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Abstract: Canonical correlation analysis (CCA) is the default method for investigating the linear
dependence structure between two random vectors, but it might not detect nonlinear dependencies.
This paper models the nonlinear dependencies between two random vectors by the perturbed
independence distribution, a multivariate semiparametric model where CCA provides an insight
into their nonlinear dependence structure. The paper also investigates some of its probabilistic and
inferential properties, including marginal and conditional distributions, nonlinear transformations,
maximum likelihood estimation and independence testing. Perturbed independence distributions
are closely related to skew-symmetric ones.
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1. Introduction

Canonical correlation analysis is a multivariate statistical method purported to analyze
the correlation structure between two random vectors

x =

 X1
...
Xp

 and y =

 Y1
...
Yq

.

It obtains the linear transformations

z = Ax =

 Z1
...
Zp

 and w = By =

 W1
...

Wq

.

where the only nonnull correlations are those between components of z and w with the
same indices, that is (

Z1
W1

)
, . . . ,

(
Zr
Wr

)
with r = min(p, q).

The random vector (Z1, W1)
> is the first canonical pair and the correlation between

its components, that is, the first canonical correlation is the highest among all correlations
between a projection of x and a projection of y. Similarly, the random vector (Zi, Wi)

> is the
i-th canonical pair and the correlation between its components, that is, the i-th canonical
correlation is the highest among all correlations between a projection of x and a projection
of y, which are orthogonal to the previous canonical pairs, for i ∈ {2, . . . , r}.

Canonical correlation analysis is particularly appropriate when the joint distribution of
the vectors x and y is multivariate normal but it often performs poorly when the data are
nonnormal [1]. The problem has been addressed nonparametrically [2], semiparametrically [1]
and parametrically [3]. In this paper we introduce a semiparametric model to investigate the
nonlinear dependence structure by means of canonical correlations. Kernel canonical correla-
tion analysis (KCCA) and distance canonical correlation analysis (DCCA) play a prominent role
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among nonparametric generalizations of CCA aimed at addressing nonlinear dependencies
(see, e.g., [4,5]).

The main contributions of the paper are as follows. Firstly, it defines the perturbed
independence distribution as a statistical model for the joint distribution of two random
vectors. The proposed model is somewhat reminiscent of copula models, in that the param-
eters addressing the dependence structure between two random vectors do not appear in
the marginal distributions of the vectors themselves; however, the generating mechanism
of perturbed independence distributions is very different from those of ordinary copulas.

Secondly, the perturbed independence model allows for flexible and tractable model-
ing of the nonlinear dependence structure between two random vectors, since the condi-
tional distribution of a random vector with respect to the other is skew-symmetric. The
proposed model provides a parametric interpretation of KCCA and DCCA, which are
commonly regarded as nonparametric multivariate methods.

Thirdly, some appealing properties of canonical correlation analysis that hold true in
the normal case still hold true in the perturbed independence case. For example, the first
(second) component of a canonical pair is independent from the second (first) component
of any other canonical pair. Further, if the marginal distributions of the two given vectors
are normal, any canonical pair is independent of any other canonical pair.

Fourthly, the paper investigates the bivariate perturbed independence models within
the framework of positive and negative association. In particular, it shows that the canonical
pairs obtained from a perturbed independence distribution have the desirable properties of
being positive quadrant dependent, under mild assumptions on the perturbing function.

The rest of the paper is structured as follows. Section 2 defines perturbed independence
distributions and states some of their probabilistic and inferential properties. Section 3 connects
perturbed independence distributions, canonical correlation analysis, positive dependence
orderings and ordinal measures of association. Section 4 uses both theoretical and empirical
results to find nonlinear transformations that increase correlations. Appendix A contains
all proofs.

2. Model

This section defines the perturbed independence model, states its invariance prop-
erties and the independence properties of its canonical pairs. The theoretical results are
illustrated with the bivariate distribution 2φ(x)φ(y)Φ(λxy) introduced by [6,7], where φ(·)
and Φ(·) denote the probability and the cumulative density functions of a standard normal
distribution, while λ is a real value. Ref. [8] thoroughly investigated its properties and
proposed some generalizations.

A p-dimensional random vector x is centrally symmetric (simply symmetric, hence-
forth) if there is a p-dimensional real vector ξ such that x− ξ and ξ − x are identically
distributed ([9]). A real-valued function π(·) is a skewing function (also known as perturb-
ing function) if it satisfies the equality π(−a) = 1− π(a) and the inequalities 0 ≤ π(a) ≤ 1
for any real vector a [10]. The probability density function of a perturbed independence
model is twice the product of two symmetric probability density functions and a skewing
function evaluated at a bilinear function of the outcomes. A more formal definition follows.

Definition 1. Let the joint distribution of the random vectors x and y be

f (x, y) = 2h(x− µ)k(y− ν)π
{
(y− ν)>Ψ(x− µ)

}
,

where h(·) is the pdf of a p-dimensional, centrally symmetric distribution, k(·) is the pdf of a q-
dimensional, centrally symmetric distribution, Ψ is a q× p matrix and π(·) is a function satisfying
0 ≤ π(−a) = 1− π(a) ≤ 1 for any real value a. We refer to this distribution as to a perturbed
independence model, with components h(·) and k(·), location vectors µ and ν, perturbing function
π(·) and association matrix Ψ.
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In the bivariate distribution 2φ(x)φ(y)Φ(λxy), both components coincide with the
normal pdf, both location vectors coincide with the origin, the perturbing function is the
standard normal cdf and the association matrix is the scalar parameter λ.

Random numbers having a perturbed independence distribution can be generated in
a very simple way. For the sake of simplicity, we illustrate it in the simplified case where
µ and ν are null vectors and π(·) is a cumulative distribution function of a distribution
symmetric at the origin. First, generate the vectors u and v from the densities h(·) and
k(·). Second, generate the scalar r from the distribution whose cumulative density function

is π(·). Third, let the vector w be
(
u>, v>

)>
if the bilinear form u>Ψv is greater than r

and either
(
−u>, v>

)>
or
(
u>,−v>

)>
in the opposite case. Then, the distribution of w is

perturbed independence with components h(·) and k(·), null location vectors, perturbing
function π(·) and association matrix Ψ.

The bivariate distribution 2φ(x)φ(y)Φ(λxy) might be generated as follows. First, gen-
erate three mutually independent, standard normal random numbers U, W and Z. Second,
set X equal to U and Y equal to W if the product λUW is greater than Z. Otherwise, set X
equal to −U and Y equal to W. Then the joint distribution of X and Y is 2φ(x)φ(y)Φ(λxy).

A p-dimensional probability density function 2g(a− ξ)π(a− ξ) is skew-symmetric
with kernel g(·) (i.e., a probability density function symmetric at the origin), location vector
ξ and skewing function function π(·). The function g(·) would be more precisely denoted
by gp(·), since it depends on the dimension of the corresponding random vector. However,
we use g(·) instead of gp(·) to relieve the notational burden. Ref. [11] discuss hypothesis
testing on g(·) for any choice of function π(·). The most widely studied skew-symmetric
distributions are the linearly skewed distributions, where the skewing function depends
on a− ξ only through its linear function α>(a− ξ), as it happens for the multivariate
skew-normal case. [12], as well as [13], investigated their inferential properties. Ref. [14]
used them to motivate kurtosis-based projection pursuit.

In the notation of the above definition, the first part of the following theorem states
that the marginal distributions of x and y are h(x− µ) and k(y− ν). Thus, perturbed
independent distributions separately model the marginal distributions and the association
between two random vectors, and constitute an alternative to copulas. The second part of
the following theorem states that the conditional distribution of a component with respect
to the other is linearly skewed. Hence, the association between the two components has an
analytical form, which has been thoroughly investigated.

Theorem 1. Let the random vectors x and y have a perturbed independence distribution with
components h(·), k(·) and location vectors µ, ν. Then the following statements hold true.

• The marginal probability density functions of x and y are h(x− µ) and k(y− ν).
• The conditional probability density functions of x given y and y given x are skew-symmetric

with kernels h(·) and k(·), while the associated location vectors are µ and ν.

The marginal distributions of 2φ(x)φ(y)Φ(λxy) are standard normal: X ∼ N(0, 1)
and Y ∼ N(0, 1). The conditional distributions are skew-normal: the probability density
functions of X|Y = y ∼ SN (λy) and of Y|X = x ∼ SN (λx) are 2φ(x)Φ(λxy) and
2φ(y)Φ(λxy). The sign of the correlation between X and Y is the same as the sign of λ but
the two random variables are nonlinearly dependent [7]:

E(X|Y = y) =

√
2
π

λy√
1 + λ2y2

, E(Y|X = x) =

√
2
π

λx√
1 + λ2x2

.

There is a close connection between order statistics and either skew-normal distributions
or their generalizations. For example, any linear combination of the minimum and the
maximum of a bivariate, exchangeable and elliptical random vector is skew-elliptical [15].
In particular, any skew-normal distribution might be represented as the maximum or the
minimum of a bivariate, normal and exchangeable random vector. At present, it is not
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clear whether there exists a meaningful connection between order statistics and perturbed
independence distributions, which would ease both the interpretation and the application of
these distributions.

The mean vector m and the covariance matrix S of the n × d data matrix X are
statistically independent, if the rows of X are a random sample from a multivariate normal
distribution. As a direct consequence, the components of the pairs (m1, S2) and (m2, S1)
are statistically independent, too, where m1 and S1 (m2 and S2) are the mean vector and
the covariance matrix of X1 (X2), that is the data matrix whose columns coincide with the
first 0 < p < d (the last d− p) columns of X. The same property holds true for perturbed
independence models, as a corollary of the following theorem.

Theorem 2. Let the random vectors x and y have the perturbed independence distribution with
location vectors µ and ν. Then any even function of x− µ is independent of y. Similarly, any even
function of y− ν is independent of x.

Let the joint distribution of the random variables X and Y be 2φ(x)φ(y)Φ(λxy). Then
Y and X2 are mutually independent. Similarly, X and Y2 are mutually independent.

The components of the canonical covariates z =
(
Z1, . . . , Zp

)> and w =
(
W1, . . . , Wq

)>
are uncorrelated when their indices differ:

ρ
(
Zi, Zj

)
= ρ

(
Wi, Wj

)
= ρ

(
Zi, Wj

)
= 0 when i 6= j.

A p-dimensional random vector v is said to be sign-symmetric if there is a p-dimensional
real vector u such that v− u and U(v− u) are identically distributed, where U is any
p × p diagonal matrix whose diagonal elements are either 1 or −1 [9]. For example,
spherical random vectors are sign-symmetric. The following theorem shows that the
canonical covariates belonging to different canonical vectors and with different indices are
independent, if the joint distribution of the original variables is perturbed independence
with sign-symmetric components.

Theorem 3. Let the random vectors x ∈ Rp and y ∈ Rq have a perturbed independence distribu-
tion with sign-symmetric components. Further, let z =

(
Z1, . . . , Zp

)> and w =
(
W1, . . . , Wq

)>
be the canonical covariates of x and y. Then Zi and Wj are independent when i 6= j.

Under normal sampling, the components of different canonical pairs are statistically
independent. The following corollary of the above theorem shows that the same property
still holds true when the original variables have a perturbed independence distribution
with normal components.

Corollary 1. Let the random vectors x ∈ Rp and y ∈ Rq have a perturbed independence distri-
bution with normal components. Further, let z =

(
Z1, . . . , Zp

)> and w =
(
W1, . . . , Wq

)> the
canonical covariates of x and y. Then the variables Zi, Zj, Wi and Wj are pairwise independent
when i 6= j.

As remarked by [16], the default measures of multivariate skewness and kurtosis
are those introduced by [17]. Mardia’s skewness is the sum of all squared, third-order,
standardized moments, while Mardia’s kurtosis is the fourth moment of the Mahalanobis
distance of the random vector from its mean.
Mardia’s kurtosis of 2φ(x1)φ(x2)Φ(λx1x2) is

8 + 4E2(XY)

{1− E2(XY)}2 ,

so that it increases with the squared correlation between X and Y ([18]).
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It is tempting to generalize 2φ(x)φ(y)Φ(λxy) by letting

2Φ

(
λ

p

∏
i=1

xi

)
p

∏
i=1

φ(xi),

as performed in [6,7]. Unfortunately, this model does not preserve the nonlinear asso-
ciations between pairs of its components. For example, the joint bivariate marginals of
the trivariate distribution 2φ(x)φ(y)φ(z)Φ(λxyz) are bivariate, standard normal random
vectors [19]. Other generalizations of 2φ(x)φ(y)Φ(λxy) have been proposed by [8].

Let fxy be the joint probability density function of the p-dimensional random vector x
and of the q-dimensional random vector y. Further, let fx and fy be the marginal probability
density functions of x and y. The distance covariance between x and y with respect to the
weight function w is

V2(x, y, w) =
∫
Rp+q

∣∣ fxy(t, s)− fx(t) fy(s)
∣∣2w(t, s)dtds,

where t ∈ Rp, s ∈ Rq and w(t, s) ≥ 0 [20]. If the joint distribution of x and y is a perturbed
independence model with components h(·) and k(·), location vectors µ and ν, perturbing
function π(·) and association matrix Ψ we have

fxy(t, s; µ, ν,Ψ) = 2h(t− µ)k(s− ν)π
{
(s− ν)>Ψ(t− µ)

}
,

fx(t;µ) = h(t− µ), fy(s;ν) = k(s− ν), π(−a) = 1− π(a).

A little algebra leads to the identities

fxy(t, s)− fx(t) fy(s) = 2h(t− µ)k(s− ν)π
{
(s− ν)>Ψ(t− µ)

}
− h(t− µ)k(s− ν) =

h(t− µ)k(s− ν)
[
2π
{
(s− ν)>Ψ(t− µ)

}
− 1
]
=

fxy(t, s; µ, ν,Ψ)− fxy(t, s; µ, ν,−Ψ)

2
.

Hence, for perturbed independence models, the distance covariance is just half the
difference between fxy(t, s; µ, ν,Ψ) and fxy(t, s; µ, ν,−Ψ), which is the probability density
functions of (

x
y

)
and

(
x
−y

)
.

In particular, if the joint distribution of the random variables X and Y is 2φ(x)φ(y)Φ(λxy)
we have

fXY(t, s)− fX(t) fY(s) = φ(x)φ(y){Φ(λxy)−Φ(−λxy)}.

3. Concordance

This section investigates the bivariate perturbed independence models within the
framework of positive and negative association. In particular, it shows that the canonical
pairs obtained from a perturbed independence distribution have the desirable properties
of being positive quadrant dependent, under mild assumptions on the perturbing function.
The seminal paper by [21] started a vast literature on dependence orderings and their
connections with ordinal measures of association. For the sake of brevity, here we mention
only some thorough reviews of the concepts in this section: [22–27].

Two random variables are said to be either concordant, positively associated or pos-
itively dependent if larger (smaller) outcomes of one of them often occur together with
larger (smaller) outcomes of the other random variable. Conversely, two random variables
are said to be either discordant, negatively associated or negatively dependent if larger
(smaller) outcomes of one of them often occur together with smaller (larger) outcomes of
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the other random variable. For example, financial returns from different markets are known
to be positively dependent (see, e.g., [28–30]). The degree of concordance or discordance
is assessed with ordinal measures of association, of which the most commonly used are
Pearson’s correlation (simply correlation, for short), Spearman’s rho and Kendall’s tau.

The correlation is the best known measure of ordinal association. The correlation
between two random variables X and Y is

ρ(X, Y) =
E{(X− µX)(Y− µY)}√

E
{
(X− µX)

2
}
· E
{
(Y− µY)

2
} ,

where µX and µY are the expectations of X and Y. The ordinal association between two
random variables might be decomposed into a linear component and a nonlinear compo-
nent. The liner component refers to the tendency of the random variables to deviate from
their means in a proportional way. The correlation only detects and measures the linear
component of the ordinal association. When the nonlinear component is not negligible,
the information conveyed by the correlation needs to be integrated with information from
other measures of ordinal association.

Spearman’s rho, also known as Spearman’s correlation, between the random variables
X and Y is the correlation between the two variables after being transformed according to
their marginal cumulative distribution functions:

ρS(X, Y) = ρ{FX(X), FY(Y)},

where FX(·) and FY(·) are the marginal cumulative distribution functions of X and Y. Its
sample counterpart is the correlation between the observed ranks. Spearman’s rho is a
measure of ordinal association detecting both linear and nonlinear dependence. It is also
more robust to ouliers than the Pearson’s correlation.

Kendall’s tau, also known as Kendall’s correlation, between two random variables is
the difference between their probability of concordance and their probability of discordance.
The former (latter) is the probability that the difference between the first components of
two independent outcomes from a bivariate distribution have the same sign of (a different
sign than) the difference between the second components of the same pairs. More formally,
Kendall’s tau between the random variables X and Y is

τ(X, Y) = Pr{(X1 − X2)(Y1 −Y2) > 0} − Pr{(X1 − X2)(Y1 −Y2) < 0},

where (X1, Y1)
> and (X2, Y2)

> are two independent outcomes from the bivariate random
vector (X, Y)>. Just like Spearman’s rho, Kendall’s tau is an ordinal measure of association
detecting linear as well as nonlinear dependence and is more robust to outliers than
Pearson’s correlation.

Unfortunately, Pearson’s correlation, Spearman’s rho and Kendall’s tau might take dif-
ferent signs, thus making it difficult to measure ordinal association. In order to prevent this
from happening, it is convenient to impose some constraints on the bivariate distribution.
The distribution of a bivariate random vector (X, Y)> is said to be positively quadrant
dependent (PQD) if its joint cdf is greater or equal than the product of the marginal cdf:

FX,Y(x, y) ≥ FX(x) · FY(y)

for any two real values x and y. Similarly, the distribution of a bivariate random vector
(X, Y)> is said to be negatively quadrant dependent (PQD) if its joint cdf is either smaller
or equal than the product of the marginal cdf:

FX,Y(x, y) ≤ FX(x) · FY(y)
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for any two real values x and y. Pearson’s correlation, Spearman’s rho and Kendall’s tau of
PQD (NQD) distributions are either null or have positive (negative) signs.

Independent random variables are special cases of PQD and NQD random variables.
In order to rule this case out, the PQD and NQD condition can be made more restrictive that
the above inequalities needs to be strict for measurable sets of x and y values. For example,
a strictly positive quadrant dependent pair of random variables satisfies the inequality

FX,Y(x, y) > FX(x) · FY(y)

for any two real values x and y belonging to given interval of positive length. Pearson’s
correlation, Spearman’s rho and Kendall’s tau of strictly positive (negative) quadrant de-
pendent distributions have positive (negative) signs. As shown in the following theorem, a
bivariate perturbed independence model is strictly positive (negative) quadrant dependent
if the perturbing function is a cumulative density function and the association parameter is
a positive (negative) scalar.

Theorem 4. Let the joint distribution of the random variables X and Y be perturbed independent
with components h(·) and k(·), perturbing function π(·) and association parameter λ: f (x, y) =
2h(x)k(y)π(λxy). Further, let π(·) be the cumulative density function of a symmetric distribution.
Then the random variables X and Y are strictly positive (negative) quadrant dependent when λ is
positive (negative).

The joint distribution 2φ(x)φ(y)Φ(λxy) of the bivariate random vector (X, Y)> in-
troduced in the previous section fulfills the assumptions in Theorem 5. In particular, if
the association parameter λ is positive, the random variables X and Y are strictly positive
quadrant dependent:

FX,Y(a, b) =
∫ b

−∞

∫ a

−∞
2φ(x)φ(y)Φ(λxy)dxdy > Φ(a)Φ(b) = FX(a)FY(b),

for any two real values a and b. As a direct consequence, their Pearson’s correlation
ρ(X, Y), their Spearman’s rho ρS(X, Y) and their Kendall’s tau τ(X, Y) are positive.

Pearson’s correlation between the components of a canonical pair is nonnegative.
However, within a nonparametric framework, their Spearman’s rho and their Kendall’s
tau can take any sign. When Pearson’s correlation between the components of a canonical
pair is positive but their Spearman’s rho and their Kendall’s tau are negative, the former
ordinal association measure becomes quite unreliable and canonical correlation analysis
provides little insight into the dependence structure. This problem does not occur under a
perturbed independence model satisfying the assumptions stated in the following theorem.

Theorem 5. Let (Z1, W1)
>, ..., (Zr, Wr)

>, with r = min(p, q) the canonical pairs obtained from
a perturbed independence distribution, and let their density be

2π

(
r

∑
i=1

λiziwi

){
r

∏
i=1

hi(zi)

}{
r

∏
i=1

ki(wi)

}
,

where π(·) is a strictly increasing perturbing function. Then the joint distribution of the i-th
canonical pair is a bivariate perturbed independence model:

2hi(zi)ki(wi)G(λiziwi),

where G(·) is a strictly increasing perturbing function.
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We illustrate the above theorem with the perturbed independence distribution

2φp(x; Σx)φp
(
y; Σy

)
F
(

y>Ψx
)

,

where φq(·; Ω) is the q-dimensional normal density with null mean vector and covariance
matrix Σ, F(·) is the cdf of a continuous distribution symmetric at the origin and Ψ is a
symmetric p× p matrix. The distribution of the canonical variates z = Ax =

(
Z1, ..., Zp

)>
and w = By =

(
W1, ..., Wq

)> is

2φ2p
(
z, w; I2p

)
F

(
p

∑
i=1

λiziwi

)
,

which fulfills the assumptions in Theorem 6. Then the joint distribution of the i-th canonical
pair (Zi, Wi)

> is
2φ(zi)φ(wi)Gi(λiziwi),

where φ(·) is the pdf of a univariate, standard normal distribution and Gi(·) is the cdf of a
continuous distribution symmetric at the origin. By Theorem 5 and since the i-th canonical
correlation ρ(Zi, Wi) is nonnegative, the association parameter λi, Kendall’s tau τ(Zi, Wi)
and Spearman’s rho ρS(Zi, Wi) are nonnegative, too. Moreover, if ρ(Zi, Wi) is positive,
the association parameter λi, Kendall’s tau τ(Zi, Wi) and Spearman’s rho ρS(Zi, Wi) are
positive, too.

4. Nonlinearity

As a desirable property, CCA decomposes the covariance matrix between the p-
dimensional random vector x and the q-dimensional random vector y into linear combi-
nations of the covariances between uncorrelated linear functions of x and y. Ref. [31]
thoroughly investigate the interpretation of CCA within the framework of linear de-
pendence. The first output of CCA are the linear combinations of x and y, which are
maximally correlated:

max
a∈Rp

0 , b∈Rq
0

corr
(

a>x, b>y
)

,

where Rp
0 and Rq

0 are the sets of p-dimensional and q-dimensional nonnull, real vectors.
As mentioned in the Introduction and in the previous section, both the interpretability

and the usefulness of CCA are severely diminished by nonlinear dependencies between x
and y. A solution would be looking for the linear and nonlinear transformations of x and y,
which are maximally correlated:

max
g1, g2∈G

max
a∈Rp

0 , b∈Rq
0

corr
{

g1

(
a>x

)
, g2

(
b>y

)}
,

where G is the set of all real valued monotonic functions. In the general case, the maxi-
mization needs to be performed simultaneously with respect to the nonlinear functions
g1(·), g2(·) and the real vectors a, b, thus being difficult to compute and difficult to inter-
pret. Ref. [1] addressed the problem by proposing the Gaussian copula model, where the
components of x and y have a joint distribution that is multivariate normal, after being
transformed according to monotonic and nonlinear functions. However, these monotonic
transformations do not have a clear interpretation and they are not guaranteed to increase
the correlations.

Perturbed independence models do not suffer from these limitations. Firstly, the
monotonic transformations have a simple interpretation, being the expectations of one
variable conditioned with respect to the other. Secondly, the same transformations are
guaranteed to increase the correlations, under mild assumptions. These statements are
made more precise in the following theorem.
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Theorem 6. Let the joint distribution of the random variables X and Y be perturbed independent
with null location parameters, nonnull association parameter and increasing perturbing function.
Finally, let X and Y have finite second moments. Then the conditional expectation g(X) = E(Y|X)
is a monotone, odd and nonlinear function, while the correlation between Y and X is smaller than
the correlation between Y and g(X).

We illustrate the above theorem with the distribution 2φ(x)φ(y)Φ(λxy) of the bivari-
ate random vector (X, Y)> introduced in Section 1. The conditional expectations of Y and
X with respect to the outcomes x of X and y of Y are

E(Y|X = x) =
λx
√

2/π√
1 + λ2x2

and E(X|Y = y) =
λy
√

2/π√
1 + λ2y2

,

so that the nonlinear function of X and Y maximally correlated with Y and X are

g1(X) = E(Y|X) =
λX
√

2/π√
1 + λ2X2

and g2(Y) = E(X|Y) = λY
√

2/π√
1 + λ2Y2

.

The above theorem does not guarantee that E(Y|X) is the nonlinear transformation of
one component that is maximally correlated with Y, nor that such correlation is smaller
than the correlation between E(X|Y) and E(Y|X). We empirically address this point by
simulating n = 10,000 bivariate data from 2φ(x)φ(y)Φ(λxy), where λ ∈ {1, 2, 3, 4, 5, 6}. The
left-hand scatterplots in Figure 1 clearly hint at positive dependence: more points lie in the
first and in the third quadrants as the association parameter increases, despite the absence
of the ellipsoidal shapes associated with bivariate normality. For each simulated sample,
we computed Kendall’s tau, Spearman’s rho and Pearson’s correlation and report their
values in Table 1. The three measures of ordinal association are positive and they increase
with the association parameter, consistently with the theoretical results in Section 2. More
surprisingly, Spearman’s rho is always greater than Kendall’s tau and Pearson’s correlation,
unlike the bivariate normal distribution, where Pearson’s correlation is always greater than
Kendall’s tau and Spearman’s rho.

Table 1. Mean values of Pearson’s correlation, Kendall’s tau and Spearman’s rho for 100, 00 outcomes
from 2φ(x)φ(y)Φ(λxy), where λ ∈ {1, 2, 3, 4, 5, 6}. The column “Transformed” contains Pearson’s
correlations between the transformed components.

Lambda Kendall Pearson Spearman Transformed

1 0.311 0.439 0.468 0.469
2 0.412 0.552 0.619 0.642
3 0.444 0.587 0.667 0.713
4 0.458 0.598 0.689 0.752
5 0.471 0.612 0.709 0.791
6 0.480 0.618 0.720 0.810

Finally, for each simulated sample (X1, Y1), ..., (Xn, Yn), we computed Pearson’s
correlation between Z1, . . ., Zn and W1, . . ., Wn, where

Zi =
Xi√

1 + λ2X2
i

and Wi =
Yi√

1 + λ2Y2
i

are proportional to the sample counterpart of the expectation of Y given X = x and
X given Y = y under the model 2φ(x)φ(y)Φ(λxy). For each simulated sample, these
correlations are always greater than the correlations between the original data, consistently
with Theorem 7. Moreover, Pearson’s correlations between W1, . . ., Wn and Z1, . . ., Zn
are always greater their Spearman’s correlations. As shown in the right-hand scatterplots
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of Figures 1 and 2, the transformed data lie at the lower left corner and at the upper
right corner of a square. This pattern becomes more evident as the association parameter
increases. The histograms of Z1, . . ., Zn in Figure 2 are symmetric and bimodal, with
both modes at the ends of the observed range. Bimodality becomes more evident as the
association parameter increases. The behavior of the transformed data W1, . . ., Wn is
virtually identical and therefore is not reported.
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Figure 1. The upper, medium and lower right-hand (left-hand) panels contain the scatterplots of
10,000 (transformed) data from 2φ(x)φ(y)Φ(λxy), where λ ∈ {1, 3, 5}.

We conclude that perturbed independence distributions, by modeling the nonlinear
association between random variables, might help in finding the nonlinear transformations
that are maximally correlated to each other. A positive Pearson’s correlation much lower
than Spearman’s rho and Kendall’s tau hints for the presence of nonlinear association,
whose analytical form might be estimated by looking for the maximally correlated nonlinear
transformations of the random variables. This approach is particularly appropriate for the
single index regression model Y = g(X) + ε, where the response variable Y is the sum of
a smooth function g(·) of the predictor X and the error term ε. When g(·) is monotone,
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its analytical form might be estimated by looking for the transformation g(X) that is
maximally correlated with Y.
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Figure 2. Histograms of the first transformed components of 10,000 data from 2φ(x)φ(y)Φ(λxy),
where λ ∈ {1, 2, 3, 4, 5, 6}.

As remarked in the Introduction, kernel canonical correlation analysis (KCCA) and
distance canonical correlation analysis (DCCA) are the two most popular generalizations of
CCA aimed at dealing with nonlinear dependencies. A formal description of KCCA, based
on Hilbert spaces and their inner products, might be found in the seminal papers by [32,33].
For most practical purposes, KCCA might be defined as the statistical method searching for
linear projections of nonlinear functions of a random vector that are maximally correlated
with linear projections of nonlinear functions of another random vector. Let F be a class
of p-dimensional random vectors whose i-th components are nonlinear fuctions of the
p-dimensional random vector x. Similarly, let G be a class of q-dimensional random vectors
whose i-th components are nonlinear fuctions of the q-dimensional random vector y. Then
KCCA looks for the random vectors f ∈ F, g ∈ G and for the real vectors a ∈ Rp, b ∈ Rq

such that a>f and b>g are maximally correlated with each other.
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In a nonparametric framework, the choice of the nonlinear functions may not be
straightforward. On the other hand, in the perturbed independence framework, the theo-
retical and empirical results in this section suggest to set them equal to the conditional expec-
tations: f = E(x|y) and g = E(y|x). In particular, for the perturbed independence model

2φp(x; µ,Ω)φq(y; ν,Γ)Φ
{
(y− ν)>Ψ(x− µ)

}
the suggested nonlinear functions of x and y are

f = µ+

√
2
π

ΩΨ>(y− ν)√
1 + (y− ν)>ΨΩΨ>(y− ν)

and g = ν+

√
2
π

ΓΨ(x− µ)√
1 + (x− µ)>Ψ>ΓΨ(x− µ)

.

DCCA looks for two projections whose joint distribution differs the most from the
product of their marginal distributions, where difference is measured by distance correla-
tion. The distance correlation between the random variables X and Y with respect to the
weight function w is

R(X, Y, w) =
V(X, Y, w)√

V(X, X, w)V(Y, Y, w)
,

where V2(X, Y, w) is the distance covariance between X and Y with respect to w, as defined
in the previous section. Hence the first canonical correlation between the p-dimensional
random vector x and the q-dimensional random vector y is

max
a∈Rp

max
b∈Rq

R
(

a>x, b>y, w
)

.

For other distance canonical correlations, the distance canonical pairs and the distance
canonical transformations are defined similarly to their CCA analogues.

A natural question to ask is whether CCA and DCCA lead to identical projections,
under the assumption of perturbed independence. At present, we are unable to either
prove or disprove this statement, which we conjecture to be true, under the assumptions of
Theorem 6: increasing perturbing functions that increase more steeply are more likely to
imply both higher Pearson and distance correlations. We plan to investigate this conjecture
by means of both theoretical arguments and simulation studies.
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Appendix A

Proof of Theorem 1. Let the p-dimensional random vector x and the q-dimensional ran-
dom vector y have a perturbed independence distribution with components h(·) and k(·),
location vectors µ and ν, perturbing function π(·) and association matrix Ψ. For the sake
of simplicity and without loss of generality we assume that the location vectors are null
vectors and that the joint probability density function of x and y is absolutely continuous.
The marginal probabilty density function of x is

f (x) =
∫
Rq

2h(x)k(y)π
(

y>Ψx
)

dy.
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Let A+ and A− be the sets of q-dimensional real vectors whose first nonnull component
are nonnegative and negative, so that A+ ∪A− = Rq, A+ ∩A− = ∅ and

f (x) =
∫
A+

2h(x)k(y)π
(

y>Ψx
)

dy +
∫
A−

2h(x)k(y)π
(

y>Ψx
)

dy.

If a nonnull q-dimensional real vector y belongs to A+ then −y belongs to A−. By
making the change of variable u = −y in the second integral we have∫

A−
2h(x)k(y)π

(
y>Ψx

)
dy =

∫
A+

2h(x)k(−u)π
(
−u>Ψx

)
du.

By assumption, the functions k(·) and π(·) satisfy the identities k(v) = k(−v) and
π(a) = 1− π(−a):∫

A−
2h(x)k(y)π

(
y>Ψx

)
dy =

∫
A+

2h(x)k(u)
{

1− π
(

u>Ψx
)}

du.

The marginal density of x is then

f (x) =
∫
A+

2h(x)k(y)π
(

y>Ψx
)

dy +
∫
A+

2h(x)k(u)
{

1− π
(

u>Ψx
)}

du = h(x).

The last identity follows from k(·) being a symmetric probability density function. In
a similar way it can be proved that the marginal probability density function of y is k(·).
The conditional probability density function of x given y is

f (x|y) = f (x, y)
f (y)

=
2h(x)k(y)π

(
y>Ψx

)
k(y)

= 2h(x)π
(

y>Ψx
)

,

that is skew-symmetric with symmetric kernel h(·), null location vector, skewing function
π(·) and shape parameter Ψ>y. In a similar way it is possible to prove that the conditional
probability density function of y given x is skew-symmetric with symmetric kernel k(·),
null location vector, skewing function π(·) and shape parameter x>Ψ>.

Proof of Theorem 2. Let the joint distribution of the p-dimensional random vector x and
the q-dimensional random vector y be

f (x, y) = 2h(x− µ)k(y− υ)π
{
(y− ν)>Ψ(x− µ)

}
.

Further, let w(u) = w(−u) be an even function of the p-dimensional real vector u. We
prove the theorem for an even function of x− µ only, the proof for an even function of y− ν
being very similar. Without loss of generality we assume that µ and ν are null real vectors,
that f (x, y) is an absolutely continuous probability density fuction and that w = w(x) is a
k-dimensional random vector. The characteristic function of w in the k-dimensional real
vector t is

ϕw(t) = E
{

exp
(

w>t
)}

=
∫
Rp

∫
Rq

exp
{

w>(x)t
}

2h(x)k(y)π
(

y>Ψx
)

dxdy.

Let S+ and S− be the sets of p-dimensional real vectors whose first nonnull component
are nonnegative and negative, so that S+ ∪ S− = Rp, S+ ∩ S− = ∅ and

ϕw(t) =
∫
S+

∫
Rq

exp
{

w>(x)t
}

2h(x)k(y)π
(

y>Ψx
)

dxdy

+
∫
S−

∫
Rq

exp
{

w>(x)t
}

2h(x)k(y)π
(

y>Ψx
)

dxdy.
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If a nonnull vector x belongs to S+ then −x belongs to S−. By making the change of
variable u = −x in the second integral we have∫

S−

∫
Rq

exp
{

w>(x)t
}

2h(x)k(y)π
(

y>Ψx
)

dxdy =

∫
S+

∫
Rq

exp
{

w>(−x)t
}

2h(−u)k(y)π
(
−y>Ψu

)
dudy.

By assumption, the functions h(·), π(·) and w(·) satisfy the identities h(v) = h(−v),
π(a) = 1− π(−a) and w(u) = w(−u), so that∫

S−

∫
Rq

exp
{

w>(x)t
}

2h(x)k(y)π
(

y>Ψx
)

dxdy =

∫
S+

∫
Rq

exp
{

w>(u)t
}

2h(u)k(y)
{

1− π
(

y>Ψu
)}

dudy.

The characteristic function of w is then

ϕw(t) =
∫
S+

∫
Rq

exp
{

w>(x)t
}

2h(x)k(y)π
(

y>Ψx
)

dxdy

+
∫
S+

∫
Rq

exp
{

w>(x)t
}

2h(u)k(y)
{

1− π
(

y>Ψu
)}

dudy =

2
∫
S+

exp
{

w>(x)t
}

h(x)k(y)dxdy = 2
∫
S+

exp
{

w>(x)t
}

h(x)dx.

The definitions of S+ and S−, together with the identity h(v) = h(−v) yield∫
S+

exp
{

w>(x)t
}

h(x)dx =
∫
S−

exp
{

w>(x)t
}

h(x)dx.

The characteristic function of w is then

ϕw(t) =
∫
Rp

exp
{

w>(x)t
}

h(x)dx.

which does not depend neither on the association matrix Ψ nor on the perturbing function
π(·). In order to prove that w and y are stochastically independent we consider their joint
characteristic function

ϕw,y(t, r) = E
(

exp
[{

w>(x)t + y>r
}])

=

∫
Rp

∫
Rq

exp
{

w>(x)t + y>r
}

2h(x)k(y)π
(

y>Ψx
)

dxdy,

where r is a q-dimensional real vector. An argument very similar to the one in the first part
of the proof yields

ϕw,y(t, r) = E
[
exp

{
w>(x)t

}]
· E
{

exp
(

y>r
)}

= ϕw(t) · ϕy(r),

thus implying that w and y are stochastically independent.

Proof of Theorem 3. Without loss of generality we assume that the location vectors are
null vectors. We prove the theorem in the special case of both x and y being bivariate
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vectors, the proof for the general case being very similar but much more cumbersome in
the notation. Let the joint distribution of z and w be

f (z1, z2, w1, w2) = 2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2).

The marginal distribution f (z1, w2) of z1 and w2 is∫ +∞

−∞

{∫ +∞

−∞
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2 =

∫ +∞

0

{∫ +∞

0
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2+

∫ +∞

0

{∫ 0

−∞
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2+

∫ 0

−∞

{∫ +∞

0
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2+

∫ 0

−∞

{∫ 0

−∞
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2.

By assumption, both h(·) and k(·) are sign-symmetric distributions, that is, they satisfy
the equalities

h(z1, z2) = h(−z1, z2) = h(z1,−z2) = h(−z1,−z2) and

k(w1, w2) = k(−w1, w2) = k(w1,−w2) = k(−w1,−w2).

The change of variables u1 = −z1 and u2 = −w2 yields∫ 0

−∞

{∫ 0

−∞
h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2 =

∫ +∞

0

[∫ +∞

0
h(z1, z2)k(w1, w2){1− π(λ1z1w1 + λ2z2w2)dz1}

]
dw2.

The change of variable u1 = −z1 yields∫ +∞

0

{∫ 0

−∞
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2 =

∫ +∞

0

[∫ +∞

0
2h(u1, z2)k(w1, w2)π(−λ1u1w1 + λ2z2w2)dz1

]
du2 =

∫ +∞

0

[∫ +∞

0
2h(u1, z2)k(w1, w2){1− π(λ1u1w1 − λ2z2w2)}dz1

]
du2.
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The change of variable u2 = −w2 yields∫ 0

−∞

{∫ +∞

0
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2

∫ +∞

0

{∫ +∞

0
2h(z1, z2)k(w1, u2)π(λ1z1w1 − λ2z2u2)dz1

}
dw2.

We can show that the random variables Z1 and W2 are independent:

f (z1, w2) =
∫ +∞

−∞

{∫ +∞

−∞
2h(z1, z2)k(w1, w2)π(λ1z1w1 + λ2z2w2)dz1

}
dw2 =

2
∫ +∞

0

{∫ +∞

0
2h(z1, z2)k(w1, w2)dz1

}
dw2 =

∫ +∞

−∞
h(z1, z2)dz1

∫ +∞

−∞
k(w1, w2)dw2.

Proof of Theorem 4. For the sake of simplicity and without loss of generality we assume
that the perturbing function π(·) is the cumulative distribution function of a continuous
distribution. The random variables X and Y are either positively or negatively dependent
if they satisfy the inequalities

Pr(X < a, Y < b) ≥ Pr(X < a) · Pr(Y < b) or Pr(X < a, Y < b) ≤ Pr(X < a) · Pr(Y < b)

for all real values a and b, with strict inequalities holding for at least some a and b. We only
prove the theorem for positive values of a, b and λ: the proofs of the remaining cases are
very similar. The integral representation of the joint probability that X and Y are smaller
than a and b is

Pr(X < a, Y < b) =
∫ b

−∞

∫ a

−∞
2h(x)k(y)π(λxy)dxdy.

Convenient partitioning of the integration region leads to the identity

∫ b

−∞

∫ a

−∞
2h(x)k(y)π(λxy)dxdy =

∫ −b

−∞

∫ −a

−∞
2h(x)k(y)π(λxy)dxdy

+
∫ b

0

∫ 0

−∞
2h(x)k(y)π(λxy)dxdy +

∫ 0

−b

∫ 0

−∞
2h(x)k(y)π(λxy)dxdy

+
∫ 0

−∞

∫ a

0
2h(x)k(y)π(λxy)dxdy +

∫ 0

−∞

∫ 0

−a
2h(x)k(y)π(λxy)dxdy

+
∫ b

0

∫ a

0
2h(x)k(y)π(λxy)dxdy +

∫ 0

−b

∫ 0

−a
2h(x)k(y)π(λxy)dxdy.
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By making the transformations z = −x and w = −y we obtain

∫ b

−∞

∫ a

−∞
2h(x)k(y)π(λxy)dxdy =

∫ −b

−∞

∫ −a

−∞
2h(−z)k(−w)π(λzw)dzdw

+
∫ b

0

∫ 0

−∞
2h(x)k(y)π(λxy)dxdy−

∫ 0

b

∫ 0

−∞
2h(x)k(−w)π(−λxw)dxdw

+
∫ 0

−∞

∫ a

0
2h(x)k(y)π(λxy)dxdy−

∫ 0

−∞

∫ 0

a
2h(−z)k(y)π(−λzy)dzdy

+
∫ b

0

∫ a

0
2h(x)k(y)π(λxy)dxdy−

∫ 0

b

∫ 0

a
2h(−z)k(−w)π(λzw)dzdw.

We use the identities h(x) = h(−x), h(x) = h(−x), π(−λxy) = 1− π(λxy) to obtain

∫ b

−∞

∫ a

−∞
2h(x)k(y)π(λxy)dxdy =

∫ −b

−∞

∫ −a

−∞
2h(z)k(w)π(λzw)dzdw

+
∫ b

0

∫ 0

−∞
2h(x)k(y)π(λxy)dxdy−

∫ 0

b

∫ 0

−∞
2h(x)k(w)[1− π(λxw)]dxdw

+
∫ 0

−∞

∫ a

0
2h(x)k(y)π(λxy)dxdy−

∫ 0

−∞

∫ 0

a
2h(z)k(y)[1− π(λzy)]dzdy

+
∫ b

0

∫ a

0
2h(x)k(y)π(λxy)dxdy−

∫ 0

b

∫ 0

a
2h(z)k(w)π(λzw)dzdw.

Apply now basic properties of integrals:

∫ b

−∞

∫ a

−∞
2h(x)k(y)π(λxy)dxdy =

∫ ∞

b

∫ ∞

a
2h(x)k(y)π(λxy)dxdy

+
∫ b

0

∫ 0

−∞
2h(x)k(y)π(λxy)dxdy +

∫ b

0

∫ 0

−∞
2h(x)k(y)[1− π(λxy)]dxdy

+
∫ 0

−∞

∫ a

0
2h(x)k(y)π(λxy)dxdy +

∫ 0

−∞

∫ a

0
2h(x)k(y)[1− π(λxy)]dxdy

+
∫ b

0

∫ a

0
2h(x)k(y)π(λxy)dxdy−

∫ b

0

∫ a

0
2h(x)k(y)π(λxy)dxdy.

A little algebra simplifies the above integrals:

∫ b

−∞

∫ a

−∞
2h(x)k(y)π(λxy)dxdy =

∫ ∞

b

∫ ∞

a
2h(x)k(y)π(λxy)dxdy

= 2
{∫ 0

−∞
h(x)dx

}{∫ b

0
k(y)dy

}
+ 2
{∫ 0

−∞
k(y)dy

}{∫ a

0
h(x)dx

}
.

The above integral identity leads to the probabilistic identity
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Pr(X < a, Y < b) = Pr(X > a, Y > b) + 2 Pr(X < 0)P(0 < Y < b) + 2 Pr(0 < X < a)P(Y < 0).

The probabilities Pr(X < 0), Pr(0 < X < a), Pr(Y < 0) and Pr(0 < Y < b) do not de-
pend on the perturbing function π(·), while the probability Pr(X > a, Y > b) does. By
assumption, π(·) is the cdf of a symmetric, continuous distribution, so that π(q) > 0.5 for
any positive real value q. It follows that

Pr(X > a, Y > b) =
∫ ∞

b

∫ ∞

a
2h(x)k(y)π(λxy)dxdy

>
∫ ∞

b

∫ ∞

a
h(x)k(y)dxdy = Pr(X > a)Pr(Y > b).

Logical steps similar to the above ones lead to the inequality

Pr(X > −a, Y > −b) > Pr(X > −a) · Pr(Y > −b)

for any two negative values −a and −b. The joint distribution of X and Y is centrally
symmetric, so that the random variables −X and −Y have the same joint distribution of X
and Y:

Pr(−X > −a,−Y > −b) = Pr(X < a, Y < b) >

Pr(−X > −a) · Pr(−Y > −b) = Pr(X < a) · Pr(Y < b).

Proof of Theorem 5. Let hi(·) and ki(·) be the probability density functions of the random
variables Ui and Vi,for i ∈ {1, . . . , n}. Further, let the random variables U1, . . ., Un and V1,
. . ., Vn be mutually independent, so that their joint probability density function is

f (u1, . . . , un, v1, . . . , vn) =

{
r

∏
i=1

hi(ui)

}{
r

∏
i=1

ki(vi)

}
.

By assumption π(·) is a strictly increasing perturbing function, so that we can define
a random variable Q, which is symmetric at the origin and whose cumulative density
function is π(·):

Pr(Q ≤ a) = FQ(a) = π(a) = 1− π(a), where a ∈ R.

By an argument virtually identical to the one used in Section 2 to generate a bivariate
perturbed independence distribution we obtain

(Z1, . . . , Zn, W1, . . . , Wn) ∼ (U1, . . . , Un, V1, . . . , Vn)|Q ≤
r

∑
i=1

λiUiVi.

Simple algebra leads to the distributional identity(
Zj, Wj

)
∼
(
Uj, Vj

)∣∣Q−∑
i 6=j

λiUiVi ≤ λjUjVj.

Since the random variables Q, U1, . . ., Un, V1, . . ., Vn are continuous, symmetric and
mutually independent, their linear combination

Qj = Q−∑
i 6=j

λiUiVi
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is continuous and symmetric, too. Let πj(·) be the cumulative density function of Qj, so
that πj(·) is a strictly increasing perturbing function, too:

πj(a) < πj(b) if a < b and 0 ≤ πj(−a) = 1− πj(a) ≤ 1.

By further application of the generating argument described in Section 2 we conclude
that the joint distribution of Zj and Wj have a joint distribution, which is
perturbed independent:

f j(z, w) = 2hj(z)k j(w)πj
(
λjzw

)
.

Proof of Theorem 6. By assumption, the association parameter is nonnull and the perturb-
ing function is increasing. Therefore, by Theorem 5, X and Y are either positively dependent
(if the association parameter is positive) or negatively dependent (if the association pa-
rameter is negative). By ordinary properties of monotone association, the conditional
expectation g(x) = E(Y|X = x) of Y|X = x is an increasing and nonconstant function of
x if the association parameter is positive and a decreasing function of x if the association
parameter is negative. In either case, g(·) is a monotone and nonconstant function.

By definition, a real valued function q(·) is odd if it satisfies the identity q(−a) = −q(a)
for any real value a belonging to the domain of q(·). As remarked at the end of Section 2, a
perturbed independence distribution is centrally symmetric: the bivariate random vectors
(X, Y)> and (−X,−Y)> are identically distributed, so that

E(Y|X = x) = g(x) = E(−Y| − X = x) = −E(Y|X = −x) = −g(−x).

As a direct consequence, the identity −g(x) = g(−x) holds true for any real value x
belonging to the support of X.

By assumption, both X and Y have finite second moments and their probability
density functions are symmetric at the origin. Hence their expectations equal zero: E(X) =
E(Y) = 0. Without loss of generality we can assume that their variances equal one:
E
(
X2) = E

(
Y2) = 1. Finally, let ρ be the correlation between X and Y: E(XY) = ρ. Were

g(x) a nonlinear function, it would coincide with ρx, that is the linear regression of Y
on X. By Theorem 1, the conditional distribution of Y given X = x is skew-symmetric,
thus implying the identity E

(
Y2|X = x

)
= 1. However, ρx in an unbounded function but

g(x) = E(Y|X = x) is not, since it must satisfy the inequality

1 = E
(

Y2|X = x
)
≥ E2(Y|X = x) = g2(x).

We therefore proved by contradiction that g(·) is a nonlinear function.
By the minimizing property of the expected value we have

g(x) = E(Y|X = x) = arg min
a∈A

E
[
{Y− a(X)}2

∣∣∣X = x
]
.

where A is the set of all real valued functions defined on the support of X. As a direct
consequence, we have

E
[
{Y− g(X)}2

∣∣∣X = x
]
≤ E

{[
(Y− X)2

∣∣∣X = x
]}

.

By taking expectation with respect to X we have

E
[
{Y− g(X)}2

]
≤ E

{[
(Y− X)2

]}
.
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By recalling that E(X) = E(Y) = 0 and E
(
X2) = E

(
Y2) = 1 we therefore obtain

the inequality
E
[
{Y− g(X)}2

]
≤ 2− 2ρ.

By expanding the squares we obtain

E
[
{Y− g(X)}2

]
= E

(
Y2
)
− 2E{Yg(X)}+ E

{[
g2(X)

]}
≤ 2− 2ρ,

which in turn leads to the inequality E{Yg(X)} ≥ ρ by noticing that E
{

g2(X)
}
< 1 =

E
(
Y2), by ordinary properties of variance decomposition. We further apply the same

inequality to obtain

corr{g(X), Y} = E{Yg(X)}
E(Y2)E{g2(X)} > E{Yg(X)} ≥ ρ,

which implies the strict inequality corr{g(X), Y} > ρ, thus completing the proof.
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