,a2, . . . ,av}. Let T be a rooted spanning tree of G with
root a1 with indexing that respects a breadth-first traversal. Any edge of T is thus uniquely determined by its endpoint aj that
is furthest from the root. For each 2≤ i≤ v, let ej be the edge of T that has endpoints ai and aj , with aj further from the root
than ai. Let Mk−2(a1,a2, . . .aj) denote the monic monomials of degree k−2 in indeterminates a1,a2, . . . ,aj , with 1≤ j ≤ v.
Define the following sets of Cartesian squares in G(k):

Υ = {(ei�ej)f | 2≤ i < j ≤ v,f ∈Mk−2(a1,a2, . . . ,aj)} , (S28)
Ω = {(a`am�ej)f | a`am ∈ E(G)−E(T ),2≤ j ≤ v,f ∈Mk−2(a1,a2, . . . ,aj)} . (S29)

The set B= Υ∪Ω is a basis for the square space S(G(k)). Note: in the above expressions, when j < v,Mk−2(a1,a2, . . . ,aj)⊂
Mk−2(a1,a2, . . . ,av), and the monomials f in Eqs. S28 and S29 do not involve the variables aj+1,aj+2, . . . ,av .

Supplementary Note S6: Identifying thermodynamic constraints

The minimal cycle basis construction for the reduced graph power G(k) presented above suggests a systematic method for enu-
merating β(G(k)) edges of a receptor oligomer state-transition graph that correspond to thermodynamic constraints (Eq. S26).
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The remaining |V (G(k))| edges will be a distinguished spanning tree of G(k), denoted by Θ(G(k)), to which we will assign
equilibrium parameters.

(1) Choose a rooted spanning tree of the monomer (T ⊂G) with indexing that respects a breadth-first traversal (as in point
(3) of the previous section). Because T has no cycles, β(T ) = 0 and C(T ) = ∅. Note that the edges of the spanning tree T
are directed reactants← products (arrow oriented as the reverse reaction). Let κei denote the equilibrium parameter associated
with edge ei ∈ E(T ).

(2) Construct the reduced graph power T (k), a reduced graph power with the same vertex set as G(k), namely,
Mk(a1,a2, . . . ,av). The edges of T (k) inherit direction from T , because edges of T (k) take the form eif where f ∈Mk−1.
Note that T (k) spansG(k), andE(T (k)) =E(G(k))−Ω with Ω as in Eq. S29. Thus, the cycle space of T (k) is its square space,
C(T (k)) = S(T (k)) in Eq. S27, and a basis for C(T (k)) may be constructed from the set Υ (Eq. S28) of independent cycles
in S(T (k)).

(3) The distinguished spanning tree Θ(G(k)) we seek has edges

E(Θ(G(k))) = E(T (k))−Ψ (S30)

where Ψ is a set of distinct edges, one from each square in Υ, as follows. Write ei = (a−i ,ai) where a−i is the predecessor of
ai in T (and similarly for ej). Each square (ei�ej)f ∈Υ is composed of the four edges (Eq. S28),

(ei�ej)f = (a−i �ej)f + (ai�ej)f + (ei�a−j )f + (ei�aj)f︸ ︷︷ ︸
exclude

,

where 2≤ i < j ≤ v and f ∈Mk−2(a1,a2, . . . ,aj). These edges are directed as ei and ej ,

a−i a
−
j f

a−i aj f

aia
−
j f

aiaj f

(a−i �ej)f (ai�ej)f

(ei�a−j )f

(ei�aj)f

We include in Φ—and, thus, exclude from Θ(G(k))—the edge (ei�aj)f , shown dashdotted above, that is the transition-context
pair with context aj that is last in dictionary order (a−j < aj and a−j < ai < aj). Thus, the set Ψ in Eq. S30 is

Ψ = {(ei�aj)f | 2≤ i < j ≤ v,f ∈Mk−2(a1,a2, . . . ,aj)} . (S31)

These edges are distinct, and |Ψ|= β(T (k)).
In this way—following steps (1)–(3) above—we construct Θ(T (k)), a subgraph of T (k) that is a distinguished spanning

tree of G(k). Two examples follow.

A. Ternary complex dimer. For H(2), shown in Fig. 5, k = 2 and Mk−2 = {1}. Eq. S28 and the rooted spanning tree T ⊂H
shown in Fig. 6 yields the following basis of the square space S(T (2)),

Υ(T (2)) = {ab�ac,ab�bd,ac�bd} .

The 12 edges of these 3 Cartesian squares are

ab�ac = a�ac + b�ac + ab�a + ab�c = (a2,ac) + (ab,bc) + (a2,ab) + (ac,bc)

ab�bd = a�bd + b�bd + ab�b + ab�d = (ab,ad) + (b2, bd) + (ab,b2) + (ad,bd)

ac�bd = a�bd + c�bd + ac�b + ac�d = (ab,ad) + (bc,cd) + (ab,bc) + (ad,cd) .

The boxed edges are Ψ = {(ac,bc),(ad,bd),(ad,cd)}, i.e., the edges of T (2) that are not included used in the spanning tree
Θ(T (2)). These excluded edges are shown dashdotted in Fig. 6. The spanning tree Θ(G(2)) has edges E(T (k))−Ψ (Eq. S30).

Fig. S4 provides insight into how the specification of allosteric parameters in the ternary complex homodimer depends
(superficially) on the chosen rooted tree T (G) that spans the monomer state-transition diagram G.
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Fig. S4. Specification of allosteric parameters in the ternary complex homodimer depends (superficially) on the chosen rooted tree T (G) that spans the monomer state-
transition diagramG. Comparing the paths bd→ bc→ ab and bd→ b2→ ab using the specification shown here and Fig. 6B reveals that κxηbx ·κcηbc = 2κdηbd · 1

2κbηbb.
Because κxκc = κdκb, we discover that ηbxηbc = ηbbηbd. This is true by definition, because ηbx = κb[d]/κb[c], ηbc = κb[c]/κb[a], ηbb = κb[b]/κb[a], ηbd = κb[d]/κb[b].
Another example: comparing the paths cd→ c2→ ac and cd→ ad→ ac reveals that ηcxηcc = ηbcηcd.

B. Ternary complex 4-mer. For H(4), shown in Fig. 5, the Betti number is 46. Fig. S5 shows the spanning tree T ⊂ H
and the reduced graph product T (4) ⊂ H(4), which spans H(4) and has Betti number β(T (4)) = e

((
4

4−1

))
−
((

4
4

))
+ 1 =

3 ·20−35 + 1 = 26. The basis Υ of the square space (and cycle space) of T (4) is the following set of Cartesian squares,

Υ = {(ab�ac)g | g ∈M2(a,b,c)}∪{(ab�bd)f,(ac�bd)f | f ∈M2(a,b,c,d)} ,

where M2(a,b,c) = {a2,ab,b2,ac,bc,c2} and M2(a,b,c,d) =M2(a,b,c)∪{ad,bd,cd,d2}. Using ab�c= (ac,bc), ab�d=
(ad,bd), and ac�d= (ad,cd), the 6 + 2 ·10 = 26 element set Ψ, shown dashdotted in Fig. S5, is

Ψ = {(acg,bcg) | g ∈M2(a,b,c)}∪{(adf,bdf),(adf,cdf) | f ∈M2(a,b,c,d)} .

The graph Θ(G(k)), the subgraph of T (k) that is the distinguished spanning tree of G(k), has edges E(T (k))−Ψ and is shown
solid in Fig. S5.

Supplementary Note S7: Counting allosteric parameters

The token method for enumerating each allosteric factor in a receptor oligomer model always yields the required
(( v
k

))
− 1

parameters. To see this, note that the number of n-way allosteric interactions involving the v− 1 = e− β(G) edges of the
spanning tree T ⊂G is

((
v−1
n

))
. When n= 1 this is

((
v−1

1

))
= v−1 (the number of free parameters in a monomer). When

state token 1 token 2 sum 1-way product 2-way

a2 0 0 0 0 0 -
ab 0 b b κb 0 -
b2 b b 2b κ2

b b2 ηbb
ac 0 b+ c b+ c κbκc 0 -
bc b b+ c 2b+ c κ2

bκc b2 +bc ηbbηbc
c2 b+ c b+ c 2b+ 2c κ2

bκ
2
c b2 + 2bc+ c2 ηbbη

2
bcηcc

ad 0 d d κd 0 -
bd b d b+d κbκd bd ηbd
cd b+ c d b+ c+d κbκcκd bd+ cd ηbdηcd
d2 d d 2d κ2

d d2 ηdd

Table S1. Worksheet for the token method for enumerating allosteric parameters in the case of the ternary complex dimer (compare Fig. 6B and Eq. 17).
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b

a c

d
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Fig. S5. Topology of a receptor oligomer composed of 4 identical ternary complex monomers (H, see Fig. 1) is given by the reduced power H(4) that contains(
e
2

)((
v
k−2

))
= 60 Cartesian squares, but many of these are not independent. The cycle space of H(4) has dimension 46. The graph T (4) is a subgraph of H(4)

involving all the edges of H(4) that are solid or dash-dotted (but not dotted). The solid arrows are Θ(G(k)), the subgraph of T (k) that is the distinguished spanning tree of
G(k).

these are supplemented with the 2-way through k-way interactions, the correct number of parameters is obtained,

v−1 +
k∑

n=2

((
v−1
n

))
=

k∑
n=1

((
v−1
n

))

=−1 +
k∑

n=0

((
v−1
n

))
=−1 +

k∑
n=0

(
v+n−2

n

)
=−1 +

(
v+k−1

k

)
=−1 +

((v
k

))
.

Supplementary Note S8: Cubical ternary complex dimer
For another example, consider the cubical ternary complex model (denoted J in Fig. 7). There are 12 reversible reactions, but
only 7 free equilibrium parameters, because β(G) = e−v+ 1 = 12−8 + 1 = 5. In (49), the 7 free parameters are specified as
3 equilibrium constants (KL, KG, and KA = [Ra]/[Ri]), plus 4 allosteric coupling parameters (α, β, γ, δ). Using a spanning
tree with Ri↔ a1 as root (Fig. 7, right), we find

π = [ 1 :KL :KG :KA :KL γKG :KLαKA :KGβKA :KL γKG δβαKA ]

where π = [π1 : π2 : · · · : π8] = [ [Ri] : [LRi] : · · · : [LRaG] ].
Fig. S6 shows the structure of cubical ternary complex homodimer, denoted by J(2), which has

(9
2
)

= 36 states, e
(8+2−2

1
)

=
12 ·8 = 192 edges (it is not a hypercube), and 192−36 + 1 = 157 thermodynamic constraints. There are 192−157 = 35 free
equilibrium parameters, and the spanning tree Θ(J(2)) has 35 edges (Fig. 8). The edges removed from T (J)(2) to create Θ are
ei�aj = (a−i aj ,aiaj) for 2≤ i < j ≤ v. These are e2�a3, . . . , e2�a8, e3�a4, . . . , e3�a8, e4�a5, . . . , e4�a8, e5�a6, . . . ,
e5�a8, e6�a7, e6�a8, e7�a8. Fig. 8 shows the edges that remain. Seven parameters are inherited from the spanning tree of
the monomer model (e2,e3, . . . ,e8 in Fig. 7). The remaining parameters are

((
7
2

))
= 28 2-way allosteric coupling parameters,

denoted ηeiej where 2≤ i≤ j ≤ v.
The occupation measure for each state can be found using the token method described in the main text. For example, the

term corresponding to a3a5 begins with 2π3π5. The token diagram is
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a1

a2

a7

a4

a6

a8

e2

e3

e4

e7

e6

e5

e8

Here h1 = e3 and h2 = e2 + e5 (the sum of the edge labels from the token to the root a1). The 2-way interactions
are enumerated by h1h2 = e3(e2 + e5) = e2e3 + e3e5, so the allosteric factor is ηe2e3ηe3e5 . Using h1 = h2 = e4 + e7,
h1h2 = e2

4 + 2e4e7 + e2
7, and

(2
2
)

the term for a2
7 is found to be π2

7ηe4e4η
2
e4e7ηe7e7 . Using a computer algebra system, it is

possible automate this procedure to quickly find every term in π = [ π2
1 : 2π1π2 : · · · : π2

7 ηe4e4η
2
e4e7ηe7e7 : · · · : π2π3 ηe2e3 : · · · :

π2
8 ηe2e2η

2
e2e5η

2
e2e8ηe5e5η

2
e5e8ηe8e8 ] where πi for the isolated monomer are given above.

Supplementary Note S9: Automated enumeration of allosteric parameters in receptor
oligomers
The enumeration of allosteric parameters in a receptor oligomer can be fully automated. An example Matlab script is provided,
along with results corresponding to the example oligomers discussed in the main text.

% user provides spanning tree T of G as apred
% G (not used) is monomer transition-state diagram
% apred is a row vector of predecessor vertices in T
% a1 is root, so apred(1)=0 and apred(2)=1

% uncomment apred for one of the following monomers
% ternary complex model (4-cycle)
% apred = [ 0 1 1 2 ];

% cubical ternary complex model
apred = [ 0 1 1 1 2 2 3 5 ];

% k is number of monomers in oligomer
k = 2;

% code is autonomous from here
% name vertices and edges of T
m = length(apred);
if m <= 7 % use first few letters of alphabet

syms b c d e f g
edges = [ 0 b c d e f g ];

else % use e_i
edges = sym(’e%d’, [1 m]); edges(1)=NaN;

end

v = length(apred); % number of vertices in T
T = sym(zeros(m)); % T becomes symbolic adjacency matrix of tree
for i = 2:v

estr{i-1} = [’e’ num2str(i) ];
T(i,apred(i))=edges(i); % T is lower triangular

end
T % show T
k % show k

% P(i) is the sum of edges from a_i to root; P(1)=0
P = sym(zeros(1,m));
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for i=2:m
Timo = T^(i-1); % paths of length i-1 from row to col
for j=1:m

if Timo(j,1)~=0 % AA(j,1) gives paths from aj to root a1
P(j) = sum(children(Timo(j,1))); % sum of edges from aj to root

end
end

end
P

% create matrix C where each row is state of homo-oligomer
CC = nchoosek(repmat(1:v,[1,k]),k);
C = [];
for i=1:size(CC,1)

if all(diff(CC(i,:))>=0)
C = [ C ; CC(i,:) ];

end
end
C = unique(C,’rows’); % done
V = size(C,1);

Q = sym(zeros(V,1));
for i = 1:V % each state of oligomer

for n=2:k % all the n-way interactions
% calculate all ways to choose n monomer states
% from the i-th oligomer configuration
ways = nchoosek(C(i,:),n);
for r=1:size(ways,1) % for each way

% calculate the product of paths
q = 1;
for s=1:n

q = q*P(ways(r,s));
end
Q(i) = Q(i)+q;

end
end

end

for i=1:V
disp([ sprintf(’%d’,C(i,:)) ’ : ’ sprintf(’%s’,expand(Q(i)))])

end

The ternary complex dimer.

T = [ 0, 0, 0, 0]
[ b, 0, 0, 0]
[ c, 0, 0, 0]
[ 0, d, 0, 0]

k = 2
P = [ 0, b, c, b + d]

11 : 0
12 : 0
13 : 0
14 : 0
22 : b^2
23 : b*c
24 : b*d + b^2
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33 : c^2
34 : b*c + c*d
44 : 2*b*d + b^2 + d^2

The translation of the script output to the notation used in the main text is straightforward. For example, state 23 means
a2a3 ∼ bc, state 44 means a2

4 ∼ d4), and so on. The allosteric factors for state 23 is ηbc and for state 44 it is η2
bdηbbηdd, which

is written in lexicographical order in the main text: ηbbη
2
bdηdd.

The ternary complex tetramer.

T = [ 0, 0, 0, 0]
[ b, 0, 0, 0]
[ c, 0, 0, 0]
[ 0, d, 0, 0]

k = 4
P = [ 0, b, c, b + d]

1111 : 0
1112 : 0
1113 : 0
1114 : 0
1122 : b^2
1123 : b*c
1124 : b*d + b^2
1133 : c^2
1134 : b*c + c*d
1144 : 2*b*d + b^2 + d^2
1222 : 3*b^2 + b^3
1223 : 2*b*c + b^2*c + b^2
1224 : 2*b*d + b^2*d + 3*b^2 + b^3
1233 : 2*b*c + b*c^2 + c^2
1234 : 2*b*c + b*d + c*d + b^2*c + b^2 + b*c*d
1244 : 4*b*d + b*d^2 + 2*b^2*d + 3*b^2 + b^3 + d^2
1333 : 3*c^2 + c^3
1334 : 2*b*c + 2*c*d + b*c^2 + c^2*d + c^2
1344 : 2*b*c + 2*b*d + 2*c*d + b^2*c + c*d^2 + b^2 + d^2 + 2*b*c*d
1444 : 6*b*d + 3*b*d^2 + 3*b^2*d + 3*b^2 + b^3 + 3*d^2 + d^3
2222 : 6*b^2 + 4*b^3 + b^4
2223 : 3*b*c + 3*b^2*c + b^3*c + 3*b^2 + b^3
2224 : 3*b*d + 3*b^2*d + b^3*d + 6*b^2 + 4*b^3 + b^4
2233 : 4*b*c + 2*b*c^2 + 2*b^2*c + b^2 + c^2 + b^2*c^2
2234 : 3*b*c + 2*b*d + c*d + 3*b^2*c + b^3*c + b^2*d + 3*b^2 + b^3 + 2*b*c*d + b^2*c*d
2244 : 6*b*d + 2*b*d^2 + 6*b^2*d + 2*b^3*d + 6*b^2 + 4*b^3 + b^4 + d^2 + b^2*d^2
2333 : 3*b*c + 3*b*c^2 + b*c^3 + 3*c^2 + c^3
2334 : 4*b*c + b*d + 2*c*d + 2*b*c^2 + 2*b^2*c + c^2*d + b^2 + c^2 + b^2*c^2 + 2*b*c*d

+ b*c^2*d
2344 : 3*b*c + 4*b*d + 2*c*d + 3*b^2*c + b^3*c + b*d^2 + 2*b^2*d + c*d^2 + 3*b^2 + b^3

+ d^2 + 4*b*c*d + b*c*d^2 + 2*b^2*c*d
2444 : 9*b*d + 6*b*d^2 + 9*b^2*d + b*d^3 + 3*b^3*d + 6*b^2 + 4*b^3 + b^4 + 3*d^2 + d^3

+ 3*b^2*d^2
3333 : 6*c^2 + 4*c^3 + c^4
3334 : 3*b*c + 3*c*d + 3*b*c^2 + b*c^3 + 3*c^2*d + c^3*d + 3*c^2 + c^3
3344 : 4*b*c + 2*b*d + 4*c*d + 2*b*c^2 + 2*b^2*c + 2*c*d^2 + 2*c^2*d + b^2 + c^2 + d^2

+ b^2*c^2 + c^2*d^2 + 4*b*c*d + 2*b*c^2*d
3444 : 3*b*c + 6*b*d + 3*c*d + 3*b^2*c + b^3*c + 3*b*d^2 + 3*b^2*d + 3*c*d^2 + c*d^3

+ 3*b^2 + b^3 + 3*d^2 + d^3 + 6*b*c*d + 3*b*c*d^2 + 3*b^2*c*d
4444 : 12*b*d + 12*b*d^2 + 12*b^2*d + 4*b*d^3 + 4*b^3*d + 6*b^2 + 4*b^3 + b^4 + 6*d^2
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+ 4*d^3 + d^4 + 6*b^2*d^2

The cubical ternary complex dimer.

T = [ 0, 0, 0, 0, 0, 0, 0, 0]
[ e2, 0, 0, 0, 0, 0, 0, 0]
[ e3, 0, 0, 0, 0, 0, 0, 0]
[ e4, 0, 0, 0, 0, 0, 0, 0]
[ 0, e5, 0, 0, 0, 0, 0, 0]
[ 0, e6, 0, 0, 0, 0, 0, 0]
[ 0, 0, e7, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, e8, 0, 0, 0]

k = 2
P = [ 0, e2, e3, e4, e2 + e5, e2 + e6, e3 + e7, e2 + e5 + e8]

11 : 0
12 : 0
13 : 0
14 : 0
15 : 0
16 : 0
17 : 0
18 : 0
22 : e2^2
23 : e2*e3
24 : e2*e4
25 : e2*e5 + e2^2
26 : e2*e6 + e2^2
27 : e2*e3 + e2*e7
28 : e2*e5 + e2*e8 + e2^2
33 : e3^2
34 : e3*e4
35 : e2*e3 + e3*e5
36 : e2*e3 + e3*e6
37 : e3*e7 + e3^2
38 : e2*e3 + e3*e5 + e3*e8
44 : e4^2
45 : e2*e4 + e4*e5
46 : e2*e4 + e4*e6
47 : e3*e4 + e4*e7
48 : e2*e4 + e4*e5 + e4*e8
55 : 2*e2*e5 + e2^2 + e5^2
56 : e2*e5 + e2*e6 + e5*e6 + e2^2
57 : e2*e3 + e3*e5 + e2*e7 + e5*e7
58 : 2*e2*e5 + e2*e8 + e5*e8 + e2^2 + e5^2
66 : 2*e2*e6 + e2^2 + e6^2
67 : e2*e3 + e2*e7 + e3*e6 + e6*e7
68 : e2*e5 + e2*e6 + e2*e8 + e5*e6 + e6*e8 + e2^2
77 : 2*e3*e7 + e3^2 + e7^2
78 : e2*e3 + e3*e5 + e2*e7 + e3*e8 + e5*e7 + e7*e8
88 : 2*e2*e5 + 2*e2*e8 + 2*e5*e8 + e2^2 + e5^2 + e8^2
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Fig. S6. The structure of the cubical ternary complex dimer J(2).
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